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Abstract: The current dramatic increase of antibiotic resistant bacteria has revitalised the interest in
bacteriophages as alternative antibacterial treatment. Meanwhile, the development of bioinformatics
methods for analysing genomic data places high-throughput approaches for phage characterization
within reach. Here, we present HostPhinder, a tool aimed at predicting the bacterial host of phages
by examining the phage genome sequence. Using a reference database of 2196 phages with known
hosts, HostPhinder predicts the host species of a query phage as the host of the most genomically
similar reference phages. As a measure of genomic similarity the number of co-occurring k-mers
(DNA sequences of length k) is used. Using an independent evaluation set, HostPhinder was able to
correctly predict host genus and species for 81% and 74% of the phages respectively, giving predictions
for more phages than BLAST and significantly outperforming BLAST on phages for which both
had predictions. HostPhinder predictions on phage draft genomes from the INTESTI phage cocktail
corresponded well with the advertised targets of the cocktail. Our study indicates that for most
phages genomic similarity correlates well with related bacterial hosts. HostPhinder is available as an
interactive web service [1] and as a stand alone download from the Docker registry [2].

Keywords: “host specificity”; prediction; genome; k-mers

1. Introduction

In 2012, the World Health Organization (WHO) announced the beginning of the end of the
antibiotic era, and the possible return to a time when even trivial bacterial infections could turn out
to be fatal [3]. Since then, the problem of antimicrobial resistance has continued to grow and in the
foreword to the WHO report “Antimicrobial resistance: global report on surveillance 2014” it is stated
that “A post-antibiotic era-in which common infections and minor injuries can kill-far from being an
apocalyptic fantasy, is instead a very real possibility for the 21st century” [4]. As emphasized by WHO
there is an urgent need for treatment alternatives, one such being bacteriophages (phages). The idea
of using phages for the treatment of bacterial infections dates back to 1919, when French-Canadian
microbiologist Félix d’Herelle used them for treating a patient with severe bacillary dysentery [5].
For a number of historical reasons, phage therapy never became general practice in the West, although
it has been used extensively in countries from the former Eastern bloc [6–9]. Several recent studies
from the West have also demonstrated the effectiveness of phages as antibacterial treatment [10–13],
and more countries are currently revisiting phage therapy [14,15]. Phages have furthermore been
suggested for use in the agriculture and food industries [16,17]. Examples include their use for reducing
Campylobacter jejuni colonisation of broiler chickens [18] and the growth of E. coli in milk [19].
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For a phage to successfully infect a bacterial host, the phage must adsorb to the bacterial
surface through recognition of specific host receptors, e.g., proteins, LPS, or cell wall polysaccharides.
Phage adsorption to an appropriate surface receptor is, however, only the first step required for
successful infection. Several host defence mechanisms must also be overcome: Restriction-Modification
(RM) systems have been shown to be present in more than 90% of sequenced bacterial genomes [20].
These systems include restriction enzymes that degrade incoming phage DNA with appropriate
target sequences. Some bacteria contain Clustered Regular Interspaced Short Palindromic Repeats
(CRISPR) loci, which together with the CRISPR-associated (cas) genes encode an adaptive anti-phage
immune system [21]. Phage abortive systems (Abi systems) allow infected bacteria to commit
“altruistic suicide” thereby preventing the spread of the phage within the bacterial community [22].
Other factors such as successful gene transcription and translation based on amino acid or tRNA
availability further limit the host range [23]. Bacteria and phages have from the outset of their
coexistence been engaged in a vehement arms race leading to intricate coevolutionary processes, and
for each of the defence mechanisms mentioned above, examples exist of phages that have evolved to
circumvent them [24,25]. The arms race has contributed to bacterial as well as phage diversity [26]
and entails that phage host determination is influenced by multiple genes and genome features
distributed across the phage genome. Although examples exist of phages that have extended their
host range based on only a few mutations [27], the extended host range is typically limited to different
strains of the same species. Apart from polyvalent enterobacteria phages, which are able to infect
members of phylogenetically linked genera within the Enterobacteriaceae family, e.g., Escherichia, Shigella,
and Klebsiella [28,29], most phages have been found to be specific to a particular genus [30]. This has
been indicated by studies examining proteins, not entire proteomes [31], as has the “Phage Proteomic
Tree”, which is based on completely sequenced phage genomes [32], and analysis of genome type for
Mycobacteriophages and host preference [33].

In this study, we extend the observation that genetically similar phages often share the same
bacterial host species and hypothesize that it should be possible to predict the host species of a phage
by searching for the most genetically similar phages in a database of reference phages with known
hosts. In the developed method, called HostPhinder, genetic similarity is defined as the number
of co-occurring k-mers between the query phage and phages in the reference database. K-mers are
stretches of DNA with a length of k, and their use as a measure of genetic relatedness dates back to
Woese and Fox and their groundbreaking paper from 1977, which uncovered Archaea as a separate
branch in the tree of life [34]. Woese and Fox limited their analysis to k-mers (they used the term
oligonucleotides) in 16S (18S) ribosomal RNA, but since phages do not have 16S rRNA genes or
any other genes which are common to all phages [32], and because high-throughput sequencing
methods have made the entire genome of phages easily available, HostPhinder examines the complete
genome. Further, for bacteria we have previously shown that the co-occurrence of k-mers across
the entire genome performs superior to other whole-genome or single locus based approaches for
inferring genetic relatedness [35]. The splitting of entire phage genomes into overlapping k-mers may
furthermore be an advantage in relation to the highly mosaic phage genome structure [36,37].

