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Abstract

Background: Genomic mutations caused by cytotoxic agents used in cancer chemotherapy may cause secondary
malignancies as well as contribute to the evolution of treatment-resistant tumour cells. The stable diploid genome
of the chicken DT40 lymphoblast cell line, an established DNA repair model system, is well suited to accurately
assay genomic mutations.

Results: We use whole genome sequencing of multiple DT40 clones to determine the mutagenic effect of eight
common cytotoxics used for the treatment of millions of patients worldwide. We determine the spontaneous
mutagenesis rate at 2.3 × 10–10 per base per cell division and find that cisplatin, cyclophosphamide and etoposide
induce extra base substitutions with distinct spectra. After four cycles of exposure, cisplatin induces 0.8 mutations
per Mb, equivalent to the median mutational burden in common leukaemias. Cisplatin-induced mutations, including
short insertions and deletions, are mainly located at sites of putative intrastrand crosslinks. We find two of the newly
defined cisplatin-specific mutation types as causes of the reversion of BRCA2 mutations in emerging cisplatin-resistant
tumours or cell clones. Gemcitabine, 5-fluorouracil, hydroxyurea, doxorubicin and paclitaxel have no measurable
mutagenic effect. The cisplatin-induced mutation spectrum shows good correlation with cancer mutation signatures
attributed to smoking and other sources of guanine-directed base damage.

Conclusion: This study provides support for the use of cell line mutagenesis assays to validate or predict the
mutagenic effect of environmental and iatrogenic exposures. Our results suggest genetic reversion due to
cisplatin-induced mutations as a distinct mechanism for developing resistance.

Keywords: Whole genome sequencing, Mutagenesis, Cisplatin, Cyclophosphamide, Etoposide, Cytotoxics,
Cancer chemotherapy, Chemotherapy resistance, BRCA2, Spontaneous mutagenesis, DT40

Background
Cytotoxic drugs have been in use for cancer therapy
since the 1950s, and remain the first line treatment for
most cancers today. These drugs inhibit cell proliferation
through a range of different mechanisms, including
directly damaging DNA, interfering with DNA metabol-
ism and interfering with the mitotic machinery. Success-
ful treatments kill tumour cells, but also exert side
effects attributable to a number of factors including the

inhibition of cell proliferation in healthy tissues. Treat-
ments may also have long-term negative consequences
through inducing genomic changes. In normal somatic
cells, mutations induced by chemotherapy may acceler-
ate tumorigenic processes. The development of second-
ary malignancies is an especially significant issue
following childhood cancers and epidemiological studies
have associated treatment with alkylating agents and
topoisomerase inhibitors with the later development of
acute myoblastic leukaemia (AML) and other tumour
types [1]. Moreover, treatment-induced mutations in
surviving cancer cells increase the genetic heterogeneity
of the tumour and may contribute to the development
of resistance to further treatment.
Chemotherapeutics are tested for genotoxicity, the

ability of the drug to cause DNA damage. The most
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important currently approved tests are the comet assay
for detecting DNA breaks, the chromosome aberration
assay and the micronucleus formation test [2]. These as-
says give indirect and imprecise predictions of carcino-
genic potential [3], as a finding of genotoxicity only
reveals that a compound has potential to cause genomic
mutations, without measuring the outcome in a surviv-
ing cell. Mutagenicity itself has primarily been assayed
using reporter genes, including the Ames reverse muta-
tion assay in bacteria [4] and HPRT mutagenesis in
mammalian cell lines [5]. However, the comprehensive
detection of all genomic changes of all types only became
available with affordable whole genome sequencing.
Mutagenic effects have been attributed to a large pro-

portion of cancer chemotherapeutic agents. Alkylating
agents induce direct DNA adducts and nitrogen mus-
tards such as cyclophosphamide have been shown to in-
duce base substitution mutations in mutation reporters
as well as chromosome rearrangements [6]. Platinum-
containing crosslinking agents work by a similar mech-
anism to alkylating agents. Cisplatin adducts have been
shown to cause base substitutions in vitro and in re-
porter genes [7], which were also detected in cisplatin-
treated C. elegans worm genomes [8]. Topoisomerase II
inhibitors such as etoposide and doxorubicin cause
DNA breaks, which are the likely causes of chromo-
somal translocations in secondary cancers induced by
these drugs [9, 10]. Drugs of the diverse antimetabolite
family interfere with DNA replication, leading to double
strand breaks and chromosome aberrations [11–13]. The
microtubule-targeted class of cancer chemotherapeutics

are not expected to have a direct impact on mutagenesis,
though paclitaxel has been described to affect DNA
repair through disrupting the trafficking of DNA re-
pair proteins [14].
In summary, while genotoxic effects have been mea-

sured indirectly for most cytotoxic drugs, sequence-based
data for mutagenicity are only available for cisplatin, from
an invertebrate model [8]. To acquire reliable data on gen-
omic mutagenicity, we performed whole genome sequen-
cing on cultured cells treated with representatives of each
major category of cancer chemotherapeutics. Each of the
chosen cytotoxic agents (Table 1) has been reported to
give a positive result in the Ames test or the related bac-
terial umu-test [15–19]. HPRT mutagenesis was reported
for cisplatin, cyclophosphamide, doxorubicin and etopo-
side [20–23], but absent for hydroxyurea [24]. We set out
to determine how relevant these findings are to genomic
mutagenesis in vertebrate cells. Such studies have not
been performed previously, but a proof-of-concept is
provided by a recent report on the genomic effect of three
environmental mutagens in single sequenced mouse em-
bryonic fibroblast clones [25] as well as earlier studies that
used whole exome sequencing [26–28]. The main benefit
of the obtained mutagenic spectrum data will be the abil-
ity to use cancer genome sequences to determine whether
the mutagenic drugs have contributed to the development
of the tumour, and we provide an important example for
this in the reversion of oncogenic gene mutations. The
chicken DT40 lymphoblastoma cell line was chosen for
treatments for the following reasons: (1) the genome size
is about one-third compared to the human genome;

