
D5.1: Specification of casmacat workbench

Daniel Ortiz, Vicent Alabau, Philipp Koehn and Ragnar Bonk

Distribution: Public

casmacat
Cognitive Analysis and Statistical Methods
for Advanced Computer Aided Translation

ICT Project 287576 Deliverable D5.1

Project funded by the European Community
under the Seventh Framework Programme for
Research and Technological Development.

Project ref no. ICT-287576
Project acronym casmacat
Project full title Cognitive Analysis and Statistical Methods for Advanced

Computer Aided Translation
Instrument STREP
Thematic Priority ICT-2011.4.2 Language Technologies
Start date / duration 01 November 2011 / 36 Months

Distribution Public
Contractual date of delivery January 31, 2012
Actual date of delivery April 3, 2012
Date of last update April 3, 2012
Deliverable number D5.1
Deliverable title Specification of casmacat workbench
Type Report
Status & version Draft
Number of pages 34
Contributing WP(s) WP5
WP / Task responsible UEDIN, CBS, UPV
Other contributors
Internal reviewer Philipp Koehn
Author(s) Daniel Ortiz, Vicent Alabau, Philipp Koehn and Ragnar

Bonk
EC project officer Aleksandra Wesolowska
Keywords

The partners in casmacat are:

University of Edinburgh (UEDIN)
Copenhagen Business School (CBS)
Universitat Politècnica de València (UPVLC)
Celer Soluciones (CS)

For copies of reports, updates on project activities and other casmacat related infor-
mation, contact:

The casmacat Project Co-ordinator
Philipp Koehn, University of Edinburgh
10 Crichton Street, Edinburgh, EH8 9AB, United Kingdom
pkoehn@inf.ed.ac.uk
Phone +44 (131) 650-8287 - Fax +44 (131) 650-6626

Copies of reports and other material can also be accessed via the project’s homepage:
http://www.casmacat.eu/

c© 2012, The Individual Authors
No part of this document may be reproduced or transmitted in any form, or by any means,

electronic or mechanical, including photocopy, recording, or any information storage and
retrieval system, without permission from the copyright owner.

Executive Summary

This document contains details about the design of the casmacat workbench. It outlines the
major components, their interaction, and gives also implementation guidelines. The deliverable
is a snapshot of the document at the beginning of the casmacat project, it will be refined
throughout development and serves as technical documentation.

Contents

1 Introduction 5

2 Use Cases 6
2.1 “Authenticate” Use Case . 6
2.2 “Upload Document” Use Case . 6
2.3 “Edit Translation” Use Case . 9
2.4 Modules Defined by the Use Cases . 11

3 API Specification 11
3.1 Authentication Module API . 11
3.2 Document manager API . 12
3.3 HTR module API . 13
3.4 Translation module API . 13

3.4.1 MT-related API . 13
3.4.2 IMT-related API . 14
3.4.3 Extension to Google translation API . 16

4 System Architecture 16
4.1 Plugin architecture . 17
4.2 UPVLC special needs . 17
4.3 CBS special needs . 17
4.4 System Architecture . 18

5 Data Formats And Implementation Details 19
5.1 Implementation Languages . 19
5.2 Database Schemas . 19

5.2.1 Users . 19
5.2.2 Documents . 21
5.2.3 Assignments . 21
5.2.4 Sentences . 21
5.2.5 Translations . 21
5.2.6 Machine Translation Systems . 22
5.2.7 Translation Session . 22
5.2.8 Session Setup . 22
5.2.9 Key Events . 22
5.2.10 UI Events . 23
5.2.11 Eye Tracking Log . 23

6 UI Specification 24
6.1 Current Translation Environment . 24
6.2 Proposal for casmacat Translation Environment 24
6.3 Additional Concerns . 27
6.4 Concerns regarding eye tracking . 28

3

A Alternative System Architecture Proposals 30
A.1 Architecture Alternative 1 . 30
A.2 Architecture Alternative 2 . 31

B Acronyms 34

4

1 Introduction

The casmacat Workbench allows users to enter documents in a source language, and then
receive assistance in translating them into a target language. The assistance is based on infor-
mation from machine translation systems.

A simplified diagram of major components of the system is as follows:

Editor
• Implemented in HTML5 / JavaScript
• Runs in Browser on user machine
• Is sent to browser from server

GUI Server
• Implemented in PHP, Apache
• Follows Model/View/Controller prin-
ciple
• Also provides API for other editors
• Runs on remote server, may be in-
stalled on local machine

Translation Server (TS)
• 2 implementations (C++) by project:
Moses [3] (provided by UEDIN) and
Thot [7] (provided by UPVLC)
• May be external engine (Google, etc.)

Database
• Implemented with MySQL
• Contains all user data (source doc-
ument, machine translation data, user
translations, logging)
• Typically runs on same machine as
server

HTTP, WebSockets

Extended Google API

SQL Request

From a user perspective, the following installations will be the most common:

• Basic: The casmacat Workbench is hosted on a remote web site (http://demo.casmacat.
eu). The user accesses this web site with her web browser. The casmacat Editor appears
in the browser, and the user can use it to translate documents.

• Advanced: The user installs the casmacat GUI Server, a machine translation engine
and the database on her own machine. The user can then access the Workbench with a
web browser as in the above example.

Note that the modularity of the design allows for:

• use of any other machine translation engine, including other commercial ones

• use of any other editor, which supports some or all functionality of the casmacat Work-
bench

5

http://demo.casmacat.eu
http://demo.casmacat.eu

2 Use Cases

Before describing the API of the casmacat workbench, the basic functionality offered by the
casmacat editor is defined in terms of a use case diagram. Figure 1 shows a use case diagram
for the casmacat Editor.

casmacat editor

Authenticate

Upload document

Edit translation

User

Figure 1: Use case diagram for the casmacat editor.

