MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs

Poulsen, Sarah S.; Saber, Anne T.; Williams, Andrew; Andersen, Ole; Købler, Carsten; Atluri, Rambabu; Pozzebon, Maria E.; Mucelli, Stefano P.; Simion, Monica; Rickerby, David; Mortensen, Alicja; Jackson, Petra; Kyjovska, Zdenka O.; Mølhave, Kristian; Jacobsen, Nicklas R.; Jensen, Keld A.; Yauk, Carole L.; Wallin, Hakan; Halappanavar, Sabina; Vogel, Ulla Birgitte

Published in:
Toxicology and Applied Pharmacology

Link to article, DOI:
10.1016/j.taap.2014.12.011

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs

Sarah S. Poulsen a,c,⁎, Anne T. Saber a, Andrew Williams b, Ole Andersen c, Carsten Købler d, Rambabu Atluri e, Maria E. Pozzebon f, Stefano P. Mucelli f, Monica Simion f, David Rickerby h, Alicja Mortensen i, Petra Jackson a, Zdenka O. Kyjovska a, Kristian Mølhave d, Nicklas R. Jacobsen a, Keld A. Jensen a, Carole L. Yauk b, Håkan Wallin a,j, Sabina Halappanavar b, Ulla Vogel a,d

⁎ Corresponding author at: National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark.

Abstract

Multi-walled carbon nanotubes (MWCNTs) are an inhomogeneous group of nanomaterials that vary in lengths, shapes and types of metal contamination, which makes hazard evaluation difficult. Here we present a toxicogenomic analysis of female C57BL/6 mouse lungs following a single intratracheal instillation of 0, 18, 54 or 162 μg/mouse of a small, curled (CNTsmall, 0.8 ± 0.1 μm in length) or large, thick MWCNT (CNTLarge, 4 ± 0.4 μm in length). The two MWCNTs were extensively characterized by SEM and TEM imaging, thermogravimetric analysis, and Brunauer–Emmett–Teller surface area analysis. Lung tissues were harvested 24 h, 3 days and 28 days post-exposure. DNA microarrays were used to analyze gene expression, in parallel with analysis of bronchoalveolar lavage fluid, lung histology, DNA damage (comet assay) and the presence of reactive oxygen species (dichlorodihydrofluorescein assay), to profile and characterize related pulmonary endpoints. Overall changes in global transcription following exposure to CNTsmall or CNTlarge were similar. Both MWCNTs elicited strong acute phase and inflammatory responses that peaked at day 3, persisted up to 28 days, and were characterized by increased cellular influx in bronchoalveolar lavage fluid, interstitial pneumonia and gene expression changes. However, CNTLarge elicited an earlier onset of inflammation and DNA damage, and induced more fibrosis and a unique fibrotic gene expression signature at day 28, compared to CNTsmall. The results indicate that the extent of change at the molecular level during early response phases following an acute exposure is greater in mice exposed to CNTLarge, which may eventually lead to the different responses observed at day 28.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords:
Nanotoxicology
In vivo
Toxicogenomics
DNA microarray
Acute phase response
ROS production

Article info
Article history:
Received 13 October 2014
Revised 18 December 2014
Accepted 18 December 2014
Available online 29 December 2014
Production and use of multi-walled carbon nanotubes (MWCNTs) have increased extensively over the last decade (Beg et al., 2011; Klupp et al., 2006), thereby increasing the potential exposure for both workers and consumers. Exposure to MWCNT via inhalation, instillation or aspiration causes pulmonary effects in rodents including lung inflammation, sustained interstitial fibrosis, and granuloma formation (Ma-Hock et al., 2009; Pauluhn, 2010a; Pauluhn, 2010b; Porter et al., 2010; Reddy et al., 2010; Wang et al., 2011a).

MWCNTs vary in their length, wall thickness, aspect ratio, level and type of metal contamination, and surface chemistry, all of which are suggested to significantly influence their toxic potential. Thus, it is unclear if toxic responses observed after exposure to a specific MWCNT may be extrapolated in a general way to expected toxic potentials of other MWCNT types. It has been hypothesized that larger MWCNT, with a high length/diameter-aspect ratio, may resemble asbestos and be more carcinogenic and fibrogenic (Donaldson et al., 2010; Grosse et al., 2014). For example, intrapulmonary instillation of MWCNT of different lengths resulted in length-dependent infiltration of inflammatory cells in the peritoneal cavity of mice (Poland et al., 2008; Yamashita et al., 2010; Rittinghausen et al., 2014). Elevated inflammation, protein concentration, and fibrotic lesions along the parietal pleura and in the mesothelial layer were observed in mice exposed to long MWCNT via direct injection into the pleural cavity compared to mice exposed to short MWCNT. In contrast, responses to short MWCNT mirrored the responses of mice injected with control vehicle (Murphy et al., 2011). Thus, length and straightness play an important role in the toxicity induced by MWCNT. However, how these parameters influence the toxicity at the molecular level is unclear.

The objective of the present study was to employ toxicogenomics tools to systematically characterize the biological pathways and functions perturbed in mouse lungs exposed to two well-characterized OECD Working Party on manufactured Nanomaterials standard MWCNTs that differ in length, thickness, level of agglomeration and content of metal impurities, in order to identify mechanisms of toxicity that are distinctly associated with the two types of MWCNT. Genomic tools provide a unique means to globally profile all of the molecular pathways perturbed in response to MWCNT exposure, and thus permit detailed characterization and categorization of the potential health hazards of different MWCNTs. The expression profiles or perturbed biological pathways that are identified can then be used to build a property-response comparison, which contrasts the two different MWCNTs and their impact on gene expression, and thereby brings us closer to identifying biomarkers for human biomonitoring.

In the present study, groups of six male C57BL/6 mice were exposed by single intratracheal instillation to 18, 54 or 162 μg/mouse of small MWCNT NRCEO-026 (0.8 ± 0.1 μm in length) or large MWCNT NM-401 (4 ± 0.4 μm in length). Due to the high likelihood of exposure of personnel during inhalation experiments, intratracheal instillation was used as a safe substitute for deposition through inhalation. Instillation is rapid, and the dose is easily controlled and reasonably well-distributed in the lung (Driscoll et al., 2000). Lung tissues from each group of mice were harvested 24 h, 3 d and 28 d after exposure. Global gene expression, inflammatory and genotoxic responses, lung morphology, as well as acellular production of free radicals were assessed to profile the pulmonary responses. Bioinformatics tools were used to compare and contrast the expression profiles.

Methods

Multiwalled carbon nanotubes

The following MWCNTs were used in the present study: The NRCEO-026 (Nanocyl NC7000 CNT, Sambreville, Belgium) a small/thin curled MWCNT referred to as CNTsmall, NM-401 is a larger/thick MWCNT (kindly donated by the European Union Joint Research Centre, Ispra, Italy) referred to as CNTlarge. Both MWCNTs are included in the OECD Working Party on Manufactured Nanomaterials. The length and diameter of both MWCNTs were measured in the Nanogenotox project and are shown in Table 1 (The Nanogenotox group, 2013). CNTlarge is physicochemically similar to Mitsui XNRi-7 (in this study referred to as Mitsui-7), which has been classified as possibly carcinogenic to humans (Group 2B) (Grosse et al., 2014).

Dose selection.

Doses and time points were selected based on the previous and ongoing studies in our group (Bourdon et al., 2012b; Husain et al., 2013; Jacobsen et al., 2009; Poulsen et al., 2013; Saber et al., 2012, 2013). The consistency in doses and time points across many studies enabled comparison of responses after exposure to different nanomaterials. The doses reflect pulmonary deposition in mice after 1, 3, and 9 working days of 8 h at the Danish occupational exposure limit of 3.5 mg/m³ for Printex90 carbon black particles (Bourdon et al., 2012b). Studies investigating personal exposure to CNT in occupational environments reported human exposure levels ranging from non-detectable up to 1 mg/m³ (Methner et al., 2010; Dahm et al., 2013; Lee et al., 2014). However, most levels were in the range of 10–300 μg/m³ (Hedmer et al., 2014; Han et al., 2008; Lee et al., 2010; Methner et al., 2012; Birch et al., 2011). Erdely et al. reported workplace exposure levels up to 10.6 μg/m³, resulting in a calculated deposited dose of approximately 4.07 μg/day in a human, equivalent to 2 ng/day in the mouse (Erdely et al., 2013). Thus, although within dose ranges of other instillation/aspiration studies (Park et al., 2009; Porter et al., 2010; Shvedova et al., 2008; Snyder-Talkington et al., 2013), the doses used in present study are to be considered high in a workplace environment.

Preparation of instillation medium and exposure stock

CNTs were suspended by sonication in NanoPure water containing 2% serum collected from C57BL/6 mice. The particle suspensions (3.24 mg/ml) were sonicated using a Branson Sonifier S-450D (Branson Ultrasonics Corp., Danbury, CT, USA) equipped with a disruptor horn (Model number: 101-147-037). Total sonication time was 16 min at 40 W. During the sonication procedure the samples were continuously cooled on ice. Vehicle controls contained NanoPure water with 2% serum and were sonicated as described for the CNT suspensions.

