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SCIENTIFIC OPINION 

Scientific Opinion on Dietary Reference Values for phosphorus
1
 

EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA)
2,3

 

European Food Safety Authority (EFSA), Parma, Italy 

ABSTRACT 

Following a request from the European Commission, the Panel on Dietetic Products, Nutrition and Allergies 

derived Dietary Reference Values (DRVs) for phosphorus. The Panel considered data from balance studies, 

losses of phosphorus from the body and intestinal absorption for possible use in a factorial approach, and studies 

on phosphorus intake and long-term health outcomes. The Panel concluded that these data were insufficient for 

setting DRVs for phosphorus. Data on the calcium to phosphorus ratio in bones of healthy adults, adjusted for 

the proportion of phosphorus found outside bone, and data on whole-body calcium and phosphorus contents in 

Caucasian adults indicate that the calcium to phosphorus molar ratio in the body ranges from 1.4:1 to 1.9:1. 

Although the fractional absorption of phosphorus is higher than that of calcium, the Panel considered that the 

actual amounts of calcium and phosphorus that are available for absorption from the diet cannot be determined; 

therefore, the whole-body calcium to phosphorus ratio was used to set DRVs. The data were considered 

insufficient to derive Average Requirements and Population Reference Intakes. Based on the DRVs for calcium 

and considering a molar calcium to phosphorus ratio of 1.4:1 to 1.9:1, amounts of phosphorus were calculated. 

The Panel chose the lower bound of this range (a ratio of 1.4:1, which results in a higher phosphorus intake 

value) for setting an Adequate Intake (AI), taking into account estimated phosphorus intakes in Western 

countries, which are considerably higher than the values calculated. The AI is 160 mg/day for infants (7–11 

months) and between 250 and 640 mg/day for children. For adults, the AI is 550 mg/day. Taking into 

consideration adaptive changes in phosphorus metabolism that occur during pregnancy and lactation, it was 

considered that the AI for adults also applies to pregnant and lactating women. 

© European Food Safety Authority, 2015 
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SUMMARY 

Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition 

and Allergies (NDA) was asked to deliver a Scientific Opinion on Dietary Reference Values (DRVs) 

for the European population, including phosphorus. 

Phosphorus is involved in many physiological processes, such as in the cell’s energy cycle, in 

regulation of the body’s acid–base balance, as a component of the cell structure, in cell regulation and 

signalling, and in the mineralisation of bones and teeth. About 85 % of the body’s phosphorus is in 

bones and teeth, 14 % is in soft tissues, including muscle, liver, heart and kidney, and only 1 % is 

present in extracellular fluids. Phosphorus homeostasis is intricately linked to that of calcium because 

of the actions of calcium-regulating hormones, such as parathyroid hormone (PTH) and 1,25-

dihydroxy-vitamin D (1,25(OH)2D), at the level of the bone, the gut and the kidneys. 

Phosphorus absorption occurs through passive diffusion and sodium-dependent active transport and 

via paracellular and cellular pathways. In adults, limited data suggest that net phosphorus absorption 

ranges from 55 to 80 % of intake. Phosphorus absorption is affected by the total amount of phosphorus 

in the diet and also by the type of phosphorus (organic versus inorganic), the food origin (animal- 

versus plant-derived) and the ratio of phosphorus to other dietary components. Absorption is regulated 

by 1,25(OH)2D and PTH. 

Hypophosphataemia, defined by a serum inorganic phosphorus concentration of < 0.80 mmol/L 

(2.48 mg/dL), only rarely occurs because of inadequate dietary phosphorus intake, and is generally 

due to metabolic disorders. 

The major dietary contributors to phosphorus intake are foods high in protein content, i.e. milk and 

milk products followed by meat, poultry and fish, grain products and legumes. Based on data from 13 

dietary surveys in nine European Union countries, mean phosphorus intakes range from 265 to 

531 mg/day in infants, from 641 to 973 mg/day in children aged 1 to < 3 years, from 750 to 

1 202 mg/day in children aged 3 to < 10 years, from 990 to 1 601 mg/day in children aged 10 to < 18 

years and from 1 000 to 1 767 mg/day in adults ( 18 years). 

Balance studies in adults were considered to be heterogeneous and to have many limitations. Overall, 

balance studies, including those in children and pregnant women, could not be used for setting DRVs 

for phosphorus. In addition, it was considered that estimations of phosphorus absorption from the diet, 

as well as losses of phosphorus via urine and faeces, vary over a wide range, so that the factorial 

approach cannot be used for deriving the requirement for phosphorus. 

Evidence from human studies on the relationship between phosphorus intake and various health 

outcomes was also reviewed. It was considered that data on measures of bone health, cancer-related 

outcomes and evidence related to all-cause mortality and cardiovascular outcomes could not be used to 

derive DRVs for phosphorus. 

Data on the molar ratio of calcium to phosphorus in intact bone of healthy adults suggest a range of 

approximately 1.6:1 to 1.8:1. Using the calcium to phosphorus molar ratio in bone of 1.6:1 to 1.8:1 

and adjusting for the proportion of calcium and phosphorus found outside bone, a molar ratio of 

calcium to phosphorus in the adult body of about 1.37:1 to 1.55:1 is estimated. In addition, data from 

measurements of whole-body calcium and phosphorus contents in Caucasian men and women indicate 

that the calcium to phosphorus molar ratio in the whole body ranges from 1.48:1 to 1.69:1 in women 

and from 1.57:1 to 1.89:1 in men. The Panel thus considered that the ratio of calcium to phosphorus in 

the whole body ranges from about 1.4:1 to 1.9:1 and proposed, in the absence of other consistent 

evidence, that DRVs for phosphorus be set based on the approximate molar ratio of calcium to 

phosphorus in the body. The fractional absorption of phosphorus is higher than that of calcium. 

However, as phosphorus absorption has been reported to vary over a wide range, it was considered 

that the actual amounts of calcium to phosphorus that are available for absorption from the diet and 
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that may be retained in the body cannot be determined. In the absence of this information, the Panel 

proposed to set DRVs for phosphorus based solely on the range of the molar ratio of calcium to 

phosphorus in the whole body. The Panel considered that the data are insufficient to derive Average 

Requirements and Population Reference Intakes (PRIs) for phosphorus and proposed to set Adequate 

Intakes (AIs) for all population groups. Based on the AI (for infants aged 7–11 months) and the PRIs 

(for all other ages) for calcium and considering a molar calcium to phosphorus ratio of 1.4:1 to 1.9:1, 

adequate quantities of phosphorus were calculated in mg/day. The Panel chose the lower bound of this 

range (i.e. a ratio of 1.4:1 which results in the higher phosphorus intake value) for setting an AI for 

phosphorus, taking into account estimated phosphorus intakes in Western countries which are 

considerably higher than the calculated values. 

The AI is 160 mg/day for infants aged 7–11 months and between 250 mg/day and 640 mg/day for 

children. For adults, the AI is 550 mg/day. Taking into consideration adaptive changes in phosphorus 

metabolism that may occur during pregnancy and lactation, it was considered that the AI for adults 

also applies to pregnant and lactating women. 
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BACKGROUND AS PROVIDED BY THE EUROPEAN COMMISSION 

The scientific advice on nutrient intakes is important as the basis of Community action in the field of 

nutrition, for example such advice has in the past been used as the basis of nutrition labelling. The 

Scientific Committee for Food (SCF) report on nutrient and energy intakes for the European 

Community dates from 1993. There is a need to review and, if necessary, to update these earlier 

recommendations to ensure that the Community action in the area of nutrition is underpinned by the 

latest scientific advice. 

In 1993, the SCF adopted an opinion on the nutrient and energy intakes for the European Community.
4
 

The report provided Reference Intakes for energy, certain macronutrients and micronutrients, but it did 

not include certain substances of physiological importance, for example dietary fibre. 

Since then new scientific data have become available for some of the nutrients, and scientific advisory 

bodies in many European Union Member States and in the United States have reported on 

recommended dietary intakes. For a number of nutrients these newly established (national) 

recommendations differ from the reference intakes in the SCF (1993) report. Although there is 

considerable consensus between these newly derived (national) recommendations, differing opinions 

remain on some of the recommendations. Therefore, there is a need to review the existing EU 

Reference Intakes in the light of new scientific evidence, and taking into account the more recently 

reported national recommendations. There is also a need to include dietary components that were not 

covered in the SCF opinion of 1993, such as dietary fibre, and to consider whether it might be 

appropriate to establish reference intakes for other (essential) substances with a physiological effect. 

In this context EFSA is requested to consider the existing Population Reference Intakes for energy, 

micro- and macronutrients and certain other dietary components, to review and complete the SCF 

recommendations, in the light of new evidence, and in addition advise on a Population Reference 

Intake for dietary fibre. 

For communication of nutrition and healthy eating messages to the public it is generally more 

appropriate to express recommendations for the intake of individual nutrients or substances in food-

based terms. In this context the EFSA is asked to provide assistance on the translation of nutrient 

based recommendations for a healthy diet into food based recommendations intended for the 

population as a whole. 

TERMS OF REFERENCE AS PROVIDED BY THE EUROPEAN COMMISSION 

In accordance with Article 29 (1)(a) and Article 31 of Regulation (EC) No. 178/2002,
5
 the 

Commission requests EFSA to review the existing advice of the Scientific Committee for Food on 

population reference intakes for energy, nutrients and other substances with a nutritional or 

physiological effect in the context of a balanced diet which, when part of an overall healthy lifestyle, 

contribute to good health through optimal nutrition. 

In the first instance EFSA is asked to provide advice on energy, macronutrients and dietary fibre. 

Specifically advice is requested on the following dietary components: 

 Carbohydrates, including sugars; 

 Fats, including saturated fatty acids, polyunsaturated fatty acids and monounsaturated fatty 

acids, trans fatty acids; 

                                                      
4 Scientific Committee for Food, 1993. Nutrient and energy intakes for the European Community. Reports of the Scientific 

Committee for Food, 31st series. Food – Science and Technique, European Commission, Luxembourg, 248 pp. 
5 Regulation (EC) No 178/2002 of the European Parliament and of the Council of 28 January 2002 laying down the general 

principles and requirements of food law, establishing the European Food Safety Authority and laying down procedures in 

matters of food safety. OJ L 31, 1.2.2002, p. 1–24. 
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 Protein; 

 Dietary fibre. 

Following on from the first part of the task, EFSA is asked to advise on population reference intakes 

of micronutrients in the diet and, if considered appropriate, other essential substances with a 

nutritional or physiological effect in the context of a balanced diet which, when part of an overall 

healthy lifestyle, contribute to good health through optimal nutrition. 

Finally, the EFSA is asked to provide guidance on the translation of nutrient based dietary advice into 

guidance, intended for the European population as a whole, on the contribution of different foods or 

categories of foods to an overall diet that would help to maintain good health through optimal nutrition 

(food-based dietary guidelines). 
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ASSESSMENT 

1. Introduction 

Phosphorus is an essential nutrient and is involved in many physiological processes, such as in the 

cell’s energy cycle, in regulation of the body’s acid–base balance, as a component of the cell structure, 

in cell regulation and signalling, and in the mineralisation of bones and teeth. 

In 1993, the Scientific Committee for Food (SCF, 1993) adopted an opinion on nutrient and energy 

intakes for the European Community and derived for phosphorus a Lowest Threshold Intake, an 

Average Requirement (AR) and a Population Reference Intake (PRI) for adults. The SCF also set PRIs 

for infants from 6 months of age, for children and for pregnant and lactating women. 

2. Definition/category 

In the human body, phosphorus is present in different forms. Serum contains mainly inorganic 

phosphates (dihydrogen and monohydrogen phosphate), bone contains phosphorus largely in the form 

of hydroxyapatite, while the soft tissues and extracellular fluids contain organic phosphates in 

complex with carbohydrates, lipids and proteins (Bansal, 1990). In this Opinion, the term phosphorus 

is used for consistency and simplicity when referring to its presence in blood or bone. 

2.1. Chemistry 

Phosphorus is the 11
th
 most abundant element in the earth’s crust. It is a non-metal, solid chemical 

element and belongs to Group 15 (VA) of the periodic table of the elements. It has the atomic number 

15 and an atomic mass of 30.97 Da. Phosphorus has several oxidation states, the most important being 

+3 and +5 (RSC, 2004; Kalantar-Zadeh et al., 2010; Corbridge, 2013). Phosphorus does not occur in 

nature as a free element because of its high reactivity, but is found in the form of phosphate minerals. 

The most abundant form is apatite (and related minerals), i.e. hydroxyapatite (Ca10(OH)2(PO4)6), 

chlorapatite (Ca10Cl2(PO4)6) and fluorapatite (Ca10F2(PO4)6). There is only one stable phosphorus 

isotope, that is 
31

P. There are, however, several radioactive isotopes with highly variable, usually very 

short, half-lives ranging from a few nanoseconds to a few seconds. Only two radioactive isotopes (
32

P 

and 
33

P) exist long enough to be measured. 
32

P has a half-life of 14 days and has applications in 

medicine, industry and in tracer studies. 
33

P has a half-life of 25 days and it also has tracer applications 

(Audi et al., 2003). 

2.2. Function of phosphorus 

2.2.1. Biochemical functions 

Phosphorus is the main mineral constituent of bones and one of the most abundant minerals in the 

body. About 85 % of the body’s phosphorus is in bones and teeth, in the form of hydroxyapatite, and 

together phosphorus and calcium account for around 80–90 % of bone composition. Hydroxyapatite 

forms the mineralised matrix of bone and contributes to the unique biomechanical properties of bone. 

Phosphorus homeostasis is intricately linked to that of calcium because of the actions of calcium-

regulating hormones, such as parathyroid hormone (PTH) and 1,25-dihydroxy-vitamin D 

(1,25(OH)2D), at the level of the bone, the gut and the kidneys. 

The remaining 15 % of phosphorus present in the body is integral to diverse functions ranging from 

the transfer of genetic information to energy utilisation. Phosphorus is a structural component of the 

nucleic acids DNA and RNA and thus is involved in the storage and transmission of genetic material. 

It is an essential component of phospholipids (e.g. phosphatidylcholine) that form all membrane 

bilayers throughout the body. They are essential for optimal brain health and influence brain cell 

communication processes and receptor functions. Many sugars, proteins and enzymes in the body are 

phosphorylated, and that process often determines the activity and function of sugars and 

phosphoproteins. Phosphorus is an integral component of adenosine triphosphate (ATP), the body’s 

key energy source. Other phosphorylated molecules (e.g. creatine phosphate in muscle) serve as a 

http://en.wikipedia.org/wiki/Nonmetal
http://en.wikipedia.org/wiki/Chemical_element
http://en.wikipedia.org/wiki/Chemical_element
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rapid source of phosphate for ATP production and energy transduction in substrate metabolism. Many 

intracellular signalling processes depend on phosphorus-containing compounds such as cyclic 

adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP) and inositol 

polyphosphates (e.g. inositol triphosphate (IP3)). Phosphorus, as 2,3-bisphosphoglycerate (also termed 

2,3-diphosphoglycerate), plays an important role in the dissociation of oxygen from haemoglobin. 

Cellular phosphate is the main intracellular buffer and therefore is essential for pH regulation in the 

human body (O'Brien et al., 2014). 

2.2.2. Health consequences of deficiency and excess 

2.2.2.1. Deficiency 

Phosphorus deficiency presents as hypophosphataemia, i.e. serum phosphorus concentrations below 

0.80 mmol/L (2.48 mg/dL) in adults. This occurs only rarely because of inadequate dietary phosphorus 

intake, and is almost always due to metabolic disorders. Although rare in the general population, the 

incidence of hypophosphataemia is high in certain sub-groups of patients, such as those with sepsis, 

chronic alcoholism, major trauma or chronic obstructive pulmonary disease (Gaasbeek and Meinders, 

2005; Brunelli and Goldfarb, 2007). Hypophosphataemia may also occur during the management of 

diabetic ketoacidosis because the administration of insulin drives glucose and phosphorus into cells 

and causes a rapid fall in serum phosphate concentrations. Mild hypophosphataemia can also occur as 

a common, generally asymptomatic, consequence of hyperparathyroidism (O'Brien et al., 2014). 

The clinical symptoms of hypophosphataemia usually occur when serum phosphorus concentrations 

fall below 0.3 mmol/L (≈ 1 mg/dL), particularly when this is associated with total body phosphorus 

depletion. The nature and severity of the clinical symptoms depend on the extent of the phosphorus 

depletion and are highly variable, depending on the underlying cause and the individual patient’s 

status (Brunelli and Goldfarb, 2007). At a whole organism level, the effects of hypophosphataemia 

include anorexia, anaemia, muscle weakness, bone pain, rickets and osteomalacia, increased 

susceptibility to infection, paraesthesia, ataxia, confusion and even death. The muscle weakness 

involves, in particular, proximal muscle groups, and when prolonged or severe can lead to muscle 

fibre degeneration. The skeleton will exhibit either rickets or osteomalacia, depending on growth 

status. In both, the disorder consists of a failure to mineralise and form growth plate cartilage and bone 

matrix, together with the impairment of chondroblast and osteoblast function. This functional 

disturbance both slows osteoid deposition and disturbs the normal maturation process in the 

hypertrophic zone of the growth plate cartilage (Heaney, 2012). 

2.2.2.2. Excess 

In 2005, EFSA (2005) concluded that the available data were not sufficient to establish a Tolerable 

Upper Intake Level (UL) for phosphorus. Adverse effects of excessive phosphorus intake, such as 

hyperphosphataemia, leading to secondary hyperparathyroidism, skeletal deformations, bone loss 

and/or ectopic calcification, have been reported in animal studies. However, such effects were not 

observed in studies in humans, except in patients with end-stage renal disease. Although an increase in 

serum PTH concentration was found in acute or short-term loading studies, no significant changes 

could be demonstrated in longer term studies with dosages of up to 3 000 mg/day. In these studies, no 

evidence was found for effects on markers of bone remodelling. Similarly, no convincing evidence 

was found to support suggestions that high-phosphorus diets would aggravate the effects of a state of 

secondary hyperparathyroidism induced by inadequate calcium intake or an inadequate vitamin D 

status. 

Gastro-intestinal symptoms, such as osmotic diarrhoea, nausea and vomiting, were observed in some 

healthy subjects taking phosphorus (phosphate) supplements with dosages higher than 750 mg/day, 

but these symptoms were not considered a suitable basis for establishing a UL for phosphorus from all 

sources (EFSA, 2005). 
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2.3. Physiology and metabolism 

2.3.1. Intestinal absorption 

Phosphorus is absorbed with high efficiency. In adults, net phosphorus absorption typically ranges 

from 55 to 80 % of customary intakes, and in infants from 65 to 90 % (Heaney, 2012; O'Brien et al., 

2014). Intestinal phosphorus absorption tends to decrease with ageing. Within the gut lumen, 

phosphatases hydrolyse the organic forms to release inorganic phosphate. Inorganic phosphate is 

absorbed along the entire intestine, with most being absorbed by the small intestine (Sabbagh et al., 

2011). Dietary phosphorus, 1,25(OH)2D and PTH are thought to be the most important physiological 

regulators of intestinal phosphorus absorption, although epidermal growth factor, glucocorticoids, 

oestrogens, metabolic acidosis, phosphatonins and secreted frizzled-related protein 4 (sFRP-4) also 

affect intestinal phosphorus absorption (Penido and Alon, 2012). 

There are two pathways for intestinal absorption of inorganic phosphorus, i.e. paracellular and cellular 

(Sabbagh et al., 2011; Penido and Alon, 2012), and at least two mechanisms, i.e. passive diffusion 

(McHardy and Parsons, 1956) and sodium-dependent active transport (Walton and Gray, 1979; Eto et 

al., 2006). Most phosphorus absorption occurs in the small intestine by load-dependent passive 

absorption. Paracellular absorption occurs at tight junctions and utilises electrochemical gradients. 

These are thought to be regulated by signal transduction pathways but the specific mechanism for 

phosphate has not yet been identified (Sabbagh et al., 2011). Cellular absorption requires sodium-

dependent phosphate transporters, which include NaPi-IIa (SLC34A1), NaPi-IIb (SLC34A2 or 

NPT2b) and NaPi-IIc (SLC34A3), that are also expressed in the renal tubule; however, it is NaPi-IIb 

that is predominant in the intestine (Penido and Alon, 2012; Biber et al., 2013). The relative proportion 

of absorption via each mechanism varies depending on the luminal phosphate concentration, with 

active transport contributing to between 30 and 80 % (Sabbagh et al., 2011). 

The sodium-dependent phosphate transporter NaPi-IIb can be modulated by low dietary inorganic 

phosphorus, several hormones and vitamin D (Segawa et al., 2004; Forster et al., 2011; Sabbagh et al., 

2011), and the mucosa of the duodenum is particularly responsive to low inorganic phosphorus intake 

(Marks et al., 2010). Administration of 1,25(OH)2D to vitamin D-deficient animals resulted in up-

regulation of transporters and significantly increased inorganic phosphate absorption (Katai et al., 

1999; Kido et al., 2013). Despite some evidence of an impact of vitamin D on phosphorus absorption 

in humans (Brickman et al., 1977), the net result is probably small and the actual effect of vitamin D 

on adult phosphorus absorption under usual conditions and in health remains unclear (Heaney, 2012). 

The small intestine and kidneys work together to maintain circulating levels of inorganic phosphorus 

(Marks et al., 2010; Biber et al., 2013), although the exact mechanism of how phosphorus is “sensed” 

has not yet been identified (Bergwitz and Jüppner, 2011). In view of earlier studies identifying the 

continuation of intestinal phosphorus absorption even in the presence of high blood concentrations of 

phosphorus (Brickman et al., 1974; IOM, 1997), it is unclear whether or not this regulation may be 

overwhelmed by high dietary intake. 