As can be seen in the diagram, the functionality that can be accessed from the casmacat
editor is expressed by means of three use cases, namely, the “Authenticate”, the “Upload
Document” and the “Edit Translation” use cases. Below we show a more detailed description
of each individual use case.

2.1 “Authenticate” Use Case

The “Authenticate” use case allows the user to identify herself to the casmacat workbench.
Figure 2 shows an interaction diagram for the “Authenticate” use case. The casmacat editor
communicates with the authentication module. The process does not differ from a typical
authentication process. However, it should be noted that the authentication module returns a
user identification (user id) and a key to the casmacat editor. When the editor makes requests
to other modules, such as the translation module that is depicted in the diagram, the request
includes the user identification and the corresponding key, and the module checks the validity
of the key by making a query to the workbench database. The user identification is important
since there will be operations requested by the casmacat editor that depend on which user is
executing them.

2.2 “Upload Document” Use Case

There exist two possible approaches for a translation process in casmacat . The first one is
“document based” and the second one would be “on-the-fly”.

6

User

Connect

Editor Authentication Module

Login page

Credentials

Credentials

Login failed message
Not OK

OK, user id, key

IF AUTHENTICATION FAILED

ELSE

Start page

.

Query database

Translation Module

Connect, user id, key

. . .

IF USER VALIDATED

Result

Select sentence to translate

Result

Query database

Validate user

Result

Generic translation operation

Generic translation operation

Figure 2: Interaction diagram for the “Authenticate” use case.

For the “document based” approach every source text that should be translated must be in
form of a document. This could be a file but in any case it is considered to be a sequence of
sentences/segments which has a name. This document is uploaded by a user or admin with the
help of the document manager.

Figure 3 shows an interaction diagram for the “Upload Document” use case. After being
authenticated, the user accesses the upload document page and chooses a document to be
uploaded. The user browses the document to be uploaded and also set the machine translation
system that will be used to carry out translations and other MT-related operations (the MT
system is identified in the casmacat workbench by means of the “mt sys id” variable). The
document is sent by the editor to the casmacat document manager. The document manager
has to carry out different tasks for each newly uploaded document:

1. Preprocess the document (sentence splitting, text normalization).

2. Store the preprocessed document in the workbench database.

7

3. Generate translations for each sentence of the document (using the translation module).

4. Generate word-graphs for each sentence if it was requested (using the translation module).

It is also worthy of note that the “document based” approach described above enables
configuration of particular experiments and is a good solution for tracking and logging.

User

Editor Document Manager

AUTHENTICATE

Access upload document menu

Upload document page

Browse documents

Upload document, mt sys id

Upload document, mt sys id

Preprocess document

Create entries for document in database

Schedule wordgraph generation

Select MT-system

Figure 3: Interaction diagram for the “Upload document” use case.

For the second approach, “on-the-fly”, only a part of the document or even only one segment
or sentence should be translated. That is much more like what Google Translate is doing. Even
though this approach seems not to be needed within casmacat . But if it is wanted at a later
point of the project it can be easily done: A document can be automatically generated from
the user’s input and then it can be processed just like described above.

Through the ’document based’ approach it is also always guaranteed that there is a trans-
lation present for a source sentence/segment.

8

2.3 “Edit Translation” Use Case

The “Edit Translation” use case allows the user to access the different translation functionalities
that will be developed during the casmacat project.

After being authenticated, the users of the casmacat editor first select a document from
a list of documents for translation. For this purpose, the casmacat editor communicates with
the document manager. The document manager accesses the casmacat database to retrieve
the requested document and returns the corresponding web page to the editor. Figure 4 shows
a graphic representation of such process.

User

List documents

Editor Document Manager

List documents page

Document list data

Select document

Document trans. page
Document data

Request document list

Request document

Figure 4: select document subroutine of the “Edit Translation” use case.

After selecting the document to be translated, the user selects an individual translation in
which she is interested to work. The casmacat editor requests the translation to the document
manager. After that, the editors asks the translation module to prepare itself to translate the
current source sentence.

After the editor has retrieved the current translation of the sentence selected by the user, the
user can correct it using one of the two operating modes that will be studied in the casmacat
project, namely, post-edition and interactive machine translation (IMT).

If post-edition is enabled the machine translation is displayed in the edit textbox, and the
user may change it in any way. When satisfied, the users presses a submit button (or enter) to
send the translation to the server, to be stored in the database.

If the user wants to interactively translate the sentence, then an iterative process is started
in which the user partially validates the current translation and the server generates completions
for such partial validations.

Figure 5 shows an interaction diagram for the “Edit Translation” use case.

9

User

Editor Translation Module HTR Module

Select sentence

Request translation

Interaction

Set partial validation

Translation completion

WHILE SENTENCE NOT CORRECT

Validate translation

Validate translation

Validate translation completed

Validate translation completed

AUTHENTICATE

SELECT DOCUMENT

Document Manager

Update translation

IF E-PEN INTERACTION

Decode e-pen interaction

Edit actions

Sentence translation

IF POST-EDITION ENABLED

ELSE START IMT PROCESS

Set source sentence

Update translation

Translation completion

Translation page

Correct translation

Figure 5: Interaction diagram for the “Edit Translation” use case.

10

2.4 Modules Defined by the Use Cases

As a by-product of the definition of the different use cases for casmacat workbench, a total of
four different modules have been defined:

• Authentication module: manages user authentication, returns user identifications and
keys associated to them to allow other modules to verify the identity of the users.

• Document manager: executes differents tasks such as document preprocessing, trans-
lation and word-graph generation, etc.

• HTR module: converts user e-pen interactions into edit actions. The edit actions deter-
mine a partial validation of the target translations that are completed by the translation
module.

