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Abstract

In this paper the empirical performance of five different models for barrier op-

tion valuation is investigated: the Black-Scholes model, the constant elasticity of

variance model, the Heston stochastic volatility model, the Merton jump-diffusion

model, and the infinite activity Variance Gamma model. We use time-series data

from the USD/EUR exchange rate market: standard put and call (plain vanilla)

option prices and a unique set of observed market values of barrier options. The

models are calibrated to plain vanilla option prices, and prediction errors at dif-

ferent horizons for plain vanilla and barrier option values are investigated. For

plain vanilla options, the Heston and Merton models have similar and superior

performance for prediction horizons up to one week. For barrier options, the

continuous-path models (Black-Scholes, constant elasticity of variance, and Hes-

ton) do almost equally well, while both models with jumps (Merton and Variance

Gamma) perform markedly worse.
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1 Introduction

This paper is an empirical investigation of how well different models work for barrier

option valuation. The study is performed using a unique data-set of exchange rate

barrier option values.

If we were bold, we would add the qualifiers “first” and “truly” to the word “em-

pirical” in the opening paragraph. That, however, would be pushing the envelope as

empirical studies of barrier options are not completely absent from the literature. The

performance of “held-until-expiry” hedge portfolios for barrier options on the German

DAX index is tested by Maruhn, Nalholm & Fengler (2010), and An & Suo (2009) in-

vestigate hedge portfolios for USD/EUR exchange rate barrier options by “marking-to-

model”. Actual market values of barrier options are, though, absent from both studies.

We know of three previous papers that look at market values of barrier options. Easton,

Gerlach, Graham & Tuyl (2004) investigate Australian exchange traded index barrier

options, and Wilkens & Stoimenov (2007) study the embedded barrier option in the

German Turbo Warrants. But these both work solely in realm of the Black-Scholes

model. Carr & Crosby (2010) offer an ingenious model construction that allows for ef-

ficient pricing of barrier options but their empirical application is limited to illustrative

calibrations for two specific days.

A variety of experimental designs can be used when investigating model performance

across time and markets (underlying, plain vanilla across strikes and expiry-dates, and

exotics). We use one that resembles how the models are used by market participants

without violating the basic premise of what constitutes a model: Parametric models are

calibrated to liquid plain vanilla options and then used to value exotic options. While

this (re-)calibration practice is almost impossible to justify theoretically, a model that

does not get the basic contracts about right does not come across as trustworthy when

it comes to valuing more advanced products. More specifically, our experimental design

is this: On any given day in the sample, say t, each model’s parameters are chosen to

obtain the best fit of that day’s plain vanilla option prices across strikes and expiry-

dates. We calculate within-that-day (“horizon-0”) pricing errors by comparing observed

option values to model values. This is done separately for plain vanilla (“in-sample”)

and for barrier options (“out-of-sample” or more tellingly “out-of-market”). We then

test the predictive qualities of the models over the horizon h by keeping the time-t

calibrated parameters fixed, updating state variables (underlying and possibly volatility)

and options (plain vanilla and barrier) to their time-(t + h) values, and registering the

discrepancies between model and market values. Some may frown at our use of the word

“prediction” and say that we should at least add “conditionally on state variables”, or

better yet say that we test “parameter stability”. That is a matter of taste, but what
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is not is that such conditional predictions are exactly what matter in a context where

plain vanilla options are used as hedge instruments where the idea is to create portfolios

that are immunized to changes in state variables.

We work with five popular, yet qualitatively different parametric models: the Black-

Scholes model, the constant elasticity of variance model, the Heston stochastic volatility

model, the Merton jump-diffusion model, and the infinite activity Variance Gamma

model.

For the plain vanilla options we find that the Heston and Merton models have similar

performance, and that this performance is superior to the three other models’ at horizons

of up to five days.

For the barrier options, the performance of the continuous-path models (Black-

Scholes, constant elasticity of variance and Heston) is quite similar, and better than

those reported in the few previous studies, which all deal with equity markets. And as a

general rule, the performance is “half an order of magnitude” worse than for plain vanilla

options; more for barrier options whose plain vanilla counterpart is in-the-money when

the barrier event happens, less in the opposite case. Both models with jumps (Merton

and Variance Gamma) fail miserably for barrier options. These results hold not only at

horizon-0 — which could be seen as a self-fulfilling prophesy if market participants use

Black-Scholes’ish models for valuation — but for predictions at all horizons.