We believe that a method enabling prediction of the bacterial hosts of phages will be useful
for several reasons. Firstly, phages have for many years been used to treat bacterial infections in
countries belonging to the former Eastern bloc. The Eliava Institute in Tbilisi, Georgia has in particular
been dominant in this regard and produce cocktails containing a mixture of phages for a range of
bacterial infections. One of the steps towards adopting phage therapy in the West, is likely to be a
full characterization of the content of these cocktails, which due to the way they are manufactured
is not known [38]. Further, the current approach to exploration of many ecological niches is done by
untargeted sequencing of samples isolated directly from the environment, so called metagenomics.
This enables identification of phage and bacterial sequences without knowledge of the link between
them, and importantly also enables identification of bacteria, and hence phages, that cannot be cultured.
HostPhinder could help establish the link between phages and bacteria, which might be an important
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step towards understanding, e.g., the microbiome of the human gut, and possibly associations between
the microbiome and clinical parameters of the human host [39].

2. Materials and Methods

2.1. Whole Genome Phage Sequences from Public Databases

A set of public phage Whole Genome Sequences (WGS) was collected in August 2014: First,
lists of phage WGS IDs were obtained from Phages.ids–VBI mirrors page [40], the NCBI viral
Genome Resource [41], the EMBL EBI phage genomes list [42], and the phagesdb databases for
Mycobacteriophages [43], Arthrobacter [44], Bacillus [45], and Streptomyces [46]. The resulting unique
list of IDs was uploaded to the Batch Entrez service of NCBI to retrieve the corresponding WGS.
Furthermore genome sequences were downloaded from the PhAnToMe genomes database and from
NCBI searching for “(phage [Title]) AND complete genome”.

Only entries indicating "complete genome" in the DEFINITION field of the GeneBank file and
which host taxonomy was specified at least at the genus level were included. Entries annotated
as "prophage" in the DEFINITION were removed. Hosts annotated as Salmonella Typhimurium
were re-annotated as Salmonella enterica according to current nomenclature [47]. Finally, only the
genus was taken into account for hosts with species specified as "sp." followed by an alphanumeric
code; for example Synechococcus sp. WH7803 was re-annotated as Synechococcus. 2196 phages had
annotated host genus, here called phagesgenus dataset, and of these, 1871 had annotated species as well,
phagesspecies. A total of 209 different host species and 129 different genera were represented among
the phages (this data is available in HostPhinder’s repository [48]). Figure 1 shows the distribution of
hosts in the dataset.

Escherichia coli 15.4%

Lactococcus lactis  4.0%Mycobacterium smegmatis 25.4%

Pseudomonas aeruginosa  4.5%

Salmonella enterica  3.4%

Staphylococcus aureus  4.5%

Vibrio cholerae  2.2%

Other 40.6%

(a) Distribution of host species.

Figure 1. Cont.
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Bacillus  3.9%

Cellulophaga  2.1%

Escherichia 13.5%

Lactococcus  4.0%
Mycobacterium 23.2%

Pseudomonas  6.0%

Salmonella  5.0%

Staphylococcus  4.8%
Streptococcus  2.2%

Vibrio  3.9% Other 31.4%

(b) Distribution of host genera.

Figure 1. Hosts represented in the database. Species (a) and genera (b) representations are displayed
in the same genera-colour code.

2.2. Data Partitioning and Clustering

In this study, a 4-fold cross validation setup was used to assess the ability of the host prediction
method to generalize to previously unseen data. Five data partitions were made, and one partition,
phageeval was left aside during the entire process of parameter optimization. Once the parameters were
optimized, the prediction accuracy was evaluated on this phageeval set, using the entire phagetrain,test
set as reference database (Supplementary Materials Figure S1). In this setup, the performance of the
evaluation set is hence completely unbiased towards the model parameter optimizations.

A reliable, i.e., not overfitted, evaluation can only be made if phage genomes in the training-test
and evaluation sets are not too similar to each other. Indeed, if a phage genome in the training set is
almost identical to a genome in the evaluation set, it would be a simple task for HostPhinder to predict
its host, leading to an overestimation of the method’s ability to generalize to previously unseen data.
To avoid such a bias we clustered the genomes according to 16-mer similarity by means of a Hobohm 1
approach [49]. The Hobohm approach consists in the formation of a final list of representative phage
genomes, here called seeds. After the first sequence in a randomly sorted list enters the seed list and
forms a seed, the following sequences are each checked for similarity (number of overlapping 16-mers)
to each seed in the final list. Only if significantly different to the seed sequences, the new sequence
will be included in the seed list. Otherwise, it will be linked to the most similar seed as member of the
same cluster. The similarity between two genomes was measured in terms of fracq (see Equation (4)
in section “K-mer-based resemblance measures”) using a threshold fracq > 0.7. This threshold was
chosen because the resulting clustering was most similar (93%) to the clustering obtained with a
BLAST-Hobohm1 approach, where the similarity threshold was set to >90% genomewide ID (data not
shown). The k-mer-Hobohm1 analysis resulted in 293 clusters with at least 2 sequences and 1121
singlets. The total number of seeds was hence 1414 containing 1 to 97 sequences. To separate the
clustered phages in train-test and evaluation sets, the 1414 seeds were sorted by host alphabetical
order, and secondly by size and alternately distributed between 5 partitions. This assured an equal
host and genome size representation among partitions. Finally remaining members of each cluster
were integrated into the partition of their respective seed. Sequences within the same cluster shared
the host; therefore the unbiased host distribution was maintained also after integrating members
of the clusters in each partition (see Supplementary Materials Figure S2). Subsets of each of these
partitions were made, which comprised all phages that contained information about the species of the
host, overall constituting the phagesspecies dataset. The host and size distribution between partitions
remained conserved (see Supplementary Materials Figures S2–S4). As stated above, one partition
was next left aside for final evaluation, phageseval, and the remaining 4 formed the train-test set,
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phagestrain-test. The final phagestrain-test,genus set contained 1818 phages (115 genera and 190 species),
the phageseval,genus set contained 378 phages (72 genera, 96 species), while the phagestrain-test,species
set consisted of 1546 phages and the phageseval,species set consisted of 325 phages (data available in
HostPhinder’s repository [48]).