• Translation module: generates translations, word-graphs and completions for partially-
validated target sentences.

3 API Specification

In this section, the basic details of the client-server API’s are described. Since the casmacat
editor communicates with different modules, in the following sections several different API’s
are described. The descriptions are mainly intended to describe the functions as such but not
necessarily how the modules will be deployed in the final system architecture.

3.1 Authentication Module API

The authentication module manages user credentials returning a user identification and a related
key which is used by other modules to validate the identity of the user.

• authenticate

– DESCRIPTION: authenticates a user given her credentials. An error value is
returned depending on whether the authentication was successful or not. If the
authentication was successful, a user identification and a key associated to it are also
returned.

– INPUT:

∗ string login

∗ string password

– OUTPUT:

∗ bool error value

∗ integer user id

∗ integer key

• validate user

– DESCRIPTION: validates a user given her user id and its associated key. An error
value is returned depending on whether the validation was successful or not. After
a module has validated a user, then its user id is kept during the rest of the session.
This way, further calls to specific API functions will not require to pass the user id.

– INPUT:

∗ integer user id

∗ integer key

– OUTPUT:

∗ bool error value

11

3.2 Document manager API

The document manager has the function to store and process the documents uploaded by the
users, to generate translations for the sentences contained in it and to generate word-graphs if
it was requested. This is a dedicated service since the involved tasks could be very sophisticated
for different languages.

• upload document

– DESCRIPTION: executes different tasks to preprocess the documents uploaded by
the users (text normalization, segment splitting,...), generates an initial translation
for each segment. It also generates word-graphs if required (for this purpose, the
value of the boolean variable “gen wg” is inspected). Each document will have
an associated machine translation system,“mt sys id”, which is used to genererate
translations and other MT-related operations.

– INPUT:

∗ string document

∗ integer mt sys id

∗ bool gen wg

– OUTPUT:

∗ bool error value

• merge

– DESCRIPTION: merges the translated segments into a new translated document.
For this purpose, “document id” and “user id” variables have to be supplied.

– INPUT:

∗ integer document id

– OUTPUT:

∗ string document

Additionally, it is also important to define with more detail the profile of some functions
used by the casmacat editor to request and update translations:

• request translation

– DESCRIPTION: this function accesses the database of translations governed by
the document manager to retrieve the current partial translation of a given source
sentence.

– INPUT:

∗ integer doc id

∗ integer sentence id

– OUTPUT:

∗ integer user id (identification of the user that made the last translation update)

∗ string[] target

∗ bool[] validated words

• update translation

– DESCRIPTION: this function updates the current partial translation of a given
source sentence in the database of translations governed by the GUI Server.

12

– INPUT:

∗ integer doc id

∗ integer sentence id

∗ integer user id

∗ string[] target

∗ bool[] validated words

3.3 HTR module API

This section describes the API of the HTR module that is used to manage interactions using
the e-pen.

• decode epen interaction

– DESCRIPTION: extracts information contained in an interaction using the e-pen.
This information is transformed into edit actions to be applied by the casmacat
Editor. As a result, a partial validation of the target translation is determined.

– INPUT:

∗ string[] source

∗ string[] target

∗ bool[] validated words

∗ coordinates[] pen strokes

– OUTPUT:

∗ edit action action

∗ string decoded target word

3.4 Translation module API

The casmacat translation module provides a set of functions that allows the user to automat-
ically or interactively translate sentences and to validate translations.

For each function, a brief description and the set of input and output parameters are shown.
It is worthy of note that the source and target sentences are represented here as vectors of
strings (string[]) instead of as strings. This representation is required to appropriately as-
sign properties to the words that compose the sentences, such as confidence scores and word
alignments, that are represented as vectors and matrices, respectively.

3.4.1 MT-related API

This section describes the MT system’s API based on Moses.

• translate

– DESCRIPTION: translates sentence specified as ’text’. If ’align’ switch is on,
phrase alignment is returned. If ’sg’ is on, search graph is returned. If ’topt’ is on,
phrase options used are returned. If ’report-all-factors’ is on, all factors are included
in output. ’presence’ means that the switch is on, if the category appears in the xml,
value can be anything

– INPUT:

13

∗ string text (required)

∗ presence align (optional)

∗ presence sg (optional)

∗ presence topt (optional)

∗ presence report-all-factors (optional)

– OUTPUT:

∗ string text

∗ ALIGN align (if requested)

∗ SG sg (if requested)

∗ TOPT topt (if requested)

• update

– DESCRIPTION: updates a suffix array phrase table. If ’bounded’ switch is on,
seems to do nothing at the moment. If ’updateORLM’ is on, a suffix array language
model is also updated.

– INPUT:

∗ string source (required)

∗ string target (required)

∗ string alignment (required)

∗ presence bounded (optional)

∗ presence updateORLM (optional)

3.4.2 IMT-related API

This section describes the IMT related API. The IMT related API allows users to interactively
translate sentences. The API includes functions to translate a source sentence, to partially
validate translations and to validate a target sentence as an error-free translation of a given
source sentence. This API is based on previous experience of UPVLC on IMT [8].

• translate source sentence

– DESCRIPTION: this function translates a given source sentence.

– INPUT:

∗ string[] source

– OUTPUT:

∗ string[] target

• set partial validation

– DESCRIPTION: this function is intended to be used in an IMT framework. Specif-
ically, it allows the user to obtain a translation completion given a target translation
that has been partially validated.

– INPUT:

∗ string[] target

∗ bool[] validated words

– OUTPUT:

∗ string[] target

∗ bool[] validated words

14

• set prefix

– DESCRIPTION: this function is a specialization of the set partial validation func-
tion. Specifically, it allows the user to obtain a translation completion given a target
translation prefix, which is assumed to be validated, and the current suffix, which is
not validated and can be discarded by the IMT system.

