Technical University of Denmark

Municipal solid waste composition: Sampling methodology, statistical analyses, and case study evaluation

Edjabou, Maklawe Essonanawe; Jensen, Morten Bang; Götze, Ramona; Pivnenko, Kostyantyn; Petersen, Claus; Scheutz, Charlotte; Astrup, Thomas Fruergaard

Published in: Waste Management

Publication date: 2015

Document Version Peer reviewed version

Link back to DTU Orbit

Citation (APA):

Edjabou, V. M. E., Jensen, M. B., Götze, R., Pivnenko, K., Petersen, C., Scheutz, C., & Astrup, T. F. (2015). Municipal solid waste composition: Sampling methodology, statistical analyses, and case study evaluation. Waste Management, 36, 12-23.

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. 1 2nd revision of manuscript.

2

3	Municipal Solid Waste Composition:
4	Sampling methodology, statistical
5	analyses, and case study evaluation
6	
7	Maklawe Essonanawe Edjabou ¹ *, Morten Bang Jensen ¹ ,
8	Ramona Götze ¹ , Kostyantyn Pivnenko ¹ , Claus Petersen ² ,
9	Charlotte Scheutz ¹ , Thomas Fruergaard Astrup ¹
10	
11	1) Department of Environmental Engineering, Technical
12	University of Denmark, 2800 Kgs. Lyngby, Denmark
13	2) Econet AS, Omøgade 8, 2.sal, 2100 Copenhagen, Denmark
14	
15	
16	
17	*) Corresponding author: <u>vine@env.dtu.dk;</u>
18	Phone numbers: +45 4525 1498
19	
20	

21 Abstract

22	Sound waste management and optimisation of resource
23	recovery require reliable data on solid waste generation and
24	composition. In the absence of standardised and commonly
25	accepted waste characterization methodologies, various
26	approaches have been reported in literature. This limits both
27	comparability and applicability of the results. In this study, a
28	waste sampling and sorting methodology for efficient and
29	statistically robust characterisation of solid waste was
30	introduced. The methodology was applied to residual waste
31	collected from 1442 households distributed among 10
32	individual sub-areas in three Danish municipalities (both single
33	and multi-family house areas). In total 17 tonnes of waste were
34	sorted into 10-50 waste fractions, organised according to a
35	three-level (tiered approach) facilitating comparison of the
36	waste data between individual sub-areas with different
37	fractionation (waste from one municipality was sorted at "Level
38	III", e.g. detailed, while the two others were sorted only at
39	"Level I"). The results showed that residual household waste
40	mainly contained food waste (42 \pm 5%, mass per wet basis) and
41	miscellaneous combustibles (18 \pm 3%, mass per wet basis). The
42	residual household waste generation rate in the study areas was
43	3-4 kg per person per week. Statistical analyses revealed that
44	the waste composition was independent of variations in the
45	waste generation rate. Both, waste composition and waste

46	generation rates were statistically similar for each of the three
47	municipalities. While the waste generation rates were similar
48	for each of the two housing types (single-family and multi-
49	family house areas), the individual percentage composition of
50	food waste, paper, and glass was significantly different between
51	the housing types. This indicates that housing type is a critical
52	stratification parameter. Separating food leftovers from food
53	packaging during manual sorting of the sampled waste did not
54	have significant influence on the proportions of food waste and
55	packaging materials, indicating that this step may not be
56	required.

57 Key words:

- 58 Residual household waste
- 59 Waste generation rate
- 60 Waste fractions
- 61 Statistical analysis
- 62 Waste sampling
- 63 Waste composition

64

65 **1 Introduction**

66	Accurate and reliable data on waste composition are crucial
67	both for planning and environmental assessment of waste
68	management as well as for improvement of resource recovery
69	in society. To develop the waste system and improve
70	technologies, detailed data for the material characteristics of
71	the waste involved are needed. Characterization of waste
72	material composition typically consists of three phases: first
73	sampling of the waste itself, then sorting the waste into the
74	desired number of material fractions (e.g. paper, plastic,
75	organics, combustibles, etc.), and finally handling,
76	interpretation and application of the obtained data. The
77	sampling and sorting activities themselves are critical for
78	obtaining appropriate waste composition data. The absence of
79	international standards for solid waste characterization has led
80	to a variety of sampling and sorting approaches, making a
81	comparison of results between studies challenging (Dahlén and
82	Lagerkvist, 2008). Due to the high heterogeneity of solid
83	waste, the influence of local conditions (e.g. source-
84	segregation systems, local sorting guides, collection equipment
85	and systems), and the variability of sampling methodologies
86	generally limits the applicability of waste compositional data
87	in situations outside the original context.
88	The quality of waste composition data are highly affected
89	by the sampling procedure (Petersen et al., 2004). Solid waste

90	sampling may often involve direct sampling, either at the
91	source (e.g. household) (WRAP, 2009) or from a vehicle load
92	(Steel et al., 1999). Vehicle load sampling is often carried out
93	by sampling the waste received at waste transfer stations
94	(Wagland et al., 2012), waste treatment facilities, e.g. waste
95	incinerators (Petersen, 2005), and landfill sites (Sharma and
96	McBean, 2009; Chang and Davila, 2008). While logistic
97	efforts can be reduced by sampling at the point of unloading of
98	waste collection vehicles, a main drawback of this approach
99	may be that the sampled waste cannot be accurately attributed
100	to the geographical areas and/or household types generating
101	the waste (Dahlén et al., 2009). This limits the applicability of
102	the obtained composition data. On the other hand, collecting
103	waste directly from individual households and/or from a
104	specific area with a certain household type, allow the waste
105	data to be associated with the specific area (Dahlén et al.,
106	2009). Additionally, as most modern waste collection trucks
107	use a compaction mechanism (Nilsson, 2010), waste fractions
108	sampled from such vehicles have been affected by mechanical
109	stress and blending, which leads to considerable difficulties in
110	distinguishing individual material fractions during manual
111	sorting (European Commission, 2004). Owing to the
112	mechanical stress and the blending processes from collection
113	trucks, cross-contamination between individual fractions may
114	occur, leading to further inaccuracies that can neither be

Page **5** of **49**

115 measured nor corrected afterwards.

116	To ensure uniform coverage of the geographical area
117	under study, stratification sampling is often applied. This
118	involves dividing the study area into non-overlapping sub-
119	areas with similar characteristics (Dahlén and Lagerkvist,
120	2008; Sharma and McBean, 2007; European Commission,
121	2004).
122	In order to reduce the volume (amount) of waste to be
123	sorted, the waste sampled from each sub-area is usually coned
124	and quartered before sorting into individual waste material
125	fractions (Choi et al., 2008; Martinho et al., 2008). Although
126	this reduces labour intensity, the approach has shown to
127	generate poorly representative samples (Gerlach et al., 2002).
128	Because of the heterogeneity of residual household waste
129	(RHW), the material in a waste pile (or cone) is unevenly
130	distributed (Klee, 1993). Instead, sampling from elongated flat
131	piles and from falling streams at conveyor belts is
132	recommended to generate more representative samples (De la
133	Cruz and Barlaz, 2010, Petersen et al., 2005). While elongated
134	flat piles can be used on most waste materials, sampling from
135	falling streams at conveyor belts may potentially induce
136	additional mechanical stress if not appropriately applied.
137	However, only few studies have applied these mass reduction
138	principles for solid waste sampling prior to the manual sorting
139	in fractions. The waste sampled from a specific sub-area could