Table 1 Cytotoxic drugs investigated in this study

Drug Class Mechanism DT40 treatment
duration

DT40 treatment
concentration

DT40
IC50

Clinical usage Clinical usage

Total plasma
concentration

Reference

Cisplatin Alkylating-like agent DNA adducts, crosslinks 1 h 10 μM 9.4 μM 1.3–3.9 μM [70]

Cyclophosphamide Alkylating-like agent DNA adducts, crosslinks 1 h 30 mM 67 mM 38.3–76.6 μM [71]

Hydroxyurea Antimetabolite Ribonucleotide reductase
inhibition

24 h 20 μM 22 μM 150 μM–1 mM [72]

Gemcitabine Antimetabolite Nucleoside analogue 24 h 6 nM 10.9 nM 53.2 μM [73]

5-Fluorouracil Antimetabolite Nucleoside analogue,
thymidylate synthase
inhibition

24 h 6 μM 13.3 μM 770 nM–5.4 μM [74]

Etoposide Topoisomerase
inhibitor

Topoisomerase II
inhibition

24 h 200 nM 234 nM 46–194 nM [75]

Doxorubicin Anthracycline DNA intercalation,
topoisomerase II
inhibition

24 h 2 nM 1.69 nM 73.6 nM–1.16 μM [76]

Paclitaxel Anti-microtubule
agent

Stabilises microtubules,
blocks mitosis

24 h 40 nM 34 nM 1.5–6 μM [77]

The name, class and basic mechanism of each drug used in this study is shown, together with the duration and concentration of mutagenesis assay treatments,
the estimated IC50 concentrations under the same treatment conditions and data on the total plasma concentration range reported in clinical use, with the
matching literature reference

Szikriszt et al. Genome Biology  (2016) 17:99 Page 2 of 16



(2) this cell line has been used very extensively for
DNA repair studies and it models mammalian DNA
repair well [29]; and (3) the availability of a wide
range of isogenic DNA repair mutant cell lines will
allow future comparisons on the influence of individ-
ual repair factors on mutagenesis. This detailed gen-
omic analysis of multiple post-treatment cell clones
provides the most comprehensive survey of the muta-
genic potential of commonly used cytotoxics in cancer
medicine.

Results
In vitro use of eight chemotherapeutic agents
Isogenic wild-type DT40 cells derived from a single cell
clone were treated with eight different commonly used
cytotoxic agents representing each of the main classes of
cancer chemotherapeutics. The agents are listed in
Table 1. To select a treatment concentration, we mea-
sured the sensitivity of DT40 cells to each drug using a
clonogenic survival assay (Fig. 1a). We chose treatment
conditions near the IC50 concentration of each drug that
induce only moderate cell death, with 30–85 % of the
cells surviving, in order to avoid selecting for resistant
clones that could behave differently during subsequent
treatment rounds due to potential changes in, for ex-
ample, drug transport or DNA repair. For the surviving

cells, treatments were repeated once a week through
four cycles, mimicking cancer chemotherapy regimens
and increasing the chance of inducing mutations
(Fig. 1b). A comparison of the cisplatin sensitivity of sev-
eral post-treatment clones to the starting clone shows
that this moderate treatment regimen did not cause
significant selection for resistance (Fig. 1c).
One of the tested drugs, cyclophosphamide, undergoes

activation by hydroxylation by cytochrome P450 en-
zymes [30]. While this is thought to mainly take place in
the liver during therapeutic treatment, lymphocytes have
also been shown to express the enzymes necessary for
cyclophosphamide activation [31, 32]. Therefore, due to
the instability and limited availability of the active me-
tabolite 4-hydroxycyclophosphamide, cyclophosphamide
was added to cells in its pro-drug form. Cisplatin and
cyclophosphamide, the two drugs that are known to
form DNA adducts, were added for 1 h with the reason-
ing that their DNA damaging effect should be largely
independent of cell cycle phase. The remaining drugs
were used in 24-h treatments. This duration is twice the
length of the DT40 cell cycle, ensuring that each cell
would be affected by the treatment regardless of the cell
cycle phase in which the drugs exert their main effect.
Single nucleotide variation (SNV) and short insertion/

deletion mutations were identified in three cell clones
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derived from each treatment using the IsoMut method
developed for this purpose [33, 34]. This approach pro-
vides mutation information for the genomes of three in-
dividual cells that went through the treatment regime
(Fig. 1b). Briefly, we compared all the whole genome se-
quences obtained in this study at each genomic position,
and only accepted a mutation if it was present in exactly
one sample, satisfying criteria on minimum mutated
allele frequency, coverage of the mutated sample, and
minimum reference allele frequency of each other sam-
ple. Due to the lack of availability of validated SNP and
short insertion or deletion mutations (indel) datasets,
this mutation detection method performs much better
on the chicken genome than other commonly used
methods, identifying 90–95 % of all mutations with no
more than 0–5 false-positive SNVs per genome [33].

Spontaneous mutations
Following a mock treatment regimen spanning approxi-
mately 100 cell generations, we detected 47 ± 20 (SD)
novel SNVs in three post-treatment clones (Table 2,
Additional file 1: Table S1). It is likely that almost all the
identified mutations truly arose during the mock treat-
ment, as these were identified as unique mutations
among all the whole genome sequences obtained for this
study, and the same mutation detection method found
no unique SNVs – which would be false positives – in
the pre-treatment starting clone (Table 2). Of the six
possible base substitutions (C > A, C > G, C > T, T > A,
T > C, T > G), C > T transitions and C > A transversions
were the most common among the spontaneous muta-
tions (Fig. 2c, d). The observed mutation number, pro-
jected to the 2.06 × 109 base pair diploid genome is
equivalent to about 2.3 × 10–10 mutations per base per
cell division. When mutations are viewed in the context
of the neighbouring bases, and the spontaneous ‘triplet

mutation spectrum’ is normalised to the frequency of
genomic occurrence of each triplet, it becomes apparent
that NCG >NTG mutations are most common, presum-
ably due to C > T base substitutions at methylated CpG
sequences [35]. We calculated that NCG > NTG mu-
tations were 15× more common than the mean muta-
tion rate. Non-normalised triplet spectra are shown in
Additional file 2: Figure S1.