– INPUT:

∗ string[] prefix

∗ string[] suffix

– OUTPUT:

∗ string[] suffix

• get alignments

– DESCRIPTION: this function computes an alignment matrix between the source
and target sentence.

– INPUT:

∗ string[] source

∗ string[] target

– OUTPUT:

∗ bool[][] word alignment

• get translation confidence

– DESCRIPTION: this function computes the confidence of the current translation
given the source sentence.

– INPUT:

∗ string[] source

∗ string[] target

∗ bool[] validated words

– OUTPUT:

∗ float confidence score

• get word confidences

– DESCRIPTION: this function computes the confidence of each target word given
the source sentence.

– INPUT:

∗ string[] source

∗ string[] target

∗ bool[] validated words

– OUTPUT:

∗ float[] confidence scores

• validate translation

– DESCRIPTION: this function is used to validate a target sentence as an error-free
translation of a given source sentence. The server can extend the parameters of its
statistical translation models using this newly generated training pair.

– INPUT:

∗ string[] source

∗ string[] target

∗ bool[] validated words

15

Note: get alignments, get translation confidence and get word confidences are stan-
dalone functions since they represent optional features and should have a less frequent invocation
rate than set partial validation and set prefix. Besides, get translation confidence be-
longs to a separate task (3.1) whereas get word confidences belongs to Task 3.2. Thus, being
separated functions will reduce their coupling and allow the developers to work independently
from the other modules.

3.4.3 Extension to Google translation API

During discussion regarding the API specification, the project partners stressed the interest
of extending the casmacat translation API to cover the basic functionality provided by the
Google translation API.

Currently, the Google translation API provides three different functions:

• translate: translates source text from source language to target language.

• languages: list the source and target languages supported by the translate methods.

• detect: detect language of source text.

Among the above described functions, it is interesting to show the profile of the “translate”
function:

• translate

– DESCRIPTION: translates source text from source language to target language.

– INPUT:

∗ key

∗ string source

– OUTPUT:

∗ string target

It should be noted that the “translate” function can be easily implemented in terms of the
functions already defined in the casmacat translation API.

Interactive MT and enriched editing requires additional information from the machine trans-
lation system. This can be requested with additional parameters, such as:

• sg — request search graph

• topt — request translation options

4 System Architecture

An important thing at the beginning of the development of a new software is to agree on the
system’s architecture. The architecture influences wide parts of the software and is very hard to
change afterwards. It also has an impact on API specification and is most likely more important
than choosing a language for the implementation.

This section discusses the architecture designed for the casmacat workbench. Great efforts
have been put into this part to find a common suitable solution. As there are very different needs,
it was difficult to find a perfect solution. Even though there exists a version that is basically
agreed on by the partners, there also exists alternatives that may become more reliable within
the progress of the casmacat project. These alternatives are also included in this document
for further reference if that was required (see appendix A).

Before presenting the casmacat system architecture, there are some basic clarifications of
the plugin architecture and the special needs of the partners that are explained below.

16

4.1 Plugin architecture

A plugin architecture has been designed to facilitate the deployment of the different engines
resulting from WP2, WP3 and WP4 research. The plugin architecture should use dynamic
libraries to load the engines in run-time. The pimpl idiom [10] or the bridge pattern [9] should
be used to provide binary compatibility [6].

This way, the engines and the server can be compiled separately only depending on a couple
of header files (without linking dependencies). Furthermore, as these headers are expected to
provide a minimalistic interface which should stabilise in early steps of development, binary
compatibility with older engine versions will be probably valid for long periods of time. In
addition to this, the pimpl idiom will not force the developers to change their data structures but
just require them to write a handful of methods for data conversion. UPVLC has experience in a
similar architecture involving several systems (thot, wordgraph server, moses) with satisfactory
results [1].

4.2 UPVLC special needs

IMT systems impose some restrictions over the communication protocol, specially since requests
must be served as real-time as possible and interactions are performed on character/keypress
basis. For that matter, UPVLC proposed the rest of the partners to reconsider the use of xml-
rpc requests in favour of json-rpc requests [2]. Although there is quite a bit of discussion in the
web concerning which protocol is best (e.g. [5]), the consensus can be resumed in the following
items:

• Pros of using json-rpc

– Lightweight protocol, ie. higher chances to fit in the maximum transmission unit
(MTU). Internet communication is the major source for lag. Hence, reducing the
number of messages to pass is crucial.

– Faster parsing.

– Better integration with JavaScript and HTML5.

– More human readable.

• Cons of using json-rpc

– Less mature.

– No type checking.

Since the client seems to be implemented in a web browser and the IMT system could benefit
from extra speed, json-rpc seems to suit better the project’s needs. Regarding the cons, although
json-rpc is less mature than xml-rpc, it is already quite mature. A reasonable amount of open
source libraries in the most popular programming languages can be found in the web.

4.3 CBS special needs

Logging the user actions (key strokes, e-pen usage and eye tracking data) and also the results
of those actions must be correct and fast. For instance, also the predictions made by the IMT
system must be stored because otherwise they will not to be replayed correctly as they can
change over time. So it is a must that every action and its results are communicated to the
module that is responsible for logging. And also the replay must work correctly and reproduce
the session without errors. Depending on the translation session length and the amount of user

17

actions this can be much data. How much that actually will be is currently difficult to know
but it is approximately about 60MB for only the eye tracking data collected within 30 minutes.
So it is intended to increase and we are not sure for now if the data should be communicated
in real time, collected offline or if some buffering and then sending it in chunks is the best
approach. But as at least key strokes and e-pen actions are commands that need to be sent to
the appropriate module, it seems that the first approach is a good solution as everything will
be sent twice otherwise.

4.4 System Architecture

After extensive discussion between the project partners, a specific system architecture was
agreed. This system architecture tries to satisfy the set of special needs that were explained
above.