 (European Commission, 2004, Nordtest, 1995). This method can provide mean and standard deviation for each waste fraction, and may be argued as cost-effective (Sharma and McBean, 2007). However, the main drawback is the splitting, which can introduce a bias. Additionally, the obtained standard deviations are highly associated with the number of samples and the size (mass or volume) of the samples, which vary considerably across literature (Dahlén and Lagerkvist, 2008). in order to avoid any bias from mass reduction, sorting all the collected waste from an individual sub-area would be necessary (Petersen et al., 2004). In addition to the influence from waste sampling, also the subsequent sorting procedures can influence the results for household waste composition. The overall material fraction for dividing waste materials into individual fractions, e.g. to which extent is food packaging and food materials separated, how are composite materials handled, and how detailed food waste sorting procedures has been investigated by Lebersorger and Schneider (2011). While the influence of food packaging on food waste in this particular case was shown to be insignificant, the influence of food packaging on other 	140	also be split into a desired or calculated number of sub-samples
143fraction, and may be argued as cost-effective (Sharma and144McBean, 2007). However, the main drawback is the splitting,145which can introduce a bias. Additionally, the obtained standard146deviations are highly associated with the number of samples147and the size (mass or volume) of the samples, which vary148considerably across literature (Dahlén and Lagerkvist, 2008).149In order to avoid any bias from mass reduction , sorting all the150collected waste from an individual sub-area would be151necessary (Petersen et al., 2004).152In addition to the influence from waste sampling, also the153subsequent sorting procedures can influence the results for154household waste composition. The overall material fraction155composition is directly related to the sorting principles applied156for dividing waste materials into individual fractions, e.g. to157which extent is food packaging and food materials separated,158how are composite materials handled, and how detailed159material fractions are included in the study? The influence of160food waste sorting procedures has been investigated by161Lebersorger and Schneider (2011). While the influence of food162packaging on food waste in this particular case was shown to163be insignificant, the influence of food packaging on other	141	(European Commission, 2004, Nordtest, 1995). This method
 McBean, 2007). However, the main drawback is the splitting, which can introduce a bias. Additionally, the obtained standard deviations are highly associated with the number of samples and the size (mass or volume) of the samples, which vary considerably across literature (Dahlén and Lagerkvist, 2008). In order to avoid any bias from mass reduction , sorting all the collected waste from an individual sub-area would be necessary (Petersen et al., 2004). In addition to the influence from waste sampling, also the subsequent sorting procedures can influence the results for household waste composition. The overall material fraction composition is directly related to the sorting principles applied for dividing waste materials into individual fractions, e.g. to which extent is food packaging and food materials separated, how are composite materials handled, and how detailed material fractions are included in the study? The influence of food waste sorting procedures has been investigated by Lebersorger and Schneider (2011). While the influence of food packaging on food waste in this particular case was shown to be insignificant, the influence of food packaging on other 	142	can provide mean and standard deviation for each waste
 which can introduce a bias. Additionally, the obtained standard deviations are highly associated with the number of samples and the size (mass or volume) of the samples, which vary considerably across literature (Dahlén and Lagerkvist, 2008). In order to avoid any bias from mass reduction , sorting all the collected waste from an individual sub-area would be necessary (Petersen et al., 2004). In addition to the influence from waste sampling, also the subsequent sorting procedures can influence the results for household waste composition. The overall material fraction composition is directly related to the sorting principles applied for dividing waste materials into individual fractions, e.g. to which extent is food packaging and food materials separated, how are composite materials handled, and how detailed material fractions are included in the study? The influence of food waste sorting procedures has been investigated by Lebersorger and Schneider (2011). While the influence of food packaging on food waste in this particular case was shown to be insignificant, the influence of food packaging on other 	143	fraction, and may be argued as cost-effective (Sharma and
 deviations are highly associated with the number of samples and the size (mass or volume) of the samples, which vary considerably across literature (Dahlén and Lagerkvist, 2008). In order to avoid any bias from mass reduction , sorting all the collected waste from an individual sub-area would be necessary (Petersen et al., 2004). In addition to the influence from waste sampling, also the subsequent sorting procedures can influence the results for household waste composition. The overall material fraction composition is directly related to the sorting principles applied for dividing waste materials into individual fractions, e.g. to which extent is food packaging and food materials separated, how are composite materials handled, and how detailed food waste sorting procedures has been investigated by Lebersorger and Schneider (2011). While the influence of food packaging on food waste in this particular case was shown to be insignificant, the influence of food packaging on other 	144	McBean, 2007). However, the main drawback is the splitting,
147and the size (mass or volume) of the samples, which vary148considerably across literature (Dahlén and Lagerkvist, 2008).149In order to avoid any bias from mass reduction, sorting all the150collected waste from an individual sub-area would be151necessary (Petersen et al., 2004).152In addition to the influence from waste sampling, also the153subsequent sorting procedures can influence the results for154household waste composition. The overall material fraction155composition is directly related to the sorting principles applied156for dividing waste materials into individual fractions, e.g. to157which extent is food packaging and food materials separated,158how are composite materials handled, and how detailed159material fractions are included in the study? The influence of160food waste sorting procedures has been investigated by161Lebersorger and Schneider (2011). While the influence of food162packaging on food waste in this particular case was shown to163be insignificant, the influence of food packaging on other	145	which can introduce a bias. Additionally, the obtained standard
 considerably across literature (Dahlén and Lagerkvist, 2008). In order to avoid any bias from mass reduction, sorting all the collected waste from an individual sub-area would be necessary (Petersen et al., 2004). In addition to the influence from waste sampling, also the subsequent sorting procedures can influence the results for household waste composition. The overall material fraction composition is directly related to the sorting principles applied for dividing waste materials into individual fractions, e.g. to which extent is food packaging and food materials separated, how are composite materials handled, and how detailed material fractions are included in the study? The influence of food waste sorting procedures has been investigated by Lebersorger and Schneider (2011). While the influence of food packaging on food waste in this particular case was shown to be insignificant, the influence of food packaging on other 	146	deviations are highly associated with the number of samples
149In order to avoid any bias from mass reduction , sorting all the150collected waste from an individual sub-area would be151necessary (Petersen et al., 2004).152In addition to the influence from waste sampling, also the153subsequent sorting procedures can influence the results for154household waste composition. The overall material fraction155composition is directly related to the sorting principles applied156for dividing waste materials into individual fractions, e.g. to157which extent is food packaging and food materials separated,158how are composite materials handled, and how detailed159material fractions are included in the study? The influence of160food waste sorting procedures has been investigated by161Lebersorger and Schneider (2011). While the influence of food162packaging on food waste in this particular case was shown to163be insignificant, the influence of food packaging on other	147	and the size (mass or volume) of the samples, which vary
 collected waste from an individual sub-area would be necessary (Petersen et al., 2004). In addition to the influence from waste sampling, also the subsequent sorting procedures can influence the results for household waste composition. The overall material fraction composition is directly related to the sorting principles applied for dividing waste materials into individual fractions, e.g. to which extent is food packaging and food materials separated, how are composite materials handled, and how detailed material fractions are included in the study? The influence of food waste sorting procedures has been investigated by Lebersorger and Schneider (2011). While the influence of food packaging on food waste in this particular case was shown to be insignificant, the influence of food packaging on other 	148	considerably across literature (Dahlén and Lagerkvist, 2008).
 necessary (Petersen et al., 2004). In addition to the influence from waste sampling, also the subsequent sorting procedures can influence the results for household waste composition. The overall material fraction composition is directly related to the sorting principles applied for dividing waste materials into individual fractions, e.g. to which extent is food packaging and food materials separated, how are composite materials handled, and how detailed material fractions are included in the study? The influence of food waste sorting procedures has been investigated by Lebersorger and Schneider (2011). While the influence of food packaging on food waste in this particular case was shown to be insignificant, the influence of food packaging on other 	149	In order to avoid any bias from mass reduction, sorting all the
152In addition to the influence from waste sampling, also the153subsequent sorting procedures can influence the results for154household waste composition. The overall material fraction155composition is directly related to the sorting principles applied156for dividing waste materials into individual fractions, e.g. to157which extent is food packaging and food materials separated,158how are composite materials handled, and how detailed159material fractions are included in the study? The influence of160food waste sorting procedures has been investigated by161Lebersorger and Schneider (2011). While the influence of food162packaging on food waste in this particular case was shown to163be insignificant, the influence of food packaging on other	150	collected waste from an individual sub-area would be
 subsequent sorting procedures can influence the results for household waste composition. The overall material fraction composition is directly related to the sorting principles applied for dividing waste materials into individual fractions, e.g. to which extent is food packaging and food materials separated, how are composite materials handled, and how detailed material fractions are included in the study? The influence of food waste sorting procedures has been investigated by Lebersorger and Schneider (2011). While the influence of food packaging on food waste in this particular case was shown to be insignificant, the influence of food packaging on other 	151	necessary (Petersen et al., 2004).
 household waste composition. The overall material fraction composition is directly related to the sorting principles applied for dividing waste materials into individual fractions, e.g. to which extent is food packaging and food materials separated, how are composite materials handled, and how detailed material fractions are included in the study? The influence of food waste sorting procedures has been investigated by Lebersorger and Schneider (2011). While the influence of food packaging on food waste in this particular case was shown to be insignificant, the influence of food packaging on other 	152	In addition to the influence from waste sampling, also the
 composition is directly related to the sorting principles applied for dividing waste materials into individual fractions, e.g. to which extent is food packaging and food materials separated, how are composite materials handled, and how detailed material fractions are included in the study? The influence of food waste sorting procedures has been investigated by Lebersorger and Schneider (2011). While the influence of food packaging on food waste in this particular case was shown to be insignificant, the influence of food packaging on other 	153	subsequent sorting procedures can influence the results for
 for dividing waste materials into individual fractions, e.g. to which extent is food packaging and food materials separated, how are composite materials handled, and how detailed material fractions are included in the study? The influence of food waste sorting procedures has been investigated by Lebersorger and Schneider (2011). While the influence of food packaging on food waste in this particular case was shown to be insignificant, the influence of food packaging on other 	154	household waste composition. The overall material fraction
 which extent is food packaging and food materials separated, how are composite materials handled, and how detailed material fractions are included in the study? The influence of food waste sorting procedures has been investigated by Lebersorger and Schneider (2011). While the influence of food packaging on food waste in this particular case was shown to be insignificant, the influence of food packaging on other 	155	composition is directly related to the sorting principles applied
 how are composite materials handled, and how detailed material fractions are included in the study? The influence of food waste sorting procedures has been investigated by Lebersorger and Schneider (2011). While the influence of food packaging on food waste in this particular case was shown to be insignificant, the influence of food packaging on other 	156	for dividing waste materials into individual fractions, e.g. to
 material fractions are included in the study? The influence of food waste sorting procedures has been investigated by Lebersorger and Schneider (2011). While the influence of food packaging on food waste in this particular case was shown to be insignificant, the influence of food packaging on other 	157	which extent is food packaging and food materials separated,
 food waste sorting procedures has been investigated by Lebersorger and Schneider (2011). While the influence of food packaging on food waste in this particular case was shown to be insignificant, the influence of food packaging on other 	158	how are composite materials handled, and how detailed
 161 Lebersorger and Schneider (2011). While the influence of food 162 packaging on food waste in this particular case was shown to 163 be insignificant, the influence of food packaging on other 	159	material fractions are included in the study? The influence of
packaging on food waste in this particular case was shown tobe insignificant, the influence of food packaging on other	160	food waste sorting procedures has been investigated by
163 be insignificant, the influence of food packaging on other	161	Lebersorger and Schneider (2011). While the influence of food
	162	packaging on food waste in this particular case was shown to
164 material fractions in the waste (e.g. packaging material) has	163	be insignificant, the influence of food packaging on other
	164	material fractions in the waste (e.g. packaging material) has

165 not been examined.

166	Inconsistencies among existing solid waste
167	characterisation studies, e.g. definitions of waste fractions,
168	may cause confusion and limit comparability of waste
169	composition data between studies (Dahlén and Lagerkvist,
170	2008). While Riber et al. (2009) published a detailed waste
171	composition for household waste, including 48 waste material
172	fractions, more transparent and flexible nomenclature for the
173	individual waste material fractions is needed to allow full
174	comparability between studies with varying numbers of
175	material fractions and sorting objectives. Such classification
176	principles exist, but only for certain waste types and often
177	developed for other purposes: e.g. classification of plastics
178	based on resin type (Avella et al., 2001), the European Union's
179	directive on Waste Electrical and Electronic Equipment
180	(WEEE) (European Commission, 2003) and grouping of
181	Household Hazardous Waste (HHW) (Slack et al., 2004).
182	The overall aim of the paper was to provide a consistent
183	framework for municipal solid waste characterisation activities
184	and thereby support the establishment of transparent waste
185	composition datasets. The specific objectives were to: i)
186	introduce a waste sampling and sorting methodology involving
187	a tiered list of waste fractions (e.g. a sequential subdivision of
188	fractions at three levels), ii) apply this methodology in a
189	concrete sampling campaign characterising RHW from 10

individual sub-areas located in three different municipalities,
iii) evaluate the methodology based on statistical analysis of
the obtained waste datasets for the 10 sub-areas, focusing on
the influence of stratification criteria and sorting procedures
(e.g. the influence of sorting of food waste packaging on other
packaging materials), and iv) identify potential trends among
sub-areas in source-segregation efficiencies.