Animal handling and exposure

Female C57BL/6 mice at the age of 5–7 weeks from Taconic (Ry, Denmark) were acclimatized for 1–3 weeks before the experiment. All mice were fed on Altromin (no. 1324, Christian Petersen, Denmark) and had access to water ad libitum during the whole experiment. The mice were housed in groups of up to 10 animals in polypropylene cages with sawdust bedding and enrichment at controlled temperature 21 ± 1 °C and humidity 50 ± 10% with a 12-h light/12-h dark cycle. At 8 week of age, groups of 9 C57BL/6 mice were exposed to 0, 18, 54 or 162 μg of CNTsmall or CNTlarge via intratracheal instillation (Jacobsen et al., 2009; Saber et al., 2012). Histological analyses and Transmission Electron Microscopy (TEM) were performed on 3 dedicated animals from each dose group. In brief, the mice were anesthetized with 4% isoflurane until fully relaxed and 2.5% during the instillation. Vehicle controls were intratracheally instilled with NanoPure water with 2% serum sonicated as described for the CNT suspensions. The mice were kept on their backs at a 40-degree angle during the entire procedure. The doses (18, 54 and 162 μg of CNTsmall or CNTlarge) were administered via a single intratracheal instillation. A 50 μl suspension was instilled followed by 150 μl air with a 250 μl SGE glass syringe (250F-LT-GT, MicroLab, Aarhus, Denmark). Control animals were instilled with vehicle (NanoPure water with 2% serum). After the instillation the catheter...
was removed, breathing was observed in order to assure that the delivered material did not block the airways.

At 1, 3 or 28 days post-instillation, the mice were anesthetized by subcutaneous injection of 0.2 ml of Hypnorn® (fentanyl citrate 0.315 mg/ml and fluanisone 10 mg/ml, Janssen Pharma) and Dormicum® (Midazolam 5 mg/ml, Roche) in sterile water and killed by exsanguination via intracardiac puncture.

All animal procedures followed the guidelines for the care and handling of laboratory animals established by Danish laws and regulations. The Animal Experiment Inspectorate under the Ministry of Justice approved the study (#2010/561-1779).

BAL fluid and tissue collection

Immediately after withdrawing the heart blood, bronchoalveolar lavage (BAL) was performed on 6 mice in each dose group by lavaging the lungs twice using (1 ml/25 g body weight) saline water in a 1 or 2 ml syringe. Each lavage consisted of 3 up and down movements performed slowly (5–10 s each). The second lavage was performed with fresh saline solution. Both washings were immediately put on ice. The combined lavage volume recovered was estimated and BAL fluid and BAL cells were separated by centrifugation at 4 °C and 400 g for 10 min. The lavaged lung lobes were removed and snap-frozen in cryotubes in liquid N2 and stored at −80 °C. The lavaged lung lobes were fixed in situ by cannulating the trachea and delivering 2% glutaraldehyde in 0.05 M cacodylate buffer (pH 7.2) at a constant flow of air of 20 ml/min. The lavaged lung lobes were removed and snap-frozen in cryotubes in liquid N2 and stored at −80 °C for later microarray and qRT-PCR experiments. For TEM imaging, the lungs were fixed in situ by cannulating the trachea and delivering 2% glutaraldehyde in 0.05 M cacycdate buffer (pH 7.2) at a constant fluid pressure of 30 cm before the thorax was open. The fixative was mixed from glutaraldehyde (SPI 230 Supplies #02608) and sodium cacodylate (Sigma-Aldrich #C4945). Thereafter, the lungs were excised and immersed in 2% glutaraldehyde 0.05 M cacodylate buffer (pH 7.2) and stored at −80 °C. The fixed lungs were dehydrated in ethanol and lastly in propylene oxide. Embedding was done with 1% uranyl acetate in 0.05 M potassium ferricyanide for 2 h. After osmification, the samples were rinsed in deionized water and placed in 1% uranyl acetate in water overnight at 5 °C. The following day samples were gradually dehydrated in ethanol and lastly in propylene oxide. Embedding was done with 1% uranyl acetate in water overnight at 5 °C. The following day samples were gradually dehydrated in ethanol and lastly in propylene oxide. Embedding was done with 1% uranyl acetate in water overnight at 5 °C. The following day samples were gradually dehydrated in ethanol and lastly in propylene oxide. Embedding was done with 1% uranyl acetate in water overnight at 5 °C. The following day samples were gradually dehydrated in ethanol and lastly in propylene oxide. Embedding was done with 1% uranyl acetate in water overnight at 5 °C. The following day samples were gradually dehydrated in ethanol and lastly in propylene oxide.

Table 1

<table>
<thead>
<tr>
<th>MWCNT</th>
<th>Code</th>
<th>Producer</th>
<th>CNT length (±SD)</th>
<th>CNT diameter (±SD)</th>
<th>BET (m²/g)</th>
<th>Impurities (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNT_{small}</td>
<td>NRCWE-026</td>
<td>Nanocyl (NC-7000)</td>
<td>0.85 ± 0.457 μm</td>
<td>11 ± 4.5 nm</td>
<td>245.8</td>
<td>13</td>
</tr>
<tr>
<td>CNT_{large}</td>
<td>NM-401</td>
<td>IO-LE-TECNanomaterials (CP-0006-5G)</td>
<td>4.05 ± 2.40 μm</td>
<td>67 ± 26.2 nm</td>
<td>14.6</td>
<td>3</td>
</tr>
</tbody>
</table>

Data is obtained from analyses performed in the present study and in The Nanogentox group (2013).

Bronchoalveolar lavage cell counts

For determination of bronchoalveolar lavage (BAL) cell composition, cells in 50 μl suspension were collected on microscope slides by centrifugation at 10,000 rpm for 4 min in a Cytotube 2 (StatSpin, Bie and Berntsen, Rødovre, Denmark). The slides were fixed with 96% ethanol and stained with May–Grünwald–Giemsa stain. The cell type composition of BAL was determined on 200 cells and the total number of cells was determined by the Nucleo Counter (Chemometec, Allerød, Denmark) Live/dead assay according to the manufacturer’s instructions. The statistical analyses on BAL cell counts were performed in SAS version 9.3 (SAS Institute Inc., Cary, NC, USA). With the exception of day 28 for lymphocytes, no differences in controls at the separate days were identified and they were pooled. We decided to pool the lymphocyte controls in order to maintain consistency. Statistical significance was calculated using a parametric two-way ANOVA with a post-hoc Tukey-type experimental comparison test. In case of interaction between dose and time, the data was separated in time points and a one-way ANOVA with a post-hoc Tukey-type experimental comparison test was performed. In cases when the data, after log transformation, did not meet the parametric requirements, non-parametric tests were used.

Thermal gravimetric analysis

Thermal gravimetric analysis (TGA) determines the weight loss of a material as a function of temperature whilst derivative thermal gravimetric analysis (DTG) gives rate of change of mass. From a TGA curve it is possible to determine the mass % of organic content and to determine the thermal stability of the samples. TGA was performed on a Perkin TGA instrument for (CNT_{small}) and a Mettler TGA (for CNT_{large}). The samples were heated from 25 to 950 °C at a heating rate of 10 °C/min on an alumina holder under the flow of air of 20 ml/min.

Brunauer–Emmett–Teller (BET) surface area analysis

The samples were degassed under vacuum for 10 h at 80 °C and nitrogen absorption isotherms were measured at liquid nitrogen temperature (77 K) using a Micromeritics ASAP2020 volumetric adsorption analyzer. The Brunauer–Emmett–Teller equation was used to calculate the surface area from adsorption data obtained in the relative pressure (p/p0) range of 0.05 and 0.3. The total pore volume was calculated from the amount of gas adsorbed at p/p0 = 0.99. Pore size distribution curves were derived using Barrett–Joyner–Halenda (BJH) assuming a cylindrical pore model.

Light microscopy

One micrometer semi-sections of embedded lung were cut with a Zeiss Ultracut UCT ultra-microtome, stained with 1% toluidine blue in 1% borax and imaged using a Zeiss Axiosimager Z1 widefield microscope.

Scanning Electron Microscopy

Five microliters of CNT_{small} or CNT_{large} in exposure medium was deposited on an Al foil covered Scanning Electron Microscopy (SEM) stub. The size and agglomeration was determined by SEM using a NVISION 40 Zeiss Cross-Beam Focused Ion Beam machine, operated at 10 kV accelerating voltage, equipped with a high resolution Gemini Field Emission Gun scanning electron microscope column and with an Oxford INCA 350 Xact Energy Dispersive X-Ray Spectrometer having an energy resolution of 129 eV at the Mn kx line.

