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Abstract 

As Ghana’s economy grows, the choice of future energy paths and policies in the coming years 

will have a significant influence on its energy security. A Renewable Energy Act approved in 

2011 seeks to encourage the influx of renewable energy sources in Ghana’s energy mix. The 

new legal framework combined with increasing demand for energy has created an opportunity 

for dramatic changes in the way energy is generated in Ghana. However, the impending 

changes and their implication remain uncertain. This paper examines the extent to which future 

energy scenarios in Ghana could rely on energy from biomass sources, through the production 

of biogas, liquid biofuels and electricity. Analysis was based on moderate and high use of 

bioenergy for transportation, electricity generation and residential fuel using the LEAP model. 

Results obtained indicate that introducing bioenergy to the energy mix could reduce GHG 

emissions by about 6 million tonnes CO2e by 2030, equivalent to a 14% reduction in a business-

as-usual scenario. This paper advocates the use of second generation ethanol for transport, to 

the extent that it is economically exploitable. Resorting to first generation ethanol would 

require the allocation of over 580,000 ha of agricultural land for ethanol production.  
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1. INTRODUCTION  

Ghana’s energy sector is faced with two principal challenges: the inability to provide adequate 

electricity generation capacity to ensure reliable power supply (Mensah et al., 2014) and the 

increased use of woodfuels as main cooking fuel for close to 80% of households who do not 

have access to modern cooking fuels (Ghana Statistical Service, 2012). The country’s 

electricity generation infrastructure, which in the past relied mainly on cheaper hydropower, is 

increasingly shifting towards more expensive thermal generation. Low water inflows into the 

hydro dams and increasing cost of crude oil has resulted in intermittent power supply as 

government struggles to purchase fuel to run the thermal plants. Meanwhile, even though there 

has been recent decline, the general trend in the cost of crude oil over the past few decades 

suggest further price increases, especially as fossil fuel reserves are gradually being used up 

with fewer new discoveries (Shafiee and Topal, 2009). This has led to the extraction of crude 

oil and natural gas from ‘unconventional’ reserves such as tar sands and shale formations which 

were previously untouched for environmental reasons (Charpentier et al., 2009; Brasier et al., 

2011; Vidic et al., 2013).  Other factors, such as the irregularities in supplies and distribution, 

the challenges of accessing and procuring unconventional fuels, and occasional political 

instabilities in major supply regions, have caused general uncertainty regarding global 

reliability on fossil fuels in the coming decades (Fisk, 2013; Hughes and Lipscy, 2013; Nathan 

et al., 2013). 

The cooking fuel sector in Ghana is dominated by woodfuels.  As of the year 2010, about 75% 

of households in the country rely on traditional biomass as main cooking fuel with only 18.2% 

using gas as the main1 fuel (Ghana Statistical Service, 2012). Whereas the effect of woodfuel 

use on deforestation is debatable2, the impact of kitchen smoke emissions on the health of 

women and children is a generally accepted fact (Smith et al., 2014; Perez-Padilla et al., 2010).  

Transport fuels in Ghana are wholly dependent on petroleum products with implications for 

greenhouse gas (GHG) emissions in the country. Energy sector emissions in the country 

represent the fastest growing source of GHG emissions and accounted for 41% of emissions in 

2006 (EPA-Ghana, 2011a). Between 1990 and 2006, energy sector emissions increased by 

183%, from 3.3 MtCO2e in 1990 to 9.2 MtCO2e in 2006 (EPA-Ghana, 2011a). Within the 

energy sector, transport was the largest source of emissions with about 43%. Increase in fuel 

consumption within the transport sector was due to increasing vehicle fleets and poor fuel 

efficiency (EPA-Ghana, 2011b).  

To ameliorate the situation, the Parliament of the Republic of Ghana enacted a Renewable 

Energy Act in 2011 (RE Act) in order to promote the increased use of renewable energy. The 

principal aim of the RE Act is to provide for the development, management, utilization, 

sustainability and adequate supply of renewable energy for electricity generation, 

transportation and residential fuel use in Ghana. The RE Act set a 10% target for renewable 

                                                 
1 A household using LPG as main cooking fuel could still be using other fuels such as charcoal and firewood 

when the need arises. 
2 While use of woodfuel for cooking has been perceived by some authors and development agencies as leading 

to deforestation, today most scholars agree that agriculture and the logging industry are the main drivers for the 

observed decreasing forest vegetation in most developing countries, and that use of wood fuel is mainly causing 

local effects around big cities (Arnold et al, 2006). For more details in this debate, see for example  Hiemstra-

van der Horst and Hovorka, (2009), Mwampamba et al, (2013), Hansfort and Mertz (2011), Gazull and Gautier 

(2014). Scientific literature on linkages between woodfuel use and deforestation in Ghana is limited. However, 

in research on reasons for deforestation in the tropical area in Ghana, Appiah et al. (2009) do not mention 

woodfuel among the four most significant drivers for decreased forest cover.  
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electricity (from solar, wind, mini-hydro and biomass) in the national electricity mix by 2020. 

With regard to fuels, the RE Act calls for the promotion of increased use of improved bioenergy 

technologies as well as support for the use of biomass resources through legislation, fiscal 

incentives and attractive packages. An incoming bioenergy legislation calls for 10% biofuels 

in transportation mix by 2020 and 20% by 2030. A gradual shift to domestically produced 

renewable fuels has the potential to create employment, ensure energy security and reduce 

GHG emissions.  

Recent studies have sought to establish to what extent biomass from crop and forestry residue, 

manure and municipal waste could contribute to the energy supply mix in Ghana. Kemausuor 

et al. (2014) estimate about 97 PJ per year of bioenergy from crop residues, forest residues, 

manure, municipal solid and liquid wastes. Estimates by Mohammed et al. (2013) and Duku et 

al. (2011) also place bioenergy potentials from crop residues at between 75 and 100 PJ and 

about 48 PJ from animal manure. Biomass is a versatile fuel that can provide not only 

electricity, but also transport and residential heating fuels. It is therefore worth exploring to 

what extent this could be possible in Ghana, going into the future.  