197 **2 Materials and methods**

198 **2.1 Definitions**

199 RHW refers to the remaining mixed waste after source

200 segregation of recyclables and other materials, such as HHW,

201 WEEE, gardening and bulky waste. Bulky waste refers to

202 waste such as furniture, refrigerators, television sets, and

203 household machines (Christensen et al., 2010). Source-

segregated material fractions found in the residual household

205 waste are considered as miss-sorted waste fractions. Housing

type consists of single-family and multi-family house. Here

single-family house corresponds to households with their own

208 residual waste bin, while multi-family house corresponds to

209 households sharing residual waste bins, e.g. common

210 containers in apartment buildings. Food packaging is

211 packaging containing food remains or scraps. "Packed food"

212 waste represents food items inside packaging while "unpacked

213 food" waste is food discarded without packaging. Within this

214 paper, the terms "fraction" and "component" was used

215	interchangeably. The data are presented as mean and standard
216	deviation (Mean±SD) unless otherwise indicated.
217	2.2 Study area
218	The sampling campaign covered residual waste collected from
219	households in three Danish municipalities: Aabenraa,
220	Haderslev and Sønderborg. These municipalities have the same
221	waste management system including the same source
222	segregation scheme. They introduced a waste sorting system
223	using a two-compartment wheeled waste bin for separate
224	collection of recyclable materials from single-family house
225	areas (Dansk Affald, 2013). One compartment was used for
226	collection of mixed metal, plastic, and glass; the other
227	compartment for mixed paper, board, and plastic foil. However,
228	in multi-family house areas, a Molok system and joint full
229	service collection points (joint wheeled container) were used
230	for the collection of RHW and source-sorted materials for
231	recyclables. The waste bins had volumes between 60 to 360
232	litres in the single-family house area and between 400 to 1000
233	litres in the multi-family house area.
234	Collection frequencies for the residual waste were every
235	two weeks in single-family house areas and every week in
236	multi-family house areas. Garden waste, HHW, WEEE and
237	bulky waste from single and multi-family house areas could be
238	disposed of, either at recycling stations or collected from the
239	premises on demand. However, food waste was not separately

collected and was disposed of in the RHW bin. This study

241 focused not on the source-segregated materials (bulky waste,

242 garden waste, and other source-segregated materials), but rather

243 on the characterisation of the residual waste consisting of a

244 mixed range of materials of high heterogeneity.

245 2.3 Waste sampling procedure

246 The three municipalities were subdivided into sub-areas

247 distinguished by housing type. RHW was sampled directly

from households in each of the 10 sub-areas; three sub-areas

249 were from Aabenraa, three from Sønderborg, and four from

250 Haderslev. As such, the sampling campaign focused on the

251 overall waste generation from the individual sub-areas and the

associated housing types, rather than the specific waste

253 generated in each household.

254 To avoid changes of the normal waste collection

255 patterns within the areas (see section 2.2) potentially leading to

changes in household waste disposal behaviour, the waste was

257 collected following the existing residual waste collection

schedules.

A single RHW collection route was selected in each sub-area by the municipal authorities responsible for the solid waste management. The distribution of households along the selected routes was representative for each sub-area with respect to the volume of RHW bins and the size of the households. The number of selected households in each sub-

Page **11** of **49**

area was between 100 and 200, as recommended by Nordtest(1995).

267	Based on these conditions (households samples
268	representativeness and number of households), the number of
269	selected households were computed and reported in Table 1,
270	which also shows the amount of waste collected and sorted
271	from each sub-area. In total, 426 households in Aabenraa, 389
272	households in Sønderborg and 627 households in Haderslev
273	were selected. Overall, 779 households were distributed in four
274	multi-family house areas, and 663 households in six single-
075	
275	family house areas.
275 276	family house areas. In total, six tonnes of waste was collected and sorted
276	In total, six tonnes of waste was collected and sorted
276 277	In total, six tonnes of waste was collected and sorted from multi-family house areas and 11 tonnes from single-
276 277 278	In total, six tonnes of waste was collected and sorted from multi-family house areas and 11 tonnes from single- family house areas (overall 17 tonnes). The waste was sampled
276 277 278 279	In total, six tonnes of waste was collected and sorted from multi-family house areas and 11 tonnes from single- family house areas (overall 17 tonnes). The waste was sampled during spring 2013. Any effects from seasonal variations on

283 **2.4 Sorting procedure**

284 In order to avoid errors from waste splitting, the entire waste

sampled from each sub-area was sorted as a "batch" and the

waste from the 10 sub-areas was treated each as a "single

sample", resulting in 10 individual samples from the three

288 municipalities. This means that as a result of the sorting

289 campaign, waste data (waste composition and waste generation)

290 for 10 individual sub-areas were obtained.

291	For this reason, the waste was collected separately from
292	each sub-area without compacting (e.g. the waste was not
293	collected by a compaction vehicle). The waste was then
294	transported to a sorting facility, where it was unloaded on a
295	tarpaulin, and filled in paper sacks for weighing and temporary
296	storage. The paper sacks were labelled with ID numbers. Each
297	paper sack was weighed to obtain the "dry mass" before filling
298	in the waste. Thereafter, the filled paper sacks were weighed
299	before and after all sorting activities to quantify mass losses
300	during sorting and storage. The mass loss was calculated as the
301	difference in net mass of waste before and after a process. The
302	errors due to contamination during sorting process and storage,
303	e.g. the migration of moisture from food waste to other
304	components (paper, board, plastic, etc.) and paper sacks, and
305	evaporation was negligible (see Supplementary material D for
306	mass losses). The average mass loss was 1.7%, and thus below
307	3% (Lebersorger and Schneider, 2011). No adjustments of the
308	waste data from errors due to mass losses were applied in this
309	study.

Figure 1 illustrates the waste sorting procedure and the steps
applied. A tiered approach for material fraction sorting was
developed as illustrated by Levels I to III in Table 2, to allow
comparison between datasets with different needs for sorting
and data aggregation. For example, one study may focus on

315	detailed fractionation of food waste (e.g. addressing avoidable
316	and non-avoidable food), while another study may only wish to
317	characterize food waste by a few overall fractions (e.g.
318	vegetable and animal derived food waste). Categorizing the
319	fractions in levels (e.g. Levels I to III) would thereby still allow
320	comparison between such two studies, at an overall level. In the
321	context of the sub-areas, all collected waste from each sub-area
322	was sorted separately. This was done according to Level I in
323	Table 2, corresponding to 10 material fractions. To provide
324	further details, waste from one municipality (Aabenraa) was
325	selected for more detailed sorting according to Level II & III.
326	The waste from Haderslev and Sønderborg was sorted only at
327	Level I. As such, the datasets from these three municipalities
328	represent examples of sorting campaigns carried out at different
329	levels of complexity; nevertheless, the tiered approach allows
330	comparison between the datasets at Level I.
331	Food packaging containing remaining food was
332	separated as an extra fraction and subsequently sorted
333	separately into the individual material fractions as shown in
334	Table 2. Food waste including beverage was easily removed
335	from the packaging. However, in some cases tools were used
336	e.g. to open containers, or packaging was compressed as much
337	as possible to remove food waste e.g. from tube packaging.
338	All waste fractions from Aabenraa, including food
339	packaging containing remaining food leftovers were

340	subsequently sorted according to the three levels in Table 2
341	(Level I, II and III). For instance, plastic waste was sorted by
342	reading the resin identification label on the plastic. Unspecified
343	plastic represented plastic where no resin identification label
344	was present. Metal fractions were sorted into ferrous and non-
345	ferrous using a magnet. As the contents of "special waste"
346	including WEEE and HHW were very low, this fraction was
347	sorted only to Level II.
348	The waste sampled from each sub-area was sorted
349	under the same conditions, by a professional team, within a
350	week from the sampling day. This sorting time may minimize
351	any physical changes of the samples as recommended by
352	European Commission (2004).
353	Figure 1 about here
354	2.5 Waste fraction nomenclature
355	The waste fraction nomenclature was mainly adapted from
356	Riber et al. (2009) and other literature (Steel et al., 1999, Dixon
357	and Langer, 2006), and the Danish National Waste register
358	(Danish EPA, 2014). Naming conventions for the individual
359	material fractions may be affected by local traditions and may
360	be ambiguously defined. Special care was taken here to ensure
361	consistent naming of fractions and avoid potential misleading
362	names. The tiered fraction list is shown in Table 2 and consists
363	of 10 fractions at Level I, 36 fractions at Level II, and 56

364 fractions at Level III. This nomenclature allowed transparent

365	classification while still facilitating flexible grouping of waste
366	fractions and comparison between the individual areas. For
367	example, we used food waste and gardening waste instead of
368	organic waste, which by definition includes more than food
369	waste and gardening waste. Here, food waste comprises food
370	and beverage products that are intended for human
371	consumption, including edible material (e.g. fruit and
372	vegetables, and meat) and inedible material (e.g. bones from
373	meat, eggshells, and peels) (WRAP, 2009). Paper was divided
374	into advertisements, books & booklets, magazines & journals,
375	newspapers, office paper, phonebooks and miscellaneous paper.
376	Miscellaneous paper was then further subdivided into
377	envelopes, kraft paper, other paper, receipts, self-adhesives,
378	tissue paper, and wrapping paper. Plastic waste was subdivided
379	according to resin type (PET, HDPE, PVC, LDPE, PP, PS,
380	Other resins) (Avella et al., 2001) and unidentified plastic
381	resins for plastic with no resin identification. Special waste was
382	categorised as batteries (single batteries and non-device specific
383	batteries), WEEE and HHW. WEEE and HHW were further
384	split into components defined by the EU directive on WEEE
385	and HHW.
386	Table 2 about here
387	2.6 Statistical analysis
200	The wester concretion rate (WGP) and composition of the

- 388 The waste generation rate (WGR) and composition of the
- residual waste were analysed by the Kruskal-Wallis test and

390	the permutation test (Johnson, 2005) to identify significant
391	differences among the three municipalities and between the
392	two housing types. Furthermore, the Kolmogorov-Smirnov test
393	(Johnson, 2005) was applied to identify cases when the
394	proportion of at least one fraction in the overall composition
395	was significantly different between housing types or among
396	municipalities. Based on Spearman's correlation test (Johnson,
397	2005) a correlation matrix between the WGR and percentages
398	of individual waste fractions was determined (Crawley, 2007).
399	Correlations between the WGR and individual waste fractions
400	were used to determine whether variations in WGR also
401	influenced the waste composition, while correlations between
402	waste fractions were used to identify potential trends in the
403	households' efficiency in source segregating of recyclables
404	(e.g. based on leftover recyclables in the residual waste). The
405	test of the correlation for significance addressed whether the
406	correlation's coefficients were statistically significant or
407	significantly different from zero (Crawley, 2007).
408	Waste composition data were reported and discussed
409	based on the relative distribution of fractions in percentages of
410	wet mass (as opposed to the quantity of wet mass of individual
411	waste fraction) to ensure scale invariance and enable
412	comparison of waste composition from different areas
413	(Buccianti and Pawlowsky-Glahn, 2011). Additionally,
414	percentage composition data remove the effects from WGR