The ability to absorb and use phosphorus is affected by the total amount of phosphorus in the diet and 

also by the type of phosphorus (organic versus inorganic), the food origin (animal- versus plant-

derived) and the ratio of phosphorus to other dietary components. Most food phosphorus is in the form 

of readily hydrolysable organic phosphate esters, with the exception of seed foods and unleavened 

breads. In fact, phytic acid (the storage form of phosphorus in plants) cannot be digested because 

humans lack the enzyme phytase. Colonic bacteria, which do possess phytase, are able to release some 

of that phosphorus for absorption. In addition, yeasts can hydrolyse phytic acid and, hence, leavened 

cereal-grain foods (e.g. many breads) exhibit good phosphorus bioavailability (Heaney, 2012). Apart 

from phytate, the principal factor influencing phosphorus absorption is co-ingested calcium, which 

binds phosphorus in the digestive chime, thereby preventing its absorption (Heaney, 2012; O'Brien et 

al., 2014). In two human metabolic balance studies with a total of 566 measurements from 284 

subjects, Heaney and Nordin (2002) showed that calcium intake is the main dietary determinant of 

phosphorus absorption. Based on 470 measurements from 191 women, the authors estimated that each 
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increase in calcium intake of 0.5 g (12.5 mmol) decreases phosphorus absorption by 0.166 g 

(5.4 mmol). Phosphorus originating from food additives, i.e. already in an ionised inorganic form, is 

absorbed more readily than organic phosphorus naturally occurring in animal and plant foods 

(Kalantar-Zadeh et al., 2010). 

The Panel notes that phosphorus absorption from the diet has been reported to vary over a wide range. 

2.3.2. Transport in blood 

Phosphorus is present in the blood in both organic and inorganic forms. Approximately 70 % of 

phosphorus in the blood is in the form of organic compounds, including phospholipids, i.e. in blood 

cell membranes and plasma lipoproteins. Of the remaining 30 %, most (≈ 85 %) is present as inorganic 

phosphorus, while a small percentage is found complexed with sodium, calcium and magnesium as 

salts in the blood. 

In plasma, the phosphate ions HPO4
2–

 and H2PO4
–
 exist in a pH-dependent equilibrium. About 85–

90 % of serum phosphate is free and is ultrafiltrable; 10–15 % is bound to protein. The normal 

concentration of phosphate in human serum/plasma is 0.8–1.5 mmol/L, which is maintained within 

this physiological range by regulation of dietary absorption, bone formation and renal excretion, as 

well as equilibration with intracellular stores. Serum phosphorus concentration fluctuates with age (it 

is higher in children than in adults), acid–base status and dietary intake (Marks et al., 2010) (see 

Section 2.4.1.1). The increased serum phosphorus concentration following ingestion of phosphorus 

then depresses the serum calcium ion (Ca
2+

) concentration, which in turn stimulates the parathyroid 

glands to synthesise and secrete PTH. PTH acts on bone and the kidneys to correct the modest decline 

in Ca
2+

 and homeostatically return it to the required level. It has been suggested that an elevation of 

serum phosphorus ionic concentration directly influences PTH secretion independently of 

hypocalcaemia (O'Brien et al., 2014). These meal-associated fluctuations in phosphorus and Ca
2+

 are 

part of normal physiological adjustments that occur typically three or more times a day. The blood 

concentration of phosphorus is less tightly regulated than the serum calcium concentration. Wider 

fluctuations in serum phosphorus concentration reflect both dietary intake and cellular release of 

inorganic phosphates (Anderson, 2005). There is diurnal variation (Jubiz et al., 1972; Moe et al., 

2011), with values being lowest in the early morning and rising during the day (Pocock et al., 1989). 

2.3.3. Distribution to tissues 

Phosphorus, as phosphate, is the most abundant anion in the human body and comprises 

approximately 1 % of total body weight (Farrow and White, 2010; Penido and Alon, 2012). 

Approximately 85 % of phosphorus is present in bones and teeth, with the remainder distributed 

among other tissues (14 %) and extracellular fluid (1 %) (O'Brien et al., 2014). Thus, like calcium 

(although more pronounced), serum measurements reflect only a minor fraction of total body 

phosphorus, and therefore do not consistently reflect total body stores (Moe, 2008). Intracellular 

phosphorus exists in the form of organic compounds such as ATP and as free phosphate anions (e.g. 

PO4
3-

) (Takeda et al., 2012). Cells hold very limited reserves of inorganic phosphorus and rely on 

supplies from extracellular fluid (IOM, 1997). In bone, phosphorus is primarily complexed with 

calcium in the form of hydroxyapatite crystals; the remaining phosphate appears as amorphous 

calcium phosphate (Farrow and White, 2010). In soft tissue and cell membranes, phosphorus exists 

mainly as phosphate esters and to a lesser extent as phosphoproteins and free phosphate ions. In the 

extracellular fluid, about one-tenth of the phosphorus content is bound to proteins, one-third is 

complexed to sodium, calcium and magnesium, and the remainder is present as inorganic phosphorus 

(Penido and Alon, 2012). 

In pregnancy, especially in the third trimester, inorganic phosphorus moves from the mother to the 

fetus against a concentration gradient (Brunette et al., 1986; Husain and Mughal, 1992). This is a 

sodium-dependent, energy-requiring process facilitated by NaPi-IIb (SLC34A2) transporters, which 

are expressed in the placental labyrinthine cells (Mitchell and Jüppner, 2010). The placenta meets the 

fetal need by actively transporting phosphorus from the maternal circulation. Phosphorus is 
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maintained in the fetal circulation at higher concentrations than in the mother, and such high levels 

appear necessary for the developing skeleton to accrete a normal amount of phosphorus by term. 

However, the factors and the molecular mechanism controlling placental phosphorus transport have 

not yet been explored (Mitchell and Jüppner, 2010; Kovacs, 2014). Phosphorus rises over the first 24–

48 hours after delivery; after that, it declines towards adult values, consistent with resolution of 

transient hypoparathyroidism in the newborn (Kovacs, 2014). 

2.3.3.1. Ratio of calcium to phosphorus in the bone and whole body 

Calcium and phosphorus are both required for bone mineral deposition and maintenance throughout 

life. The calcium to phosphorus ratio in bone has been measured using instrumental neutron activation 

analysis. Measurement of intact bone of 37 females and 45 males aged 15–55 years showed a mean 

calcium to phosphorus mass ratio of 2.33:1 ± 0.34:1 (range 2.05:1 to 2.62:1) in rib bone (Tzaphlidou 

and Zaichick, 2002), 2.17:1 ± 0.31:1 in cortical bone (Zaichick and Tzaphlidou, 2002) and 

2.07:1 ± 0.23:1 (range 1.55:1 to 2.72:1) in trabecular bone of the femoral neck (Zaichick and 

Tzaphlidou, 2003). These mean mass ratios of calcium to phosphorus measured in different skeletal 

sites are equivalent to mean molar ratios of 1.6:1 to 1.8:1 in the bone of healthy adolescents and 

adults. 

The Panel notes that, while the majority (99 %) of body calcium is in bone (EFSA NDA Panel, 2015), 

about 15 % of body phosphorus is outside bone as a key functional component in other tissues (14 %) 

and extracellular fluid (1 %) (Section 2.3.3). Thus, using the calcium to phosphorus molar ratio in 

bone of 1.6:1 to 1.8:1 and adjusting for the amount of phosphorus outside bone, a molar ratio of 

calcium to phosphorus in the adult body of about 1.37:1 to 1.55:1 (1.6:1 divided by 0.99:0.85 to 1.8:1 

divided by 0.99:0.85) may be estimated. 

Outside the skeleton, phosphorus and calcium have essential and distinct physiological functions 

which are mediated independently and separately by specific transporters, the precise regulation of 

which, in the case of phosphorus, has not been fully elucidated. 

Using total body neutron activation analysis, Ellis (1990) measured whole-body contents of calcium 

and phosphorus in 1 134 Caucasian women aged between 20 and 74 years and in 175 Caucasian men 

aged between 20 and 90 years in the USA. From these, mass ratios may be calculated that range from 

1.92:1 to 2.18:1 according to age in women, and from 2.04:1 to 2.44:1 in men. These mass ratios are 

equivalent to molar ratios of calcium to phosphorus in the whole body of 1.48:1 to 1.69:1 in women 

and 1.57:1 to 1.89:1 in men. 

Taking into account the molar calcium to phosphorus ratio in the whole body estimated from the molar 

ratio of calcium to phosphorus in bone and the observations of Ellis (1990), the Panel considers that 

the ratio of calcium to phosphorus in the whole body ranges from about 1.4:1 to 1.9:1. The Panel notes 

the absence of specific data for infants and children up to 15 years of age. 

2.3.4. Storage 

Total body phosphorus in adults has been reported to be in the order of 400–800 g, and most of this is 

located in the bones and teeth (Moe, 2008). Using total body neutron activation analysis, total body 

phosphorus (mean ± standard deviation (SD)) ranged from 374 ± 60 g to 439 ± 70 g in 1 134 

Caucasian women aged between 20 and 74 years and from 461 ± 82 g to 561 ± 69 g in 175 Caucasian 

men aged between 20 and 90 years in the USA (Ellis, 1990). 

At birth, a neonate contains roughly 20 g phosphorus (0.5 g/100 g fat free tissue), most of which is 

accumulated during the last 8 weeks of pregnancy (Widdowson and Spray, 1951). Assuming 

continuous growth and maturity at 18 years, it has been estimated that continuous phosphorus 

accretion rates are 107 mg/day in boys and 80 mg/day in girls, with a peak rate in adolescence of 

214 mg/day, while at age 4–12 months, accretion rates of 66 mg/day have been estimated (Prentice 

and Bates, 1994). 
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2.3.5. Metabolism 

The absorbed phosphorus enters the exchangeable phosphorus pool which consists of the intracellular 

phosphorus (70 %), the phosphorus arising from bone remodelling (29 %) and the phosphorus in 

serum (< 1 %). Exit from the exchangeable pool is through skeletal deposition, renal excretion and 

intestinal secretion. Under physiological conditions in adults, the amount of phosphorus entering the 

phosphorus pool from bone resorption equals that exiting the pool for bone formation (Hruska et al., 

2008). Both the intestine and the kidneys are involved in phosphate homeostasis by serving as 

regulators of phosphorus absorption from the diet (in the inorganic form) and phosphorus excretion (in 

the inorganic form), respectively (Berndt and Kumar, 2007). 

Phosphorus homeostasis is tightly regulated by the bone–kidney–parathyroid gland axis. The key 

hormones contributing to the regulation of phosphorus homeostasis are PTH, the active metabolite of 

vitamin D (i.e. 1,25(OH)2D) and the phosphatonin fibroblast growth factor-23 (FGF-23), mainly 

produced and secreted by osteocytes in bone (Berndt and Kumar, 2009; Bergwitz and Jüppner, 2010). 

An elevation in serum phosphorus concentration as a result of a diet high in phosphorus leads to a 

decrease in serum calcium concentration and an increase in PTH release resulting in increased renal 

phosphate excretion. The increase in serum inorganic phosphate additionally results in a reduced 

1,25(OH)2D synthesis which in turn leads to a reduced intestinal phosphorus absorption (Berndt and 

Kumar, 2009; Bergwitz and Jüppner, 2010). An increase in serum phosphorus concentration also 

results in an increased secretion of FGF-23 by the osteocytes which directly stimulates the renal 

fractional excretion of phosphorus and induces a reduction in the 1,25(OH)2D concentration, with a 

subsequent decrease in intestinal phosphorus absorption (Quarles, 2008). On the other hand, a 

decrease in serum phosphorus concentration as a result of a diet low in phosphorus leads to an increase 

in serum calcium concentration and a decrease in PTH release resulting in decreased renal phosphorus 

excretion. Additionally, a decrease in serum phosphorus concentration leads to an increased 

1,25(OH)2D synthesis and subsequent enhanced phosphorus absorption by the intestine (Berndt and 

Kumar, 2009; Bergwitz and Jüppner, 2010). Finally, a decrease in serum phosphorus concentration 

reduces serum FGF-23, thus restoring the concentration of serum phosphorus (Quarles, 2008). 

2.3.6. Elimination 

2.3.6.1. Urine 

The kidney plays a predominant role in the regulation of systemic phosphorus homeostasis. About 

80 % of filtered phosphorus is reabsorbed in the proximal tubule. There is likely to be no reabsorption 

of phosphorus in the loop of Henle and the collecting duct. Some evidence has been provided that in 

distal nephron segments approximately 5 % of filtered phosphorus may be reabsorbed. Under normal 

conditions, about 15 % of the filtered phosphorus is ultimately excreted (Bindels et al., 2012). When 

an individual is in phosphorus equilibrium (i.e. not gaining or losing phosphorus), the amount of 

phosphorus excreted in the urine (1–1.5 g/24 hours) is equivalent to the amount of phosphorus 

absorbed in the intestine (Berndt and Kumar, 2007). The tubular reabsorption of phosphorus is 

saturable, that is, when the serum phosphorus concentration exceeds the renal threshold, phosphorus 

begins to appear in the urine, increasing in proportion to the filtered load (Bindels et al., 2012). 

The reabsorption of inorganic phosphorus in the kidney occurs along with sodium via specific sodium 

phosphate co-transporters (Tenenhouse and Murer, 2003). The main transporter involved in this 

process is NaPi-IIa (Tenenhouse, 2005). Controlling the numbers of this transporter leads to regulation 

of phosphorus reabsorption in the kidney. Factors that increase tubular phosphorus reabsorption 

include low intake of phosphorus and high intake of potassium, parathyroidectomy, 1,25(OH)2D, 

hypocalcaemia, volume contraction and hypocapnia (i.e. a state of reduced carbon dioxide in the 

blood), whereas factors that decrease phosphorus tubular reabsorption include a diet high in 

phosphorus and low in potassium, PTH, volume expansion, hypercalcaemia, carbonic anhydrase 

inhibitors, glucose and alanine, acid–base disturbances, increased bicarbonate, hypercapnia, metabolic 

inhibitors, FGF-23 and sFRP-4 (Schiavi and Kumar, 2004; Berndt and Kumar, 2009). FGF-23, along 

with PTH, regulates the reabsorption of phosphorus at the level of the renal proximal tubule. Studies in 
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healthy volunteers showed that the secretion of FGF-23 reacts to variation in dietary phosphorus 

intake, increasing under conditions of excess dietary intake and being reduced by dietary phosphorus 

restriction (Oliveira et al., 2010; Moe et al., 2011; Shigematsu et al., 2012). Other studies indicated 

that klotho may independently contribute to the regulation of renal phosphorus handling (Hu et al., 

2010). Phosphatonins, and in particular FGF-23, and klotho are also postulated to be involved in 

phosphorus homeostasis in pathophysiological conditions associated with phosphorus wasting. 

Clearance studies have demonstrated that phosphorus excretion is remarkably responsive to antecedent 

dietary phosphorus intake. The phosphorus reabsorption capacity adapts to altered intake of 

phosphorus within hours (acute adaptation) and remains changed during prolonged intake of altered 

amounts of dietary phosphorus. Fractional excretion of phosphorus increases with a high phosphorus 

diet and decreases with a low phosphorus diet (Bindels et al., 2012). 

2.3.6.2. Faeces 

Faecal excretion of phosphorus has been reported to range from about 300 to 600 mg/day (Greger et 

al., 1978; Anderson, 2005; Delgado-Andrade et al., 2011). Total faecal phosphorus, however, 

represents both non-absorbed phosphorus from food, and losses of endogenous phosphorus. The latter 

are mainly derived from digestive secretions that have not been reabsorbed. The daily faecal loss of 

endogenous phosphorus is between 0.9 and 4 mg/kg body weight per day (O'Brien et al., 2014). 

2.3.6.3. Sweat 

Sweat is not an important route of phosphorus loss. Very small quantities of phosphorus in sweat 

(0.45–0.81 mg/hour) have been reported following a phosphorus-rich meal challenge (Consolazio et 

al., 1963). 

2.3.6.4. Breast milk 

The phosphorus concentration of human milk increases during early lactation and then gradually 

declines with progressing lactation. Atkinson et al. (1995) reported an average phosphorus 

concentration in human milk of about 160 mg/L at 14 days, 140 mg/L at 30 and 90 days and 120 mg/L 

at 180 days post partum. 

Following a comprehensive literature search for studies published from the year 2000 onwards, five 

studies were retrieved which reported on the phosphorus concentration of breast milk. Three studies 

reported phosphorus concentrations of mature milk from women in Europe, whereas the other two 

studies covered women living in Australia and Mexico and did not report on the stage of lactation. 

Phosphorus concentrations were (mean ± SD) 172 ± 23 mg/L in 60 women in Sweden after 14–21 

days of lactation (Bjorklund et al., 2012), (median (range)) 123.7 (76.9–159.7) mg/L in 10 Caucasian 

women in the UK after 9–13 weeks of lactation (Nickkho-Amiry et al., 2008), and 130 mg/kg of breast 

milk (mean) in nine milk samples from Polish women after 5–6 months of lactation (Witczak and 

Jarnuszewska, 2011). 

Gidrewicz and Fenton (2014) published a systematic review and meta-analysis of 41 studies of breast 

milk composition. Data on the phosphorus concentration of breast milk from mothers of term infants 

were available from seven studies, and these results are summarised in Table 1 below. 
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Table 1:  Breast milk phosphorus concentration (mg/L) over time in studies with mothers of term 

infants, according to Gidrewicz and Fenton (2014) 

Time post partum Breast milk phosphorus concentration (mg/L) 

Mean SD n 

Day 1–3 110 30 6 

Day 4–7 130 40 86 

Week 2 150 40 90 

Week 3–4 160 30 75 

Week 5–6 160 30 213 

Week 7–9 160 30 363 

Week 10–12 140 30 13 

Based on data reported in seven studies also having a group of mothers of term infants (Atkinson et al., 1980; Gross et al., 

1980; Sann et al., 1981; Lemons et al., 1982; Butte et al., 1984b; Mataloun and Leone, 2000; Yamawaki et al., 2005). 

n, number of samples. 

The Panel notes that no quantitative assessment of phosphorus resorption from bone during lactation is 

available. However, extended lactation is associated with a modest reduction in bone mineral density 

(BMD), with a return to baseline 12 months after parturition (Sowers et al., 1993; Karlsson et al., 

2001), independently of the length of lactation (Moller et al., 2012). The role of dietary phosphorus 

during pregnancy and lactation has not been established. 

Prentice (2003) reviewed the evidence regarding biological adaptation mechanisms (increases in food 

intake, elevated gastro-intestinal absorption, decreased mineral excretion and mobilisation of tissue 

stores) required to preserve the maternal mineral economy while meeting the additional mineral 

requirements during pregnancy and lactation. This author concluded that both pregnancy and lactation 

are associated with physiological adaptive changes in mineral metabolism that are independent of 

maternal mineral supply within the range of normal dietary intakes. These adaptive processes provide 

the minerals necessary for fetal growth and breast milk production without requiring an increase in 

maternal dietary intake or compromising maternal bone health in the long term. 

The Panel considers that around 140 mg/L (4.5 mmol/L) of phosphorus is secreted with mature human 

milk. The Panel acknowledges the existence of physiological adaptive processes that ensure sufficient 

phosphorus for fetal growth and breast milk production. These may obviate the need in pregnancy and 

lactation for additional phosphorus in the diet, provided intake is close to the Dietary Reference Value 

(DRV) for adults. 

2.3.7. Interaction with other nutrients 

Several interactions between phosphorus and calcium have been documented at both the intestinal and 

renal levels. Phosphate decreases urinary calcium excretion, and increases calcium balance (Fenton et 

al., 2009). A high phosphorus/low calcium diet and, inversely, a high calcium/low phosphorus diet can 

result in reduced absorption of the lower dose mineral which can lead to disturbances in calcium or 

phosphorus homeostasis, with possible detrimental consequences on bone health (EFSA NDA Panel, 

2015). 

2.4. Biomarkers 

2.4.1. Biomarkers of intake 

A precise assessment of dietary phosphorus intake in free-living individuals is difficult because of the 

questionable accuracy of dietary instruments used to estimate phosphorus in foods in all its forms, 

particularly inorganic sources from phosphorus-based food additives and dietary supplements (Calvo 

and Uribarri, 2013). Thus, there is a need for surrogate markers of phosphorus intake beyond dietary 

estimates. 
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2.4.1.1. Serum/plasma phosphorus concentration 

Serum/plasma inorganic phosphorus has been proposed as an indicator of adequacy of phosphorus 

intake (IOM, 1997), mainly based on the equation proposed by Nordin (1989), derived from data from 

an infusion study (Bijovet, 1969). This equation was established in adults with normal renal function 

who were infused with < 20 mmol/day (< 619 mg/day) of phosphorus. The relationship became 

weaker at higher amounts of infused phosphorus. Since serum phosphorus concentration is maintained 

within a relatively narrow range by different homeostatic mechanisms (Section 2.3.5), the effect of 

dietary phosphorus intake on serum phosphorus concentration appears to be relatively small, even in 

the presence of wide variations in dietary phosphorus intake. The association between dietary 

phosphorus intake and serum phosphorus concentration in fasting and non-fasting samples from 

15 513 participants has been evaluated using data from the Third National Health and Nutrition 

Examination Survey (NHANES) in the USA (de Boer et al., 2009). Phosphorus intake was assessed by 

24-hour dietary recall and 1-month food frequency questionnaire (FFQ). A weak but significant 

association of dietary phosphorus intake with serum phosphorus concentration was observed, with 

each 500-mg/day increment in phosphorus intake being associated with an increase of 0.03 mg/dL in 

serum phosphorus, after adjustment for confounders. The Panel notes that this represents about 1 % of 

the usual serum phosphorus concentration. A smaller study conducted in Spain showed no association 

between dietary phosphorus intake (25
th
–75

th
 percentile intake in men and women, 952–1 511 mg/day 

and 826–1 315 mg/day, respectively) and serum phosphorus concentration (Mataix et al., 2006). A 

possible explanation for these weak and inconsistent findings is that the renal clearance of plasma 

phosphorus is so finely regulated that fasting serum/plasma phosphorus concentration shows only 

minimal changes even in the presence of wide variations in intake. In most observational studies, 

serum phosphorus concentration was measured in only fasting morning samples, while detailed 

feeding studies showed that changes in the order of 0.5–1.0 mg/dL in serum phosphorus related to 

phosphorus loading or restriction may be detected only by serial measurements of serum phosphorus 

concentration throughout the day and subsequently averaging the concentrations measured throughout 

the 24 hours (Portale et al., 1987; Calvo et al., 1988; Kemi et al., 2006). In particular, in six healthy 

men, a 40 % reduction in the 24-hour mean serum phosphorus concentration, compared with the 

concentration measured during normal phosphorus intake (1 500 mg/day), occurred during severe 

phosphorus restriction (500 mg/day for 10 days), while a 14 % increase in the 24-hour mean serum 

phosphorus concentration was observed during phosphorus loading (3 000 mg/day for 10 days). 

