Imperial porphyry from Gebel Abu Dokhan, the Red Sea Mountains, Egypt. - DTU Orbit (08/11/2017)

Imperial porphyry from Gebel Abu Dokhan, the Red Sea Mountains, Egypt.: Part II. Geochemistry

The prestigious red Imperial Porphyry was quarried from Mons Porphyrites in the Red Sea Mountains of Egypt. It was reserved for imperial use in Rome and Constantinople and widely reused in Romanesque and Renaissance times. The mineralogy and petrology of the porphyry collected at Mons Porphyrites were treated in Part I of this report. The rocks were moderately altered; greenschist facies alteration took place under essentially isochemical conditions but relatively high oxygen fugacity. The rocks retain many magmatic textures.

Whole-rock chemical analyses show that we deal with high-K to medium-K calc-alkaline andesites and dacites with a traceelement spectrum typical of volcanic rocks from an Andean subduction-zone setting. Four rock samples yielded an errorchron with an age of 560 ± 42 Ma and an initial \(^{87}\)Sr/\(^{86}\)Sr ratio of 0.70283 ± 0.00011. Using Nd isotope data, values of TDM from 0.84 to 0.88 Ga and εNd from +5.1 to +5.7 were inferred. The magmas which led to formation of the Imperial Porphyry appear to be derived from a subduction-modified depleted mantle and underwent only minor contamination by older continental crust. Trace-element features, notably the high Th, U, K, Rb and Cs contents, are consistent with crust contamination. Imperial Porphyry erupted during the second Great Oxygenation Event of the Earth atmosphere.

Mineralogical observations as well as rock colour and texture, particularly the pleochroic epidote – piemontite, should allow archaeologists to reliably assign pieces of Imperial Porphyry to their Egyptian source. Major- and trace-element rock analysis or electron microprobe mineral analysis will confirm the assignment.

General information
State: Published
Organisations: Department of Civil Engineering, Section for Geotechnics and Geology
Authors: Makovicky, E. (Ekstern), Frei, R. (Ekstern), Karup-Møller, S. (Intern), Bailey, J. C. (Ekstern)
Number of pages: 16
Pages: 29-44
Publication date: 2016
Main Research Area: Technical/natural sciences

Publication information
Journal: Neues Jahrbuch fuer Mineralogie. Abhandlungen
Volume: 193
Issue number: 1
ISSN (Print): 0077-7757
Ratings:
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): SJR 0.316 SNIP 0.411 CiteScore 0.88
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 0.342 SNIP 0.449 CiteScore 0.52
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 0.243 SNIP 0.452 CiteScore 0.47
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 0.352 SNIP 0.542 CiteScore 0.69
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 0.526 SNIP 0.722 CiteScore 0.88
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 0.407 SNIP 0.523 CiteScore 0.65
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.308 SNIP 0.287
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.242 SNIP 0.547
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.221 SNIP 0.338
Scopus rating (2007): SJR 0.354 SNIP 0.599
Scopus rating (2006): SJR 0.207 SNIP 0.398
Scopus rating (2005): SJR 0.392 SNIP 0.836
Scopus rating (2004): SJR 0.428 SNIP 1.075
Scopus rating (2003): SJR 0.27 SNIP 0.539
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.336 SNIP 1.017
Scopus rating (2001): SJR 0.698 SNIP 0.985
Scopus rating (2000): SJR 1.015 SNIP 1.033
Scopus rating (1999): SJR 0.51 SNIP 0.549
Original language: English
DOIs:
10.1127/njma/2015/0290
Publication: Research - peer-review › Journal article – Annual report year: 2015