Cisplatin induces base substitutions and short indels
Cisplatin induced the greatest number of SNVs among
the eight tested drugs (Fig. 2a). We performed a detailed
analysis of cisplatin-induced mutations to better
understand the mutagenic mechanisms. We detected
812 ± 193 SNVs per sequenced post-treatment clone.
C/G > A/T transversions were most common, ac-
counting for 57 % of all SNVs, but all six classes of
base substitutions increased at least fourfold (Fig. 2b).
Looking at cisplatin-induced SNVs in the context of
the neighbouring bases, it is apparent that NCC >NAC
mutations are most common, accounting for 40 % of all
SNV cases. Further common changes are NCT >NAT and
NTC >NAC, arising in 12 % and 9 % of the SNV cases
(Fig. 2d, Additional file 2: Figure S1 and Figure S3 and
Additional file 1: Table S2). As the overwhelming majority
of cisplatin-induced DNA lesions are intrastrand cross-
links between neighbouring purines [36, 37], these three
SNV types could represent mutations opposite the 3’ base
of crosslinked GG, AG and GA dinucleotides, respectively.
In case of GG and AG intrastrand crosslinks, these muta-
tions arise through the incorrect incorporation of an ad-
enosine opposite the 3’ G of the lesion (Fig. 3c). However,
GA crosslinks have not been observed in the above
reports. Therefore, we catalogued the bases surround-
ing the 211 observed TC > AC (GA > GT) mutations,
and found that 159 incidences happened at TCC >ACC
or TCT >ACT sequences, suggesting that the adjacent
base pair 3’ to a GG or AG intrastrand crosslink can also
mutate. Of the remaining 52 mutations, ten happened at
the 5’ base of potential AG crosslinks at CTC > CAC
sequences, but in the remaining cases the only poten-
tial site for a bipurine crosslink is at GA (Additional
file 2: Figure S2). We conclude that cisplatin induces
mutagenic lesions at GA dinucleotides, where the le-
sions may be hitherto unobserved intrastrand GA
crosslinks or monoadducts. To complete the analysis
of cisplatin-induced single nucleotide mutations, we note
an enrichment of CCA > CAA and CTN>CAN base
changes, suggesting adenosine mis-incorporation opposite
the 5’ base of crosslinked GG or AG dinucleotides.
In agreement with finding mutations (pyrimidine to

adenine) across both 3’ and 5’ bases of putative cross-
linked intrastrand cisplatin lesions, we also detected
61 ± 21 dinucleotide mutations per sample (Fig. 3a,

Table 2 Number of SNV and short insertion/deletion mutations
in the sequenced samples

Treatment n SNV Insertion Deletion

Mean ± SD Mean ± SD Mean ± SD

None (starting clone) 1 0 0 0

Mock 4 47 ± 20 4.5 ± 1.3 3.0 ± 0.8

Cisplatin 3 812 ± 193 49.0 ± 15.0 83.0 ± 21.2

Cyclophosphamide 3 254 ± 50 3.0 ± 1.7 5.0 ± 1.7

Hydroxyurea 3 74 ± 9 4.7 ± 1.5 3.7 ± 1.2

Gemcitabine 3 57 ± 31 2.3 ± 2.1 3.0 ± 1.7

5-fluorouracil 3 50 ± 16 3.0 ± 1.0 2.7 ± 1.5

Etoposide 3 95 ± 15 3.7 ± 1.2 6.7 ± 4.2

Doxorubicin 3 44 ± 15 3.3 ± 0.6 4.0 ± 4.6

Paclitaxel 3 64 ± 10 1.0 ± 1.0 3.0 ± 0.0
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Additional file 1: Table S3). Seventy-five percent of
these mutations were found at AG, GG or GA dinu-
cleotides. Interestingly, these changed to a range of
sequences, equivalent to the incorporation of dinucle-
otides AA, AT, AC and AG opposite the putative
intrastrand crosslink (Fig. 3d). A further common di-
nucleotide mutation class was CA > AC and 18 of 20
cases were found at CCA sequences. On the opposite
strand these TGG > GTG mutations could indicate
base changes in the position 5’ to GG crosslinks. The

classification of different dinucleotide mutations is
shown in Fig. 3b.
Taken together, we observed base substitution muta-

tions at the 5’ position and the 3’ position, as well as the
preceding and the following position of putative intras-
trand crosslinks. Sequencing the replicated outcome of a
GG crosslink in a shuttle plasmid only provided suffi-
cient evidence of mutations at the 3’ position [38] and
the number of mutations detected in cisplatin-treated
C. elegans worms allowed the detection of the same
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mutations, as well as dinucleotide mutations at prob-
able AG crosslinks [8]. Our high resolution data indi-
cate mutagenesis at each position of a 4-base pair
stretch centred on crosslinked GG and AG lesions.
Cisplatin-induced interstrand crosslinks form at GC

sequences [39], which can only be present in the triplet
spectrum data as GCN. Assuming that by analogy with
mutations seen at putative intrastrand crosslinks the
most common cause of mutations at interstrand cross-
link lesions would be adenosine misincorporation oppos-
ite central crosslinked G, these mutations should present
as GCN >GAN changes. Some of these triplet base
changes were already counted above as potential intras-
trand crosslink-induced mutations. Only the GCG >GAG
combination could not happen at the site of an intrastrand
crosslink, as GCG contains no neighbouring purines.
These mutations are very rare (0.2 % of all SNVs) after
cisplatin treatment. In conclusion, our data do not show
strong evidence of point mutations induced by cisplatin
interstrand crosslink adducts.
Cisplatin treatment also induced a remarkable number

