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Abstract. We describe the theoretical basis, implementation,

and validation of a new parametrisation that accounts for

the effect of large offshore wind farms on the atmosphere

and can be used in mesoscale and large-scale atmospheric

models. This new parametrisation, referred to as the Explicit

Wake Parametrisation (EWP), uses classical wake theory to

describe the unresolved wake expansion. The EWP scheme

is validated for a neutral atmospheric boundary layer against

filtered in situ measurements from two meteorological masts

situated a few kilometres away from the Danish offshore

wind farm Horns Rev I. The simulated velocity deficit in the

wake of the wind farm compares well to that observed in the

measurements, and the velocity profile is qualitatively simi-

lar to that simulated with large eddy simulation models and

from wind tunnel studies. At the same time, the validation

process highlights the challenges in verifying such models

with real observations.

1 Introduction

Wind turbines capture the kinetic energy of the wind with

their turning blades, which transfer the energy to a transmis-

sion system that drives an electric generator. In this process

the flow in front and behind a wind turbine is decelerated by

the forces acting on the rotating blades. In large wind farms,

the interaction of the flow and the wind turbines is further

complicated by the interaction of the wake of one wind tur-

bine with neighbouring turbines. Besides the changed veloc-

ity field around the turbines, there is also evidence that wind

turbines affect planetary boundary layer (PBL) processes due

to the changed turbulence (Baidya Roy et al., 2004; Calaf

et al., 2010; Baidya Roy and Traiteur, 2010; Barrie and Kirk-

Davidoff, 2010; Wang and Prinn, 2010; Lu and Porté-Agel,

2011; Hasager et al., 2013; Fitch et al., 2013a).

Coastal regions are expected to become major areas for

wind energy production, since winds there are generally

strong, steady, and less turbulent. To obtain an optimal yield,

which is, among other things, a function of power produc-

tion, electrical cabling, and installation costs, it is often con-

venient to group wind farms together. Examples are the Dan-

ish Rødsand 2 and Nysted or the Belgian Belwind, North-

wind, and Thornton wind farms, in which the wind farm sep-

aration is only a few kilometres. In planning new wind farms

near existing ones it is important to estimate the velocity per-

turbation from the nearby farm as accurately as possible, be-

cause the power production is highly sensitive to the wind

speed. Velocity deficits behind wind farms can be consid-

erable. Christiansen and Hasager (2005), for example, found

for near-neutral atmospheric stability, velocity deficits of 2 %

up to 20 km downstream of the Horns Rev I (25 km2) wind

farm. The accurate measurement of wakes from nearby farms

becomes even more important in light of the fact that as of

2015 large offshore wind farms cover areas of up to 100 km2.

Mesoscale models are suitable tools to estimate wind energy

resources in these sea areas (Hahmann et al., 2014). How-

ever, the collective effect of the wind turbines to the flow

needs to be included in these models, and because these oc-

cur at scales smaller than the model’s grid size and remain

unresolved, the effects have to be parametrised.

The parametrisation of the effect of wind turbines largely

depends on the model and its mesh size. For instance large

eddy simulation (LES) models, while resolving the local flow

around wind turbines, need to parametrise the local drag

forces on the turbine blade (Porté-Agel et al., 2011; Wu and

Porté-Agel, 2013). The grid spacing of mesoscale models,
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on the other hand, is on the order of kilometres and tens of

metres in the horizontal and vertical direction, respectively.

This means that the profile of the turbine-induced velocity

deficit can be captured to some extent in the vertical direc-

tion. However, the downstream development of the velocity

remains completely unresolved for scales smaller than the

grid size. The major challenge in the parametrisation is to

account for the unresolved relevant processes in agreement

with the flow equations of the model. In recent years, steady

progress has been made in the parametrisation of the effect of

wind farms in global and mesoscale models: from the repre-

sentation of wind farms by an increased roughness length in

Keith et al. (2004) and Frandsen et al. (2009), up to the more

advanced drag approaches in Adams and Keith (2007), Bla-

hak et al. (2010), Baidya Roy (2011), Jacobson and Archer

(2012), Fitch et al. (2012), Fitch et al. (2013b), and Abkar

and Porté-Agel (2015). Apart from a local drag force, an ad-

ditional turbulence kinetic energy (TKE) source term is as-

sumed in the schemes proposed by Adams and Keith (2007),

Blahak et al. (2010), Fitch et al. (2012), and Abkar and Porté-

Agel (2015).

In this article we develop a new approach, which is here-

after referred to as the Explicit Wake Parametrisation (EWP).

We define the TKE from random fluctuations around the

ensemble-averaged velocity, instead of around the grid-cell-

averaged velocity as done in the previous parametrisations.

Therefore, to be consistent with the flow equations of the

model, we apply a grid-cell-averaged drag force, and addi-

tional TKE is only provided by the PBL scheme where there

is an increased vertical shear in horizontal velocity compared

to the free-stream velocity profile.

We implemented the EWP scheme in the open-source

Weather Research and Forecast (WRF) model (Skamarock

et al., 2008). The WRF model already includes a wind farm

parametrisation option (Fitch et al., 2012), denoted as WRF-

WF, which has been validated against wind farm measure-

ments (Jiménez et al., 2014). We validated the WRF-WF

and EWP parametrisations against long-term meteorological

(met) mast measurements in the wake of an offshore wind

farm. To our knowledge, measurements in the wake of a wind

farm have not been used for the validation of a wind farm

parametrisation model in previous literature.

In Sect. 2, we explain the theoretical basis of the EWP

scheme and its implementation in the WRF model. Section 3

describes the measurements, whereas Sect. 4 introduces the

WRF model setup and the configuration of the EWP and

WRF-WF scheme. In Sect. 5 both wind farm parametrisa-

tions are validated against the met mast measurements in the

wake of the wind farm. A discussion of the results finalises

the article in Sect. 6, followed by the conclusions in Sect. 7.
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Figure 1. A sketch of the downstream development of a turbine-

induced velocity reduction. The x axis indicates the grid-cell size.

The grey line represents the instantaneous velocity and the coloured

lines the averaged values. The difference between the average and

instantaneous velocity defines the turbulence fluctuation at each dis-

tance.

2 The Explicit Wake Parametrisation

We start by introducing the relevant mesoscale model equa-

tions. Thereafter, the additional terms that represent the ef-

fect of the wind turbines are derived and added to the model

equations. At the end of the section their implementation in

the mesoscale model is described.

2.1 The mesoscale model framework

Wind turbines are well described by drag devices that slow

down the wind velocity from a free-stream value u. Down-

stream, due to mixing of fluid particles from within and out-

side the wake, the velocity deficit is gradually reduced to the

point at which the background conditions are restored.