Page **17** of **49**

415	(since in the study area, the WGR varies according to sub-
416	areas), which could otherwise lead to "false" correlations
417	(Egozcue and Pawlowsky-Glahn, 2011). This approach allows
418	comparison of different waste composition data. However,
419	waste composition data in percentages are "closed datasets"
420	because the proportions of individual fractions are positive and
421	add up to a constant of 100 (Filzmoser and Hron, 2008). As
422	such, these data require special treatment or transformation
423	prior to statistical analyses (Aitchison, 1994; Filzmoser and
424	Hron, 2008; Reimann et al., 2008). Here, log-transformation
425	was applied since "the log-transformation is in the majority of
426	cases advantageous for analysis of environmental data, which
427	are characterised by the existence of data outliers and most
428	often right-skewed data distribution" (Reimann et al., 2008).
429	Data analysis was carried out with the statistical
430	software R. Data for three municipalities (Sønderborg,
431	Haderslev, and Aabenraa), two housing types (single and
432	multi-family), and two sorting procedures (with and without
433	including food packaging in the food waste component) were
434	investigated. The influence of including food packaging in the
435	food waste fraction was modelled by comparing two waste
436	composition datasets: 1) data from the sorting campaign where
437	food packaging was separated from food waste and added to
438	the relevant material fraction, and 2) a "calculated" dataset
439	where the mass of food packaging was added to the food waste

440 fraction.

441	Based on the compositional data and the WGR
442	obtained for each sub-area, aggregated waste compositions
443	(corresponding to Level I) were computed for each
444	municipality and each housing type. These waste compositions
445	accounted for the relative distribution of housing types and
446	number of households among sub-areas (Statistics Denmark,
447	2013).
448	3 Results and discussion
449 450	3.1 Comparison with previous Danish composition data
451	The detailed composition of the RHW from Aabenraa is shown
452	in Table 3 for Level I & II and in Table 4 mainly for Level III.
453	Food waste (41-45%) was dominating the waste composition,
454	and it consisted of vegetable food waste (31-37%) and animal-
455	derived food waste (8-10%). Plastic film (7-10%) and human
456	hygiene waste (7-11%) were also important RHW fractions.
457	The proportion of miss-sorted material fractions was estimated
458	to be 26% of the total RHW, of which 20 to 22% were
459	recyclable material fractions (see Table 3). These results were
460	comparable with those found in a previous Danish study, which
461	found values of 41% food waste, 31% vegetable food waste
462	and 10% animal-derived food waste (Riber et al., 2009).
463	Although, the households in the previous study did not source
464	segregate board, metal and plastic, the percentages of board
465	(7%), plastic (9%), metal (3%) glass (3%), inert (4%) and

466	special waste (1%) were also similar in the two studies. The
467	main differences between these studies were related to the
468	detailed composition of paper and combustible waste. Despite
469	the fact that paper (advertisement, books, magazines and
470	journals, newspapers, office paper and phonebooks) was source-
471	segregated in both studies, in our study paper contributed with
472	7-9% of the total waste (4% was tissue paper, see Table 4),
473	while Riber et al. (2009) reported a paper content of 16%
474	(mainly advertisement, newsprints and magazines). Although
475	variations in source-segregation schemes may potentially
476	explain these differences, other factors such as sorting guides,
477	income levels, demographics and developments in general
478	consumption patterns may also affect data.
479	Table 3 about here
480	3.2 Comparison between municipalities
481	RHW compositions for the Level I fractions for each sub-area

482 are shown in Figure 2. For all three areas, food and

483 miscellaneous combustible waste were the largest components

484 of the RHW. Paper, board and plastic constituted individually

between 5 and 15% of the total RHW. The proportion of special

- 486 waste was less than 1% and was the smallest fraction of the total487 RHW.
- 488The waste generation rates for RHW were expressed in
- 489 kg per person per week and estimated at 3.4 ± 0.2 in Aabenraa,
- 490 3.5±0.2 in Haderslev, and 3.5±1.4 in Sønderborg. Waste

491 composition between municipalities showed minor differences. 492 The highest percentage of food $(44\pm3\%)$ and plastic $(15\pm1\%)$, 493 and the lowest percentage of miscellaneous combustible waste 494 $(15\pm4\%)$ were found in Sønderborg. The highest miscellaneous 495 combustible waste (19 \pm 4%) was in Haderslev, while the 496 highest inert $(4\pm4\%)$ was in Aabenraa. 497 The composition and the WGRs for each municipality 498 are compared in Table 5 based on the Kruskal-Wallis test. No 499 examples of significant differences in either WGR or waste 500 composition could be observed for the three municipalities. 501 This may indicate that in areas with identical source-502 segregation systems and similar sorting guides for households, 503 data for individual sub-areas (municipalities) may statistically 504 represent the sub-areas. While this conclusion is only relevant 505 for the specific material composition (Level I) and the socio-506 economic and geographical context, the results also suggest 507 that the composition data may be applicable to other similar areas (e.g. similar housing types, geography, etc.) in Denmark. 508 509 In contrast to this, a review of waste composition analyses in 510 Poland (Boer et al., 2010) showed high variability in waste 511 composition and WGR between individual cities. According to 512 Boer et al., 2010, these differences could be attributed to 513 different waste characterisation methods used in each city, and 514 to differences in waste management systems between these 515 cities. Therefore, a consistent waste characterisation

516 methodology was recommended to facilitate any comparison of517 solid waste composition among these cities.

518	Table 6 provides an overview of waste compositions
519	corresponding to Level I for a range of studies in literature.
520	Most of these studies found that food waste was the
521	predominant RHW fraction, although the percentage of food
522	waste varied considerably among studies. For instance, food
523	waste accounted for 19% of the total RHW in Canada (Sharma
524	and McBean, 2007), 25% in Wales (Burnley et al., 2007), 30%
525	in Sweden (Bernstad et al., 2012) and 56 % in Spain (Montejo
526	et al., 2011). On the other hand, RHW contained only 12 % of
527	food waste after paper (33%) and wood (24%) in South Korea
528	(Choi et al., 2008). Similarly, in Italy food waste was only 12 $\%$
529	of RHW, which was predominantly made of paper (39%) and
530	plastic (27%) (AMSA, 2008). These differences may be related
531	to: i) socio-economic and geographical factors (consumption
532	patterns, income, climate,) (Khan and Burney, 1989), ii) waste
533	management system (source-segregation, waste collection
534	systems), iii) local regulation (Johnstone, 2004), and iv) waste
535	characterisation methodology (type of waste characterised,
536	terminology as well as waste sampling and characterisation
537	methodologies) (Beigl et al., 2008). The comparison between
538	composition data clearly illustrate the difficulties related to
539	comparison and applicability of aggregated data.

540

Table 4 about here

541 542	3.3 Correlations between waste generation rates and waste fractions
543	The correlation test identified significant relationships between
544	WGR and composition of RHW as well as among the
545	proportion of individual waste fractions. The correlation test
546	among the proportion of individual waste fractions was carried
547	out to evaluate whether available free space in the RHW bin
548	could influence source-segregation behaviour of the
549	households. The resulting Spearman correlation matrix is
550	shown in Table 7, where both correlation coefficients and their
551	significance levels are provided.
552	From Table 7, WGR appeared to be negatively
553	correlated with food, gardening waste, plastic, metal and inert
554	waste fractions, and positively correlated with miscellaneous
555	combustibles, board, glass and special waste. However, none of
556	these correlations were statistically significant. This indicated
557	that the percentages of individual waste fractions varied
558	independently of the overall WGR within the study areas. It
559	also suggested that distribution of waste fractions in the RHW
560	might not be estimated based on variations of the overall waste
561	generation rate.
562	The proportion of glass was negatively and highly
563	significantly correlated with the proportion of food waste (r=-
564	0.81). Likewise, a high negative correlation between
565	miscellaneous combustible waste and gardening waste was

observed (r=-0.82). This suggests that when proportions of
food waste and miscellaneous combustible waste decreases, the
proportions of gardening and glass waste (potentially misssorted recyclable glass) increase correspondingly. These results
suggest that sorting of glass and gardening waste could be
affected by the amounts of food waste and other miscellaneous
waste generated by the household.

573 **3.4 Influence of housing type on composition**

574 The weighted composition and WGR for each housing type are 575 presented in Table 8 together with the associated probability 576 values (p-values <0.05 indicate significant difference). RHW 577 from single-family house areas contained significantly higher 578 fractions of food waste than multi-family house areas. On the 579 other hand, RHW from multi-family house areas contained a 580 higher share of paper and glass waste than single-family house 581 areas. However, the p-value (p=0.123) of the Kolmogorov-582 Smirnov test for the overall difference in waste composition 583 was not significant. In Austria, Lebersorger and Schneider (2011) found a 584 585 statistically significant difference between housing types; 586 however, RHW from multi-family house areas had significantly 587 higher percentage of food waste than RHW from single-family 588 house areas. In Poland for example, Boer et al. (2010) showed

- that the overall household waste composition depended on the
- 590 type of housing, because of the differences in heating systems

592	Figure 2 about here
593	Table 5 about here
594	3.5 Influence of sorting practices on composition
595	Food packaging comprised about 20% of "packed food", 7% of
596	the total food waste and nearly 3% of the total RHW as shown
597	in Figure 3a. Total food waste consisted of 66% of "unpacked
598	food" waste (30% of the total RHW), 27% of "packed food"
599	waste (12% of the total RHW) and 7% of food packaging.
600	Table 6 about here
601	The composition of food packaging is shown in Figure
602	3b. Food packaging consisted of plastic (50%), paper and board
603	(25%), metal (10%) and glass (13%). These results were
604	comparable to literature data reporting food packaging to
605	represent about 8% of avoidable food waste (Lebersorger and
606	Schneider, 2011), and food packaging consisting of 40% of
607	plastic, 25% of paper, 22% of glass and 13% of metal
608	(Dennison et al., 1996).
609	Figure 3 about here
610	Table 9 presents the composition of RHW based on
611	waste sorting and the probability values from the permutation
612	test. For this case study, no statistically significant effect on the
613	percentage of food waste and the overall RHW composition

614	could be observed from sorting practices for food waste (e.g.
615	whether or not packaging was included in the food fraction).
616	This may be explained by the fact that the food packagings
617	were predominently made of plastic only contributing with low
618	mass compared to the food waste and other fractions.
619	Consistently, Lebersorger and Schneider (2011) found that the
620	"packed food" waste had a relative high mass compared to its
621	packagings.
622	Table 7 about here
623	Table 8 about here
624 625	3.6 Implications for waste characterisation and applicability of composition data
626	The tiered approach for fractionation of solid waste samples
627	offered sufficient flexibility to organise waste composition
628	data, both at an overall level (e.g. Level I for comparison
629	between municipalities) but also to report more detailed data
630	(for Aabenraa at Level III). The suggested waste fraction list
631	accounted for current European legislation governing the
632	classification of WEEE and HHW, and key characteristics for
633	plastic and metal waste. This type of categorisation enables, to
634	a certain extent, comparison among future and existing studies,
635	and among studies with different focus and need for details.
636	This may potentially increase the applicability of the obtained
637	waste composition data.