of short insertion and deletion mutations, totalling
132 ± 34 per sample (Fig. 4a, Table 2, Additional file 1:
Table S1). The insertions were almost exclusively one
base long (95 % of all insertions, Fig. 4b). We classi-
fied one-base insertions based on their sequence con-
text (Fig. 4c, Additional file 1: Table S4). Ninety-four
percent of one-base insertions were A/T base pairs.
On the strand with the thymidine insertion, the pre-
ceding two bases were GG in 81 % of cases, presum-
ably representing the site of an intrastrand crosslink
Surprisingly, the bases following the insertion site also
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5’ base is shown in the rows, while the 3’ base in the columns. The
equivalent mutations on the two strands are added together, e.g.
GG> TT is shown as CC > AA. The most common mutation types are
grouped together below the table and their sequences are indicated
using the purine-rich strand to aid interpretation. c Schematic models
for the replicative process that may generate each of the most
common classes of cisplatin-induced mononucleotide (c) and
dinucleotide (d) mutations. Putative intrastrand crosslinks are marked,
the uncertain lesion at mutated GA sequences is indicated with
a question mark. Non-canonical base pairing is shown with a zig-zag
symbol. The contribution of each mutation class to the total number of
observed SNVs is shown
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showed strong sequence preference. The first base
following a thymidine insertion was 84 % T, while the
first two bases together were 51 % TT. If the muta-
genic process is DNA synthesis using the damaged

strand as template, we can conclude that it preferen-
tially inserts an extra adenosine when the bases 3’ to
the template GG crosslink are thymines (see Fig. 4e
for a model). Six of the eight observed C/G base pair
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insertions occurred at CC/GG sites (Fig. 4c), also
likely sites of intrastrand crosslinks.
Seventy-three percent of cisplatin-induced deletions

were one base pair long. A classification of one base pair
deletion based on the deleted base and the neighbouring
two bases shows that the most common deletions af-
fected GG or AG sequence motifs, which may be sites of
intrastrand crosslinks (Fig. 4d, f, Additional file 1:
Table S4). In the case of AG, based on the AGC > AC
and CAG>CG deletions, it is possible to conclude that ei-
ther the 3’ or the 5’ base pair of a putative crosslinked AG
dinucleotide may get deleted. In agreement with this, 40
of 59 (68 %) observed two-base deletions removed both
base pairs of putative AG or GG intrastrand crosslinks
(Additional file 2: Figure S4).

Cyclophosphamide primarily causes T > A and C > T
mutations
Cyclophosphamide induced 254 ± 50 base substitution
mutations, which is more than five times higher than the
mock treatment (p = 0.025, Student’s t-test). The most
common base changes were T > A and C > T, followed by
a more modest increase in the number of T > C and T >G
mutations (Fig. 2b). Cyclophosphamide has been shown
to induce a range of adducts in the following proportions:
N7-guanine monoadducts (22 %), crosslinked adducts
(6–12 %) and phosphotriester adducts (67 %) [6]. The
N7-guanine monoadducts or the G-G interstrand cross-
links may account for the C > T lesions. To look for evi-
dence of crosslinked adducts, of which the most common
have been observed as interstrand adducts between
guanines at GNC sequences, we looked for sequence
preferences two bases upstream from mutated cytosines
(Additional file 2: Figure S3), but we could not find strong
evidence for such changes. The prevalent T > A muta-
tions, and also the rarer T > C and T >G mutations, pref-
erentially occur at the centre of NTT triplets, with some
further preference for CTT and TTT (Fig. 2d). These are
unlikely to be caused by guanine adducts and may be due
to phosphotriester adducts instead. Intermutation dis-
tances indicated few dinucleotide mutations or other clus-
tering of mutations (Fig. 3a). There was no clustering of
mutations when comparing different treated clones in case
of either cisplatin or cyclophosphamide, suggesting the
lack of mutational hotspots and the largely random distri-
bution of SNVs (Additional file 2: Figure S5).
In contrast to cisplatin, cyclophosphamide treatment

did not cause a significant increase in the number of
insertion or deletion mutations (Fig. 4a).

Etoposide treatment elevates the base substitution
frequency
Six further drugs were investigated for their mutagenic
potential: the antimetabolites hydroxyurea, gemcitabine

and 5-fluorouracil, plus the topoisomerase II inhibitor
etoposide, the anthracycline doxorubicin and the anti-
microtubule agent paclitaxel. A comparison of the total
SNV numbers for the mock treatment plus these six
treatments by ANOVA revealed a significant difference
(p = 0.025). Indeed, etoposide induced more than twice
the number of mutations as the mock treatment, which
is a significant pairwise difference (p = 0.017, Student’s
t-test). Each base substitution category increased,
resulting in no major change in the overall mutation
spectrum (Fig. 2c). In contrast to SNVs, the number
of indels was not significantly elevated compared to
the mock treatment (Fig. 4a).

No detectable mutagenic effect of hydroxyurea,
gemcitabine, 5-fluorouracil, doxorubicin and paclitaxel
Twenty-four-hour treatments with hydroxyurea, gemci-
tabine, 5-fluorouracil, doxorubicin and paclitaxel did not
induce a significant number of extra SNVs or indels in
comparison to the mock treatment (Figs. 2a, 4a, ANOVA
analysis). These treatments also did not change the spon-
taneous SNV mutation spectrum (Fig. 2c). Also, none of
the tested agents, including cisplatin, cyclophosphamide
and etoposide, induced any larger indels (over 100 bp) or
genome rearrangement events, except for a 3453-bp dele-
tion in one etoposide-treated clone.
In conclusion, at concentrations that kill a moderate

proportion of cultured cells, none of hydroxyurea, gem-
citabine, 5-fluorouracil, doxorubicin or paclitaxel in-
duced measurable genomic mutagenesis. In contrast, in
the same assay, cisplatin and cyclophosphamide induced
a large number of mutations with distinct mutation
spectra, while etoposide treatment resulted in marginally
elevated base substitution mutagenesis.