Transmission Electron Microscopy

Pristine MWCNT and lung sections from mice exposed to CNT_{small} or CNT_{large} were visualized using TEM. The fixed lung was cut into small pieces and a standard Electron Microscope embedding procedure was carried out as described in Kobler et al. (2014). Samples were rinsed in 0.15 M phosphate buffer followed by a 0.15 M sodium cacodylate wash. Post-fixation and osmification were performed in 2% osmium tetroxide in 0.05 M potassium ferricyanide for 2 h. After osmification, samples were rinsed in deionized water and placed in 1% uranyl acetate in water overnight at 5 °C. The following day samples were gradually dehydrated in ethanol and lastly in propylene oxide. Embedding was done with 1% uranyl acetate in water overnight at 5 °C. The following day samples were gradually dehydrated in ethanol and lastly in propylene oxide. Embedding was done with 1% uranyl acetate in water overnight at 5 °C. The following day samples were gradually dehydrated in ethanol and lastly in propylene oxide. Embedding was done with 1% uranyl acetate in water overnight at 5 °C. The following day samples were gradually dehydrated in ethanol and lastly in propylene oxide. Embedding was done with 1% uranyl acetate in water overnight at 5 °C. The following day samples were gradually dehydrated in ethanol and lastly in propylene oxide. Embedding was done with 1% uranyl acetate in water overnight at 5 °C. The following day samples were gradually dehydrated in ethanol and lastly in propylene oxide. Embedding was done with 1% uranyl acetate in water overnight at 5 °C. The following day samples were gradually dehydrated in ethanol and lastly in propylene oxide. Embedding was done with 1% uranyl acetate in water overnight at 5 °C. The following day samples were gradually dehydrated in ethanol and lastly in propylene oxide. Embedding was done with 1% uranyl acetate in water overnight at 5 °C. The following day samples were gradually dehydrated in ethanol and lastly in propylene oxide. Embedding was done with 1% uranyl acetate in water overnight at 5 °C. The following day samples were gradually dehydrated in ethanol and lastly in propylene oxide. Embedding was done with 1% uranyl acetate in water overnight at 5 °C. The following day samples were gradually dehydrated in ethanol and lastly in propylene oxide. Embedding was done with 1% uranyl acetate in water overnight at 5 °C. The following day samples were gradually dehydrated in ethanol and lastly in propylene oxide.
performed in propylene oxide diluted Epon, until 100% Epon 812 was used before polymerization at 60 °C for 24 h. Samples were cut into approximately 80 nm sections for TEM using an ultramicrotome with a diamond knife. Sections were stained with uranyl acetate and lead citrate, and imaged using a CM 100 BioTwin instrument from Philips operated at 80 kV accelerating voltage.

Microarray experiment

Total RNA extraction for microarray analysis.

Total RNA was isolated from lung tissue of 144 mice in total (n = 6 mice per dose group). TRIzol reagent (Invitrogen, Carlsbad, CA, USA) was used for RNA isolation and purification was done using the RNeasy MiniKit (Qiagen, Mississauga, ON, Canada) as specified by the manufacturer. An on-column DNase treatment was applied (Qiagen, Mississauga, ON, Canada). All RNA samples showing A260/280 ratios between 2.0 and 2.15 were further analyzed for RNA integrity using an Agilent 2100 Bioanalyzer (Agilent Technologies, Mississauga, ON, Canada). Only RNA with integrity numbers above 7.0 was used in the microarray hybridization experiment. All RNA samples (6 per group) passed the quality control. Total RNA was stored at −80 °C until analysis (Husain et al., 2013; Poulsen et al., 2013).

Hybridization.

Microarray hybridization was performed using 200 ng total RNA from each sample (n = 6 per group) on Agilent 8 × 80 K oligonucleotide microarrays (Agilent Technologies Inc., Mississauga, ON, Canada) as described previously (Poulsen et al., 2013). Data were acquired using Agilent Feature Extraction software version 9.5.3.1.

Statistical analysis of microarray data.

A reference randomized block design (Kerr, 2003; Kerr and Churchill, 2007), with the sample labeled with Cy5 and the reference labeled with Cy3, was used to analyze gene expression microarray data. Locally WEighted Scatterplot Smoothing (LOWESS) (Cleveland, 1979) regression modeling method was used to normalize data and statistical significance of the differentially expressed genes was determined using the Agilent MicroArray ANalysis Of VAriance (MAANOVA) (Wu et al., 2003) in R statistical software (http://www.r-project.org). The F-statistic (Cui et al., 2005), a shrinkage estimator for the gene-specific variance components, was used to test the treatment effects. The permutation method (30,000 permutations with residual shuffling) was used to estimate the P-values for all the statistical tests, and these P-values were then adjusted for multiple comparisons by using the false discovery rate multiple testing correction (Benjamini and Hochberg, 1995). Fold change calculations were based on the least-square means. Genes showing expression changes of at least 1.5 fold in either direction compared to their matched controls and having P-values of less than or equal to 0.05 (P ≤ 0.05) were considered as significantly differentially expressed and were used in the downstream analysis.

Functional and pathway analysis of differentially expressed genes.

The Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.7 (Huang et al., 2009a,b) was used for the functional Gene Ontology (GO) analysis of the differentially expressed genes. Benjamini–Hochberg corrected GO biological processes with a Fisher’s exact P ≤ 0.05 were considered to be significantly enriched. Specific biological functions, pathways and networks associated with the differentially expressed genes were identified using Ingenuity Pathway Analysis (IPA, Ingenuity Systems, Redwood City, CA, USA). Functions, pathways and networks with a Benjamini–Hochberg Multiple Testing Correction P-value of ≤0.05 were considered for discussion. The pathway analysis methods employed enabled the extraction of biologically meaningful information from a long list of differentially expressed genes.

qRT-PCR validation

For validation of microarray results, 8 genes were evaluated by qRT-PCR at all doses and time points. These genes (Saa3, Il1a, Il6, Ccl2, Ccl5, Hmox1, Mmp9 and Sod2) showed high differential regulation at a minimum of one dose or time point, and were involved in inflammation, acute phase response, protection from ROS or extracellular matrix remodeling.

Total RNA extraction for qRT-PCR validation.

Total RNA was isolated from lung tissue of 144 mice in total (n = 6 mice per dose group) using the MagNA Pure Compact RNA Isolation kit (Roche) according to the manufacturer’s protocol. In brief, the RNA isolation procedure is based on the MagNA Pure Magnetic Glass Particle (MGP) Technology (Roche): nucleic acids are bound on the surfaces of MGP whereas unbound molecules are removed by several washing steps. Genomic DNA molecules are degraded by incubation with DNase. Total RNA was stored at −80 °C until analysis.

cDNA synthesis.

cDNA synthesis was performed using the Enhanced Avian HS HT-PCR kit (Sigma-Aldrich), with total RNA as template, as described in the manufacturer’s protocol. A total of 500 ng was used for each cDNA synthesis. The heating cycle was 25 °C (15 min)/50 °C (50 min)/85 °C (5 min) and the obtained cDNA solutions were further diluted to a final concentration of 10 ng/μl.

Real-time RT-PCR.

The expression of the target genes, compared to a reference (GAPDH), was determined with real-time PCR using a LightCycler® 480 Instrument (Roche) according to the manufacturer’s protocol. The relative expression was calculated using the Livak–Schmittgen method (Livak and Schmittgen, 2001). The statistical analyses were performed in Microsoft Excel through Mathematica (version 8, Wolfram Research). Statistical significance was calculated using a parametric one-way ANOVA. Regression analysis between PCR and microarray data was performed in SAS version 9.3 (SAS Institute Inc., Cary, NC, USA).

ROS generating ability using dichlorodihydrofluorescein

The generation of ROS was assessed using 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) (Invitrogen) as described previously by Jacobsen et al. (2008). CNTsmall and CNTlarge suspensions were prepared with Hank’s buffered saline solution instead of serum at doses: 0, 1.4, 2.8, 5.6, 11.3, 22.5, 45, 90 and 135 μg/ml.

Comet analysis

The comet analysis was performed on lung tissue based on a previously published protocol (Jackson et al., 2011a), which has been modified and validated to a fully-automated scoring system (IMSTAR). This new procedure for scoring DNA damage, quantified as %DNA in tail and tail length, has recently been published (Jackson et al., 2013). The statistical analyses were performed in SAS version 9.3 (SAS Institute Inc., Cary, NC, USA). No differences in controls at the separate days were identified and they were pooled. After careful evaluation, 3 control samples were excluded due to unusually high levels of DNA strand breaks and apoptotic cells. This is likely due to incorrect thawing procedure, as previously described in Jackson et al. (2013). One belonged to the day 3 control group, the last 2 belonged to the 28 days group. Statistical significance was calculated using a parametric two-way ANOVA with a post-hoc Tukey-type experimental comparison test. In case of interaction between dose and time, the data was separated in time points and a one-way ANOVA with a post-hoc Tukey-type experimental comparison test was performed. In cases where the data, after log
transformation, did not meet the parametric requirements, non-parametric tests were used.

Results

Mice were exposed by intratracheal instillation to three different doses (18, 54 and 162 μg/mouse) of two MWCNTs: CNT\textsubscript{Small} (NRCWE-026) and CNT\textsubscript{Large} (MWCNT NM-401), alongside vehicle controls. Lung tissue was collected 1, 3 and 28 days after the exposure.

MWCNT characteristics

Table 1 summarizes the physicochemical characterization data.