2.3. K-mer-Based Resemblance Measures

Under the assumption that phages infecting the same bacterial host share genomic features,
the host of a query phage should be predictable by searching for the most genomically similar phages
in a reference database of phages with annotated hosts. The reference database was build from phage
genome sequences and their reverse complements by splitting both into k-mers and sliding a window
of length k along the sequences with step-size 1.

Query sequences were likewise split into k-mers, and for each reference sequence i having at least
one k-mer in common with the query, a score, Si, was defined as the number of identical unique k-mers
between query and template. This score was subsequently used to determine the expectation value Ei:

Ei = NHits
lu,i

Lu,tot
(1)

where NHits is the sum of scores over all references, lu,i, is the total number of unique k-mers found in
the reference sequence i and in its reverse complement and Lu,tot is the sum of unique k-mers over all
references in the database. This expectation value was used to obtain a z-score:

zi =
Si − Ei√

Si + Ei + η
(2)

with η = 0.001 being a pseudocount used to avoid division by zero. Using SciPy, a two-sided p-value
was generated from the z-score. All p-values were corrected using the Bonferroni method [50] by
multiplying each p-value by the number of reference phages in the database:

pcorr = pi ∗ Nref (3)

where Nref is the number of reference sequences in the database. HostPhinder outputs only significant
hits, i.e., pcorr < 0.05. Additionally, the values fracq,i and fracd,i were estimated. They represent the
ratio of the score and the number of unique k-mers in query and reference sequences respectively:

fracq,i =
Si

qu,i + η
(4)

where qu,i is the number of unique query k-mers and η = 0.001 avoids division by zero. The value of
fracq,i, falling between 0 and 1, gives a direct indication of how much of the query sequence matched
to the reference phage.

fracd,i =
Si

lu,i + η
(5)

where lu,i is the number of unique k-mers in the reference sequence and in its complement.
Therefore, fracd,i falls between 0.5 and 1 if query and reference are identical, depending on the
number of additional unique k-mers found in the reversed complement. The two measures are hence
not directly comparable. Finally the coverage was determined as a measure of how much of the
reference sequence is covered by the total number of k-mers in the query that match the reference:

coveragei =
2qmatched,i

lu,i + η
(6)

where qmatched,i is the total number of k-mers in the query that were matched to reference i, and li is the
total number of k-mers in the reference. Both of these values include identical k-mers and do not only
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count unique k-mers. The factor 2 is included to account for the additionally used reverse complement
sequence of the reference to obtain li. The coverage can be larger than 1 if the query contains k-mers
that could be matched multiple times.

2.4. Determining the Measure and Selection Criteria for Final Prediction

As described above, 5 measures were calculated for the similarity of a query phage to each
of the phages in the reference database: score, z-score, fracq, fracd, and coverage. The optimal
measure was determined in a simple 4 fold cross-validation setup. Here in turn, 3 of the 4 data
sets were used as reference database for predicting the host for each query phage in the left out
test set (see Supplementary Materials Figure S1, left). The host was inferred from the host of the
reference phage with the highest value of similarity measure. This was repeated 4 times so that all
4 partitions were used as test set, and an overall performance for the given measure was calculated
by concatenating the predictions of the 4 test sets. For each measure the average and interval of
confidence was assessed through 100 bootstrap resamplings with replacement for each test set and
calculating the overall accuracy. On a pairwise comparison based on 1000 bootstrap resamplings,
coverage outperformed the other measures and was therefore chosen for further analysis. A number
of different selection criteria can be used for the final prediction of the host of a query phage. We tested
and compared the efficacy of 4 selection criteria that are each described in detail below.

2.4.1. Criterion 1: Host of Best-Matching Reference Phage

The host of the reference phage with the highest coverage value was selected as predicted host.
This is the selection criterion used above to define the optimal similarity measure.

2.4.2. Criterion 2: Majority Host among Top-10 Reference Phages

As predicted host, the most abundant host among the hosts of the top 10 reference phages with
the highest coverage values was selected. In case of a tie, the most abundant host with the highest
coverage, was selected.

In cases where the coverage of non-top reference phages is far below the coverage of the
top reference phage, it might not be advantageous to consider them in the selection criterion.
To accommodate this, two additional criteria, criteria 3 and 4, were developed.

2.4.3. Criterion 3: Majority Host among Reference Phages above Coverage Threshold

As predicted host, the most abundant host among the phages with a coverage value above a given
threshold was selected. The threshold was defined as a fraction of the highest coverage:

coveragethreshold = f coverage1 (7)

where f (fraction) is a number in the range 0.0–1.0. Note that f = 0.0 means considering all significant
predictions, whilst f = 1.0 corresponds to selecting the host of the reference phage with the highest
coverage (criterion 1). The optimal value of f was determined through a nested 3 fold cross-validation
to avoid biased estimates of performances that would result from using the same cross validation
used to select the optimal criterion. Here in turn, 3 data partitions were used as tripartite train-test set
in a procedure called inner cross-validation. Within the tripartite set, 2 partitions were sequentially
used as reference database for predicting the host for the left out test set using Equation (7) for a given
value of f . This was repeated 3 times within each tripartite set so that all 3 partitions were used as test
set and an overall performance for the given f value was calculated (see Supplementary Materials
Figure S5). For each f value the average accuracy was assessed through 100 bootstrap resamplings
with replacement for each inner cross validation loop. The same procedure was repeated 4 times so that
each tripartite combination was analysed leading to 4 estimates of the optimal f value. The accuracy
vs. f values curves are shown in Figure 2 for prediction of species and genus. The horizontal bars span
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f values that yield at least 99% of the highest accuracy in the relative tripartite combination. Given
these performance curves, an f value of 0.8 was chosen within the highest performance range, Figure 2.
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Figure 2. Accuracy vs. f values obtained from the 4 loops of inner cross validation. Each dot represents
the averaged accuracy for species (a) and genus (b) prediction over 100 bootstrap resamplings. The
bars cover the range of f values for which the accuracy is 99% the highest accuracy in the specific
tripartite set.