Lower mutagenesis rates in genes provides evidence of
distinct repair rates
Chemotherapy-induced mutations have the potential of
altering gene function and thereby contributing to the
development of resistance or secondary tumours. To
gauge the importance of this effect, we mapped cis-
platin- and cyclophosphamide-induced SNVs with re-
spect to gene sequences. A total of 44.2 % of the chicken
genome is annotated to code for primary transcripts in
genome version Galgal4.82. Interestingly, a smaller pro-
portion of treatment-induced mutations appeared at
genes (34.7 % and 35.1 %) than expected from a uniform
distribution (Fig. 5a). Relative to a uniform genomic dis-
tribution, mutations are 17 % more likely to occur at
intergenic regions, while they are 22 % underrepresented
at genic regions. The most likely explanation for the
highly significant reduction of SNV numbers at genes
versus intergenic regions (p <0.001 in case of both cis-
platin and cyclophosphamide, χ2 test) is the activity of
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transcription-coupled repair (TCR), which can remove
single strand lesions in an error-free manner [40]. We
made use of an RNA-seq dataset from the DT40 cell line
to ask whether the gene expression level influences mu-
tation density, as expected if it is influenced by TCR. In-
deed, we found that the distribution of mutated genes is
skewed towards low expression (Fig. 5b), suggesting that
the error-free repair of lesions is more efficient in highly
expressed genes. Moreover, highly significant (p <0.001,
χ2 test) strand bias of cisplatin-induced C > A and
cyclophosphamide-induced C > T mutations in genes
specifically points to efficient repair of guanine adducts
in the transcribed strand by TCR (Fig. 5c).

Correlation of the identified mutational patterns with
mutational signatures in human cancer
We compared the various treatment-induced mutational
patterns to mutational signatures identified in human
cancer (COSMIC signatures) [41–43]. The normalised

triplet spectrum of the mock treatment showed good
visual similarity with the ageing-associated signature 1
(Fig. 1d) due to the presence of CG > TG mutations.
However, this was not borne out in Pearson correlation
analysis (Fig. 6a) as in our mock treated samples there is
a range of mutation types in addition to the 15-fold
overrepresented CG > TG mutations, while signature 1
essentially contains no other mutation types. The broad-
spectrum signature 5 is also associated with ageing [42]
and we observed positive correlation between this signa-
ture and several treatments that did not change the
spontaneous mutation profile (Fig. 6a). In agreement
with the dominance of ageing-related mutational pro-
cesses, the mutation profiles of all treatments except cis-
platin and cyclophosphamide show good pairwise
correlation (Fig. 6b). Cisplatin-induced mutations correl-
ate well with the smoking-specific signature 4 and the
aflatoxin-induced signature 24 (Fig. 6a), suggesting that
these agents cause mutations by similar mechanisms.
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Indeed, the three genotoxins all form bulky adducts at
N7-guanines, which are generated by polycyclic aromatic
hydrocarbons in the case of cigarette smoke [44]. Finally,
cyclophosphamide-induced mutations show only weak
correlation with the rare signature 25 of unknown aeti-
ology (Fig. 6a). These results demonstrate that while mu-
tagenesis analysis in cell lines can model the mutational
processes observed in cancer, as also evidenced by ex-
ome sequencing of mutagen-treated mouse and human
cells [26–28] and whole genome sequencing of individ-
ual mouse embryonic fibroblast clones [25], it is unlikely
that mutations induced by cisplatin or cyclophospha-
mide treatment significantly contributed to COSMIC
signatures.

Mutagenic chemotherapy may induce resistance through
genetic reversal of mutated genes
Mutagenic chemotherapy may have very significant con-
sequences if the induced mutations contribute to the
subclonal evolution of treatment resistance in surviving
cells. We looked for evidence for such a process among
documented mutations that restore functionality to
mutated BRCA1 or BRCA2 genes [45]. Among seven
frameshift mutations observed to restore BRCA2 gene
function and cause resistance following cisplatin treat-
ment of Capan-1 cells that carry a single base deletion
in BRCA2 [46], we found two instances of GGT >GGTT
insertions, which is by far the most common sequence
of cisplatin-induced insertions (Fig. 4c). These insertions,
18 bp downstream of the deleted base pair, restored the
reading frame, the protein level and the function of

BRCA2 [46]. In a separate study, a nonsense mutation in
BRCA2 became inactivated by a TAG > TAT SNV in a
cisplatin-treated ovarian adenocarcinoma following a
cisplatin-resistant relapse. In the PEO1 cell line estab-
lished from the tumour before the emergence of cis-
platin resistance, cisplatin selection led to TAG > TTG
mutations of the stop codon in eight out of eight resist-
ant clones that restored the BRCA2 protein [47]. Our re-
sults show that mutation of either base to thymine at
AG putative intrastrand crosslinks are a common conse-
quence of cisplatin treatment, with CT > AT (AG > AT)
and CT > CA (AG > TG) mutations making up 12 % and
7 % of all cisplatin-induced SNVs, respectively (Fig. 2d).
The finding of these newly identified cisplatin-induced
insertions and SNVs in BRCA2 revertants emerging in
vivo and in vitro very strongly suggests that therapy can
directly induce resistance-causing mutations.
We attempted to calculate an estimate for the likeli-

hood of drug-induced mutations generating the exact
genetic changes required to revert frameshift or non-
sense mutations. If a reverting frameshift needs to hap-
pen within 20 base pairs of the original mutation and an
SNV needs to change any one of the three bases of a
stop codon, then 108 randomly placed indels, or 7 × 108

SNVs, would be required for a 50 % chance of the
required mutation to occur in the human genome. Our
experimental four-cycle cisplatin treatment regimen in-
duced about 130 indels and 800 SNVs per Gb. If a clin-
ical treatment regimen had the same mutagenic effect, it
would take fewer than 1 million surviving treated
tumour cells for a 50 % chance of the treatment-induced
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reversion of a frameshift or deletion of a nonsense muta-
tion. Though partly based on speculative numbers, our
approximations suggest that the effect of mutagenic
treatments likely contributes to the evolution of drug re-
sistance through the initiation of de novo mutations and
indels in cancer subclones.

