Mid-IR supercontinuum generation beyond 7 μm using a silica-fluoride-chalcogenide fiber cascade - DTU Orbit (09/11/2017)

Mid-IR supercontinuum generation beyond 7 μm using a silica-fluoride-chalcogenide fiber cascade

We report on an experimental demonstration of mid-infrared cascaded supercontinuum generation in commercial silica, fluoride, and chalcogenide fibers as a potentially cheap and practical alternative to direct pumping schemes. A pump continuum up to 4.4 μm was generated in cascaded silica and fluoride fibers by an amplified 1.55 μm nanosecond diode laser. By pumping a commercial Ge10As22Se68 single-material photonic crystal fiber with 135.7 mW of the pump continuum from 3.5-4.4 μm, we obtained a continuum up to 7.2 μm with a total output power after the collimating lens of 54.5 mW, and 3.7 mW above 4.5 μm.

General information

State: Published
Organisations: Department of Photonics Engineering, Fiber Sensors and Supercontinuum Generation, NKT Photonics A/S
Authors: Petersen, C. R. (Intern), Moselund, P. M. (Ekstern), Petersen, C. (Ekstern), Møller, U. V. (Ekstern), Bang, O. (Intern)
Number of pages: 6
Publication date: 2016

Host publication information

Title of host publication: Proceedings of SPIE
Volume: 9703
Publisher: SPIE - International Society for Optical Engineering
Article number: 97030A
Main Research Area: Technical/natural sciences
Conference: Optical Biopsy XIV, San Francisco, United States, 15/02/2016 - 15/02/2016
Supercontinuum, Mid-infrared pulse, Infrared fibers, Fiber cascade, ZBLAN, Chalcogenide
DOIs: 10.1117/12.2209253
Source: PublicationPreSubmission
Source-ID: 123633383
Publication: Research - peer-review › Article in proceedings – Annual report year: 2016