639	High data quality is facilitated since the methodology
640	follows appropriate sampling procedures proposed by Dahlén
641	and Lagerkvist (2008) to minimize sampling errors as described
642	by Pitard (1993): i) heterogeneity fluctuation errors were
643	addressed by stratification, ii) fundamental sampling errors due
644	to the heterogeneity of RHW were reduced by sampling at
645	household level from a recommended sample size (100-200
646	households) to obtain representative results (Nordtest, 2005);
647	iii) grouping and segregation errors, and increment delimitation
648	errors were reduced by avoiding sample splitting and instead
649	sorting the entire waste quantity sampled; and iv) increment
650	extraction errors due to contamination and losses of waste
651	materials were minimized by avoiding compacting the sampled
652	waste during transportation, and sieving before sorting.
653	The case study showed that detailed waste composition
654	of any miss-placed WEEE and HHW required larger sample
655	sizes than was included here (or alternatively that the
656	household source segregation of these waste types was
657	sufficiently efficient to allow only small amounts in the RHW).
658	As both WEEE and HHW should be collected separately, this
659	observation only refers to miss-placed items in the RHW.
660	General characterization of WEEE and HHW should be carried
661	out based on samples specifically from these flows (this was
662	however outside the scope of the study). The manual sorting of

Page **27** of **49**

663	plastic waste into resin type was time consuming as resin
664	identification was needed for each individual plastic item;
665	however, the detailed compositional data provided by this
666	effort offer considerably more information that simple
667	categories such as "recyclable plastic" or "clean plastic". This
668	information is indispensable for national or regional waste
669	statistics as basis for estimating the potential of recycling of
670	postconsumer plastics and environmental sound management of
671	non-recyclable plastics. Furthermore, the plastic
672	characterisation based on resin type is needed as input for
673	detailed life cycle assessment and material flow analyses of
674	plastic waste management.
675	Separation of food packaging from food leftovers,
675 676	Separation of food packaging from food leftovers, however, was found unnecessary because this division into sub-
676	however, was found unnecessary because this division into sub-
676 677	however, was found unnecessary because this division into sub- fractions did not significantly influence the waste composition;
676 677 678	however, was found unnecessary because this division into sub- fractions did not significantly influence the waste composition; this clearly reduces time invested in the sorting campaign, but
676 677 678 679	however, was found unnecessary because this division into sub- fractions did not significantly influence the waste composition; this clearly reduces time invested in the sorting campaign, but also improves the hygienic conditions during the sorting
676 677 678 679 680	however, was found unnecessary because this division into sub- fractions did not significantly influence the waste composition; this clearly reduces time invested in the sorting campaign, but also improves the hygienic conditions during the sorting process. As the statistical analyses indicated no statistical
676 677 678 679 680 681	however, was found unnecessary because this division into sub- fractions did not significantly influence the waste composition; this clearly reduces time invested in the sorting campaign, but also improves the hygienic conditions during the sorting process. As the statistical analyses indicated no statistical difference in waste composition between municipalities, waste
676 677 678 679 680 681 682	however, was found unnecessary because this division into sub- fractions did not significantly influence the waste composition; this clearly reduces time invested in the sorting campaign, but also improves the hygienic conditions during the sorting process. As the statistical analyses indicated no statistical difference in waste composition between municipalities, waste composition data obtained from one municipality could be
676 677 678 679 680 681 682 683	however, was found unnecessary because this division into sub- fractions did not significantly influence the waste composition; this clearly reduces time invested in the sorting campaign, but also improves the hygienic conditions during the sorting process. As the statistical analyses indicated no statistical difference in waste composition between municipalities, waste composition data obtained from one municipality could be applied to other municipalities in the study area (provided the
676 677 678 679 680 681 682 683 683	however, was found unnecessary because this division into sub- fractions did not significantly influence the waste composition; this clearly reduces time invested in the sorting campaign, but also improves the hygienic conditions during the sorting process. As the statistical analyses indicated no statistical difference in waste composition between municipalities, waste composition data obtained from one municipality could be applied to other municipalities in the study area (provided the municipalities share source-segregation schemes). This may be

relation to food, paper and glass waste indicated that

representative sampling of RHW should account for variationsin housing types between areas.

691	The correlation test showed no statistically significant
692	relationship between the percentage of individual waste
693	fractions and the generation rate of RHW. This indicates that
694	for a specific area (with consistent socio-economic and
695	geographical conditions), waste composition data could be
696	extrapolated and scaled up to the entire municipality or down to
697	individual town-level, regardless of the waste generation rate.
698	The correlation analysis among proportions of individual waste
699	fractions showed that the percentages of miss-sorted glass and
700	gardening waste increases when the proportion of food waste
701	(glass) and miscellaneous waste (gardening waste) decrease.
702	Moreover, when the proportion of miss-sorted glass increases,
703	the proportions of miss-sorted board and metal also increase.

704 **4 Conclusions**

The study introduced a tiered approach to waste sorting 705 706 campaigns involving three levels of waste fractions. This 707 allowed comparison of waste datasets at different level of 708 complexity, e.g. involving different numbers of material 709 fractions. This tiered fraction list was applied on a case study 710 involving residual household waste (RHW) from 10 sub-areas 711 within three municipalities. Sub-areas in two municipalities 712 were sorted only at the first level (overall waste fractions),

713	while waste from one municipality was sorted to the third level
714	(e.g. two sub-levels below the overall waste fractions). The
715	obtained waste data (generation rates and composition) for the
716	individual sub-areas were compared for identification of
717	significant differences between the areas. Based on the
718	statistical analysis, it was found that while overall waste
719	composition and generation rates were not significantly
720	different between the three municipalities, the waste
721	composition from single-family and multi-family houses were
722	different. This indicates that while waste composition data may
723	be transferred from one municipality to another (provided the
724	source-segregation schemes are sufficiently similar),
725	differences in housing types cannot be ignored. As opposed to a
726	more "linear" waste fraction catalogue, the three-level fraction
727	list applied in this study allowed a systematic comparison
728	across the datasets of different complexity.
729	The results of the sorting analysis indicated that food packaging
730	did not significantly influence the overall composition of the
731	waste as well as the proportions of food waste, plastics, board,
732	glass and metal. Specific separation of food packaging from
733	food leftovers during sorting was therefore not critical for
734	determination of the waste composition.
735	

736 Acknowledgments

- 737 The authors acknowledge the Danish Strategic Research
- 738 Council for financing this study via the IRMAR project. The
- 739 municipalities of Aabenraa, Haderslev, and Sønderborg are also
- acknowledged for partly supporting the waste sampling
- 741 campaign.
- 742

743 Supplementary material

- 744 Supplementary material contains background information about
- the data used for calculations and detailed data from the waste
- 746 characterisation campaign.

747

748 **References**

749	Aitchison, J., 1994. A Concise Guide to Compositional Data
750	Analysis. Lect. Notes-Monograph Ser. 24, 73–81.
751	AMSA, 2008. 2, Dichiarazione Ambientale Termovalorizzatore Silla.
752 753 754 755	Arena, U., Mastellone, M., Perugini, F., 2003. The environmental performance of alternative solid waste management options: a life cycle assessment study. Chemical Engeering Journal. 96, 207–222.
756	Avella, M., Bonadies, E., Martuscelli, E., Rimedio, R., 2001.
757	European current standardization for plastic packaging
758	recoverable through composting and biodegradation. Polym.
759	Test.
760	Banar, M., Cokaygil, Z., Ozkan, A., 2009. Life cycle assessment of
761	solid waste management options for Eskisehir, Turkey. Waste
762	Management 29, 54–62.
763	Beigl, P., Lebersorger, S., Salhofer, S., 2008. Modelling municipal
764	solid waste generation: a review. Waste Management. 28, 200–
765	214.
766	Bernstad, A., la Cour Jansen, J., Aspegren, H., 2012. Local strategies
767	for efficient management of solid household wastethe full-
768	scale Augustenborg experiment. Waste Management &
769	Research 30, 200–12.
770	Boer, E. Den, Jedrczak, A., Kowalski, Z., Kulczycka, J., Szpadt, R.,
771	2010. A review of municipal solid waste composition and
772	quantities in Poland. Waste Management 30, 369–77.
773	Buccianti, A., Pawlowsky-Glahn, V., 2011. Compositional Data
774	Analysis, Compositional Data Analysis: Theory and
775	Applications. John Wiley & Sons, Ltd, Chichester, UK.
776	Burnley, S., 2007. A review of municipal solid waste composition in
777	the United Kingdom. Waste Management 27, 1274–1285
778 779 780	Burnley, S.J., Ellis, J.C., Flowerdew, R., Poll, a. J., Prosser, H., 2007.Assessing the composition of municipal solid waste in Wales.Resources, Conservation and Recycling 49, 264–283.
781	Chang, NB., Davila, E., 2008. Municipal solid waste
782	characterizations and management strategies for the Lower Rio
783	Grande Valley, Texas. Waste Management 28, 776–794
784 785 786	Choi, KI., Lee, SH., Lee, DH., Osako, M., 2008. Fundamental characteristics of input waste of small MSW incinerators in Korea. Waste Management 28, 2293–2300.