\textbf{CNT\textsubscript{Small}}

The average length of CNT\textsubscript{Small} was 0.85 ± 0.46 μm (mean ± SD) and the average width was 11 ± 4.5 nm (mean ± SD) (Kobler et al., 2014; The Nanogentox group, 2013). The CNT\textsubscript{Small} was stable up to 400 °C in thermogravimetric analysis (TGA), and at 800 °C, 13% of the mass still remained (Supplementary Fig. 1.A), most likely metal oxides since chemical analysis of CNT\textsubscript{Small} from the same batch by Jackson et al. (2014) showed that the reported main components of CNT\textsubscript{Small} (NRCWE-026) included: C (84.4%), Al\textsubscript{2}O\textsubscript{3} (14.97%), Fe\textsubscript{2}O\textsubscript{3} (0.29%) and CoO (0.11%). The Brunauer–Emmett–Teller surface area (BET) of CNT\textsubscript{Small} was 245.8 m2/g, most of this being micro-pores.

The pristine CNT\textsubscript{Small} was visualized using Transmission Electron Microscopy (TEM). The pristine nanotubes appeared curly, varied in their lengths (Supplementary Figs. 2.A–B), and both agglomerated and single CNT\textsubscript{Small} were observed. In their agglomerated state, the CNT\textsubscript{Small} appeared highly entangled and the single tube-like structure was no longer visible. Scanning Electron Microscopy (SEM) of CNT\textsubscript{Small} in the exposure medium revealed mainly agglomerated and entangled MWCNTs (Fig. 1.A). Impurities and protein matter from the exposure medium were observed throughout the samples, probably originating from contamination during synthesis and from the dried exposure medium.

Light microscope images of CNT\textsubscript{Small} in the alveolar region showed uniform dispersion and distribution of CNT\textsubscript{Small} on day 1 after the exposure to 162 μg (Fig. 1.C). TEM analysis of interactions between
CNTs and cells in the lung lining at post-exposure day 3 (Fig. 1.E and Supplementary Fig. 2.C) showed curled and agglomerated CNTs engulfed in vesicles in the cytoplasm.

CNTLarge

The average length of CNTLarge was 4.05 ± 2.4 μm (mean ± SD) and the average width was 67 ± 26.2 nm (mean ± SD) (Kobler et al., 2014; The Nanogentox group, 2013) (Table 1). Based on the standard deviation, 5% of the CNTLarge tubes are larger than 8847.8 nm. TGA showed stability of the CNTLarge sample until 650 °C. The total carbon was decomposed between 650 and 950 °C, leaving a mass of 3% after a complete decomposition (Supplementary Figs. 1.B–C). The chemical composition of CNTLarge from the same batch has been determined by Jackson et al. (2014). The reported main components of CNTLarge (NM-401) included: C (99.7%), P2O5 (0.14%), CO3 (0.08%) and Fe2O3 (0.05%). The CNTLarge sample had a low volume of N2 adsorption under a relative pressure of 0.3, which implies that the sample possessed a small (14.6 m2/g) non-porous surface area.

TEM imaging of the pristine CNTLarge revealed MWCNT that appeared long and straight (Supplementary Figs. 3.A–B). Different levels of agglomeration were observed, but monomers of CNTLarge were visible in the bundle and were straight. SEM of CNTLarge in the exposure medium (Fig. 1.B) showed long and straight CNTLarge in tangled up bundles with a majority of them being longer than 1 μm. The observed spherical particles probably originated from the dried exposure medium.

Light microscopy imaging of the alveolar region showed well dispersed CNTLarge in the entire region (Fig. 1.D). TEM imaging of the lung lining clearly showed CNTLarge interacting with macrophage-like cells (Fig. 1.F and Supplementary Fig. 3.C). A close-up of the cytoplasm revealed both single and bundles of CNTLarge within vesicles. Some of these vesicles appeared to be penetrated by the CNTLarge. In addition, visible damage caused by CNTLarge displacement and wear of the microtome diamond knife was observed. Such displacement and damage was not observed with the CNTSmall (Kobler et al., 2014).

Bronchoalveolar lavage fluid cell type composition

BAL fluid collected from MWCNT-instilled mice 1, 3 and 28 days after exposure was used to assess the recruitment of inflammatory cells into the lung lumen. The total numbers of cells, neutrophils, macrophages, eosinophils and lymphocytes are shown in Supplementary Table 1. For both MWCNTs, the inflammatory response was dominated by large infiltrations of neutrophils. The largest total influx of neutrophils was seen on post-exposure day 3, but the highest % of neutrophils in the total BAL fluid cells was observed at day 1 (Fig. 2). Persistent increases in neutrophil levels were observed up to 28 days post-exposure. For CNTSmall instilled mice, the neutrophil numbers at the 162 μg dose were 80.1 × 10^3 cells, 457 × 10^3 cells more than controls and 34.2 × 10^3 cells on post-exposure days 1, 3 and 28, respectively (Supplementary Table 1). Whereas, following high dose CNTLarge exposure the neutrophil numbers were 108.6 × 10^3 cells, 158.1 × 10^3 cells and 77.4 × 10^3 cells more than in controls on post-exposure days 1, 3 and 28, respectively (Supplementary Table 1). Overall, the cell type compositions of BAL were similar after exposure to the two MWCNTs, except for the eosinophil influx, which, especially at day 28, was higher in response to CNTLarge. Similar to an earlier Mitsui-7 study (Poulsen et al., 2013), an inverse dose–response relationship was observed for eosinophils. A similar trend was observed at day 3 for total number of lymphocytes. The great reduction in eosinophils and lymphocytes at the higher doses compared to the 18 μg dose has been addressed in our earlier publication (Poulsen et al., 2013).

Overview of the expression changes

Complete DNA microarray results for CNTSmall and CNTLarge exposures are available through the Gene Expression Omnibus at NCBI (http://www.ncbi.nlm.nih.gov/geo/, accession number: GSE35284). We identified 6639 unique differentially expressed genes represented by 9270 probes (false discovery adjusted P < 0.05 and the relative change in expression (fold change) was at least ±1.5 in either direction) after CNTSmall exposure, and 5972 genes represented by 8450 probes after CNTLarge exposure (Supplementary Table 2). These represent genes that were significantly different from control in at least one dose or time point for either CNT type. For both MWCNTs, a clear dose–response was observed at all time points. A time-dependency was observed with a peak at day 3 (Fig. 3). We tabulated the number of differentially regulated genes for CNTSmall for the three different post-exposure time points. On day 1, a total of 197 genes (117 down-regulated and 80 up-regulated), 848 genes (404 down-regulated and 444 up-regulated) and 2186 genes (1157 down-regulated and 1029 up-regulated) were differentially expressed in the 18, 54 and 162 μg dose groups, respectively (Fig. 3.A). On day 3, a total of 652 genes (193 down-regulated and 459 up-regulated), 2059 genes (866 down-regulated and 1193 up-regulated) and 5275 genes (2713 down-regulated and 2562 up-regulated) were differentially expressed in the 18, 54 and 162 μg dose groups, respectively (Fig. 3.B). On day 28, a total of 17 genes (3 down-regulated and 14 up-regulated), 37 genes (12 down-regulated and 25 up-regulated) and 111 genes (5 down-regulated and 106 up-regulated) were differentially expressed in the...
18, 54 and 162 μg dose groups, respectively (Fig. 3.C). The number of differentially regulated genes following CNT_{Large} exposure on day 1 was a total of 32 genes (8 down-regulated and 24 up-regulated), 573 genes (189 down-regulated and 384 up-regulated) and 1491 genes (729 down-regulated and 762 up-regulated) in the 18, 54 and 162 μg dose groups, respectively (Fig. 3.D). On day 3, a total of 409 genes (153 down-regulated and 256 up-regulated), 1581 genes (669 down-regulated and 912 up-regulated) and 5351 genes (2798 down-regulated and 2553 up-regulated) were differentially expressed in the 18, 54 and 162 μg dose groups, respectively (Fig. 3.E). On day 28, a total of 2 genes (2 down-regulated and 0 up-regulated), 4 genes (2 down-regulated and 2 up-regulated) and 366 genes (89 down-regulated and 277 up-regulated) were differentially expressed in the 18, 54 and 162 μg dose groups, respectively (Fig. 3.F). A direct comparison of the total number of genes regulated in lung tissue after exposure to CNT_{Small} and CNT_{Large}, respectively, is shown in Supplementary Fig. 4.

At the high dose exposure on post-exposure day 3, there was a high concordance between the genes differentially expressed after exposure to the two MWCNTs. At the lower doses and other time points, we observed less than 50% overlapping genes between the two groups. Differentially expressed genes following exposure to the high dose of CNT_{Large} were 4 times higher than CNT_{Small} on day 28, which may indicate a more sustained toxic response resulting from exposure to long, thick and straight MWCNT.

Gene ontology analysis of biological processes

In order to identify themes in the global pulmonary gene expression patterns caused by the two MWCNTs, we employed gene ontology (GO) classification through the Database for Annotation, Visualization and Integrated Discovery (DAVID) (Huang et al., 2009b,a). The common and unique biological processes affected by CNT_{Small} and CNT_{Large} are shown in Supplementary Figs. 5–7.