Figure 6 shows a diagram of the architecture of the casmacat Workbench. According to
the figure, there are five major components:

• Editor: is the interface between the user and the functionalities provided by the cas-
macat workbench. It communicates with two different components: the GUI server and
the multimodal translation server.

• GUI server: serves web pages to the editor interface. Handles logging and replay infor-
mation.

• Translation server: provides translation services including regular MT and IMT and
the possibility to link an external translator server. In addition to this, it is also used for
authentication and document management purposes.

• HTR server: handles user interactions by means of an e-pen.

• Database: two databases have been identified. the first one should be visible to the
translation server and store user information, documents, partial or total translations of
the documents. The second one should be visible to the GUI server and store replay infor-
mation. The database does not store the the statistical parameters needed to implement
the MT functionality.

In the proposed architecture, the GUI server, the translation server and the HTR server
constitute separated entities. First, because the translation server should be decoupled from
the GUI server to allow different translation clients, e.g. a batch command-line client for
experimentation. Second, a physical separation will provide a more robust environment (the
translation and the HTR servers are a complex piece of software) and will facilitate distributed
computing. Furthermore, the HTR server has been separated from the Translation server since
a client might not implement HTR features, e.g. a command-line client for experimentation
purposes. Finally, certain functions included in the “Edit translation” use case, specifically
the IMT and HTR functionality, impose certain performance constraints. For that reason,
websockets are used. However, current websocket proxies for popular webservers are not quite
mature yet. If a proper technology matures during the development of the project, then we will
consider to put the translation server behind the web server.

Due to such time constraints, web sockets are used to directly communicate the graphical
interface and the multimodal translation server.

The definition of the use cases shown in the previous section produced a total of four
modules, namely, authentication, document manager, HTR and translation modules. According
to Figure 6, the HTR module is deployed in the HTR server and the rest of the modules

18

are deployed inside the translation server. The graphical interface accesses the functionality
provided by the translation server by means of the APIs for the different modules described in
section 3.

In previous versions of our system architecture proposal, the document manager and the
authentication functionalities were managed by the GUI server. The design has been modified
due to the following reasons:

• Document manager functionalities are language related. The document manager module
may need to access the funcionality provided by the translation module to obtain trans-
lations for the source sentences or generate wordgraphs. Since the translation module is
deployed in the multimodal translation server, the document manager fits more naturally
inside the same server.

• Authentication has also strong connections with translation functionality, since the MT-
and IMT-related functions require user information to work properly, especially for adapt-
ing models in online learning. In addition to this, the tasks performed by the document
manager also require information about users. If the authentication module is deployed in
the GUI server, the multimodal translation server cannot be used independently, reducing
the modularity of the resulting components.

5 Data Formats And Implementation Details

In this section, the data formats and other implementation details of the casmacat Workbench
are described.

5.1 Implementation Languages

The implementation languages have been defined at an early stage of the project. For most
of the MT or IMT parts that will be C++ as those have already been implemented in this
language. For the GUI Server this will be PHP running on Apache and HTML with JavaScript
using the JQuery engine. The database will be a MySQL database for all components using a
database. The browser extensions will also be implemented in C++.

5.2 Database Schemas

This section describes the basic database tables in which user data is stored. The elements
marked with an asterisk are additions to the original specification.

5.2.1 Users

Field Type Description

id int(11) unique identifier
name varchar(255) textual descriptor
email varchar(255) verified email address
password∗ varchar(255) encrypted version of the password to test against
status varchar(255) ’new’, ’verified’, ’blocked’, ’admin’

19

Translation server

Editor

in lab

w
eb

so
cket/json

HTTP(S)

tran
slation

A
P

I

Internet

HTR Server

Translation module
(MT and IMT systems,

word aligner,
confidence measures)

Authentication
module

GUI server
(Apache/PHP)

web

server

Browser (HTML/javascript)

(websocket/C++)

multimodal

machine

translation

server

browser extension
(BHO/XPCOM)

user

interface

log/replay
database

Document
manager

logging and replay

A
u

th
en

t./D
o
c.

M
an

ager
A

P
I

H
T

R
A

P
I

Users/Models/
Documents

External
translator server
(Google, TM)

w
ebsocket/json

Figure 6: Proposal of system architecture.

20

5.2.2 Documents

Field Type Description

id int(11) unique identifier
name varchar(255) textual descriptor
status varchar(255) ’new’, ’translated’, ’edited’, ’reviewed’
text text raw content with formatting
user-id int(11) unique identifier of owner
system-id int(11) unique identifier of machine translation system used

5.2.3 Assignments

Documents are assigned to users to edit. The same document may be assigned to multiple
users.

Field Type Description

id int(11) unique identifier
document-id int(11) unique identifier of the document related to this assignment
user-id int(11) unique identifier of the user tasked with this this document
name text textual descriptor

5.2.4 Sentences

Each document consists of a number of sentences. Editing happens sentence by sentence.

Field Type Description

id int(11) unique identifier
document-id int(11) unique identifier of the document to which sentence belongs
input text raw input sentence
tokenized text tokenized version of input sentence
mt-output text raw machine translation output
markup text meta information about markup
start-state int(11) unique identifier of start state of search graph (in ’state’

table)

Details about the meta information in markup still needs to be defined. It should contain
information about inter-sentential (paragraph breaks), sentential (format), and intra-sentential
(bold, underlined, italic words) properties.

5.2.5 Translations

When users edits a sentence, the result is stored in this table.

