Conversion of lignin into chemicals with heterogeneous catalysis
Current and future technologies

Melián Rodríguez, Mayra; Shunmugavel, Saravanamurugan; Kegnæs, Søren; Riisager, Anders

Publication date: 2015

Citation (APA):
Conversion of lignin into chemicals with heterogeneous catalysis - Current and future technologies

M. Melián-Rodríguez, S. Saravanamurugan, S. Kegnæs, A. Riisager

Introduction

The research interests in biomass conversion to fuels and chemicals has increased significantly in the last decade in view of current problems such as global warming, high oil prices, food crisis and other geopolitical scenarios. Many different reactions and processes to convert biomass into high-value products and fuels have been proposed in the literature, giving special attention to the conversion of lignocellulosic biomass, which does not compete with food resources and is widely available as a low cost feedstock. Lignocellulosic biomass is a complex material composed of three main fractions:

- cellulose (40-50%)
- hemicellulose (25-35%)
- lignin (20-30%)

Lignin constitutes up to 30% of the weight and 40% of the heating value of lignocellulosic biomass. It is the most complex fraction and is harder to process compared to the sugar fractions. The complexity has led lignin to be treated as a waste stream, and typically burned to produce energy. However, lignin is a significant portion of the total carbon in biomass, and better use of this fraction is a requirement to improve the economic balance of any bio-refinery. For this reason, research on upgrading lignin has become of recent interest, as many interesting products, mainly aromatics, can potentially be produced from lignin. Here we will present an overview conversion of lignin into chemicals with heterogeneous catalysts.

Lignin structure

Lignin is a three-dimensional amorphous polymer consisting of methoxylated and phenylpropane moieties. The exact structure of the lignin found in plants is variable but the biosynthesis of lignin is thought to involve the polymerization of three monomers: p-coumaryl alcohol, coniferyl alcohol and sinapyl alcohol. Despite the variability, lignins have different structural linkages in common with the α-β-α linkages being the most dominant.

Pretreatment methods

Bergius process
Based on the liquefaction of coal to synthetic oil, where brown coal, also known as lignite, is converted into synthetic oil by hydrolysis in the presence of a catalyst, that included tungsten or molybdenum sulfide, tin or nickel chloride and others under high hydrogen pressure.

Kraft lignin process
Typical process in the production of paper. Pulping is caused by nucleophilic attack on electron-deficient aromatic nuclei and unsaturated, ring-conjugated side chain.

Pyrolysis
High temperature reaction performed in the absence of oxygen. It is a thermochemical decomposition of organic compounds, and might therefore be useful to break down lignin to low molecular weight compounds.

Lignosulfonate process
The sulfite pulping treatment is also relatively common in the pulp and paper industry. Involves acidic cleavage of ether bonds, which connect many of the constituents of lignin. Carbocations produced during ether cleavage react with bisulfite ions (HSO₃⁻) to give sulfonates.

Organosolv process
Uses organic solvent mixture with inorganic acid catalysts (e.g. HCl or H₂SO₄) to break the internal lignin and hemicellulose bonds. The solvents commonly used in the process are methanol, ethanol, acetone, ethylene glycol, triethylene glycol, and tetrahydrofurfuryl alcohol.

Catalysts in lignin conversion

Catalysis has been considered an important technology in biomass and lignin conversion. Catalysis usually are required to assist selective bond cleavage, leading to high selectivity values for a particular compound in the product stream. Various catalytic systems have been tested for different processes and substrates including both model compounds and lignin extracts.

Future of lignin utilization

Lignin valorization constitutes an important component of the modern biorefinery scheme, and the structure and composition of lignin offer unique routes to produce several line and bulk chemicals. Macromolecular lignin is utilized in many industrial processes as a substitute for phenol in phenol-formaldehyde resins and fibers in polymers, carbon fiber binders, polycrylamide foams, epoxy resins and biodiesels.

However, the most prominent lignin utilization so far appears to be its depolymerization into lower molecular weight compound. Considerable effort has already been devoted to developing a wide variety of catalytic routes specifically for lignin oxidation and reduction.

References

- Energy Fuels, 25 (2011) 4713

Acknowledgement

The authors appreciate financial support granted to the International Network Programme (12-132649) from The Danish Agency for Science, Technology and Innovation, Haldor Topsoe A/S and Technical University of Denmark.

Address: Centre for Catalysis and Sustainable Chemistry, Technical University of Denmark, Kemitorvet Building 207, 2800 Kgs. Lyngby, Denmark
E-mail: mayo@kemi.dtu.dk
Phone: +45 4525 2432