Experimental investigation of thermophysical properties, entropy generation and convective heat transfer for a nitrogen-doped graphene nanofluid in a laminar flow regime - DTU Orbit (08/11/2017)

Experimental investigation of thermophysical properties, entropy generation and convective heat transfer for a nitrogendoped graphene nanofluid in a laminar flow regime

Nitrogen-doped graphene (NDG) nanofluids are prepared using a two-step method in an aqueous solution of 0.025. wt% Triton X-100 as a surfactant with various nanosheets at several concentrations (0.01, 0.02, 0.04, 0.06. wt%). The results are reported of experiments on the thermal conductivity, viscosity and convective heat transfer behavior of NDG nanofluids undergoing laminar flowing in a circular tube. The results indicate that, compared to the base liquid, the thermal conductivity is enhanced for NDG nanofluids by between 22.15% and 36.78%, and the heat transfer coefficient of the NDG nanofluids is increased by 7-50%. The measurements also show that the pressure drop of the nanofluids increased by between 0.08% and 14.4%. In addition, the overall performance of the tested nanofluids are assessed based on the performance index and optimum work conditions, demonstrating that the nanofluids can be advantageous in practical applications.

General information

State: Published Organisations: Department of Micro- and Nanotechnology, University of Malaya, University of Ontario Institute of Technology Authors: Mehrali, M. (Ekstern), Sadeghinezhad, E. (Ekstern), Rosen, M. A. (Ekstern), Akhiani, A. R. (Ekstern), Tahan Latibari, S. (Ekstern), Mehrali, M. (Intern), Metselaar, H. S. C. (Ekstern) Pages: 717–727 Publication date: 2016 Main Research Area: Technical/natural sciences

Publication information

Journal: Advanced Powder Technology Volume: 27 ISSN (Print): 0921-8831 Ratings: BFI (2017): BFI-level 1 Web of Science (2017): Indexed Yes BFI (2016): BFI-level 1 Scopus rating (2016): SJR 0.692 SNIP 1.242 CiteScore 2.7 Web of Science (2016): Indexed yes BFI (2015): BFI-level 1 Scopus rating (2015): SJR 0.715 SNIP 1.334 CiteScore 2.54 BFI (2014): BFI-level 1 Scopus rating (2014): SJR 0.774 SNIP 1.693 CiteScore 2.65 BFI (2013): BFI-level 1 Scopus rating (2013): SJR 0.655 SNIP 1.296 CiteScore 2.01 BFI (2012): BFI-level 1 Scopus rating (2012): SJR 0.612 SNIP 1.412 CiteScore 1.66 BFI (2011): BFI-level 1 Scopus rating (2011): SJR 0.557 SNIP 1.17 CiteScore 1.58 BFI (2010): BFI-level 1 Scopus rating (2010): SJR 0.398 SNIP 0.691 BFI (2009): BFI-level 1 Scopus rating (2009): SJR 0.381 SNIP 0.818 BFI (2008): BFI-level 1 Scopus rating (2008): SJR 0.411 SNIP 0.54 Scopus rating (2007): SJR 0.37 SNIP 0.468 Scopus rating (2006): SJR 0.521 SNIP 0.688 Scopus rating (2005): SJR 0.396 SNIP 0.478 Scopus rating (2004): SJR 0.256 SNIP 0.412 Scopus rating (2003): SJR 0.344 SNIP 0.551 Scopus rating (2002): SJR 0.388 SNIP 0.831 Scopus rating (2001): SJR 0.285 SNIP 0.939

Scopus rating (2000): SJR 0.261 SNIP 0.731 Scopus rating (1999): SJR 0.317 SNIP 0.692 Original language: English Characterization, Convective heat transfer, Laminar flow, Nanofluid, Nitrogen-doped graphene DOIs: 10.1016/j.apt.2016.02.028 Source: FindIt

Source-ID: 2298440963 Publication: Research - peer-review > Journal article – Annual report year: 2016