The rest of the paper is organized as follows: Section 2 describes the data-sets in

detail, Section 3 reviews the different models and option pricing techniques, Section 4

reports the results of the empirical analysis, and Section 5 briefly concludes and outlines

topics for future research.

2 Data

Our study combines data from two independent sources.1

Plain vanilla option prices on the USD/EUR exchange rate come from British Bankers’

Association.2 For each day, we have observations of options with expiries in 1 week, 1

month, 3 months, 6 months, 1 year and 2 years; for the 1 month, 3 months and 1 year

expiries we further have prices of options with strikes (roughly) 5% under and 5% over

the current exchange rate. Data is given as implied at-the-money forward volatilities,

1To be entirely precise: three independent sources. To further enhance the data quality, we cross-

checked exchange and interest rates against the FED Release H.15.
2This admirable free service was discontinued in early 2008 — possibly not completely surprising as

the data quality had deteriorated noticeably throughout 2007. The data we used can be downloaded

from http://www.math.ku.dk/~rolf/papers.html.
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Figure 1: The plain vanilla data from British Bankers’ Association. The top left graph is the

USD/EUR exchange rate, i.e. the number of US dollars one has to pay to get 1 Euro. The top right

panel is the implied volatility of at-the-money options with one week (gray), one month (black), three

months (red), one year (green) and two years (blue) to expiry. The “smiles” in the bottom right panel

are the time-averages of implied volatilities (connected) across strikes for expiries of 1 month (lower),

3 months (middle) and 1 year (upper). The dotted red curves around the 1 month smile indicate typi-

cal Interbank market bid/ask-spreads. The “skew” depicted in the bottom left graph is the time-series

behaviour of the difference between the right and left end-points of the 1 month implied volatility curve.

implied volatilities of 25-delta strangles (average of 25-delta call and 25-delta put mi-

nus at-the-money implied volatility) and of 25-delta risk reversals (implied volatility of

25-delta call minus implied volatility of 25-delta put). These implied volatilities can

be inverted to give 12 plain vanilla option prices observed each day. Figure 1 shows

the data, with option prices being expressed through their implied volatilities. Implied

volatility is not constant across time (it decreases throughout our sample), expiry (it

increases with time to expiry), or strike (it increases as strike moves away from spot).

Compared to equity options, these implied volatilities display a fairly symmetric smile

across strikes on average, but there is a randomly varying asymmetry as measured by the

skew, i.e. the difference between high- and low-strike implied volatilities.3 The British

Bankers’ Association data does not give information about bid/ask-spreads, but accord-

ing to Wystup (2007) a multiplicative spread on volatilities of 1-2% is (or: was at that

time) common for at-the-money options in the Interbank market. Or in numerical terms:

a typical at-the-money option is sold at 0.101, bought at 0.099.

3Others have noticed this and proposed stochastic skew models; Carr & Wu (2007) do it in a Levy

setting and in unpublished work Nicole Branger and co-authors use a diffusion framework. We leave

the investigation of these models to future work.
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#contracts #observations τ0 τi B/X0 K/X0

Total 156 3,108 69 70 – –

Reverse

up-and-out call 38 535 44 40 1.041 1.003

up-and-in call 17 309 85 94 1.051 0.997

down-and-out put 16 105 31 25 0.964 1.000

down-and-in put 42 909 69 65 0.954 1.009

Regular

down-and-out call 33 1,059 93 76 0.969 1.019

down-and-in call 5 52 29 21 0.978 0.991

up-and-out put 5 139 210 177 1.020 0.992

up-and-in put 0 0 – – – –

Table 1: Descriptive statistics of the barrier option data-set; option type, frequency, (calendar) time

to expiry, (relative) strike and barrier. A ’0’ indicates ’at initiation of a particular contract’, so the 4th,

6th, and 7th column are averages of contracts at their initiation days of, respectively, time to expiry

(τ0, measured in calendar days), barrier level (B) relative to spot (X0), and strike (K) relative to spot.

The τi denotes time to expiry averaged over all observations (so having τi > τ0 is not an error, since

there may exist more observations of contracts with relatively high initial time to expiration, τ0, thereby

contributing to higher average time to expiry, τi).