2.4.4. Criterion 4: Summing up Normalized Coverage Values of Phages with Same Host

In the scoring method, coverage values of all significant reference phages were normalised by
division by the highest coverage, coverage1, and raised to the power of an arbitrary number, α > 0.

scorei =

(
coveragei
coverage1

)α

(8)

Next, scores of hits with the same host were summed up and the host was predicted as the
one with the highest score. The higher the value of α, the higher the score of the first hit, the closer
this method is to criterion 1. Values of α in the range 0.0–10.0 were tested. As for the criterion 3,
the optimal α was determined through a nested 3 fold cross-validation setup (see Supplementary
Materials Figure S5) and led to the selection of α = 6.0 within the range that yielded the highest
accuracy in the 4 tripartite train-test sets (see Figure 3).
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Figure 3. Accuracy vs. α values for prediction of species (a) and genus (b) in each tripartite set. Each
dot represents the averaged accuracy over 100 bootstrap resamplings. The bars cover the range of α

values for which the accuracy is 99% the highest accuracy.
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2.5. Programming Language and Speed of Execution

The algorithm was written in Python and Bash.
On an Intel(R) Xeon(R) CPU E5-4610 v2 @ 2.30GHz computer, using 2 cores and 10 GB RAM,

HostPhinder average running time is of 61.1662 s for host species prediction and 109.622 s for genus
prediction. The longer runtime for genus prediction is due the larger database used for genus
predictions. These values were calculated on the evaluation set.

2.6. BLAST Evaluation

The accuracy of the HostPhinder k-mer based approach was compared to the state-of-the-art
tool in bioinformatics, BLAST [51]. BLAST performance was assessed on the phageseval set using the
phagestrain-test set to create a local nucleotide BLAST database. The host associated to the hit with the
lowest E-value and secondarily highest bit score was returned as prediction.

2.7. Establishing an Evaluation Set of Predicted Prophages

The PhiSpy prophage prediction tool [52] was used to predict prophages in 2679 complete
bacterial genomes collected from NCBI [53]. PhiSpy was run once on each genome resulting in a total
of 7559 predicted bacterial prophages in 2074 genomes. Of these, 2796 were from bacterial species
that were also included in the HostPhinder reference database. In the following, these predicted
prophages will be referred to as the prophagesspecies set. A total of 4639 predicted prophages were
from genera that were included in the reference database of HostPhinder. They will be referred to as
the prophagesgenus set.

Furthermore 261 manually verified prophages were downloaded from PhiSpy and phage_finder
directories from Phantome [54] and HostPhinder prediction was tested on them.

2.8. Host Prediction of INTESTI Bacteriophage Cocktail

The Georgian George Eliava Institute of Bacteriophages, Microbiology and Virology has developed
phage cocktails (mixtures of phages) since the 1950s. One of these, the INTESTI bacteriophage cocktail,
claims to contain sterile filtrates of phage lysates effective against Staphylococcus, Enterococcus, Proteus,
Shigella, Salmonella, Escherichia coli, and Pseudomonas aeruginosa for the treatment of intestinal bacterial
infections. The cocktail was sequenced directly on an Illumina MiSeq platform and de novo assembled
to contigs, which were further grouped into 19 draft genomes each hypothesized to represent close to
complete phage genomes, and 4 smaller groups hypothesized to represent fragments of phage genomes
previously described [38]. The host genus and species of each of these 23 groups was predicted by the
final HostPhinder method using the 4th criterion with α = 6.0.

3. Results

In this study, we developed and benchmarked HostPhinder, a bioinformatics tool for predicting
the bacterial host species of phages. The method is based on the assumption that genetically similar
phages are likely to share bacterial hosts. For performing the predictions, HostPhinder relies on a
reference database in which WGS data from phages with annotated hosts have been split into k-mers.
The genomes of the query phages for which the hosts should be predicted are likewise split into k-mers,
and the number of co-occurring k-mers between the query phage and the phages in the reference
database is used as a measure of genetic similarity.

3.1. Developing and Benchmarking the HostPhinder Method

Initial analysis on a small dataset indicated that k-mers of length 15–20 nt led to comparable
predictive performances. In contrast, shorter k-mers were too unspecific and led to a lower final
accuracy, while longer k-mers were too specific and led to more query phages for which no predictions
at all could be made (data not shown). Based on these results and a previous study that showed
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16-mers to be optimal, when using a k-mer based approach for bacterial species identification [35],
16 was chosen as the k-mer length in the following.

In the initial testing of the basic genetic similarity assumption of HostPhinder, 5 measures were
evaluated for estimating the similarity of the query phage to the reference phages as described in
Materials and Methods. For each measure, the query host was inferred from the host of the reference
hit with the highest similarity. Table 1 shows the performance of each similarity measure in this
initial testing.

Table 1. Overall performance of different similarity measures on phagestrain-test.