Although bioenergy has a lot to offer in the energy mix, existing energy plans by relevant 

agencies have failed to capture the extent to which bioenergy could support the energy mix in 

Ghana (see for example, Ministry of Energy, 2006; Energy Commission, 2006). The newly 

approved RE Act, combined with increasing demand for energy has created an opportunity for 

dramatic changes in the way energy is generated in Ghana. However, the impending changes 

and their implication remain uncertain. In view of the above, this study explores the extent to 

which future energy scenarios in Ghana could rely on modern biomass energy. The study 

performs analysis based on moderate and high use of bioenergy in the transportation, electricity 

generation and residential sectors and determines their possible impacts on Ghana’s energy 

system. Key indicators are: bioenergy substitution of fossil fuels; bioenergy substitution of 

traditional biomass; change in diversity of energy supply; and environmental benefits (GHG 

emission reduction).  

 

2. METHODOLOGY 

The study was conducted using the Long-Range Energy Alternatives Planning (LEAP) model. 

LEAP is a scenario-based energy-environment modelling tool for energy policy analysis and 

climate change mitigation assessment. LEAP can be used to track energy consumption, 

production and resource extraction in all sectors of an economy as well as account for 

greenhouse gas (GHG) emissions from energy demand and conversion (Bautista, 2012; Shin 

et al., 2005; McPherson and Karney, 2014). The model was developed by the Stockholm 

Environment Institute (SEI-US), based in Boston, Massachusetts3. LEAP can be applied at 

different scales ranging from cities and states to national, regional and global applications 

(Suganthi and Samuel, 2012). The LEAP model was chosen among various other models, 

because it suits the aim of this present study: i) it is user friendly and well suited to tracking 

energy demand and transformation in developing countries, ii) it is scenario-based and 

integrated with energy-environment model building tool, so that both energy demand and its 

environmental implications can be tracked within the same platform, iii) it includes a 

Technology and Environment Database (TED), which compiles technical characteristics and 

environmental impacts for range of energy technologies, including both advanced technologies 

for developed countries and conventional technologies often found in developing countries,  

iv) it is flexible with regards to data availability and has low initial data requirement which can 

                                                 
3 For details about the LEAP software, see http://sei-us.org/software/leap 

http://sei-us.org/software/leap
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be improved as detailed data becomes available for the study location and, v) it  is free to use 

for developing country researchers and government agencies.  

 

2.1 Overall model description 

The LEAP model consists of three blocks of programmes: energy scenarios, aggregation, and 

the environmental database. The energy scenario block addresses the main components of an 

integrated energy analysis: energy demand analysis, energy conversion, resource assessment, 

emissions estimation, and the comparison of scenarios (Shin et al., 2005). LEAP is based on 

exogenous input of the main parameters. Scenarios are developed through exogenous 

assumptions of end-users' energy demand, which are influenced by factors like population 

growth, change in household size, increasing urbanisation and migration, as well as 

technological progress like improvements in energy efficiency and energy conversion. The 

energy demand of a particular sector is computed as the product of an activity level related to 

the level of energy service required (such as number of households, passenger-km of 

transportation, output of an industry, etc.) and an energy intensity, relating energy consumption 

to unit activity, with examples shown in equations 1 and 2 (Heaps, 2012). The choice of fuels, 

either for transportation or for the domestic sector, is based on exogenous input defined by the 

user in the demand module.  In projecting future energy demand, LEAP considers growth in 

GDP, population and urbanisation.  

𝐷𝑏,𝑠,𝑡 = 𝑇𝐴𝑏,𝑠,𝑡×𝐸𝐼𝑏,𝑠,𝑡         (1) 

where D is energy demand, TA is total activity, EI is energy intensity, b is the branch, s is 

scenario and t is year (ranging from the base year to the end year).  

𝑻𝒓𝒂𝒏𝒔𝒑𝒐𝒓𝒕 𝒇𝒖𝒆𝒍 𝒅𝒆𝒎𝒂𝒏𝒅𝒕,𝒚 = 𝑺𝒕𝒐𝒄𝒌𝒕,𝒚×𝑴𝒊𝒍𝒆𝒂𝒈𝒆𝒕,𝒚×𝑭𝒖𝒆𝒍 𝒆𝒄𝒐𝒏𝒐𝒎𝒚𝒕,𝒚  

 (2) 

where stock is the number of vehicles existing in a particular year, mileage is annual distance 

travelled per vehicle and fuel economy is fuel use per unit of vehicle distance travelled, t is 

the type of vehicle and y is the calendar year. 

In the ‘transformation’ module, conversion and transportation (transmission and distribution) 

of energy forms, from the point of extraction of primary resources to the point of final 

consumption, are simulated with separate modules for the various types of energy conversion, 

like electricity generation, biofuel production, charcoal kilns, etc. Alternative scenarios are 

used to represent different future transformation configurations, reflecting different 

assumptions about policies and technologies.  

In the case of electricity generation, for example, all available power plants, present and 

planned, are specified and the choice of which plants produce at a given time to meet the 

calculated electricity demand is made on the basis of a load duration curve, average availability 

factors and merit order, all specified exogenously. The latter may, for example, reflect the 

marginal production costs. Likewise technological progress is taken into consideration using 

exogenous conversion factors, and is a function of time. Finally, the resource analysis 

component is used to keep track of the availability of primary resources, including both fossil 

and renewable resources.  
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The main output of the model is the evolution from the base year over the specified time period, 

of energy demand, the use of fossil and renewable energy resources and the level of emissions 

such as CO2. LEAP also provides options for a detailed analysis of economic implications of 

the built scenarios, but this falls outside of the scope of the present paper. A detailed cost 

analysis of bioenergy systems are the subject of a different paper by the authors. 

 

2.2 Base year modelling  

In order to project energy demand for the future, LEAP uses a base year, for which extensive 

data is available. The base year used for this study is 2010 – the last year in which a national 

population and housing census was conducted in Ghana. Energy demand projection is done 

from 2015 to 2030. Historical data from the 2010 census and other relevant energy databases 

in the country were used in the 2010 base year. Details of historic aggregated energy indicators 

for the country are shown in Appendix 1. 