The exchange rate barrier option data-set4 stems from the risk-management depart-

ment of Danske Bank; the largest Danish bank. Every day the department calls (or:

sends a spreadsheet to) the bank’s foreign exchange trading desk asking for valuations

of all the exchange rate barrier options that the bank currently has on its books. We

see no indications in the data that the trading desk is not “doing its job properly”5 —

such as stale quotes or suspiciously consistent over- or under-valuations of particular

trades. The data-set contains values and characteristics for USD/EUR barrier options,

but all proprietary information such as counter-party, size and direction of position, and

initial price at which the option was sold to (or bought from, but it seems a safe bet

that the bank is mostly short in barrier options) the counter-party has been removed.

This would of course make for interesting reading and research, but on the plus-side the

lack of sensitive information means that the data has been released for research without

“strings attached”. More specifically, the data-set consists of daily observations of con-

4The data-set plus a detailed description of its construction and organization can be found at http:

//www.math.ku.dk/~rolf/papers.html.
5The life-span of the barrier options is much shorter than the “bonus horizon”; that should alleviate

moral hazard.
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tinuously monitored zero-rebate barrier contracts covering the period January 2, 2004

to September 27, 2005. We consider only single barrier options and disregard options

with values lower than 10−5 and/or less than 7 days to expiry (thus staying within the

expiry-range of the plain vanilla calibration instruments). This leaves us with a total of

3,108 observations on 156 individual contracts. These are broken down by characteris-

tics in Table 1. We see that the strikes are mostly set very close to the exchange-rate

at contract initiation (i.e. the corresponding plain vanilla option is at-the-money), that

the typical time to expiry is 70 (calendar) days, and that it is common to have the bar-

rier 2-5% away from initial spot. This means that the barrier options fit nicely into the

range (expiry and moneyness-wise) of our plain vanilla calibration instruments. Another

important feature of a barrier option is whether it is reverse (also known as live-out)

or not, which we term regular. A barrier option is of reverse type if the correspond-

ing plain vanilla option is in-the-money when the barrier event (knock-in or knock-out)

happens. This means that values of reverse barrier options change very rapidly in the

vicinity of the barrier: There is a big difference between just crossing, and not crossing;

exploding Greeks and gap risk are other terms used to describe this phenomenon. This

makes them hard to hedge — be that statically or dynamically, see Nalholm & Poulsen

(2006a, Table 2) for instance. The reverse barrier options are the down-and-out put

and the up-and-out call and their knock-in counterparts. From Table 1 we see that the

data-set is fairly balanced; in general reverse-type options are more common (73% of

contracts, 59% of observations), but the single-most observed contract is the (regular)

down-and-out call.

A final sanity check of the barrier option data is given in Figure 2. It shows (all)

the barrier options’ “implied” volatilities as expressed by the bank.6 We see that barrier

option volatilities line up reasonably closely to the implied volatilities of the plain vanilla

options.

3 Model selection and pricing methods

We consider five alternative models for the exchange rate. The model selection aims at

including models with different features: a model with state dependent volatility versus

one with stochastic volatility and a model with low jump activity and large jumps versus

6The reason for the quotes and the disclaimer is that even in the Black-Scholes model barrier option

values are not monotone functions of volatility. Hence, given an observed barrier option value there

may be multiple sensible input volatilities that match the observation, and thus implied volatility is not

uniquely defined. The bank’s data-set contains both “implied” volatilities and actual prices; we use the

former only for graphical purposes.
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Figure 2: The barrier option data from Danske Bank. Each gray circle represents a barrier option

data point in terms of an “implied” on the spot volatility. The fully drawn curve is the implied volatility

of the 1 month, at-the-money plain vanilla option.

one with high jump activity and small jumps. One requirement though is the existence of

reasonable methods for pricing barrier options either analytically or numerically. Under

these criteria we have chosen the following models, which are frequently encountered in

the literature: the constant elasticity of variance model (CEV), the stochastic volatility

model of Heston, the Merton jump-diffusion model and the infinite activity Variance

Gamma model (VG). Our benchmark model is that of Black-Scholes. All models have

the Black-Scholes model as a special or limiting case, but apart from that they are as

non-nested as can be, thus covering a large range of qualitatively different (and popular)

models. The models and pricing methods “at a glance” are shown in Table 2; more

detailed descriptions are given in the following subsections.
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Model Plain Vanilla Barriers

Black-Scholes Closed-form. All-encompassing closed-form formulation

in Rubinstein & Reiner (1991).

Constant elasticity Closed-form à la Schroder (1989) Collocation à la Nalholm & Poulsen (2006b).

of variance w/ Ding’s algorithm for the Inversion à la Davydov & Linetsky (2001).

non-central χ2-distribution.