We use a mesoscale model for the simulation of the wind

farm wake and its recovery. It uses the Reynolds-averaged

Navier–Stokes (RANS) equations,

∂ ui

∂ t
+ uj

∂ ui

∂ xj
+
∂ u′iu

′

j

∂ xj

=−
1

ρ

∂ p

∂xi
− 2εijk�j uk − δi3 g+ f di , (1)

to describe the flow evolution. We use an overline to denote

ensemble-averaged quantities and a prime for a fluctuation

around the ensemble average. The exception is the average

air density ρ(x, t), where t denotes the time and x the po-

sition. In Eq. (1), ui(x, t) and p(x, t) represent the mean

velocity components and the pressure, whereas �j and g

are the Earth’s rotation vector and the gravitational acceler-

ation constant. Furthermore, the rightmost term f di (x, t) is

the ensemble-averaged horizontal forcing due to the action

of wind turbines (f d3
= 0).
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Mesoscale models generally simulate the effects of turbu-

lence in the vertical direction only. The components of the

Reynolds stress are parametrised in a 1.5-order PBL scheme

as

u′iu
′

3 =−Km

∂ ui

∂ x3

, (2)

where the turbulence diffusion coefficient for momentum,

Km(x, t)= Sm`
(
u′iu
′

i

) 1
2
, depends on the stability function

Sm(x, t), the turbulence length scale `(x, t), and the TKE

per unit mass, u′iu
′

i/2. We write the most general form of the

TKE equation:

∂ e

∂t
+ T = ps+pb+pt− ε, (3)

where on the left hand side (l.h.s.) e denotes the TKE and

T the transport, which includes the advection by the mean

flow, turbulence transport of TKE, and the divergence of the

pressure correlation. On the right hand side (r.h.s.), ps rep-

resents the turbulence production from the vertical shear in

the horizontal velocity (shear production), pb the turbulence

production or destruction related to buoyancy forces, pt the

turbulence induced by the turbine rotor, and ε the dissipation.

2.2 The mesoscale model grid

For the mesoscale model, the previously defined variables

in the Eqs. (1) and (3) have to be redefined on the three-

dimensional model grid. For the parametrisation, we aim

to obtain expressions for the volume-averaged drag force,

〈f d 〉, and the volume-averaged turbulence induced by the

turbine, 〈pt 〉, that are consistent with the mesoscale model

flow equations. Here, the angle brackets denote the volume

average.

A new volume-averaged velocity equation is derived by

integrating Eq. (1) over the grid-cell volume. This gives the

expression for 〈f d 〉, which is derived in the following sec-

tion (Sect. 2.2.1).

The derivation of the additional term 〈pt 〉 depends on

the definition of the velocity perturbation. Formally, a veloc-

ity perturbation is the difference between the instantaneous

and ensemble-averaged velocity. For homogeneous flows,

the spatially averaged velocity can be used for the defini-

tion of a velocity fluctuation, since the ensemble average

can be approximated by the spatial average. However, the

flow around wind turbines is non-homogeneous and conse-

quently the spatial and ensemble average deviate. This has

been illustrated in Fig. 1. Double averaging (ensemble and

spatial) allows for the total kinetic energy to be separated

into three components. The definition of the term 〈pt 〉 in the

TKE equation will then depend on which of the three com-

ponents contribute to the mean and which to the turbulence

kinetic energy. In Appendix A, we discuss in more detail the

double averaging and the ways mean and turbulence kinetic

energy can be described.

In the EWP scheme, we follow Raupach and Shaw (1982)

and Finnigan and Shaw (2008) and define a turbulence fluctu-

ation around the ensemble mean (approach 1 in Appendix A).

Therefore, we include only the random motion in the TKE.

With this definition, the additional term becomes 〈pt 〉 =

〈u′i,hf
′

di
〉, where h is the hub height of the turbine. When we

use fdi =−ρAr ct u
2
i,h/2 for the drag force, where ct(u) is

the thrust coefficient and Ar the rotor area, we obtain:

〈pt 〉 = 〈ui,h fdi 〉− 〈ui,h f di
〉

= −ρAr ct〈 (ui,h+ u
′

i,h)u
2
i,h〉/2+ ρAr ct〈ui,h u

2
i,h 〉/2

≈−ρAr ct

〈
ui,h u

′

i
2

,h

〉
. (4)

This term represents a sink of TKE due to the extraction of

momentum. The magnitude of this term is much smaller than

the additional term in the WRF-WF scheme (see Sect. 4.1.2).

Therefore, the additional term 〈pt 〉 is neglected in the EWP

approach. Additional turbulence is generated by shear pro-

duction, which we assume to be the dominant mechanism on

the grid-cell average.

In the following sections, we derive the expression for the

grid-cell-averaged 〈f d 〉.

2.2.1 The sub-grid wake expansion

The velocity deficit expansion in the vertical direction within

one grid cell is not negligible, which leads to flow decelera-

tions that extend beyond the rotor-swept area. This part of the

wake expansion is not accounted for in the mesoscale model,

hence we estimate it explicitly with a sub-grid-scale (turbu-

lence) diffusion equation. Then, a grid-cell-averaged force is

determined and added to the model RANS equations.

In this model, we assume the horizontal advection of ve-

locity and the turbulence diffusion to dominate in Eq. (1).

Considering first only the flow behind the turbine rotor, we

obtain the diffusion equation from Eqs. (1) and (2):

uo

∂

∂ x
(uo− û)=K

∂2

∂ z2
(uo− û)+K

∂2

∂ y2
(uo− û) , (5)

which describes the expansion of the velocity deficit, uo− û,

behind the turbine. Here, uo = |u(h, t)| denotes the advec-

tion velocity at hub height and û(x) the unresolved veloc-

ity in the stream-wise direction x in the wake of the tur-

bine. The turbulence diffusion, which causes the wake ex-

pansion, is described by a single turbulence diffusion coef-

ficient K(x,y, t)=Km(x,y,h, t) in Eq. (2) and is given by

the PBL scheme in WRF.

2.2.2 The velocity deficit profile

We define the vertical structure of the velocity deficit as

ud = us ξ , where us(x) is the maximum velocity deficit at

the centre of the wake and ξ(x,y,z) a function that deter-

mines the wake expansion (Tennekes and Lumley, 1972).

www.geosci-model-dev.net/8/3715/2015/ Geosci. Model Dev., 8, 3715–3731, 2015
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Equation (5) can be solved for the velocity deficit profile:

ud = us exp

[
−

1

2

(
z−h

σ

)2

−
1

2

( y
σ

)2
]
, (6)

where the length scale, σ , that determines the wake expan-

sion is

σ 2
=

2K

uo

x+ σ 2
o . (7)

Equation (6) describes the ensemble-averaged profile of the

velocity deficit around hub height at a given point in the

far wake (Tennekes and Lumley, 1972). Equation (7) rep-

resents the vertical wake extension, resulting from turbulent

diffusion of momentum, and it is similar to the solution of

Eq. (4.29) in Wyngaard (2010) for the dispersion of plumes.

Normally, the turbine wake is divided into a near and far

wake, where the far wake begins between 1 and 3 rotor diam-

eters (Vermeer et al., 2003; Crespo and Hernández, 1996). In

the parametrisation, we account for the near-wake expansion

in the initial length scale σo and describe the unresolved far

wake expansion with Eq. (6).

We can find the velocity deficit profile for wind turbines

by equating the total thrust to the momentum removed by the

action of the wind turbine, i.e.

1

2
ρ ctπ r

2
o u

2
o =

∞∫
−∞

∞∫
−∞

ρ uoud dzdy = ρ uo us2π σ
2, (8)

where ro is the radius of the rotor. In Eq. (8), the l.h.s. repre-

sents the local forces at the rotor swept area, whereas the

r.h.s. describes the equivalent distributed force for the ex-

panded wake at any x. From the Eqs. (8) and (6), we find

the velocity deficit profile for a specific thrust force,

ud =
ct r

2
o uo

4σ 2
exp

[
−

1

2

(
z−h

σ

)2

−
1

2

( y
σ

)2
]
. (9)

When we insert the velocity deficit of Eq. (9) in the second

term of Eq. (8) and integrate in the cross-stream direction y,

we have the integrated thrust profile

f d =

∞∫
−∞

∞∫
−∞

ρ uoud dzdy

=

∞∫
−∞

ρ

√
π

8

ct r
2
o u

2
o

σ
exp

[
−

1

2

(
z−h

σ

)2
]

dz. (10)

The term on the r.h.s. within the integral describes the equiv-

alent distributed thrust force in the vertical direction at any

distance x. Next, we derive from Eq. (10) a single effective

thrust force, which represents the average wake expansion

within a grid cell.