Field Type Description

id int(11) unique identifier
sentence-id int(11) unique identifier of the sentence of which this is a translation
assignment-id int(11) unique identifier of the assignment to which this translation

belongs
translation text translation entered by the user
tokenized∗ text tokenized version of translation
validated-
words∗

set array of bits indicating which words have already been val-
idated by the user

21

5.2.6 Machine Translation Systems

Field Type Description

id int(11) unique identifier
url varchar(255) web address of server
preprocessor varchar(255) web address of preprocessor to be run (incl. tokenization)
postprocessor varchar(255) web address of postprocessor to be run

5.2.7 Translation Session

This table contains all information that is fix for one translation session.

Field Type Description

id int(11) unique identifier
user-id int(11) unique identifier of the user assigned with that session
setup-id int(11) unique identifier of the assigned session setup
start-time datetime start time of session
end-time datetime end time of session

5.2.8 Session Setup

The setup for sessions/experiments is stored here.

Field Type Description

id int(11) unique identifier
document-id int(11) unique identifier of the document that has been translated
description text description of the session/experiment
version varchar(11) version of Casmacat used to log this session
show-timer boolean should a timer be shown while the session runs/is replayed
ca-width int(6) width in pixel of the browsers client area
ca-height int(6) height in pixel of the browsers client area
css-file varchar(255) css file used

5.2.9 Key Events

Field Type Description

id int(11) unique identifier
translation-
session-id

int(11) unique identifier of the translation session in which this event
occurred

translation-id int(11) unique identifier of translation in which this event occurred
type varchar(255) type of event (press, up, release)
time int(11) time of event (ms offset from session start)
ui-element-id int(11) ui element which generated the event
translation text text of translation at time of event
cursor-offset int(11) offset of the cursor in the target text field before the key

event occurs
key-code varchar(11) JavaScript key code
char-code varchar(11) JavaScript character code
character varchar(1) UTF-8 character
type-of-
operation

varchar(255) type of event (i.e. normal typing, paste, delete, ...)

markedText text text that has been selected
pastedText text text that has been pasted
shift-key tinyint shift key pressed
ctrl-key tinyint ctrl key pressed
alt-key tinyint alt key pressed

22

5.2.10 UI Events

Field Type Description

id int(11) unique identifier
translation-
session-id

int(11) unique identifier of the translation session in which this event
occurred

translation-id int(11) unique identifier of translation in which this event occurred
type varchar(255) type of event (press, up, click)
time int(11) time of event (ms offset from session start)
ui-element-id int(11) ui element which generated the event
cursor-offset int(11) offset of the cursor in the target text field before the ui event

occurs
old-window-
size

varchar(10) window size before event

new-window-
size

varchar(10) window size after event

old-window-
pos

varchar(10) window position before event

new-window-
pos

varchar(10) window position after event

mouse-x int(11) mouse x position
mouse-y int(11) mouse y position
mouse-button varchar(10) mouse button
vertical-scroll-
offset

int(11) scroll offset of scrollbar

5.2.11 Eye Tracking Log

Field Type Description

id int(11) unique identifier
sys-time datetime time stamp of the system (browser)
tracker-time datetime time stamp of the eye tracker
xl int(6) x position of the left eye
yl int(6) y position of the left eye
xr int(6) x position of the right eye
yr int(6) y position of the right eye
pl decimal(3,3) pupil dilation of the left eye
pr decimal(3,3) pupil dilation of the right eye
fx int(6) x position (center) of fixation
fy int(6) y position (center) of fixation
gazed-comp varchar(20) ui component looked at (src/tgt text field and other compo-

nents)
cursor-offset int offset of the cursor in the gazed component

23

6 UI Specification

This section discuses the specification of the user interface (UI) to be evaluated by CS in the
WP6. Since the UI is to be evaluated by professional translators, it is of uttermost importance
that the UI matches their expectations. To this respect, CS has provided a series of screenshots
of a typical translation environment (TE) with Trados and a proposal for the casmacat TE.
All of them will assume a 16:9 display, which is a de facto standard in CS.

6.1 Current Translation Environment

To begin with, a sketch of Trados TE (TE0) using SDL Trados Workbench 2007 + Microsoft
Word or Tag Editor is shown in Figure 7. In the upper window, the Trados Workbench shows
the information retrieved from the translation memory, along with terminology information, if
present. The lower window it is shown a Microsoft Word editor, which has a component to
communicate with the Trados Workbench. Both windows are separated applications and run
in the front. In addition, back windows might include Internet browser, source document in
original format, or reference documents among others. Finally, the Trados Tag editor replaces
Microsoft Word as editor when source file format is a tagged file (with rich text content), as
opposed to a plain text file.

Figure 7: Sketch of the current translation workbench in CS.

Figures 8, 9 and 10 show screenshots for different states of the current Trados Workbench.

6.2 Proposal for casmacat Translation Environment

CS has proposed two alternative TEs which must have the same functionality and features.
Only the representation diverges. Both alternatives should be easily implementable in the web
browser by means of style sheets (CSS) and probably minor structure modifications using the
document object model (DOM) API.

24

Figure 8: Translation environment using SDL Trados Workbench 2007 + Microsoft Word (no
segment open).

Figure 9: Translation environment using SDL Trados Workbench 2007 + Microsoft Word (one
segment is being translated; Word commands toolbar).

The first TE (TE1, see Figure 11) displays the text as running words, in a similar fashion
to the Trados TE. On the upper side, the translated text is shown (if possible). On user
configuration, the source text may be also displayed. On the bottom side, the remaining (source)
text to be translated, as the document is usually translated sequentially. In the middle, it is

25

Figure 10: Translation environment using SDL Trados Workbench 2007 + Microsoft Word (one
segment is being translated; Workbench commands toolbar).

shown the active segment. This part must be highlighted with bigger fonts and different
background color to give a better focus. On the right side, a tabbed area is used to display
translation alternatives, terminology and, probably, internet search. This tabs can gain focus
according to user commands. Hotkeys are crucial for high-performance translators. Thus, they
should be configurable, though they should default to the ones in Trados when possible. A list
of hotkeys can be found in this list:

Move around the screen

Move around the segment

Focus on different areas

Copy source segment to target This is specially interesting for segments composed primar-
ily by name entities, dates, etc.