On post-exposure day 1 we identified two overlapping biological processes perturbed following exposure to CNT_{Small} and CNT_{Large}, defense response [GO:0006952] and cell motility [GO:0048870]. This indicates that inflammation and cell motility are common responses following exposure to CNTs at post-exposure day 1 and that they are not influenced by length or metal contaminants. Five unique biological processes were identified following high dose CNT_{Small} exposure on post-exposure day 1 (Supplementary Fig. 5.A), whereas exposure to CNT_{Large} resulted in unique enrichment of two biological processes at the medium and the high dose, and regulation of nine processes uniquely enriched at the high dose only (Supplementary Fig. 5.B). Although a higher prevalence of perturbed biological processes was observed following CNT_{Large} exposure compared to CNT_{Small} at post-exposure day 1, they mainly grouped in similar categories: Inflammatory response, cell motility and cell cycle processes. However, the biological process involving cell death was only perturbed after CNT_{Large} exposure (Supplementary Fig. 5.B). Similarly, at 3 days post-exposure, high concordance in enriched GO biological processes was observed following CNT_{Small} and CNT_{Large} exposure, with seven overlapping processes identified: cell cycle [GO:0007049], immune response [GO:0006955], defense response [GO:0006952], DNA metabolic process [GO:0006259], cytoskeleton organization [GO:0007010], microtubule-based process [GO:0007017], and cell activation [GO:0001775]. Exposure to CNT_{Small} also resulted in unique enrichment of 10 biological processes across the dose range at post-exposure day 3 (Supplementary Fig. 6.A), whereas four uniquely regulated processes were identified following CNT_{Large} exposure (Supplementary Fig. 6.B). Similar to the responses seen at post-exposure day 1, these unique biological processes primarily grouped under the same categories; inflammatory response, cell motility and cell cycle processes. However, in contrast to post-exposure day 1, we noted a unique regulation of cell death following exposure to CNT_{Small} at post-exposure day 3. On post-exposure day 28, no overlapping GO biological processes were observed following CNT_{Small} and CNT_{Large}. Immune response [GO:0006955] was perturbed at both low and medium doses following exposure to CNT_{Small} (Supplementary Fig. 7.A); whereas, perturbations in response to wounding [GO:0009611], ribonucleoside triphosphate metabolic process

![Figure 3](image-url)
[GO:0009199] and hydrogen transport [GO:0006818] (Supplementary Fig. 7.B) were observed at the high dose following CNT\textsubscript{Large} exposure. This indicates a common sustained inflammatory response that persists until post-exposure day 28 following exposure to both CNT\textsubscript{Small} and CNT\textsubscript{Large}. In addition to the general observations of high similarities in perturbed GO biological processes, we also noted that CNT\textsubscript{Small} exposure altered expression of genes involved in cell cycle and microtubule assembly, indicative of cell cycle arrest and structural damage at post-exposure day 1. Instead, CNT\textsubscript{Large} exposure resulted in activation of immune responses, suggesting that the immediate responses to the two types of nanotubes are different and that there is a delay in the onset of immune responses following exposure to CNT\textsubscript{Small}.

Property-response comparison

From the overall analysis of perturbed biological processes identified through GO, we constructed a property-response comparison of the five most perturbed biological processes: cell cycle [GO:0007049], immune response [GO:0006955], response to wounding [GO:0009611], DNA metabolic process [GO:0006259] and microtubule-based process [GO:0007017] (Fig. 4). This allowed us to identify the specific expression changes associated with selected ontologies across the two types of CNTs. In order to identify effects related to the physicochemical properties of CNT\textsubscript{Large}, we organized the genes in the biological processes based on their expression following exposure to high dose of CNT\textsubscript{Large} at post-exposure day 3. A high concordance was found between the differentially regulated genes in all five biological processes in response to both CNT types especially at the early time points. Underlying this observation is the low number of oppositely regulated genes observed. Minor differences in the potency of CNT\textsubscript{Small} and CNT\textsubscript{Large} on gene expression were noted in immune response and response to wounding at the high dose on day 3. Although similar genes were affected, these genes were more strongly induced or repressed following CNT\textsubscript{Large} exposure. This indicates effects related specifically to the physicochemical properties of CNT\textsubscript{Large}. However, at the low dose at post-exposure day 3,
a much higher proportion of genes were differentially expressed after CNT\textsubscript{Small} exposure compared to CNT\textsubscript{Large}. This could, in turn, indicate a greater effect of CNT\textsubscript{Small} compared to CNT\textsubscript{Large} at low doses. We identified a cluster of uniquely changed genes on day 28 after exposure to CNT\textsubscript{Large} in response to wounding. This indicates a sustained or delayed effect specific for the physicochemical properties of CNT\textsubscript{Large}. This cluster included the genes Chi3l4, Slc7a2, Ccr2, Lipa, Olr1, LOC620515, Chi3l3, Proz, Tff1 and Gpp. There is little cohesion between these genes in the scientific literature, and no clear conclusion can be drawn based on the cluster at this time.

Functional analysis

The functional significance of the GO changes was determined using Ingenuity Pathway Analysis (IPA) (Ingenuity\texttextsuperscript{R} Systems, www.ingenuity.com). The individual enriched functions in IPA were filtered by: 1) removing redundant functions with overlapping genes, and 2) removing functions that were not directly relevant to the present study (e.g. dermal diseases and ophthalmic diseases). In general, we observed high similarities between the enriched functions across time point and doses, which confirm the results of the GO analysis of biological processes. The top five most significantly affected high-level functions after CNT\textsubscript{Small} or CNT\textsubscript{Large} exposure are shown in Fig. 5. These top changing functions only differed by one function: ‘Inflammatory response’ (CNT\textsubscript{Large}) and ‘hematological system, development and function’ (CNT\textsubscript{Small}). A closer analysis revealed that the function ‘hematological system, development and function’ was associated with annotation terms such as ‘serine protease inhibitors (SERPINs), tumor necrosis factor family, acute phase response, especially regarding migration of phagocytes’. As evidence supporting the enrichment of this biological function, we observed that the differential regulation of genes belonging to this function at the earliest time point. How ever, by day 3, this function was similarly enriched for both MWCNTs. Similar differences in the kinetics and delayed onset were also observed with immune response following CNT\textsubscript{Small}.

Pathway analysis

The pathways with the largest number of differentially expressed genes caused by exposure to the high dose of CNT\textsubscript{Small} and CNT\textsubscript{Large} are shown in Table 2 for all time points. The pathway analysis was conducted in IPA. A general high overlap of perturbed pathways was observed across CNT\textsubscript{Small} and CNT\textsubscript{Large} exposure. On post-exposure day 1, LXR/RXR activation, atherosclerosis signaling, and acute phase response signaling were highly regulated following exposure to both MWCNTs, indicating important effects of MWCNT exposure on lipid/cholesterol homeostasis and the inflammatory response. The same trend for high concordance was observed on post-exposure day 3, with hepatic fibrosis/hepatic stellate cell activation and dendritic cell maturation regulated across both MWCNT types. Although the other significantly enriched pathways differed from CNT\textsubscript{Small} to CNT\textsubscript{Large} exposure, they commonly involved lipid/cholesterol homeostasis and the inflammatory response, thus linking to the response seen at the early time point. Based on this
Table 2
Top 6 canonical pathways and networks in IPA affected by CNT\textsubscript{small} or CNT\textsubscript{large}.

<table>
<thead>
<tr>
<th>Dose group</th>
<th>CNT\textsubscript{small}</th>
<th>Networks</th>
<th>Name</th>
<th># genes</th>
<th>CNT\textsubscript{large}</th>
<th>Networks</th>
<th>Name</th>
<th># genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1, 162 μg</td>
<td></td>
<td>Carbohydrate metabolism, lipid metabolism, small molecule biochemistry</td>
<td>26</td>
<td></td>
<td>Atherosclerosis signaling</td>
<td>32</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oxidative ethanol degradation I</td>
<td>7</td>
<td></td>
<td>Acute phase response signaling</td>
<td>31</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hepatic fibrosis/hepatic stellate cell activation</td>
<td>27</td>
<td></td>
<td>LXR/RXR activation</td>
<td>31</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pyrimidine ribonucleotides interconversion</td>
<td>31</td>
<td></td>
<td>B cell development</td>
<td>29</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Day 3, 162 μg</td>
<td></td>
<td>Antigen presentation pathway</td>
<td>20</td>
<td></td>
<td>Calcium-induced T lymphocyte apoptosis</td>
<td>29</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hepatic fibrosis/hepatic stellate cell activation</td>
<td>61</td>
<td></td>
<td>Atherosclerosis</td>
<td>28</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dendritic cell maturation</td>
<td>66</td>
<td></td>
<td>Cell death and survival, cancer, hematological disease</td>
<td>28</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crosstalk between dendritic cells and natural killer cells</td>
<td>36</td>
<td></td>
<td>Retinol biosynthesis</td>
<td>28</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LXR/RXR activation</td>
<td>49</td>
<td></td>
<td>Cancer, inflammatory disease</td>
<td>28</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>Day 28, 162 μg</td>
<td></td>
<td>Hematopoiesis from pluripotent stem cells</td>
<td>4</td>
<td></td>
<td>Cell death and survival</td>
<td>30</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Primary immunodeficiency signaling</td>
<td>4</td>
<td></td>
<td>Cell death and survival, cancer, hematological disease</td>
<td>29</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Humoral immune response, protein synthesis, inflammatory response</td>
<td>23</td>
<td></td>
<td>Gene expression</td>
<td>29</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amino acid metabolism, molecular transport, small molecule biochemistry</td>
<td>14</td>
<td></td>
<td>Atherosclerosis signaling</td>
<td>31</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cell movement, hematological system development and function, immune cell trafficking</td>
<td>10</td>
<td></td>
<td>Triacylglycerol degradation</td>
<td>35</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cellular development, cellular growth and proliferation, connective tissue development and function</td>
<td>10</td>
<td></td>
<td>Connective tissue disorder</td>
<td>35</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cell morphology, cellular assembly and organization, cellular development</td>
<td>9</td>
<td></td>
<td>Cardiovascular system development and function</td>
<td>35</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dermatan Sulfate Degradation</td>
<td>3</td>
<td></td>
<td>Cancer</td>
<td>35</td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

Pathways and networks were identified in IPA and ranked based on their Benjamini–Hochberg Multiple Testing Correction P-value.

