

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 21, 2017

Improved time complexity analysis of the Simple Genetic Algorithm

Oliveto, Pietro S.; Witt, Carsten

Published in:
Theoretical Computer Science

Link to article, DOI:
10.1016/j.tcs.2015.01.002

Publication date:
2015

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Oliveto, P. S., & Witt, C. (2015). Improved time complexity analysis of the Simple Genetic Algorithm. Theoretical
Computer Science, 605, 21-41. DOI: 10.1016/j.tcs.2015.01.002

http://dx.doi.org/10.1016/j.tcs.2015.01.002
http://orbit.dtu.dk/en/publications/improved-time-complexity-analysis-of-the-simple-genetic-algorithm(7fbf215c-195b-4773-9f85-5c4b6794bdf7).html

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Improved Time Complexity Analysis of the Simple Genetic

Algorithm✩

Pietro S. Olivetoa,1, Carsten Wittb

aDepartment of Computer Science, University of Sheffield, United Kingdom
bDTU Compute, Technical University of Denmark, Denmark

Abstract

A runtime analysis of the Simple Genetic Algorithm (SGA) for the OneMax problem has
recently been presented proving that the algorithm with population size µ ≤ n1/8−ε requires
exponential time with overwhelming probability. This paper presents an improved analysis
which overcomes some limitations of the previous one. Firstly, the new result holds for pop-
ulation sizes up to µ ≤ n1/4−ε which is an improvement up to a power of 2 larger. Secondly,
we present a technique to bound the diversity of the population that does not require a
bound on its bandwidth. Apart from allowing a stronger result, we believe this is a major
improvement towards the reusability of the techniques in future systematic analyses of GAs.
Finally, we consider the more natural SGA using selection with replacement rather than
without replacement although the results hold for both algorithmic versions. Experiments
are presented to explore the limits of the new and previous mathematical techniques.

Keywords: Simple Genetic Algorithm, Crossover, Runtime Analysis

1. Introduction

For many years it has been a challenge to analyze the time complexity of Genetic Al-
gorithms (GAs) using stochastic selection together with crossover and mutation. We have
recently presented a first step towards a systematic analysis of GAs through a runtime anal-
ysis of the Simple Genetic Algorithm (SGA) for OneMax (Oliveto and Witt, 2012). The
main result was the proof that the SGA has exponential runtime with overwhelming proba-
bility for population sizes up to µ ≤ n1/8−ε for some arbitrary small constant ε and problem
size n.

The main novelties of the work were two. On one hand, we provided a rigorous proof
that the SGA cannot optimize OneMax in polynomial time (1). The inefficient hillclimb-
ing performance of the SGA due to the loss of selection pressure was well known in the

✩An extended abstract of this paper without full proofs appeared in the Proceedings of the fifteenth
annual conference on Genetic and evolutionary computation (GECCO ’13) (Oliveto and Witt, 2013)

Email addresses: P.Oliveto@sheffield.ac.uk (Pietro S. Oliveto), cawi@dtu.dk (Carsten Witt)
1Supported in part by EPSRC grant EP/H028900/1.

Preprint submitted to Theoretical Computer Science November 14, 2014

Manuscript (PDF)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Evolutionary Computation (EC) community since the algorithm has been well studied in
the literature. In fact, Goldberg (1989) reports experimental results in his seminal book
showing the loss of selection pressure of the algorithm and suggesting fitness scaling mech-
anisms to solve the problem. Nevertheless a rigorous proof was yet not available. On the
other hand, the major driving force was to obtain a first basis of mathematical techniques
towards systematic runtime analyses of GAs using at the same time mutation, crossover
and stochastic selection (2). Undoubtely significant progress has been achieved in recent
years in the runtime analysis of EAs (Auger and Doerr, 2011; Jansen, 2013). Nowadays,
the performance of simple EAs can be analyzed on well-known combinatorial optimization
problems (Neumann and Witt, 2010). Furthermore, major advances have been achieved
in the analysis of population-based EAs with stochastic selection through techniques such
as the simplified negative-drift theorem (Oliveto and Witt, 2011), the negative drift in pop-
ulations theorem (Lehre, 2010) and the fitness levels for non-elitist populations technique
(Lehre, 2011). However, these techniques cannot be directly applied to the analyses of more
realistic GAs incorporating a crossover operator. Several results were indeed available prov-
ing that crossover is useful (Jansen and Wegener, 2005; Watson and Jansen, 2007; Oliveto
et al., 2008; Doerr et al., 2010; Kötzing et al., 2011; Neumann et al., 2011; Sudholt, 2012;
Doerr et al., 2013), but they rely heavily on elitist selection operators. Moreover, mostly
only upper bounds on the running time of crossover-based algorithms were available.

In this paper we present an improved runtime analysis of the SGA as a first step towards
overcoming the limitations of our previous analysis. The first limitation was the bound on
the population size µ = O(n1/8−ε) for the results to hold. The analysis presented here allows
population sizes up to a power of 2 larger. Another significant limitation was the necessity
for a bound on the so-called bandwidth of the population from which a measure on the
diversity of the population was derived. The bandwidth was defined as h− ℓ where h is the
best OneMax value in a population and ℓ the worst OneMax value, while diversity s was
defined as the number of non-converged bit positions, that is both bit values are taken by
individuals of the population. The whole analysis depended on the fact that if the diversity
of the population is sufficiently low, then the behavior of fitness proportional selection is
very close to that of uniform selection. The crucial observation to derive a bound on the
diversity s was that h − ℓ ≤ s, i. e., the bandwidth cannot be larger than the number of
non-converged bits. However, it is a non-trivial task to achieve a bound on the bandwidth
for not too small population sizes µ. Furthermore, the bandwidth is heavily dependent on
the problem at hand which seriously limits the generality and reusability of the technique.
In this paper we present a new technique to bound the diversity of the population that does
not require a bound on its bandwidth. Apart from allowing a stronger runtime result, we
believe that this constitutes a major improvement towards the reusability of the presented
technique in future analyses of the SGA.

Roughly speaking, in our previous work we measured the number of one-bits that indi-
viduals of the population have at a given position i in the bitstring at time t with a random
variable X i

t and showed that, if the population size is not too large, X i
t has a very similar

behavior to that of a martingale (i. e., the expected value of the random variable remains
the same from one step to the next; see Williams (1991) for an introduction to martingales).

2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

This enabled us to define a potential function Y i
t := (X i

t − µ/2)2 exhibiting a positive drift
(i. e., the bits converge). However, for larger population sizes the positive drift does not
necessarily hold since the X i

t -process starts to resemble a submartingale (i. e., the expected
value of the random variable can increase from one step to the next) and the Y i

t -process
might drift towards 0 even if the X i

t -process increases. The proof strategy presented herein
defines a different potential function Y i

t such that a positive drift can be proved even if the
underlying X i

t -process closely resembles a submartingale. This allows the proof of expo-
nential runtime up to population sizes µ ≤ n1/4−ε. From the analysis an intuition can be
derived that for larger populations (i. e., µ = Ω(

√
n)) the bit positions no longer converge

sufficiently disabling the effectiveness of the mathematical techniques presented herein and
in our previous work (Oliveto and Witt, 2012). To this end, in aid of future research, we
present some experiments showing how the diversity increases rapidly when the population
size reaches values around µ = c

√
n for various constants c > 0.

The final improvement compared to our previous work (Oliveto and Witt, 2012) is a
slight variation in the algorithm. We change the selection operator to select individuals
from the population with replacement rather than without replacement. We feel that the
chosen selection operator is the more natural variant, hence redefined the algorithm. In any
case, since the probability of choosing an individual for selection twice is O(1/µ), this does
not really affect the analysis. The results in the paper would also hold for the variant in
Oliveto and Witt (2012), as could that variant also be used in this paper.

The rest of the paper is structured as follows. In Section 2 we discuss previous related
work, define the SGA precisely and outline the new proof strategy in greater detail. In
Section 3.1 we discuss the submartingale property of the random variable X i

t and present
a lower bound on the drift of the new potential function Y i

t . Using the drift we derive an
upper bound on the time for many bits to “almost converge” (i. e., to achieve low diversity)
in Section 3.2. Finally in Section 3.3, we can apply the machinery from Oliveto and Witt
(2012) to prove exponential time for the SGA with population sizes up to µ ≤ n1/4−ε. In
the Conclusions we present the experiments focusing on understanding at what population
size the diversity starts increasing rapidly together with final remarks.

2. Algorithm and Proof Strategy

Our results are a continuation of previous work. Happ et al. (2008) performed the first
runtime analysis of fitness proportional selection (f.p.s.) by considering only one individ-
ual and bitwise mutation. This work was extended by Neumann et al. (2009) to consider
arbitrary population sizes again on a mutation-only EA. In particular, it was proved that
the runtime of an EA using f.p.s. and bitwise mutation for OneMax is exponential with
overwhelming probability (w. o. p.) whatever the polynomial population size. Also if the
population is not too large (i. e., logarithmic in the problem size), then the algorithm cannot
optimize any function with unique optimum in polynomial time w. o. p. Finally, in Oliveto
and Witt (2012) we presented the first analysis of the complete SGA for OneMax using
selection without replacement and proving exponential runtime for population sizes up to

3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

µ ≤ n1/8−ε for some arbitrary small constant ε and problem size n. The well-known SGA
with the more natural selection with replacement is displayed in Figure 1.

Algorithm (SGA) (Goldberg, 1989)

1. Create a parent population P consisting of µ individuals chosen uniformly at random.

2. C := ∅.
3. While |C| < µ do

• Fitness proportional selection: Select two individuals x′ and x′′ from P ac-
cording to fitness-proportional selection with replacement.

• Uniform crossover: Create an offspring x by setting each bit x(i) = x′(i) with
probability 1/2 and x(i) = x′′(i) otherwise, for 1 ≤ i ≤ n.

• Standard Bit Mutation: Flip each bit x(i) of x with probability 1/n, for
1 ≤ i ≤ n.

• C := C ∪ {x}.
4. Set P := C and go to 2.

Figure 1: The Simple GA

The algorithm is initialised with a parent population P consisting of µ individuals chosen
uniformly at random. In each generation a new population of size µ is created. Each
individual for the new population is created by following three steps. First two parents x′

and x′′ are chosen from P by applying fitness-proportional selection (f.p.s.) with replacement
twice. F.p.s. selects each individual z ∈ P with probability f(z)/

∑

y∈P f(y). Afterwards
uniform crossover is applied to x′ and x′′ to generate an offspring x. Finally standard bit
mutation is applied to x. By performing the selection, crossover and mutation steps µ times,
the new parent population of size µ is obtained for the following generation.

In this paper we present an improved analysis of the SGA for OneMax. The OneMax

function returns the number of ones in a bitstring of length n, i. e., formally defined as
OneMax(x) :=

∑n
i=1 xi; often we simply write |x| to denote the nuber of ones in a bitstring.

The global optimum is the bitstring of only one-bits. In the following we outline the improved
proof strategy.

Consider the stochastic process describing the random population vectors of the SGA
on OneMax over time. The states of the process at time t, i. e., a concrete population, are
mapped to the outcomes of the random variable Xt denoting the number of individuals with
a one-bit at position 1 (the same analysis applies to all other positions). The old analysis
in Oliveto and Witt (2012) started out with an idealized process, where individuals were
selected uniformly. In this case, E[Xt+1 | Xt] = Xt, i. e., the process is a martingale. This
implied that the process Yt := (Xt − µ/2)2 was exhibiting positive drift E[Yt+1 − Yt | Xt] =
Var[Xt]. The variable drift theorem could be used to show that a Y -value of (µ/2)2 was
obtained after an expected number O(µ log µ) steps, which meant that all individuals either
had a one-bit or a zero-bit at position 1 then. The bit is called converged then and this
property was used to bound the effect of crossover.