2.2.3 Turbine forcing in the mesoscale model

For the mesoscale model we derive an effective thrust force,

which describes the average wake expansion within a grid

cell. Therefore, we first determine the effective velocity

deficit profile ue by averaging the velocity deficit of Eq. (9)

over the cross-stream direction y and over a downstream dis-

tance L that the wake travelled within the grid cell. It is

convenient to approximate this area-averaged velocity deficit

profile by a Gaussian-shaped profile:

ue =

√
π

8

ct r
2
o uo

σe

exp

[
−

1

2

(
z−h

σe

)2
]
∼=

1

L

L∫
0

∞∫
−∞

ud dy dx.

(11)

In Appendix B, we compare the area-averaged velocity

deficit profile to the approximated Gaussian-shaped profile.

In Eq. (11), σe is the effective length scale that is related to

the model grid size,

σe =
1

L

L∫
0

σ dx =
uo

3KL

[(
2K

uo

L+ σ 2
o

) 3
2

− σ 3
o

]
. (12)

From the definition of the effective length scale, we can ob-

tain the total effective thrust force f e by substituting the

length scale σ in Eq. (10) with the effective length scale σe.

This gives

f e =

∞∫
−∞

ρ

√
π

8

cr r
2
o u

2
o

σe

exp

[
−

1

2

(
z−h

σe

)2
]

dz. (13)

The grid-cell-averaged acceleration for the model RANS

equations, Eq. (1), is now obtained when we divide Eq. (13)

by the mass and apply the grid-cell volume. For every verti-

cal model layer k, we then obtain from Eq. (13) the grid-cell-

averaged acceleration components,

〈f d1
(k) 〉 = −

√
π

8

ct r
2
o u

2
o

1x1y σe

exp

[
−

1

2

(
z−h

σe

)2
]

cos[ϕ(k)]

(14)

and

〈f d2
(k) 〉 = −

√
π

8

ct r
2
o u

2
o

1x1y σe

exp

[
−

1

2

(
z−h

σe

)2
]

sin[ϕ(k)],

(15)

in the x and y direction, respectively. In Eqs. (14) and (15),

we use 1x and 1y for the horizontal grid spacing in the

x and y direction and ϕ(k) for the wind direction. For the

height z(k), we use the height at the centre of layer k.
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2.3 Implementation in the WRF model

We assume every turbine within a grid cell to be positioned

at its centre and use L=1x/2 in Eq. (12). In the numerical

model, Eqs. (14) and (15) are added to the numerical approx-

imation of Eq. (1). Furthermore, Eq. (12) is used to determine

the effective length scale σe of the vertical wake extension.

At every time step the total thrust force within a grid cell

is obtained from a superposition of the single turbine thrust

forces.

To a first approximation, we use the grid-cell-averaged ve-

locity at hub height, 〈uo,h 〉, as the upstream velocity uo for

all turbines within the same grid cell (see Sect. 6). The tur-

bulence diffusion coefficient for momentum, K in Eq. (12),

comes from the selected PBL scheme. The parametrisation,

therefore, can be used with any PBL scheme. However, to be

consistent with the assumptions used in the derivation of the

wind farm parametrisation, a 1.5-order closure scheme with

a turbulence shear production term is recommended. A prac-

tical description of how to use the EWP scheme in the WRF

model is given in the section “Code availability” at the end

of the paper.

3 Wind farm and measurements

3.1 The Horns Rev I wind farm and met masts

The parallelogram-shaped Horns Rev I wind farm is situ-

ated in the North Sea about 15 km west of the Danish coast

(Fig. 2). It is made up of 80 Vestas V80 (2 MW) pitch-

controlled, variable-speed turbines, resulting in a total rated

wind farm capacity of 160 MW. The turbines have a swept-

area diameter of 80 m with the hub mounted at 70 m a.m.s.l.

The equally spaced turbines are placed in 10 columns from

west to east and 8 rows from north to south, labelled C1–C10

and R1–R8 in Fig. 2b. The spacing between columns and

rows is 560 m, which is equivalent to 7 turbine diameters.

Hansen et al. (2012) describe in detail the various produc-

tion data available at the wind farm as well as their quality

filtering and processing.

Turbine (C1, R7) is used as a reference turbine since it is

not affected by the wind farm wake under westerly flows; in

Fig. 2b it is marked with the solid bullet. The wind speed for

each turbine is estimated from the power production data,

using the turbine-specific power curve, and the wind direc-

tion is obtained from the adjusted yaw angle (Hansen et al.,

2012).

For the validation, we use data from two met masts, M6

and M7, whose positions are shown in Fig. 2b. The masts are

located 2 and 6 km to the east of the eastern edge of the wind

farm and are thus directly in its wake for westerly winds. The

70 m tall masts are identically equipped and their instrumen-

tation includes high-quality Risø cup anemometers for mea-

suring wind speeds. The 10 min averaged data from the two

masts, which are independent of the wind farm data, are used

to validate the modelled wind speed reductions downstream

from the wind farm.

3.2 Data selection and averaging for the validation

For the validation of the results of the model simulations, and

especially because of the relatively large area-averaged fields

in the mesoscale model, it is very important to ensure that

measurements and model fields are comparable. This can be

achieved by properly selecting the wind direction and wind

speed interval at the reference turbine.

Regarding the wind direction selection, for narrow wind

direction sectors, Gaumond et al. (2013) found a higher mea-

sured turbine production at Horns Rev I compared to that es-

timated by wake models. Most likely this is related to wind

direction variations, which, for small wind direction bins, ex-

ceed the bin size within the 10 min averaging period. Since

these variations are not accounted for in the model, we follow

the recommendation of averaging over a relatively large wind

direction interval. Furthermore, it is important that the flow

reaching the mast anemometers has passed through the wind

farm, as otherwise it does not characterise the wind farm

wake. Therefore, we select velocities whose directions are

at the reference turbine between 255 and 285◦. As demon-

strated in Fig. 2b, the flow from this sector is influenced by

the wind farm wake.

In the period 2005 to 2009, we select the 10 min aver-

aged wind speeds from 6.5 to 11.5 ms−1 at the reference tur-

bine and bin them in 1 ms−1 intervals. In this range, we are

guaranteed to be above the cut-in wind speed of the turbines

(4 ms−1) and below the wind speed at which the control sys-

tem starts to pitch the blades (13 ms−1). To obtain as many

data as possible, we do not filter the measurements on sta-

bility. For strong westerly winds, we expect the atmospheric

stability near to the ground on average to be neutral (Sathe

et al., 2011).

For every instance that the wind direction and wind speed

at the reference turbine was within the above-described

range, the wind speeds at M6 and M7 were accepted. Af-

terwards, the selected wind speeds were averaged for each

wind speed bin and normalised by the average wind speed at

the reference turbine uref (Table 1).