787	Christensen, T.H., Fruergaard, T., Matsufuji, Y., 2010. Residential
788	Waste, in: Christensen, T.H. (Ed.), Solid Waste Technology &
789	Management, Volume 1 & 2. John Wiley & Sons, Ltd,,
790	Chichester, UK
791	Crawley, M.J., 2007. The R book, John Wiley & Sons Ltd. Wiley.
792	Dahlén, L., Berg, H., Lagerkvist, A., Berg, P.E.O., 2009. Inconsistent
793	pathways of household waste. Waste Management 29, 1798–
794	1806
795 796	Dahlén, L., Lagerkvist, A., 2008. Methods for household waste composition studies. Waste Management 28, 1100–1112.
797	Danish EPA, 2014. ISAG [WWW Document]. URL
798	http://mst.dk/virksomhed-myndighed/affald/tal-for-
799	affald/registrering-og-indberetning/isag/ (accessed 9.10.14).
800	Dansk Affald, 2013. Sorting DuoFlex-waste containers [WWW
801	Document]. URL
802	http://www.danskaffald.dk/index.php/da/projekt-saga-
803	velkommen/affalds-sortering/duoflex-affaldet#.U5b-o_mSzz8
804	(accessed 6.10.14).
805	De la Cruz, F.B., Barlaz, M. a, 2010. Estimation of waste
806	component-specific landfill decay rates using laboratory-scale
807	decomposition data. Environmental Science & Technology 44,
808	4722–8.
809	Dennison, G.J., Dodda, V.A., Whelanb, B., 1996. A socio-economic
810	based survey of household waste characteristics in the city of
811	Dublin , Ireland . I . Waste composition 3449.
812	Dixon, N., Langer, U., 2006. Development of a MSW classification
813	system for the evaluation of mechanical properties. Waste
814	Management 26, 220–232.
815	Egozcue, J. J. and Pawlowsky-Glahn, V. ,2011. Basic Concepts and
816	Procedures, in Compositional Data Analysis: Theory and
817	Applications (eds V. Pawlowsky-Glahn and A. Buccianti), John
818	Wiley & Sons, Ltd, Chichester, UK. doi:
819	10.1002/9781119976462.chapter2
820	European Commission, 2004. Methodology for the Analysis of Solid
821	Waste (SWA-tool). User Version 43, 1–57
822	European Commission, 2003. DIRECTIVE 2002/96/EC OF THE
823	EUROPEAN PARLIAMENT AND OF THE COUNCIL of 27
824	January 2003 on waste electrical and electronic equipment
825	(WEEE) [WWW Document]. URL
826	http://www.bis.gov.uk/files/file29931.pdf (accessed 2.6.14).

827	Filzmoser, P., Hron, K., 2008. Correlation Analysis for
828	Compositional Data. Mathematical Geosciences. 41, 905–919.
829 830 831	Gerlach, R.W., Dobb, D.E., Raab, G. a., Nocerino, J.M., 2002. Gy sampling theory in environmental studies. 1. Assessing soil splitting protocols. Journal of Chemometrics 16, 321–328
832	Horttanainen, M., Teirasvuo, N., Kapustina, V., Hupponen, M.,
833	Luoranen, M., 2013. The composition, heating value and
834	renewable share of the energy content of mixed municipal solid
835	waste in Finland. Waste Management 33, 2680–2686
836	Johnson, R.A., 2005. Miller & Freund's Probability and statistics for
837	engineers, Seventh ed. ed. Pearson Prentice-Hall.
838 839 840	Johnstone, N., 2004. Generation of household solid waste in OECD countries: An empirical analysis using macroeconomic data. Land Economics 80, 529 – 538.
841	Khan, M.Z.A., Burney, F.A., 1989. Forecasting solid waste
842	composition — An important consideration in resource
843	recovery and recycling. Resources, Conservation and Recycling
844	3, 1–17.
845	Klee, A., 1993. New approaches to estimation of solid waste quantity
846	and composition. Journal of Environmental Engineering 119,
847	248 – 261.
848	Lebersorger, S., Schneider, F., 2011. Discussion on the methodology
849	for determining food waste in household waste composition
850	studies. Waste Management 31, 1924–33.
851	Martinho M.G.M., M. da G., Silveira, A. I., Fernandes Duarte
852	Branco, E. M., 2008. Report: New guidelines for
853	characterization of municipal solid waste: the Portuguese case.
854	Waste Management & Research 26, 484–490.
855	Moh, Y.C., Abd Manaf, L., 2014. Overview of household solid waste
856	recycling policy status and challenges in Malaysia. Resources
857	Conservation Recycling. 82, 50–61
858	Montejo, C., Costa, C., Ramos, P., Márquez, M.D.C., 2011. Analysis
859	and comparison of municipal solid waste and reject fraction as
860	fuels for incineration plants. Applied Thermal Engineering 31,
861	2135–2140.
862	Nilsson, P., 2010. Waste Collection: Equipment and Vehicles, in:
863	Christensen, T.H. (Ed.), Solid Waste Technology &
864	Management, Volume 1 & 2. John Wiley & Sons, Ltd,,
865	Chichester, UK.
866 867	Nordtest, 1995. Municipal solid waste: Sampling and characterisation (No. NT ENVIR 001), Nordtest Method. Espoo, Finland.

868 869 870	Petersen, C.M., 2005. Quality control of waste to incineration - waste composition analysis in Lidkoping, Sweden. Waste Management & Research 23, 527–533.
871	Petersen, L., Dahl, C.K., Esbensen, K.H., 2004. Representative mass
872	reduction in sampling—a critical survey of techniques and
873	hardware. Chemometrics and Intelligent Laboratory Systems
874	74, 95–114.
875 876 877	 Petersen, L., Minkkinen, P., Esbensen, K.H., 2005. Representative sampling for reliable data analysis: Theory of Sampling. Chemometrics and Intelligent Laboratory Systems 77, 261–277.
878	Pitard, F.F., 1993. Pierre Gy's Sampling Theory and Sampling
879	Practice, Second Edition: Heterogeneity, Sampling Correctness,
880	and Statistical Process Control. CRC Press.
881	Reimann, C., Filzmoser, P., Garrett, R.G., Dutter, R., 2008.
882	Statistical Data Analysis Explained, Statistical Data Analysis
883	Explained: Applied Environmental Statistics With R. John
884	Wiley & Sons, Ltd, Chichester, UK.
885	Riber, C., Petersen, C., Christensen, T.H., 2009. Chemical
886	composition of material fractions in Danish household waste.
887	Waste Management 29, 1251–1257.
888	Sharma, M., McBean, E., 2007. A methodology for solid waste
889	characterization based on diminishing marginal returns. Waste
890	Management 27, 337–44.
891	Sharma, M., McBean, E., 2009. Strategy for use of alternative waste
892	sort sizes for characterizing solid waste composition. Waste
893	Management & Research 27, 38–45.
894	Slack, R., Gronow, J., Voulvoulis, N., 2004. Hazardous Components
895	of Household Waste. Critical Review in Environmental
896	Science. Technologie.
897 898 899	Statistics Denmark, 2013. Housing [WWW Document]. URL http://www.dst.dk/en/Statistik/emner/boligforhold.aspx (accessed 12.21.13).
900	Steel, E.A., Hickox, W., Moulton-patterson, L., 1999. Statewide
901	Waste Characterization Study Results and Final Report.
902 903 904 905	Wagland, S.T., Veltre, F., Longhurst, P.J., 2012. Development of an image-based analysis method to determine the physical composition of a mixed waste material. Waste Management 32, 245–248.
906	WRAP (Waste & Resources Action Programme), 2009.
907	Household Food and Drink Waste in the UK, October.

910 Tables

- 911 Table 1: Overview of the sub-areas, number of household per
- stratum and amount of waste sampled and analysed

	Municipalities	Housing type	Number of household per sampling unit	Amount analysed (kg wet
		Single- family	100	1,500
	Aabenraa	Multi-family	106	600
		Multi-family	220	1,100
		Single- family	94	2,200
	Haderslev	Single- family	100	1,700
		Single- family	100	1,400
		Multi-family	333	3,300
	a	Single- family	105	2,200
	Sønderborg	Single- family	164	2,200
		Multi-family	120	600
	Total		1,442	16,800
913				
914				
915				
916				
917				
918				
919				
920				
921				
922				
923				
924				
925				
926				
927				
928				
929				
930				
930				

Table 2: The waste fractions list showing three different levels (Level I, Level II, and Level III)

Level I	Level II	Level III
1-Food waste	1.1 Vegetable food waste; 1.2 Animal-derived food waste	-
2-Gardening waste	2.1 Dead animal and animal excrements (excluding cat litter);2.2 Garden waste	2.1.1 Dead animals; 2.1.2 Animal excrement bags from animal excrement 2.2.1 Humid soil; 2.2.2 Plant material; 2.2.3 Woody plant material; 2.2.4 Animal straw.
3-Paper	3.1 Advertisements; 3.2 Books & booklets; 3.3 Magazines & Journals; 3.4 Newspapers; 3.5 Office paper; 3.6 Phonebooks;3.7 Miscellaneous paper.	3.7.1 Envelopes; 3.7.2 Kraft paper; 3.7.3 Other paper; 3.7.4 Receipts; 3.7.5 Self-Adhesives; 3.7.6 Tissue paper; 3.7.7 Wrapping paper
4-Board	4.1 Corrugated boxes;4.2 Folding boxes; 4.3 Cartons/plates/cups;4.4 Miscellaneous board.	4.4.1 Beverage cartons; 4.4.2 Paper plates & cups;4.4.3 Cards & labels; 4.4.4 Egg boxes & alike; 4.4.5 Other board; 4.4.6 Tubes.
5-Plastic	5.1 Packaging plastic;5.2 Non-packaging plastic;5.3 Plastic film.	 5.i.1 PET/PETE^a; 5.i.2 HDPE^b; 5.i.3 PVC/V^c; 5.i.4 LDPE/LLDPE^d; 5.i.5 PP^e; 5.i.6 PS^f; 5.i.7 Other plastic resins labelled with[1-19] ABS^g; 5.i.8 Unidentified plastic resin; 5.3.1 Pure plastic film; 5.3.2 Composite plastic + metal coating.
6-Metal	6.1 Metal packaging containers;6.2 Non-packaging metals;6.3 Aluminium wrapping foil	6.i.1 Ferrous; 6.i.2 Non-ferrous (with i=1&2).
7-Glass	7.1 Packaging container glass;7.2 Table and kitchen ware glass; 7.3 Other/special glass.	7.i.1 Clear; 7.i.2 Brown; 7.i.3 Green.
8-Miscellaneous combustibles	 8.1 Composites, human hygiene waste (Diapers, tampons, condoms, etc.); 8.2 textiles, leather and rubber; 8.3 Vacuum cleaner bags; 8.4 Untreated wood; 8.5 Other combustible waste. 	8.1.1 Diapers; 8.1.2 Tampons; 8.1.1 Condoms; 8.2.1 Textiles; 8.2.2 Leather; 8.2.3 Rubber;
9-Inert	9.1 Ashes from households; 9.2 Cat litter; 9.3 Ceramics, gravel; 9.4 Stones and sand; 9.5 Household constructions & demolition waste.	-
10-Special waste	10.1 Single Batteries/ non-device specific Batteries; 10.2 WEEE; 10.3 Other household hazardous waste.	10.3.1Large household appliances; 10.3.2 Small household appliances; 10.3.3 IT and telecommunication equipment; 10.3.4 Consumer equipment and photovoltaic panels; 10.3.5 Lighting equipment; 10.3.6 Electrical and electronic tool (no large-scale stationary tools), 10.3.7 Toys, leisure and sports equipment; 10.3.8 Medical devices (except implanted and infected products); 10.3.9 Monitoring and control instruments; 10.3.10 Automatic dispensers.