4

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Furthermore, the old analysis exploited that the actual process, where fitness-proportional
instead of uniform selection is used, is very close to the idealized process under strong as-
sumptions, including the bound µ = O(n1/8−ε). Then the Xt were so close to a martingale
that Yt still was drifting towards its maximum value. However, for larger µ the follow-
ing problem occurs: the actual process (if mutation is ignored) is a submartingale, i. e.,
E[Xt+1 | Xt] ≥ Xt, i. e., there is positive drift E[Xt+1 − Xt | Xt] > 0. Unless the strong
assumptions were made, the drift of the Xt-process was too strong to maintain positive drift
of the Yt-process. For instance, if Xt = µ/4, then the positive drift of the Xt-process towards
the “middle” µ/2 could imply a negative drift of the Yt-process.

We can overcome this difficulty to some extent by redefining Yt := X2
t . Our aim is to

show that the Yt-process has a drift that can be bounded from below by a useful value
(whereas the drift of the Xt-process is not necessarily strong enough). The expected first
hitting time for either 0 or at least µ2(1 − O(1/n))2, i. e., the expected time for the bit to
“almost” converge, will be bounded by O(µ log3 n). As long as µ = O(n1/4−ε), many almost
converged bits will hinder the process from reaching the optimum. On the way towards this
bound, we need:

1. a formal proof that the Xt-process resembles a submartingale (Lemma 3),

2. a lower bound on the drift of the Yt-process (Lemma 4),

3. an application of the variable drift theorem (Lemma 7). Here the additional difficutly
arises that the drift is not monotone in the distance to the optimum, which is required
by the standard version of the variable drift theorem. Fortunately, there is a more
recent generalization of the variable drift theorem in Feldmann and Kötzing (2013)
that can be adapted to our case. In order to apply it, some technical conditions
have to be verified, e. g., that the maximum jump size of the Yt-process is bounded
(Lemma 9).

Once the new convergence analysis is obtained, we will apply the machinery from our
previous work (Oliveto and Witt, 2012) to achieve the final result. Roughly speaking, a
potential function collapsing the whole population into a single value is defined and a drift
away from the optimum is proven, given that there is a sufficient number of converged bits;
see Section 3.3.

3. Detailed Theoretical Analysis

3.1. “Submartingale” Property of Xt and Drift of Yt

We will analyze the Xt-process and find out that E[Xt+1 | Xt] ≥ Xt(1 − 2/n), see
Lemma 3. If the term −2/n (which is due to mutation) was not present, this would char-
acterize the process as a submartingale. As µ = o(n) and Xt ≤ µ, the term −2/n is not
significant, which intuitively means that the process still resembles a submartingale. To
prove the desired property, we need a helper result, namely Lemma 2. There we analyze
the stochastic process describing the populations induced by the SGA on OneMax. To
formalize this, let the vector Pt = {(x(t)

1 , . . . , x
(t)
µ)}, where t ≥ 0 and x

(t)
j ∈ {0, 1}n for

j ∈ {1, . . . , µ}, be the population at time t, ordered in an arbitrary but fixed way. Note that

5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

this is a random vector, whose components are uniform at random at time 0. At later points
of time, the components are not necessarily uniform due to the SGA favoring individuals
with larger number of one-bits. However, we observe that the positions of the one-bits are
still uniformly distributed, as the following lemma formalizes.

Lemma 1. Consider some population Pt = {(x(t)
1 , . . . , x

(t)
µ)}, where t ≥ 0, of the SGA

on OneMax. Let j ∈ {1, . . . , µ} be arbitrary but fixed and let x := x
(t)
j . Let (x1, . . . , xn)

denote the bit vector given by x. If |x| = k, then for any bit index i ∈ {1, . . . , n}, it holds
Prob(xi = 1) = k/n.

Proof. The claim is equivalent to that x is uniformly distributed on the set Vk := {v ∈
{0, 1}n | |v| = k}. We prove it by induction. Obviously, it holds for t = 0 since all individuals
are drawn uniformly from {0, 1}n. The transition from time t to time t + 1 consists of
selection, crossover, and mutation. Selection chooses based on the number of one-bits, only,
since the objective function value does not depend on the position of the one-bits. Hence, all
individuals with k one-bits have the same selection probability. The mutation and crossover
operator used are so-called unbiased ones (Lehre and Witt, 2012). Formally, consider any
permutation π ∈ Sn, where Sn denotes the set of permutations on {1, . . . , n} and define the
permutation of a bitstring x = (x1, . . . , xn) by π(x) = (π(x1), . . . π(xn)). Then, with the
stochastic mappings mut: {0, 1}n → {0, 1}n and cross : {0, 1}n × {0, 1}n → {0, 1}n induced
by mutation and crossover, respectively, we have Prob(mut(x) = z) = Prob(mut(π(x)) =
π(z)) as well as Prob(cross(x, y) = z) = Prob(cross(π(x), π(y)) = π(z)) for all x, y, z ∈
{0, 1}n.

The inductive assumption says that if |x| = k for the individual selected for mutation,
then Prob(x = v∗) = 1/

(
n
k

)
for every v∗ ∈ Vk. Let y ∈ {0, 1}n be arbitrary and denote

p∗ := Prob(mut(x, y)). We get that Prob(mut(π(x), π(y))) = p∗ for every π ∈ Sn and note
that {π(y) | π ∈ Sn} contains all individuals in S|y| one-bits. Since x is uniform on Sk and π
is a bijection, we get that mut(x, y) assigns uniform probability to all individuals with the
same number of one-bits. Analogously, the statement is proved for crossover. This proves
the induction step.

We can now formulate the claim that the number of one-bits at an arbitrary fixed position
(w. l. o. g., position 1) determines a lower bound on the probability of selecting an individual
having a one there.

Lemma 2. Consider the random population vector of the SGA on OneMax at an arbitrary
point of time. Let k be the number of individuals with a one-bit at position 1. Then an
application of the fitness-proportional selection operator will select such an individual with
probability at least k/µ.

Proof. Let a random population P = (x1, . . . , xµ) at the considered point in time be given,
ordered in an arbitrary but fixed way. Let I be the random variable denoting the number
of individuals with a one-bit at position 1. Note that the theorem conditions on I = k;
however, for the moment we drop this condition and let I be random.

6

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

All xi, where 1 ≤ i ≤ µ, so far follow the same probability distribution. By Lemma 1, the
one-bits of xi (note that also |xi| is a random variable) are uniformly distributed among the
individual. We investigate the consequences of introducing the condition that f(xi) ≥ f(xj)
for some j 6= i, which is equivalent to |xi| ≥ |xj|. This event applies to the sum of the
bit values and not a particular bit. Hence, Lemma 1 still applies under the assumption
|xi| ≥ |xj| (recall that we do not condition on I = k yet). Denoting by pi the probability
that individual xi has a one-bit at position 1, we have both pi = E[|xi|]/n and pj = E[|xj|]/n,
which implies pi ≥ pj.

What happens if we additionally condition on I = k for some fixed k? First of all, note
that the one-bits of an individual are no longer guaranteed to be uniformly distributed.
Secondly, the statement of the lemma is trivial if either k = 0 or k = µ. In the following,
we shall consider the condition that that I = k only for k ∈ {1, . . . , µ − 1}. Recalling that
pi denotes the probability of having a one at position 1 in individual xi before conditioning,
we define p′i = (pi | I = k) for i ∈ {1, . . . , µ}. We again consider two individuals xi and xj

and condition on |xi| ≥ |xj| in the rest of this paragraph. The aim is to show that p′i ≥ p′j.
By definition of conditional probability,

p′i =
Prob(xi has a one at position 1 and I = k happens)

Pr(I = k)

and accordingly for p′j. Let X̃ := {x1, . . . , xµ}\{xi, xj} denote the µ−2 remaining individuals

and R denote the number of one-bits at position 1 in X̃. The event I = k is only possible
if R ∈ {k− 2, k− 1, k}. We further condition on the value of R. If R = k then immediately
p′i = p′j = 0; similarly if R = k−2 then p′i = p′j = 1. Finally, if R = k−1, then the condition
(I = k) ∧ (R = k − 1) implies that exactly one of the two individuals has a one-bit at
position 1. By Lemma 1, before conditioning on concrete values for I and R, the probability
of xi getting a one and xj a zero is

pi∧j :=
|xi|
µ

(

1− |xj|
µ

)

and the reverse case has probability

pj∧i :=
|xj|
µ

(

1− |xi|
µ

)

.

We claim that

(p′i | R = k − 1) = (pi | (I = k) ∧ (R = k − 1))

=
pi∧j · Prob(X̃ has k − 1 ones at pos. 1 | xi has a one and xj a zero there)

Pr((I = k) ∧ (R = k − 1))

=
pi∧j · Prob(X̃ has k − 1 ones at pos. 1 | xj has a one and xi a zero there)

Pr((I = k) ∧ (R = k − 1))
. (∗)

7

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Note that, before conditioning, all individuals in P are identically and independently dis-
tributed. We inspect the event from the second term in the numerator of Equation (∗), i. e.,
the event that X̃ has k − 1 ones as position 1 conditioned on that both |xi| ≥ |xj| and that
xi has a one and xj a zero there. Now, by conditioning on certain properties for only xi

and xj, more precisely |xi| ≥ |xj| and that xi has a one-bit at position 1 and xj has not,
we do not introduce dependencies among the creation of the individuals in X̃. Hence, the
distribution of the one-bits in every individual from X̃ does not depend on whether xi or xj

has the one-bit such that Equation (∗) follows.
We obtain an expression analogue to Equation (∗) for (p′j | R = k − 1). Therefore

p′i/p
′
j = pi∧j/pj∧i on R = k for every k ∈ {0, . . . , µ}. Now, since |xi| ≥ |xj|, both

|xi|
µ

≥ |xj|
µ

and

(

1− |xj|
µ

)

≥
(

1− |xi|
µ

)

,

and p′i ≥ p′j follows.
Next we consider the selection probabilities. Let s′i be the probability that fitness-

proportional selection selects xi, already conditioning on I = k. By definition of the selection
operator,

s′i = E

[

f(xi)
∑µ

j=1 f(xj)
| x1, . . . , xµ

]

.

Hence, if |xi| ≥ |xj|, we get s′i ≥ s′j. The condition I = k does not introduce any complica-
tions at this point.

Also if we extend the conditioning on the order of fitness values to several individuals,
e. g., by assuming f(xi1) ≥ f(xi2) ≥ · · · ≥ f(xir) for indices i1, . . . , ir, where r ≤ µ, the
same reasoning as before applies. Consequently, if we consider the order statistics of the
fitness values by sorting the individuals as xi1 , . . . , xiµ according to decreasing fitness such
that f(xi1) ≥ · · · ≥ f(xiµ), we have that s′i1 ≥ · · · ≥ s′iµ and p′i1 ≥ · · · ≥ p′iµ .

Let p∗ be the probability of selecting an individual with a one-bit at position 1 in a
single selection trial, which is the probability we have to bound in the lemma. By definition,
p∗ = s′i1p

′
i1
+ · · ·+s′iµpiµ . Now, s

′
i1
+ · · ·+s′iµ = 1 since the s′ij form a probability distribution.

Hence, Chebyshev’s sum inequality yields p∗ ≥ (p′i1 + · · ·+ p′iµ)/µ. Now, by using indicator
random variables for the events associated with the p′ij and linearity of expectation, we get
the identity p′i1 + · · · + p′iµ = E[I]. Since we still condition on I = k, we have E[I] = k and
altogether p∗ ≥ k/µ.