Copy categories, tags and other entities from source to target Copy name entities, dates,
glossary terms from source to target.

Other TBD

The position and visibility of windows should be configurable, e.g. to maximize the translation
window. CS also proposes the possibility of adding comments to the translations, visible to
other users, and a one click shortcut to preview the current target document. It also would be
interesting to have an area for instant messaging.

The second translation environment (TE2, see Figure 12) differs from TE1 in the central part
of the environment. In this case, instead of running text, the segments are shown in columns.
The first column shows source segments whereas the second column shows target sentences
if already edited by the translator. As in TE1, the active segment must be highlighted and
present the same functionality, although in this case it is shown in two columns. Note that TE2
is suitable for high resolution wide screens.

26

Figure 11: Translation environment 1 (TE1) with CASMACAT web translation.

Figure 12: Translation environment 2 (TE2) with CASMACAT web translation.

6.3 Additional Concerns

It is unclear in the project documentation to what extent translation memories (TM) are being
integrated in the UI (Task 3.3). TM are to be integrated in Moses as very large translation
rules [4]. TM are of major importance when translating a document since they provide a
reliable human translation. Thus, special considerations must be taken into account. First, it
is important to keep information regarding the origin of the proposed translation (MT, TM,

27

author, creation date, extra comments, etc). This is used by the translators to measure the
reliability of the proposed translation. Second, splitting documents into segments is crucial for
the success of the TM since, to find high matchings, the documents must be split in the same
fashion. The general rule to apply is to split after end-of-sentence periods and new lines.

Other concerns are:

• how formatting tags, glossary terms and entities are to be handled (if they are to be
handled at all).

• the UI must be as simple as possible to keep the focus on the real work.

6.4 Concerns regarding eye tracking

In the process of eye tracking the data provided by the eye tracker (gaze sample points) are
used to identify ui componentes, words or letters the translator locked at. Those sample points
are provided as x/y coordinates in pixels where the origin is the upper left corner of the screen.
The coordinates are then adjusted so that their new origin is the one of the browser’s client
area. After that the coordinates are used to find the underlying component by a special function
(inside the browser extension, see Figure 6) which searches for a matching component, letter,
etc. at those coordinates in the browser window. All of this will be logged to be able to replay
it later.

To have a proper replay now, one can imagine that the layout of the ui needs to be exactly
the same as it was when the logging has been done.

If, for instance, a component used a relative size (like 100%) it will show up different (shrink
or enlarge) when the browser’s window size or screen resolution changes. Figure 13 shows
an example with Google Translate where the screen resolution was set to 1440x900. When
compared to Figure 14 (with a resolution of 1680x1050) one can easily see the problem: The
text inside the source and target text areas is displayed differently. Both images have the same
size but on the first one there are five words on the second line (’see there is a difference’) where
on the second one there is only one (’difference’). And even though that is not the aspect ratio
mentioned above the problem gets visible and will also persist for an aspect ratio of 16:9.

Figure 13: Example of a text area with a relative size at a resolution of 1440x900.

So the replay will not work correctly when the ui is rendered differently on log and on replay.
The x/y coordinates get out of sync with the ui, in some cases they may still work but in many
other they indicate a wrong word or component that has been looked at. That is a crucial
problem and needs to be avoided.

28

Figure 14: Example of a text area with a relative size at a resolution of 1680x1050.

Bibliography

References

[1] V. Alabau, D. Ortiz-Martnez, V. Romero, and J. Ocampo. A multimodal predictive-
interactive application for computer assisted transcription and translation. In ICMI-MLMI
’09: Proceedings of the 2009 international conference on Multimodal interfaces, pages 227–
228. ACM, 2009.

[2] R. Koebler. Rpc / json-rpc. http://www.simple-is-better.org/rpc/.

[3] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico, N. Bertoldi, B. Cowan,
W. Shen, C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin, and E. Herbst. Moses:
Open source toolkit for statistical machine translation. In Proceedings of the 45th Annual
Meeting of the Association for Computational Linguistics, pages 177–180, Prague, Czech
Republic, June 2007.

[4] P. Koehn and J. Senellart. Convergence of translation memory and statistical machine
translation. In AMTA Workshop on MT Research and the Translation Industry, 2010.

[5] F. Marinescu and S. Tilkov. Json vs xml debate. http://www.infoq.com/news/2006/12/
json-vs-xml-debate.

[6] Murray. Abi stability of c++ libraries. http://www.murrayc.com/blog/permalink/2007/
03/12/abi-stability-of-c-libraries/.

[7] D. Ortiz, I. Garca-Varea, and F. Casacuberta. Thot: a toolkit to train phrase-based
statistical translation models. In Proceedings of the MT-Summit, pages 141–148. Asia-
Pacific Association for Machine Translation, Phuket, Thailand, September 2005.

[8] D. Ortiz-Martnez, L. A. Leiva, V. Alabau, and F. Casacuberta. Interactive machine trans-
lation using a web-based architecture. In Proceedings of the International Conference on
Intelligent User Interfaces (IUI), pages 423–425, 2010.

[9] Wikipedia. Bridge pattern. http://en.wikipedia.org/wiki/Bridge_pattern.

[10] Wikipedia. Opaque pointer. http://en.wikipedia.org/wiki/Opaque_pointer.