4 WRF model configuration and averaging

In the simulations we used the WRF model V3.4. How-

ever, the WRF-WF parametrisation has been updated to the

version available in WRFV3.6. The model domain is set

up with 80× 40 grid cells, with a horizontal grid spacing

1x =1y = 1120 m. This horizontal grid spacing, which is

twice the turbine separation, guarantees a constant number

of turbines per grid cell in the flow direction. Equally to the

Horns Rev I wind farm, the model wind farm contains 80
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Figure 2. Location (a) and layout (b) of the offshore wind farm Horns Rev I including two nearby masts (M6 and M7). The centre of the

wind farm and width of the sector (±15◦) used for the filtering of the measurements are indicated by the dashed lines.
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Figure 3. (a) Illustration of the model wind farm layout as applied in the mesoscale model. The squares indicate the model grid cells and the

wind turbines are marked with triangles. (b) Height (normalised by the turbine hub height) of the model mass-levels for the three simulations:

L40, L60, and L80. The solid grey line and the dashed lines mark the hub height and the upper and lower turbine blade tip, respectively.

Table 1. Average wind speed at the reference turbine (uref) and fre-

quency of the measurements at the met mast for all wind speed bins

within the wind direction range 255–285◦.

Wind speed bin uref Nobs at M6–M7

(ms−1) (ms−1)

7± 0.5 7.00 887

8± 0.5 7.95 933

9± 0.5 8.95 1097

10± 0.5 10.05 990

11± 0.5 11.05 729

V80 turbines and extends over five grid cells in the west–east

and north–south direction (Fig. 3a). The Vestas V80 thrust

and power curves were used for the turbine parameters.

The model was run in an idealised case mode with open

lateral boundary conditions (Skamarock et al., 2008, p. 51),

Coriolis forcing, and zero heat fluxes from the lower bound-

ary. At the surface, the no-slip condition holds. The to-

tal domain is located over water, and we prescribe a con-

stant roughness length of z0 = 2× 10−4 m, which follows

the World Meteorological Organization (WMO) standards.

The friction velocity is obtained with the Charnock formula.

The model simulations were run with the MYNN 1.5-order

level 2.5 PBL scheme (Nakanishi and Niino, 2009), on which

the WRF-WF scheme is dependent. These and other details

of the model configuration are summarised in Table 2.

We ran simulations for five wind speed intervals and for

nine wind directions, ranging from 255 to 285◦. Additionally,

to investigate the sensitivity to the vertical resolution, we set

up three experiments with 40 (L40), 60 (L60), and 80 (L80)

layers in the vertical direction. With these vertical resolutions
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Table 2. The WRF model configuration used in the simulations.

Number of grid cells in the horizontal plane (nx, ny): 80, 40

Horizontal grid spacing (km): 1.12

Domain size in x, y, z (km): 89.6, 33.6, 15

Wind farm extension (nx× ny): 5× 5

Boundary condition: OPEN

PBL scheme: Nakanishi and Niino (2009)

Surface layer scheme: MYNN Monin–Obukhov similarity theory

TKE advection: Yes

Perturbation Coriolis: Yes

Roughness length (m): 2× 10−4

Coriolis frequency (s−1) 1.2× 10−4

Table 3. Details of the WRF simulations.

Wind direction range (◦): 258.75–281.25

Wind direction interval (◦): 3.75

Wind speeds (ms−1): 7.0, 8.0, 9.0, 10.0, and 11.0

Number of vertical levels (nz): 40 (L40), 60 (L60), 80 (L80)

Wind farm parametrisation: None, WRF-WF, EWP

there are 5, 7, and 10 grid-cell volumes intersecting with the

turbine rotor as shown in Fig. 3b.

All 135 simulations (5 wind speeds, 9 wind directions,

and 3 vertical resolutions) were initialised with a constant

geostrophic wind in height in a dry and slightly stable atmo-

sphere. After a 4-day integration period, the wind converged

in the whole domain to a logarithmic neutral profile within

a 650 m deep boundary layer. The boundary layer was capped

by an inversion layer with a potential temperature gradient of

around 6 Kkm−1. Above the inversion layer the velocity re-

mained independent of height. The atmospheric state of each

of these 135 simulations was used to drive a control simula-

tion without wind farm parametrisation, a simulation with the

WRF-WF scheme, and a simulation with the EWP scheme.

We used the restart option in the WRF model to initialise

these simulations.

Each control or wind farm simulation lasted 1 day, result-

ing in a total simulation length of 5 days. The wind speeds

in the control simulations were 7, 8, 9, 10, and 11 ms−1 at

70 m (hub height) after 5 days of simulation. We ended up

with the desired magnitude of the geostrophic wind by con-

ducting several experiments with different initialisations.

To summarise, we performed simulations for 9 wind di-

rections, 5 wind speeds, and 3 vertical resolutions, with and

without wind farm parametrisation, which gives a total of

405 (3 times 135) simulations as outlined in Table 3. For

the validation against the mast measurements, we averaged

the model wind speeds over the nine wind directions with

a uniform direction distribution. We used the instantaneous

wind speeds at the end of the simulation period for the val-

idation. Like for the observations, we normalise the wind-
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Figure 4. Measured and simulated hub-height velocity within the

wind farm. The lines show the model-simulated velocities averaged

over wind direction with an initial length scale σo = 1.7 ro for the

three vertical resolutions (L40, L60, and L80). The diamonds repre-

sent the measured turbine velocity averaged over each row and the

bars indicate their standard deviations. The crosses mark the veloc-

ity at the grid-cell centre. The normalised velocity for σo = 1.5 ro
and σo = 1.9 ro is shown with red and blue dots.

direction-averaged wind speeds and hereafter simply refer to

them as “velocity”. The model wind speeds from the simula-

tions without the wind farm were used to normalise the wind

farm flow.

4.1 Wind farm parameters

4.1.1 The EWP scheme

We use the wind speeds, derived from the power production

data of the turbines, to determine the initial length scale σo in

Eq. (12). To a first approximation, the initial length scale is

defined to be independent of the upstream conditions, and it

is therefore the same for all turbines. The initial length scale

is assumed to scale with the rotor radius and accounts for the

near-wake expansion.

For this calibration, we selected turbine production data

at time stamps when the derived upstream wind speed and

wind direction at the reference turbine ranged from 8.5 to

9.5 ms−1 and from 255 to 285◦. This wind speed bin was se-

lected since it contains the most turbine observations. It has
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a minimum of 850 observations for a turbine at the eastern

edge of the wind farm and a maximum of 1612 observations

for a turbine in the first wind farm column. The difference

in the selected number of observations results from the ad-

ditional requirement that, for a given turbine, the local up-

stream turbines have to be operational in order to guarantee

wake losses. For the power production data obtained in this

way, we used the power curve to derive the wind speed. The

column-averaged velocity was afterwards derived by averag-

ing over the inner six rows (R2–R7). The outer rows were

excluded because they experience different wake conditions

under various wind directions.

Similarly to the model experiments in Sect. 4, we per-

formed simulations for nine wind directions between 255 and

285◦ for the three vertical resolutions with a wind speed at

hub height of 9 m s−1. To determine the best-fitting value,

we varied for the EWP simulations the initial length scale for

all turbines from σo = ro to σo = 2 ro, stepping with 1ro =

0.1. For the comparison to the measurements, the column-

averaged wind speed was obtained by averaging over the 3

central wind farm grid cells in the cross-stream direction.