We now prove the “almost-submartingale” property. For technical reasons, we will also
have to analyze a modified SGA, where selection is uniform, i. e., does not take fitness into
account.

Lemma 3. The random variable Xt+1 is the sum of µ independent Bernoulli trials with
common success probability p, where p ≥ (Xt/µ)(1− 2/n) + 1/n. Moreover, E[Xt+1 | Xt] ≥
Xt(1− 2/n) + µ/n.

If the SGA uses uniform instead of fitness-proportional selection, then p = (Xt/µ)(1 −
2/n) + 1/n.

8

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Proof. We consider the stochastic process describing the random populations of the SGA on
OneMax over time and inspect the creation of a single individual when going from time t
to the next generation. For the individual to have a one-bit (at position 1), either the result
of crossover must be a one-bit and mutation must not flip it, or the result of crossover must
be a zero-bit and mutation must flip it. The result of crossover is a one-bit for sure if both
parents have a one-bit, and it is a one-bit with probability 1/2 if the parents differ at the
position (which happens if the first parent has a one and the second a zero or the other
way round). Let s be the probability of fitness-proportional choosing an individual with a
one-bit. We get

p = s(1− s)
1

2

(

1− 1

n

)

+ (1− s)s
1

2

(

1− 1

n

)

+ s2
(

1− 1

n

)

+ s(1− s)
1

2

1

n
+ (1− s)s

1

2

1

n
+ (1− s)2

1

n

= s(1− s) + s2 − 1

n
(s2 − (1− s)2) = s− 2s− 1

n
= s

(

1− 2

n

)

+
1

n
.

Note that the outcomes of the random variables Xt are unambigously obtained from the
state of the stochastic process mentioned above. The bound on p follows since s ≥ Xt/µ
according to Lemma 2. Obviously, s = Xt/µ in case of uniform selection, so that the bound
becomes an equality then.

The bound on E[Xt+1 | Xt] follows immediately from the bound on p since the number
of trials equals µ.

Now we consider the new process Yt = X2
t with the aim to prove that it drifts. Later,

this drift will allow us to bound the time for bits to converge.

Lemma 4. For t ≥ 0 it holds

E[X2
t+1 −X2

t | Xt] ≥ E[(Xt+1 − (Xt − 2Xt/n))
2 | Xt]− 4X2

t /n

≥ E[(Xt+1 − E[Xt+1])
2 · 1 {Xt+1 ≥ E[Xt+1]} | Xt]− 4X2

t /n.

Proof. We first study the second inequality in the statement of the lemma. That is,

E[(Xt+1 − (Xt − 2Xt/n))
2 | Xt]− 4X2

t /n

≥ E[(Xt+1 − E[Xt+1])
2 · 1 {Xt+1 ≥ E[Xt+1]} | Xt]− 4X2

t /n.

Since the first term on the left-hand side is squared, hence non-negative, the inequality holds
iff

E[(Xt+1 − (Xt − 2Xt/n))
2 | Xt] ≥ E[(Xt+1 − E[Xt+1])

2 · 1 {Xt+1 ≥ E[Xt+1]} | Xt] (1)

If the indicator function on the right hand side is zero, then Inequality (1) holds trivially. So
we study the inequality when the indicator function is non-zero, i.e., Xt+1 ≥ E[Xt+1 | Xt].
The aim is to show that the term to-be-squared on the left-hand side is non-negative and

9

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

greater than the term to-be-squared on the right-hand side. Then the inequality with the
squared terms will also follow.

Since by Lemma 3, E[Xt+1 | Xt] ≥ Xt(1 − 2/n) + µ/n ≥ Xt(1 − 2/n), it follows that
Xt+1 ≥ E[Xt+1 | Xt] ≥ Xt − 2Xt/n. Hence, the expression to be squared on the left side of
Inequality (1) is non-negative if the indicator function is non-zero, i.e., Xt+1−(Xt−2Xt/n) ≥
0.

By using Lemma 3 again (i.e., E[Xt+1 | Xt] ≥ Xt − 2Xt/n), we obtain Xt+1 − (Xt −
2Xt/n) ≥ Xt+1 − E[Xt+1 | Xt] and the desired inequality follows since the term on the
left-hand side to be squared is non-negative.

The first inequality follows from this by elementary manipulations. More precisely,

E[(Xt+1 − (Xt − 2Xt/n))
2 | Xt]

= E[X2
t+1 | Xt]− E[2Xt+1(Xt − 2Xt/n)− (Xt − 2Xt/n)

2 | Xt]

≤ E[X2
t+1 | Xt]− E[2(Xt − 2Xt/n)

2 − (Xt − 2Xt/n)
2 | Xt]

≤ E[X2
t+1 | Xt]− E[X2

t | Xt] + 4X2
t /n,

where the first estimation used Lemma 3 again.

The aim is now to show in Lemma 6 that Xt+1 with at least constant probability exceeds
its expectation by a considerable amount, which, together with Lemma 4, will allow us to
bound the drift of the Y -process (Lemma 7). This is contrary to the typical applications of
Chernoff-Hoeffding bounds, where the aim is to get an upper bound on the probability of a
random variable exceeding its expectation considerably.

To show the lower bound on the probability of a deviation, we make use of the following
well-known result from probability theory (Feller, 1971), which has been rarely used in the
theory of randomized search heuristics before. We apply it afterwards in Lemma 6.

Lemma 5 (Berry-Esseen inequality). Let X1, . . . , Xµ be independent, identically distributed
random variables with E[Xi] = 0, E[X2

i] = σ2 > 0, and E[|Xi|3] = ρ < ∞ for 1 ≤ i ≤ µ.
Then there is a constant C > 0 such that the cumulative distribution function (cdf.) FY of
Y := (X1 + · · ·+Xµ)/(σ

√
µ) satisfies

|FY (x)− Φ(x)| ≤ Cρ

σ3
√
µ

for all x ∈ R (where Φ(x) denotes the cdf. of the standard normal distribution).

Lemma 6. Let X be the sum of µ independent Bernoulli trials with success probability r/µ
each, for some r ∈ [0, µ]. Let ℓ := min{r, µ− r}. Then

1. Prob[X ≥ E[X] +
√

ℓ/2] = Ω(1).

2. E[(X − E[X]) · 1 {X ≥ E[X]}] ≤
√
ℓ.

10

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Proof. Within this proof, we let Xi denote the {0, 1}-random variable corresponding to the
i-th trial, 1 ≤ i ≤ µ. The aim is to apply Lemma 5. We introduce X ′

i := Xi − r/µ and note
that

E[X ′
i] =

r

µ
− r

µ
= 0

σ2 := E[X ′2
i] =

r

µ

(

1− r

µ

)2

+

(

1− r

µ

)(

− r

µ

)2

=
r

µ

(

1− r

µ

)

ρ := E[|X ′
i|3] =

r

µ

(

1− r

µ

)3

+

(

1− r

µ

)(
r

µ

)3

=
r

µ

(

1− r

µ

)((

1− r

µ

)2

+

(
r

µ

)2
)

≤ r

µ

(

1− r

µ

)

.

Consider the random variable Y as defined in Lemma 5 and note that σ
√
µ =

√

r(µ− r)/µ ≥
√

min{r, µ− r}/2. Hence, X ≥ r+
√

ℓ/2 = E[X] +
√

ℓ/2 is implied by Y ≥ E[Y] + 1. The
lemma yields

Prob[Y ≤ E[Y] + 1] ≤ Φ(1) +
Cρ

σ3
√
µ
≤ Φ(1) +

C
√
µ

√

r(µ− r)
≤ Φ(1) +

√
2 · C√
ℓ

.

If ℓ is greater than a sufficiently large constant, then the last bound is less than 1 and
the theorem is proved in this case. Otherwise, we have ℓ = O(1) and distinguish between
two subcases. If r ≥ µ/2, we obtain Prob[X = µ] ≥ (1 − ℓ/µ)µ = Ω(1). Otherwise, we
note that Prob[X = s] ≥

(
µ
s

)
(ℓ/µ)s(1 − ℓ/µ)s = Ω(1) for any constant s ≥ 0. Hence,

Prob[X ≥ r +
√

ℓ/2] = Ω(1) in any case. This proves the first statement of the lemma.
For the second statement, we note that

Var[X] = E[(X − E[X])2 · 1 {X ≥ E[X]}] + E[(X − E[X])2 · 1 {X < E[X]}]
≥ (E[(X − E[X]) · 1 {X ≥ E[X]}])2

by Jensen’s inequality. Hence,

E[(X − E[X]) · 1 {X ≥ E[X]} ≤
√

Var[X] =

√
r

µ
(µ− r) ≤

√

min{r, µ− r}

as claimed.

We can now bound the drift of the Y -process if µ is not too large.

Lemma 7. For t ≥ 0, E[Yt+1 − Yt | Xt] = Ω(min{Xt, µ − Xt}) − 4X2
t /n. Moreover, for

µ = o(
√
n) and Xt ≤ µ− 1, E[Yt+1 − Yt | Xt] = Ω(min{Xt, µ−Xt}).

Proof. Recall that Yt = X2
t for all t ≥ 0. According to Lemma 3, Xt+1 stochastically

dominates a random variable following the binomial distribution with parameters µ and

11

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

(Xt/µ)(1−2/n). Moreover, according to Lemma 4, it is sufficient to establish a deviation of
Xt+1 above its mean in order to bound the drift of the Y -process. Applying Lemma 6 with
r = Xt(1− 2/n), the event

Xt+1 ≥ E[Xt+1] +

√

min{Xt(1− 2/n), µ−Xt(1− 2/n)}
2

occurs with probability at least c for some constant c > 0 and sufficiently large n. Moreover,
1− 2/n ≥ 1/2 for sufficiently large n. Hence,

E[(Xt+1 − E[Xt+1])
2 · 1 {Xt+1 ≥ E[Xt+1]} | Xt) ≥ (c/4)min{Xt, µ−Xt}

for sufficiently large n, such that the statement of Lemma 4 completes the proof of the first
statement in the lemma here.

A sufficient condition for the second statement to follow from the first one is given by
4X2

t /n ≤ (c/8)min{Xt, µ − Xt}. Since µ = o(
√
n) and Xt ≤ µ − 1, 4X2

t /n ≤ (c/8)Xt is
satisfied for sufficiently large n. Since Xt ≤ µ − 1, the condition 4X2

t /n ≤ (c/8)(µ − Xt)
follows from 4X2

t /n ≤ c/8, which again follows for sufficiently large n since µ = o(
√
n).

So far, we have established a positive drift of the Y -process as long as Xt ≤ µ− 1. This
drift is dependent on Xt. Unlike the analysis in Oliveto and Witt (2012), the drift is not
monotone in Xt. Therefore, the standard assumption of the variable drift theorem (see Rowe
and Sudholt, 2012 for the most recent version) does not hold. We use the following variant
(correcting a minor mistake in a formulation by Feldmann and Kötzing, 2013) instead. Its
proof is given in Appendix B.

Theorem 1 (extending Feldmann and Kötzing, 2013). Let (Zt)t≥0, be a stochastic process
adapted to some filtration Ft over a state space S ⊆ {0} ∪ [zmin, zmax], where zmin > 0.
Suppose there exist two functions function h, d : [zmin, zmax] → R

+, where 1/h is integrable,
and some c ≥ 1 not depending on Zt such that for all t ≥ 0

(1) E[Zt − Zt+1 | Ft;Zt ≥ zmin] ≥ h(Zt),

(2) E[(Zt−Zt+1)·1{Zt+1<Zt} | Ft;Zt≥zmin]
E[(Zt+1−Zt)·1{Zt+1>Zt} | Ft;Zt≥zmin]

≥ 2c2,

(3) |Zt − Zt+1| ≤ d(Zt).