^{*a*} Polyethylene terephthalate; ^{*b*} density polyethylene; ^{*c*} Polyvinyl-chloride; ^{*d*} Low density polyethylene; ^{*e*}: Polypropylene; ^{*f*}: Polystyrene; ^{*g*}: Acrylonitrile/butadiene/styrene Numbering of waste fractions: n- fractions included in Level I, n.n fractions included in Level II, n.n.n fractions included in Level III;

Table 3: Waste composition (% mass per wet basis) of RWH 1

2 from Aabenraa-Level I & II

31.3 9.5 0.3 3.1 2.8 0.4 0.5 0.8 0.4 0.0 4.2 0.7 2.0 3.3 0.6 0.9 4.5
9.5 0.3 3.1 2.8 0.4 0.5 0.8 0.4 0.0 4.2 0.7 2.0 3.3 0.6 0.9 4.5
0.3 3.1 2.8 0.4 0.5 0.8 0.4 0.0 4.2 0.7 2.0 3.3 0.6 0.9 4.5
3.1 2.8 0.4 0.5 0.8 0.4 0.0 4.2 0.7 2.0 3.3 0.6 0.9 4.5
3.1 2.8 0.4 0.5 0.8 0.4 0.0 4.2 0.7 2.0 3.3 0.6 0.9 4.5
2.8 0.4 0.5 0.8 0.4 0.0 4.2 0.7 2.0 3.3 0.6 0.9 4.5
0.4 0.5 0.8 0.4 0.0 4.2 0.7 2.0 3.3 0.6 0.9 4.5
0.4 0.5 0.8 0.4 0.0 4.2 0.7 2.0 3.3 0.6 0.9 4.5
0.5 0.8 0.4 0.0 4.2 0.7 2.0 3.3 0.6 0.9 4.5
0.8 0.4 0.0 4.2 0.7 2.0 3.3 0.6 0.9 4.5
0.4 0.0 4.2 0.7 2.0 3.3 0.6 0.9 4.5
0.0 4.2 0.7 2.0 3.3 0.6 0.9 4.5
4.2 0.7 2.0 3.3 0.6 0.9 4.5
0.7 2.0 3.3 0.6 0.9 4.5
2.0 3.3 0.6 0.9 4.5
2.0 3.3 0.6 0.9 4.5
3.3 0.6 0.9 4.5
0.6 0.9 4.5
0.9 4.5
4.5
4.5
6.6
1.9
0.0
0.7
2.2
0.0
0.1
011
10.8
0.3
2.4
0.4
5.6
5.0
0.0
2.3
2.3 0.3
0.6
0.1
0.1
0.1
0,1
0.2

3 ^aMiss-sorted recyclable material fractions; ^bMiss-sorted other material fractions; ^c

Composition of single-family as% wet weight;

4 5 ^d Composition of multi-family as (% mass per wet basis)

- 6 Table 4: Detailed waste composition (% mass per wet basis) of
- 7 RWH from Aabenraa focusing on Level III

Fractions (Level I)	Fractions (Level II&III)	SF^{d} (% w/w ^a)	MF^{c} (%w/w ^a)
Food waste		44.6	40.8
Gardening waste			
	Dead animal and animal excrements (exclude cat litter)	0.5	0.3
	Garden waste etc.		
	Humid soil	0.8	0.2
	Plant material	3.5	2.4
	Woody plant material	0.5	0.0
Paper			
•	Other paper ^e	2.5	4.9
	Miscellaneous paper		
	Tissue paper	4.1	3.8
	Envelopes ^a	0.1	0.2
	Kraft paper	0.1	0.0
	Wrapping paper	0.1	0.0
	Other paper	0.2	0.0
Board	Oner paper	0.2	0.1
Doard	Other board ^f	6.5	6.0
		0.5	0.0
	Corrugated boxes ^a	0.1	0.1
	Egg boxes&alike ^a	0.1	0.1
	Cards&labels ^a	0.1	0.1
	Board tubes ^a	0.3	0.3
	Other board	0.2	0.1
Plastic			
	Non-packaging plastic		
	1-PET	0.0	0.0
	2-HDPE	0.0	0.0
	3-PVC	0.0	0.0
	4-LDPE	0.0	0.0
	5-PP	0.1	0.2
	6 PS	0.0	0.5
	7-19	0.0	0.0
	Unspecified	0.0	0.3
	Packaging plastic ^a	0.4	0.5
		1.1	0.6
	1-PET	1.1	0.6
	2-HDPE	0.9	1.1
	3-PVC	0.0	0.5
	4-LDPE	0.0	0.0
	5-PP	1.4	0.4
	6 PS	0.4	1.2
	7-19	0.0	0.0
	Unspecified	1.4	0.8
	Plastic film		
	Pure plastic film	9.0	6.1
	Composite plastic + metal coating	0.8	0.6
Metal	· · · ·		
	Metal packaging containers ^a		
	Ferrous	0.8	1.1
	Non-ferrous	0.5	0.8
	Aluminium wrapping foil	0.0	0.0
	Non-packaging metals	0.0	0.0
	Ferrous	0.3	0.4
	Non-ferrous	0.3	0.4
Class	INOII-TETTOUS	0.5	0.5
Glass	Declaring contribute -1		
	Packaging container glass ^a	0.0	0.2
	Clear	0.0	0.3
	Brown	1.8	1.7
	Green	0.0	0.2
	Table and kitchen ware glass ^a	0.2	0.0
	Other/special glass ^a	0.1	0.1
Miscellaneous		14.1	19.5
combustible			
Inert		1.3	3.2
Special waste ^a		0.7	0.5

Page **41** of **49**

	Total	100	100
8	^a Miss-sorted recyclable material fractions; ^b Miss-sorted other material frac	tions; ^c	
9	Composition of single-family houses areas as% wet weight; ^d Composition of	f multi-	
10	family houses areas as (% mass per wet basis); ^e Advertisements, books & bookle	et,	
11	magazines & journals, newspaper, office paper, phonebook; ^f Corrugated boxes, foldin	ng boxes,	
12	beverage cartons		
13			

- 14 Table 5: Composition (% mass per wet basis) of RHW as
- 15 function of municipality and associated probability values from
- 16 the Kruskal-Wallis test. The last row shows the WGR
- 17 (kg/per/week)

Fractions (Level1)	Aabenraa (%w/w ^a)	Haderslev (% w/w ^a)	Sønderborg (%w/w ^a)	p-value
Food waste	42.8 ± 5.2	41.7 ± 6.4	43.8 ± 3	0.999
Gardening waste	3.8 ± 1.0	2.6 ± 1.0	5 ± 1.7	0.565
Paper	8.3 ± 1.0	8.9 ± 2.4	7.6 ± 1.2	0.993
Board	7.1 ± 1.0	8.1 ± 1.6	7.1 ± 0	0.387
Plastic	12.6 ± 1.2	11.7 ± 0.5	14.8 ± 0.6	0.457
Metal	2.3 ± 0.6	2.2 ± 0	2.0 ± 0.6	0.984
Glass	1.7 ± 0.6	2.3 ± 1.3	2.1 ± 2	0.387
Miscellaneous combustible	17.6 ± 3.5	19 ± 3.6	15.2 ± 3.5	0.812
Inert	3.5 ± 3.5	2.5 ± 1.5	1.7 ± 1.5	0.731
Special waste	0.4 ± 0.6	1.0 ± 0.8	0.7 ± 0.6	0.314
WGR (kg per person per week)	3.4 ± 0.2	4.3 ± 1.5	3.5 ± 1.4	0.689

18 Data are presented as Mean ± Standard deviation; Significant level: p<0.05; a:

19 (mass per wet basis)

20

- 22 Table 6: Review of household solid waste composition (%
- 23 mass per wet basis)

Country	Organic/ Food waste	Gardening waste	Paper & board	Glass	Metal	Plastic	Miscellaneous combustible	Inert	Special waste	Fines	Total
DK1 ^a	42.2	3.5	15.8	12.6	2.3	2.1	17.6	3.3	0.7	-	100
DK2 ^b	41	4.1	23.2	9.2	3.3	2.9	12.2	3.5	0.7	-	100
ES ^c	56.2	1.84	19.04	3.3	2.96	10.67	4.927	0.69	0.12		100
\mathbf{FI}^{d}	23.9	-	15.3	2.5	3.8	21.4	19.9	10.4	1.7	-	100
IT1 ^e	30.1	3.9	23.2	5.7	3.3	10.8	4.5	1.3	8.7	9.4	100
$IT2^{f}$	12.6	-	39.2	5.9	2.4	27.6	14.2				100
PL^{g}	23.7		14.1	9.2	2.1	10.8	10.6	4.5	1	24.1	100
$SE1^{h}$	33	9.4	24	2.4	2.2	11.7	9.6	7	0.6	-	100
$\mathbf{U}\mathbf{K}^{\mathrm{i}}$	32.8	-	21.5	10.6	4.8	6.9	9.3	12.5	1.5	-	100
$\mathbf{U}\mathbf{K}^{j}$	20.2	-	33.2	9.3	7.3	10.2	12	1.8		6.8	100
TR^k	67	0	10.1	2.5	1.3	5.6	9.7	3.9	-	-	100
KR^1	12	-	33	-	-	17	32	6	-	-	100
CA^m	18.8	5.6	32.3	3.1	3.4	13.1	14.0	2.9	5.9		100
MA^n	44.8		16	3	3.3	15	9.5	8.4	-	-	100