Fasting serum phosphorus concentrations were unmodified during both restriction and loading periods 

compared with the control period (Portale et al., 1987). 

The Panel notes that serum phosphorus concentration cannot be considered a reliable marker of intake 

as it increases for a short period after ingestion of a meal and then decreases and remains within a 

relatively narrow range as a result of homeostatic mechanisms. Moreover, because of fine renal 

regulation, fasting serum phosphorus concentration shows only minimal modifications even in the 

presence of wide variations in intake. 

2.4.1.2. Urinary phosphorus excretion 

Under normal conditions, the main excretory route of phosphorus from the body is through the kidney 

(see Section 2.3.6.1). Although urinary phosphorus excretion generally reflects dietary intake, it is 

regulated by a number of factors which limits its use as biomarker of intake. 

2.4.2. Biomarkers of status 

2.4.2.1. Serum/plasma phosphorus concentration 

Serum inorganic phosphorus is the most commonly used indicator of phosphorus status; however, it 

generally inadequately reflects body stores. Only 1 % of total body phosphorus is found in 

extracellular fluid, and serum/plasma inorganic phosphorus concentrations typically range from 0.8–

1.5 mmol/L in adults (Greenberg et al., 1960; IOM, 1997), irrespective of dietary phosphorus intake or 

whole-body phosphorus content/status. Serum phosphorus concentrations are influenced by age, sex, 
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lactation, diurnal and seasonal variations, vitamin D status and pathological conditions such as 

malabsorption syndromes and insulin-dependent diabetes mellitus (Gibson, 2005). 

2.4.2.2. Urinary phosphorus concentration 

Urinary phosphorus concentration generally reflects dietary intake under normal conditions, as urine is 

the main excretory route. However, concentrations are affected by a whole range of other factors 

which impact on calcium and phosphorus metabolism (see Section 2.3.6.1). Therefore, urinary 

phosphorus is of limited use as biomarker of phosphorus status. 

2.4.2.3. Serum parathyroid hormone (PTH) 

PTH is the most important endocrine regulator of calcium and phosphorus concentrations in 

extracellular fluid. It is secreted from the parathyroid glands and its major sites of action are bone and 

kidney. However, this hormone is of limited use as biomarker as its concentration is affected by 

vitamin D status as well as serum ionised calcium and phosphorus concentrations. 

2.4.2.4. Other biomarkers 

In addition to PTH, other phosphorus-regulating factors, such as FGF-23 and klotho, a protein present 

both in membranes and in circulation and needed for FGF-23 to bind to its receptor, have recently 

been suggested as possible biomarkers of phosphorus status (see Gutierrez (2013)). However, the 

Panel considers that there is as yet insufficient information to conclude on the use of these factors as 

biomarkers of phosphorus status. 

2.4.2.5. Conclusions on biomarkers of phosphorus intake and status 

The Panel considers that there is currently no reliable biomarker of phosphorus intake and status that 

may be used for deriving the requirement for phosphorus. 

2.5. Effects of genotypes 

The understanding of phosphorus homeostasis has largely been obtained from molecular studies of 

human inherited genetic disorders (Bergwitz and Jüppner, 2010) and acquired disorders (Christov and 

Jüppner, 2013). Hereditary diseases in phosphorus metabolism and the cloning of the genes leading to 

these disorders (including urinary phosphate wasting and depletion of phosphorus stores (Alizadeh 

Naderi and Reilly, 2010)) have provided understanding of the regulation of phosphorus metabolism in 

both healthy and diseased individuals, and have shown that the osteo–renal metabolic axis plays a 

large role in phosphorus homeostasis (de Menezes et al., 2006). 

Genetic disorders which affect urinary excretion of phosphorus have a major impact on serum 

phosphorus concentrations. For example, mutations in genes encoding phosphate transporters NPT2 

and PiT lead to disturbed phosphorus homeostasis (Prié and Friedlander, 2010). Additionally, 

hypophosphataemia and hypophosphataemic rickets are caused by mutations in the sodium–phosphate 

co-transporters NaPi-IIa and NaPi-IIc, respectively (Jüppner, 2007; Pettifor, 2008; Ramasamy, 2008). 

Elucidation of these mechanisms has identified regulators of phosphorus homeostasis including FGF-

23 and a phosphate-regulating gene (PHEX) with homology to endopeptidases on the X-chromosome 

(Tenenhouse, 2005). 

The Panel notes that, although genetic defects leading to a number of rare disorders affecting 

phosphorus homeostasis have been characterised at the molecular level, no genotypes have been 

identified that would require consideration with regard to the estimation of DRVs for phosphorus in 

the general population. 
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3. Dietary sources and intake data 

3.1. Dietary sources 

Phosphorus is found in many foods. The major dietary contributors to phosphorus intake are foods 

high in protein, i.e. milk and milk products followed by meat, poultry and fish, grain products and 

legumes (Calvo and Uribarri, 2013). 

Currently, calcium glycerophosphate, calcium salts of orthophosphoric acid, ferric sodium 

diphosphate, ferrous ammonium phosphate, ferric diphosphate (ferric pyrophosphate), magnesium 

glycerophosphate, magnesium salts of orthophosphoric acid, manganese glycerophosphate, sodium 

salts of orthophosphoric acid, potassium glycerophosphate, potassium salts of orthophosphoric acid, 

riboflavin 5′-phosphate (sodium) and pyridoxine 5′-phosphate may be added to both foods
6
 and food 

supplements,
7
 whereas ferrous phosphate, sodium monofluorophosphate, thiamine monophosphate 

chloride, thiamine pyrophosphate chloride and pyridoxal 5′-phosphate may only be used in food 

supplements.
7
 The phosphorus content of infant and follow-on formulae

8
 is regulated. 

The use by the food industry of food additives containing phosphorus is widespread. Most 

phosphorus-containing additives are inorganic salts of phosphorus that are widely used in the 

processing of many different foods, ranging from baked goods and restructured meats to cola 

beverages. However, the amount of phosphorus contributed by the use of phosphorus-containing food 

additives in processed and prepared foods is difficult to quantify (Calvo and Uribarri, 2013). Data on 

phosphorus in food composition databases are likely to underestimate the contribution from 

phosphate-containing additives (Oenning et al., 1988). This is partly because of changes in phosphorus 

content as the processing and formulation of new food products evolves. The ability to accurately 

capture dietary intakes is related to the food coverage in the database and the proportion of values 

based on chemical analysis, as well as to the dietary assessment method used. It has been estimated 

that phosphorus added during processing can represent an average daily intake of 500 mg/day in the 

USA, ranging from 300 mg/day to 1 000 mg/day depending on individual food preferences (IOM, 

1997). 

3.2. Dietary intake 

EFSA estimated dietary intakes of phosphorus from food consumption data from the EFSA 

Comprehensive European Food Consumption Database (EFSA, 2011a), classified according to the 

food classification and description system FoodEx2 (EFSA, 2011b). Food consumption data from 13 

dietary surveys from nine European Union (EU) countries were used. The countries included were 

Finland, France, Germany, Ireland, Italy, Latvia, the Netherlands, Sweden and the UK. The data 

covered all age groups from infants to adults aged 75 years and older (Appendix A). 

Nutrient composition data for phosphorus were derived from the EFSA Nutrient Composition 

Database (Roe et al., 2013). Food composition information from Finland, France, Germany, Italy, the 

Netherlands, Sweden and the UK was used to calculate phosphorus intake in these countries, assuming 

that the best intake estimate would be obtained when both the consumption data and the composition 

data are from the same country. For phosphorus intake estimates for Ireland and Latvia, food 

composition data from the UK and Germany, respectively, were used, because no specific composition 

data from these countries were available. In the event of missing values in a food composition 

database, data providers had been allowed to borrow values from another country’s database. The 

amount of borrowed phosphorus values in the seven composition databases used varied between 15 

                                                      
6 Regulation (EC) No 1925/2006 of the European Parliament and of the Council of 20 December 2006 on the addition of 

vitamins and minerals and of certain other substances to foods. OJ L 404, 30.12.2006, p. 26. 
7 Directive 2002/46/EC of the European Parliament and of the Council of 10 June 2002 on the approximation of the laws of 

the Member States relating to food supplements. OJ L 183, 12.7.2002, p. 51. 
8 Commission Directive 2006/141/EC of 22 December 2006 on infant formulae and follow-on formulae and amending 

Directive 1999/21/EC. OJ L 401, 30.12.2006, p. 1. 
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and 85 %. A phosphorus value was missing for all included countries for 665 consumed food items, 

for which imputation of missing composition values was undertaken by EFSA. Phosphorus intake 

calculations were performed only on subjects with at least two reporting days. EFSA intake estimates 

are based on the consumption of foods, either fortified or not (i.e. without consideration of dietary 

supplements). 

Food consumption data of infants (aged 1 to < 12 months in the Italian INRAN-SCAI survey, 4 to 

< 12 months in the UK DNSIYC survey, 6 months in the Finnish DIPP study and 6 to < 12 months in 

the German VELS survey, for full names of all surveys, see Abbreviations) were provided by four 

studies. The consumption of human milk was taken into account if the amount of human milk 

consumed (Italian INRAN-SCAI survey and UK DNSIYC survey) or the number of breast milk 

consumption events (German VELS survey) were reported. In the case of the Italian INRAN-SCAI 

survey, the data provider had estimated the human milk consumption prior to submitting the data to 

EFSA based on the number of eating occasions using standard portions per eating occasion. In the 

Finnish DIPP study, only the information “breast fed infants” was available, but without any 

indication of the number of breast milk consumption events or the amount of breast milk consumed 

per event. For the German VELS study, the total amount of breast milk was calculated based on the 

observations by Paul et al. (1988) on breast milk consumption during one eating occasion at different 

ages, i.e. the amount of breast milk consumed on one eating occasion was set to 135 g/eating occasion 

for infants aged 6–7 months and to 100 g/eating occasion for infants aged 8–12 months. The Panel 

notes the limitations in the methods used for assessing breast milk consumption in infants (Appendices 

B and C) and related uncertainties in the intake estimates for infants. 

For both sexes combined, average phosphorus intake ranged from 265 to 531 mg/day (102–

154 mg/MJ) in infants (< 1 year of age, four surveys), from 641 to 973 mg/day (149–207 mg/MJ) in 

children aged 1 to < 3 years (five surveys), from 750 to 1 202 mg/day (133–206 mg/MJ) in children 

aged 3 to < 10 years (seven surveys), from 990 to 1 601 mg/day (131–196 mg/MJ) in children aged 10 

to < 18 years (seven surveys) and from 1 000 to 1 767 mg/day (149–207 mg/MJ) in adults ( 18 years) 

(eight surveys). Average daily intake was, in most cases, slightly higher in males (Appendix B) than in 

females (Appendix C), mainly because of larger quantities of food consumed per day. 

The main food groups contributing to phosphorus intake were milk and dairy products, and grains and 

grain-based products. In children and adults, milk and dairy products contributed up to about 30–53 % 

to phosphorus intake in the different age classes. Grains and grain-based products contributed up to 

27–38 % to phosphorus intake. The contribution of meat and meat products was between 10 and 25 % 

in the age groups from 10 years and above. Differences in main contributors to phosphorus intakes 

between sexes were minor (Appendix D and E). 

EFSA’s phosphorus intake estimates in mg/day were compared with published intake values, where 

available, from the same survey and dataset and the same age class, using the German EsKiMo and 

VELS surveys in children  (Kersting and Clausen, 2003; Mensink et al., 2007), the study in Finnish 

adolescents (Hoppu et al., 2010), the French INCA2 survey (Afssa, 2009), the Irish NANS (IUNA, 

2011), the Finnish FINDIET 2012 Survey (Helldán et al., 2013), the Italian INRAN-SCAI survey 

(Sette et al., 2011), the Dutch National Food Consumption Survey (van Rossum et al., 2011) and the 

Swedish national survey Riksmaten (Amcoff et al., 2012) (Table 2). Values below 100 % indicate that 

EFSA’s intake estimates are lower than published values and values above 100 % indicate the 

opposite. 
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Table 2:  EFSA’s average phosphorus intake estimates, expressed as percentages of published 

intake 

Country % of published intake, range over different age classes in a specific survey 

Finland  99–100 (Finnish adolescents), 91–93 (FINDIET 2012) 

France 97–102 (INCA2) 

Germany 80–83 (VELS infants), 92–102 (VELS children), 106–111 (EsKiMo) 

Ireland  109–115 (NANS) 

Italy 97–102 (INRAN-SCAI) 

Netherlands 91–93 (Dutch National Food Consumption Survey) 

Sweden 106–112 (Riksmaten) 

When the EFSA phosphorus intake estimates were compared with published intake estimates from the 

same surveys and same age ranges, the EFSA estimates differed by up to about 10 % from the 

published values in four countries (Finland, France, Italy and the Netherlands) and in Germany, except 

among infants in the German VELS study, where the EFSA intake estimates were lower by 17–20 % 

than published values. One reason for the difference in the intake estimates for VELS seems to be the 

phosphorus content of the infant and follow-on formulae in the composition databases. For the EFSA 

intake estimates, the unlikely high phosphorus content of the German formula products were 

harmonised to comply with the legislation. When comparing the EFSA phosphorus intake estimates 

with published values for VELS before and after this change, the difference in estimated phosphorus 

intakes increases from < 5 % to about 20 %. 

For the Irish and Swedish surveys, the EFSA intake estimates were higher by about 6–15 % than the 

published values. Overestimation of phosphorus intakes in Ireland may be partly related to the fact that 

the UK composition database was used, which is not fully compatible with the Irish situation. In 

addition, the Irish composite dishes were highly disaggregated to their ingredients in the dataset 

submitted to EFSA. 

Uncertainties in the estimates of all countries may be caused by inaccuracies in mapping food 

consumption data according to the FoodEx2 classification, analytical errors or errors in the estimation 

of the concentration in foods in the food composition databases, the use of borrowed phosphorus 

values from other countries in the food composition databases, and the replacement of missing 

phosphorus values by available values for similar foods or food groups in the phosphorus intake 

estimation process. These uncertainties may, in principle, lead to estimates of phosphorus intake that 

are both too high and too low. It is not possible to conclude which of these intake estimates (i.e. the 

EFSA intake estimate or the published one) would be closer to the actual phosphorus intake. 

4. Overview of Dietary Reference Values and recommendations 

4.1. Adults 

The Nordic countries considered that 400 mg/day of phosphorus is adequate for adults to maintain a 

plasma concentration of 0.8 mmol/L. Taking into account the PRIs set by the US Institute of Medicine  

(IOM, 1997) and SCF (1993), and taking the view that phosphorus intakes should correspond, on a 

molar basis, with those of calcium, a Recommended Intake (RI) of 600 mg/day had been set earlier 

(Nordic Council of Ministers, 2004). For the 5
th
 edition of the Nordic Nutrition Recommendations 

(NNR 2012), it was considered that there are no new data indicating that this value should be changed 

(Nordic Council of Ministers, 2014). 

The German-speaking countries (D-A-CH, 2015) considered that data from which RIs could be 

derived are much rarer for phosphorus than for calcium. An AR for adults was estimated to be 

580 mg/day according to the IOM (1997). Given a coefficient of variation (CV) of 10 %, the RI was 

set at 700 mg/day. 
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The French Food Safety Authority (Afssa, 2001) used a factorial approach to calculate the AR. 

Urinary and faecal losses were estimated in accordance with Wilkinson (1976), Nordin (1989) and 

Lemann (1996). For absorption efficiency in adults, a mean value of 65 % was used (Wilkinson, 1976; 

Guéguen, 1982). Using a CV of 15 %, the PRI for adults was calculated to be 750 mg/day. 

The IOM (1997) used the lower end of the normal adult serum inorganic phosphorus range 

(0.87 mmol/L) and considered that this value would be obtained by an intake of ≈ 580 mg 

(≈ 19 mmol)/day (Nordin, 1989), which was considered the best available Estimated Average 

Requirement (EAR) for adults. The extrapolation from absorbed intake to ingested intake was based 

on an absorption efficiency for phosphorus of 60–65 % (Stanbury, 1971; Wilkinson, 1976; Heaney 

and Recker, 1982). A CV of 10 % was used to determine a Recommended Dietary Allowance (RDA) 

of 700 mg (22.6 mmol)/day for adult men and women of all ages. 

The SCF (1993) suggested that phosphorus intake should correspond, on a molar basis, to that for 

calcium, and rounded values for AR and PRI were proposed accordingly. 

The Netherlands Food and Nutrition Council (1992) was unable to set a minimum requirement on the 

basis of the data available at that time, but estimated, for adults, that the minimum requirement was no 

higher than 400 mg/day (Marshall et al., 1976). However, an Adequate Range of Intake was set by 

relating the phosphorus requirement to the calcium requirement, which was, however, revised in the 

year 2000 (Health Council of the Netherlands, 2000). In 1992, in light of animal experiments 

(FAO/WHO, 1974; Schaafsma, 1981), it was considered that a calcium to phosphorus ratio (weight by 

weight) of less than 0.5:1 should be avoided. It was suggested that the lower limit of the RDA for 

calcium be applied as the lower limit of the Adequate Range of Intake for phosphorus. Allowing for a 

calcium to phosphorus ratio of 0.5:1 (weight by weight), the upper limit of the Adequate Range of 

Intake for phosphorus was set at twice the lower limit of the RDA for calcium. As kidney function 

gradually declines as ageing progresses (Rowe et al., 1976), it was stated that the regulation of 

phosphate balance in older adults on a phosphate-rich diet may be accompanied by chronic low-level 

stimulation of the parathyroid, which, in the long term, can promote bone decalcification. Therefore, 

the upper limit of the Adequate Range of Intake for phosphorus for adults over 50 years was 

calculated on the basis of a calcium to phosphorus ratio (weight by weight) of 0.7:1. The lower limit 

equated to that of adults up to the age of 50 years. 

The UK Committee on Medical Aspects of Food Policy (COMA) (DH, 1991) took the view that 

requirements should be set at a ratio of 1 mmol phosphorus to 1 mmol calcium, as they are present in 

the body in equimolar amounts. Accordingly, the Reference Nutrient Intake (RNI) for phosphorus was 

set at the equimolar value of the calcium RNI. 

An overview of DRVs for phosphorus for adults proposed by various committees can be found in 

Table 3. 
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Table 3:  Overview of Dietary Reference Values for phosphorus for adults 

 D-A-CH 

(2015) 

NCM 

(2014) 

Afssa 

(2001) 

IOM 

(1997)
 

SCF 

(1993) 

NL 

(1992) 
(a)

 

DH 

(1991) 

Age (years) ≥ 19 18–20 20–64 ≥ 19 ≥ 18 19–50 ≥ 19 

PRI 

Men (mg/day) 700 700 750 700 550 700–1 400 550 

Women (mg/day) 700 700 750 
(b)

 700 550 700–1 400 550 

Age (years)  ≥ 21 65–74   ≥ 50  

PRI  

Men (mg/day)  600 750   700–1 150 
(d)

  

Women (mg/day)  600 800 
(c)

   700–1 150 
(d)

  

Age (years)   ≥ 75     

PRI  

Men (mg/day)   800     

Women (mg/day)   800     

NCM, Nordic Council of Ministers; NL, Netherlands Food and Nutrition Council; PRI, Population Reference Intake. 

(a): Adequate Range of Intake. 

(b): 20–55 years. 

(c): > 55 years. 

(d): Lower limit of the Adequate Range of Intake for adults below the age of 50 years is also considered adequate for this 

age group. 

4.2. Infants and children 

The Nordic countries considered that RIs for phosphorus should correspond, on a molar basis, to those 

for calcium (Nordic Council of Ministers, 2004). For NNR 2012, it was considered that there are no 

new data indicating that these values should be changed (Nordic Council of Ministers, 2014). 

For puberty and adolescence, the German-speaking countries (D-A-CH, 2015) considered that the 

requirement for phosphorus is higher compared with that in adults because of new tissue formation 

and bone growth. Accordingly, an RI of 1 250 mg/day was set for children and adolescents from 10 to 

below 19 years of age. 

Afssa (2001) proposed an Adequate Intake (AI) of 275 mg/day for infants aged 6–12 months, in line 

with the IOM (1997). For children, Afssa (2001) used a factorial approach to calculate the ARs. 

Allowing for a phosphorus content of bone (Fomon et al., 1982) and other tissues, values were derived 

from the amount of calcium required during growth using a calcium to phosphorus ratio of the weight 

gain of 1:7 up to the age of 18 years, with the amount of phosphorus required for growth ranging from 

50 mg/day (age 1–3 years) to 150 mg/day (age 10–14 years). Urinary and faecal losses were estimated 

in accordance with Wilkinson (1976), Nordin (1989) and Lemann (1996). For absorption efficiency, 

mean values of 70 % (age 15–18 years) to 75 % (age 1–14 years) were used in children and 

adolescents (Wilkinson, 1976; Guéguen, 1982). A CV of 15 % was used to derive the PRIs. 

For infants aged 0 to 6 months, the IOM (1997) set an AI of 100 mg (3.2 mmol)/day based on a mean 

breast milk intake of 780 mL/day (Butte et al., 1984a; Allen et al., 1991) and an average phosphorus 

concentration of human milk of 124 mg/L (Atkinson et al., 1995). For infants aged 6–12 months, the 

AI of 275 mg (8.9 mmol)/day was based on the phosphorus intake from breast milk and solid foods. 