Score z fracq fracd Coverage

Species (%) 77.03 ± 0.112 77.81 ± 0.111 77.24 ± 0.111 78.43 ± 0.111 78.76 ± 0.108
Genus (%) 81.43 ± 0.096 82.02 ± 0.094 81.78 ± 0.094 83.07 ± 0.09 82.84 ± 0.092

The measures’ accuracies in predicting the query phage host species of the training-test set
were pairwise compared by 1000 bootstrap resamplings with replacement. Coverage performed
significantly better than other measures (p-value < 0.05), apart from fracd, which in turn did not
significantly outperformed coverage. Since coverage showed the highest performance in predicting the
host species, it was chosen as the measure used when further optimizing HostPhinder prediction at the
species level. Next, the performance of 4 scoring methods for host selection was compared (see Material
and Methods for criteria description and parameter optimization). For each selection criterion only
significant hits were considered (pcorr < 0.05) and the number of queries with predictions was constant
for all criteria allowing a direct comparison of criteria efficacy. Using the model parameters determined
above, the 4 criteria were compared in terms of overall accuracy in a 4 fold cross-validation system.
In turn, 3 of the 4 partitions were used as reference database for predicting the host for the left out
test set using each criterion. This was repeated 4 times so that all 4 partitions were used as test set,
and an overall performance for the given criterion was calculated. For each criterion the average and
interval of confidence was assessed through 100 bootstrap resamplings with replacement for each test
set and calculating the overall accuracy. Table 2 shows the overall accuracy on phagestrain-test,genus
and phagestrain-test,species sets for each criterion on genus and species level, respectively. Bacterial
host genera and species were not predicted for 5.8% phagestrain-test,genus and 5.6% phagestrain-test,species
phages respectively.

Table 2. Average and mean standard error of the overall HostPhinder performance over 100
phagestrain-test set resamplings with replacement.

Method Criterion 1
(First Host)

Criterion 2
(Majority

Host among
Top-10)

Criterion 3
(Coverage
Threshold,

f = 0.8)

Criterion 4 (Summing
up Normalized

Coverage Values,
α = 6.0)

Accuracy,
Species (%) 78.76 ± 0.108 74.79 ± 0.102 79.1 ± 0.104 79.13 ± 0.105

Accuracy,
Genus (%) 82.84 ± 0.092 80.41 ± 0.099 83.61 ± 0.092 83.72 ± 0.092

Criterion 4 with α = 6.0 had the highest predictive value, with an accuracy of 79% and 84% for
species and genus respectively, even though it only significantly outperforms criterion 2.

Some hosts are substantially more frequent than others in the data set. This could potentially
lead to a bias in the prediction, and a subsequent sub-optimal predictive performance. To investigate
this, modified versions of criteria 2–4 were tested, where the sequences in the reference database were
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clustered according to Hobohm 1 algorithm [49], and only the highest scoring element within one
cluster was used in the prediction schema. This did not, however, improve the performance.

Based on the above benchmarking procedures, the final method called HostPhinder was
developed. The reference database was generated by splitting all phage genomes in the entire phage
set into 16-mers using a step-size of 1. After searching through the database, HostPhinder examines
the coverage measure and creates a hits list, i.e., phages significantly similar to the query. The final host
species and genus is given according to criterion 4 with an α = 6.0. HostPhinder is freely available as a
web server [1] and as a Docker image [2].

3.2. Evaluating HostPhinder’s Performance on Complete and Partial Genomes

HostPhinder was evaluated on the phageseval,genus and phageseval,species sets containing phages
from public databases. HostPhinder was able to correctly predict the bacterial host species and genera
of 74.24% ± 0.270% and 81.39% ± 0.206% of the phages respectively. In the evaluation set, 4.0% (3.44%)
of the phages could not be matched to any phage in the database when predicting on species (genus)
level. We speculated that the accuracy of the HostPhinder method is depending on the coverage value
of its prediction. That is, the higher the coverage value, the higher the accuracy. To quantify if this is
indeed the case, we show in Figure 4 the accuracy on the evaluation set at different intervals of the
coverage value. No hit appeared to have range 0.8 < coverage ≤ 0.9 for species. For species as well
as genus level, it can be seen that predictions based on a coverage value below 0.1 are only correct
for 47% (species) and 63% (genus) of the phages. At the other end of the scale, predictions based on a
coverage value above 0.7 (species) and 0.8 (genus) are correct in all instances.
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Figure 4. HostPhinder’s accuracy (bar) and prediction counts (line) on phageseval at different coverage
ranges. The values displayed on the x axis are the lower limit of that range. With exception of the last
bin which includes all entries with coverage >0.9, all ranges are right-closed with upper limit x + 0.1.
Poorly reliable results are in grey, while reliable and highly reliable results are in green and dark green
respectively. Results on HostPhinder’s web server [1] are displayed using the same colour code.

Assembly of metagenomic samples often do not results in entire phage genomes. To assess
how the completeness of a phage genome affects HostPhinder performance, we ran the tool on the
evaluation set where each genome was gradually reduced by 10%, 20%, ... ,90% of its total length.
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Figure 5 shows the accuracy and the number of predictions for each percentage of genome length.
HostPhinder maintained the prediction accuracy but made gradually fewer predictions as the fraction
of genome given as query is decreased.

(a) phageseval,species (b) phageseval,genus

Figure 5. HostPhinder’s accuracy (bar) and percentages of predictions (dots) on phageseval at different
percentages of genome length from 10% to 100% of total genome length.

Generally, HostPhinder returned predictions at 10% genome length for those genomes which
prediction at complete genome length had a higher coverage. The average coverage for predictions
made at complete genome length but not at 10% genome length was 0.023, while the average coverage
for commonly predicted was 0.36.

We next examined if HostPhinder always correctly predicted particular host species or genera
(Table 3). Only hosts occurring at least 3 times in the phageseval set are listed. All phages in the
phageseval set that target these hosts listed in Table 3 were correctly predicted. Additionally, none of
these hosts were erroneously predicted as targets of other phages.

Table 3. List of host species (left) and genera (right), which HostPhinder predicts correctly.