Discussion
We have determined in unbiased whole genome analyses
the mutagenicity of eight different common chemothera-
peutics. Cisplatin was found to induce many base substitu-
tion mutations as well as very short insertion/deletion
mutations, and the sequence context of these mutations
suggests that they primarily arose at the site of intrastrand
crosslinks. Cyclophosphamide also induces base substitu-
tion mutations with a specific spectrum, while six further
drugs have little mutagenic effect, with a slight elevation
of base substitutions after etoposide treatment. Our find-
ings may be relevant to assessing the long-term outcome
of treatment with the investigated cytotoxic drugs.
Mutagenesis assays are essential to test the mutation-

causing effect of chemical agents that humans are ex-
posed to, be they medications or environmental agents.
In this study we used the genome of a vertebrate cell line
for the purpose of a mutagenesis assay. Whole genome
sequencing in the DT40 cell line far surpasses the cur-
rently used mutagenesis tests in its relevance to human
biology: the commonly used bacterial Ames test takes
place in a different metabolic and DNA repair environ-
ment, while reporter gene based tests in mammalian
cells are affected by sequence bias due to the require-
ment that detected mutations must affect protein-coding
sequences. We believe that cell line whole genome se-
quencing will become the new standard for mutagenesis
testing as it is rapid, unbiased and very accurate. Human
cell lines will be the most relevant for this purpose,
but the chicken DT40 line is a good choice due to its
stable diploid genome and its well-studied DNA re-
pair properties [29, 48]. Indeed, the dependence of a
particular mutagenic process on various DNA repair
or replicative DNA damage bypass pathways is readily
testable using the wide range of available DT40 mu-
tant cell lines, which have been used for genotoxicity
screening [49].
The first outcome of using the whole genome as a muta-

genesis assay was the determination of the spontaneous
mutation rate at 2.3 × 10–10 mutations per base per cell
division, the first such measurement in a vertebrate cell
line. Remarkably, this is the same order of magnitude as
measurements obtained from budding yeast (3.6 × 10–10

[50]; 1.67 × 10–10 [51]) or C. elegans (6.7 × 10–10 [8]). The
mutation rate in the human paternal germline is about
two SNVs per year, while an average of 14.2 de novo mu-
tations arise in the maternal germline in total [52]. Using

estimates that cell divisions take place every 15–16 days in
the human paternal germline, and there are a total of
22–23 divisions in the maternal germline [53], the
mean mutation rates can be estimated as 0.17 × 10–10

and 1.1 × 10–10 per base pair per cell division in the
human paternal and maternal germlines, respectively. The
lack of dependence on maternal age [52] suggests that
spontaneous mutations mostly arise during cell prolifera-
tion, and the similarity of these mutation rates throughout
eukaryotes may be due to constraints of cellular metabol-
ism and the mechanism of eukaryotic DNA replication.
The mutagenic effect of cisplatin has been extensively

studied in prokaryotic and eukaryotic systems, as well as
in vitro [7]. Studies ranging from the replication of a
defined lesion in a shuttle vector in mammalian cells
[38] to whole genome sequencing of cisplatin-treated
C. elegans worms [8] identified CC > AC base substi-
tutions as the most common cisplatin-induced muta-
tion. In this study, we mapped a greater number of
mutations than earlier investigations, presenting a fine
resolution analysis of cisplatin-induced mutations. A
detailed inspection of base substitutions and short indels
revealed that the vast majority of such mutations are gen-
erated at intrastrand crosslinks, the most common cis-
platin DNA lesions. We showed that mutations can arise
at either nucleotide of the intrastrand crosslinks as well as
at the previous upstream and the next downstream pos-
ition. Interstrand crosslinks, which may be more signifi-
cant for the cytotoxic effect of cisplatin, had no detectable
mutagenic effect.
Cyclophosphamide induced a markedly different SNV

mutation spectrum than cisplatin, with the elevation pri-
marily of T > A and C > T mutation numbers. It is chal-
lenging to explain the mutation spectrum based on the
available evidence of cyclophosphamide-induced lesions
[6]. C > T mutations, which show strand bias in genes,
may arise from N7-guanine adducts of the cyclophos-
phamide metabolite phosphoramide mustard [54]. How-
ever, while the N7-guanine adducts of cisplatin typically
lead to C > A changes opposite the lesion, the C > T mu-
tations caused by cyclophosphamide suggest a different
mutagenic mechanism. As no adducts have been de-
tected on adenine or thymine bases, the T > A muta-
tions, which have also been observed in lacI reporter
genes of cyclophosphamide-treated mice [55], may in-
stead be caused by the common cyclophosphamide-
induced phosphotriester adducts on the DNA backbone
[56]. Indeed, phosphotriester adducts show some base
preference for neighbouring thymines, and pyrimidine
bases in general [57]. Phosphotriester adducts are very
inefficiently repaired, which could explain the lack of
strand bias of T > A mutations.
Single-strand adducts are repaired primarily by base