An average intake of 75 mg/day was calculated from an average human milk concentration of 

124 mg/L (Atkinson et al., 1995) and a mean breast milk intake of 600 mL/day (Dewey et al., 1984). 

The contribution from solid foods was estimated to be 200 mg/day from data on 40 infants fed 

standard infant formula and solid food (Specker et al., 1997), which was comparable to estimations 

from the 1976–1980 NHANES II for infants aged 7–12 months (Montalto and Benson, 1986). For 

children aged 1–3 years, an EAR of 380 mg (12.3 mmol)/day was based on a factorial estimate.
9
 

                                                      
9 EAR = (accretion + urinary loss)/fractional absorption. 
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Accretion of phosphorus for bone and lean tissue was estimated to be 54 mg (1.7 mmol)/day, 

calculated from balance studies in children aged 4–12 years (Fomon et al., 1982) corrected to the 

average weight gain for children aged 1–3 years. A value of 19 % by weight was used as the 

phosphorus content of bone. The phosphorus content of lean tissue was assumed to be 0.23 %, based 

on the known composition of muscle (Pennington, 1994). The urinary loss was calculated to be 

213 mg (6.9 mmol)/day using the equation developed by Lemann (1996). A conservative estimate for 

efficiency of phosphorus absorption of 70 % was used, as suggested for children aged 9–18 years 

(Lemann, 1996). As the variation in requirements could not be determined, a CV of 10 % was 

assumed, which resulted in an RDA of 460 mg (14.8 mmol)/day. For children aged 4–8 years, an EAR 

of 405 mg (13.1 mmol)/day was derived using the same factorial approach as for ages 1–3 years. In 

calculating the accretion of phosphorus over this age interval, it was considered that there were no 

great differences between 4–6 and 6–8 years of age. An accretion value of 62 mg (2.0 mmol)/day was 

derived. The assumptions for efficiency of phosphorus absorption and urinary loss of phosphorus are 

identical to that used for 1- to 3-year-old children. The RDA for children aged 4–8 years was set at 

500 mg (16.1 mmol)/day using a CV of 10 %. As there are few balance studies in children aged 9–18 

years, the same method of estimation by tissue accretion was used. Bone and lean mass accretion was 

estimated using three studies (Deurenberg et al., 1990; Slemenda et al., 1994; Martin et al., 1997). 

Assuming a phosphorus content of bone of 19 % and a phosphorus content of soft tissue of 0.23 % 

(Pennington, 1994), daily phosphorus needs during peak growth would approximate 200 mg 

(6.5 mmol) for boys and 150 mg (4.8 mmol) for girls. Urinary loss of phosphorus was calculated to be 

565 mg (18.2 mmol)/day using the equation from Lemann (1996). Absorption efficiency was averaged 

to 60–80 % (Lutwak et al., 1964; Greger et al., 1978) and a midpoint of 70 % was used. An EAR of 

1 055 mg (34 mmol)/day for both girls and boys was set; thus, with an assumed CV of 10 %, the RDA 

was set at 1 250 mg (40.3 mmol)/day for 9- to 18-year-old children. 

The SCF (1993) suggested that phosphorus intake should correspond, on a molar basis, to that for 

calcium and rounded PRI values were proposed accordingly. 

The Netherlands Food and Nutrition Council (1992) set an Adequate Range of Intake derived from the 

lower limit of the Adequate Range of Intake for calcium and a recommended calcium to phosphorus 

ratio. For infants aged 6–12 months, a calcium to phosphorus ratio (weight by weight) of 1:1 was 

applied, whereas the calcium to phosphorus ratio was 0.5:1 to 1:1 (weight by weight) for children and 

adolescents. 

The UK COMA (DH, 1991) took the view that requirements should be set at a molar calcium to 

phosphorus ratio of 1:1, as they are present in the body in equimolar amounts. Accordingly, the RNI 

for phosphorus was set at the equimolar value of the calcium RNI. 

An overview of the DRVs for phosphorus for infants and children proposed by various committees 

can be found in Table 4. 
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Table 4:  Overview of Dietary Reference Values for phosphorus for children 

 D-A-CH 

(2015) 

NCM 

(2014) 

Afssa 

(2001) 

IOM 

(1997) 

SCF 

(1993) 

NL 

(1992) 
(a)

 

DH 

(1991) 

Age (months) 4–< 12 6–11 6–12 7–12 6–11 6–12 0–12 

PRI (mg/day) 300 420 275 
(b)

 275 
(b)

 300 400 400 

Age (years) 1–< 4 1–5 1–3 1–3 1–3 1–4 1–3 

PRI (mg/day) 500 470 360 460 300 400–800 270 

Age (years) 4–< 7  4–6 4–8 4–6 4–7 4–6 

PRI (mg/day) 600  450 
(c)

 500 350 400–800 350 

Age (years) 7–< 10 6–9 7–9  7–10 7–10 7–10 

PRI (mg/day) 800 540 600 
(c)

  450 600–1 200 450 

Age (years) 10–< 19 10–17 10–12 9–18    

PRI (mg/day) 1 250 700 830 
(c)

 1 250    

Age (years)   13–15  11–17 10–16 11–18 

PRI         

Boys (mg/day)   830 
(c)

  775 900–1 800 775 

Girls (mg/day)   800 
(c)

  625 700–1 400 625 

Age (years)   16–19   16–19  

PRI         

Boys (mg/day)   800 
(c)

   800–1 600  

Girls (mg/day)   800 
(c)

   700–1 400  

NCM, Nordic Council of Ministers; NL, Netherlands Food and Nutrition Council; PRI, Population Reference Intake.  

(a): Adequate Range of Intake. 

(b): Adequate Intake (AI). 

(c): As reported on page 507 of the report.  

4.3. Pregnancy 

The German-speaking countries (D-A-CH, 2015) estimated that during pregnancy an average of 

60 mg/day of phosphorus must be provided to meet the needs of pregnancy. Taking into account 

intestinal absorption, an additional allowance of 100 mg/day was set compared with that for non-

pregnant women. 

Afssa (2001) used a factorial approach to estimate the AR. A full-term infant contains about 17 g of 

phosphorus (Fomon et al., 1982), indicating a mean retention of 150 mg/day during the last trimester 

of pregnancy. For absorption efficiency, mean values of 70–75 % were used for pregnant women 

(Wilkinson, 1976; Guéguen, 1982). An intake of 800 mg/day was recommended, taking into account 

inevitable bone loss and subsequent compensation. 

The IOM (1997) considered that there was no evidence to support an increase in the EAR for pregnant 

women above that of non-pregnant women. It was noted that intestinal absorption increases by about 

10 % during pregnancy (Heaney and Skillman, 1971), which was considered sufficient to provide the 

necessary phosphorus for fetal growth. 

The Netherlands Food and Nutrition Council (1992) calculated an increased requirement of 

100 mg/day during pregnancy based on the amount of phosphorus stored in the fetus. 

The SCF (1993) and the UK COMA (DH, 1991) gave no increment for pregnant women compared 

with the DRV for non-pregnant women. 

An overview of DRVs for phosphorus for pregnant women proposed by various committees can be 

found in Table 5. 
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Table 5:  Overview of Dietary Reference Values for phosphorus for pregnant women 

 D-A-CH 

(2015) 

NCM 

(2014) 

Afssa 

(2001) 

IOM 

(1997)
 

SCF 

(1993) 

NL 

(1992) 
(a)

 

DH 

(1991) 

Age (years) < 19   14–18    

PRI (mg/day) 1 250 700 800 
(b)

 1 250 550 800–1 600 550 

Age (years) ≥ 19   19–50    

PRI (mg/day) 800   700    

NCM, Nordic Council of Ministers; NL, Netherlands Food and Nutrition Council; PRI, Population Reference Intake. 

(a): Adequate Range of Intake. 

(b): Third trimester. 

4.4. Lactation 

The German-speaking countries (D-A-CH, 2015) estimated that an additional amount of phosphorus 

of 90–120 mg/day was needed during lactation. Taking into account intestinal absorption an additional 

allowance of 200 mg/day was set compared to that for non-lactating women. 

Afssa (2001) used the factorial approach to derive the AR for lactation. It was estimated that 

120 mg/day of phosphorus is secreted via breast milk, based on an average breast milk phosphorus 

concentration of 150 mg/L and a daily volume of milk secretion of 800 mL. The maintenance needs 

during lactation were estimated at 350 mg/day and, considering an absorption efficiency of 65 % (as 

for non-lactating adults) (Wilkinson, 1976; Guéguen, 1982), an AR of 720 mg/day was derived. Using 

a CV of 15 % the PRI would have been 930 mg/day. However, Afssa selected the value of 850 mg/day 

to take into account the normal variation of bone stores (i.e. the obligatory loss of bone mass during 

pregnancy and lactation and their restauration afterwards). A PRI of 850 mg/day was also set for an 

equal number of months after breastfeeding to restore bone phosphorus reserves. 

The IOM (1997) stated that there was no evidence to support an increase in phosphorus requirement 

during lactation. Apparently, increased bone resorption and decreased urinary excretion of phosphorus 

(Kent et al., 1990), which occur independently of dietary intake of phosphorus or calcium, provide the 

necessary phosphorus for milk production. Therefore, the EAR and RDA were estimated to be similar 

to those set for non-lactating women of the respective age groups. 

The SCF (1993) suggested that phosphorus intake should correspond, on a molar basis, to that for 

calcium and a rounded PRI value was proposed accordingly. 

The Netherlands Food and Nutrition Council (1992) assumed an increased phosphorus need of 

200 mg/day, calculated on the basis of the phosphorus concentration in breast milk and an absorption 

efficiency of 60 % (Spencer et al., 1984). 

The UK COMA (DH, 1991) took the view that requirements should be set at a ratio of 1 mmol 

phosphorus to 1 mmol calcium, as they are present in the body in equimolar amounts. Accordingly, 

the RNI for phosphorus was set at the equimolar value of the calcium RNI. 

An overview of DRVs for phosphorus for lactating women proposed by various committees can be 

found in Table 6. 
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Table 6:  Overview of Dietary Reference Values for phosphorus for lactating women 

 D-A-CH 

(2015) 

NCM 

(2014) 

Afssa 

(2001) 

IOM 

(1997)
 

SCF 

(1993) 

NL 

(1992) 
(a)

 

DH 

(1991) 

Age (years) < 19   14–18    

PRI (mg/day) 1 250 900 850 1 250 950 900–1 800 + 440 

Age (years) ≥ 19   19–50    

PRI (mg/day) 900   700    

NCM, Nordic Council of Ministers; NL, Netherlands Food and Nutrition Council; PRI, Population Reference Intake. 

(a): Adequate Range of Intake. 

5. Criteria (endpoints) on which to base Dietary Reference Values 

5.1. Indicators of phosphorus requirement 

As stated in Section 2.4, the Panel considers that there is no suitable biomarker of phosphorus intake 

or status that can be used for setting DRVs for phosphorus. 

5.2. Balance studies on phosphorus 

Balance studies are based on the assumption that a healthy subject on an adequate diet maintains an 

equilibrium or a null balance between nutrient intakes and nutrient losses: at this null balance, the 

intake matches the requirement determined by the given physiological state of the individual. When 

intakes exceed losses (positive balance), there is nutrient accretion that may be attributable to growth 

or to weight gain, anabolism or repletion of stores; when losses exceed intakes (negative balance), 

nutrient stores are progressively depleted resulting, in the long term, in clinical symptoms of 

deficiency. In addition to numerous methodological concerns about accuracy and precision in the 

determination of intakes and losses (Baer et al., 1999), the validity of balance studies for addressing 

requirements has been questioned: they might possibly reflect only adaptive changes before a new 

steady state is reached  (Young, 1986), or they might reflect only the conditions for maintenance of 

nutrient stores and exchangeable body pools in the context of a given diet, and the relevance for health 

of the size of the pools still needs to be established for each nutrient (Mertz, 1987). 

Few phosphorus balance studies are available in comparison with studies on other minerals, such as 

calcium, partly because phosphorus isotopes cannot be safely used for kinetic studies. Thus, the study 

of the regulation of phosphorus homeostasis has often been considered as subordinate to that of 

calcium. Phosphorus balance, like calcium balance, is maintained by intestinal absorption, renal 

excretion and bone accretion. However, there are important differences between phosphorus and 

calcium balance. Dietary phosphorus, which grossly parallels dietary protein, is present in abundance 

in most foods; this is in contrast to calcium, which is restricted to relatively few food groups. Dietary 

phosphorus is absorbed more efficiently than dietary calcium. Thus, phosphorus absorption is not a 

limiting factor, whilst renal elimination may be a limiting factor at intakes that result in a filtered 

glomerular load exceeding the renal tubular reabsorption capacity. 

5.2.1. Balance studies in adults 

Roberts et al. (1948) evaluated phosphorus losses and retention in nine healthy postmenopausal 

women (age 52–74 years). After 3–5 weeks on a habitual diet with replicated menus, phosphorus 

balance was evaluated in two consecutive 5-day balance periods. Mean phosphorus intake on self-

selected diets was 1 100 mg/day (range 891–1 403 mg/day). At an intake below 1 100 mg/day, all 

balances were negative, between 1 100 and 1 400 mg/day no consistent trend was observed, while at a 

phosphorus intake above 1 400 mg/day, positive balances were more frequent than negative balances. 

However, the authors concluded that in this study the variation in individual responses to a given 

phosphorus intake was so high that phosphorus requirements could not be determined with validity, 

even at the individual level. 
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Ohlson et al. (1952) evaluated phosphorus balance in a multicentre study in 136 women (30–85 years 

of age) on self-selected diets. No standardisation of the pre-balance period was performed. Phosphorus 

intake was highly variable, ranging from 490 to 1 700 mg/day, with a significant decrease of 

phosphorus intake with increasing age. Phosphorus balance was evaluated in one balance period (from 

7 to 10 days). The prediction of phosphorus intake required for null balance (using a linear regression 

equation) was 1 250 mg/day from 30 to 39 years of age, 1 320 mg/day from 40 to 49 years, 

1 420 mg/day from 50 to 59 years, 1 510 mg/day from 60 to 69 years and 1 130 mg/day from 70 to 79 

years. The Panel notes that in this multicentre study a considerable degree of uncertainty exists with 

regard to study procedures, selection of the participants and standardisation of dietary intake. 

Scoular et al. (1957) undertook a long-term balance study in 125 young women (17–27 years of age) 

on self-selected diets with a day-to-day variation in phosphorus intake ranging from 120 to 400 % of 

the daily intake suggested by the US National Research Council (NRC, 1953). Phosphorus intake was 

related to balance being positive or negative, but absolute values for balances were not given. The 

average total intake of phosphorus associated with a positive balance was 1 150 mg/day. 

Marshall et al. (1976) reported on balance studies that aimed to evaluate calcium, magnesium and 

phosphorus requirements in adults. Participants were administered a constant diet for two weeks. 

Phosphorus intake ranged from about 400 mg/day to 3 800 mg/day. Faeces and urine were collected 

from days 8 to 14. The final balance was the mean of the daily balances in the second week. Based on 

646 balances, phosphorus balance was zero down to a phosphorus intake of 400 mg/day. The authors 

concluded that it is not possible to define phosphorus requirements based on these data. 

In a balance study that aimed to evaluate the effect of phosphorus on the intestinal absorption of 

calcium (Spencer et al., 1978), 19 male subjects (average age 54 years, range 38–65 years) received, 

under metabolic ward conditions, up to five different levels of dietary calcium (from 200 to 

2 700 mg/day) at up to two different levels of dietary phosphorus (800 mg/day and 2 000 mg/day). 

The diet was kept constant for several weeks or months prior to the start of the balance studies and 

throughout the study phases, and was analysed for nitrogen, calcium and phosphorus in each metabolic 

period. The minimum duration of each study period was 22 days and the duration of balance periods 

was 6 days. Phosphorus balance was positive or zero at each level of phosphorus and calcium intake. 

Spencer et al. (1984) studied the effect of calcium on phosphorus metabolism in adult males by 

determining phosphorus and calcium balances during three different levels of calcium intake of 

approximately 200, 800 and 2 000 mg/day. Each of these calcium intakes was given with two different 

intake levels of phosphorus of approximately 800 and 2 000 mg/day to 44 adult male subjects (aged 

31–71 years). Participants had received a standard diet and a constant daily fluid intake under 

metabolic ward conditions for a minimum of three weeks before the start of the balance studies. In 

each metabolic period, aliquots of the diet were analysed. Negative phosphorus balance (–60 mg/day) 

was observed during only the “low” calcium (200 mg/day) and the “normal” phosphorus (800 mg/day) 

diet period. Under all other dietary conditions, phosphorus balance was zero or positive. In particular, 

under conditions of “normal” calcium and phosphorus intake (defined as 800 mg/day), a slightly 

positive phosphorus balance was observed. 

Mahalko et al. (1983) evaluated mineral utilisation by metabolic balance techniques in 10 healthy 

male volunteers fed diets containing 65 and 94 g protein/day. Both diets contained approximately 

1 000 mg phosphorus/day. Mineral balances were measured on the final 12 days of each 28-day diet 

period and duplicate samples of the diet were analysed. A phosphorus balance of zero was observed at 

both levels of protein intake. 

Lakshmanan et al. (1984) assessed calcium and phosphorus balances in 13 men aged 22–49 years and 

in 16 women aged 20–53 years over a 1-year period, in which subjects consumed self-selected diets. 

An additional three men and two women participated in the study for one- to three-quarters of the 

year. Once every season, the subjects collected duplicate food and beverage samples for one week; the 

phosphorus content of the diet was analysed, as was the phosphorus concentration in faeces and urine 
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collected during the week. Although the average daily intake of phosphorus was considered 

“adequate” (1 533 mg/day in men and 1 059 mg/day in women), the authors reported an unexpectedly 

high percentage (75 %) and extent of negative phosphorus balances (mean of all women: 

–130 mg/day; mean of all men: –239 mg/day) in these subjects consuming self-selected diets. The 

Panel considers that no conclusions can be drawn from this study because of the absence of an 

equilibration period with a standardised diet and metabolic ward conditions. 

Spencer et al. (1994) evaluated balances of calcium, magnesium and phosphorus in five healthy males 

at two different intake levels of calcium (240 and 800 mg/day) and magnesium (about 250 and 

800 mg/day). Dietary phosphorus was about 800 mg/day (range of means in four studies 765–

858 mg/day). After an equilibration period of four weeks, 6-day balance studies were performed under 

metabolic ward conditions. Phosphorus balances were positive (means from +16 to +38 mg/day) under 

all different dietary conditions. 

Nishimuta et al. (2004) aimed to estimate the requirements for calcium, magnesium and phosphorus in 

Japanese adults. A total of 109 volunteers (23 males, 86 females), ranging from 18 to 28 years of age, 

took part in mineral balance studies; the duration of these studies ranged from 5 to 12 days, with 2 to 

4 days of adaptation. Dietary menus were designed so as to meet dietary allowances in Japan. Dietary 

phosphorus intake (from duplicate diet analysis) ranged from 13.5 to 45.7 mg/kg body weight per day. 

No absolute balance data were reported. The mean value and upper limit of the 95 % confidence 

interval (CI) of the dietary intake of phosphorus when the balance of phosphorus was equal to zero 

were 22.6 and 24.1 mg/kg body weight per day, respectively. The Panel notes the short equilibration 

period in this study. 

Nishimuta et al. (2012) evaluated the estimated equilibrated dietary intake, defined as the intercept of 

a linear regression equation between intake (Y) and balance (X), for nine essential minerals including 

phosphorus, using data from 13 studies in young women (n = 131, range 18–26 years) consuming a 

standard diet designed to meet dietary allowances in Japan. Before the balance period, a 2- to 4-day 

adaptation period took place, during which participants were given the experimental diets. Duplicate 

diet samples were obtained and analysed. Mean and median phosphorus balances were close to zero 

(mean –0.18 ± 1.45 mg/kg body weight per day; median –0.21 mg/kg body weight per day). The 

estimated equilibrated dietary intake for phosphorus was 17.2 mg/kg standard body weight
10

 per day 

(95 % CI 16.7–17.8 mg/kg standard body weight per day). This value was superimposable to the 

estimated dietary intake of phosphorus during the balance study (17.2 ± 3.1 mg/kg standard body 

weight per day). The Panel notes the short equilibration period in this study. 

The Panel notes that the available phosphorus balance studies are rather heterogeneous with regard to 

the population examined, the presence and duration of equilibration periods, the duration of balance 

periods, the level of phosphorus intake and the intake of calcium and other dietary factors possibly 

affecting phosphorus metabolism, that only a few studies were conducted under metabolic ward 

conditions and that zero phosphorus balance may be achieved across a wide range of intakes and 

across a wide range of dietary molar calcium to phosphorus ratios. The Panel notes the many 

limitations of these studies and considers that balance studies cannot be used for setting DRVs for 

phosphorus for adults. 

5.2.2. Balance studies in children 

Greger et al. (1978) assessed calcium, magnesium, phosphorus, copper and manganese balances in 14 

girls (aged 12.5–14.5 years) during a 30-day period at two different levels of dietary zinc (7.4 or 

13.4 mg/day) and after a 9-day equilibration period. Dietary phosphorus intake was set at 850 mg/day 

(data from analysed diets). At this intake level, the participants were in slightly positive phosphorus 

balance. 

                                                      
10 Body weight based on height and a body mass index of 22 kg/m2. 
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The Panel notes that the data available are from only one small study in female adolescents and 

considers that balance studies cannot be used for setting DRVs for phosphorus for children. 

5.2.3. Balance studies in pregnancy 

Ashe et al. (1979) evaluated the retention of calcium, iron, phosphorus and magnesium in 10 healthy 

pregnant white women consuming self-selected diets. Between weeks 5 and 36 of gestation, a 

maximum of six 7-day balance periods were completed on each subject. Average calcium intake was 

1 370 ± 290 mg/day. At an estimated phosphorus intake of 1 340 ± 280 mg/day, zero phosphorus 

balance was observed. The Panel notes that in this study under free-living conditions a very large 

intra- and inter-subject variation from one 7-day experimental period to another was observed. 

The Panel considers that balance studies cannot be used for setting DRVs for phosphorus for pregnant 

women. 