Species Representation in
phagestrain-test,species

Genus Representation in
phagestrain-test,genus

Enterococcus faecalis 15 Acinetobacter 16
Listeria monocytogenes 21 Listeria 26

Propionibacterium acnes 21 Propionibacterium 24
Vibrio cholerae 35 Streptococcus 39

Streptomyces 11
Thermus 5

HostPhinder also worked effectively for predicting the host of phages, which according to the
initial clustering were of different types; in fact in the HostPhinder dataset there are 14 different types
of Enterococcus faecalis phages, 13 types of Listeria monocytogenes phages and 21 types of Vibrio cholerae
phages and all phages known to infect these host have been correctly predicted, see Table 3.

Figures 6 and 7 show right and wrong predictions for species and genera respectively. To ease
comprehension of the plots, hosts were grouped by phyla, which are displayed on the left side
of the figures. Rows are alternatively shaded and column names are enhanced with the same
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colour of the phylum of belonging. The heatmaps are read from right to left and then downwards;
expressely, the phage related to the host identified by the row name, on the right, was predicted
(red intensity of the cell) to infect the host identified by the column name in the lower part of the figure.
As an example, Alteromonas macleodii phages, the row encompassed in a blue horizontal box in Figure 6,
occurred four times in the phageseval,species set, as indicated by the number within parenthesis beside
the host name, and all of them were wrongly predicted to be S. aureus phages (vertical blue box) as
indicated by the intense red colour of the square in the intersection between the two blue boxes; of note,
there were 69 S. aureus phages in the phagestrain-test,species data set and no Alteromonas macleodii phages.
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Figure 6. Heatmap of annotated vs. predicted host species in the phageseval,species set. In this figure
correct as well as mispredicted host species can be seen. Annotated host species are listed along the y
axis, while predicted ones are on the x axis. The number after each species on the y axis and the x axis
also indicate the occurrences of phages in the phageeval,species and in the phagestrain-test respectively.
Host species are grouped according to the respective phylum, which are indicated on the left side of
the figure. The colour scale indicates the fraction of phages predicted as targeting a particular host and
goes from white, no phages, to red, 100% of the phages. Accordingly, the colour itself is not an indicator
of correctness of the prediction, and red colours along the diagonal represent correct predictions.
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Figure 7. Heatmap of annotated vs. predicted host genera in the phageseval,genera set. In this figure
correct as well as mispredicted host genera can be seen. Annotated host genera are listed along the
y axis, while predicted ones are on the x axis. The number after each genus on the y axis and the
x axis indicate the number of occurrences of phages in the phageeval,genus and phagestrain-test,genus
respectively. Host genera are grouped according to the respective phylum, which are indicated on the
left side of the figure. The colour scale indicates the fraction of phages predicted as targeting a particular
host and goes from white, no phages, to intense red, 100% of the phages. Accordingly, the colour is in
itself not an indicator of correctness of the prediction, and red colours along the diagonal represent
correct predictions.

At species level, phages with mispredicted hosts are often predicted to target a host of the same
genus as the annotated host (see small deviations from the diagonal in Figure 6). As examples,
the 3 phages annotated to target Bacillus subtilis are predicted to target either B. subtilis or Bacillus cereus.
For some phages the mispredicted host is, however, of an entirely different genus, e.g., the phage
annotated to target Yersinia enterocolitica and the phage annotated to target Yersinia pestis are
both predicted to target E. coli. For species as well as genera there is a tendency that phages
with mispredicted hosts are predicted to target the most frequent hosts in the phagestrain-test set,
e.g., E. coli and Mycobacterium smegmatis on species level and Escherichia and Mycobacterium on genus
level. What is important to note is that inaccurate predictions were finding related hosts. For example,
imprecise predictions of phages infecting Proteobacteria (the ones within the brown region) were still
falling within the phylum of Proteobacteria. This indicates a relatedness in terms of genome sequence
among phages infecting different hosts belonging to the same phylum.
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3.3. Comparing HostPhinder to BLAST

Next, the HostPhinder performance on phageseval was compared to BLAST. Table 4 summarises
the results.

Table 4. HostPhinder and BLAST performance comparison on the phageseval set.

BLAST HostPhinder

No. of predictions, training on phagestrain-test,genus 90% 97%
No. of predictions, training on phagestrain-test,species 91% 96%
Accuracy on common predictions (GENERA) (%) 84.66 ± 0.188 85.13 ± 0.176
Accuracy on common predictions (SPECIES) (%) 76.92 ± 0.252 78.69 ± 0.237

HostPhinder was able to make host predictions for more phages than the BLAST-based method.
For the phages that both methods were able to make a prediction for, HostPhinder outperformed
BLAST on both genus and species level. The observed better performance of HostPhinder on species
level is significant (p < 0.05). HostPhinder correctly predicted 25% among 24 (genera) and 10% among
20 (species) predictions not covered by BLAST. Moreover when inferring the host genus of a phage for
which HostPhinder gave no prediction, BLAST match to the most closely related phage resulted in the
wrong prediction.

3.4. HostPhinder’s Performance on Predicted Prophages and Establishment of Confidence Threshold

To further evaluate the performance of HostPhinder and to establish a confidence threshold for
the predictive value, we examined if HostPhinder was able to identify the bacterial hosts of predicted
prophages on the premise that prophages are phages that have at one point infected the host that
they are currently found in. The predicted prophages provide a dataset diverse enough to define a
reliability threshold that can be generalized and applied to previously unseen data. For this purpose,
we predicted prophages in 2679 bacterial genomes using PhiSpy [52]. Without any threshold value
set, HostPhinder was able to correctly predict approximately 45% and 47% of the species and genus
respectively. The accuracy was calculated over the number of phages that HostPhinder was able to
make a prediction for.