excision repair and nucleotide excision repair. Both
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mechanisms are expected to mostly produce an error-
free outcome. Unless the lesions miscode directly, the
main cause of mutagenesis is DNA replication that uses
the damaged strand as template, termed translesion syn-
thesis (TLS). This is typically performed by specialised
translesion polymerases; indeed, while the replicative
polymerases δ or ε cannot bypass a GG cisplatin adduct
[58], polymerase η and ζ together can bypass this lesion
with a classical two-polymerase mechanism [59]. Our
large dataset of cisplatin-induced mutations shows
that mutations on the newly synthesised strand can
appear in the position immediately upstream of the
lesion as well as opposite the lesion, for example we
observed NCC >ACC (GGN>GGT) mutations. Similarly,
one-base insertions mostly appeared in the nascent
strand upstream of the lesion, such as the common
ACC >AACC (GGT>GGTT) insertions. The latter also
suggests a mutagenic mechanism: the template base be-
fore the crosslinked adduct may not fit perfectly into the
active site of the replicative polymerase, which could lead
to the base pairing of the incoming nucleotide with the
previous template base, causing a templated insertion as
seen here (Fig. 4e). Because all the cisplatin-induced indels
are 1–2 base pairs only, and are generally located at puta-
tive lesions, it is likely that they are mostly caused by
translesion synthesis rather than the repair of DNA breaks
or other mechanisms. TLS across cyclophosphamide
lesions, which are mostly monoadducts, may be able to
avoid similar template slippage, explaining the lack of
indels induced by this treatment.
A significant finding of this study is that five of the

investigated cytotoxic drugs were not mutagenic under
the experimental conditions. Positive results were re-
ported for these drugs in the Ames test or the HPRT
assay [15, 17–19, 22, 24], which suggests that these as-
says may overamplify the mutagenic signal. A limitation
of interpreting the relevance of our finding for clinical
use is that data are only available for plasma concentra-
tions during clinical treatment, which are different from
the concentration reaching the cancer cell. Still, cis-
platin, 5-fluorouracil and etoposide were used at
levels very near their measured plasma concentrations
(Table 1). Cyclophosphamide was used at a much
higher concentration, presumably due to the limited
ability of cytochrome P450 enzymes in DT40 lympho-
cytes to activate this prodrug. Hydroxyurea, gemcita-
bine, doxorubicin and paclitaxel were used well below
their measured clinical peak plasma concentrations.
However, at the treatment concentrations only 30–70 % of
the cells survived, preventing us from using higher con-
centrations. Overall, the near-lethal doses used in our ex-
periments are probably a reasonable model for the
conditions experienced by somatic and tumour cells dur-
ing clinical treatment.

Do these results help estimate the oncogenic potential
of the selected drugs? Cancers that arise as direct conse-
quence of a known external mutagen, such as melanoma
and different lung cancer types, typically contain the
highest number of genomic mutations, about ten per
megabase [41, 60]. If the induced SNVs are indeed the
main contributors to carcinogenesis, we can conclude
that a similar density of largely randomly spaced muta-
tions is required for a tumour to develop somewhere in
the body, in which case the mean density of the
mutagen-induced somatic mutations in all affected cells
is probably lower. Precise clinical data on the number of
cytotoxic treatment-induced mutations are not available,
while after a four-cycle treatment regimen, cisplatin in-
duced an average of 0.8 mutations per megabase in
DT40 cells. Thus the mutagenic consequences of such
treatment are comparable to those of carcinogenic envir-
onmental mutagens. The density of mutations induced
by cisplatin treatment even surpassed the median muta-
tion density of many common cancer types including
breast, pancreatic and prostate cancer, AML and chronic
lymphocytic leukaemia [60], suggesting that cisplatin
treatment can make a major contribution to the devel-
opment of secondary malignancies.
A recent report attributed CC > CA mutations to the

mutagenic effect of cisplatin treatment in whole exome
sequence data of cisplatin-resistant squamous cell car-
cinoma of the head and neck [61]. This mutation pattern
does not agree with the predominance of CC > AC cis-
platin mutations demonstrated by our study and an earl-
ier report [8]. For a treatment-derived mutation pattern
to be observable, significant clonal expansion must hap-
pen between the treatment and the sampling, which is
less likely if the original tumours were resistant to the
treatment. Consequently, we suspect that the observed
CC > CA changes appeared due to a sample prepar-
ation artefact, as has been reported previously [62].
Treatment-derived mutations will be easier to detect
or validate when mutation spectra from controlled
experiments are available. Following in the footsteps
of initial whole genome mutagenesis studies using E. coli,
S. cerevisiae and C. elegans [8, 63, 64], our study is the first
to use whole genome sequencing of vertebrate cell clones
to provide clinically relevant data on the mutagenicity of
pharmaceutical agents.
Treatment-induced mutations will contribute to the

further evolution of the tumour and could be relevant
for the evolution of resistance. The finding of newly
defined cisplatin-specific mutation types as causes of the
reversion of BRCA2 mutations supports this notion,
accompanied by our estimate that one genome among
as few as a million cells surviving the treatment could
contain any particular specific mutation. Treatments
could not only cause the reactivation of mutated genes,
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but any other genetic change advantageous for tumour
growth or treatment resistance.

Conclusions
This study demonstrated the utility of whole genome se-
quencing in cell lines as a mutagenesis assay. We deter-
mined the spontaneous mutation rate in a cultured
vertebrate cell line, and found it as low as the mutation
rate of a range of organisms. We measured the muta-
genic effect and defined the mutation spectrum caused
by eight common cytotoxic agents. Our results suggest
that cytotoxic treatment with the mutagenic cisplatin or
cyclophosphamide can make a major contribution to the
development of secondary malignancies and also directly
contribute to the development of resistance. The defin-
ition of the precise mutagenic signature of these drugs will
help assaying their mutagenic effect in post-treatment
tumour samples to provide further information. Based on
the lack of a detectable increase in genomic mutations
following treatment with hydroxyurea, gemcitabine, 5-
fluorouracil, doxorubicin or paclitaxel, it is less likely that
base substitution and small insertion/deletion mutations
caused by these drugs make a significant contribution to
tumorigenesis. Further confirmation of these results and
the expansion of mutagenesis studies to other cancer ther-
apeutics could influence the choice of curative cancer
treatment regimens, particularly in childhood cancer.