Heston Fourier inversion using the Simulation à la Andersen (2008) w/

stochastic volatility formulation in Lipton (2002). bridge and control. PDE solution à la

Foulson & In ’t Hout (2010). Perturbation

expansion à la Wong & Chan (2008).

Merton The original formula by Simulation à la Joshi & Leung (2007)

jump-diffusion Merton (1976) is found more and Metwally & Atiya (2002).

efficient than Fourier inversion.

Variance Gamma Fourier inversion w/ tricks from Simulation à la Glasserman (2004)

Lee (2004) and Glasserman (2004). w/ tricks from Avramidis (2004).

Table 2: Annotated taxonomy of pricing.

3.1 The Black-Scholes model

In the Black-Scholes model the foreign exchange rate X follows a geometric Brownian

motion under the risk-neutral pricing measure:7

dXt = (rd − rf )Xtdt+ σXtdWt,

where rd and rf denote the assumed-constant domestic (US) and foreign (Euro) interest

rates. In this setup, closed-form formulas for both plain vanilla and barrier option prices

exist and will be used for pricing. It is well-known that the one-parameter Black-Scholes

model is not the best model to describe observed option prices — especially not for a

wider range of strikes and maturities simultaneously. However, it may still turn out to

be the preferred model choice for pricing barrier options due to its fast, stable and easily

implementable pricing procedure.

7By construction the price calibration estimates the pricing measure used by the market, thus all

parameters are under the/a risk-neutral pricing measure; say Q. For our price analysis, this is not a

restriction; if we were to study construction and performance of hedge portfolios both the risk-neutral

pricing measure and the real-world measure would matter — though possibly less so in practice than

in theory, see Poulsen, Schenk-Hoppé & Ewald (2009) and Siven & Poulsen (2009, Table 4).
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3.2 The Constant elasticity of variance model

A minimal extension of the Black-Scholes model is the constant elasticity of variance

model, in which the foreign exchange rate has the risk neutral dynamics

dXt = (rd − rf )Xtdt+ σXα
t dWt,

where α denotes the so-called elasticity of variance. In this model there are two param-

eters, α and σ, to be estimated. For α < 1 volatility increases as the exchange rate falls;

vice versa for α > 1 .

For pricing plain vanilla options we use the closed-form formula of Schroder (1989).

Several methods for pricing barrier options exist. Numerical techniques such as the finite

difference method and Monte Carlo simulation can be applied. Alternatively, as we have

chosen to do here, barrier option prices may be found via collocation as demonstrated

in Nalholm & Poulsen (2006b). Analytical formulas for barrier option prices based on

inversion techniques do exist (see Davydov & Linetsky (2001)), however, these are rather

involved and in our experience there is no real gain with respect to computation time

compared to the direct numerical approaches.

3.3 Heston’s stochastic volatility model

For the stochastic volatility model we have chosen the Heston model, where the exchange

rate and its instantaneous variance follow

dXt = (rd − rf )Xtdt+
√
vtXtdW

1
t ,

dvt = κ(θ − vt)dt+ η
√
vtdW

2
t .

Here θ is the long term level of variance, κ is the speed of mean reversion, η is referred

to as the volatility of volatility, and the driving Brownian motions have correlation ρ,

leading to a skew in implied volatilities. In the Heston model there are four parameters,

κ, θ, η and ρ, plus one state variable, v, to be estimated. The (conditional) characteristic

function of X can be found in closed form; this was first done in Heston (1993). This

means that plain vanilla option pricing becomes a question of one-dimensional numerical

integration; inverting a transform. There is a sizable literature on this, see Lee (2004).

We prefer the quadratic denominator formula of Lipton (2002). Closed-form solutions

for barrier options exist (see Lipton (2001)) in the case where domestic and foreign

short rates are equal and correlation is zero, but Faulhaber (2002) shows that there is

no simple way to relax those assumptions, which are unrealistic to impose on our data.

During the sample period the US short rate rd decreases from approximately 4% to 1%,

while the European short rate rf is more or less constant at 2.1%, and since we do see
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Figure 3: Simulated paths of Variance Gamma processes. The parameter values are σ = 0.1, θ =

0.0085, and ν = 0.01 (top), 0.1 (middle), 1 (bottom).

an implied skew in our data, fixing ρ = 0 is also too restrictive. Alternatives are the

PDE method described by Foulson & In ’t Hout (2010) or Monte Carlo simulation using

a quadratic exponential discretization scheme for the volatility process developed by

Andersen (2008). We use the latter and combine it with a Black-Scholes model control

variate. The simulation is run with 10 000 trajectories, each with time steps of one day.