The sectors taken into account for this modelling are: Households (or residential), Agriculture, 

Industry, Transport, Non-residential and Street Lighting. Each of these branches was further 

disaggregated into ‘sub-branches’. Household sector is disaggregated into urban households 

and rural households. Urban households are further disaggregated into ‘Metro Urban’ and 

‘Other Urban’, in line with energy data compilation from the 2010 population and housing 

census and a national energy survey conducted by the Energy Commission in the same year. 

Metro Urban households fall within the highest income group in the country and has the highest 

demand for energy in the country. Rural areas were subdivided into coastal, forest and savannah 

rural, defined by the various agro-ecological zones in the country. Due to the different agro-

ecological zones, population dynamics and affluence of these rural areas, there are different 

patterns in fuel consumption. Based on historical data from the Ghana Statistical Services, the 

coastal and forest areas of the country tend to have higher population densities than the 

savannah areas. Details of the assumptions built into the model, including how Ghanaian 

communities are expected to shift from rural to urban, according to projections by the Ghana 

Statistical Services, is shown in Appendix 2. 

In the 2010 base year, the ‘transformation’ module is mainly composed of energy technologies 

for electricity generation, oil refining and charcoal production, consistent with energy 

consumption pattern in the base year. In the bioenergy scenarios, the transformation module 

also includes technologies for the production of biodiesel, ethanol and biogas. Data on 

electricity generation plants, oil refinery and charcoal production methods for the base year 

were obtained from the Energy Commission (Energy Commission, 2013). The ‘resource’ 

module builds energy resource requirements based on data input in the transformation module. 

In the 2010 base year, resources include crude oil for the refinery, various fuels for electricity 

generation and wood for charcoal production. The resource module provides energy supply 

options and their implications for carbon emissions.  

 

2.3 Scenario analysis 

To project energy demand from the 2010 base year, three energy scenarios were developed – 

a reference (or business-as-usual) scenario and moderate and high bioenergy scenarios. The 

reference scenario projects energy demand and supply options using a business-as-usual 

approach. The moderate and high bioenergy scenarios were characterised primarily by 

increasingly aggressive infusion of bioenergy into the energy mix.  
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2.3.1 Reference scenario 

The reference scenario examines how Ghana’s energy system might evolve up to 2030 in the 

absence of significant new policies for bioenergy. The demand projection for energy is driven 

mainly by projected GDP and population growth. Based on the growth projections, it is 

expected that the number of households in Ghana would increase from 5.5 million in 2010 to 

about 8.4 million in 2030 (Ghana Statistical Services, 2012). Energy demand for urban areas 

differs from rural areas in types of fuel and amount consumed. Urban communities are defined 

by the Ghana Statistical Service as communities with population above 5000. By this 

definition, Ghana had more than half of households (56%) living in urban areas in 2010. In 

2030, it is expected that 65% of the projected 8.4 million households would be urban. This 

could potentially increase energy consumption and also serve as a driver for an increased use 

of modern fuels, such as electricity for lighting and Liquefied Petroleum Gas (LPG) for 

cooking. With regards to transportation, passenger-km is expected to grow at an annual rate of 

6%. Road transportation is currently the dominant transport mode. However, the share of road 

transportation is projected in the model to decrease from 95% in 2010 to about 80% in 2030 

with rail and air transport accounting for the remaining 20%.  

In the reference scenario, electricity generation is based on a ‘Generation Master Plan Study 

for Ghana’, a study by Tractebel Engineering for the Ghana Grid Company Limited (GRIDCO, 

2011). The study developed a 15 year electricity generation plan which is aimed at guiding 

investment in generation for both the public and private sector. Oil refining capacity is based 

on the capacity of the country’s only oil refinery. Charcoal production in the reference scenario 

uses existing methods of producing charcoal in Ghana, predominantly the earth mound kiln. 

Going forward, it is assumed that improved charcoal kilns would be introduced gradually and 

account for 20% of charcoal output by 2030. 

2.3.1.1 Environmental effect / GHG Emissions 

GHG emissions for the reference scenario were estimated for energy demand and also for 

energy transformation or conversion. Estimation for energy demand captures all non-biogenic 

emissions. Non-biogenic emissions are those emissions from fuels of non-biological origin and 

include emissions from fossil fuels used in transportation and other sectors such as industry 

and agriculture. The analysis uses a straightforward accounting methodology in which 

emissions of different pollutants are calculated as the product of fuel combustion and an 

emission factor, following the IPCC methodology. Estimation for energy transformation or 

conversion captures non-biogenic emissions from the use of fossil fuels to generate electricity, 

using the generation fuel sources from individual generation plants. Biogenic emissions, which 

are emissions emanating from fuels of biological origin (e.g. burning of firewood and charcoal) 

have not been computed in this study. The issue of equating biogenic emissions to fossil-fuel 

emissions is one that is still very much debated (Gunn et al., 2012). Indeed, this study relies on 

the IPCC methodology for computing emissions (IPCC, 2006) which does not attribute 

biogenic emissions to the energy sector.  

2.3.2 Bioenergy scenarios 

Next to the reference scenario are two bioenergy scenarios, a moderate bioenergy scenario and 

a high bioenergy scenario. These two scenarios assume bioenergy infusion into Ghana’s energy 

mix. A number of technologies could be deployed which could utilize biomass as feedstock for 

the production of desired energy forms for the country. Table 1 summarizes the technology 

options that could allow the substitution of bioenergy fuels for fossil fuels. Other advanced 
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technologies such as pyrolysis which are still being perfected for commercial applications 

(Jahirul et al., 2012) are possible technological options for consideration in the future. 