The lines in Fig. 4 show the hub-height velocity from the

simulations with σo = 1.7 ro, which had the smallest over-

all bias compared to the measurements. Additionally, the

coloured dots indicate the sensitivity to the initial length scale

for σo = 1.5 and 1.9 ro. The figure shows the same veloc-

ity reduction for all three vertical resolutions. Consequently,

the amount of energy extracted by the turbines is indepen-

dent of the vertical resolution. The simulations with an initial

length scale σo = 1.7ro follow the measured velocity reduc-

tion fairly well. We use this length scale for all simulations

in Sect. 5.

4.1.2 The WRF-WF scheme

In the validation, we also include results from the wind farm

parametrisation WRF-WF from WRF-V3.6. This parametri-

sation was introduced in WRFV3.3 by Fitch et al. (2012).

In this approach, the grid-cell-averaged force, 〈f d 〉, is ap-

proximated by the local forcing term at the turbine rotor.

The scheme applies a fraction of the total drag force to ev-

ery model level that intersects with the blade-sweep area of

the wind turbine. Thus the scheme simulates the local drag

forces over the turbine rotor. The additional TKE source term

is parametrised as

〈pt,WRF-WF 〉 = ρAr (ct− cp)〈 |u| 〉
3/2, (16)

where cp is the power coefficient of the turbine and 〈 |u| 〉

the absolute value of the grid-cell velocity. The application

of one-dimensional theory (Hansen, 2003) to Eq. (16) gives

pt,WRF-WF = ρAr ct a 〈 |u| 〉
3/2 for the additional TKE term.

Here, a denotes the induction factor.

The same result, 〈pt,WRF-WF 〉 = ρAr ct a 〈 |u| 〉
3/2, is ob-

tained by defining a velocity fluctuation as the difference

between the grid-cell-averaged velocity and the instanta-

neous velocity (approach 2 in Appendix A). In Fig. 1,

this velocity fluctuation has been denoted by u′′. An an-

alytical derivation can be found in Abkar and Porté-Agel

(2015) (their Eq. 21, with their ξ = 1). In this definition of

TKE, the turbine-induced velocity reduction is counted as

TKE. For the considered wind speeds, the absolute value of

〈pt,WRF-WF 〉 is around 30 times larger than 〈pt 〉 defined in

Eq. (4), which comes from the different definition of TKE in

the two schemes. For example, for 10 ms−1 with ct = 0.79,

cp = 0.43, and 〈 u′i
2

,h
〉 = 0.7 m2 s−2 at hub height, the ratio

between 〈pt,WRF-WF 〉 and 〈pt 〉 as has been defined in Eq. (4)

is 32.

In Sect. 5, we use the updated WRF-WF parametrisation

from WRFV3.6, which has no free parameters. The power

and thrust coefficients come from the Vestas V80 turbine.

5 Validation of the wind farm parametrisations

To obtain a complete picture of the modelled velocity field

within and downstream of the Horns Rev I wind farm, we

compare (1) the velocity decay in the wake of the wind farm

from the two wind farm parametrisations to the measure-

ments for the 10 ms−1 wind speed bin, and (2) the modelled

velocities to the measurements at M6 (2 km downstream) and

M7 (6 km downstream) for all five wind speeds (7, 8, 9, 10,

and 11 ms−1). We recall that the initial length scale used in

the EWP scheme has been determined for 9 ms−1.

In a qualitative validation, we examine the velocity reduc-

tion behind the wind farm and the profile of the velocity

deficit. Furthermore, we discuss the vertical structure of the

modelled TKE field from the discretised Eq. (3), where the

additional term 〈pt 〉 has been parametrised in the WRF-WF

scheme and neglected in the EWP scheme. We use results

from independent LES simulations and wind tunnel experi-

ments as a reference.

In the validation, we use the instantaneous model outputs

from the converged flow field after the 5-day integration pe-

riod. Furthermore, the velocities are normalised as described

in the Sects. 3 and 4.

5.1 Velocity recovery at turbine hub height

Figure 5 shows the wind-direction-averaged hub-height ve-

locity (10 ms−1 bin) as a function of the downstream dis-

tance for the EWP and WRF-WF schemes and all vertical

resolutions. For the EWP scheme (Fig. 5a) there is no iden-

tifiable vertical resolution dependency on the velocity, while

for the WRF-WF (Fig. 5b) this is small. In the EWP scheme

the velocity within the wind farm decreases almost linearly

with distance. On the other hand, in the WRF-WF scheme it

decreases more rapidly in the first turbine columns and be-

comes nearly constant with distance at the end of the wind

farm. The behaviour in the EWP scheme suggests that no
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Figure 5. Hub-height velocity for the EWP (a) and WRF-WF (b)

parametrisations for the L40, L60, and L80 simulations and ob-

servations as a function of distance from the western edge of the

wind farm. The lines show the model simulated velocities, with the

crosses showing the velocity at the grid-cell centre. The diamonds

are used for the met mast measurements, and the bars are their stan-

dard deviation. The vertical dashed lines show the wind farm ex-

tension and the horizontal dotted line the velocity with the EWP

scheme at the easternmost grid cell.

equilibrium has been reached within the wind farm between

the extracted momentum by the wind turbines and the com-

pensating flux of momentum from above. On the other hand,

from the nearly constant velocity at the end of the wind farm

for the WRF-WF scheme, it seems that the extraction of mo-

mentum by the turbines is almost balanced by the flux of mo-

mentum from aloft. At the end of the wind farm the velocity

difference between the two schemes is only 0.1 %. We have

indicated the velocity from the EWP scheme at the most east-

erly grid cell of the wind farm with a dotted horizontal line in

Fig. 5. This agreement is noteworthy, given the two different

methods used. At M6, 2 km downstream of the wind farm,

the modelled velocity for both schemes is within the uncer-

tainty of the measurements. Nevertheless, the difference be-

tween the schemes is increased from 0.1 % at the end of the

wind farm to 4.7 % at M6. This means that, downstream of

the wind farm grid cells, where the wind farm parametrisa-

tions are not active, the velocity diverges for the two schemes

and its difference becomes significant. The near-wake recov-

ery is important, especially if the velocity was used to esti-

mate the power production on a neighbouring wind farm that

was located at this distance from the original wind farm. For

example, the Rødsand 2 and Nysted offshore wind farms in

southern Denmark are separated by a comparable distance.

Figure 6 depicts wind-direction-averaged velocity recov-

ery at the two met masts for all five wind speed bins and

all vertical resolutions. It shows the differences in the WRF-

modelled and measured wind speed at M6 (circles) and M7

(triangles) compared to the measured wind speed at the same

masts. The WRF-modelled wind speed is obtained from lin-

ear interpolation of the wind speeds in the nearest grid cells.

The modelled recovery rate can be deduced from the slopes

of the solid (between the values at M6 and M7) and dashed

lines (between M7 and the free-stream velocity). A negative

slope is linked to a slower modelled recovery compared to

that measured, whereas a positive slope shows a faster mod-

elled recovery. There is no vertical resolution dependency for

a wind farm parametrisation when the circles or triangles for

a given wind speed bin lie on top of each other.

The results show that the bias in velocity between the mea-

surements and the EWP simulations is small (< 0.15 ms−1)

for all wind speeds (except for the 7 ms−1 bin at M7). For

the EWP scheme, we find a positive velocity difference at

M6 and a negative one at M7. Hence, the modelled wake re-

covery oscillates between being slightly slower from M6 to

M7 and being slightly faster from the end of the wind farm

to M6, as well as from M7 to the end of the wake. The ve-

locity of the EWP scheme at M6 is nearly independent of the

vertical resolution, and at M7 the dependency is very weak.