As for phageseval, the results on PhiSpy predicted prophages were binned into coverage ranges
(Figure 8, upper panels). The accuracy pattern for prophages generally resembled the one for the
evaluation set, i.e., it had low accuracy for coverage ≤1, and 100% accuracy above a certain threshold,
which in this case is 0.8 for species. There is an unexpected drop in accuracy for coverage values >0.9
(genus), which a bootstrap analysis proved non significant (p > 0.05). To further cofirm the thresholds,
we ran HostPhinder on 261 manually verified prophages, downloaded from PhAnToMe.org,
which resulted in 63.57 % ± 0.356 % and 78.69 % ± 0.262 % prediction accuracy of species and
genus respectively. Accuracy distribution for this dataset among different coverage ranges can be seen
in Figure 8, lower panels. Based on observations phageseval and on prophages, HostPhinder considers
trustable results with coverage value higher than 0.1, and it applies a conservative threshold of 0.8 to
distinguish highly trustable results.
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Figure 8. HostPhinder’s accuracy (bar) and prediction counts (line) on prophages predicted by PhySpy,
upper panels, and manually verified prophages, lower panels, at different coverage ranges. The values
displayed on the x axis are the lower limit of that range. With exception of the last bin which includes
all entries with coverage >0.9, all ranges are right-closed with upper limit x + 0.1. Poorly reliable results
are in grey, while reliable and highly reliable results are in green and dark green respectively.

3.5. Host Analysis of Phages from Therapeutic Phage Cocktail from the Georgian George Eliava Institute

In a recent study, we examined the content of an INTESTI bacteriophage cocktail from the Georgian
George Eliava Institute. According to the packing, the cocktail is effective against Staphylococcus,
Enterococcus, Proteus, Shigella, Salmonella, Escherichia coli, and Pseudomonas aeruginosa infections [38].
A total of 19 phage draft genomes were identified that were hypothesized to represent close to
complete phage genomes. An additional set of four sequences represented fragments of phage
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genomes. Here, we used HostPhinder in an attempt to predict host genera and species of these phage
draft genomes and fragments. Table 5 provides an overview.

Table 5. Overview of the results of HostPhinder predicting the hosts of 19 phage draft genomes
(name starts with a “D” and Proteus) and 4 phage genome fragments (name starts with an “F”) from
the INTESTI phage cocktail.

Draft ID Genus Species Coverage
D1 Staphylococcus Staphylococcus aureus 1.000
D13 Salmonella Salmonella enterica 0.840
D5 Escherichia Escherichia coli 0.740
D3 Pseudomonas Pseudomonas aeruginosa 0.690
D11 Salmonella Salmonella enterica 0.610
D10 Escherichia Escherichia coli 0.500
D14 Escherichia Escherichia coli 0.490
D17 Escherichia Escherichia coli 0.460
D9 Escherichia Escherichia coli 0.450
D15 Escherichia Escherichia coli 0.450
D16 Sodalis Sodalis glossinidius 0.430
D4 Escherichia Escherichia coli 0.420
D18 Salmonella Salmonella enterica 0.380
D8 Escherichia Shigella flexneri 0.300
F1 Pseudomonas Pseudomonas aeruginosa 0.270
D2 Escherichia Escherichia coli 0.250
D7 Enterococcus Enterococcus faecalis 0.230
D12 Enterococcus Enterococcus faecium 0.180
F2 Salmonella Salmonella enterica 0.078
F4 Escherichia Escherichia coli 0.014
D6 Enterococcus Enterococcus faecalis 0.011
F3 Escherichia Escherichia coli 0.011
Proteus Escherichia Escherichia coli 0.003

For six of the seven bacterial targets of the cocktail, HostPhinder predicted at least one phage
targeting this type of bacteria. The only bacterium that was not predicted among the hosts was Proteus.
Instead, the phage that was experimentally found to infect Proteus [38], was predicted as an E. coli
phage with a coverage of 0.0026. This is not surprising, as the HostPhinder database contains no
examples of Proteus phages. A Sodalis glossinidius was predicted, not corresponding to any of the
anticipated targets. This bacterium is an endosymbiont of the tsetse fly [50] and its prediction was
based on a coverage value of 0.43, where predictions with coverages above 0.2 have approximately
80% chance of being correct (see Figures 4 and 8). The predicted hosts of the 4 phage fragments were
generally based on a lower coverage than the 19 phage draft genomes, indicating that these predictions
are less certain.

4. Discussion

In the present study, we developed a fast and simple method for prediction of phage hosts.
Other studies have previously focused on the identification of phage-host pairs. Experimental methods
examining phage-host interactions include mining viral signals from SAG (single amplified genomes)
datasets; microfluidic digital PCR and phageFISH [55]. Recently, M. Martínez-García et al. combined
single-cell genomics and microarrays technology to assign viruses to hosts depending on hybridization
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allowing for discovery of new virus-host pairs directly on a metagenomic samples without requiring
cultivation or relying on genomic information [56]. In another study, Roux et al. developed a
bioinformatics tool VirSorter [57], which was able to identify more than 12,000 virus-host linkages
from publicly available bacterial and archeal genomes. In their study they analysed the virus-host
adaptation in compositions in terms of mono- di- tri- tetra-nucleotide frequency and codon usage [58]
showing the strongest signal of adaptation to host genome given by tetranucleotide frequency (TNF).
A further classification method for phage host prediction, MGTAXA was developed by Williamson
et al. in their metagenomic study of the marine microbe in the Indian Ocean [59]. MGTAXA links
viral sequences to the highest scoring host taxonomic model based on polynucleotide genome
composition similarity between phage and bacterial genomes. The software is not conveniently
available anymore (as of December 2015) and we therefore could not compare its performance to
HostPhinder’s. Finally, a recent publication by Edwards et al. reviewed the predictive power of several
computational tools for predicting the host of a given phage based on genome information [60]. The
authors highlighted the importance of such tools for the characterization of uncoltured virus from
metagenomes, and found that homology-based approaches had the strongest signals for predicting
phage-host interactions.