Information, a closer analysis of genes involved in cholesterol synthesis and homeostasis was conducted at all doses and time points for MWCNT exposed mice, which revealed the consistent up-regulation of several genes involved in the 3-hydroxy-3-methylglutaryl-Coenzyme A (HMG-CoA) reductase pathway for both CNT types at the early time point (Supplementary Table 4). Down-regulation was also observed in the expression of membrane transporters ATP-binding cassette, sub-family A, member 1 (Abca1) and in ATP-binding cassette, sub-family G, member 1 (Abcg1) at post-exposure day 3. Both of these genes are involved in lipid homeostasis through cholesterol efflux. A linkage to fibrosis was observed through the regulation of hepatic fibrosis/hepatic stellate cell activation at the early time points following exposure to CNT\textsubscript{small} and CNT\textsubscript{large}. Although recognized for their role in hepatic fibrosis, many of the differentially regulated genes in this pathway play important roles in pulmonary fibrosis as well.

Finally, only two canonical pathways were perturbed 28 days post-exposure to CNT\textsubscript{small}; the small number of differentially expressed genes in each pathway indicates low pathway specificity (Table 2). In contrast to CNT\textsubscript{small}-genes involved in six pathways were affected 28 days post-exposure to CNT\textsubscript{large}. Interestingly, persistent changes in the expression of genes involved in inflammatory and atherosclerosis pathways were observed, indicating possible long-term effects.

Network analysis

Network analysis in IPA was employed to identify key regulatory genes and molecules. The top five networks at the high dose, days 1 and 3 post-exposure to either MWCNT (Table 2) were merged and network connections were visually depicted (Supplementary Fig. 9). For CNT\textsubscript{small} exposure, the primary network on post-exposure day 1 consisted of the core nodes Myc, Cdkn1a and Egfr. These genes are all involved in regulation of cellular proliferation and cell cycle; Egfr is also
highly implicated in fibrosis. Besides the core nodes, a distinct group of down-regulated genes clustered together (Supplementary Fig. 9.A, red circle), which belong to the dynein family. On day 3, the core nodes Tnf and Gpcr were identified (Supplementary Fig. 9.B). The latter is representative of the G protein-coupled receptor proteins, generally involved in signal transduction from the extracellular space to the cytoplasm. Tnf is a multifunctional proinflammatory cytokine belonging to the tumor necrosis factor superfamily, involved in the regulation of a wide spectrum of biological processes. Besides Tnf and Gpcr, several other small nodes were identified, but no distinct patterns were observed. For CNTLarge exposure, network analysis of post-exposure day 1 gene expression data revealed core nodes centered around Myc, Nfkbia, Gpcr and Nfkb complex (Supplementary Fig. 9.C). Myc and Gpcr are both involved in regulation of cellular proliferation, whereas the Nfkbia genes are important in cytokine production and cell survival. The network at post-exposure day 3 showed core nodes for Tnf, Myc, Tgfb1, Il1r and Gsk3b (Supplementary Fig. 9.D). As in the day 1 network, core gene nodes were generally grouped into two categories: regulation of cellular proliferation (Myc, Tgfb1, Il1r and Gsk3b) and inflammation (Tnf). However, most of these genes are highly pleiotropic. Tgfb1, through the SMAD signaling cascade, is also strongly associated with fibrosis. The common gene nodes identified further highlight the general high degree of similarity seen in the gene expression responses after CNTSmall and CNTarge exposure.

Fibrosis gene signature

Fibrosis is a well-established endpoint in MWCNT-induced toxicity (Aiso et al., 2010; Mercer et al., 2011; Muller et al., 2005; Porter et al., 2010; Snyder-Talkington et al., 2013). In the present study, fibrosis (hepatic fibrosis/hepatic stellate cell activation) was observed as the top pathway hit following exposure to both CNTSmall and CNTarge. This pathway was highly perturbed on day 3, with ligand-mediated effects on nuclear transcription across the entire pathway (Supplementary Fig. 10). The cells and genes involved in this pathway are similar to those involved in parenchymal injury to lungs, thus the induction of this pathway shows that MWCNT exposure may initiate a fibrotic response. Fibrosis induction is a highly multifactorial process and fibrosis-associated genes were grouped under several GO biological processes, including cellular growth and proliferation, response to wounding or cellular function and maintenance. We identified several matrix metalloproteinases (Mmp10, Mmp11, Mmp12, Mmp13, Mmp14, Mmp15, Mmp19, Mmp3, Mmp8, Mmp9) and tissue inhibitor of metalloproteinase (Timp1, Timp2, Timp3, Timp4), important for fibrogenesis and tissue remodeling, that were differentially regulated after exposure to both MWCNTs, primarily on post-exposure day 3. Also at the same time point, several genes involved in TGFβ signaling, which has been linked with the development of fibrosis, were differentially regulated following exposure to both MWCNTs (Areg, Tgfb2, Tgfb3, Smad1, Smad6, Smad9). However, Tgfb1 and Tgfb3 were regulated only after CNTarge exposure. On post-exposure day 28, expression of many of the fibrosis-related genes had returned to baseline levels. However, an upstream analysis of the differentially regulated genes at this time point revealed that many of the genes affected by CNTarge exposure (56 genes) were regulated by Tgfb1. In comparison, only 14 Tgfb1 regulated genes were identified following CNTsmall exposure. This indicates activation of fibrotic processes 28 days after exposure, but with an effect that was most prominent following CNTarge exposure. Also, by using a list of genes linked to fibrosis described by Snyder-Talkington et al. (2013) and by conducting a literature search, we identified 14 fibrosis-associated genes uniquely expressed on post-exposure day 28 following high dose CNTarge exposure; Arg1 (6.98-fold), Il1 (5.02-fold), Lgals3 (3.13-fold), Mmp12 (6.89-fold), Mmp13 (2.39-fold), Pde3a (−1.95-fold), Pigr (3.33-fold), Smurf2 (−1.45-fold), Tnfrsf1b (1.77-fold), Vegfa (−1.66-fold), Eng (−1.61-fold), Jun (1.87-fold), Smad6 (−2.17-fold) and Spp1 (6.41-fold). This unique expression pattern could indicate a chronic response related to the physicochemical properties of CNTarge. This was emphasized in the upstream analysis, which revealed that exposure to CNTarge, but not CNTsmall, induced differential expression of genes associated with bleomycin exposure, which is a strong inducer of pulmonary fibrosis (Supplementary Fig. 11A). Similarly, exposure to CNTarge, but not CNTsmall, resulted in differential expression of genes associated with exposure to chrysotile asbestos, also a known inducer of fibrosis (Supplementary Fig. 11B).

qRT-PCR analysis

Eight genes belonging to immune response, oxidative stress or fibrosis were selected for validation by qRT-PCR (Saa3, Il1α, Il6, Cxcl2, Ccl2, Hmx1, Mmp9 and Sod2). Validation was conducted at all doses and time points. The qRT-PCR results correlated well with the microarray results (Supplementary Table 5). A strong significant linear regression was found between qRT-PCR and microarray data (P < 0.0001) (Supplementary Fig. 12).

Histological examination of lungs

On post-exposure day 1, MWCNTs were present in the alveolar ducts and alveoli, and single macrophages were observed in the lung tissue of mice exposed to a high dose of both types of MWCNT (Fig. 6). Additionally, in the group exposed to CNTarge, perivascular neutrophilic infiltration and slight desquamation of bronchiolar epithelium were observed. Congestion was seen in the controls and MWCNT exposed groups and it was attributed to insufficient exsanguination of the carcasses.