3.4 Merton’s jump-diffusion model

The Black-Scholes model can also be extended to include jumps in the exchange rate as

done by Merton:

dXt = (rd − rf − λEQ(Zt − 1))Xt−dt+ σXt−dWt +Xt−(Zt − 1)dNt,

where N is a Poisson process with intensity λ, and logZt ∼ N (µZ , σZ) describes the

relative jump size as being normally distributed with mean µZ and variance σZ . The

Merton model has four parameters to be estimated: σ, µZ , σZ and λ.

Pricing plain vanilla options in this model can be done by Fourier inversion tech-

niques or — in our experience more efficiently — by using the original formula from

Merton (1976). Barrier option prices are found by Monte Carlo simulation methods as

suggested by Metwally & Atiya (2002) and Joshi & Leung (2007) via the use of impor-

tance sampling. Again we use 10 000 trajectories with daily sampling in the simulation,

and check that this is indeed sufficient to generate stable barrier prices.
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3.5 The Variance Gamma model

Another class of jump models are models exhibiting infinite jump activity as e.g. the

Variance Gamma (VG) model proposed by Madan & Seneta (1990). The foreign ex-

change rate under the risk neutral measure in the VG model is of the form

Xt = X0 exp{(rd − rf )t+ Y VG
t + ωt},

where Y VG
t = θGν

t + σW (Gν
t ) is a variance gamma process; a time changed Brownian

motion with drift, θt+ σWt, using a gamma process Gν with volatility ν as the stochas-

tic clock. The martingale correction term ω = 1
ν

ln
(
1− θν − 1

2
σ2ν
)

ensures that the

expected rate of return on assets equals the risk-neutral rate rd − rf . The parameter ν

controls for excess kurtosis and θ for skewness. The limit when ν → 0 (in which case

the influence from θ also disappears) is the Black-Scholes model. Figure 3 shows some

simulated paths of VG processes, and illustrates that for small ν-values, the process

looks diffusion’ish, while high ν gives a more Poisson-jump-like appearance.

Plain vanilla option prices can be found by Fourier inversion, as done in e.g. Lee

(2004). Barrier option prices can be found by simulation methods as presented in

Glasserman (2004) or the double-gamma bridge sampling algorithm by Avramidis (2004).

10 000 trajectories with daily sampling are used to generate the barrier prices.

4 Empirical results

4.1 Calibration and plain vanilla option valuation

On any specific date (t) and for any model j (naturally indexed by {BS, CEV, H, M,

VG}), we estimate the parameter set, ϑj(t), by minimizing the sum of absolute differ-

ences between the observed implied volatilities (IV ) and the model’s implied volatilities.

Or with symbols:

ϑ̂j(t) = arg min
ϑ

∑
i|t(i)=t

|IV obs(i)− IV model j(i;ϑ)|,

where the notational philosophy is that i denotes observations, and t(·) maps an obser-

vation to its date.

Implied volatilities place option prices in a comparable scale across strikes and ex-

piries. Minimizing differences to raw prices does not alter our results but makes the

numbers harder to relate to. One could also minimize differences to relative prices but

in our experience that tends to put too much weight on out-of-the-money options.8

8To illustrate: An implied volatility difference of 0.001 gives a 1% relative price difference for the
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Sample characteristics of estimators are given in Table 3. The calibrated parameters

are not constant over the sample period, but they are more stable than the meta-analysis

for S&P500 that is reported in Gatheral (2006, Table 5.4) indicating that exchange rate

markets are more benign than equity markets. Only the dangerously naive observer

would claim that a price outside the bid/ask-spread is an arbitrage opportunity, but

it is nonetheless a sensible yardstick. And on that count the models separate into two

categories; Merton and Heston hit about two-thirds of bid/ask-spreads, and the rest

about 40%. Other remarks:

• The difference between the average instantaneous variance, v0, and the Heston

model’s (risk-adjusted parameter) θ reflects the typically increasing term structure

of volatility.

• In the Merton model most (75%) of the variance of daily returns is caused by the

diffusion component.