The WRF-WF scheme shows a positive difference in ve-

locity of up to 0.5 ms−1 at M6. This difference, between

the WRF-WF scheme and the measurements, becomes larger

with increasing wind speed. The higher modelled velocity at

M6 is a consequence of the more rapid recovery of the mod-

elled wake compared to that of the measurements from the

end of the wind farm to M6. Between M6 and the point at

which the free-stream velocity is reached again, the modelled

wake recovery is slower than that measured. This overall

positive difference suggests that the modelled velocity with

the WRF-WF scheme is overestimated throughout the whole

wake.

Figure 7 shows the spatial structure of the modelled ve-

locity (10 ms−1 bin) within the wind farm and in the wake

of the wind farm for the L60 simulations in the 270◦ wind

direction. A comparison of the results from the two schemes

confirms the faster initial wind farm wake recovery in the

WRF-WF scheme. The 10 % velocity deficit contour, for ex-

ample, extends for the EWP scheme to around x = 15 km

(Fig. 7a), while for the WRF-WF scheme it extends to

x = 8 km (Fig. 7b). The difference in the distance at which

a 7.5 % velocity deficit is reached is even larger: after x = 21

and x = 11 km for the EWP and WRF-WF scheme, respec-

tively. Further downstream, after around 30 km, the velocity

fields from the two parametrisations become similar. Possi-

ble reasons for the difference in the initial wake recovery are

discussed in the next section.
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Figure 7. Horizontal view of the WRF-simulated velocity field at

hub height using the (a) EWP and (b) WRF-WF schemes. The sim-

ulations are for 10 ms−1 in the 270◦ wind direction and L60. The

dotted line indicates the latitudinal centre and the solid rectangle the

outer boundary of the wind farm.

Finally, Fig. 7 shows a difference in the orientation of the

axis of the velocity deficit downstream from the wind farm.

In both simulations the steady-state wind direction of the

free-stream flow was 270◦. As the velocity decreases within

the wind farm, the velocity is expected to turn to the north,

due to the changed Coriolis force. In the wind farm wake,

where the flow accelerates again, the velocity should turn

back again to the background direction. This effect is seen

for the EWP scheme (Fig. 7a). However, for the WRF-WF

scheme (Fig. 7b) the wake turns southward behind the wind

farm. A possible reason for this unexpected behaviour is the

turbulence transport of momentum from aloft (Ekman spiral)

within the wind farm. In the wind farm wake the flow keeps

turning to the south because of the flow acceleration from the

momentum transport.

5.2 Vertical profile of TKE and velocity

To obtain a broader understanding of the mechanisms acting

in the two schemes, we compare the simulated TKE (per unit

mass) and the velocity deficit profiles for the 10 ms−1 wind

speed bin in the 270◦ wind direction.

Figure 8 shows the difference in TKE (wind farm minus

control simulation) for the L60 simulation. The cross sec-

tions in the x–z plane are in the west–east direction and pass

through the centre of the wind farm. We used different colour

scales in the two plots, due to the relatively large differences

in TKE production between the two schemes. However, we

have kept the outermost contour (0.02 m2 s−2) the same. The

maximum TKE difference was 0.30 and 1.9 m2 s−2 for the

EWP and WRF-WF scheme, respectively.

Compared to the environmental TKE of the pure shear

flow (not shown), the TKE increases in the EWP scheme

(Fig. 8a) at the end of the wind farm by a factor of 2, whereas

in the WRF-WF scheme (Fig. 8b) it increases at hub height

by a factor of 5.5. The EWP scheme shows an increased and

decreased TKE above and below hub height compared to the

reference simulation. The maximum increase occurs behind

the wind farm, where the velocity gradients are the largest.

In the WRF-WF scheme, the maximum TKE increase hap-

pens at hub height within the wind farm. Recalling that in

simulations with the WRF-WF scheme turbulence is gener-

ated by the source term 〈pt 〉 and by the PBL scheme from
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Figure 8. Vertical cross section of the TKE difference (〈ewf 〉−

〈eref 〉) (m2 s−2) for the simulations for 10 m s−1 in the 270◦ wind

direction and L60 for the (a) EWP and (b) WRF-WF scheme. The

region in the model containing turbine blades is indicated by the

rectangle.

turbulence shear production (〈ps 〉), we find that the inten-

sity of 〈pt 〉 dominates over that of the shear production. The

sum of the additional source term and the turbulence shear

production causes within the wind farms an increased turbu-

lence from the lowest model level upwards.

We use the results from the actuator-disc approach without

rotation from Wu and Porté-Agel (2013) to obtain a qualita-

tive impression of the structure of the turbulence field from

an LES model within a wind farm. The actuator-disc ap-

proach from their LES model is most similar to the drag

approach in the mesoscale model. Their Fig. 5c shows that

higher and lower turbulence intensities dominate around the

upper and lower turbine blade tip. Also, a positive and neg-

ative shear stress occur above and below hub height (their

Fig. 7c). This indicates that the shear in velocity dominates

the turbulence production. Similar features are present in the

TKE field from the EWP scheme, where the increased and

decreased TKE above and below hub height are, in a simi-

lar manner, caused by an enhanced and reduced turbulence

shear production with respect to the neutral logarithmic ve-

locity profile. Furthermore, Wu and Porté-Agel (2013) show

an upper wake edge at around 4.5 turbine hub heights for

10 aligned wind turbines after 60 turbine diameters (their

Fig. 12). They defined the wake edge at the point where the

velocity reduction for a given height was 1 %. Similarly, the

edge of the wake can be found from an increased TKE due

to shear production. For the outermost contour in Fig. 8, we

obtain a vertical wake extension of around 5 turbine diame-

ters for the EWP scheme at 4.8 km downstream (equivalent

to 60 turbine diameters). At the same distance, it is around 7

turbine hub heights for the WRF-WF scheme.

The influence of the TKE field to the velocity profile is

analysed in Fig. 9. The figure shows the velocity deficit pro-

file 1〈ux 〉/〈uo,h 〉 for both schemes and all vertical res-

olutions. Here 〈uo,h 〉 denotes the free-stream velocity at

hub height. The velocity deficit is defined as 1〈ux(z) 〉 =

〈u(z) 〉− 〈ufree(z) 〉, where 〈ufree(z) 〉 is the free-stream ve-

locity profile from the reference simulation and 〈u(z) 〉 the

velocity profile from the wind farm simulation. The free-

stream velocities from the EWP and WRF-WF simulations

were visually indistinguishable. We choose the second and

third grid cell within the wind farm (C2 and C3) and the sec-

ond point behind the wind farm (C7) that corresponds ap-

proximately to the location of M6.

Figure 9a shows the velocity deficit profiles from the EWP

and WRF-WF scheme from the L60 simulation. The profiles

indicate a stronger diffusion in the WRF-WF scheme com-

pared to that in the EWP scheme. This can be recognised by

the vertical extension of the vertical deficit profile at C7, be-

hind the wind farm.