Methods
Cell culture and drug treatments
The wild type DT40 cell line used in this study was
obtained from the laboratory of Dr Julian E. Sale, MRC
Laboratory of Molecular Biology, Cambridge, UK, and
its complete genome sequence has been published [48].
Cells were grown at 37 °C under 5 % CO2 in RPMI-1640
medium supplemented with 7 % fetal bovine serum, 3 %
chicken serum, 50 μM 2-mercaptoethanol and penicillin/
streptomycin. Drug sensitivities were measured using col-
ony survival assays; treated cells were plated in medium
containing 1 % methylcellulose using a tenfold dilution
series and surviving colonies were counted 10 days later.
For the mutagenesis experiments, four rounds of drug

treatments were performed in weekly intervals. One
million cells were treated each time. The chemicals were
obtained from Sigma. Etoposide, 5-fluorouracil and pac-
litaxel were diluted from stock solutions in DMSO. The
remaining drugs were dissolved in water. Cyclophospha-
mide and 5-fluorouracil were dissolved freshly each time
before treatments. Mock-treated cells were handled in
parallel without the addition of any drug. Single-cell
clones were isolated by limiting dilution and grown prior
to sample preparation. Six clones were selected from 96-
well plates at random. Genomic DNA was prepared
using the Gentra Puregene Cell Kit (Qiagen) and three

of the preps were sequenced. Cisplatin sensitivity mea-
surements were performed on four clones which in-
cluded the three sequenced clones.

Whole genome sequencing and mutation detection
Library preparation was done using either the TruSeq
DNA Nano Library Preparation Kit (Illumina) or the
NEBNext Ultra DNA Library Prep Kit for Illumina (New
England Biolabs). Seven library pools (the starting clone
and one each of mock, cisplatin, hydroxyurea, gemcita-
bine, etoposide and paclitaxel treated clones) were
loaded on Illumina HiSeq 2500 Rapid Run flow cells (v1)
and sequenced in a 2 × 150-bp paired end (PE150) for-
mat using Rapid SBS reagents. The remaining 22 sam-
ples were loaded on Illumina HiSeq 2500 v4 High
Output flow cells and sequenced in a 2 × 125-bp paired
end format using HiSeq SBS v4 reagents. Library prepar-
ation and DNA sequencing were done at the Research
Technology Support Facility of Michigan State University,
USA and at Novogene, Beijing, China.
The reads were aligned to the chicken (Gallus gallus)

reference sequence Galgal4.73, using a method already
described [48]. Duplicate reads were removed using the
samblaster program [65]. Additionally, the aligned reads
were realigned by the GATK IndelRealigner [66].
SNVs and indels were identified using the IsoMut

method developed for multiple isogenic samples, using a
downloadable tool [34]. Briefly, a pileup of all samples by
genomic position was produced using the samtools mpi-
leup command and a base quality filter of 30 was used to
reduce sequencing noise. Data from 120 different se-
quenced DT40 clones were used at this step, which in-
cluded the 29 samples presented in this article. To identify
SNVs and indels, the pileup data were filtered at each gen-
omic position by minimum mutated allele frequency
(0.33), minimum coverage of the mutated sample [10] and
minimum reference allele frequency of each other sample
(0.9). These parameters were determined in an optimisa-
tion procedure using a test set [33]. The test set was ob-
tained by comparing two sets of whole genome sequences
from DT40 clones of two different genotypes, and the par-
ameter optimisation resulted in the identification of 95 %
of the test set (true-positive rate). A detailed description is
given in Additional file 3. Structural variations were de-
tected using the CREST algorithm [67].

Mutation analysis
Insertions and deletions in homopolymer or other repeat
regions were aligned to the leftmost possible position.
During the analysis of indel sequence context, before
adding events with complementary sequences, identified
indels on the opposite strand were realigned to the right.
Cisplatin-specific and cyclophosphamide-specific muta-

tions localising in genes and intergenic regions according
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to the Ensembl Galgal4.82 genomic annotation were
found using BEDTools. Per gene FPKM values were ob-
tained by aligning the publicly available SRR913007 DT40
RNA-seq dataset (Sequence Read Archive) against the
Galgal4.73 reference genome using TopHat [68] and cal-
culating the FPKM values with Cufflinks [69].
Drug-induced, 96-triplet signatures [41] encompassing

all possible SNVs, were generated by pooling samples
treated with the same type of chemotherapeutic. Making
no assumption on which strand the mutation took place
and which base of the base pair was targeted by the
drug, we arrive at a total of 96 possible substitutions,
which were presented as C >A, C > G, C > T, T > A, T > C
and T >G changes, shown with their immediate context
of 3’ and 5’ base pair in alphabetical order. Raw triplet mu-
tation patterns for each sequenced clone are shown in
Additional file 2: Figure S6. DT40 triplet signatures were
adjusted by multiplying with the ratio of triplet occur-
rences in the human and chicken genomes (Additional
file 1: Table S5, versions GRCh38.p6 and Galgal4.73, re-
spectively) and compared to the 30 analogous human
triplet signatures on the COSMIC webpage [43]. Com-
parisons were made using Pearson’s correlation coeffi-
cient. DT40 signatures were also compared among
themselves using the same technique. Pearson correl-
ation and cosine similarity values are given in Additional
file 1: Table S6.

Availability of supporting data
Raw sequence data for this article have been deposited
with the European Nucleotide Archive under study
accession number ERP014477.

Ethics approval
Ethics approval was not required for this study.

Additional files

Additional file 1: Supplementary Tables. Table S1 lists the number of SNV
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