• The sample mean of the VG estimates were used to generate the middle path in

Figure 3; the paths have a visible, but not extreme, non-diffusive character.

at-the-money option, but 2% for the out-of-the-money option. A variety of weighting schemes have

been suggested in the literature; to every man his own. An interesting point is made by Cont & Tankov

(2004, p. 439) that calibration to squared implied volatility differences corresponds (to a first-order

approximation) to using a vega-weighted average of price differences.

12



M
o
d
el

B
la

ck
-S

ch
ol

es
C

E
V

H
es

to
n

σ
σ

α
v 0

θ
κ

η
ρ

m
ea

n
0.

09
98

0.
08

91
1.

50
0.

00
96

4
0.

01
20

2.
22

0.
18

3
0.

06
34

st
d
.d

ev
0.

00
88

0.
01

47
0.

59
7

0.
00

24
4

0.
00

13
9

0.
52

5
0.

06
33

0.
11

7

m
ed

ia
n

0.
09

96
0.

08
99

1.
24

0.
00

88
9

0.
01

25
2.

12
0.

18
4

0.
07

31

m
in

0.
08

77
0.

04
51

-0
.0

91
0.

00
61

5
0.

00
89

4
0.

87
9

0.
00

18
6

-0
.4

65

m
ax

0.
11

6
0.

11
8

3.
39

0.
01

61
0.

01
50

7.
91

0.
41

2
0.

47
0

w
it

h
in

b
id

/a
sk

40
.3

%
38

.8
%

69
.2

%

M
o
d
el

M
er

to
n

V
G

σ
λ

σ
Z

µ
Z

σ
ν

θ

m
ea

n
0.

08
51

1.
24

0.
04

43
0.

00
33

9
0.

10
5

0.
10

2
0.

00
84

7

st
d
.d

ev
0.

01
57

0.
10

4
0.

02
08

0.
01

16
0.

00
38

7
0.

08
51

0.
06

66

m
ed

ia
n

0.
08

06
1.

26
0.

05
10

0.
00

28
0

0.
10

5
0.

08
98

0.
00

92
9

m
in

0.
05

93
0.

58
7

5.
00
·1

0−
5

-0
.0

32
5

0.
09

21
1.

08
·1

0−
4

-0
.3

10

m
ax

0.
11

8
1.

54
0.

07
7

0.
05

24
0.

11
3

0.
35

7
0.

29
4

w
it

h
in

b
id

/a
sk

65
.6

%
44

.3
%

T
ab

le
3:

S
am

p
le

ch
ar

ac
te

ri
st

ic
s

of
p

ar
am

et
er

es
ti

m
at

es
.

T
h

e
“
w

it
h

in
b

id
/
a
sk

”
ro

w
s

g
iv

e
th

e
p

er
ce

n
ta

g
e

o
f

th
e

ca
li

b
ra

te
d

m
o
d

el
p

ri
ce

s
th

a
t

fa
ll

w
it

h
in

a
b
id

/a
sk

sp
re

ad
of
±

0.
00

15
on

im
p

li
ed

vo
la

ti
li

ty
.

13



0 1 2 3 4 5

0.
00

15
0.

00
20

0.
00

25
0.

00
30

0.
00

35
0.

00
40

0.
00

45

Implied volatility errors as fct. of horizon h

h

E
|IV

|

BS
CEV
Heston
Merton
VG

Figure 4: Prediction errors for plain vanilla options at different horizons.

A particular model may perform well on the data that it is calibrated to, but have

poor predictive qualities (think of fitting a high-order polynomial to “a regular line with

noise”). To investigate this, Figure 4 shows the five models’ prediction errors at different

(business day) horizons. The fully drawn, differently colored curves show the models’

average absolute implied volatility differences for increasing horizons, i.e.

1

#obs. dates− h
∑
t

1

#i|t(i) = t

∑
i|t(i)=t

|IV obs(i)− IV model j(i; ϑ̂t(i)−h)|.

It is only for the Variance Gamma model that the ordering is changed when we look at

predictions; it is (slightly) better than Black-Scholes at horizon 0, but worse at longer

horizons. The errors of the Merton model are marginally lower than those of the Heston

model at all horizons, and the differences are statistically significant (at a 5% level) at

horizons of two days or more. As a rule-of-thumb-quantification of how much better the

Heston and Merton models perform, we can look at the horizons where their prediction

errors match the horizon-0 errors of the others models, i.e. the points, say hj, on the

abscissa where the red and blue curves cross the dash-dotted horizontal lines. A way to
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interpret these numbers is to say: “Using model j with ’freshly estimated’ parameters is

(on average) as good as using a Heston or Merton model with hj day old parameters”.