29

http://www.simple-is-better.org/rpc/
http://www.infoq.com/news/2006/12/json-vs-xml-debate
http://www.infoq.com/news/2006/12/json-vs-xml-debate
http://www.murrayc.com/blog/permalink/2007/03/12/abi-stability-of-c-libraries/
http://www.murrayc.com/blog/permalink/2007/03/12/abi-stability-of-c-libraries/
http://en.wikipedia.org/wiki/Bridge_pattern
http://en.wikipedia.org/wiki/Opaque_pointer

A Alternative System Architecture Proposals

During the elaboration of this deliverable, different system architecture proposals were evalu-
ated. Such architecture proposals tried to satisfy the special needs manifested by the different
project partners (see section 4). In the following sections we give the details of each architecture
alternative, including a brief textual description and its corresponding architecture diagram.

A.1 Architecture Alternative 1

In Figure 15 the first proposal is shown. It seems to be useful to have the architecture divided
into two main parts. Part 1 contains all that is needed for translation purposes only while part
2 is considered for UI, user input, logging and replay. Between those two parts there will be a
generalized translation API as an extension to the Google Translation API as the interface.

This architecture focuses on those main aspects:

• Provide a generalized translation API as an extension to the Google Translate API.

• Decouple translation related aspects from UI related ones. This means to separate the
system logically into two main parts:

– A translation part

– A user interface part

• Make translation part usable standalone. No need to have unwanted/unused UI functions.

• Have the UI free from any linguistic knowledge.

• Provide a single point of access for others to use for their translation UI (The Translation-
Server in Figure 15). That is on the one hand to have a clear interface and on the
other hand it is useful, because only one system needs to be exposed within a govern-
ment/company (explicit configuration in firewall/DMZ).

• Have the logging and replay functionality separated from the translation part. That is,
for instance, that the load for logging and replay will not affect the translation part.

• To have a correct logging all calls that need to be logged are done through the GUI-Server

• Push as much logic as possible to the server side. Client side (browser) programming
(JavaScript) is most likely more difficult and error prone than server side implementation.

• Design the architecture as a distributed system. That makes it easier to extend and/or
replace functionality and also improves scalability.

The functionality of most components of this architecture is already known: MT, IMT, TM,
HTR, GUI and Browser. But this architecture introduces two components that need some more
explanation: Translation-Server and Document-Management-Server.

Translation-Server This component couples all translation related parts through a single
API. It merged and standardizes the different APIs into one single interface and generalizes
data types. That means that it acts like a bridge between the different translation engines
providing. It also offers possibility to add additional engines as needed by keeping the API
unchanged to the outside world. The outside world can thus easily access the translation
functionality through a clear interface.

30

Document-Management-Server The Document-Management-Server has mainly the func-
tion to split up documents into segments and to merge those segments back into one
single document when all segments have been translated. This is a dedicated server as
the segmentation could by where sophisticated for different languages.

Authentication and authorisation in this scenario need some discussion but could be done
like suggested be UPVLC (see Google API).

A.2 Architecture Alternative 2

Figure 16 shows a second system architecture proposal. Such proposal still wants to supply an
API for the outside world. But in this approach the translation API and UI API are mixed. Also
there is no Translation-Server. That means that GUI- and Translation-Server have been merged
into one single instance. Those modifications are made mainly to simply the system, especially
authentication and authorisation and also eliminate the fact, that the Translation-Server will
only be a router in some cases.

31

http://code.google.com/intl/de/apis/language/translate/v2/using_rest.html#auth

Part 2: UI related

Part 1: Translation related

GUI-Server
(Apache/PHP)

Log/Replay-DB
(MySQL)

Translation-Server
(Implementation?)

HTR-
Server

Browser
(HTML/JavaScript)

Browser-Extensions
(BHO/XPCOM)

TM-ServerMT-Server
(Moses)

MT/IMT-DB
(MySQL)

HTTP(S)/
Websockets/

JSON

Extension to Google Translate API

Special input

HTTP(S)/
Websockets/

JSON

Regular input

HTTP(S)/
Websockets/

JSON

IMT-Server
(C++)

Word aligner,
Confidence measures

Document-
Management-

Server

Figure 15: Proposal 1 of a system architecture.

32

GUI/Log&Replay-
Server

(Apache/PHP)

HTR-
Server

Browser
(HTML/JavaScript)

Browser-Extensions
(BHO/XPCOM)

MT-Server
(Moses)

MT/IMT-DB
(MySQL)

Special input

Regular input

HTTP(S)/
Websockets/

JSON
Internet

IMT-Server
(C++)

Word aligner,
Confidence measures

Casmacat-
API (Extended
Google API)

Log&Replay-
DB

(MySQL)

Document-
Management-

Server

TM-Server

Figure 16: Proposal 2 of a system architecture.

33

B Acronyms

API application programming interface
DOM document object model
GUI graphical user interface
HTR handwritten text recognition
IMT interactive machine translation
MT machine translation
MTU maximum transmission unit
PHP hypertext pre-processor
PIMPL pointer to implementation
TE translation environment
TS translation server
UI user interface

34

	Introduction
	Use Cases
	``Authenticate'' Use Case
	``Upload Document'' Use Case
	``Edit Translation'' Use Case
	Modules Defined by the Use Cases

	API Specification
	Authentication Module API
	Document manager API
	HTR module API
	Translation module API
	MT-related API
	IMT-related API
	Extension to Google translation API

	System Architecture
	Plugin architecture
	UPVLC special needs
	CBS special needs
	System Architecture

	Data Formats And Implementation Details
	Implementation Languages
	Database Schemas
	Users
	Documents
	Assignments
	Sentences
	Translations
	Machine Translation Systems
	Translation Session
	Session Setup
	Key Events
	UI Events
	Eye Tracking Log

	UI Specification
	Current Translation Environment
	Proposal for casmacat Translation Environment
	Additional Concerns
	Concerns regarding eye tracking

	Alternative System Architecture Proposals
	Architecture Alternative 1
	Architecture Alternative 2

	Acronyms