On day 28 in the vehicle controls, minimal perivascular mononuclear-neutrophilic infiltration, fibroblasts and fibrocytes surrounding blood vessels and desquamation of bronchiolar epithelium were observed. The high-dose CNTsmall group showed interstitial pneumonia, characterized by lymphoid cell infiltration of both interstitium and alveolar lumina, small granulomas connected to alveolar walls or granulomatous alveolitis, and alveolar septal thickening due to type II pneumocyte hypertrophy and hyperplasia. Inflammatory cells and both intracellular and extracellular MWCNTs were observed in the alveoli. In the group exposed to the high-dose CNTarge advanced interstitial pneumonia was observed, characterized by granulomas or granulomatous alveolitis, fibrosis and alveolar septal lymphoid infiltration. Fibrosis was observed following exposure to both types of MWCNT, but it was more severe in the high-dose CNTarge group compared to the high-dose CNTsmall group (Figs. 6J–L).

DNA damage

DNA strand breaks were evaluated through the comet assay in lungs from mice intratracheally exposed to CNTsmall or CNTarge for all doses and on all time points (Fig. 7). A clear difference between CNTsmall and CNTarge exposure was observed, as instillation of CNTsmall mainly affected the level of DNA strand breaks at the middle and high dose on post-exposure day 3 (P < 0.001), whereas instillation of CNTarge affected all doses at post-exposure day 1 only (P < 0.01). We note that a single sample in the 162 μg dose group sampled 3 days after exposure to CNTsmall contained high levels of DNA damage, possibly driving the statistically significant difference between this group and the control group. However, careful examination of the sample revealed no signs of the apoptotic cells that were observed in samples subjected to incorrect thawing (Jackson et al., 2013). Thus, the high level of DNA damage was considered biological variance.

Free radical production

Acicular free radical production was assessed using a 2′,7′-dichlorofluorescein diacetate (DCFH-DA) assay, which measures
the DCFH oxidation from the MWCNT (Supplementary Fig. 13). Besides a slight increase in DCF at the highest concentration (135 μg/ml), CNTLarge did not induce free radical production. In contrast, a strong increase in DCF was observed even at the lowest concentration (1.4 μg/ml) for CNTSmall. A dose response was observed through

Discussion

The physicochemical properties of MWCNTs, including the high aspect ratio, metal contamination, and straightness are considered important determinants of their toxicity. In this study, we investigated global changes in mRNA expression in lung tissue of female C57BL/6 mice 1, 3 or 28 days after intratracheal exposure to different doses of either CNTSmall or CNTLarge. Eight genes of interest were verified through qRT-PCR. Gene expression changes were interpreted in the context of other toxicological phenotypes that were measured in the same experimental setup, including inflammatory response, histological changes, DNA strand breaks and oxidative stress capacity. The physicochemical analyses of CNTSmall or CNTLarge revealed that the two MWCNTs differ in length, thickness, purity, surface area and level of agglomeration. Despite these major differences in physical properties, the two MWCNTs induced remarkably similar changes in molecular phenotypes and gene expression, especially at post-exposure day 3. Both CNTSmall and CNTLarge exposure induced a strong increase in expression of genes involved in the inflammatory and acute phase response, which was sustained at post-exposure day 28 for both nanotube types.
response is in concordance with the observed changes in BAL cell influx and lung morphology. Both CNT\textsubscript{Small} and CNT\textsubscript{Large} exposure resulted in the development of interstitial pneumonia on post-exposure day 28, however it was more severe with CNT\textsubscript{Large}. The strong inflammatory and acute phase responses are not unique to MWCNT exposure. Similar responses have been observed following exposure to nano-titanium dioxide particles (nano-TiO\textsubscript{2}) and nano-carbon black (nano-CB) particles via instillation or inhalation using experimental designs similar to that used in the present study (Bourdou et al., 2012; Halappanavar et al., 2011; Hussein et al., 2013; Jackson et al., 2011b). However, the number of differentially expressed genes was an order of magnitude greater following exposure to the two MWCNTs than following exposure to nano-TiO\textsubscript{2} and nano-CB, indicating stronger potency of MWCNT. The induction of an inflammatory response influenced several GO biological processes and IPA functions, e.g. ‘cellular movement’. Many annotations under this category were associated with the movement of inflammatory cells, e.g. the annotations “cell movement of leukocytes” or “migration of phagocytes” and were perturbed by both MWCNTs; we speculate that small differences in the transcriptional response could be masked by the strong inflammatory response. Other effects caused by CNT\textsubscript{Small} and CNT\textsubscript{Large} exposure included perturbation of lipid/cholesterol homeostasis, cell motility and cell cycle processes. However, notable differences were found that provide insight into differences in the potencies of these MWCNTs on pathological outcomes, namely a possible late-onset fibrotic response.

It has been documented that excessive collagen production and deposition of extra cellular matrix proteins during a persistent inflammatory response leading to lung injury (as reflected in BAL cell type composition, lung morphology and microarray analysis) may lead to development of fibrosis (Branton and Kopp, 1999; Strier and Mehrad, 2009). Fibrosis has been an observed endpoint in several MWCNT studies (Aiso et al., 2010; Mercer et al., 2011; Muller et al., 2005; Porter et al., 2010; Ryman-Rasmussen et al., 2009; Wang et al., 2013). Snyder-Talkington et al. (2013) recently reported gene expression changes in male C57BL/6 mice exposed via pharyngeal aspiration to 10, 20, 40 or 80 μg of MWCNT Mitsuï-7 and sampled 1, 7, 28 or 56 days post-exposure. Snyder-Talkington et al. found that Mitsuï-7 exposure was related functionally to either fibrosis or inflammation and produced 2 gene lists based on this. A direct comparison of the 69 genes found to be related to fibrosis by Snyder-Talkington et al. with differentially expressed genes following exposure to either CNT\textsubscript{Small} or CNT\textsubscript{Large} in the present study revealed a high level of concordance, both to the results of Snyder-Talkington et al., but also between CNT\textsubscript{Small} or CNT\textsubscript{Large} exposed groups. However, it was found almost exclusively at the early time points (days 1 and 3) (Supplementary Table 6). A similar pattern emerged from our IPA analysis. Genes associated with the function ‘cellular growth and proliferation’ were perturbed 3 days after exposure to CNT\textsubscript{Small} and CNT\textsubscript{Large} (Fig. 5) with annotations such as “proliferation of fibroblast cell lines” and “proliferation of connective tissue”. Although none of these effects were observed on post-exposure day 28, we observed subtle but important differences on day 28 following exposure to CNT\textsubscript{Large}. A total of 10 genes from the list of genes from Snyder-Talkington et al. were differentially expressed at the high dose: Arg1 (6.98-fold), Igf1 (5.02-fold), Lgsatl (3.13-fold), Mmp12 (6.69-fold), Mmp13 (2.39-fold), Pde3a (1.95-fold), Ptgir (3.33-fold), Smurf2 (1.45-fold), Tnfrsf1b (1.77-fold) and Vegfa (1.86-fold) (Supplementary Table 6), whereas only one gene was differentially expressed following CNT\textsubscript{Small} exposure: Vegfa (middle dose, −1.53-fold). A literature search for genes reported to be associated with fibrosis in general identified an additional 4 genes that were differentially expressed following CNT\textsubscript{Large} exposure only on post-exposure day 28: Eng (−1.61-fold), Jun (1.87-fold), Smad6 (−2.17-fold) and Spp1 (6.41-fold). The connection between the 14 identified fibrosis-associated genes is depicted in a network analysis (Supplementary Fig. 14). The most differentially expressed gene among the 14 identified fibrosis-associated genes was Spp1, which codes for the osteopontin protein. Osteopontin has been suggested to be a marker for bleomycin-induced fibrosis in mice (Dave and Kaminski, 2005). It is an extracellular adhesion protein that is processed by extracellular proteases and has been associated with metastasis and mesothelioma carcinogenesis (Pass et al., 2005). Circulating osteopontin has also been shown to be predictive for the diagnosis of mesothelioma in humans (Pantazopoulos et al., 2013) and other asbestos-related diseases (Rodriguez Portal, 2012). It remains to be demonstrated whether osteopontin expression may be used to identify more harmful high aspect ratio nanomaterials.