The high bioenergy scenario is an increased use of bioenergy compared to the moderate 

bioenergy scenario. In the moderate bioenergy scenario, it is assumed that 0.1% of households 

in non-metro urban households would switch to biogas as one of their cooking fuels, rising to 

2% by 2030. A higher number of households in rural communities would be expected to switch 

to biogas, reaching 10% by 2030. With regards to transport, an estimated 10% of road 

passenger transport would use biodiesel and ethanol by 2030 while 10% of rail transport and 

road freight transport is to rely on biodiesel. Electricity from biomass resources is assumed to 

be generated from municipal solid waste, wood waste, oil palm waste and cocoa waste. The 

share of improved charcoal carbonisation technologies would increase in the bioenergy 

scenarios, contributing 35% and 60% respectively to charcoal output in the moderate and high 

bioenergy scenarios. There would also be a gradual uptake of improved cookstoves, beginning 

with just 0.1% national penetration in 2015 to 5% in the moderate bioenergy scenario and 10% 

in the high bioenergy scenario. Other assumptions that make up the bioenergy scenarios are 

summarised in Table 2.  

 

 

Table 1: Possible technology options that allow fossil fuels to be substituted with biomass 

based fuels  

Feedstock Energy production  Energy conversion Substituted fuel 

Electricity generation* 

Municipal solid waste Land fill gas capture  

Gas turbine/ Internal 

Combustion Engine 

(ICE) 

Natural gas/crude oil 

Wood waste 
Combustion / 

Gasification  

Steam turbine/ Gas 

turbine 
Natural gas/crude oil 

Oil palm waste  
Combustion / 

Gasification  

Steam turbine/ Gas 

turbine 
Natural gas/crude oil  

Transportation 

Crop residues (cereal waste, 

cassava waste, etc.) 
Ethanol fermentation ICE Gasoline 

Energy crops (cassava, 

sugarcane, etc.) 
Ethanol fermentation ICE Gasoline 

Energy crops (jatropha, 

sunflower, etc.) 
Biodiesel refinery ICE Diesel 

Cooking fuel 

Animal manure and crop 

residue 
Biogas digester Biogas stoves Firewood and charcoal 

*Some wood and oil palm processing companies already produce electricity from residues 

using combustion technology. The technology is already feasible in the country but some 

scaling up may be needed to increase generation capacity.  
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Table 2: Highlight of assumptions in the different scenarios 

Feedstock 
Base year 

(2010) 
Reference 

Scenario 

Moderate 

bioenergy 
High bioenergy 

Electricity generation 

Municipal solid waste Insignificant 

contribution – 

not counted in 

national statistics 
Same as in 

current account 

Combined 1.4 % of 

electricity 

generated by 2030 

Combined 4.0 % 

of electricity 

generated by 

2030 

Wood waste 

Oil palm waste 

Cocoa 

Transportation 

Crop residues (for 

ethanol production) 

No commercial 

production of 

biofuels for 

transportation in 

the country. 

Road passenger 

transport (0%) 

Road passenger 

transport (10 %) 

Road passenger 

transport (20 %) 

Energy crops 

(jatropha, sunflower, 

etc.) 

Road 

passenger 

transport 

(0%); rail 

transport 

(0%); road 

freight 

transport (0%) 

Road passenger 

transport (10%); 

rail transport 

(10%); road 

freight transport 

(10%) 

Road 

passenger 

transport 

(20%); rail 

transport 

(20%); road 

freight 

transport 

(20%) 
Cooking fuel 

Animal manure and 

crop residue 

Few small 

scale biogas 

plants exist. 

Not counted in 

national 

statistics.  

Non-metro 

urban HH 

(0%); coastal 

rural HH (0%) 

all other rural 

HH (0 %) 

Non-metro urban 

HH (2%); rural 

HH (10%)  

Non-metro 

urban HH 

(5%); rural 

HH (20%) 

HH-households 

 

3. RESULTS AND DISCUSSION 

3.1 Reference scenario 

3.1.1 Energy demand 

The projected final energy demand of Ghana in the reference scenario is summarised in Figure 

1. The country’s total final energy demand would double between 2015 and 2030, an increase 

from 329 PJ in 2015 to 644 PJ. Diesel, electricity, woodfuel and gasoline, would dominate fuel 

demand in the year 2030. Diesel consumption would more than double in the planning period, 

rising from 89 PJ in 2015 to approximately 203 PJ in 2030. The increased diesel demand is 

attributed to increases in the transportation, industry and agriculture sectors. Growth in 

electricity demand would be boosted by increased population and urbanisation. Wood and 

charcoal would be needed primarily for residential cooking and heating, with the greater part 

of wood demand coming from rural communities. The major energy demand sectors are 

transportation, industry and residential sector. Minor demand sectors include street lighting, 

agriculture and non-residential sector. The transportation sector is expected to become the 

highest consumer of energy by 2030, followed by the residential sector. In 2030, the 

file:///C:/Users/Francis/AppData/Local/Packages/oice_15_974fa576_32c1d314_613/AC/Temp/F631E0D.xlsx%23RANGE!B15
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transportation sector would account for 50% of total energy demand in the reference scenario. 

The residential sector would account for 23% of demand. Together, the two sectors account for 

three-quarters of energy demand.  

 

 

Figure 1: Projected energy demand by fuel type 

 

Installed electricity generation capacity is expected to increase from about 3,500 MW in 2015 

to nearly 6,000 MW in 2030, which is close to a doubling of generation capacity within the 15 

year period. Electricity supply in the reference scenario is assumed to be produced by thermal, 

large hydro, and renewables comprising solar, wind and small hydro. Currently, the fuels for 

thermal generation are Light Crude Oil (LCO) and natural gas.  However, LCO is to be phased 

out by the end of 2014 and natural gas used entirely to run thermal plants as outlined in the 

national electricity generation master plan (GRIDCO, 2011). Natural gas is presently sourced 

from two sources: the West Africa Gas Pipeline4 which has proven unreliable, with erratic 

supply, and the country’s own gas processing plant that began operation in December 2014. 

Figure 2 shows projected electricity generation by fuel source from 2015 to 2030. The thermal 

share of electricity generation capacity would rise to about 63% in 2030, from 46% in 2012. 

Electricity from renewables would contribute 10% to total electricity generation capacity. In 

the reference scenario, biomass would not contribute any capacity to electricity generation.  

