Brightness temperatures at 1.4 GHz (L-band) measured by the Soil Moisture and Ocean Salinity (SMOS) Mission have been used to derive the thickness of sea ice. The retrieval method is applicable only for relatively thin ice and not during the melting period. Hitherto, the availability of ground truth sea ice thickness measurements for validation of SMOS sea ice products was mainly limited to relatively thick ice. The situation has improved with an extensive field campaign in the Barents Sea during an anomalous ice edge retreat and subsequent freeze-up event in March 2014. A sea ice forecast system for ship route optimisation has been developed and was tested during this field campaign with the ice-strengthened research vessel RV Lance. The ship cruise was complemented with coordinated measurements from a helicopter and the research aircraft Polar 5. Sea ice thickness was measured using an electromagnetic induction (EM) system from the bow of RV Lance and another EM-system towed below the helicopter. Polar 5 was equipped among others with the L-band radiometer EMIRAD-2. The experiment yielded a comprehensive data set allowing the evaluation of the operational forecast and route optimisation system as well as the SMOS-derived sea ice thickness product that has been used for the initialization of the forecasts. Two different SMOS sea ice thickness products reproduce the main spatial patterns of the ground truth measurements while the main difference being an underestimation of thick deformed ice. Ice thicknesses derived from the surface elevation measured by an airborne laser scanner and from simultaneous EMIRAD-2 brightness temperatures correlate well up to 1.5 m which is more than the previously anticipated maximal SMOS retrieval thickness.

General information
State: Published
Organisations: National Space Institute, Microwaves and Remote Sensing, York University, Norwegian Polar Institute, University of Hamburg, Alfred-Wegener-Institut für Polar-und Meeresforschung, Hamburg Ship Model Basin, Jacobs University Bremen, University of Bremen, ESTEC
Pages: 264–273
Publication date: 2016
Main Research Area: Technical/natural sciences

Publication information
Journal: Remote Sensing of Environment
Volume: 180
ISSN (Print): 0034-4257
Ratings:
BFI (2017): BFI-level 2
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 6.92 SJR 3.073 SNIP 2.943
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): SJR 3.754 SNIP 3.09 CiteScore 7.27
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): SJR 3.918 SNIP 3.541 CiteScore 7.21
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): SJR 3.25 SNIP 3.034 CiteScore 5.6
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): SJR 3.439 SNIP 3.588 CiteScore 5.99
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Airborne laser scanner, Arctic, Electromagnetic induction, L-Band radiometry, Retrieval model validation, Sea ice, Sea ice forecast, Sea ice thickness, Ship routing, Soil moisture and ocean salinity (SMOS) mission

DOIs:
10.1016/j.rse.2016.03.009

Source: FindIt
Source-ID: 2302902139
Publication: Research - peer-review › Journal article – Annual report year: 2016