5.3. Phosphorus requirements in pregnancy and lactation 

The role of dietary phosphorus during pregnancy and lactation has not been established. The Panel 

notes that no quantitative assessment of phosphorus resorption from bone during lactation is available. 

However, extended lactation is associated with a modest reduction in BMD, with a return to baseline 

values 12 months after parturition (Sowers et al., 1993; Karlsson et al., 2001) independently of the 

length of lactation (Moller et al., 2012).  

Prentice (2003) reviewed the evidence regarding biological adaptation mechanisms (increases in food 

intake, elevated gastro-intestinal absorption, decreased mineral excretion and mobilisation of tissue 

stores) required to preserve the maternal mineral economy while meeting the additional mineral 

requirements during pregnancy and lactation. The author concluded that pregnancy and lactation are 

associated with physiological adaptive changes in mineral metabolism that are independent of 

maternal mineral supply within the range of normal dietary intakes. These processes provide the 

minerals necessary for fetal growth and breast milk production without requiring an increase in 

maternal dietary intake or compromising maternal bone health in the long term. 

5.4. Phosphorus intake and health consequences 

A comprehensive search of the literature published between 1990 and September 2012 was performed 

as preparatory work to the present Opinion, to identify relevant health outcomes upon which DRVs for 

phosphorus may potentially be based (Eeuwijk et al., 2012). This literature search has been updated to 

cover the time from September 2012 to December 2014. The relationship between phosphorus intake 

and various health outcomes has been investigated in a number of observational studies, while 

intervention studies with phosphorus as a single nutrient are not available. In the absence of reliable 

biomarkers of phosphorus intake and status (Section 2.4), only studies relating phosphorus intake to 

health outcomes will be considered for this section, though the Panel notes the difficulty in assessing 

phosphorus intake as a result of inaccuracies in food composition tables (Section 3.1) and variations in 

phosphorus absorption due to nutrient interactions (see Sections 2.3.1 and 2.3.7). 

5.4.1. Bone health 

Prospective studies report on the association between phosphorus intake and bone health in children. 

In three studies, maternal phosphorus intake during pregnancy and the bone mass of the child were 

studied. In one study, diet and lifestyle factors in children in relation to their bone mass were studied. 

Jones et al. (2000) and Yin et al. (2010) reported on the association between maternal phosphorus 

intake and bone mass in children in the same prospective cohort study in Tasmania, Australia. Jones et 

al. (2000) investigated bone mass in children aged 8 years. Yin et al. (2010) investigated bone mass in 

the same population at 16 years of age. Maternal dietary intake during the third trimester of pregnancy 

was measured using a self-administered FFQ. Phosphorus density of the maternal diet (mg/kcal or MJ) 

was calculated by dividing estimated daily phosphorus intake by the estimated total daily energy 
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intake. At ages 8 and 16 years, dual-energy X-ray absorptiometry (DXA) was performed. As not all 

children in the cohort underwent a scan at both 8 and 16 years of age, the populations described in the 

studies of Jones et al. (n = 173) and Yin et al. (n = 216) are not identical. Mean maternal phosphorus 

intake during the third trimester of pregnancy was 2 767 ± 1 655 mg/day (Jones et al., 2000) and 

2 314 ± 898 mg/day (Yin et al., 2010). At age 8 years, the BMD of the femoral neck and lumbar spine 

were positively associated (p = 0.01 and p = 0.001) with the phosphorus density of the maternal diet. 

Total body BMD was not associated with phosphorus density of the maternal diet (p = 0.054). At age 

16 years, none of the BMD measures were associated with maternal phosphorus intake. In both 

studies, regression models were adjusted for children’s current calcium intake. The Panel notes that 

the children who took part in this study were originally selected on the basis of having a higher risk of 

sudden infant death syndrome, that adjustments for multiple comparisons were not performed and that 

the self-reported maternal intake of protein, calcium, magnesium and phosphorus was very high, and 

much higher than in Australian pregnant women (Hure et al., 2009) and than Australian recommended 

intakes (NHMRC, 2005). 

Tobias et al. (2005) studied the relationship between maternal diet during pregnancy, evaluated by an 

FFQ, and bone mass in childhood in the Avon Longitudinal Study of Parents and Children (ALSPAC) 

cohort in the UK. Data from 4 451 mother–child pairs were analysed. Mean maternal phosphorus 

intake during pregnancy was 1 339 ± 338 mg/day, which is comparable to the mean daily intake of 

1 112 ± 299 mg/day measured in women in the UK (Henderson et al., 2003). Bone mineral mass of the 

children was measured at 9 years of age. At multivariate analysis, including other maternal dietary 

factors, intake of phosphorus during pregnancy was not associated with measures of bone density in 

children (p = 0.128). Analyses were not adjusted for children’s intakes of calcium or other micro- or 

macronutrients. 

Bounds et al. (2005) evaluated the association between diet and lifestyle factors and bone mineral 

indices in a cohort of 52 children. During 8 years of follow-up, dietary data and data on sedentary 

activities (i.e. time not spent in physical activity) of the children were collected. Dietary intake was 

assessed at nine collection points (from 2.3 to 8 years of age) by means of in-home dietary interviews. 

Bone mineral indices were measured by DXA when children were 8 years old. Correlations between 

phosphorus intake and bone mineral content (BMC) (r = 0.33) and BMD (r = 0.30) were significant 

(p < 0.05). In a multivariate regression model predicting BMC at 8 years of age, phosphorus intake 

showed a small but significant contribution to the model (β = 0.11; R
2 
= 0.05; p = 0.01). However, 

calcium and other micro- or macronutrients were not included in the regression model. 

The Panel notes that there is some indication that maternal intake of phosphorus during pregnancy 

may be associated with the BMD of the femoral neck and lumbar spine, but not total body BMD in the 

offspring at age 8 years and that phosphorus intake during childhood may be associated with BMD at 

the age of 8 years. The Panel notes, however, the many limitations of these studies. 

The Panel considers that measures of bone health cannot be used to derive DRVs for phosphorus 

during pregnancy and in children. 

5.4.1.1. Dietary calcium to phosphorus ratio in relation to bone health 

Several committees have set DRVs for phosphorus corresponding to those for calcium, either on a 

molar basis or on a weight basis. The importance of the molar ratio of calcium to phosphorus during 

growth has been acknowledged (EFSA NDA Panel, 2014). In adults, there are findings that suggest 

that the ratio of these two minerals in the diet may have a greater influence than the absolute intake of 

phosphorus. Animal studies (in rats, dogs, baboons and other species) have shown that high 

phosphorus intake in combination with low calcium intake may contribute to secondary 

hyperparathyroidism, bone resorption, low peak bone mass and increased bone fragility (reviewed in 

Calvo and Tucker (2013)). Cross-sectional studies suggest that the dietary calcium to phosphorus 

molar ratio is significantly associated with (site-specific) BMD and/or BMC (Teegarden et al., 1998; 

Brot et al., 1999; Ito et al., 2011) or indicators of bone metabolism (Kemi et al., 2008; Kemi et al., 
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2010). In some studies, the dietary calcium to phosphorus molar ratio was more closely related to both 

BMD and indicators of bone metabolism than the calcium or phosphorus intake per se. A mild 

phosphorus-induced secondary hyperparathyroidism could be considered a plausible mechanism for 

the association between a low dietary calcium to phosphorus molar ratio and lower BMD or BMC. 

The Panel notes, however, that other studies present conflicting evidence (Heaney and Recker, 1987; 

Heaney and Nordin, 2002). 

Thus, the Panel considers that the data cannot be used to define a precise dietary calcium to 

phosphorus molar ratio in adults for bone health, but notes that calcium and phosphorus are present in 

bone in a molar ratio of approximately 1.6:1 to 1.8:1 (Section 2.3.3.1). 

5.4.2. Cancer 

Few prospective studies have evaluated the association between dietary phosphorus intake and some 

types of cancer. The World Cancer Research Fund included phosphorus among the exposures for 

which data were either of too low quality, too inconsistent, or the number of studies too few to allow 

conclusions to be reached on an association with cancer (WCRF/AICR, 2007). 

5.4.2.1. Prostate cancer 

Chan et al. (2000) prospectively evaluated the association between dietary phosphorus intake, assessed 

by self-administered FFQ, and prostate cancer in 27 062 Finnish male smokers included in the Alpha-

Tocopherol Beta-Carotene Cancer Prevention (ATBC) Study. No significant independent associations 

of phosphorus and calcium intake with prostate cancer risk were observed. Men with lower calcium 

and higher phosphorus intake had a multivariate relative risk (RR) of 0.6 (95 % CI = 0.3–1.0) 

compared with men with lower intakes of both nutrients, after adjustment for age, smoking, body mass 

index, total energy intake, education and supplementation group, thus suggesting a possible interaction 

between the two nutrients. 

Kesse et al. (2006) prospectively evaluated the association between dietary phosphorus intake, 

measured by at least five 24-hour records in the first 18 months of the study, and prostate cancer in 

2 776 men in the SU.VI.MAX trial (SUpplémentation en VItamines et Minéraux Anti-oXydants). In 

almost 8 years of follow-up, 69 incident cases of prostate cancer occurred in the study population. A 

weak positive association between phosphorus intake and prostate cancer was observed (ptrend = 0.04), 

with a non-significant RR of 1.83 (95 % CI = 0.89–3.73) comparing the highest versus the lowest 

quartile. 

Tseng et al. (2005) prospectively evaluated the association between dietary phosphorus intake and 

prostate cancer in 3 612 men from the National Health and Nutrition Examination Epidemiologic 

Follow-up Study. Dietary intake was assessed by FFQ. After almost 8 years of follow-up, there were 

131 new cases of prostate cancer in the population. No association between phosphorus intake and 

prostate cancer risk was found in the fully adjusted regression model including calcium intake (RR for 

the highest tertile of phosphorus intake compared with the lowest tertile was 0.9, 95 % CI = 0.5–1.6, 

ptrend = 0.77). 

5.4.2.2. Other types of cancer 

Michaud et al. (2000) examined the relationship between intakes of macro- and micronutrients and the 

risk of bladder cancer among men in the prospective Health Professionals Follow-Up Study. Dietary 

intake was assessed by FFQ. During 12 years of follow-up, 320 cases of bladder cancer were 

diagnosed in a population of 47 909 men. Phosphorus intake was not associated with the incidence of 

bladder cancer (ptrend = 0.40). The multivariate adjusted RR (not adjusted for calcium) of the highest 

quintile (median phosphorus intake 1 728 mg/day) compared with the lowest quintile (median 

phosphorus intake 1 101 mg/day) was 0.85 (95 % CI = 0.57–1.21). 

Kesse et al. (2005) investigated the association between phosphorus intake and risk of colorectal 

adenoma and cancer among women in the French component of the European Prospective 
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Investigation into Cancer and Nutrition (E3N-EPIC) prospective study. Dietary data were collected 

using an FFQ. After 3.7 years of follow-up, 516 women were diagnosed with adenomas and 4 804 

women were free of polyps, being confirmed by colonoscopy. For the colorectal cancer study, after a 

follow-up of 6.9 years, 172 cases of colorectal cancer were identified, while 67 312 women were free 

of the disease. A higher phosphorus intake was associated with a decreased risk of adenomas 

(ptrend = 0.005). The RR of the highest quartile (median phosphorus intake > 1 634 mg/day) compared 

with the lowest quartile (median < 1 412 mg/day) of intake was 0.70 (95 % CI = 0.54–0.90). In a sub-

group of women with high-risk adenomas, no association was observed. This sub-group (n = 175) 

covered women diagnosed with large adenomas (> 1 cm in diameter), adenomas with severe dysplasia 

and multiple adenomas (three or more), and those with a villous component. No significant association 

between phosphorus intake and colorectal cancer was found. 

5.4.2.3. Conclusions on cancer-related outcomes 

The Panel considers that evidence of an association between phosphorus intake and cancer-related 

outcomes is inconsistent, and that available data on such outcomes cannot be used as criteria for 

deriving DRVs for phosphorus. 

5.4.3. Cardiovascular disease-related outcomes and all-cause mortality 

Some observational studies are available that evaluated the association between phosphorus intake and 

cardiovascular disease (CVD). 

Chang et al. (2014) prospectively investigated the association between phosphorus intake and 

mortality in 9 686 adults aged 20–80 years without diabetes, cancer, kidney diseases or CVD 

participating in NHANES III (1988–1994). Dietary phosphorus intake, assessed by 24-hour dietary 

recall, was expressed as the absolute intake and as phosphorus density (phosphorus intake divided by 

energy intake). Median follow-up time was 14.7 years. In analyses adjusted for demographics, 

cardiovascular risk factors, kidney function and energy intake (not adjusted for calcium intake), higher 

phosphorus intake was associated with higher all-cause mortality in individuals who consumed 

> 1 400 mg/day (adjusted hazard ratio (HR) = 2.23, 95 % CI = 1.09–4.5, per 1-unit increase in log-

transformed phosphorus intake, p = 0.03). At < 1 400 mg/day, there was no association. A similar 

association was seen between higher phosphorus density and all-cause mortality at a phosphorus 

density > 0.35 mg/kcal (adjusted HR = 2.27, 95 % CI = 1.19–4.33, per 0.1 mg/kcal-increase in 

phosphorus density, p = 0.01). Phosphorus density was associated with cardiovascular mortality 

(adjusted HR = 3.39, 95 % CI = 1.43–8.02, per 0.1 mg/kcal at > 0.35 mg/kcal, p = 0.01), whereas no 

association was shown in analyses with phosphorus intake. The Panel notes that only a single 

measurement, as a 24-hour dietary recall, was used to assess phosphorus intake. Moreover, the nutrient 

database used in this study was unable to differentiate between organic and inorganic sources of 

phosphorus (Anonymous, 1994). 

5.4.3.1. Left ventricular mass 

Yamamoto et al. (2013) investigated the association between dietary phosphorus intake and left 

ventricular mass in 4 494 participants from the Multi-Ethnic Study of Atherosclerosis, a community-

based study of individuals free of known CVD. The intake of dietary phosphorus was estimated using 

a 120-item FFQ and left ventricular mass was measured using magnetic resonance imaging. In the 

fully adjusted model, each 20 % increase in estimated dietary phosphorus intake was associated with 

an increase in left ventricular mass of 1.06 g (95 % CI = 0.50–1.62, p < 0.001). The Panel notes the 

many limitations of this study, including its cross-sectional design. 

5.4.3.2. Hypertension 

Alonso et al. (2010) analysed the associations of dietary phosphorus (assessed by validated FFQ) with 

blood pressure at the baseline visit and incidence of hypertension in 13 444 participants from the 

Atherosclerosis Risk in Communities and the Multi-Ethnic Study of Atherosclerosis cohorts. They 

found that, compared with individuals in the lowest quintile of phosphorus intake, those in the highest 
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quintile had lower systolic and diastolic blood pressures after adjustment for potential confounders. 

Furthermore, higher dietary phosphorus intake was associated with a lower risk of developing future 

hypertension after adjustment for non-dietary confounders (HR = 0.80, 95 % CI = 0.80–1.00, 

comparing extreme quintiles, ptrend = 0.02); however, this association was no longer significant after 

adjustment for dietary factors (HR = 1.01, 95 % CI = 0.82–1.23, ptrend = 0.88). After adjustment, 

phosphorus only from dairy products, but not from other sources, was associated with lower baseline 

blood pressure and reduced risk of incident hypertension. HRs (95 % CIs) comparing extreme 

quintiles were 0.86 (95 % CI = 0.76–0.97, ptrend = 0.01) for phosphorus from dairy foods and 1.04 

(95 % CI = 0.93–1.17, ptrend = 0.48) for phosphorus from other foods. The Panel notes the high 

correlation of phosphorus with other nutrients potentially associated with blood pressure, such as 

calcium, magnesium and potassium, and that the potential benefits seem to be restricted to phosphorus 

obtained through the intake of dairy products. This finding could be indicative of an effect of 

phosphorus in conjunction with other dairy constituents or of dairy foods themselves, even without an 

involvement of phosphorus. 

5.4.3.3. Conclusions on cardiovascular disease-related outcomes and all-cause mortality 

The Panel considers that evidence related to all-cause mortality and cardiovascular outcomes, 

including blood pressure, is limited and inconsistent and cannot be used to derive DRVs for 

phosphorus. 

6. Data on which to base Dietary Reference Values 

6.1. Adults, infants aged 7–11 months and children 

The Panel considers that there are currently no reliable biomarkers of phosphorus intake and status 

that may be used for deriving the requirement for phosphorus (Section 2.4). In addition, the Panel 

notes that estimations of phosphorus absorption from the diet (Section 2.3.1), as well as losses of 

phosphorus via urine (Section 2.3.6.1) and faeces (Section 2.3.6.2), vary over a wide range, so that the 

factorial approach cannot be used for deriving the requirement for phosphorus. The Panel also 

considers that data on balance studies and on phosphorus intake and health outcomes cannot be used 

for setting DRVs for phosphorus. 

Instead, the Panel proposes to use the calcium to phosphorus ratio in the whole body to set DRVs for 

phosphorus, taking into account the DRVs for calcium (EFSA NDA Panel, 2015). The Panel notes that 

data on the molar ratio of calcium to phosphorus in the intact bone of healthy adults, used for 

extrapolation of the whole-body calcium to phosphorus ratio (Section 2.3.3.1), and data from whole-

body calcium and phosphorus measurements in Caucasian men and women (Section 2.3.3.1) indicate 

that the calcium to phosphorus molar ratio in the whole body ranges from 1.4:1 to 1.9:1. 

In adults, the data on net phosphorus absorption have been reported to vary over a wide range (Section 

2.3.1). The Panel notes that the fractional absorption of phosphorus is higher than that of calcium 

(EFSA NDA Panel, 2015), but the Panel considers that the actual amounts of calcium and phosphorus 

that are available for absorption from the diet and may be retained in the body cannot be determined. 

In the absence of this information, the Panel proposes to set DRVs for phosphorus based solely on the 

range of the molar ratio of calcium to phosphorus in the body. 

The Panel considers that the available data are insufficient to derive ARs and PRIs for phosphorus, 

and therefore the Panel proposes to set AIs for all population groups. Based on the AI (for infants aged 

7–11 months) and the PRIs (for all other ages) for calcium (EFSA NDA Panel, 2015), and considering 

a molar calcium to phosphorus ratio of 1.4:1 to 1.9:1, amounts of phosphorus (in mg/day) were 

calculated (Appendix F). The Panel chose the lower bound of this range (i.e. a ratio of 1.4:1 which 

results in the higher phosphorus intake value) for deriving an AI for phosphorus, taking into account 

estimated phosphorus intakes in Western countries, which are considerably higher (Section 3.2) than 

the values calculated in Appendix F. AIs for all age groups were set after rounding to the nearest 
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10 mg/day (Table 7). The Panel considers that the AIs proposed for infants and children cover the 

quantity of phosphorus estimated for accretion in bone in these age groups (Section 2.3.4). 

6.2. Pregnancy and lactation 

The Panel acknowledges the existence of physiological adaptive processes that ensure sufficient 

phosphorus for fetal growth and breast milk production. These may obviate the need for additional 

dietary phosphorus during pregnancy and lactation, provided intake is close to the AI for adults (see 

Section 5.3). Therefore, the Panel concludes that additional dietary phosphorus is not required for 

pregnant and lactating women. 

CONCLUSIONS 

The Panel derived DRVs for phosphorus based on the AI (for infants aged 7–11 months) and the PRIs 

(for all other age groups) for calcium. The Panel used data on the calcium to phosphorus ratio in the 

bone of healthy men and women and adjusted these data for the proportion of phosphorus present 

outside bone. In addition, data on whole-body contents of calcium and phosphorus in Caucasian adults 

were used to calculate molar calcium to phosphorus ratios in the whole body. These data indicate that 

the calcium to phosphorus molar ratio in the whole body ranges from 1.4:1 to 1.9:1. The Panel 

considered that the available data are insufficient to derive ARs and PRIs for phosphorus and, 

therefore, the Panel proposed that AIs are set for all population groups. For this, the Panel chose the 

lower bound of the range (i.e. a calcium to phosphorus molar ratio in the whole body of 1.4:1, which 

results in the higher phosphorus intake value) for setting an AI for phosphorus (Table 7), taking into 

account estimated phosphorus intakes in Western countries, which are considerably higher than the 

values calculated on the basis of this range. It was considered that the AI for adults should also apply 

to pregnant and lactating women. 

Table 7:  Summary of Adequate Intakes for phosphorus 

Age Adequate Intake (mg/day) 

7–11 months 160 

1–3 years 250 

4–10 years 440 

11–17 years 640 

Adults ≥ 18 years 
(a)

 550 

(a): Including pregnant and lactating women. 

RECOMMENDATIONS FOR RESEARCH 

The Panel recommends that studies be undertaken to better characterise biomarkers of phosphorus 

status, including phosphatonins and especially FGF-23. 

The Panel recommends that research be undertaken on the effect of dietary phosphorus intake on long-

term health outcomes and the risk of chronic disease. 

The Panel recommends that dietary assessment tools be developed, allowing for the quantification of 

phosphorus-based additives used in food processing and in some carbonated beverages. 



Dietary Reference Values for phosphorus 

 

EFSA Journal 2015;13(7):4185 35 

REFERENCES 

Afssa (Agence française de sécurité sanitaire des aliments), 2001. Apports nutritionnels conseillés 

pour la population française. Editions Tec&Doc, Paris, France, 605 pp. 

Afssa (Agence française de sécurité sanitaire des aliments), 2009. Étude Individuelle Nationale des 

Consommations Alimentaires 2 (INCA 2) (2006-2007). Rapport. 228 pp. 

Alizadeh Naderi AS and Reilly RF, 2010. Hereditary disorders of renal phosphate wasting. Nature 

Reviews Nephrology, 6, 657-665. 

Allen JC, Keller RP, Archer P and Neville MC, 1991. Studies in human lactation: milk composition 

and daily secretion rates of macronutrients in the first year of lactation. American Journal of 

Clinical Nutrition, 54, 69-80. 