 

                                                 
4 The West Africa Gas Pipeline is a natural gas pipeline that supplies gas from Nigeria to Benin, Togo and 

Ghana. The pipeline is owned by the West African Pipeline Company (WAGPCo), a consortium of 6 partners.  
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Figure 2: Projected electricity generation by source 

Source: Modified from GRIDCo, 2011 

 

3.1.2 Greenhouse gas emissions  

In the LEAP model, emissions from energy are subdivided into two components. The first 

component are those emissions that are accounted for at the point of use (such as in cars) and 

are referred to as ‘demand side emissions’ in this study. The second component of emissions 

is accounted for at the point of transformation (such as electricity generation) and will be 

referred to as ‘transformation emissions’ in this study. Figure 3 shows the GHG emissions5 

arising from demand and transformation. Demand side emissions would more than double 

between 2015 and 2030, rising from about 12 MtCO2e in 2015 to more than 28 MtCO2e by 

2030. Gasoline and diesel comprise more than 80% of demand side emissions. The high 

contribution from diesel and gasoline is the result of substantial increase in transportation.  

Transformation emissions have their source in electricity generation. Transformation emissions 

would more than triple between 2015 and 2030. From 3.8 MtCO2e in 2015, GHG emissions 

from transformation are projected to exceed 12.45 MtCO2e by 2030. Transformation emissions 

would rise constantly due to an anticipated increase in electricity generation capacity. 

Electricity generation is projected to increase from 20,000 GWh in 2015 to 43,000 GWh in 

2030, out of which about 80% would be delivered by thermal sources6 compared to an 

estimated 62% in 2015. This is expected to increase the national electricity grid’s carbon 

intensity from 0.18 tCO2e per MWh in 2015 to 0.28 tCO2e per MWh in 2030.  

The net GHG emission from energy consumption is obtained by summing the emissions from 

final energy demand and emissions from energy transformation. The final emission in 2030, 

40.8 MtCO2e, is more than twice the emission in 2015 of 16 MtCO2e. Throughout the planning 

period, emissions from energy demand would account for between 69-76% of the total 

emissions per year. Two very important indicators, with regards to emissions, are emissions 

                                                 
5 ‘one hundred year’ global warming potential 
6 It should be noted that even though thermal generation capacity will reach 63% of total capacity by 2030, 

actual generation from thermal sources is higher.  
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per capita and emissions per GDP. Based on the projected population growth in the reference 

scenario, emissions per capita7 would double, increasing from 0.6 tCO2e in 2015 to 1.2 tCO2e 

in 2030. Emissions per GDP would decrease marginally, from 0.303 tCO2e per 1,000 US$ in 

2015 to 0.296 tCO2e per 1,000 US$ in 2030.  

 

 

Figure 3: Projected net GHG emissions from energy conversion and consumption 

 

3.2 Bioenergy scenarios  

3.2.1 Electricity generation 

In the reference scenario, electricity generation was assumed to follow a master plan that has 

been developed for the country. Even though the master plan considered solar, wind and mini-

hydro in the generation mix, it did not make any provision for electricity generation from 

biomass sources. The bioenergy scenario therefore sought to analyse the potential for biomass 

resources to contribute to electricity generation between 2015 and 2030.   

In the bioenergy scenarios, biomass electricity generation sources are municipal solid waste 

(MSW), wood waste, oil palm waste and cocoa waste. Potential technologies to generate 

electricity from MSW include combustion, gas from anaerobic digestion and landfill gas 

capture. This model assumed that electricity generation from MSW would rely on landfill gas 

technology and the other feedstock types would undergo combustion. One of the advantages 

of electricity generation from biomass resources is that distributed generation technologies can 

be easily deployed and power produced at agro-industrial plants and rural communities where 

feedstock is generated and in abundance. Power produced could be used within the 

site/community where it is produced or it could be fed into the grid as desired.  

A summary of electricity generation from biomass sources is presented in Table 3. In the 

moderate bioenergy scenario, total capacity of electricity generation from biomass could start 

from 50 MW in 2015 and rise to about 65 MW by 2030. This is expected to contribute about 

2.0% of generated electricity by 2015 and 1.4% by 2030. In the high bioenergy scenario, 

                                                 
7 These are energy emissions alone. They do not include other sectors such as waste disposal, agriculture, 

forestry, land use and land use change. 
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installed electricity generation capacity from biomass resources could amount to 155 MW and 

rise to 200 MW by 2030. Electricity from biomass resources in the high bioenergy scenario 

would contribute 4.0% to total electricity generated in 2030. In the high bioenergy scenario, 

electricity from all renewables (including from biomass) would contribute about 9% to total 

generation by 2030, compared to 6.4% in the moderate bioenergy scenario.  

 

Table 3: Electricity generation in bioenergy scenarios 

Power from bioenergy 
Moderate bioenergy High bioenergy 

2015 2030 2015 2030 

Installed Capacity (MW) 50 65 155 200 

Electricity generated (GWh) 412 590 1186 1769 

Biomass as percentage of total 

electricity 
2.0% 1.4% 5.8% 4.0% 

Percentage contribution from 

other renewables (excl. large 

hydro) 

0.5% 5.0% 0.5% 5.0% 

 

 

3.2.2 Transportation sector 

Ethanol and biodiesel are the principal biomass sourced fuels used in the transportation sector. 

Only ground transportation, i.e. road and rail, was considered for bioenergy use in the 

bioenergy scenarios. In the moderate bioenergy scenario, biodiesel would contribute 0.3% of 

transportation energy requirement in 2015, rising to 5.4% in 2030 as summarised in Table 4. 

Demand for ethanol would amount to 0.2% of transportation energy in 2015 and rise to 4.8% 

in 2030. In the high bioenergy scenario, total biofuels demand would increase from 1.1% in 

2015 to 21% in 2030. The high bioenergy scenario is therefore in consonance with a draft 

bioenergy document (Energy Commission, 2010) which called for a 10% biofuels in 

transportation fuels by 2020 and 20% by 2030.  