(4) for all x, y ≥ zmin with |x− y| ≤ d(x) it holds h(min{x, y}) ≤ c · h(max{x, y}).
Then it holds for the first hitting time T := min{t | Zt = 0} that

E[T | Z0] ≤ 2c

(
zmin

h(zmin)
+

∫ Z0

zmin

1

h(x)
dx

)

.

We will apply the previous theorem w. r. t. the process Zt := µ2 − Yt = µ2 −X2
t , where

the aim is to minimize the Z-value. According to Lemma 7, we get

E[Zt − Zt+1 | Xt] = Ω(min{
√

µ2 − Zt, µ−
√

µ2 − Zt})

12

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

if 1 ≤ Xt ≤ µ− 1.
Loosely speaking, the drift is a parabolic function with a maximum at Zt = 3µ2/4. In

particular, it is monotone increasing in Zt only if Zt < 3µ2/4. In order to apply Theorem 1,
we need a bound on the maximum change of the process and the ratio of positive and
negative drift. Unfortunately, we only have a lower bound on p according to Lemma 3 and
cannot control the size of jumps from Xt towards the optimum (i. e., state µ for Xt, which
is the same as state 0 for Zt).

To overcome this problem, we consider the above-mentioned modified SGA using uni-
form instead of fitness-proportional selection and denote by X̃t its current number of one-bits
at a fixed position at time t. Lemma 3 tells us the upper bound p ≤ X̃t/µ + 1/n for this
process. Intuitively, the X̃t-process should need longer time to hit state µ than the actual
one. However, we are not really interested in the first hitting time Tµ of µ but rather in the
first hitting time T0∨µ of either 0 or µ, which are the states corresponding to a converged
bit. Obviously, Tµ stochastically dominates T0∨µ; however, Tµ might be a very bad or even
useless estimate for T0∨µ if the underlying process is unlikely to leave state 0. We can allow
ourselves to modify the transition probabilities from state 0 in both the original Xt-process
and the X̃t-process without changing the corresponding T0∨µ and then use Tµ for the modi-
fied process as a bound on T0∨µ. Moreover, we can make state µ absorbing without changing
any of the first hitting times.

From now on, both processes are permanently modified at state 0 by letting Xt+1 =
Bin(µ, (1− 2/n)/µ+ 1/n) if Xt = 0 and accordingly for X̃t. This means that the transition
probabilities from state 0 are set to those from state 1. Moreover, both processes are changed
to transit from state µ to state µ with probability 1. The resulting processes are called X ′

t

and X̃ ′
t hereinafter.

The first hitting time of µ for the X ′
t-process is an upper bound (in the sense of stochastic

dominance) on the time for a bit to converge, i. e., for the completely unmodified process to
reach state 0 or µ. We claim that the first hitting time of µ for the X̃ ′

t-process is an upper
bound on the corresponding first hitting time for the X ′

t-process. This is made rigorous
by the following lemma, which uses ≻ to denote stochastic dominance of random variables
and T ′ and T̃ ′ to denote the first hitting time of µ for the X ′-process and the X̃ ′-process,
respectively.

Lemma 8. For t ≥ 0, X ′
t ≻ X̃ ′

t. Moreover, T̃ ′ ≻ T ′.

Proof. The first claim is proved inductively. It obviously holds at time 0 since both processes
are initialized in the same way. By Lemma 3, if the state at time t is less than µ,

X ′
t+1 ≻ Bin

(

µ,
max{1, X ′

t}
µ

(

1− 2

n

)

+
1

n

)

,

X̃ ′
t+1 = Bin

(

µ,
max{1, X̃ ′

t}
µ

(

1− 2

n

)

+
1

n

)

,

where Bin(a, b) denotes a random variable following the binomial distribution with param-
eters a and b; moreover, if the state at time t equals µ, then the distribution at time t + 1

13

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

is Bin(µ, 1) for both processes. Now, since the success probability in the first binomial dis-
tribution is monotone increasing w. r. t. X ′

t, we obtain from the induction hypothesis that

X ′
t+1 ≻ Bin

(

µ,
max{1,X̃′

t}
µ

(
1− 2

n

)
+ 1

n

)

= X̃ ′
t+1, which proves the induction step.

To prove the second claim, we recall that both processes stop when state µ is reached.
Hence, T ′ > t is equivalent to X ′

t < µ and accordingly for the X̃ ′-process. Hence, Prob[T ′ >
t] = 1 − Prob[X ′

t ≥ µ] and accordingly Prob[T̃ ′ > t] = 1 − Prob[X̃ ′
t ≥ µ]. Using the first

claim, the second one now follows.

From now on, we abuse notation by writing Xt but in fact meaning the doubly-modified
X̃ ′-process; also the Z-process is defined based on this X̃ ′-process. The following lemma is
used to establish some of the prerequisites of Theorem 1.

Lemma 9. Let µ = o(
√
n). Then Prob[|Xt+1−Xt| ≥ (Xt)

2/3+1/2] ≤ 2e−X
1/3
t /4. Moreover,

E[(Zt−Zt+1)·1{Zt+1<Zt}|Xt]
E[(Zt+1−Zt)·1{Zt+1>Zt}|Xt]

= 1 + Ω(1).

Proof. The first statement follows from standard Chernoff bounds since E[Xt+1 | Xt] ≥
Xt(1− 2/n) ≥ Xt − 1/2 as well as E[Xt+1 | Xt] ≤ Xt + µ/n ≤ Xt + 1/2 for n large enough
(since µ = o(

√
n)).

For the second statement, we first assume Xt ≤ µ/2 and observe that

E[(Zt − Zt+1) · 1 {Zt+1 < Zt} | Xt]− E[(Zt+1 − Zt) · 1 {Zt+1 > Zt} | Xt] = E[Zt − Zt+1 | Xt]

= Ω(Xt)

according to Lemma 7. Moreover, from the second statement of Lemma 6, we get E[(Zt+1−
Zt) · 1 {Zt+1 > Zt} | Xt] = O(Xt). Combining the two observations, we obtain the claim.
The case Xt ≥ µ/2 is proved analogously with Xt replaced by µ−Xt.

Taking everything together, we can bound the time for a bit to converge.

Lemma 10. Consider the SGA on OneMax and let µ = o(
√
n). Then the expected time

for an arbitrary bit position to reach either 0 or at least µ one-bits is O(µ log3 n).

Proof. The aim is to apply drift analysis, in particular Theorem 1, on the Zt-process defined
above and to bound its first hitting time T of state 0, which, as argued in the context of
Lemma 8, is a bound on the time for a bit to converge. We start with a simple case. If
µ ≤ 1458 ln3 n := d∗ then µ2 = O(µ log3 n). Since E[Zt−Zt+1 | Zt > 0] = Ω(1) by Lemma 7,
and Zt ≤ µ2, we get the bound O(µ2) already by classical additive drift.

From now on, we assume µ > d∗. One prerequisite of Theorem 1 is given by a bound on
the maximum jump size, which will be stated in terms of the Xt-process. Let

d(x) :=

{

x2/3 + 1
2

if x ≥ d∗/2,

ℓ∗ := 81 ln2 n+ 1
2

otherwise.

Note that ℓ∗ = (d∗/2)2/3 + 1/2. If Xt ≥ d∗/2, we get from the first statement of Lemma 9
that

Prob[|Xt+1 −Xt| ≥ d(Xt)] ≤ 2e−(9/4) lnn = 2n−9/4.

14

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

If Xt < d∗/2, then we still get Prob[Xt+1 ≥ Xt + d(Xt)] ≤ 2n−9/4 by using d∗/2 as an
upper bound on Xt. To analyze the deviation in the other direction, we use the symmetry
of the binomial distribution, more precisely, Prob[Xt+1 ≤ Xt − d(Xt)] = Prob[Xt+1 ≥
(µ − Xt) + d(Xt)]. Now, since µ − Xt ≥ d∗/2, the bound 2n−9/4 follows again as before.
Throughout this proof, we assume |Xt+1 − Xt| ≤ d(Xt) for a period of Θ(µ log3 n) steps.
By a union bound, the failure probability is o(n) · n−9/4 = O(n−5/4). Moreover, as the
maximum change of the Zt-process is µ

2 = o(n), the jumps of larger size can contribute only
o(n)n−9/4 = o(1) to the drift E[Zt − Zt+1 | Xt]. Therefore, the assumption can reduce the
drift by only o(1).

Using Lemma 7, we define h∗(z) := Cmin{
√

µ2 − z, µ −
√

µ2 − z} for z < µ such that
E[Zt − Zt+1 | Xt] ≥ h∗(Zt) for some sufficiently small constant C > 0 and all 0 < Zt < µ2.
Moreover, we define h∗(µ2) := h∗(µ2 − 1) (which sets the transition probability from state 0
of the Xt-process to that of state 1 as required). Note that Lemma 7 does not yield a bound
on the drift if Xt = µ; however, this is already our target state.

Lemma 9 shows the existence of a constant c > 1 such that E[(Zt−Zt+1)·1{Zt+1<Zt}|Xt]
E[(Zt+1−Zt)·1{Zt+1>Zt}|Xt]

≥ 2c2

for n large enough. With the d(x) and h∗(z) defined above, the fourth condition of Theorem 1
cannot be satisfied yet. Therefore, we replace h∗(z) by an even smaller bound on the drift
as follows. Assuming c ≤ 2, we let

h(z) :=

0 if z = 0,

C − C
ℓ
+

C(c−1)min{
√

µ2−z,µ−
√

µ2−z}
ℓ

if 0 < z < µ2,

h(µ2 − 1) if z = µ2,

where C is the constant from the definition of h∗. It is easy to verify that h∗(z) ≥ h(z).
Since |Xt+1−Xt| ≤ d(Xt), we get h(Zt+1) ≤ h(Zt) if Zt+1 ≤ Zt ≤ 3µ2/4. Moreover, a simple
case analysis depending on whether Zt ≥ d∗/2 or not and exploiting that µ ≥ d∗ proves that
h(Zt+1) ≤ ch(Zt) if Zt ≥ 3µ2/4 and n large enough. Hence, we have satisfied the four
conditions in Theorem 1. The minimum positive Z-value is zmin := µ2 − (µ− 1)2 = 2µ− 1

and we use the bound h(z) ≥ C(c−1)min{
√

µ2−z,µ−
√

µ2−z}
ℓ

for z > 0. If Z0 = 0 or Z0 = µ2,
nothing is to show. Altogether, we get from the drift theorem that

E[T | Z0] ≤ 2c

(
zmin

h(zmin)
+

∫ Z0

zmin

1

h(z)
dz

)

≤ O(1) ·
(

2µ

C(c− 1)/ℓ
+

∫ 3µ2/4

2µ−1

ℓ/(C(c− 1))

µ−
√

µ2 − z
dz +

∫ µ2−1

3µ2/4

ℓ/(C(c− 1))
√

µ2 − z
dz

)

= O(µ log2 n) +O(log2 n) ·
([

µ ln(z) + 2
√

µ2 − z + µ ln

(

µ−
√

µ2 − z

µ+
√

µ2 − z

)]3µ2/4

2µ−1

+
[

−2
√

µ2 − z
]µ2−1

3µ2/4

)

.

15

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

The first integral evaluates to O(µ log µ) and the second one to O(µ). Since µ = o(n), the
first hitting time for either 0 or µ is altogether O(µ log3 n).