We see that the Heston and Merton models are caught up with by the other models

after about one week.

4.1.1 Combining stochastic volatility and jumps; the Bates model

One may suspect a combination of the Heston and Merton models to perform even

better. A stochastic volatility model including Poisson jumps in the exchange rate —

also known as a Bates model following Bates (1996) — has the dynamics

dXt = (rd − rf − λE(Zt − 1))Xt−dt+
√
vtXt−dW

1
t +Xt−(Zt − 1)dNt

dvt = κ(θ − vt)dt+ η
√
vtdW

2
t ,

with ρdt = cor(dW 1
t , dW

2
t ). The Bates model has a total of seven parameters, κ, θ, η,

ρ, λ, µZ and σZ , plus one state variable, v0. Calibration of this model is a numerically

delicate matter but can be carried out as suggested by Kilin (2011).

For the plain vanilla data the Bates model’s average absolute implied volatility error

is up to two significant digits (and no statistical significance) identical to the Merton and

Heston models’. Since the Bates model does not improve the results over Merton and

Heston models, we see no reason to implement further extensions of the model, like e.g.

the Universal Volatility model introduced in Lipton (2002) and used for barrier option

pricing in Lipton & McGhee (2002), in a setting with correlation ρ = 0.

4.1.2 Combining Levy-models and stochastic volatility; the VG-CIR model

A way to introduce stochastic volatility into pure jump models such as the Variance

Gamma is to subject the driving process to a random time-change, i.e. to work with

Y VG
Zt

where Zt is an increasing stochastic process. Carr, Geman, Madan & Yor (2003)

show how characteristic functions in some cases can be expressed by composition of the

Laplace-transform of the time change process and the characteristic function of the orig-

inal model. A convenient choice of time-change process is an integrated Cox-Ingersoll-

Ross process (independent of the original Y VG-process), whose Laplace-transform is part

of the interest rate theory vocabulary. Again, calibration of this six-parameter (and one

more or less latent state variable; the current value of the subordinator) VG-CIR model

is a delicate matter for which we refer to Kilin (2011).

The cross-sectional average implied volatility error for the model is 0.23%; lower than

the VG model’s error, but not as good as the Heston and Merton models.9

9Detailed results for the Bates and VG-CIR, corresponding to those in table 4 and 5, will be provided

upon request.
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4.2 Barrier option valuation

We now turn to the main question: How well do the different models perform when it

comes to valuing barrier options? Implied volatilities for barrier options are not well-

defined and their raw prices differ several orders of magnitude. Therefore we will report

relative price errors for the barrier options. To fix notation, the (percentage) relative

error for the i’th observation for the j’th model at horizon h is

ξji,h = 100× Bmodel j(i; ϑ̂j(t(i)− h))−Bobs(i)

Bobs(i)
,

where the notational philosophy is as before, and the B·(i; ·)’s denote values of barrier

options with the appropriate characteristics. For comparison we report relative errors

of plain vanilla options too. These are defined analogously and denoted by eji,h.

For plain vanilla options, the estimation procedure ensures that each model’s average

errors are small.10 Thus plain vanilla comparisons should be made based on some mea-

sure of dispersion such as standard or mean absolute deviation. For barrier options both

average errors and their dispersion are relevant measures of a model’s quality. Therefore

our tables (Table 5 for barrier options, Table 4 for plain vanilla) report sample averages

of both errors and absolute errors. For the errors, † and ‡ indicate that there is no

significant difference from 0 at, respectively, the 5% and 1% levels. For the absolute

errors, ∗ and ∗∗ indicate that errors are not significantly different from those of the

Heston model; this is the result of a paired test based on absolute error differences.

In Table 4 we have sub-divided the relative plain vanilla option pricing errors into

out-of-the-money (OTM) and at-the-money (ATM) errors. General for all five models

(except Heston’s errors at horizon 0) is that they produce larger relative pricing errors

for options out-of-the-money. This is in line with the previous observation that a given

implied volatility error corresponds to a larger relative price error for an out-of-the-

money option than for an option at-the-money.