 

Table 4: Percentage of road transport fuels in bioenergy scenarios, by energy content 

Transport fuel type 
Moderate bioenergy High bioenergy 

2015 2030 2015 2030 

Biodiesel 0.3% 5.4% 0.7% 11.2% 

Diesel 62.4% 58.2% 62.2% 53.2% 

Ethanol 0.2% 4.8% 0.4% 9.9% 

Gasoline 37.0% 31.5% 36.8% 25.8% 

Total biofuels 0.5% 10.2% 1.1% 21.0% 

 

In terms of actual biofuel requirements, Table 5 gives an indication of the biodiesel and ethanol 

required to meet the percentages shown in Table 4. In the moderate bioenergy scenario, about 

0.44 PJ of biofuels would be required in 2015, increasing to over 15.53 PJ in 2030. In the high 

bioenergy scenario, close to 0.88 PJ of biofuels would be needed in 2015, and increase to over 
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31 PJ in 2030. In 2020, about 12.77 PJ (or approximately 480 million litres) of biofuels are 

needed in the transportation sector for the high bioenergy scenario. This is more than the 336 

million litres estimated by Antwi et al. (2010) to meet 2020 requirements for biofuels in order 

to meet the requirements of the draft bioenergy policy.  

 

Table 5: Biofuels requirement in bioenergy scenarios 

Bioenergy 
Moderate bioenergy High bioenergy 

2015 2020 2030 2015 2020 2030 

Biodiesel (PJ) 0.44 3.44 15.53 0.88 6.88 31.06 

Ethanol (PJ) 0.27 2.94 13.73 0.54 5.88 27.46 

Total biofuels (PJ) 0.71 6.38 29.26 1.42 12.77 58.52 

 

 

3.2.3 Residential sector 

The policy of the Government of Ghana is to have 50% of households in the country using 

LPG as cooking fuel by 2020, from about 18.2% in 2010. While this is ambitious, an analysis 

by Mensah et al. (2014) has shown that rural dwellers may be left out of the transition to LPG 

for a long time yet. This is because the LPG marketing model in the country, where consumers 

must convey LPG cylinders to the nearest LPG retail stations to have them filled, has made it 

difficult for rural communities to access LPG. This difficulty is attributed to the fact that LPG 

retail stations are located far from most rural communities, with poor transportation 

infrastructure. For such rural communities, the short to medium term solution is the provision 

of other more accessible modern cooking fuels. Efforts to enable rural communities switch to 

modern cooking fuels is one of the central themes of Ghana’s Renewable Energy Act (Ministry 

of Energy, 2011) which aims to promote and support the increased use of improved biomass 

technologies through legislation, fiscal incentives and attractive packages. In the short to 

medium term, bio-digesters are one of the appropriate rural improved biomass technology 

options, producing methane as for cooking and heating. The switch to methane gas is intended 

to reduce woodfuel use intensity in the Ghanaian economy. Under the Sustainable Energy for 

All (SE4ALL) programme, the Government of Ghana has also targeted improved cookstoves 

as one of the mediums to reduce woodfuel usage. Improved cookstoves marketed in Ghana are 

the residential charcoal types and it is expected that, going forward, the bulk of these stoves 

would continue to be the residential improved cookstoves. Since charcoal consumption is 

higher in urban areas and also because of the cookstove marketing models adopted, penetration 

of improved cookstoves is expected to be higher in urban communities than in rural 

communities.  

In the reference scenario, demand for woodfuel is about 374 PJ in 2015, rising to 386 PJ in 

2030. Switching to biogas in the alternative scenarios would enable a replacement of some 

woodfuel with biogas. In the moderate bioenergy scenario, biogas would displace 0.10 PJ of 

woodfuel in 2015, increasing to 6.21 PJ in 2030. In the high bioenergy scenario, displacement 

of woodfuel by biogas would start at 0.55 PJ in 2015 and reach 13.15 PJ in 2030. In addition 

to biogas, the increased use of improved charcoal carbonisation technologies and improved 

cookstoves in the alternative scenarios would further reduce the demand for woodfuel. In the 

moderate bioenergy scenario, improved carbonisation technologies would contribute 35% of 

total charcoal production by 2030, compared to just 20% in the reference scenario. In the high 

bioenergy scenario, the fraction of total charcoal produced by improved technologies reaches 
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60%. The resultant displacement of woodfuel, from a combined biogas demand, increased use 

of improved cookstoves, and use of improved carbonisation technologies, is summarised in 

Figure 4. In the moderate bioenergy scenario, about 71 PJ of woodfuel would be saved in 2030, 

rising to 138 PJ in the high bioenergy scenario. This is in line with the country’s strategic 

national energy plan of 2006 in which the Ghana Energy Commission is hoping for a reduction 

in woodfuel intensity in Ghana’s energy sector. Achieving this feat would require a lot of 

investment, especially in the rural biogas sector. It would also be prudent to introduce improved 

carbonisation technologies and to make appropriate laws that require a certain percentage of 

charcoal is produced using these improved technologies, especially for large-scale and frequent 

charcoal producers. The Forestry Commission and the Environmental Protection Agency could 

be empowered to enforce these laws and lead the effort towards reduced woodfuel use in the 

energy sector.  

 

 

Figure 4: Woodfuel demand in reference, moderate and high bioenergy scenarios 

 

3.3 Resource requirement in bioenergy scenario 

As much as practicable, bioenergy types discussed in this study are assumed to be produced 

from lignocellulosic biomass sourced from within the country. Table 6 presents details of 

resource availability and their contribution towards the production of the different energy 

carriers. Resource projection to 2030 was done through regression analysis, using growth rate 

of each biomass type over the past decade. For resource types with growth rate of more than 

3% (which includes cassava of 5.1% growth rate and maize of 6% and rice of 9.3%), this 

growth rate was used to project future biomass availability up to year 2020, then three-quarters 

of the growth rate was used to project growth from 2020 to 2025, and finally, half of the growth 

rate was used to project growth from 2025 to 2030. Where growth rate was less than 3% (and 

these include groundnut of 2.2%, millet of 2.7% and oil palm of 1.1%), the growth rate was 

maintained up to 2030. The projections were meant to be as conservative as possible rather 

than being overly optimistic and were guided by the fact that agricultural lands are finite 

resources and production expansion would not be possible perpetually. The only way to boost 

production without using much land is to increase crop yields, something that has been difficult 
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to achieve in the past due to poor rainfall and minimal use of soil additives in most agricultural 

communities in Ghana.  