For the EWP scheme (Fig. 9b), we find a maximum ve-

locity deficit at hub height and symmetric features around

the maximum for the L40 and L80 simulations. Also, re-

sults from LES simulations, wind tunnel experiments, and

measurements (Vermeer et al., 2003; Wu and Porté-Agel,

2013; Iungo et al., 2013) have a maximum velocity deficit

at hub height in the far turbine wake for a neutral boundary

layer. The profiles in Vermeer et al. (2003) (their Fig. 36)

and in Wu and Porté-Agel (2013) (their Fig. 4) additionally

show symmetric features around the maximum with a shape

similar to the velocity profile of the EWP scheme. Fig-

ure 9b demonstrates the vertical resolution independence of

the EWP scheme within the wind farm: the velocity deficits

of the L40 and L80 simulations are almost identical. A small

difference is found below hub height in the wind farm wake.

With the WRF-WF scheme (Fig. 9c) the maximum veloc-

ity deficit is displaced vertically above hub height, which

reaches the upper wind turbine blade tip at mast M6 (C7).

The dependency of the WRF-WF scheme on the chosen ver-

tical resolutions is weak; differences are found within the

wind farm (C2, C3) above hub height. Also, the profiles from

the WRF-WF scheme show increased (area-averaged) veloc-

ities inside the wind farm at the lowest model level. The

wind farm simulations from Wu and Porté-Agel (2013) (their

Fig. 13) do not support this behaviour.

6 Discussion

We use wind farm parametrisations implemented in

a mesoscale model to simulate the effect of wind farm wakes

in areas on the order of hundreds of kilometres. However,

the models have a limited horizontal resolution and hence

the local processes within a wind farm remain unresolved. In
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Figure 9. Comparison of the vertical profiles of simulated velocity deficit for the second (C2), third (C3), and seventh (C7) grid cell containing

wind turbines from the first westernmost turbine: (a) L60 simulations, (b) L40 and L80 simulation for the EWP, and (c) L40 and L80

simulation for the WRF-WF scheme. The turbine hub height is indicated by the horizontal solid line and the turbine blade bottom and top by

the dashed lines. The free-stream wind speed was 10 ms−1 in the 270◦ wind direction.

the proposed parametrisation, we use the classical wake the-

ory (Tennekes and Lumley, 1972) to describe the sub-grid-

scale wake expansion. Compared to empirical fits from, for

example, Xie and Archer (2015) and Zang et al. (2013), it of-

fers the advantage that the wake expansion is described as a

function of atmospheric stability. In this study, we have vali-

dated the approach for different wind speeds in a neutral at-

mospheric boundary layer. Its performance as a function of

atmospheric stability, which requires information of the pro-

files, will be investigated in future. In their LES model re-

sults, Wu and Porté-Agel (2013) found a sensitivity of the

velocity reduction to the wind farm layout. In current imple-

mentations of wind farm parametrisations, all turbines within

a grid cell experience the same upstream velocity. Although

these parametrisations are not meant to estimate the local ve-

locity field within the wind farm, differences in velocity re-

duction within the wind farm could affect the velocity in the

wake of it. Future implementations may account for the local

flow within the wind farm by using data from high-resolution

models, which can be input to the mesoscale model via

a look-up table as suggested by Badger et al. (2013) and

Abkar and Porté-Agel (2015). However, we currently have

no measurement data in the wind farm wake to validate these

approaches for different wind farm layouts. At the Horns Rev

I wind farm, we were restricted to the geometry of met masts

positions, which did not allow for study of the sensitivity of

the velocity field in the wind farm wake for additional wind

direction sectors.

A fair comparison between the mesoscale model and long-

term measurements can be realised in several ways. One

method is to match the simulation period to that observed.

By selecting corresponding time frames, one can then com-

pare the fields of interest. The main disadvantage of this

method is that errors in the background flow simulated by

the mesoscale model also exist, which complicates the anal-

ysis. The second method is to sample the data and the model

simulations in rather strict idealised conditions of wind speed

and direction. We have chosen this second method using the

WRF model in idealised case mode and compare its results

to properly averaged measurements. Here the equilibrium so-

lution without the wind farm effects is purposely made to

match the free-stream velocity, and thus background errors

in the simulations are absent. Besides a more detailed analy-

sis, this method also allows for the study of the vertical de-

pendency of the velocity reductions, since the atmospheric

background conditions are almost identical for the simula-

tions with different vertical resolutions.

Before we validated the results of the schemes in the

wake of the wind farm, the a priori unknown initial length

scale of the EWP scheme had to be determined. We did this

using the turbine power measurements from the most fre-

quently observed wind speed bin. This limitation could not

be avoided, since, to our knowledge, no other long-term mea-

surements from large offshore wind farms are available. For

the most frequently observed wind speed bin, we found an

initial length scale of σ0 = 1.7 ro that fitted the turbine mea-

surements the best. We recommend this constant for sim-

ilar wind turbines. Future wind turbine measurements are

needed to determine this value for other turbine types, such as

low-induction turbines. This constant was then used for the
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validation of all wind speed bins. On the other hand, for the

WRF-WF scheme we have used the turbine-specific thrust

and power curves, which are its only input parameters. The

difference of 0.1 % between the velocity deficit simulated

by the WRF-WF and EWP scheme at the end of the wind

farm for the 10 ms−1 wind speed bin facilitated the compar-

ison between the schemes in the wind farm wake, where the

parametrisations are not active anymore.

One major difference between the EWP and WRF-WF

approach is in the treatment of the grid-cell-averaged TKE

budget equation. The TKE production regulates the verti-

cal profiles of momentum, temperature, and moisture within

the PBL. Differences in TKE production would thus affect

the local weather (e.g. temperature, humidity, and possibly

clouds) response to the presence of large wind farms. Both

wind farm schemes use a PBL scheme that parametrises

the TKE equation in terms of grid-cell-averaged variables.

Therefore, in the wake of the wind turbines TKE is gener-

ated by the increased vertical shear in horizontal velocity.

Then, the different definition of the unresolved velocity fluc-

tuation in the WRF-WF and EWP scheme leads to a differ-

ent term 〈pt 〉 that is the direct consequence of the presence

of a drag force. In the EWP scheme, a velocity fluctuation

is defined around the ensemble-averaged velocity. With this

definition 〈pt 〉 is small and can be neglected. Instead, in the

WRF-WF scheme, velocity fluctuations are defined around

the grid-cell-averaged velocity and a parametrisation of 〈pt 〉

is added to the model TKE equation. The simulations have

shown that, in the WRF-WF scheme, 〈pt 〉 dominates over

the shear production and that its total TKE is more than 3

times larger than that in the EWP scheme. However, it is un-

clear how well the actual grid-cell-averaged shear produc-

tion is approximated by the shear production calculated with

the PBL scheme in WRF, on which the EWP scheme re-

lies. Therefore, future measurement campaigns of the actual

structure and intensity of the TKE field within and around

wind farms under suitable atmospheric conditions can help

to settle this issue.

7 Conclusions

We introduce a wind farm parametrisation for use in

mesoscale models. The EWP approach is based on classical

wake theory and parametrises the unresolved expansion of

the turbine-induced wake explicitly in the grid cell that con-

tains turbines, where the largest velocity gradients occur. The

associated turbulence shear production is then determined by

the PBL scheme in the mesoscale model. The approach has

been implemented in the WRF mesoscale model and can be

used with any PBL scheme. However, we recommend PBL

schemes that model the TKE equation.