Note that unlike the analysis in Oliveto and Witt (2012), the previous lemma does not
need a bound on the bandwidth of the population (i. e., the difference of best and worst
individual). This constitutes a significant improvement in the sense that it might be used
independently in future analyses of the SGA.

The results we have worked out so far will allow to prove that the SGA on OneMax is
inefficient if µ ≤ n1/4−ε. Lemma 10 gives a bound on the time for a bit to converge, i. e., for
all individuals to either have a one or a zero at the bit position. We would like to know when
all bits are converged for the first time. This is finally answered by the following lemma,
which is very similar to Lemma 10 in Oliveto and Witt (2012).

Lemma 11. Assume µ ≤ n1/4−ε. Then with probability at least 1 − 2−Ω(nε/8/log3 n), after
µnε/8 generations all bit positions have been converged at least once.

Proof. We prove the statement by applying Markov’s inequality iteratively to the probability
that one bit position has not converged to a value after a certain time phase and then using
a union bound to extend the calculation to all the bits in the bit string. In expected time
E[T] ≤ cµ log3 n for some constant c according to Lemma 10, all the individuals have the
same bit value at least in one position. By Markov’s inequality with probability lower than
1/2 they don’t all have the same bit after 2cµ log3 n steps. Hence, after nε/8/(2c log3 n)
phases of length 2cµ log3 n each, the probability that such bit has not been converged is at
most 2−Ω(nε/8/log3 n).

Finally, by the union bound the probability that not all n bits have been converged at
least once in µnε/8 generations is at most n · 2−Ω(nε/8/log3 n) = 2−Ω(nε/8/log3 n).

We can now apply the machinery from the previous work (Oliveto and Witt, 2012).

3.2. Low Diversity

As in Oliveto and Witt (2012), we denote by s the number of bit positions that are not
converged, which means that both bit values are taken by individuals in the population. The
number of non-converged positions is a simple measure of diversity; for simplicity s is also
called the diversity hereinafter. We study this measure since crossover does not have any
effect on bit positions that are converged. Lemma 11 contains a statement for a single bit.
We need to prove that almost all positions will be converged at any time w. o. p.; in other
words, the diversity s is bounded. Throughout this section, we assume that µ ≤ n1/4−ε for
some constant ε > 0.

To actually bound the diversity, we consider time phases of T = µnε/8 generations. In
the first phase, diversity will collapse, and this will be maintained for the following phases.

Lemma 12. Consider the SGA at some generation t, where t ≥ µnε/8 and t ≤ 2n
ε/10

. Then
s = O(µ2nε/8) at generation t with probability 1− 2−Ω(nε/10).

16

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Proof. By Lemma 11, in the first µnε/8 generations, all bits have converged at least once
with probability 1− 2−Ω(nε/9). Now we consider an upper bound on the number of bits that
have left the converged state by the end of the phase.

We define an indicator random variable Xi,j,k for the event that the converged state of
bit k is left when creating the j-th individual in the i-th generation of the phase, where
1 ≤ i ≤ µnε/8, 1 ≤ j ≤ µ and 1 ≤ k ≤ n.

To leave the converged state, the bit position must be flipped at least once. Since each
bit flips with probability 1/n, we get Prob[Xi,j,k = 1] = 1/n, and the expected value of the
sum S of the Xi,j,k is

E[S] =
∑

i

∑

j

∑

k

Prob[Xi,j,k] =
µ · T · n

n
= µ · T = µ2nε/8.

Obviously, S is an upper bound on the number of positions that leave the converged state. By
Chernoff bounds E[S] ≤ 2µ2nε/8 with probability 1−2−Ω(nε/8), which, together with the fact
that all bits converge at least once in the phase proves the statement for generation µnε/8.
For later generations, the statement follows by considering additional phases of length µnε/8.
The total failure probability in at most 2n

ε/10
generations is still 2−Ω(nε/10).

Roughly speaking, for µ ≤ n1/4−ε, this means that the number of non-converged positions
is O(n1/2−15ε/8) for an exponential number of generations. In more simple terms, we have
s = O(n1/2−ε), which will be essential in the following.

Finally, in the very first generations before bits have converged, we use the following
rough estimate of the progress. The lemma is the same as Lemma 5 in Oliveto and Witt
(2012).

Lemma 13. With probability at least 1 − 2−Ω(n2ε) the maximum progress achieved by the
crossover operator in one step is n1/2+ε. With probability at least 1− 2−Ω(n2ε) the maximum
progress achieved by a crossover and mutation step is 2n1/2+ε. The maximum progress per
generation is bounded in the same way if µ = poly(n).

Proof. We consider the progress achieved in one crossover step (i. e., the number of one-bits
gained compared to the current best individual). Let the best individual in the population
have i one-bits and n − i zero-bits. We pessimistically add one-bits so they both have i to
the two individuals selected for crossover in a way that minimizes the overlapping one-bits
(and consider i ≥ n/2: the opposite case is symmetrical by considering zeroes instead of
ones). Then we will have 2(n − i) positions with a one-bit and a zero-bit and n − 2(n − i)
positions with overlapping one-bits. Hence the expected number of one-bits in the offspring
is

1

2
2(n− i) + n− 2(n− i) = n− (n− i) = i

which implies no progress in expectation (i. e., i−i = 0). Hence, the progress depends on the
variance which is maximized for i = n/2, where we get an expected number of n/2 one-bits
in the offspring. By Chernoff bounds, in this case, the offspring will not have more than

17

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

n/2 + n1/2+ε one-bits with probability at least 1 − 2−Ω(n2ε). Hence, w. o. p. the maximum
progress in each step is at most n1/2+ε.

We now take mutation into account. The probability that n1/2 bits are flipped is upper
bounded by

(
n√
n

)(
1

n

)√
n

≤ 1√
n!

= 2−Ω(n1/2 lnn).

By adding the failure probabilities and pessimistically assuming all the flipped bits create
one-bits, we get a maximum progress after crossover and mutation that is bounded by
n1/2+ε + n1/2 ≤ 2n1/2+ε with probability 1 − 2−Ω(nε) − 2−Ω(n1/2 lnn) = 1 − 2−Ω(nε) (assuming
ε small enough).

Taking a union bound over µ = poly(n) steps per generation, the maximum progress per
generation is greater than 2n1/2+ε with probability µ2−Ω(nε) = 2−Ω(nε).

3.3. Drift of Best and Worst Fitness Values

In this section, the whole population is proved to drift towards the center of the boolean
hypercube, which results in exponential optimization time. In the analysis, we consider the
quantities h (the best OneMax-value of a population), and ℓ (the worst OneMax-value).
Obviously, if h < n then the optimum has not been found. The rest of this section is, up
to minor adjustements reflecting the new bound on µ, basically a copy of Section 3.2 in the
journal version of Oliveto and Witt (2012).

The aim is to bound h and ℓ in a drift analysis using a so-called potential function.
Similarly as in Neumann et al. (2009), the potential of an individual x is defined by
g(x) := eκOneMax(x) for some κ := κ(n) to be chosen later, and g(X) :=

∑µ
i=1 g(xi) for

every population X := {x1, . . . , xµ} (note that populations are multisets). Let us consider a
current population Xt (note that Xt has been redefined) at generation t and the process of
creating the next population Xt+1 at generation t+1 (dropping the time indices unless there
is risk of confusion). This process consists of µ consecutive operations choosing two parent
individuals, crossing them over and mutating the result. Let Pi and Qi be the two random
parent individuals in the i-th operation (at generation t), 1 ≤ i ≤ µ, and let Ki be the
random offspring. The next lemma notes an important observation on the OneMax-value
of the offspring.

Hereinafter, ∆(m)(j) denotes the random change in OneMax-value when applying stan-
dard bit mutation to an individual with j one-bits, Bin(a, b) still denotes a random variable
following the binomial distribution with parameters a and b, and H(·, ·) denotes the Ham-
ming distance.

Lemma 14. It holds that

|Ki| =
|Pi|+ |Qi|+ 2C(Pi, Qi)

2
+ ∆(m)(|Pi|/2 + |Qi|/2 + C(Pi, Qi)),

where C(Pi, Qi) = Bin(H(Pi, Qi), 1/2)−H(Pi, Qi)/2. Moreover,

|Ki| =
|Pi|+ C(Pi, Qi) + 2∆∗(|Pi|+ C(Pi, Qi))

2
18

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

+
|Qi|+ C(Pi, Qi) + 2∆∗(|Qi|+ C(Pi, Qi))

2
,

where ∆∗(j) := Bin(n/2− j/2, 1/n)−Bin(j/2, 1/n) is the random increase in one-bits given
that each bit in a string of length n/2 with j/2 one-bits is flipped with probability 1/n, i. e.,
half the standard mutation probability.

Proof. By definition, the crossover part of the i-th operation leads to |Pi∩Qi|+Bin(H(Pi, Qi), 1/2)
one-bits before mutation. Moreover |Pi ∪ Qi| = |Pi ∩ Qi| + H(Pi, Qi), which means that
(1/2)(|Pi|+ |Qi|) = |Pi∩Qi|+H(Pi, Qi)/2. Therefore, an individual with (1/2)(|Pi|+ |Qi|)+
C(Pi, Qi) one-bits is subjected to mutation, which is the first statement of the lemma. The
increase in one-bits due to mutation is a random variable with distribution

Bin(n− (|Pi|/2 + |Qi|/2 + C(Pi, Qi)), 1/n)− Bin(|Pi|/2 + |Qi|/2 + C(Pi, Qi), 1/n)

= Bin(n/2− |Pi|/2− C(Pi, Qi)/2, 1/n) + Bin(n/2− |Qi|/2− C(Pi, Qi)/2, 1/n)

−
(

Bin(|Pi|/2 + C(Pi, Qi)/2, 1/n) + Bin(|Qi|/2 + C(Pi, Qi)/2, 1/n)

)

,

where the equality follows from the fact that if X1 = Bin(n1, p) and X2 = Bin(n2, p) then
X1 +X2 = Bin(n1 + n2, p). The second statement follows now by regrouping terms.

Due to linearity of expectation and E[C(Pi, Qi)] = 0, we have E[∆∗(|Pi|+ C(Pi, Qi))] =
1/2 − |Pi|/n, and analogously for Qi. This results in E[|Ki|] = (|Pi|/2 + (1/2 − |Pi|/n)) +
(|Qi|/2+(1/2−|Qi|/n)). In other words, the random Ki depends on the random Pi and Qi,
whereas E[|Ki|] only depends on |Pi| and |Qi|, each of which has weight 1/2. Considering
E[|Ki|], we see that one operation is “split” into two analogous terms, whose values are
determined by |Pi| and |Qi|, respectively.

However, the random potential of the offspring is given by eκ|Ki|, and we have to bound
E[eκ|Ki|]. We will see below that E[eκ|Ki|] is not too different from eE[|Ki|] for small κ. Actually,
we will also “split” an operation into two terms that “basically” only depend on Pi and Qi,
respectively.

Lemma 15.

eκ|Ki| ≤ eκ(|Pi|+C(Pi,Qi)+2∆∗(|Pi|+C(Pi,Qi)))

2
+

eκ(|Qi|+C(Pi,Qi)+2∆∗(|Qi|+C(Pi,Qi)))

2
.

Proof. The statement follows from Lemma 14 since the geometric mean is at most the
arithmetic mean, i. e., ea/2 · eb/2 ≤ ea/2 + eb/2 for arbitrary a and b.

Both terms on the right-hand side have in common that they depend on the random
C(Pi, Qi). The influence of C(Pi, Qi) will be neglegible for sufficiently small κ, as the
following lemma shows.