The CNT\textsubscript{Large}-induced late-onset of fibrosis was supported by the upstream analyses. TGFβ was identified as the upstream regulator of several differentially expressed genes following CNT\textsubscript{Large} exposure. This was to a lesser degree observed following CNT\textsubscript{Small} exposure. Transforming growth factor β has been proposed as a key mediator in fibrosis through the SMAD signaling pathway (Sato et al., 2003; Flanders et al., 2002; Moeller et al., 2006). TGFβ is involved in both fibroblast-to-myofibroblast conversion and epithelial–mesenchymal transition (EMT), both resulting in increased levels of myofibroblasts and subsequently increased collagen deposition (Wang et al., 2014; Willis and Borok, 2007; Willis et al., 2005; Kasai et al., 2005; Leask and Abraham, 2004). Several studies with MWCNT discussed an association between TGF-β and fibrotic lesions in the lungs (Chen et al., 2014; Ronzani et al., 2012; Wang et al., 2013, 2011b). Additionally, the upstream analyses also associated CNT\textsubscript{Large} exposure with both bleomycin and chrysotile asbestos exposure. Bleomycin is a standard model for studying fibrosis (Peng et al., 2013; Moeller et al., 2006, 2008), and therefore the convergence of genes affected by both CNT\textsubscript{Large} and

Fig. 7. XTail DNA in C57BL/6 mouse lung following exposure to CNT\textsubscript{Small} or CNT\textsubscript{Large}. Each mouse in the dose group is represented. Under each time point, the dose groups are portrayed from left to right: 18 μg, 54 μg and 162 μg. Horizontal lines denote the means. *Statistically significantly different from vehicle instilled mice, P < 0.05. **Statistically significantly different from vehicle instilled mice, P < 0.001.
bleomycin suggests common molecular events driving fibrosis. This was not observed for CNT\textsubscript{small}. This is in concordance with the histological analysis. Although fibrosis was observed following exposure to both MWCNTs, it was more severe with CNT\textsubscript{large}. This association is also supported by the observation that only CNT\textsubscript{large} exposure induced differential expression of genes that are also differentially expressed following chrysotile asbestos exposure. CNT\textsubscript{small} and CNT\textsubscript{large} differ in many physicochemical parameters, including length and straightness. Studies have shown that the structure is highly important for MWCNT toxicity. For example, after exposing male SH rats to long and short MWCNT of similar width by intratracheal instillation Wang et al. (2013) observed that the long, but not the short, MWCNT induced fibrosis, probably through activation of TGF-\beta/Smad2/collagen III signal transduction. Porter et al. (2010) and Mercer et al. (2011) observed persistent fibrosis up to 56 days post-exposure in male C57BL/6J mice exposed via pharyngeal aspiration to the long, thick MWCNT Mitsui-7. Comparing these studies to the result of the present study, we hypothesize that up-regulation of fibrosis related gene expression observed following CNT\textsubscript{large} exposure only, could be due to the structural differences between CNT\textsubscript{large} and CNT\textsubscript{small}. However, it should be noted that some studies observe no differences in the fibrotic potential between CNTs of different lengths (Muller et al., 2005; Ravichandran et al., 2011).

Snyder-Talkington et al. (2013) included an additional long-term point (56 days) not analyzed in the present study. An order of magnitude higher number of differentially regulated genes were observed at this time point compared to day 28. This indicates effects of MWCNT Mitsui-7 exposure apparent only at time points later than day 28. We did not assess changes after 28 days, but given the physicochemical similarities between Mitsui-7 and CNT\textsubscript{large}, it is likely that CNT\textsubscript{large} also causes effects beyond 28 days. This emphasizes the need for long-term studies. Although there is a general focus on length-dependent fibrotic effects, other factors such as purity, surface modifications and entanglement of the CNTs may also affect the fibrotic potential. Measurements of collagen deposition at later post-exposure time points are needed in order to confirm the development of fibrosis.

Following exposure to CNT\textsubscript{small} and CNT\textsubscript{large}, we noticed a large number of gene expression changes for serine protease inhibitors (serpins) (Supplementary Table 7), a superfamily of proteins where several members first were characterized as acute phase plasma protease inhibitors (Dickson and Alper, 1974). Serpins are now known to have functions in a wide range of tissues including the lungs (Silverman et al., 2001; Stein and Carrell, 1995). The greatest fold change was observed in the expression of the Serpina3 gene, encoding \(\alpha-1\)-antichymotrypsin. In the lung, this protein is important for the regulation of proteases released by leukocytes during an inflammatory response (Horvath et al., 2005; Travis et al., 1978). Neutrophil influx was significantly elevated at all doses and time points after exposure to either sized MWCNT, and the large up-regulation in expression of Serpina3 in the present study may indicate that CNT\textsubscript{large} exposure could be a risk factor for COPD in a similar fashion to cigarette smoke. Long-term studies, preferably inhalation studies, are needed in order to confirm or refute this hypothesis.

The expression profiles following exposure to CNT\textsubscript{small} and CNT\textsubscript{large} were highly similar at post-exposure day 1. We recently published a toxicogenomic analysis of effects of in vivo and in vitro exposures to the MWCNT Mitsui-7 (Poulsen et al., 2013). This results enable the comparison between CNT\textsubscript{small}, CNT\textsubscript{large} and Mitsui-7. The in vivo experimental design in Poulsen et al. (2013) was identical to the design in the present study, although only one time point, day 1, was investigated, but animal exposures, experimentation and analysis of DNA microarray results were all performed separately from the present study. When examining the general expression profiles across the 3 different MWCNTs at post-exposure day 1 (fold change \(\pm 1.5\), FDR corrected \(P < 0.05\)), we noted more similar expression patterns for CNT\textsubscript{small} and CNT\textsubscript{large} exposures than for Mitsui-7 and CNT\textsubscript{large} exposures (Supplementary Fig. 15). This trend was consistent for enriched IPA functions (Supplementary Fig. 16). DNA microarrays are powerful tools for understanding the global transcriptome, but due to the high number of comparisons made, some false-positive findings may occur. With that in mind, we narrowed our analysis to genes with greater changes in expression (fold change \(\pm 3.0\), FDR corrected \(P < 0.05\)). Overall, there was a high degree of concordance among the expression profiles following exposure to these different MWCNTs, especially at medium and high doses (Fig. 8). Genes whose transcription was similarly affected primarily belonged to inflammation and acute phase responses, as expected at this early time point. However, no clear differences between the gene expression profiles were observed. This highlights the reproducibility of the study design and of the DNA microarray experiment and analysis. Differences in the expression of genes involved in the IPA function ‘free radical scavenging’ were observed between CNT\textsubscript{large} and CNT\textsubscript{small}. Specifically, exposure to CNT\textsubscript{large}, but not to CNT\textsubscript{small}, resulted in differential expression of genes belonging to this function as early as post-exposure day 1 (Supplementary Fig. 8). The identified annotations under this category were “production of reactive oxygen species”, “metabolism of reactive oxygen species” and “synthesis of reactive oxygen species”, indicating the rapid generation of ROS in the lungs. We have previously shown that nano-CB induces ROS, and induces DNA strand breaks in the comet analysis in vivo and in vitro (Jacobsen et al., 2007, 2008, 2011). The mutation spectrum of nano-CB-induced mutations is consistent with generation by ROS. Therefore, there was a strong indication that the increased levels of DNA strand breaks observed in the comet assay were due to increased ROS production in the lung. Increased DNA strand break levels were observed at post-exposure day 1 after exposure to CNT\textsubscript{large}, but not to CNT\textsubscript{small}, thereby mimicking the early onset seen in the regulation of the function ‘free radical scavenging’. CNT\textsubscript{large} does not contain many metal impurities and does not produce acellular ROS in contrast to CNT\textsubscript{small} (Supplementary Fig. 13 and Table 1), and therefore its ROS generating potential is likely to arise from its high aspect ratio inducing a biological ROS response. Long MWCNTs have been proven difficult to phagocytize by the alveolar macrophages, however the size range of CNT\textsubscript{small} and CNT\textsubscript{large} is too short to induce frustrated phagocytosis (Donaldson et al., 2010). Instead the increased level of ROS could be caused by disruption of phagosomes and lysosomes by CNT\textsubscript{large} exposure. This could ultimately lead to cell damage and difficulty in clearing the MWCNT from the lungs.

Conclusion

Analysis of pulmonary response to intratracheal exposure to CNT\textsubscript{small} or CNT\textsubscript{large}, two MWCNTs with very different physicochemical properties, revealed remarkably similar effects on the transcriptome, especially in the key processes inflammation and acute phase response. The gene expression changes observed correlated with BAL fluid cell type composition changes and lung histology changes. Both MWCNTs induced a large number of gene expression changes at the early time points (1 and 3 days), but also a lower, sustained response that was still apparent 28 days post-exposure. However, notable differences were found between the two MWCNTs in the expression of several genes associated with fibrosis and induction of fibrosis on post-
exposure day 28. Specifically, we identified a subset of 14 genes that were differentially regulated after exposure to CNTLarge, but not to CNTSmall, coinciding with a stronger fibrotic response to CNTLarge exposure. Thus, these genes could be candidates for biomarkers of fibrosis-related toxicity, and indicate a possible late-onset response that is specific to exposures to MWCNT with physicochemical compositions similar to CNTLarge.

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.taap.2014.12.011.

Competing interests

The authors declare that they have no competing interests.

Funding

The project was supported by grants from the National Research Centre for the Working Environment in Denmark and the Danish NanoSafety Center, grant # 20110092173–3, the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement #247989 (Nanosustain), and Health Canada’s Chemical Management Plan-2 Nano research funds and Genomics Research and Development Initiative. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgments

The project was supported by grants from the National Research Centre for the Working Environment in Denmark grant # 20110092173–3 and the Danish NanoSafety Center, grant # 20110092173–3, the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement #247989 (Nanosustain), and Health Canada’s Chemical Management Plan-2 Nano research funds and Genomics Research and Development Initiative. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors thank M Gulbrandsen, L Petersen, and E Christiansen for technical assistance. The authors thank M Guldbrandsen, L Petersen, and E Christiansen for technical assistance.

References

Pauluhn, J. 2010b. Subchronic and long-term studies with rats to multiwalled carbon nanotubes: toxic effects are determined by density of agglomerate structures, not fibrillar structures. Toxicol. Sci. 113, 262–266.