Alonso A, Nettleton JA, Ix JH, de Boer IH, Folsom AR, Bidulescu A, Kestenbaum BR, Chambless LE 

and Jacobs DR, Jr., 2010. Dietary phosphorus, blood pressure, and incidence of hypertension in the 

atherosclerosis risk in communities study and the multi-ethnic study of atherosclerosis. 

Hypertension, 55, 776-784. 

Amcoff E, Edberg A, Enghardt Barbieri H, Lindroos A, Nälsén C, Pearson M and Warensjö Lemming 

E (Livsmedelsverket), 2012. Riksmaten – vuxna 2010–11. Livsmedels- och näringsintag bland 

vuxna i Sverige. Resultat från matvaneundersökning utförd 2010–11. 180 pp. 

Anderson J, 2005. Phosphorus. In: Encyclopedia of Human Nutrition. Eds Caballero B, Allen L and 

Prentice A. Elsevier, Oxford, UK, 486-490. 

Anonymous, 1994. Plan and operation of the Third National Health and Nutrition Examination 

Survey, 1988-94. Series 1: programs and collection procedures. Vital and Health Statistics. Series 

1: Programs and Collection Procedures, 1-407. 

Ashe JR, Schofield FA and Gram MR, 1979. The retention of calcium, iron, phosphorus, and 

magnesium during pregnancy: the adequacy of prenatal diets with and without supplementation. 

American Journal of Clinical Nutrition, 32, 286-291. 

Atkinson SA, Radde IC, Chance GW, Bryan MH and Anderson GH, 1980. Macro-mineral content of 

milk obtained during early lactation from mothers of premature infants. Early Human 

Development, 4, 5-14. 

Atkinson SA, Alston-Mills BP, Lönnerdal B and Neville MC, 1995. B. Major minerals and ionic 

constituents of human and bovine milks. In: Handbook of milk composition. Ed Jensen RJ. 

Academic Press, San Diego, CA, USA, 593-619  

Audi G, Bersillon O, Blachot J and Wapstra AH, 2003. The NUBASE evaluation of nuclear and decay 

properties. Nuclear Physics A, 729, 3-128. 

Baer JD, Fong AKH, Novotny JA and Oexmann MJ, 1999. Compartmental modeling, stable isotopes, 

and balance studies. In: Well-controlled diet studies in humans: A practical guide to design and 

management. Eds Dennis BH, Ershow AG, Obarzanek E and Clevidence BA. American Dietetic 

Association, Chicago, IL, USA, 238-254. 

Bansal VK, 1990. Serum Inorganic Phosphorus. In: Clinical Methods: The History, Physical, and 

Laboratory Examinations. 3rd edition. Eds Walker HK, Hall WD and Hurst JW. Butterworths, 

Boston, MA, USA, 895-899. 

Bergwitz C and Jüppner H, 2010. Regulation of phosphate homeostasis by PTH, vitamin D, and 

FGF23. Annual Review of Medicine, 61, 91-104. 

Bergwitz C and Jüppner H, 2011. Phosphate sensing. Advances in Chronic Kidney Disease, 18, 132-

144. 

Berndt T and Kumar R, 2007. Phosphatonins and the regulation of phosphate homeostasis. Annual 

Review of Physiology, 69, 341-359. 



Dietary Reference Values for phosphorus 

 

EFSA Journal 2015;13(7):4185 36 

Berndt T and Kumar R, 2009. Novel mechanisms in the regulation of phosphorus homeostasis. 

Physiology (Bethesda), 24, 17-25. 

Biber J, Harnando N and Forster I, 2013. Phosphate transporters and their function. Annual Review of 

Physiology, 75, 535-550. 

Bijovet OLM, 1969. Regulation of plasma phosphate concentration to renal tubular reabsorption of 

phosphate. Clinical Science, 37, 23-26. 

Bindels RJM, Hoenderop JGJ and Biber J, 2012. Transport of calcium, magnesium, and phosphate. In: 

Brenner & Rector’s The Kidney, 9th edition. Eds Taal MW, Chertow GM, Marsden PA, Skorecki 

K, Yu ASL and Brenner BM. Saunders, Philadelphia, PA, USA, 226-251. 

Bjorklund KL, Vahter M, Palm B, Grander M, Lignell S and Berglund M, 2012. Metals and trace 

element concentrations in breast milk of first time healthy mothers: A biological monitoring study. 

Environmental Health: A Global Access Science Source, 11. 

Bounds W, Skinner J, Carruth BR and Ziegler P, 2005. The relationship of dietary and lifestyle factors 

to bone mineral indexes in children. Journal of the American Dietetic Association, 105, 735-741. 

Brickman AS, Coburn JW, Massry SG and Norman AW, 1974. 1,25 Dihydroxy-vitamin D3 in normal 

man and patients with renal failure. Annals of Internal Medicine, 80, 161-168. 

Brickman AS, Hartenbower DL, Norman AW and Coburn JW, 1977. Actions of 1 alpha-

hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 on mineral metabolism in man. I. Effects on net 

absorption of phosphorus. American Journal of Clinical Nutrition, 30, 1064-1069. 

Brot C, Jorgensen N, Madsen OR, Jensen LB and Sorensen OH, 1999. Relationships between bone 

mineral density, serum vitamin D metabolites and calcium:phosphorus intake in healthy 

perimenopausal women. Journal of Internal Medicine, 245, 509-516. 

Brunelli SM and Goldfarb S, 2007. Hypophosphatemia: clinical consequences and management. 

Journal of the American Society of Nephrology, 18, 1999-2003. 

Brunette MG, Letendre S and Allard S, 1986. Phosphate transport through placenta brush border 

membrane. Advances in Experimental Medicine and Biology, 208, 543-548. 

Butte NF, Garza C, Smith EO and Nichols BL, 1984a. Human milk intake and growth in exclusively 

breast-fed infants. Journal of Pediatrics, 104, 187-195. 

Butte NF, Garza C, Johnson CA, Smith EO and Nichols BL, 1984b. Longitudinal changes in milk 

composition of mothers delivering preterm and term infants. Early Human Development, 9, 153-

162. 

Calvo MS, Kumar R and Heath H, 3rd, 1988. Elevated secretion and action of serum parathyroid 

hormone in young adults consuming high phosphorus, low calcium diets assembled from common 

foods. Journal of Clinical Endocrinology and Metabolism, 66, 823-829. 

Calvo MS and Tucker KL, 2013. Is phosphorus intake that exceeds dietary requirements a risk factor 

in bone health? Annals of the New York Academy of Sciences, 1301, 29-35. 

Calvo MS and Uribarri J, 2013. Contributions to total phosphorus intake: all sources considered. 

Seminars in Dialysis, 26, 54-61. 

Chan JM, Pietinen P, Virtanen M, Malila N, Tangrea J, Albanes D and Virtamo J, 2000. Diet and 

prostate cancer risk in a cohort of smokers, with a specific focus on calcium and phosphorus 

(Finland). Cancer Causes and Control, 11, 859-867. 

Chang AR, Lazo M, Appel LJ, Gutierrez OM and Grams ME, 2014. High dietary phosphorus intake is 

associated with all-cause mortality: results from NHANES III. American Journal of Clinical 

Nutrition, 99, 320-327. 

Christov M and Jüppner H, 2013. Insights from genetic disorders of phosphate homeostasis. Seminars 

in Nephrology, 33, 143-157. 



Dietary Reference Values for phosphorus 

 

EFSA Journal 2015;13(7):4185 37 

Consolazio CF, Matoush LO, Nelson RA, Harding RS and Canham JE, 1963. Excretion of sodium, 

potassium, and iron in human sweat and the relationship of each to balance and requirements. 

Journal of Nutrition, 79, 407-415. 

Corbridge DEC, 2013. Phosphorus: Chemistry, Biochemistry and Technology. Sixth edition. CRC 

Press, Boca Raton, FL, USA, 1439 pp. 

D-A-CH (Deutsche Gesellschaft für Ernährung, Österreichische Gesellschaft für Ernährung, 

Schweizerische Gesellschaft für Ernährung), 2015. Referenzwerte für die Nährstoffzufuhr. 2. 

Auflage, 1. Ausgabe. DGE, Bonn, Germany. 

de Boer IH, Rue TC and Kestenbaum B, 2009. Serum phosphorus concentrations in the third National 

Health and Nutrition Examination Survey (NHANES III). American Journal of Kidney Diseases, 

53, 399-407. 

de Menezes FH, de Castro LC and Damiani D, 2006. Hypophosphatemic rickets and osteomalacia. 

Arquivos Brasileiros de Endocrinologia & Metabologia, 50, 802-813. 

Delgado-Andrade C, Seiquer I, García MM, Galdó G and Navarro MP, 2011. Increased Maillard 

reaction products intake reduces phosphorus digestibility in male adolescents. Nutrition, 27, 86-91. 

Deurenberg P, Pieters JJ and Hautvast JG, 1990. The assessment of the body fat percentage by 

skinfold thickness measurements in childhood and young adolescence. British Journal of Nutrition, 

63, 293-303. 

Dewey KG, Finley DA and Lönnerdal B, 1984. Breast milk volume and composition during late 

lactation (7-20 months). Journal of Pediatric Gastroenterology and Nutrition, 3, 713-720. 

DH (Department of Health), 1991. Dietary reference values for food energy and nutrients for the 

United Kingdom. Report of the Panel on Dietary Reference Values of the Committee on Medical 

Aspects of Food Policy. HMSO, London, UK, 212 pp. 

Eeuwijk J, Oordt A and Vonk Noordegraaf-Schouten M, 2012. Literature search and review related to 

specific preparatory work in the establishment of Dietary Reference Values for phosphorus, sodium 

and chloride. Project developed on the procurement project CT/EFSA/NDA/2012/01. EFSA 

Supporting publication 2013:EN-502, 388 pp. 

EFSA (European Food Safety Authority), 2005. Opinion of the Scientific Panel on Dietetic Products, 

Nutrition and Allergies on a request from the Commission related to the Tolerable Upper Intake 

Level of phosphorus. The EFSA Journal 233, 19 pp. doi:10.2903/j.efsa.2005.233  

EFSA (European Food Safety Authority), 2011a. Use of the EFSA Comprehensive European Food 

Consumption Database in exposure assessment. EFSA Journal 2011;9(3):2097, 34 pp. 

doi:10.2903/j.efsa.2011.2097  

EFSA (European Food Safety Authority), 2011b. Report on the development of a food classification 

and description system for exposure assessment and guidance on its implementation and use. EFSA 

Journal 2011;9(12):2489, 84 pp. doi:10.2903/j.efsa.2011.2489  

EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2014. Scientific 

Opinion on the essential composition of infant and follow-on formulae. EFSA Journal 

2014;12(7):3760, 106 pp. doi:10.2903/j.efsa.2013.3760  

EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2015. Scientific 

Opinion on Dietary Reference Values for calcium. EFSA Journal 2015;13(5):4101, 84 pp. 

doi:10.2903/j.efsa.2015.4101  

Ellis KJ, 1990. Reference man and woman more fully characterized. Variations on the basis of body 

size, age, sex, and race. Biological Trace Element Research, 26-27, 385-400. 

Eto N, Tomita M and Hayashi M, 2006. NaPi-mediated transcellular permeation is the dominant route 

in intestinal inorganic phosphate absorption in rats. Drug Metabolism and Pharmacokinetics, 21, 

217-221. 



Dietary Reference Values for phosphorus 

 

EFSA Journal 2015;13(7):4185 38 

FAO/WHO (Food and Agriculture Organization/World Health Organization), 1974. Toxicological 

evaluation of certain food additives including anticaking agents, antimicrobials, antioxidants, 

emulsifiers, and thickening agents. 53A, FAO Nutrition Meetings Report Series, 469-485. 

Farrow EG and White KE, 2010. Recent advances in renal phosphate handling. Nature Reviews 

Nephrology, 6, 207-217. 

Fenton TR, Lyon AW, Eliasziw M, Tough SC and Hanley DA, 2009. Phosphate decreases urine 

calcium and increases calcium balance: a meta-analysis of the osteoporosis acid-ash diet 

hypothesis. Nutrition Journal, 8, 41. 

Fomon SJ, Haschke F, Ziegler EE and Nelson SE, 1982. Body composition of reference children from 

birth to age 10 years. American Journal of Clinical Nutrition, 35, 1169-1175. 

Forster I, Hernando N, Sorribas V and Werner A, 2011. Phosphate transporters in renal, 

gastrointestinal, and other tissues. Advances in Chronic Kidney Diseases, 18, 63-76. 

Gaasbeek A and Meinders A, 2005. Hypophosphatemia: an update on its etiology and treatment. The 

American Journal of Medicine, 118, 1094-1101. 

Gibson RS, 2005. Principles of nutritional assessment, 2nd edition. Oxford University Press, New 

York, NY, USA, 928 pp. 

Gidrewicz DA and Fenton TR, 2014. A systematic review and meta-analysis of the nutrient content of 

preterm and term breast milk. BMC Pediatrics, 14, 216. 

Greenberg BG, Winters RW and Graham JB, 1960. The normal range of serum inorganic phosphorus 

and its utility as a discriminant in the diagnosis of congenital hypophosphatemia. Journal of 

Clinical Endocrinology and Metabolism, 20, 364-379. 

Greger JL, Baligar P, Abernathy RP, Bennett OA and Peterson T, 1978. Calcium, magnesium, 

phosphorus, copper, and manganese balance in adolescent females. American Journal of Clinical 

Nutrition, 31, 117-121. 

Gross SJ, David RJ, Bauman L and Tomarelli RM, 1980. Nutritional composition of milk produced by 

mothers delivering preterm. Journal of Pediatrics, 96, 641-644. 

Guéguen L, 1982. Les phosphates dans l'alimentation humaine. Médecine et Nutrition, 18, 237-245. 

Gutierrez OM, 2013. The connection between dietary phosphorus, cardiovascular disease, and 

mortality: where we stand and what we need to know. Advances in Nutrition, 4, 723-729. 

Health Council of the Netherlands, 2000. Dietary reference intakes: calcium, vitamin D, thiamin, 

riboflavin, niacin, pantothenic acid, and biotin. 180 pp. 

Heaney RP and Skillman TG, 1971. Calcium metabolism in normal human pregnancy. Journal of 

Clinical Endocrinology and Metabolism, 33, 661-670. 

Heaney RP and Recker RR, 1982. Effects of nitrogen, phosphorus, and caffeine on calcium balance in 

women. Journal of Laboratory and Clinical Medicine, 99, 46-55. 

Heaney RP and Recker RR, 1987. Calcium supplements: anion effects. Bone and Mineral, 2, 433-439. 

Heaney RP and Nordin BE, 2002. Calcium effects on phosphorus absorption: implications for the 

prevention and co-therapy of osteoporosis. Journal of the American College of Nutrition, 21, 239-

244. 

Heaney RP, 2012. Phosphorus. In: Present Knowledge in Nutrition. Eds Erdman JW, Jr, Macdonald 

IA and Zeisel SH. John Wiley & Sons, Washington, DC, USA, 447-458. 

Helldán A, Raulio S, Kosola M, Tapanainen H, Ovaskainen ML and Virtanen S, 2013. Finravinto 

2012 - tutkimus - The National FINDIET 2012 Survey. THL. Raportti 16/2013, 217 pp. 



Dietary Reference Values for phosphorus 

 

EFSA Journal 2015;13(7):4185 39 

Henderson L, Irving K and Gregory J, 2003. The National Diet and Nutrition Survey: adults aged 19 

to 64 years. Vitamin and mineral intake and urinary analytes. 3, The Stationery Office, London, 

UK. 

Hoppu U, Lehtisalo J, Tapanainen H and Pietinen P, 2010. Dietary habits and nutrient intake of 

Finnish adolescents. Public Health Nutrition, 13, 965-972. 

Hruska KA, Mathew S, Lund R, Qiu P and Pratt R, 2008. Hyperphosphatemia of chronic kidney 

disease. Kidney International, 74, 148-157. 

Hu MC, Shi M, Zhang J, Pastor J, Nakatani T, Lanske B, Razzaque MS, Rosenblatt KP, Baum MG, 

Kuro-o M and Moe OW, 2010. Klotho: a novel phosphaturic substance acting as an autocrine 

enzyme in the renal proximal tubule. FASEB Journal, 24, 3438-3450. 

Hure A, Young A, Smith R and Collins C, 2009. Diet and pregnancy status in Australian women. 

Public Health Nutrition, 12, 853-861. 

Husain SM and Mughal MZ, 1992. Mineral transport across the placenta. Archives of Disease in 

Childhood, 67, 874-878. 

IOM (Institute of Medicine), 1997. Dietary Reference Intakes for calcium, phosphorus, magnesium, 

vitamin D, and fluoride. National Academy Press, Washington, DC, USA, 454 pp. 

Ito S, Ishida H, Uenishi K, Murakami K and Sasaki S, 2011. The relationship between habitual dietary 

phosphorus and calcium intake, and bone mineral density in young Japanese women: a cross-

sectional study. Asia Pacific Journal of Clinical Nutrition, 20, 411-417. 

IUNA (Irish Universities Nutrition Alliance), 2011. National Adult Nutrition Survey. 40 pp. 

Jones G, Riley MD and Dwyer T, 2000. Maternal diet during pregnancy is associated with bone 

mineral density in children: a longitudinal study. European Journal of Clinical Nutrition, 54, 749-

756. 

Jubiz W, Canterbury JM, Reiss E and Tyler FH, 1972. Circadian rhythm in serum parathyroid 

concentration in human subjects: correlation with serum calcium, phosphate, albumin and growth 

hormone levels. Journal of Clinical Investigation, 51, 2040-2046. 

Jüppner H, 2007. Novel regulators of phosphate homeostasis and bone metabolism. Therapeutic 

Apheresis and Dialysis, 11, S3-S22. 

Kalantar-Zadeh K, Gutekunst L, Mehrotra R, Kovesdy CP, Bross R, Shinaberger CS and Kopple JD, 

2010. Understanding sources of dietary phosphorus in the treatment of patients with chronic kidney 

disease. Clinical Journal of the American Society of Nephrology, 5, 519-530. 

Karlsson C, Obrant KJ and Karlsson M, 2001. Pregnancy and lactation confer reversible bone loss in 

humans. Osteoporosis International, 12, 828-834. 

Katai K, Miyamoto K, Kishida S, Segawa H, Nii T, Tanaka H, Tani Y, Arai H, Tatsumi S, Morita K, 

Taketani Y and Takeda E, 1999. Regulation of intestinal Na+-dependent phosphate co-transporters 

by a low-phosphate diet and 1,25-dihydroxyvitamin D3. Biochemical Journal, 343, 705-712. 

Kemi VE, Karkkainen MU and Lamberg-Allardt CJ, 2006. High phosphorus intakes acutely and 

negatively affect Ca and bone metabolism in a dose-dependent manner in healthy young females. 

British Journal of Nutrition, 96, 545-552. 

Kemi VE, Karkkainen MU, Karp HJ, Laitinen KA and Lamberg-Allardt CJ, 2008. Increased calcium 

intake does not completely counteract the effects of increased phosphorus intake on bone: an acute 

dose-response study in healthy females. British Journal of Nutrition, 99, 832-839. 

Kemi VE, Karkkainen MU, Rita HJ, Laaksonen MM, Outila TA and Lamberg-Allardt CJ, 2010. Low 

calcium:phosphorus ratio in habitual diets affects serum parathyroid hormone concentration and 

calcium metabolism in healthy women with adequate calcium intake. British Journal of Nutrition, 

103, 561-568. 



Dietary Reference Values for phosphorus 

 

EFSA Journal 2015;13(7):4185 40 

Kent GN, Price RI, Gutteridge DH, Smith M, Allen JR, Bhagat CI, Barnes MP, Hickling CJ, Retallack 

RW, Wilson SG, Rowena D, Roger IP, Margaret S, Chotoo IB, Charmian D and Andrew SJ, 1990. 

Human lactation: forearm trabecular bone loss, increased bone turnover, and renal conservation of 

calcium and inorganic phosphate with recovery of bone mass following weaning. Journal of Bone 

and Mineral Research, 5, 361-369. 

Kersting M and Clausen K, 2003. Ernährungsphysiologische Auswertung einer repräsentativen 

Verzehrsstudie bei Säuglingen und Kleinkindern VELS mit dem Instrumentarium der DONALD 

Studie. Forschungsinstitut für Kinderernährung, Dortmund, Germany, 103 pp. 

Kesse E, Boutron-Ruault MC, Norat T, Riboli E and Clavel-Chapelon F, 2005. Dietary calcium, 

phosphorus, vitamin D, dairy products and the risk of colorectal adenoma and cancer among 

French women of the E3N-EPIC prospective study. International Journal of Cancer, 117, 137-144. 

Kesse E, Bertrais S, Astorg P, Jaouen A, Arnault N, Galan P and Hercberg S, 2006. Dairy products, 

calcium and phosphorus intake, and the risk of prostate cancer: results of the French prospective 

SU.VI.MAX (Supplementation en Vitamines et Mineraux Antioxydants) study. British Journal of 

Nutrition, 95, 539-545. 

Kido S, Kaneko I, Tatsumi S, Segawa H and Miyamoto K, 2013. Vitamin D and type II sodium-

dependent phosphate cotransporters. Contributions to Nephrology, 180, 86-97. 

Kovacs CS, 2014. Bone development and mineral homeostasis in the fetus and neonate: Roles of the 

calciotropic and phosphotropic hormones. Physiological Reviews, 94, 1143-1218. 

Lakshmanan FL, Rao RB and Church JP, 1984. Calcium and phosphorus intakes, balances, and blood 

levels of adults consuming self-selected diets. American Journal of Clinical Nutrition, 40, 1368-

1379. 

Lemann JJ, 1996. Calcium and phosphate metabolism: an overview in health and in calcium stone 

formers. In: Kidney stones: medical and surgical management. Eds Coe FL, Favus MJ, Pak CY, 

Parks JH and Preminger GM. Lipincott-Raven Publishers, Philadelphia, PA, USA, 259-288 pp. 

Lemons JA, Moye L, Hall D and Simmons M, 1982. Differences in the composition of preterm and 

term human milk during early lactation. Pediatric Research, 16, 113-117. 