Lemma 16. Let s = H(Pi, Qi) ≥ 1. If |Pi| ≥ (1 + c)(n/2) for some arbitrarily small
constant c > 0 and s ≤ (c/4)n then choosing κ ≤ c

2500s
yields

E[eκ(C(Pi,Qi)+2∆∗(|Pi|+C(Pi,Qi)))] ≤ 1− c1κ

19

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

for some constant c1 > 0. If the assumption on |Pi| is dropped and c is small enough then

E[eκ(C(Pi,Qi)+2∆∗(|Pi|+C(Pi,Qi)))] ≤ 1 + c2κ

for some constant c2 > 0.

Proof. We abbreviate Ψ(Pi, Qi) := eκ(C(Pi,Qi)+2∆∗(|Pi|+C(Pi,Qi))). This random variable, whose
expectation has to be bounded, is dependent on the combined effect of crossover and muta-
tion. Note that ∆∗ is decreasing in its argument and that we have C(Pi, Qi) ≥ −s. In the
following, we work with the upper bound

Ψ(Pi, Qi) ≤ eκC(Pi,Qi) · e2κ∆∗(|Pi|−s)

and assume that |Pi| ≥ (1 + c)(n/2). Since crossover and mutation work independently of
each other, we get

E[Ψ(Pi, Qi)] ≤ E[eκC(Pi,Qi)] · E[e2κ∆∗(|Pi|−s)].

We concentrate first on the first expectation. By definition, C(Pi, Qi) = Bin(s, 1/2)−s/2.
Using the moment-generating function of the binomial distribution, we obtain

E[eκC(Pi,Qi)] = E[eκ(−s/2) · eκBin(s,1/2)]

= e−κs/2 ·
(
1

2
+

1

2
eκ
)s

.

Assuming that κ ≤ 1, we use the inequality ex ≤ 1 + x+ x2 for x ≤ 1 and obtain

E[eκC(Pi,Qi)] ≤ e−κs/2 ·
(

1 +
κ

2
+ κ2

)s

≤ e−κs/2e(κ/2+κ2)s

= eκ
2s,

which for κ = c/(2500s) (a choice that will turn out useful later) gives us the upper bound

E[eκC(Pi,Qi)] ≤ ec
2/(25002s) ≤ 1 +

c2

3125000s

using ex ≤ 1 + 2x for x ≤ 1 and c2/(25002s) ≤ c ≤ 1.
Next we deal with the effect of mutation, more precisely we bound the expected value of

e2κ∆
∗(|Pi|−s). Following the proof of the simplified drift theorem Oliveto and Witt (2011), we

first bound the plain drift E[∆∗(|Pi| − s)] and then its moment-generating function. Recall
that ∆∗(j) = Bin(n/2− j/2, 1/n)−Bin(j/2, 1/n) is the random increase in OneMax-value
when a bit string of length n/2, containing j/2 ones, is subject to standard bit mutation
with probability 1/n. Hence, we have

E[∆∗(|Pi| − s)] =
1

2
− |Pi| − s

n
≤ −c

4
,

where the last inequality follows by the assumptions made in the lemma.

20

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Moreover, we know that the number of flipping bits follows an exponential decay, more
precisely

Prob[∆∗(i) = z] ≤
(
n/2

|z|

)(
1

n

)|z|
≤ 1

|z|! ≤ e−|z|+2

for any i and any z ∈ Z. We get

E[e|∆
∗(i)|/2] =

∑

z≥0

ez/2 Prob[|∆∗(i)| = z] =
∑

z∈Z
e|z|/2 Prob[∆∗(i) = z]

≤ 2
∑

z≥0

ez/2e−|z|+2 ≤ 2
∑

z≥0

e2−z/2 =
2e2

1− e−1/2
< 38.

Expanding the moment-generating function E[eλ∆
∗(i)], this implies for any λ ≤ 1/2 that

E[eλ∆
∗(i)] = 1 + λE[∆∗(i)] +

∞∑

z=2

E[(λ∆∗(i))z]

z!
≤ 1 + λE[∆∗(i)] +

∞∑

z=2

E[(λ|∆∗(i)|)z]
z!

≤ 1 + λE[∆∗(i)] + λ2

∞∑

z=0

E[(|∆∗(i)|/2)z]
z!

(1/2)2

≤ 1 + λE[∆∗(i)] +
λ2

1/4
E[e|∆

∗(i)|/2]

≤ 1 + λE[∆∗(i)] + 152λ2.

Identifying λ = 2κ and assuming 2κ ≤ −E[∆∗(i)]/304, a simple upper bound is obtained
from this as follows:

E[e2κ∆
∗(i)] ≤ 1 + 2κE[∆∗(i)]− 1

2
(2κ) E[∆∗(i)] ≤ 1 + κE[∆∗(i)].

Since E[∆∗(i)] ≤ −c/4 and thus −E[∆∗(i)]/304 ≥ c/1216, the choice κ := c/(2500s) from
above satisfies the condition 2κ ≤ −E[∆∗(i)]/304 already for s ≥ 1, and we get

E[e2κ∆
∗(i)] ≤ 1− c2

10000s
.

Altogether, the random variable under consideration has been bounded according to

Ψ(Pi, Qi) ≤
(

1 +
c2

3125000s

)(

1− c2

10000s

)

≤ 1− c2

20000s
,

which is 1− c1κ for some constant c1 > 0.
If the assumption on |Pi| is dropped, then we work with the trivial bound E[∆∗(i)] ≤ 1.

Recalling that E[eλ∆
∗(i)] ≤ 1 + λE[∆∗(i)] + 152λ2, we get

E[e2κ∆
∗(i)] ≤ 1 +

2c

2500s
+ 152 · 4c2

(2500s)2
≤ 1 +

610c

2500s
21

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

as c ≤ 1 and s ≥ 1. Then (for small enough c)

E[Ψ(Pi, Qi)] ≤
(

1 +
c2

3125000s

)(

1 +
610c

2500s

)

≤ 1 +
611c

2500s
,

which is 1 + c2κ for another constant c2 > 0.

Our aim is to bound E[g(Xt+1) − g(Xt) | Xt]. Let Si denote the number of times that

individual xi := x
(t)
i is chosen as first or second parent in a crossover operation during the µ

operations. We consider the other random parent yi(j) in the j-th operation choosing xi and
study the potential of their random offspring K(xi, yi(j)) (created by a crossover-mutation
sequence). We get

g(Xt+1) =
1

2

µ
∑

i=1

Si∑

j=1

eκ|K(xi,yi(j))|,

where the factor 1/2 accounts for the fact that the double sum counts each offspring twice,
namely once for each parent. Using Lemma 15, we get

g(Xt+1)

≤ 1

2

µ
∑

i=1

Si∑

j=1

(
eκ(|xi|+C(xi,yi(j))+2∆∗(|xi|+C(xi,yi(j))))

2
+

eκ(|yi(j)|+C(xi,yi(j))+2∆∗(|yi(j)|+C(xi,yi(j))))

2

)

=

µ
∑

i=1

Si∑

j=1

eκ(|xi|+C(xi,yi(j))+2∆∗(|xi|+C(xi,yi(j))))

2
,

where the equality holds since each second term in the big parentheses also appears as first
term for another index i, more precisely when i indexes the individual called “yi(j)”.

Now let x′
i denote the worst case from the random yi(j), more precisely the one that

makes the offspring potential stochastically largest. Since crossover and mutation work
independently of selection, we get the following bound on the potential of the offspring
population:

E[g(Xt+1) | Xt] ≤
µ
∑

i=1

E[Si] ·
E[eκ(|xi|+C(xi,x

′

i)+2∆∗(|xi|+C(xi,x
′

i)))]

2
. (2)

The following simple lemma bounds E[Si].

Lemma 17. E[Si] ≤ 2h/ℓ.

Proof. The probability of choosing a given individual is maximized if its value is h and
the population consists of µ − 1 individuals with value ℓ and one of value h. Hence, the
probability that the individual is chosen as parent is at most h/((µ − 1)ℓ + h) ≤ h/(µℓ).
Since 2µ parents are chosen, the lemma follows from the linearity of expectation.

22

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

More effort is needed to bound the second expectation in the right-hand side of (2). If
g(Xt) is large, then the following lemma will help us to obtain a negative drift. It assumes
s ≤ n1/2−ε (which follows from Lemma 12 for µ ≤ n1/4−ε and sufficiently large n).

Lemma 18. Suppose that s ≤ n1/2−ε, κ := c/(2500s) for some constant c > 0 and µ =
poly(n). If g(X) ≥ eκ(1+2c)n/2, then there is a non-empty set X∗ ⊂ X of individuals x ∈ X

satisfying |x| ≥ (1 + c)n/2. Moreover, g(X) = (1 + 2−Ω(n1/2+ε))
∑

x∈X∗ g(x).

Proof. Asssume X∗ = ∅. Then g(X) ≤ µeκ(1+c)n/2 = eκ(1+c)n/2+lnµ. Since κ = c/(2500s) =
Ω(n−1/2+ε) and lnµ = O(log n) by our assumption, we arrive at the contradiction κ(1 +
c)n/2 + lnµ ≤ κ(1 + 1.5c)n/2 if n is not too small. The second claim follows since κ(1 +
1.5c)n/2 = κ(1 + 2c)n/2− Ω(n1/2+ε).

The next lemma states a multiplicative drift of the potential away from large values,
assuming some minimum value of the worst individual.

Lemma 19. If s ≤ n1/2−ε, κ := c/(2500s) for some constant c > 0, µ = poly(n) and
g(Xt) ≥ eκ(1+2c)n/2, then

E[g(Xt+1) | Xt] ≤ (1− c3κ) · g(Xt).

for some constant c3 > 0.

Proof. According to Lemma 18, there is a subset X∗ ⊂ Xt such that

g(Xt) =
∑

x∈X∗

g(x) + 2−Ω(n1/2+ε)
∑

x∈X∗

g(x)

We have already argued that

E[g(Xt+1) | Xt)] ≤
µ
∑

i=1

E[Si] ·
E[eκ(|xi|+C(xi,x

′

i)+2∆∗(|xi|+C(xi,x
′

i)))]

2
.

By Lemma 17, E[Si] ≤ 2h/ℓ ≤ 2(ℓ + s)/ℓ. Since ℓ ≥ n/10, we get E[Si] = 2 + O(s/n) =
2 +O(n−1/2−ε). Hence, for the i such that xi ∈ X∗ we get from Lemma 16 that

E[Si] ·
E[eκ(|xi|+C(xi,x

′

i)+2∆∗(|xi|+C(xi,x
′

i)))]

2
≤ (1 +O(n−1/2−ε))(1− c1κ)e

κ|xi| = (1− c4κ)e
κ|xi|

for some constant c4 > 0, using κ = c/(2500s) = Ω(n−1/2+ε). (At this place, our bound on
s is crucial.) For the xi /∈ X∗ we know by Lemma 16 that

E[Si] ·
E[eκ(|xi|+C(xi,x

′

i)+2∆∗(|xi|+C(xi,x
′

i)))]

2
≤ (1 +O(n−1/2−ε))(1 + c2κ)e

κ|xi| = (1 + c5κ)e
κ|xi|

23

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

for some constant c5 > 0. Altogether,

E[g(Xt+1) | Xt] ≤ (1− c4κ)

(
∑

x∈X∗

g(x)

)

+ 2−Ω(n1/2+ε)(1 + c5κ)
∑

x/∈X∗

g(x)

≤ (1− c4κ)

(
∑

x∈Xt

g(x)

)

+ 2−Ω(n1/2+ε)(1 + c5κ)
∑

x∈Xt

g(x)

≤
(

1− c4κ+ 2−Ω(n1/2+ε)
)

g(Xt) = (1− c3κ)g(Xt)

for some constant c3 > 0.