From Table 5 we see that the three continuous-path models (Black-Scholes, CEV and

Heston) have quite similar behaviour when it comes to barrier option valuation. The

CEV model is most accurate with regards to average price errors (0.1% vs. -3.5% for

Heston and 2.7% for Black-Scholes), while the Heston model has the lowest dispersion

(average absolute error of 7.8% vs. 8.2% for Black-Scholes and 8.5% for CEV). One

could explain the good behaviour of the Black-Scholes model as a self-fulfilling proph-

esy; market participants use Black-Scholes formulas because that is what is on their

computers. But if that were the only reason, we would expect to see rapid deterioration

10We minimize averages of absolute differences of implied volatilities. Therefore average errors (raw

and particularly relative) are not exactly zero.
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in the Black-Scholes model’s predictive quality.11 We do not; conclusions are invariant

to the prediction horizon.

Looking at the plain vanilla benchmark in Table 4 we see that the continuous-path

models’ error dispersions for barrier options are two to five times larger than for plain

vanilla options. Or differently put, barrier options are half an order of magnitude harder

to price.12 For the jump-models (Merton and Variance Gamma), the story is quite

different. The Merton model is bad (dispersion of 29%; about four times that of the

continuous-path models), and the Variance Gamma model is worse (dispersion of 79%;

a ten-fold increase). Again, this holds at all horizons. One could argue that “that is

because continuous-path models systematically underestimate knock-out probabilities.

You should still use models with jumps.” But that fails to explain why the Merton

model undervalues the barrier options (by 23% on average) and the Variance Gamma

model overvalues them (by 67% on average). For plain vanilla options, the Merton

model was arguably one of the best performing models, and Variance Gamma was on

par with Black-Scholes and CEV. Thus their poor ability to explain barrier option values

again emphasizes the model risk aspect pointed out by Schoutens, Simons & Tisteart

(2004), Hirsa, Courtadon & Madan (2002), Detlefsen & Härdle (2007) and numerous

other papers: Models may produce very similar prices of plain vanilla options yet differ

markedly for exotic options.

To understand the models’ pricing performance for barrier options we have analyzed

inter-model differences; we simply changed “observed values” to “Black-Scholes values”

in the definition of relative errors. This reveals that the Black-Scholes and CEV model

values typically are closer to each other, than they each are to data (the average absolute

CEV-to-Black-Scholes error is 4.8% compared to about 8% for each model with observed

values as reference point), while the average absolute Heston-to-Black-Scholes error is

8.4%.

To further detect patterns, we have sub-divided errors according to different criteria:

reverse vs. regular and up vs. down. Results are also reported in Table 5; the numbers in

parentheses. First, we see that error dispersions are markedly larger for reverse barrier

options than for the regular ones; sample averages of absolute errors are 2-3 times higher.

11This line of thought is equally valid with Black-Scholes substituted by other named models.
12Since the plain vanilla option data and the barrier option data stem from two different sources, we

have no guarantee that the data sets are collected at the same time of day and this may influence the

models’ performance with respect to barrier option pricing. To check whether such time asynchronicity

affects our results, we have recalculated the barrier option errors using parameters estimated using plain

vanilla prices one day prior and one day after the barrier option observation. Both experiments results

in marginally worse barrier option errors. Therefore, if a time asynchronicity exists, it has no significant

influence on our results.

19



Given the difficulties in hedging the reverse options due to their exploding Greeks, this

increased dispersion between market and model values may be understandable, but it

should be noted that there is no clear pattern for the average errors from the reverse-

regular stratification. There is little effect from the up-down split which we interpret as

more evidence that exchange rate markets are reasonably symmetric.

With respect to barrier option pricing, the Bates model performs better than the

Merton and VG models but significantly worse than the Heston model with average

absolute errors of 24.7% (h = 0) and 25.6% (h = 5). So adding jumps to the Heston

model merely worsens the model’s barrier option valuation abilities. The same is true

when introducing stochastic volatility into the VG model as in the VG-CIR model.

5 Conclusion

We investigated empirical barrier option values, and found that in general the continuous-

path models, Black-Scholes, constant elasticity of variance, and Heston’s stochastic

volatility, did equally well in explaining the market data, while the jump models that

were investigated, Variance Gamma and Merton’s jump-diffusion, turned out to be quite

inaccurate, this despite the jump-diffusion model being — arguably — the best perform-

ing model for plain vanilla options.

A logical next step is to investigate how well the barrier options can be hedged,

dynamically, statically, or by some hybrid hereof. A particularly interesting question,

that the barrier option data-set allows us to shed (some) light on, is the benefit of

applying a portfolio — rather than “each option on its own” — approach to hedging.
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