Hollow-core fibers for high power pulse delivery

We investigate hollow-core fibers for fiber delivery of high power ultrashort laser pulses. We use numerical techniques to design an anti-resonant hollow-core fiber having one layer of non-touching tubes to determine which structures offer the best optical properties for the delivery of high power picosecond pulses. A novel fiber with 7 tubes and a core of 30 μm was fabricated and it is here described and characterized, showing remarkable low loss, low bend loss, and good mode quality. Its optical properties are compared to both a 10 μm and a 18 μm core diameter photonic band gap hollow-core fiber. The three fibers are characterized experimentally for the delivery of 22 picosecond pulses at 1032nm. We demonstrate flexible, diffraction limited beam delivery with output average powers in excess of 70W. (C) 2016 Optical Society of America
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 3.27 SNIP 2.032
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 3.233 SNIP 2.326
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 3.334 SNIP 2.379
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 2.833 SNIP 2.499
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 2.688 SNIP 2.193
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 1.547 SNIP 1.673
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 1.442 SNIP 1.39
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 1.246 SNIP 0.714
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 1.381 SNIP 0.838
Original language: English
OPTICS, PHOTONIC CRYSTAL FIBER, NEGATIVE CURVATURE, MODE SUPPRESSION, RAMAN-SCATTERING, AIR, REGIME, LIGHT
Electronic versions:
oe_24_7_7103.pdf
DOIs:
10.1364/OE.24.007103
Source: FindIt
Source-ID: 2303117524
Publication: Research - peer-review › Journal article – Annual report year: 2016