We will apply the following simplified negative-drift theorem (proved in Appendix A)
with slightly weaker third condition than in Oliveto and Witt (2012).

Theorem 2 (Simplified Drift with Scaling 2013). Let Xt, t ≥ 0, be real-valued random vari-
ables describing a stochastic process over some state space. Suppose there exist an interval
[a, b] ⊆ R and, possibly depending on ℓ := b − a, a drift bound ε := ε(ℓ) > 0 as well as a
scaling factor r := r(ℓ) such that for all t ≥ 0 the following three conditions hold:

1. E[Xt+1 −Xt | X0, . . . , Xt ; a < Xt < b] ≥ ε,

2. Prob[|Xt+1 −Xt| ≥ jr | X0, . . . , Xt ; a < Xt] ≤ e−j for j ∈ N0,

3. 1 ≤ r2 ≤ εℓ/(132 log(r/ε)).

Then for the first hitting time T ∗ := min{t ≥ 0: Xt ≤ a | X0, . . . , Xt ; X0 ≥ b} it holds that
Prob[T ∗ ≤ eεℓ/(132r

2)] = O(e−εℓ/(132r2)).

The bound from Lemma 19 results in the following lemma, which says that the population
is “centered” in the middle of the hypercube for an exponential number of generations,
assuming that the diversity is bounded.

Lemma 20. Assuming s ≤ n1/2−ε the whole time, all populations up to generation 2c
′nε

, for
some constant c′ > 0, satisfy ℓ ≥ (1− c)n/2 and h ≤ (1+ c)n/2 with probability 1− 2−Ω(nε),
where c > 0 is an arbitrarily small constant.

Proof. Lemma 19 states a multiplicative drift but Theorem 2 is for an additive setting.
Hence, as in Neumann et al. (2009), we switch over to the potential function g′(X) :=
ln g(X). Since ln is concave, Jensen’s inequality yields

E[g′(Xt+1) | Xt] = E[ln(g(Xt+1)) | Xt] ≤ ln(E[g(Xt+1) | Xt]).

Hence, if g′(Xt) ≥ κ(1 + 2c)n/2 then by Lemma 19

E[g′(Xt+1) | Xt] ≤ ln((1− Ω(κ))g(Xt))

= ln(1− Ω(κ)) + ln(g(Xt)) = −Ω(κ) + g′(Xt),

24

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

which establishes the additive drift E[g′(Xt+1)−g′(Xt) | Xt] = −Ω(κ). We now switch to the
potential function g′′(X) := κ(1+ 4c)n/2− g′(X), where the negation is necessary to fit the
perspective of Theorem 2, and the drift interval a := 0, b := κ(1 + 4c)n/2− κ(1 + 2c)n/2 =
κcn. Formally, the random variables called Xt in the drift theorem are identified with the
stochastic process g′′(Xt) considered here.

We obtain a drift of Ω(κ) for all g′′(X) such that a ≤ g′′(X) ≤ b. The first condition
of Theorem 2 has been established with εdrift = Ω(κ) (where εdrift denotes the parameter
called ε in the drift theorem). Moreover, by Chernoff bounds g′′(X0) ≥ b at initialization

of the SGA with probability 1 − 2−Ω(n1/2). We start the drift analysis at the first point of
time T ∗ where diversity has collapsed (formally, time 0 in the drift theorem corresponds to
time T ∗). By our assumptions, T ∗ ≤ µnε/8. Using Lemma 13, we still have g′′(Xµnε/8) ≥ b,
i. e., the stochastic process considered in the drift theorem starts above b as required.

To prove the second condition of the drift theorem, we note that

g′min := lnµ+ κℓ ≤ g′(Xt) ≤ lnµ+ κh =: g′max

and
g′max − g′min ≤ c

2500s
(h− ℓ) ≤ c

2500

as h − ℓ ≤ s. Hence, also the potential g′′(X) will not change by more than c/2500 if all
individuals are replaced by the best or worst individual in order to maximize the probability
of jumping towards or away from the optimum. We set r := c/2500 + 2κmax{s, nε/2} =
O(nε/2). Crossover can change the potential with respect to either parent by at most s ≤ r/2.
To change the potential by jr, where j ≥ 1, at least (jr/κ − r/2) ≥ (j − 1/2)r/κ ≥
(j − 1/2)nε/2 bits have to flip in at least one of the µ = poly(n) mutations that happen in
a generation. This probability is easily bounded by e−j if n is large enough. This verifies
the second condition. Altogether, the parameters of the drift theorem satisfy ℓ = b − a =
Ω(n1/2+ε), εdrift = Ω(n−1/2+ε) and r = O(nε/2). The third condition of the drift theorem is
now easily verified since εdriftℓ/log(r/εdrift) = Ω(n2ε/log n). Since εdriftℓ/r

2 = Ω(nε), the time
to pass the drift interval is 2Ω(nε) w. o. p. If g(X) ≤ eκ(1+4c)n/2 by definition no individual
from X can have more than (1 + 4c)n/2 one-bits, in particular the optimum is not reached.

A symmetrical argument can be applied to the minimum OneMax-value of the individ-
uals in the population.

As proved in the previous subsection, we indeed have s ≤ n1/2−ε for an exponential
number of generations w. o. p. In each generation there is a probability of only 2−Ω(nε) +
2−Ω(nε/10) (the latter error term stems from Lemma 12) that one of our assumptions (low
diversity and ℓ ≥ n/10) is not satisfied. Since the sum of the failure probabilities within

2n
ε/11

generations is still 2−Ω(nε/10), we have proved the following main result.

Theorem 3. Let µ ≤ n1/4−ε for an arbitrarily small constant ε > 0. Then with probability
1− 2−Ω(nε/10), the SGA on OneMax does not create individuals with more than (1+ c)n/2
or less than (1− c)n/2 one-bits, where c > 0 is an arbitrarily small constant, within the first

2n
ε/11

generations. In particular it does not reach the optimum then.

25

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 2: Converged bits vs number of generations and µ = (1/6)
√
n,

√
n, 3

√
n, 6

√
n for n = 212.

0

n/4

n/2

3/4 n

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

co
nv

er
ge

d
bi

ts

generations

n=4096

mu=sqrt(n)/6=11
mu=sqrt(n)=64

mu=3 sqrt(n)=192
mu=6 sqrt(n)=384

Figure 3: Converged bits vs number of generations and µ = (1/6)
√
n,

√
n, 3

√
n, 6

√
n for n = 214.

0

n/4

n/2

3/4 n

n

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

co
nv

er
ge

d
bi

ts

generations

n=16384

mu=sqrt(n)/6=21
mu=sqrt(n)=128

mu=3 sqrt(n)=384
mu=6 sqrt(n)= 768

4. Discussion, Experiments and Conclusions

An improved analysis of the SGA for OneMax has been presented. Through new
combinations and extensions of state-of-the art techniques for the analysis we have bounded
the diversity of the population up to µ ≤ n1/4−ε without requiring a bound on its bandwidth.
This generality will very likely allow to re-use the new techniques in future analyses of the
SGA.

Our analysis requires that, at each generation, a large number of the bits in the pop-
ulation are converged. In particular, Lemma 12 bounds the fraction of non-converged bits
by o(1) only if µ = o(n1/2). We only managed to show a result for µ = O(n1/4−ε) since the
proof of Lemma 19 requires κ = ω(s/n), while κ = O(1/s). This means that s = o(n1/2) is
required, and by Lemma 12 we get µ = O(

√
s) = o(n1/4). It is an open problem to remove

the requirement κ = ω(s/n).
We perform some preliminary experiments to further look into the number of converged

bits during runs of the algorithm. We consider exponentially growing problem sizes n,
concentrate the population size around µ = c · √n with c = 1/6, 1, 3, 6 and plot the number
of converged bits at each generation. The figures show how, for the considered problem
sizes, the number of converged bits indeed drops around µ = O(n1/2). In particular, for

26

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 4: Converged bits vs number of generations and µ = (1/6)
√
n,

√
n, 3

√
n, 6

√
n for n = 215.

0

n/4

n/2

3/4 n

n

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

co
nv

er
ge

d
bi

ts

generations

n=32768

mu=sqrt(n)/6=30
mu=sqrt(n)=181

mu=3 sqrt(n)=543
mu=6 sqrt(n)= 1086

0

n/4

n/2

3/4 n

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

co
nv

er
ge

d
bi

ts

generations

n=65536

mu=sqrt(n)/6=43
mu=sqrt(n)=256

mu=3 sqrt(n)=768
mu=6 sqrt(n)= 1536

Figure 5: Converged bits vs number of generations and µ = (1/6)
√
n,

√
n, 3

√
n, 6

√
n for n = 216.

µ =
√
n/6 the number of converged bits would be sufficient for Lemma 12 to hold, while

for c ≥ 1 the number of converged bits would not be sufficient. Nevertheless as n grows we
can also see that, if the time for bits to converge after initialization increases quickly, also
the number of converged bits increases for a fixed population size µ. Hence, we cannot rule
out the possibility that for sufficiently large n a sufficient number of bits converge unless
we perform more extensive experiments with more computation power which we leave for
future work. In any case, if µ = ω(n1/2), completely different techniques might be needed.

References

Auger, A., Doerr, B. (Eds.), 2011. Theory of Randomized Seach Heuristics–Foundations and Recent Devel-
opments. World Scientific.

Doerr, B., Doerr, C., Ebel, F., 2013. Lessons from the black-box: Fast crossover-based genetic algorithms,
in: Proc. of GECCO ’13, ACM Press. pp. 781–788.

Doerr, B., Johannsen, D., Kötzing, T., Neumann, F., Theile, M., 2010. More effective crossover operators
for the all-pairs shortest path problem, in: Proc. of PPSN ’10, Springer. pp. 184–193.

Feldmann, M., Kötzing, T., 2013. Optimizing expected path lengths with ant colony optimization using
fitness proportional update, in: Proc. of FOGA ’13, ACM Press. pp. 65–74.

Feller, W., 1971. An Introduction to Probability Theory and Its Applications. volume 2. Wiley.
Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization and machine learning. Addison-Wesley.

27

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Hajek, B., 1982. Hitting-time and occupation-time bounds implied by drift analysis with applications.
Advanced Applied Probability 14, 502–525.

Happ, E., Johannsen, D., Klein, C., Neumann, F., 2008. Rigorous analyses of fitness-proportional selection
for optimizing linear functions, in: Proc. of GECCO ’08, ACM Press. pp. 953–960.

Jansen, T., 2013. Analyzing Evolutionary Algorithms. Springer.
Jansen, T., Wegener, I., 2005. Real royal road functions: where crossover provably is essential. Discrete

Applied Mathematics 149, 111–125.
Kötzing, T., Sudholt, D., Theile, M., 2011. How crossover helps in pseudo-boolean optimization, in: Proc.

of GECCO ’11, ACM Press. pp. 989–996.
Lehre, P.K., 2010. Negative drift in populations, in: Proc. of PPSN ’10, Part I, Springer. pp. 244–253.
Lehre, P.K., 2011. Fitness-levels for non-elitist populations, in: Proc. of GECCO ’11, ACM Press. pp.