Biogas for residential cooking is assumed to be produced from livestock manure in the first 

instance. Depending on technology improvement, crop residues could supplement livestock 

manure in the production of biogas. Presently, research is ongoing on the co-digestion of 

livestock manure and crop residues with some success reported (see for example Chandra et 

al., 2012; Muhammad Nasir et al., 2012; Brown et al., 2012; Liew et al., 2012; Cui et al., 2011; 

Li et al., 2011; Wu et al., 2010) and it is hoped that the technology could be commercially 

available in the not too distant future. In the year 2015, close to 12 PJ of livestock manure could 

be available, rising to more than 21 PJ by 2030. This would be enough to meet resource 

requirement for biogas in the high bioenergy scenario by 2030, of 13.15 PJ. If the projected 

future resource becomes available, there might be no need to co-digest manure with crop 

residues, except when co-digestion could increase manure yields, a situation that is dependent 

on ongoing research.  

 

Table 6: Assumptions of biomass resource requirement in the bioenergy scenarios 

Feedstock Resource potential (PJ) Moderate bioenergy (PJ) High bioenergy (PJ) 

 2015 2030 2015 2030 2015 2030 

Electricity generation 

Municipal solid waste 44.2 70.1 9.3 14.3 27.9 44.7 

Wood waste  4.8 4.8 1.2 1.2 3.6 3.6 

Oil palm waste 12.7 14.9 3.2 4.1 9.5 12.7 

Cocoa waste  27.4 39.2 6.9 10.6 20.6 33.0 

Transportation 

Ethanol (cereal waste, 

cassava waste, other crop 

wastes) 

306.6 579.7 0.8 39.2 1.6 78.5 

Biodiesel (sunflower and 

jatropha)* 
NA NA 0.4 15.5 0.9 31.1 

Cooking fuels 

Animal manure  11.6 21.4 0.1 6.2 0.6 13.2 

*Figures shown indicate actual biodiesel demand  

 

With regard to transportation fuels, it is assumed that a combination of cereal waste, cassava 

waste and the other waste types not considered for electricity are available for fermentation, 

subject to technology availability. As shown in Table 6, the resources required for ethanol 

production in the high bioenergy scenario by 2030 are a lot less, compared to how much could 

be available. Producing ethanol from lignocellulosic feedstock avoids the ‘food vs fuel’ 

challenge which has become a contentious issue in the global discourse on biofuels. As noted 

by Azad et al. (2015), second generation biofuels ‘can overcome the social, economic and 

environmental challenges without hampering our food cost and creating pressure on land use 

because it is non-edible, biodegradable and can grow on marginal land’.  
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However, notwithstanding the fact that the social and environmental gains of producing 

biofuels from lignocellulosic biomass are many, it is unclear to what extent second generation 

biofuel technologies can compete favourably with first generation technologies with respect to 

costs. Second generation technologies are known to have higher costs as alluded to by a number 

of studies (Meihui et al., 2015; Ramamurthi et al., 2014; Pourhashem et al., 2013; Manatt et 

al., 2013; Haarlemmer et al., 2012; Stephen et al., 2012).  

This implies that more research is needed to reduce costs in order to make second generation 

biofuels attractive for upscaling in developing countries such as Ghana. Higher costs would 

not encourage second generation technologies adoption and this would have consequences for 

land resource use. As an example, if all of the ethanol needed in the high bioenergy scenario 

were to be produced from first generation technologies using conventional energy crops, this 

would entail the use of over 583,000 ha of land by 2030, or approximately 9.6% of arable 

unused agricultural land in Ghana as at 2012. Details of this land requirement is summarised 

in Table 7. The computation is based on the assumption that ethanol would be produced from 

a combination of cassava and sweet sorghum, in a 50:50 ratio at presently conservative yields. 

Yield improvements could decrease land use for first generation biofuels but agricultural yields 

in Ghana and indeed most of sub-Saharan Africa have been poor and gives little room for 

optimism.  

 

Table 7: Resource requirement for ethanol demand assuming first generation technology 

Parameter 
Moderate bioenergy High bioenergy 

2015  2020  2030  2015  2020  2030  

Ethanol demand (million litres)  12.73 138.10 644.66 25.45 138.10 1289.31 

 Ethanol from Cassava (million litres)  6.36 69.05 322.33 12.73 69.05 644.66 

 Land required for cassava (ha)  2,121 23,016 107,443 4,242 23,016 214,885 

 Ethanol from sweet sorghum (litres)  6.36 69.05 322.33 12.73 69.05 644.66 

 Land required for sweet sorghum (ha)  3,636 39,456 184,188 7,273 39,456 368,375 

 Total land for ethanol (ha) 5,758 62,472 291,630 11,515 62,472 583,260 

Conversion factor: 21.3 MJ per litre. 

Yield factors assumed: cassava – 3,000 l/ha; sweet sorghum – 1,750 l/ha. 

Source document for conversion factors: European Commission (2007); ethanol yield data 

was obtained from Afrane (2012) and Sielhorst et al. (2008). 

 

Biodiesel could also be produced from crop residues using second generation technologies, but 

this technology is even less mature. To produce biodiesel from crop residue, the residue would 

undergo gasification to form syngas which can then be converted to biodiesel in a Fischer-

Tropsch reactor with appropriate catalysts (Sims et al., 2010; IEA, 2010). Because of the 

challenges currently associated with this type of technology, we have assumed that all biodiesel 

would be produced from first generation technology in the foreseeable future. Details of land 

requirements for biodiesel crops are presented in Table 8 with an assumed 50:50 combination 

of sunflower and jatropha. In the moderate bioenergy scenario, an estimated 513,000 ha of land 

would be required to cultivate these crops to meet demand for biodiesel for transportation in 

2030. This would rise to about 1 million ha in the high bioenergy scenario. Clearly, this calls 

for urgent measures globally and also in Ghana to continue to promote research into second 
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generation technologies to decrease costs and make biofuels attractive socially, 

environmentally and economically. 