^{*a*} Current study

25 ^b Denmark (Riber et al., 2009)

26 ^c. Spain (Montejo et al., 2011)

27 ^d. Finland (Horttanainen et al., 2013)

28 ^{*e*}. Italy (Arena et al., 2003)

29 ^{*f*}. Italy (AMSA, 2008)

30 ^g. Poland (Boer et al., 2010)

31 ^{*h*}. Sweden (Petersen, 2005)

32 ^{*i*}. United Kingdom (Burnley, 2007)

33 ^j. United Kingdom (Wales) (Burnley et al., 2007)

34 *^k*. *Turkey* (*Banar et al.*, 2009)

35 ^{*l*}. *Korea* (*Choi et al., 2008*)

36 ^{*m*}. Canada (Sharma and McBean, 2007)

37 ^{*n*}. Malaysia (Moh and Abd Manaf, 2014)

- 40 Table 7: Correlation matrix from Spearman's correlation test (r:
- 41 range = -1.00 + 1.00)

	Food	Gardening waste	Paper	Board	Plastic	Metal	Glass	M. combustible ^a	Inert	Special waste	$\mathrm{WGR}^{\mathrm{b}}$
Food	1						**				
Gardening waste	0.03	1			*			**			
Paper	-0.44	-0.21	1								
Board	-0.49	0.09	0.08	1			*			*	
Plastic	-0.32	0.77	-0.19	0.19	1			+			
Metal	-0.54	-0.35	0.07	0.49	0.03	1	*				
Glass	-0.81	-0.15	0.43	0.67	0.04	0.7	1			+	
M. combustible ^a	-0.24	-0.82	0.36	-0.07	-0.58	0.09	0.15	1			+
Inert	-0.24	0.28	0.08	0.1	0.36	0.3	0.12	-0.52	1		
Special waste	-0.47	0.21	0.07	0.73	0.38	0.22	0.6	-0.08	0.1	1	
WGR^{b}	-0.36	-0.28	0.38	0.31	-0.21	-0.26	0.24	0.64	-0.49	0.33	1

42 (**) high significance probability between 0.001 and 0.01; (*) medium significance,

43 probability between 0.01 and 0.05; (+) weak significance-probability between 0.05

44 *and 0.10; () no significance-probability higher than 0.1*

45 ^{*a*} Miscellaneous combustible; ^{*b*} waste generation rate (kg RHW per person per week)

46

47 Table 8: Composition (% mass per wet basis) of RHW as

48 function of housing type and associated probability values from

49 the permutation test

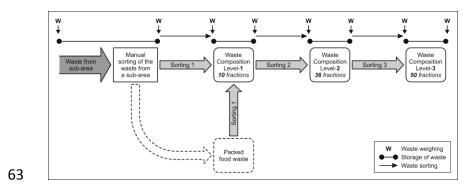
Fractions (Level1)	Single-family (%w/w ^a)	Multi-family (% w/w ^a)	p- val ue
Food waste**	45 ± 1.3	36.2 ± 3.9	0.0
			03
Gardening waste	3.9 ± 1.2	3.7 ± 1.7	0.7
			99
Paper*	7.6 ± 1.4	10.0 ± 1.0	0.0
5			30
Board	7.0 ± 0.9	8.4 ± 1.4	0.3
Plastic	12.1 ± 0.5	12.9 ± 0.5	75
Plastic	13.1 ± 0.5	12.9 ± 0.3	0.9 31
Metal	1.9 ± 0	2.8 ± 0.6	0.0
Wetar	1.7 ± 0	2.0 ± 0.0	65
Glass*	1.7 ± 1.6	2.8 ± 1.0	0.0
			42
Miscellaneous combustible	17.3 ± 3.1	17.2 ± 3.8	0.6
			38
Inert	1.9 ± 1.9	4.9 ± 2.8	0.2
			86
Special waste	0.5 ± 0.5	1.0 ± 0.8	0.3
			53
WGR (kg per person per week)	3.7 ± 0.8	4.0 ± 1.5	0.6
			52

50 Data are presented as Mean ± Standard deviation; Significant level: (*) 0.05, (**)

⁵¹ 0.01; a.: (% mass per wet basis)

- 54 Table 9: Waste composition (% mass per wet basis) based on
- 55 food packaging sorting procedure and the associated
- 56 probability values from the permutation test.

Fractions	Not Included ^a (% w/w ^c)	Included ^b (% w/w^c)	P-value
Food waste	45.1 ± 2.8	42.1 ± 2.7	0.50
Gardening waste	4.1 ± 2.2	4.1 ± 2.2	1.00
Paper	8.4 ± 1.1	8.4 ± 1.1	1.00
Cardboard	6.1 ± 0.4	6.8 ± 0.4	0.30
Glass	1.9 ± 0.3	2.2 ± 0.3	0.30
Metal	2.1 ± 1	2.4 ± 0.9	0.50
Plastic	11.5 ± 1.9	13.2 ± 2.2	0.60
Miscellaneous combustible	17.7 ± 3.3	17.7 ± 3.3	1.00
Inert	2.6 ± 1.5	2.6 ± 1.5	1.00
Special waste	0.6 ± 0.2	0.6 ± 0.2	1.00


57 Sample size (Number of household) 426; Data are presented as Mean ± Standard

58 *deviation; Significant level: p<0.05;*

59 a.: food and its packaging were sorted as food waste; b.: food packaging was

60 separated from food; c.: % mass per wet basis; "

61

64 Fig. 1. Schema of waste sorting procedure

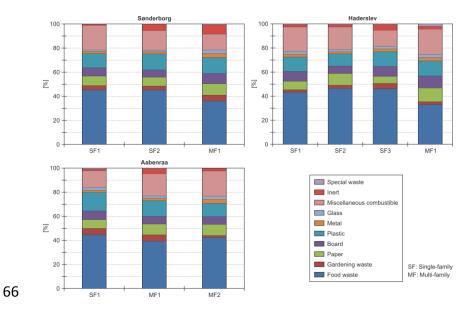


Fig. 2. Composition of residual household waste (% of wet mass) permunicipality according to housing types.

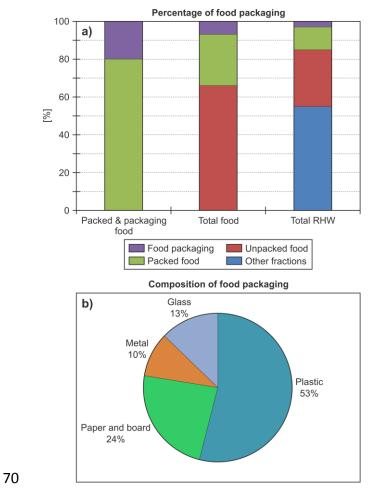


Fig. 3. Percentage of food packaging (% wet mass) in different waste
types (a) and composition of packaging (% wet mass) from food
waste (b).

75 Supplementary materials

- 76 Supplementary material contain background information used
- 77 for calculation and detailed data from the waste sampling
- 78 campaign.
- A: Overall composition of household based on housing type in

80 the study area-Unit is percentage of household

Municipalities	Housing type	SF (%)	MF (%)
	Single- family SF1	30	-
Sønderborg	Single-family SF2	9	-
	Multi-family MF1	-	42
	Single- family SF1	11	-
Haderslev	Single- family SF2	11	-
Tradersiev	Single- family SF3	5	
	Multi-family MF1	-	33
	Single- family SF1	33	-
Aabenraa	Multi- family MF1	-	12
	Multi-family MF2	-	12
Total		100	100

Source: Calculated based on data from Statistics Denmark

- 83
- 84 B: Overall composition of household based on housing type
- 85 and municipalities in the study area-Unit: percentage of
- 86 households

Housing type	Sønderborg (%)	Haderslev (%)	Aabenraa(%)
Single-family SF1	56	29	80
Single-family SF2	17	29	-
Single-family SF3	0	14	-
Multi-family MF1	27	28	10
Multi-family MF2	0	0	10
Total	100	100	100

87 Source: Calculated based on data from Statistics Denmark

88

_ _

- 90 C: Overview of total waste sampled and sorted- Unit: mass per
- 91 wet basis in kg

Municipalities	Dwelling type	APH ^a	Food waste	Gardening waste	Paper	Board	Plastic	Metal	Glass	MC ^b	Inert	Special waste	TotalW ^c .
Sønderborg	SF1	2.3	996	75	177	149	263	41	27	442	23	6	2,200
Sønderborg	SF2	2.3	990	77	158	131	295	42	23	361	112	10	2,200
Sønderborg	MF1	1.6	217	29	56	51	80	20	18	79	47	4	600
Harderslev	SF1	2.4	950	50	154	177	262	50	53	448	40	15	2,200
Harderslev	SF2	2.4	792	41	165	106	171	31	32	317	37	8	1,700
Harderslev	SF3	2.4	649	61	79	115	174	34	28	186	67	8	1,400
Harderslev	MF1	1.6	1,088	77	379	324	422	80	95	687	81	67	3,300
Aabenraa	SF1	2.3	668	80	108	109	232	28	31	212	20	11	1,500
Aabenraa	MF1	1.6	236	32	52	40	78	11	12	110	26	3	600
Aabenraa	MF2	16	466	17	102	72	122	37	29	228	23	4	1 100

92 ^aAverage persons per household; ^bMiscellaneous combustible waste; ^c total waste

93

sorted;

94

95 D: Summary of the mass loss during waste sorting process

Descriptive statistics	Loss(%)	W1(mass per wet basis in kg)	W2(mass per wet basis in kg)		
N*	76	76	76		
Mean	1.7	16.4	16.1		
Median	1.3	12.5	12.3		
10% Trimmed Mean	1.6	13.4	13.2		
1st Quartile	0.8	10.3	10.1		
3rd Quartile	2.3	17.4	17.1		
Standard Deviation	1.1	16.9	16.6		
Interquartile Range	1.5	7.1	7.0		
Median Absolute Deviation	1.0	4.5	4.6		

96 N*: number of paper sacks;

97 Loss (%) is mass loss during the waste sorting and storage processes;: Loss=((W1-

98 W2)/W1)*100, with W1=net wet mass of waste before sorting, W2: net wet mass of

99 waste after sorting;

100 The average mass loss due to evaporation is 1.7%, which is below 3%.