HostPhinder bases its predictions on co-occurring k-mers between the query phage genome
and the genomes of reference phages with known hosts. Kmer-based approaches have recently been
implemented for genome assembly [61], fast classification [62,63] and annotation [64] of metagenomes.
Considering the highly mosaic structure of phage genomes, one of the advantages of using k-mers
for phage host predictions is that the exact order of genetic elements does not influence the outcome,
only their presence or absence.

On an independent evaluation set, HostPhinder was found to perform well, when predicting
the hosts of phages currently found in public databases. A remarkable 74% accuracy for the host
species and 81% for the host genus were obtained. Some hosts were consistently easier to predict
than others. This was for example the case for P. acnes, where the host of all annotated P. acnes
phages in the evaluation set were correctly predicted, while no non-P. acnes phages were erroneously
predicted as such. The observation is in concordance with previous studies showing that P. acnes
phages constitute a homogenous group, sharing 85% nucleotide sequence and having similar genome
length [65,66]. Furthermore the examined P. acnes phages were not able to infect other members of
the Propionibacterium genus [65,67]. For many of the mispredicted hosts of HostPhinder, the genus
of the annotated and predicted host was the same, which might be considered concurrent with the
ability of some phages to infect more than one species within a genus. Examples of such broad host
range phages are Salmonella Phage Felix O1 [68], Mycobacteriophage D29 [69] and Yersinia Phage
PY100 [70]. It is hence possible that the mispredicted phages are polyvalent, i.e., capable of infecting
more than one bacterial species. Alternatively they may represent actual misprediction by HostPhinder
caused by closely related phages targeting different host species. In some cases, the host predicted
by HostPhinder did not even belong to the same genus as the annotated host, e.g., the three Yersinia
phages were all predicted to infect Escherichia with coverage values that indicate a reliable result,
namely 0.57, 0.6 and 0.13. Indeed the genome sequence of the Y. pestis phage phiA1122 has been found
to be closely related to coliphage T7, sharing 89% nucleotide identity [71]. Despite this high nucleotide
identity, PhiA1122 is not able to infect E. coli, and has even been used by the Center for Disease Control
and Prevention of the United States as a diagnostic agent to identify Y. pestis [72].

When applying HostPhinder to phage draft genomes and fragments from the INTESTI phage
cocktail, the predicted hosts corresponded well with the advertised targets of the cocktail. One phage
draft genome was, however, predicted to target Sodalis glossinidius, an endosymbiont of the tsetse fly.
Excluding the remote possibility that phages targeting this bacterium has been added to the cocktail,
it is likely that the HostPhinder prediction is incorrect or that the phage is able to infect S. glossinidius
as well as one of the targets of the cocktail. A study by Ho-Won and Kyoung-Ho Kim has shown
close relation in comparative genomic and phylogenetic analyses between EP23, a phage that infects



Viruses 2016, 8, 116 18 of 22

E. coli and Shigella sonnei and, SO-1, which infects S. glossinidius [73]. It was, however, not examined if
the phages were able to cross-infect the hosts.

Many phages have a very narrow host range and only target specific strains within a particular
species. This feature has been used extensively previously, when typing, e.g., S. enterica [74] and
S. aureus [75]. HostPhinder is not able to perform predictions beyond species level, partly due to the
hosts of most phages in the public databases not being annotated beyond this. Further, to perform
predictions down to specific strains of bacteria more factors than the mere genome resemblance would
likely have to be taken into account, e.g., by examining the receptor binding proteins, identifying the
number of restriction sites in the phage genomes or analysing the CRISPR regions of the host genome.

Another limitation to the performance of HostPhinder is the accuracy of the breadth of annotated
host(s) of the references phages. Most of the reference phages had only one annotated host,
although many examples exist of phages that are able to infect closely or even distantly related
bacteria [76–78]. Further, the performance of HostPhinder depends on the size and completeness
of the underlying database. As an example, at the time of compiling the database for this study,
no Proteus phage genomes were available in public databases. Hence it is inherently impossible
for the HostPhinder method to predict any query phage as a Proteus phage. Indeed, HostPhinder
predicted an experimentally identified Proteus phage from the INTESTI phage cocktail as an E. coli
phage, albeit based on a coverage value of 0.003 indicating that the prediction was not reliable.
Carson et al. demonstrated the capability of a coli-proteus phage isolated from a Russian cocktail of
equally eradicating E. coli and Proteus mirabilis biofilms [79], evincing the potential of some phages to
infect both species. As more phage genomes become available, we will update HostPhinder database
to ensure its continued high performance.

Despite the limitations in HostPhinder, we envision that the tool will be useful for narrowing
down the list of potential hosts. With the growing availability of metagenome samples, new approaches
are necessary to firstly identify phages and secondly, determine their host. Thanks to its capability of
promptly identifying potential phage-host interactions, the HostPhinder tool has potential applications
in ecology, human gut microbiocenosis studies, and other viral metagenomics analyses, where there is
need to shed light on the nature of phages.

The current of HostPhinder is very simple, only taking into account genomic information about
the phage. Further development of the tool will expand this, taking the genome of the host into
account, which we expect will enable us to make predictions beyond host species level.

5. Conclusions

The current antibiotics resistance crisis warrants new ways to combat bacterial infections.
For decades, phage therapy has been used for this purpose in countries belonging to the former
Eastern Bloc, and to ensure transfer of the technology to the West, it is important to establish a pool of
well-characterized phages. The presented HostPhinder method provides the phage community with
an easy-to-use tool for predicting the host genus and species of query phages, usable when searching
for phages with appropriate host specificity and for correlating phages and hosts in ecological and
metagenomic studies. HostPhinder is freely available as a web server [1] and as a Docker image [2].
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