Lutwak L, Laster L, Gitelman HJ, Fox M and Whedon GD, 1964. Effects of high dietary calcium and 

phosphorus on calcium, phosphorus, nitrogen and fat metabolism in children. American Journal of 

Clinical Nutrition, 14, 76-82. 

Mahalko JR, Sandstead HH, Johnson LK and Milne DB, 1983. Effect of a moderate increase in dietary 

protein on the retention and excretion of Ca, Cu, Fe, Mg, P, and Zn by adult males. American 

Journal of Clinical Nutrition, 37, 8-14. 

Marks J, Debnam ES and Unwin RJ, 2010. Phosphate homeostasis and the renal-gastrointestinal axis. 

American Journal of Physiology, 299, F285-F296. 

Marshall DH, Nordin BEC and Speed R, 1976. Calcium, phosphorus and magnesium requirement. 

Proceedings of the Nutrition Society, 35, 163-173. 

Martin AD, Bailey DA, McKay HA and Whiting S, 1997. Bone mineral and calcium accretion during 

puberty. American Journal of Clinical Nutrition, 66, 611-615. 

Mataix J, Aranda P, Lopez-Jurado M, Sanchez C, Planells E and Llopis J, 2006. Factors influencing 

the intake and plasma levels of calcium, phosphorus and magnesium in southern Spain. European 

Journal of Nutrition, 45, 349-354. 

Mataloun MM and Leone CR, 2000. Human milk mineral intake and serum concentrations of calcium 

and phosphorus in newborn term infants: influence of intrauterine growth restriction. Acta 

Paediatrica, 89, 1093-1097. 

McHardy GJR and Parsons DS, 1956. The absorption of inorganic phosphate from the small intestine 

of the rat. Quarterly Journal of Experimental Physiology, 41, 398-409. 



Dietary Reference Values for phosphorus 

 

EFSA Journal 2015;13(7):4185 41 

Mensink GB, Heseker H, Richter A, Stahl A and Vohmann C (Robert Koch-Institut & Universität 

Paderborn), 2007. Forschungsbericht: Ernährungsstudie als KIGGS-Modul (EsKiMo). 143 pp. 

Mertz W, 1987. Use and misuse of balance studies. Journal of Nutrition, 117, 1811-1813. 

Michaud DS, Spiegelman D, Clinton SK, Rimm EB, Willett WC and Giovannucci E, 2000. 

Prospective study of dietary supplements, macronutrients, micronutrients, and risk of bladder 

cancer in US men. American Journal of Epidemiology, 152, 1145-1153. 

Mitchell DM and Jüppner H, 2010. Regulation of calcium homeostasis and bone metabolism in the 

fetus and neonate. Current Opinion in Endocrinology, Diabetes and Obesity, 17, 25-30. 

Moe SM, 2008. Disorders involving calcium, phosphorus, and magnesium. Primary Care: Clinics in 

Office Practice, 35, 215-237. 

Moe SM, Zidehsarai MP, Chambers MA, Jackman LA, Radcliffe JS, Trevino LL, Donahue SE and 

Asplin JR, 2011. Vegetarian compared with meat dietary protein source and phosphorus 

homeostasis in chronic kidney disease. Clinical Journal of the American Society of Nephrology, 6, 

257-264. 

Moller UK, Vieth Streym S, Mosekilde L and Rejnmark L, 2012. Changes in bone mineral density and 

body composition during pregnancy and postpartum. A controlled cohort study. Osteoporosis 

International, 23, 1213-1223. 

Montalto MB and Benson JD, 1986. Nutrient intakes of older infants: effect of different milk feedings. 

Journal of the American College of Nutrition, 5, 331-341. 

Netherlands Food and Nutrition Council, 1992. Recommended dietary allowances 1989 in The 

Netherlands. The Hague, 115 pp. 

NHMRC (National Health and Medical Research Council), 2005. Nutrient Reference Values for 

Australia and New Zealand including recommended dietary intakes. 317 pp. 

Nickkho-Amiry M, Prentice A, Ledi F, Laskey MA, Das G, Berry JL and Mughal MZ, 2008. Maternal 

vitamin D status and breast milk concentrations of calcium and phosphorus. Archives of Disease in 

Childhood, 93, 179. 

Nishimuta M, Kodama N, Morikuni E, Yoshioka YH, Takeyama H, Yamada H, Kitajima H and 

Suzuki K, 2004. Balances of calcium, magnesium and phosphorus in Japanese young adults. 

Journal of Nutritional Science and Vitaminology, 50, 19-25. 

Nishimuta M, Kodama N, Shimada M, Yoshitake Y, Matsuzaki N and Morikuni E, 2012. Estimated 

equilibrated dietary intakes for nine minerals (Na, K, Ca, Mg, P, Fe, Zn, Cu, and Mn) adjusted by 

mineral balance medians in young Japanese females. Journal of Nutritional Science and 

Vitaminology, 58, 118-128. 

Nordic Council of Ministers, 2004. Nordic Nutritions Recommendations. Integrating nutrition and 

physical activity. 4th edition. 435 pp. 

Nordic Council of Ministers, 2014. Nordic Nutrition Recommendations 2012. Integrating nutrition and 

physical activity. 5th edition. 627 pp. 

Nordin BEC, 1989. Phosphorus. Journal of Food & Nutrition, 45, 62-75. 

NRC (National Research Council), 1953. Recommended Dietary Allowances. A Report of the Food 

and Nutrition Board, Publication 302. Washington, DC, USA. 

O'Brien KO, Kerstetter JE and Insogna KL, 2014. Phosphorus. In: Modern Nutrition in Health and 

Disease. Eds Ross AC, Caballero B, Cousins RJ, Tucker KL and Ziegler TR. Lippincott Williams 

& Wilkins, Philadelphia, PA, USA, 150-158. 

Oenning LL, Vogel J and Calvo MS, 1988. Accuracy of methods estimating calcium and phosphorus 

intake in daily diets. Journal of the American Dietetic Association, 88, 1076-1080. 



Dietary Reference Values for phosphorus 

 

EFSA Journal 2015;13(7):4185 42 

Ohlson MA, Brewer WD, Jackson L, Swanson PP, Roberts PH, Mangel M, Leverton RM, Chaloupka 

M, Gram MR, Reynolds MS and Lutz R, 1952. Intakes and retentions of nitrogen, calcium and 

phosphorus by 136 women between 30 and 85 years of age. Federation Proceedings, 11, 775-783. 

Oliveira RB, Cancela AL, Graciolli FG, Dos Reis LM, Draibe SA, Cuppari L, Carvalho AB, Jorgetti 

V, Canziani ME and Moyses RM, 2010. Early control of PTH and FGF23 in normophosphatemic 

CKD patients: a new target in CKD-MBD therapy? Clinical Journal of the American Society of 

Nephrology, 5, 286-291. 

Paul AA, Black AE, Evans J, Cole TJ and Whitehead RG, 1988. Breastmilk intake and growth in 

infants from two to ten months. Journal of Human Nutrition and Dietetics, 1, 437-450. 

Penido MG and Alon US, 2012. Phosphate homeostasis and its role in bone health. Pediatric 

Nephrology, 27, 2039-2048. 

Pennington JA, 1994. Bowes and Church's food values of portions commonly used. JB Lippincott, 

Philadelpia, PA, USA, 480 pp. 

Pettifor JM, 2008. What's new in hypophosphataemic rickets? European Journal of Pediatrics, 167, 

493-499. 

Pocock SJ, Ashby D, Shaper AG, Walker M and Broughton PM, 1989. Diurnal variations in serum 

biochemical and haematological measurements. Journal of Clinical Pathology, 42, 172-179. 

Portale AA, Halloran BP and Morris RC, Jr., 1987. Dietary intake of phosphorus modulates the 

circadian rhythm in serum concentration of phosphorus. Implications for the renal production of 

1,25-dihydroxyvitamin D. Journal of Clinical Investigation, 80, 1147-1154. 

Prentice A and Bates CJ, 1994. Adequacy of dietary mineral supply for human bone growth and 

mineralisation. European Journal of Clinical Nutrition, 48 (Suppl 1), S161-176 discussion S177. 

Prentice A, 2003. Micronutrients and the bone mineral content of the mother, fetus and newborn. 

Journal of Nutrition, 133, 1693S-1699S. 

Prié D and Friedlander G, 2010. Genetic disorders of renal phosphate transport. The New England 

Journal of Medicine, 362, 2399-2409. 

Quarles LD, 2008. Endocrine functions of bone in mineral metabolism regulation. The Journal of 

Clinical Investigation, 118, 3820-3828. 

Ramasamy I, 2008. Inherited disorders of calcium homeostasis. Clinica Chimica Acta, 394, 22-41. 

Roberts PH, Kett CH and Ohlson MA, 1948. Nutritional status of older women; nitrogen, calcium 

phosphorus retentions of nine women. Journal of the American Dietetic Association, 24, 292-299. 

Roe MA, Bell S, Oseredczuk M, Christensen T, Westenbrink S, Pakkala H, Presser K and Finglas PM, 

2013. Updated food composition database for nutrient intake. EFSA Supporting publication 

2013:EN-355, 21 pp. 

Rowe JW, Andres R, Tobin JD, Norris AH and Shock NW, 1976. The effect of age on creatinine 

clearance in men: a cross-sectional and longitudinal study. Journal of Gerontology, 31, 155-163. 

RSC, 2004. Royal Society of Chemistry, Periodic Table website - phosphorus. Royal Society of 

Chemistry (RSC). Accessed on 30 June 2015. Available online: http://www.rsc.org/periodic-

table/element/15/phosphorus 

Sabbagh Y, Giral H, Caldas Y, Levi M and Schiavi SC, 2011. Intestinal phosphate transport. 

Advances in Chronic Kidney Disease, 18, 85-90. 

Sann L, Bienvenu F, Lahet C, Bienvenu J and Bethenod M, 1981. Comparison of the composition of 

breast milk from mothers of term and preterm infants. Acta Paediatrica Scandinavica, 70, 115-116. 

SCF (Scientific Committee for Food), 1993. Nutrient and energy intakes for the European 

Community. Reports of the Scientific Committee for Food, 31st Series. Food - Science and 

Technique, European Commission, Luxembourg, 248 pp. 

http://www.rsc.org/periodic-table/element/15/phosphorus
http://www.rsc.org/periodic-table/element/15/phosphorus


Dietary Reference Values for phosphorus 

 

EFSA Journal 2015;13(7):4185 43 

Schaafsma G, 1981. The influence of dietary calcium and phosphorus on bone metabolism. PhD 

thesis. Wageningen, The Netherlands, 119 pp. 

Schiavi SC and Kumar R, 2004. The phosphatonin pathway: new insights in phosphate homeostasis. 

Kidney International, 65, 1-14. 

Scoular FI, Pace JK and Davis AN, 1957. The calcium, phosphorus and magnesium balances of young 

college women consuming self-selected diets. Journal of Nutrition, 62, 489-501. 

Segawa H, Kaneko I, Yamanala S, Ito M, Kuwahata M, Inoue Y, Kato S and Miyamoto K, 2004. 

Intestinal Na-P(i) cotransporter adaptation to dietary P(i) content in vitamin D receptor null mice. 

Americal Journal of Physiology, 287, F39-F47. 

Sette S, Le Donne C, Piccinelli R, Arcella D, Turrini A and Leclercq C, 2011. The third Italian 

National Food Consumption Survey, INRAN-SCAI 2005-06 - Part 1: Nutrient intakes in Italy. 

Nutrition, Metabolism and Cardiovascular Diseases, 21, 922-932. 

Shigematsu T, Negi S and Group CR, 2012. Combined therapy with lanthanum carbonate and calcium 

carbonate for hyperphosphatemia decreases serum FGF-23 level independently of calcium and 

PTH (COLC Study). Nephrology, Dialysis, Transplantation, 27, 1050-1054. 

Slemenda CW, Reister TK, Hui SL, Miller JZ, Christian JC and Johnston CC, Jr., 1994. Influences on 

skeletal mineralization in children and adolescents: evidence for varying effects of sexual 

maturation and physical activity. Journal of Pediatrics, 125, 201-207. 

Sowers M, Corton G, Shapiro B, Jannausch ML, Crutchfield M, Smith ML, Randolph JF and Hollis B, 

1993. Changes in bone density with lactation. Journal of American Medical Association, 269, 

3130-3135. 

Specker BL, Beck A, Kalkwarf H and Ho M, 1997. Randomized trial of varying mineral intake on 

total body bone mineral accretion during the first year of life. Pediatrics, 99, E12. 

Spencer H, Kramer L, Osis D and Norris C, 1978. Effect of phosphorus on the absorption of calcium 

and on the calcium balance in man. Journal of Nutrition, 108, 447-457. 

Spencer H, Kramer L and Osis D, 1984. Effect of calcium on phosphorus metabolism in man. 

American Journal of Clinical Nutrition, 40, 219-225. 

Spencer H, Fuller H, Norris C and Williams D, 1994. Effect of magnesium on the intestinal absorption 

of calcium in man. Journal of the American College of Nutrition, 13, 485-492. 

Stanbury SW, 1971. The phosphate ion in chronic renal failure. In: Phosphate et metabolisme 

phosphocalcique. Ed Hioco DJ. Sandoz Laboratories, Paris, France, 356 pp. 

Takeda E, Yamamoto H, Yamanaka-Okumura H and Taketani Y, 2012. Dietary phosphorus in bone 

health and quality of life. Nutrition Reviews, 70, 311-321. 

Teegarden D, Lyle RM, McCabe GP, McCabe LD, Proulx WR, Michon K, Knight AP, Johnston CC 

and Weaver CM, 1998. Dietary calcium, protein, and phosphorus are related to bone mineral 

density and content in young women. American Journal of Clinical Nutrition, 68, 749-754. 

Tenenhouse HS and Murer H, 2003. Disorders of renal tubular phosphate transport. Journal of the 

American Society of Nephrology, 14, 240-248. 

Tenenhouse HS, 2005. Regulation of phosphorus homeostasis by the type IIa Na/phosphate 

cotransporter. Annual Review of Nutrition, 25, 197-214. 

Tobias JH, Steer CD, Emmett PM, Tonkin RJ, Cooper C and Ness AR, 2005. Bone mass in childhood 

is related to maternal diet in pregnancy. Osteoporosis International, 16, 1731-1741. 

Tseng M, Breslow RA, Graubard BI and Ziegler RG, 2005. Dairy, calcium, and vitamin D intakes and 

prostate cancer risk in the National Health and Nutrition Examination Epidemiologic Follow-up 

Study cohort. American Journal of Clinical Nutrition, 81, 1147-1154. 



Dietary Reference Values for phosphorus 

 

EFSA Journal 2015;13(7):4185 44 

Tzaphlidou M and Zaichick V, 2002. Neutron activation analysis of calcium/phosphorus ratio in rib 

bone of healthy humans. Applied Radiation and Isotopes, 57, 779-783. 

van Rossum CTM, Fransen HP, Verkaik-Kloosterman J, Buurma-Rethans EJM and Ocké MC, 2011. 

Dutch National Food Consumption Survey 2007-2010: Diet of children and adults aged 7 to 69 

years. RIVM Report number: 350050006/2011, National Institute for Public Health and the 

Environment, 143 pp. 

Walton J and Gray TK, 1979. Absorption of inorganic phosphate in the human small intestine. Clinical 

Science, 56, 407-412. 

WCRF/AICR (World Cancer Research Fund/American Institute for Cancer Research), 2007. Food, 

nutrition, physical activity and the prevention of cancer: a global perspective. 537 pp. 

Widdowson EM and Spray CM, 1951. Chemical development in utero. Archives of Disease in 

Childhood, 26, 205-214. 

Wilkinson R, 1976. Absorption of calcium, phosphorus, and magnesium. In: Calcium, phosphate and 

magnesium metabolism. Ed Nordin BEC. Churchill Livingstone, Edinburgh, UK, 36-112. 

Witczak A and Jarnuszewska A, 2011. [The content of selected mineral nutrients in infant and follow-

on formulae available at retail stores in Szczecin]. Roczniki Państwowego Zakładu Higieny, 62, 

257-262. 

Yamamoto KT, Robinson-Cohen C, de Oliveira MC, Kostina A, Nettleton JA, Ix JH, Nguyen H, Eng 

J, Lima JA, Siscovick DS, Weiss NS and Kestenbaum B, 2013. Dietary phosphorus is associated 

with greater left ventricular mass. Kidney International, 83, 707-714. 

Yamawaki N, Yamada M, Kan-no T, Kojima T, Kaneko T and Yonekubo A, 2005. Macronutrient, 

mineral and trace element composition of breast milk from Japanese women. Journal of Trace 

Elements in Medicine and Biology, 19, 171-181. 

Yin J, Dwyer T, Riley M, Cochrane J and Jones G, 2010. The association between maternal diet 

during pregnancy and bone mass of the children at age 16. European Journal of Clinical Nutrition, 

64, 131-137. 

Young VR, 1986. Nutritional balance studies: indicators of human requirements or of adaptive 

mechanisms? Journal of Nutrition, 116, 700-703. 

Zaichick V and Tzaphlidou M, 2002. Determination of calcium, phosphorus, and the 

calcium/phosphorus ratio in cortical bone from the human femoral neck by neutron activation 

analysis. Applied Radiation and Isotopes, 56, 781-786. 

Zaichick V and Tzaphlidou M, 2003. Calcium and phosphorus concentrations and the 

calcium/phosphorus ratio in trabecular bone from the femoral neck of healthy humans as 

determined by neutron activation analysis. Applied Radiation and Isotopes, 58, 623-627. 

 



Dietary Reference Values for phosphorus 

 

EFSA Journal 2015;13(7):4185 45 

APPENDICES 

Appendix A.  Dietary surveys in the EFSA Comprehensive European Food Consumption Database included in the nutrient intake calculation and 

number of subjects in the different age classes 

Country Dietary survey Year Method Days Age 

(years) 

Number of subjects 

Infants Children Children Children Adults Adults Adults 

< 1 year 1–< 3 years 3–< 10 

years 

10–< 18 

years 

18–< 65 

years 

65–< 75 

years 

≥ 75 

years 

Finland/1 DIPP 2000–2010 Dietary record 3 < 1–6 499 500 750     

Finland/2 NWSSP 2007–2008 48-hour dietary recall (a) 2 × 2 (a) 13–15    306    

Finland/3 FINDIET2012 2012 48-hour dietary recall (a) 2 (a) 25–74     1 295 413  

France INCA2 2006–2007 Dietary record 7 3–79   482 973 2 276 264 84 

Germany/1 EsKiMo 2006 Dietary record 3 6–11   835 393    

Germany/2 VELS 2001–2002 Dietary record 6 < 1–4 158 347 299     

Ireland NANS 2008–2010 Dietary record 4 18–90     1 274 149 77 

Italy INRAN-SCAI 2005–06 2005–2006 Dietary record 3 < 1–98 16 (b) 36 (b) 193 247 2 313 290 228 

Latvia FC_PREGNANTWOMEN 2011 24-hour dietary recall 2 15–45    12 (b) 991 (c)   

Netherlands DNFCS 2007–2010 24-hour dietary recall 2 7–69   447 1 142 2 057 173  

Sweden RISKMATEN 2010–2011 Dietary record (web) (d)  4 18–80     1 430 295 72 

UK/1 DNSIYC-2011 2011 Dietary record 4 0.3–1.5 1 369 1 314      

UK/2 NDNS Rolling Programme 

(Years 1–3) 

2008–2011 Dietary record 4 1–94  185 651 666 1 266 166 139 

DIPP, Type 1 Diabetes Prediction and Prevention survey; DNFCS, Dutch National Food Consumption Survey; DNSIYC, Diet and Nutrition Survey of Infants and Young Children; EsKiMo, 

Ernährungsstudie als KIGGS-Modul; FINDIET, the national dietary survey of Finland; INCA, Étude Individuelle Nationale des Consommations Alimentaires; INRAN-SCAI, Istituto Nazionale 

di Ricerca per gli Alimenti e la Nutrizione – Studio sui Consumi Alimentari in Italia; FC_PREGNANTWOMEN, food consumption of pregnant women in Latvia; NANS, National Adult 

Nutrition Survey; NDNS, National Diet and Nutrition Survey; NWSSP, Nutrition and Wellbeing of Secondary School Pupils; VELS, Verzehrsstudie zur Ermittlung der Lebensmittelaufnahme 

von Säuglingen und Kleinkindern für die Abschätzung eines akuten Toxizitätsrisikos durch Rückstände von Pflanzenschutzmitteln. 

(a): A 48-hour dietary recall comprises two consecutive days. 

(b): 5th or 95th percentile intakes calculated from fewer than 60 subjects require cautious interpretation, as the results may not be statistically robust (EFSA, 2011a) and, therefore, for these 

dietary surveys/age classes, the 5th and 95th percentile estimates will not be presented in the intake results. 

(c): One subject was excluded from the dataset because only one 24-hour dietary recall day was available, i.e. final n = 990. 