 

Table 8: Resource requirement for biodiesel  

Parameter  
Moderate bioenergy High bioenergy 

2015  2020  2030  2015  2020  2030  

 Biodiesel demand (million litres)  13.08 102.44 462.16 26.16 102.44 924.31 

 Sunflower oil required (million litres)  6.54 51.22 231.08 13.08 51.22 462.16 

 Land required for Sunflower (ha)  9,479 74,230 334,896 18,958 148,459 669,793 

 Jatropha oil required (million litres)  6.54 51.22 231.08 13.08 51.22 462.16 

 Land required for Jatropha (ha)  5,031 39,399 177,753 10,062 39,399 355,505 

 Total land for biodiesel (ha) 14,510 113,628 512,649 29,020 227,257 1,025,298 

Conversion factor: 33.6 MJ per litre. 

Yield factors assumed: Sunflower oil – 690 l/ha; jatropha oil – 1,300 l/ha. 

Source document for conversion factors: European Commission (2007); biodiesel yield data 

was obtained from Afrane (2012) and Sielhorst et al. (2008). 

 

3.4 Emissions savings in bioenergy scenarios 

In the bioenergy scenario, GHG emissions savings would accrue from reduced petroleum fuel 

consumption due to the introduction of bioenergy into the energy mix. In the moderate 

bioenergy scenario, about 8 PJ of petroleum fuels would be saved from transportation and 

electricity generation, rising to 58 PJ in 2030. In the high bioenergy scenario, petroleum fuel 

savings would begin at 10 PJ, and increase to 96 PJ in 2030.  

The potential reduction in greenhouse gases is 3 million tonnes of CO2e in the moderate 

scenario and close to 6 million in the high bioenergy scenario in 2030 (Figure 5), equivalent to 

14% reduction relative to total projected emissions in the reference scenario. Close to 96% of 

the reductions in 2030 would accrue from the petroleum demand sector. The transformation 

sector savings are lower because of the assumption that natural gas is the primary electricity 

generation fuel for electricity in the reference scenario. Also, the roadmap for electricity 

generation already stipulates a 10% generation capacity from renewables by 2020, which 

results in lower emissions from electricity generation. GHG reduction in the transformation 

sector would be higher if LCO, which has a higher emission factor, is used in the electricity 

generation mix from 2015 onward.  
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Figure 5: GHG emissions in the various scenarios 

 

4. CONCLUSIONS 

This paper analysed the effects of bioenergy on Ghana’s energy mix from 2015 to 2030 using 

the LEAP model. Three possible energy scenarios were analysed to study the effects of 

bioenergy on the energy mix and GHG emissions. The first scenario, referred to as the reference 

scenario, considered a business-as-usual approach to current energy demand and supply. The 

two bioenergy scenarios examine the effects of injecting moderate and high bioenergy into the 

energy mix. In a high bioenergy scenario, electricity from biomass resources would contribute 

5.8% to total electricity generated in 2015, reducing to 4.0% by 2030. Total biofuel demand in 

the high bioenergy scenario would increase from 1.1% in 2015 to 21% in 2030 which is in line 

with the country’s draft bioenergy document which is calling for a 20% biofuel share in 

transportation fuels by 2030. In the high bioenergy scenario, the consumption of biofuels would 

result in the displacement of petroleum, starting from 10 PJ in 2015, and rising to a possible 96 

PJ in 2030. Again in the high bioenergy scenario, up to 138 PJ of woodfuel could be saved in 

2030 through increased consumption of biogas and increased use of improved cookstoves and 

charcoal carbonisation technologies. The potential reduction in greenhouse gases for modern 

bioenergy consumption in all sectors is 3 million tonnes of CO2e in the moderate scenario and 

close to 6 million in the high bioenergy scenario in 2030, equivalent to 14% reduction relative 

to total projected emissions in the reference scenario. Feedstock for all bioenergy types, 

including ethanol, is assumed to come from lignocellulosic biomass. However, if ethanol is not 

produced from lignocellulosic biomass due to higher production costs, an extra 583,000 ha of 

land would have to be dedicated to the cultivation of starch and sugar crops for ethanol 

production. Producing biodiesel from lignocellulosic biomass is also possible, but the 

technology is even less mature, compared to ethanol. Research support is needed to quicken 

the pace of commercializing biofuels from lignocellulosic biomass to make the cost attractive 

for developing countries and thereby free-up land space for agriculture.  
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Supplementary materials 

 

Appendix 1: Historic energy consumption and demographics (2001-2010) 

Energy Indicator Unit 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 

Total final energy  PJ 226 222 207 213 213 217 221 218 240 237 

Total electricity consumed GWh 6564 6219 4603 4593 5259 6657 5720 6330 6410 7124 

Electricity generation - large hydro GWh 6609 5036 3886 5281 5629 5619 3727 6195 6877 6996 

Electricity generation - thermal GWh 1250 2237 1996 758 1159 2811 3251 2129 2081 3171 

Gasoline consumption PJ 24 26 22 26 24 23 25 25 32 33 

Diesel consumption PJ 31 32 34 38 40 42 52 49 58 58 

Firewood consumption PJ 153 154 121 113 101 88 75 69 65 64 

Charcoal consumption PJ 35 36 37 38 38 39 39 39 39 40 

Population Million 19.4 19.8 20.3 20.8 21.3 21.8 22.3 22.9 23.4 24.7 

Source: Adapted from Energy Commission (2013) 

 

 

 

Appendix 2: Assumptions of demographic and economic indicators 

Parameter Unit 2010 2015 2020 2025 2030 

Households  Millions 5.6 6.4 7.1 7.8 8.4 

Urbanisation rate % 56.2 58.4 60.6 62.8 65 

GDP US$ 32.2 52.5 76.8 105.2 137.6 

 

 

 