2075–2082.
Lehre, P.K., Witt, C., 2012. Black-box search by unbiased variation. Algorithmica 64, 623–642.
Neumann, F., Oliveto, P.S., Rudolph, G., Sudholt, D., 2011. On the effectiveness of crossover for migration

in parallel evolutionary algorithms, in: Proc. of GECCO ’11, ACM Press. pp. 1587–1594.
Neumann, F., Oliveto, P.S., Witt, C., 2009. Theoretical analysis of fitness-proportional selection: Landscapes

and efficiency, in: Proc. of GECCO ’09, ACM Press. pp. 835–842.
Neumann, F., Witt, C., 2010. Bioinspired Computation in Combinatorial Optimization – Algorithms and

Their Computational Complexity. Springer.
Oliveto, P.S., He, J., Yao, X., 2008. Analysis of population-based evolutionary algorithms for the vertex

cover problem, in: Proc. of CEC ’08, IEEE Press. pp. 1563–1570.
Oliveto, P.S., Witt, C., 2011. Simplified drift analysis for proving lower bounds in evolutionary computation.

Algorithmica 59, 369–386.
Oliveto, P.S., Witt, C., 2012. On the analysis of the simple genetic algorithm, in: Proc. of GECCO

’12, ACM Press. pp. 1341–1348. Extended version to appear in Theoretical Computer Science, http:
//dx.doi.org/10.1016/j.tcs.2013.06.015.

Oliveto, P.S., Witt, C., 2013. Improved runtime analysis of the simple genetic algorithm, in: Proc. of
GECCO ’13, ACM Press. pp. 1621–1628.

Rowe, J.E., Sudholt, D., 2012. The choice of the offspring population size in the (1,λ) EA, in: Proc. of
GECCO ’12, ACM Press. pp. 1349–1356.

Sudholt, D., 2012. Crossover speeds up building-block assembly, in: Proc. of GECCO ’12, ACM Press. pp.
689–702.

Watson, R.A., Jansen, T., 2007. A building-block royal road where crossover is provably essential, in: Proc.
of GECCO ’07, ACM Press. pp. 1452–1459.

Williams, D., 1991. Probability with Martingales. Cambridge mathematical textbooks, Cambridge Univer-
sity Press.

Appendix A. The Simplified Drift Theorem with Scaling

Theorem 2 is a simplified drift theorem dealing with drift away from the target, which
holds in both discrete and continuous search spaces. For its proof, the following lemma will
be useful.

Lemma 21. Let X be a random variable with minimum xmin. Moreover, let f : R → R be
a non-decreasing function and suppose that the expectation E[f(X)] exists. Then for any
r > 0

E[f(X)] ≤
∞∑

i=0

f(xmin + (i+ 1)r) Prob[X ≥ xmin + ir].

28

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Proof. We denote by p the probability measure from the probability space (Ω,Σ, p) under-
lying X. Then the expectation is given by a Lebesgue integral, more precisely

E[f(X)] =

∫

Ω

f(X(ω)) p(dω).

Since f is non-decreasing and X ≥ xmin, partial integration yields

E[f(X)] ≤
∞∑

i=0

f(xmin + (i+ 1)r)

∫

Ω∩X−1([xmin+ir,xmin+(i+1)r])

p(dω)

≤
∞∑

i=0

f(xmin + (i+ 1)r) Prob[X ≥ xmin + ir].

We will use Hajek’s following drift theorem to prove our result. Compared to an earlier
version of this paper, our presentation of Hajek’s drift theorem does not make unnecessary
assumptions such as non-negativity of the random variables or Markovian processes. As we
are dealing with a stochastic process, we implicitly assume that the random variables Xt,
t ≥ 0, are adapted to the natural filtration X0, . . . , Xt, t ≥ 0, though.

We do no longer formulate the theorem using a “potential function” g mapping from
some state space to the reals either. Instead, we w. l. o. g. assume the random variables Xt

as already obtained by the mapping.

Theorem 4 (Hajek, 1982). Let Xt, t ≥ 0, be real-valued random variables describing a
stochastic process over some state space. Pick two real numbers a(ℓ) and b(ℓ) depending on
a parameter ℓ such that a(ℓ) < b(ℓ) holds. Let T (ℓ) be the random variable denoting the
earliest point in time t ≥ 0 such that Xt ≤ a(ℓ) holds. If there are λ(ℓ) > 0 and p(ℓ) > 0
such that the condition

E
(
e−λ(ℓ)·(Xt+1−Xt) | X0, . . . , Xt ; a(ℓ) < Xt < b(ℓ)

)
≤ 1− 1

p(ℓ)
(∗)

holds for all t ≥ 0 then for all time bounds L(ℓ) ≥ 0

Prob
(
T (ℓ) ≤ L(ℓ) | X0 ≥ b(ℓ)

)
≤ e−λ(ℓ)·(b(ℓ)−a(ℓ)) · L(ℓ) ·D(ℓ) · p(ℓ),

where D(ℓ) = max
{
1, E

(
e−λ(ℓ)·(Xt+1−b(ℓ)) | X0, . . . , Xt ; Xt ≥ b(ℓ)

)}
.

Theorem 2 is a simplified version of the scenario underlying the drift theorem. In partic-
ular, our formulation does not use moment-generating functions but combines a drift away
from the target with a condition on exponentially decaying probabilities for large jumps. It
is still relatively general since the exponential decay of probabilities is not required to begin
at constant distance, but the distance is allowed to grow with the length of the drift interval.

29

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Proof of Theorem 2. We will apply Theorem 4 for suitable choices of its variables, some of
which might depend on the parameter ℓ = b − a denoting the length of the interval [a, b].
The following argumentation is also inspired by Hajek’s work (Hajek, 1982).

Fix t ≥ 0. For notational convenience, we let ∆ := (Xt+1−Xt | X0, . . . , Xt ; a < Xt < b)
and omit to state the filtration X0, . . . , Xt hereinafter. To prove Condition (∗), it is sufficient
to identify values λ := λ(ℓ) > 0 and p(ℓ) > 0 such that

E[e−λ∆] ≤ 1− 1

p(ℓ)
.

Using the series expansion of the exponential function, we get

E[e−λ∆] = 1− λE[∆] + λ2

∞∑

k=2

λk−2

k!
E[∆k] ≤ 1− λE[∆] + λ2

∞∑

k=2

λk−2

k!
E[|∆|k].

Since all terms of the last sum are positive, we obtain for all γ ≥ λ

E[e−λ∆] ≤ 1− λE[∆] +
λ2

γ2

∞∑

k=2

γk

k!
E[|∆|k]

≤ 1− λE[∆] +
λ2

γ2

∞∑

k=0

γk

k!
E[|∆|k] ≤ 1− λε+ λ2 E[e

γ|∆|]

γ2

︸ ︷︷ ︸

=:C(γ)

,

where the last inequality uses the first condition of the theorem, i. e., the bound on the drift.
Given any γ > 0, choosing λ := min{γ, ε/(2C(γ))} results in

E[e−λ∆] ≤ 1− λε+ λ · ε

2C(γ)
· C(γ) = 1− λε

2
= 1− 1

p(ℓ)

with p(ℓ) := 2/(λε).
The aim is now to choose γ in such a way that E[eγ|∆|] is bounded from above by a

constant. Using Lemma 21 with f(x) := eγx and xmin := 0, we get

E[eγ|∆|] ≤
∞∑

j=0

eγ(j+1)r Prob[|∆| ≥ jr] ≤
∞∑

j=0

eγ(j+1)re−j

where the inequality uses the second condition of the theorem.
Choosing γ := 1/(2r) yields

E[eγ|∆|] ≤
∞∑

j=0

e(j+1)/2−j = e1/2
∞∑

j=0

e−j/2 = e1/2
1

1− e−1/2
≤ 4.2.

Hence C(γ) ≤ 4.2 · (2r)2 ≤ 17r2. By our choice of λ, we have λ ≥ ε/(2C(γ)) ≥ ε/(34r2).
Since p(ℓ) = 2/(λε), we know p(ℓ) = O(r2/ε2). Condition (∗) of Theorem 4 has been
established along with these bounds on p(ℓ) and λ = λ(ℓ).

30

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

To bound the probability of a success within L(ℓ) steps, we still need a bound on D(ℓ) =
max{1,E[e−λ(Xt+1−b) | Xt ≥ b]}. If 1 does not maximize the expression then

D(ℓ) = E[e−λ(Xt+1−b) | Xt ≥ b] ≤ E[e−λ(Xt+1−Xt) | Xt ≥ b]

≤ E[eλ|Xt+1−Xt| | Xt ≥ b] ≤ E[eγ|Xt+1−Xt| | Xt ≥ b],

where the first inequality follows from Xt ≥ b and the second one from γ ≥ λ. The last term
can be bounded as in the above calculation leading to E[eγ|∆|] = O(1) since that estimation
uses only the second condition, which holds conditional on Xt > a. Hence, in any case
D(ℓ) = O(1). Altogether, we have

e−λ(ℓ)·ℓ ·D(ℓ) · p(ℓ) ≤ e−ℓε/(34r2) ·O(r2/ε2) = e−ℓε/(34r2)+2 log(r/ε)+O(1)

By the third condition, we have r2 ≤ εℓ/(132 log(r/ε)). Therefore,

1

2
· εℓ

34r2
≥ 2 log(r/ε),

which finally means that

e−λ(ℓ)·ℓ ·D(ℓ) · p(ℓ) ≤ e−ℓε/(68r2)+O(1)

Choosing L(ℓ) = eℓε/(132r
2), Theorem 4 yields

Prob[T (ℓ) ≤ L(ℓ)] ≤ L(ℓ) · e−εℓ/(68r2)+O(1) = O(e−εℓ/(132r2)),

which proves the theorem.

The scaling factor r(ℓ), which is only relevant for the second condition of the theorem,
can be bounded from above by a constant in many applications to evolutionary algorithms.

Appendix B. Non-monotone Variable Drift

Proof of Theorem 1. We define g(z) := zmin

h(zmin)
+
∫ z

zmin

1
h(x)

dx for z ≥ zmin and g(0) := 0.
Note that g is invertible and that the first hitting time of 0 for the Zt-process is the same
as the first hitting time of 0 for the mapped process g(Zt), t ≥ 0. Assuming Zt ≥ zmin, we
compute the drift of the mapped process

E[g(Zt)− g(Zt+1) | Ft] = E

[∫ Zt

Zt+1

1

h(x)
dx
∣
∣ Ft

]

= E

[∫ Zt

Zt+1

1

h(x)
dx · 1 {Zt+1 < Zt}

∣
∣ Ft

]

− E

[∫ Zt+1

Zt

1

h(x)
dx · 1 {Zt+1 > Zt}

∣
∣ Ft

]

.

Item (4) from the prerequisites yields h(z) ≤ ch(Zt) if Zt − d(Zt) ≤ z < Zt and h(z) ≥
h(Zt)/c if Zt < z ≤ Zt + d(Zt). Using this and |Zt − Zt+1| ≤ d(Zt), the drift can be further
bounded by

E

[∫ Zt

Zt+1

1

ch(Zt)
dx · 1 {Zt+1 < Zt}

∣
∣ Ft

]

− E

[∫ Zt+1

Zt

c

h(Zt)
dx · 1 {Zt+1 > Zt}

∣
∣ Ft

]

31

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

≥ E

[∫ Zt

Zt+1

1

2ch(Zt)
dx · 1 {Zt+1 < Zt}

∣
∣ Ft

]

=
E[(Zt − Zt+1

∣
∣ Ft) · 1 {Zt+1 < Zt}]
2ch(Zt)

≥ h(Zt)

2ch(Zt)
=

1

2c
,

where the first inquality used the Item (2) from the prerequisites and the last one Item (1).
An application of the classical additive drift theorem with drift 1/(2c) and initial distance
g(Z0) completes the proof.

32