We analysed the results of simulations from the scheme

in the wake of a wind farm. For the validation, we used

the averaged wind speeds within a 30◦ wind direction sec-

tor at two met masts in the wake of the Horns Rev I wind

farm. The model was run for several wind direction bins that

cover those sampled in the observations. For each wind speed

bin, we compared a wind-direction-averaged wind speed to

the similarly averaged measurements. We found that, for

all five velocity bins, the velocity modelled with the EWP

scheme agreed well with the met mast measurements 2 and

6 km downstream from the edge of the wind farm. The EWP

scheme reproduces the wind farm wake within the standard

deviation of the measurements.

To our knowledge, no long-term data sets are available

to validate the details of the vertical structure of the ve-

locity deficit and turbulence in the wake of the wind farm.

In a qualitative comparison, we found the vertical structure

of the modelled TKE field to agree with that of actuator-

disc simulations by LES models (Wu and Porté-Agel, 2013),

with an increased and decreased TKE around the upper and

bottom rotor tip, respectively. The TKE field in the EWP

scheme led to a symmetric velocity deficit profile around hub

height, similar to velocity deficit profiles in Wu and Porté-

Agel (2013) and Vermeer et al. (2003). Also, the vertical

wind farm wake expansion in the EWP approach was sim-

ilar to that described in the aforementioned studies. While

validation of the WRF-WF parametrisation has been carried

out before with measurements within a wind farm (Jiménez

et al., 2014), this is the first time that the validation has been

done in the wake of a wind farm, at the scales the mesoscale

model was designed to simulate.
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Appendix A

We use the notation and symbols of Raupach and Shaw

(1982), with the exception that the ensemble average is used

instead of the time average. The instantaneous velocity, ui ,

can be decomposed in a spatial average with a fluctuation

around it, ui = 〈ui 〉+ u
′′

i , and an ensemble average with a

fluctuation, ui = ui + u
′

i . Figure 1 illustrates the instanta-

neous velocity (grey line), as well as the spatial (red line)

and ensemble-averaged (blue line) velocity in the vicinity of

a wake.

We can decompose the total kinetic energy:

1

2

〈
u2
i

〉
=

1

2

〈
u 2
i

〉
+

1

2

〈
u′i

2 〉
, (A1)

=
1

2

〈
ui
〉2
+

1

2

〈
u′′i

2〉
+

1

2

〈
u′i

2 〉
. (A2)

In Eq. (A1), we applied an ensemble and spatial averaging to

the kinetic energy and we have decomposed the ensemble-

averaged kinetic energy in an average and fluctuating part.

Here, 1
2
〈ui

2
〉 is the spatial average of the ensemble-averaged

kinetic energy and 1
2
〈u′i

2
〉 the spatial average of the kinetic

energy from random velocity fluctuations.

By decomposing the first term on the r.h.s. of Eq. (A1),

we obtain Eq. (A2). In Eq. (A2), we now have three con-

tributions to the total spatial and ensemble-averaged kinetic

energy. The first term, 1
2
〈ui 〉

2, is the kinetic energy of the

spatial and ensemble-averaged velocity. The second term,
1
2
〈u′′i

2
〉, is the spatially averaged kinetic energy of the het-

erogeneous part of the mean flow, which is the difference

between the ensemble and spatially averaged kinetic energy.

This term arises only in non-homogeneous flow conditions

and is also called “dispersive kinetic energy” by Raupach and

Shaw (1982).

For each contribution on the r.h.s. of Eq. (A2) to the total

kinetic energy, a budget equation can be derived. The com-

plete set of equations can be found in, for example, Raupach

and Shaw (1982). We can combine the three components in

Eq. (A2) with kinetic energy of the mean flow (MKE) and

turbulence kinetic energy (TKE) in two ways, which we refer

to as approach 1 and 2. The MKE is not directly resolved by

the model. However, the definition of TKE determines how

the effect of wind turbines to the TKE is parametrised.

Approach 1 follows Raupach and Shaw (1982) and Finni-

gan and Shaw (2008) and defines MKE = 1
2
〈u2
i 〉 =

1
2
〈ui 〉

2
+

1
2
〈u′′i

2
〉 and TKE = 1

2
〈u′i

2
〉. Here, the MKE is equal to

the spatial average of the ensemble-averaged kinetic energy,

and it contains all kinetic energy of the organised motion.

With this definition only random motion contributes to the

TKE. The presence of the drag force gives rise to the term

〈pt 〉 = 〈u
′

i f
′

di
〉, where f ′ is the fluctuation of the drag force

around the ensemble-averaged force. This approach is used

in the EWP scheme, and in Sect. 2.2 the additional term is

derived.

Approach 2 is the second way the three components in

Eq. (A2) can be assigned to the MKE and TKE, namely MKE

= 1
2
〈ui 〉

2 and TKE = 1
2
〈u′′i

2
〉+

1
2
〈u′i

2
〉. In this case, the MKE

contains only kinetic energy from the spatially averaged ve-

locity. However, the TKE now also contains energy from the

heterogeneous part of the mean flow additional to the energy

from random motion. In this approach, a fluctuation can be

decomposed in u′′ = u′′i+ u
′

i . Therefore, the source term be-

comes 〈pt 〉 = 〈u
′′

i f
′′

di
〉, where f ′′ is the fluctuation of the

drag force around the spatially averaged force. In the WRF-

WF, this approach is used (see Sect. 4.1.2).
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Appendix B

In the EWP scheme, we approximate the velocity deficit pro-

files on the r.h.s. of Eq. (11) by a Gaussian-shaped velocity

profile on the l.h.s. of Eq. (11).

To show that these profiles are to a good approxima-

tion similar, we compare the difference between the aver-

age of 5000 single profiles at distances 0< x < 500 m to

the approximated Gaussian velocity deficit. We normalise

both profiles by the depth, 1y, of the wake in the cross-

stream direction. For the comparison we used uo = 8 ms−1,

ro =40 m, σo = 60 m, cT = 0.8, K = 6 m2 s−1, and 1y =

1120 m. The wake centre is defined at z= 0 m.
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Figure B1. Panel (a) shows a comparison between the distance average of the velocity deficit profiles (blue line) and the Gaussian profile

with the average spread 〈σ 〉 (red line). Panel (b) shows the difference between the spatially averaged Gaussian profiles and the Gaussian

profile with the average spread.

The result in Fig. B1 shows that the differences between

the spatially averaged Gaussian profiles and the Gaussian

profile with the spatially averaged spread is far less than

0.001 ms−1 in the entire velocity deficit region.
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Code availability

In this section a short guideline of the usage of the EWP

scheme in the WRF model is given. The EWP approach can

be run in serial, shared-memory, or distributed memory op-

tions. Currently, it is not possible to run the approach with the

mixed shared and distributed memory option. The scheme

can be used for idealised and real case simulations.

For the real case simulations, the wind farm parametrisa-

tion can be activated in any nest of the simulations. The ad-

ditional namelist.input option bl_turbine should be used

to select the wind farm parametrisation.

The EWP scheme needs additional input files in ASCII

format. In the first file the positions and types of all wind

turbines should be listed. The file name has to be spec-

ified as a string in the additional namelist.input option

windturbines_spec. For every turbine used, the turbine

characteristics, i.e. the hub height and diameter and the thrust

and power coefficients as a function of wind speed, need to

be listed in a file. The power coefficient is used optionally to

estimate the turbine power production. This file name has to

start with the turbine type used in the first file, followed by

the extension .turbine.

Please contact pvol@dtu.dk to obtain the code of the EWP

wind farm parametrisation.

The Supplement related to this article is available

online at doi:10.5281/zenodo.33435.
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