(d): The Swedish dietary records were introduced through the internet. 
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Appendix B.  Phosphorus intake in males in different surveys according to age classes and country 

Age class Country Survey Intake expressed in mg/day Intake expressed in mg/MJ 

n 
(a)

 Average Median P5 P95 n Average Median P5 P95 

< 1 year 
(b)

 Finland DIPP_2001_2009 247 273 283 32 528 245 140 136 89 202 

 Germany VELS 84 431 400 245 694 84 132 127 82 190 

 Italy INRAN_SCAI_2005_06 9 326 207 
(c) (c)

 9 102 106 
(c)

 
(c)

 

 United Kingdom DNSIYC_2011 699 531 511 244 879 699 154 151 93 227 

1 to < 3 years Finland DIPP_2001_2009 245 719 669 337 1 213 245 196 192 113 290 

 Germany VELS 174 699 682 396 1 018 174 149 146 94 204 

 Italy INRAN_SCAI_2005_06 20 924 924 
(c)

 
(c)

 20 189 186 
(c)

 
(c)

 

 United Kingdom DNSIYC_2011 663 871 851 439 1 310 663 207 207 127 290 

 United Kingdom NDNS Rolling Programme Years 1–3 107 973 974 570 1 461 107 198 201 130 262 

3 to < 10 years Finland DIPP_2001_2009 381 1 173 1 176 695 1 633 381 200 202 135 259 

 France INCA2 239 1 033 1 000 618 1 468 239 167 161 117 241 

 Germany EsKiMo 426 1 151 1 126 751 1 645 426 151 149 110 192 

 Germany VELS 146 808 767 512 1 201 146 144 139 106 201 

 Italy INRAN_SCAI_2005_06 94 1 202 1 144 812 1 734 94 165 160 122 225 

 Netherlands DNFCS 2007–2010 231 1 146 1 107 689 1 700 231 133 133 86 184 

 United Kingdom NDNS Rolling Programme Years 1–3 326 1 076 1 052 673 1 558 326 171 168 121 240 

10 to < 18 years Finland NWSSP07_08 136 1 601 1 537 980 2 459 136 196 190 126 275 

 France INCA2 449 1 243 1 210 745 1 828 449 159 155 116 213 

 Germany EsKiMo 197 1 225 1 169 792 1 826 197 151 148 107 204 

 Italy INRAN_SCAI_2005_06 108 1 494 1 405 944 2 244 108 152 148 123 193 

 Netherlands DNFCS 2007–2010 566 1 397 1 334 791 2 207 566 131 128 84 189 

 United Kingdom NDNS Rolling Programme Years 1–3 340 1 231 1 187 726 1 845 340 151 149 110 206 

18 to < 65 years Finland FINDIET2012 585 1 614 1 548 793 2 640 585 174 172 117 242 

 France INCA2 936 1 403 1 372 801 2 103 936 161 158 120 212 

 Ireland NANS_2012 634 1 767 1 745 985 2 702 634 177 175 125 241 

 Italy INRAN_SCAI_2005_06 1068 1 378 1 334 820 2 089 1068 151 148 119 192 

 Netherlands DNFCS 2007–2010 1023 1 671 1 628 961 2 520 1023 149 146 100 211 

 Sweden Riksmaten 2010 623 1 692 1 651 961 2 583 623 173 172 127 227 

 United Kingdom NDNS Rolling Programme Years 1–3 560 1 448 1 411 810 2 223 560 166 163 115 228 
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Age class Country Survey Intake expressed in mg/day Intake expressed in mg/MJ 

n 
(a)

 Average Median P5 P95 n Average Median P5 P95 

65 to < 75 years Finland FINDIET2012 210 1 426 1 367 665 2 251 210 175 171 120 245 

 France INCA2 111 1 372 1 351 787 1 931 111 161 158 124 211 

 Ireland NANS_2012 72 1 652 1 638 854 2 683 72 189 189 133 265 

 Italy INRAN_SCAI_2005_06 133 1 311 1 315 791 1 945 133 150 149 117 193 

 Netherlands DNFCS 2007–2010 91 1 478 1 448 717 2 233 91 162 163 111 213 

 Sweden Riksmaten 2010 127 1 558 1 528 981 2 250 127 182 176 142 233 

 United Kingdom NDNS Rolling Programme Years 1–3 75 1 498 1 479 607 2 341 75 180 175 122 245 

≥ 75 years France INCA2 40 1 280 1 173 
(c)

 
(c)

 40 165 162 
(c)

 
(c)

 

 Ireland NANS_2012 34 1 484 1 402 
(c)

 
(c)

 34 193 191 
(c)

 
(c)

 

 Italy INRAN_SCAI_2005_06 69 1 332 1 279 828 1 941 69 153 152 121 190 

 Sweden Riksmaten 2010 42 1 531 1 637 
(c)

 
(c)

 42 182 181 
(c)

 
(c)

 

 United Kingdom NDNS Rolling Programme Years 1–3 56 1 253 1 169 
(c)

 
(c)

 56 175 177 
(c)

 
(c)

 

P5, 5th percentile; P95, 95th percentile; DIPP, Type 1 Diabetes Prediction and Prevention survey; DNFCS, Dutch National Food Consumption Survey; DNSIYC, Diet and Nutrition Survey of 

Infants and Young Children; EsKiMo, Ernährungsstudie als KIGGS-Modul; FINDIET, the national dietary survey of Finland; INCA, Étude Individuelle Nationale des Consommations 

Alimentaires; INRAN-SCAI, Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione – Studio sui Consumi Alimentari in Italia; FC_PREGNANTWOMEN, food consumption of pregnant 

women in Latvia; NANS, National Adult Nutrition Survey; NDNS, National Diet and Nutrition Survey; NWSSP, Nutrition and Wellbeing of Secondary School Pupils; VELS, Verzehrsstudie 

zur Ermittlung der Lebensmittelaufnahme von Säuglingen und Kleinkindern für die Abschätzung eines akuten Toxizitätsrisikos durch Rückstände von Pflanzenschutzmitteln. 

(a): Number of individuals in the population group. 

(b): The proportions of breast-fed infants were 58 % in the Finnish survey, 40 % in the German survey, 44 % in the Italian survey and 21 % in the UK survey. Most infants were partially breast-

fed. For the Italian and German surveys, breast milk intake estimates were derived from the number of breastfeeding events recorded per day multiplied by standard breast milk amounts 

consumed on an eating occasion at different age. For the UK survey, the amount of breast milk consumed was either directly quantified by the mother (expressed breast milk) or 

extrapolated from the duration of each breastfeeding event. As no information on the breastfeeding events were reported in the Finnish survey, breast milk intake was not taken into 

consideration in the intake estimates of Finnish infants. 

(c): 5th or 95th percentile intakes calculated from fewer than 60 subjects require cautious interpretation, as the results may not be statistically robust (EFSA, 2011a) and, therefore, for these 

dietary surveys/age classes, the 5th and 95th percentile estimates will not be presented in the intake results. 
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Appendix C.  Phosphorus intake in females in different surveys according to age classes and country  

Age class Country Survey Intake expressed in mg/day Intake expressed in mg/MJ 

n 
(a)

 Average Median P5 P95 n Average Median P5 P95 

< 1 year 
(b)

 Finland DIPP_2001_2009 253 265 264 32 533 251 151 146 93 220 

 Germany VELS 75 368 354 203 604 75 125 128 80 173 

 Italy INRAN_SCAI_2005_06 7 447 509 
(c)

 
(c)

 7 145 151 
(c)

 
(c)

 

 United Kingdom DNSIYC_2011 670 480 448 216 857 670 154 150 78 244 

1 to < 3 years Finland DIPP_2001_2009 255 711 706 295 1 164 255 206 203 116 299 

 Germany VELS 174 641 645 357 932 174 149 146 102 207 

 Italy INRAN_SCAI_2005_06 16 890 846 
(c)

 
(c)

 16 196 189 
(c)

 
(c)

 

 United Kingdom DNSIYC_2011 651 815 802 419 1 266 651 205 208 123 285 

 United Kingdom NDNS Rolling Programme Years 1–3 78 863 856 499 1 224 78 192 190 132 254 

3 to < 10 years Finland DIPP_2001_2009 369 1 086 1 068 699 1 551 369 206 206 149 269 

 France INCA2 243 925 901 625 1 274 243 167 162 122 228 

 Germany EsKiMo 409 1 056 1 032 667 1 536 409 156 155 113 200 

 Germany VELS 147 750 742 483 1 076 147 145 142 103 200 

 Italy INRAN_SCAI_2005_06 99 1 155 1 138 694 1 672 99 160 156 120 226 

 Netherlands DNFCS 2007–2010 216 1 080 1 033 642 1 693 216 133 132 84 192 

 United Kingdom NDNS Rolling Programme Years 1–3 325 991 980 587 1 458 325 166 165 120 222 

10 to < 18 years Finland NWSSP07_08 170 1 264 1 255 691 2 045 170 192 192 127 255 

 France INCA2 524 992 983 574 1 460 524 158 153 115 214 

 Germany EsKiMo 196 1 148 1 130 729 1 633 196 155 151 110 207 

 Italy INRAN_SCAI_2005_06 139 1 226 1 217 813 1 836 139 154 152 117 205 

 Latvia 
(d)

 FC_PREGNANTWOMEN_2011 12 1 561 1 458 
(c)

 
(c)

 12 155 152 
(c)

 
(c)

 

 Netherlands DNFCS 2007–2010 576 1 167 1 138 674 1 716 576 133 134 82 189 

 United Kingdom NDNS Rolling Programme Years 1–3 326 990 977 573 1 525 326 147 143 105 205 

18 to < 65 years Finland FINDIET2012 710 1 293 1 242 706 2 057 710 181 176 117 264 

 France INCA2 1 340 1 084 1 060 619 1 612 1340 169 163 122 235 

 Ireland NANS_2012 640 1 302 1 274 750 1 964 640 178 173 127 241 

 Italy INRAN_SCAI_2005_06 1 245 1 151 1 124 687 1 685 1245 157 154 120 206 

 Latvia 
(d)

 FC_PREGNANTWOMEN_2011 990 1 541 1 443 892 2 568 990 182 167 114 299 

 Netherlands DNFCS 2007–2010 1 034 1 279 1 241 729 1 967 1034 155 151 100 228 

 Sweden Riksmaten 2010 807 1 336 1 301 800 1 989 807 184 173 128 238 

 United Kingdom NDNS Rolling Programme Years 1–3 706 1 127 1 106 627 1 701 706 171 167 116 240 
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Age class Country Survey Intake expressed in mg/day Intake expressed in mg/MJ 

n 
(a)

 Average Median P5 P95 n Average Median P5 P95 

65 to < 75 years Finland FINDIET2012 203 1 153 1 140 644 1 690 203 187 187 124 258 

 France INCA2 153 1 050 1 034 557 1 487 153 170 163 127 233 

 Ireland NANS_2012 77 1 372 1 333 819 2 069 77 202 198 145 261 

 Italy INRAN_SCAI_2005_06 157 1 098 1 082 631 1 643 157 159 155 114 219 

 Netherlands DNFCS 2007–2010 82 1 181 1 148 640 1 720 82 163 159 111 237 

 Sweden Riksmaten 2010 168 1 310 1 272 781 1 972 168 188 188 148 237 

 United Kingdom NDNS Rolling Programme Years 1–3 91 1 145 1 144 714 1 618 91 191 185 139 264 

≥ 75 years France INCA2 44 1 000 975 
(c)

 
(c)

 44 167 164 
(c)

 
(c)

 

 Ireland NANS_2012 43 1 294 1 275 
(c)

 
(c)

 43 207 200 
(c)

 
(c)

 

 Italy INRAN_SCAI_2005_06 159 1 075 1 080 623 1 490 159 161 155 117 218 

 Sweden Riksmaten 2010 30 1 330 1 316 
(c)

 
(c)

 30 189 189 
(c)

 
(c)

 

 United Kingdom NDNS Rolling Programme Years 1–3 83 1 162 1 139 728 1 596 83 193 194 140 249 

P5, 5th percentile; P95, 95th percentile; DIPP, Type 1 Diabetes Prediction and Prevention survey; DNFCS, Dutch National Food Consumption Survey; DNSIYC, Diet and Nutrition Survey of 

Infants and Young Children; EsKiMo, Ernährungsstudie als KIGGS-Modul; FINDIET, the national dietary survey of Finland; INCA, Étude Individuelle Nationale des Consommations 

Alimentaires; INRAN-SCAI, Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione – Studio sui Consumi Alimentari in Italia; FC_PREGNANTWOMEN, food consumption of pregnant 

women in Latvia; NANS, National Adult Nutrition Survey; NDNS, National Diet and Nutrition Survey; NWSSP, Nutrition and Wellbeing of Secondary School Pupils; VELS, Verzehrsstudie 

zur Ermittlung der Lebensmittelaufnahme von Säuglingen und Kleinkindern für die Abschätzung eines akuten Toxizitätsrisikos durch Rückstände von Pflanzenschutzmitteln. 

(a): Number of individuals in the population group. 

(b): The proportions of breast-fed infants were 58 % in the Finnish survey, 40 % in the German survey, 44 % in the Italian survey and 21 % in the UK survey. Most infants were partially breast-

fed. For the Italian and German surveys, breast milk intake estimates were derived from the number of breastfeeding events recorded per day multiplied by standard breast milk amounts 

consumed on an eating occasion at different age. For the UK survey, the amount of breast milk consumed was either directly quantified by the mother (expressed breast milk) or 

extrapolated from the duration of each breastfeeding event. As no information on the breastfeeding events were reported in the Finnish survey, breast milk intake was not taken into 

consideration in the intake estimates of Finnish infants. 

(c): 5th or 95th percentile intakes calculated from fewer than 60 subjects require cautious interpretation, as the results may not be statistically robust (EFSA, 2011a) and, therefore, for these 

dietary surveys/age classes, the 5th and 95th percentile estimates will not be presented in the intake results. 

(d): Pregnant women only. 
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Appendix D.  Minimum and maximum percentage contribution of different food groups (FoodEx2 level 1) to phosphorus intake in males  

Food groups Age 

 < 1 year 1 to < 3 years 3 to < 10 years 10 to < 18 years 18 to < 65 years 65 to < 75 years ≥ 75 years 

Additives, flavours, baking and processing aids < 1 < 1 0–1 0–1 0 0 0 

Alcoholic beverages < 1 < 1 < 1 < 1–1 2–5 1–4 1–3 

Animal and vegetable fats and oils < 1 < 1 < 1–1 < 1 < 1–1 < 1–1 < 1–1 

Coffee, cocoa, tea and infusions < 1 < 1–1 < 1–2 1–2 1–6 1–6 1–7 

Composite dishes < 1–3 < 1–8 < 1–9 < 1–13 < 1–12 1–10 < 1–10 

Eggs and egg products < 1–1 1–2 1–4 1–4 1–4 1–4 1–3 

Fish, seafood, amphibians, reptiles and invertebrates < 1–1 1–6 1–5 1–6 2–7 3–9 5–9 

Food products for young population 26–50 2–8 < 1–1 < 1 < 1 – – 

Fruit and fruit products 1–6 2–3 1–2 1–2 1–2 1–3 1–3 

Fruit and vegetable juices and nectars < 1–1 < 1–1 1–2 1–2 < 1–1 < 1–1 < 1–1 

Grains and grain-based products 4–16 18–27 16–33 19–34 20–29 20–33 21–35 

Human milk < 1–16 < 1 – – – – – 

Legumes, nuts, oilseeds and spices < 1–2 1–3 1–4 1–3 2–4 1–4 1–3 

Meat and meat products 1–9 5–11 9–19 12–23 14–25 12–23 11–21 

Milk and dairy products 17–29 42–48 32–52 23–47 19–35 18–35 20–30 

Products for non-standard diets, food imitates and food 

supplements or fortifying agents 

0–1 0–1 0–1 < 1 < 1–1 < 1–1 0–1 

Seasoning, sauces and condiments < 1–1 < 1–1 < 1–1 < 1–1 < 1–1 < 1–1 < 1–1 

Starchy roots or tubers and products thereof, sugar plants < 1–6 1–5 2–6 2–7 2–6 2–5 3–5 

Sugar, confectionery and water-based sweet desserts < 1 < 1–3 1–5 1–5 < 1–1 < 1–1 < 1–1 

Vegetables and vegetable products 1–7 2–3 2–4 2–5 2–6 2–6 2–6 

Water and water-based beverages < 1 < 1–1 < 1–2 1–4 < 1–3 < 1–1 < 1 

“–” means that there was no consumption event of the food group for the age and sex group considered, whereas “0” means that there were some consumption events, but that the food group 

does not contribute to phosphorus intake in the age and sex group considered. 
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Appendix E.  Minimum and maximum percentage contribution of different food groups (FoodEx2 level 1) to phosphorus intake in females  

Food groups Age 

 < 1 year 1 to < 3 years 3 to < 10 years 10 to < 18 years 18 to < 65 years 65 to < 75 years ≥ 75 years 

Additives, flavours, baking and processing aids < 1 0 0–1 0–1 0 < 1 0 

Alcoholic beverages < 1 < 1 < 1 < 1 < 1–2 < 1–1 < 1–1 

Animal and vegetable fats and oils < 1 < 1 < 1–1 < 1–1 < 1–1 < 1–1 < 1–1 

Coffee, cocoa, tea and infusions < 1–3 < 1–5 < 1–2 < 1–2 1–7 1–7 1–7 

Composite dishes < 1–3 < 1–7 < 1–9 < 1–13 1–12 < 1–9 < 1–10 

Eggs and egg products < 1–1 1–2 1–4 1–4 1–3 1–3 1–4 

Fish, seafood, amphibians, reptiles and invertebrates < 1–2 1–7 < 1–5 1–7 2–7 3–9 3–8 

Food products for young population 23–60 2–9 < 1 < 1 < 1 – < 1 

Fruit and fruit products 2–5 2–3 1–2 1–3 1–3 2–4 2–4 

Fruit and vegetable juices and nectars < 1–1 < 1–1 1–2 1–2 < 1–1 < 1–1 < 1–1 

Grains and grain-based products 10–16 17–28 17–33 21–33 19–38 18–32 17–33 

Human milk < 1–6 < 1 – – – – – 

Legumes, nuts, oilseeds and spices < 1–3 1–3 1–4 1–3 2–4 2–4 2–3 

Meat and meat products 1–8 5–10 8–19 11–22 12–21 12–20 10–19 

Milk and dairy products 10–38 40–52 32–53 22–45 21–39 23–36 23–33 

Products for non-standard diets, food imitates and food 

supplements or fortifying agents 

0 0–1 0–1 < 1–1 < 1–2 < 1–1 0–2 

Seasoning, sauces and condiments < 1 < 1–1 < 1–1 < 1–1 < 1–1 < 1–1 < 1–1 

Starchy roots or tubers and products thereof, sugar plants 1–6 2–4 2–6 2–8 2–6 2–5 2–4 

Sugar, confectionery and water-based sweet desserts < 1–1 < 1–2 1–5 1–5 < 1–2 < 1–1 < 1–1 

Vegetables and vegetable products 2–7 2–3 2–4 3–5 2–7 2–7 2–6 

Water and water-based beverages < 1 < 1–1 < 1–2 < 1–3 < 1–2 < 1 < 1 

“–” means that there was no consumption event of the food group for the age and sex group considered, whereas “0” means that there were some consumption events, but that the food group 

does not contribute to phosphorus intake in the age and sex group considered. 
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Appendix F.  Calculations for deriving Adequate Intakes for phosphorus 

The below calculations are based on the AI (for infants aged 7–11 months) and the PRIs (for all other 

ages) for calcium (EFSA NDA Panel, 2015), as well as on atomic masses for calcium of 40.08, and of 

30.97 for phosphorus. A molar ratio of 1.4:1 to 1.9:1 was used (Sections 2.3.7 and 6.1). 

Age AI for 

calcium 

(mg/day) 

PRI for calcium 

(mg/day) 

Calculated value for 

phosphorus (mg/day) 

based on a ratio of 1.9:1 

Calculated value for 

phosphorus (mg/day) 

based on a ratio of 1.4:1 

7–11 months 280  114 155 

1–3 years  450 183 248 

4–10 years  800 325 442 

11–17 years  1 150 468 635 

Adults 18–24 years 
(a)

   1 000 407 552 

Adults ≥ 25 years 
(a)

  950 386 524 

AI, Adequate Intake; PRI, Population Reference Intake.  

(a): Including pregnant and lactating women. 
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ABBREVIATIONS 

1,25(OH)2D 1,25-dihydroxy-vitamin D (the active metabolite of vitamin D) 

Afssa Agence française de sécurité sanitaire des aliments 

AI Adequate Intake 

AR Average Requirement 

ATBC Alpha-Tocopherol Beta-Carotene Cancer Prevention 

ATP adenosine triphosphate 

BMC bone mineral content  

BMD bone mineral density  

cAMP cyclic adenosine monophosphate 

cGMP cyclic guanosine monophosphate 

COMA Committee on Medical Aspects of Food Policy 

CI confidence interval 

CV coefficient of variation 

CVD cardiovascular disease 

D-A-CH Deutschland–Austria–Confoederatio Helvetica 

DH UK Department of Health 

DIPP Type 1 Diabetes Prediction and Prevention 

DNFCS Dutch National Food Consumption Survey  

DNSIYC Diet and Nutrition Survey of Infants and Young Children 

DRV Dietary Reference Value  

DXA dual-energy X-ray absorptiometry 

EAR Estimated Average Requirement 

EsKiMo Ernährungsstudie als KIGGS-Modul 

FAO Food and Agriculture Organization of the United Nations 

FC_PREGNANTWOMEN food consumption of pregnant women in Latvia 

FFQ food frequency questionnaire 
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FGF-23  fibroblast growth factor-23 

FINDIET the national dietary survey of Finland 

HR hazard ratio 

INCA Étude Individuelle Nationale des Consommations Alimentaires 

INRAN-SCAI Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione – Studio 

sui Consumi Alimentari in Italia 

IOM US Institute of Medicine of the National Academy of Sciences 

NANS  National Adult Nutrition Survey  

NaPi-IIa, NaPi-IIb, NaPi-IIc  sodium-dependent phosphate transporters  

NDNS National Diet and Nutrition Survey 

NHANES National Health and Nutrition Examination Survey 

NNR Nordic Nutrition Recommendations 

NWSSP Nutrition and Wellbeing of Secondary School Pupils 

PRI Population Reference Intake 

PTH parathyroid hormone 

RDA Recommended Dietary Allowance 

RI Recommended Intake 

RNI Reference Nutrient Intake 

RR relative risk 

SCF Scientific Committee for Food 

SD standard deviation 

sFRP-4 secreted frizzled-related protein 4  

SU.VI.MAX SUpplémentation en VItamines et Minéraux Anti-oXydants 

UL Tolerable Upper Intake Level 

VELS Verzehrsstudie zur Ermittlung der Lebensmittelaufnahme von 

Säuglingen und Kleinkindern für die Abschätzung eines akuten 

Toxizitätsrisikos durch Rückstände von Pflanzenschutzmitteln 

WHO World Health Organization 
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