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Abstract 

In this paper we investigate the micro-mechanisms governing the structural evolution of a scientific 

collaboration. Empirical evidence indicates that we have transcended into a new paradigm with a new 

modus operandi where scientific discovery are not lead by so called lone ‘stars’, or big egos, but instead by 
a group of people, from a multitude of institutions, having a diverse knowledge set and capable of 

operating more and more complex instrumentation 

Using a dataset consisting of full bibliometric coverage from a Large Scale Research Facility, we utilize a 

stochastic actor oriented model to estimate both the structural and performance effects of selection, as well 

as the behavioral of crossing organizational boundaries. Preliminary results suggest that the selection of 

collaborators still is skewed, and identify a large assortativity effect, as well as a tendency to interact with 

both authors with similar citations.  

 

  



Introduction 
The notion of the lone genius creating artistic masterpieces, inventions or scientific 

breakthroughs in solitude has long prevailed, though research continues to demonstrate 

that creativity of all sorts predominantly is grounded in collaboration. Through 

collaboration individuals reach the scale and scope necessary to achieve results 

impossible for any individual. Collaboration allows teams to join resources and tackle 

problems to big for each of them, and collaboration further allows individuals with 

different expertise to combine their respective abilities and tackle problems to complex 

for each of them.  

Analyses show an increasing tendency for collaborative research, but further there is 

evidence of collaborative projects having more impact than individual/pair lead research, 

and of boundary spanning collaborations to have the highest impact. Most papers and 

patents are now developed in collaborative teams as a result of the increasing tendency 

for collaboration (Wutchy et.al., 2007). Collaboration facilitates division of work and the 

pooling of intellectual expertise, it permits the accomplishment of projects that could not 

be realized by a lone scientist (Katz & Martin, 1997), and increase the number of studies 

and hence the chances and number of published studies for the individual researcher 

(Barnett et al., 1988). This is evident in all fields of research, but especially for 

interdisciplinary studies or research involving specific instrumentation (Chombalov et.al. 

2002). Collaboration often transcends organizational and national borders, but reinforces 

stratification between elite institutions and the rest (Jones et al. 2008). Even in the 

collaborative world of big science we find big egos. 

The tendency for collaborative research has been mapped and evidence presented that 

collaborative research especially when combining mainstream knowledge with atypical 

knowledge increase impact, but the micro-foundations for research collaboration remain 

unexplored. Knowing not only the results of collaborative effort, but also the individual 

level mechanisms through which these collaborations came into being is pivotal for 

understanding collaborative research and the causes of the evident stratification in 

collaboration. In this paper we analyze the microfoundations of collaborative research. 

We unpack mechanisms behind the observed stratification through a longitudinal study 

of the dynamics of individual level tie formation. We investigate the governing dynamics 

of multi-institutional scientific collaboration and find that various forms of homophily in 

are main drivers of establishing team work and consequently the creation an inter-



connected elite of high performing researchers found in Jones et al. (2008). This adds to 

the body of literature not only on scientific collaboration, but also extends theory on 

knowledge networks through the linking of causal mechanisms of an actor's network 

position, and local network structure to the network evolution and performance of 

individual scientists. 

To analyze the micro-foundations of research collaboration, we turn to a setting 

purposefully set up to foster collaboration across organizational and national borders: 

Large Scale Research Facilities. We consider LSRF a critical case for testing homophily 

tendencies in research collaboration as they are designed to facilitate open boundary 

spanning collaboration. Researchers are brought together, regardless of geographical, 

organizational and institutional distance. Joining the facility is subject to application and 

approval and low performing researchers are seldom admitted, with the left tail of 

research performance distribution omitted, researchers at the facility can rest (relatively) 

assure of their fellows possessing a decent level of skills. Furthermore, LSRF are 

centered on instruments central to experiments, and we should thus expect a relatively 

low knowledge spread. Qualitative studies of LSRF show one purpose of joining these 

facilities is to be collaborative and to meet new collaborators from different 

institutions/countries. In this literature team formation is described as rather democratic 

– i.e. not stratifying but cross-organizational and inter-disciplinary. Consequently, we 

chose a LSRF, more specifically the Spallation Neutron Source (SNS) and the High Flux 

Isotope Reactor (HFIR) located at Oak Ridge National Laboratories, Tennessee as a 

critical case on which to test effects of homophily and the rules of cumulative advantage 

in establishment of ties between collaborating researchers. If big egos exist here, we 

should expect them to be predominant throughout all scientific fields and settings. 

 

Theory 
Recently, a literature stream has started to emerge with focus on using the dynamics of 

network emergence and evolution as explaining collaboration and innovation (Ahuja, 

Soda, & Zaheer, 2012). More recent research addressing the macro-dynamics of 

networks to understand how e.g. organizational fields evolve (Powell et al. 2005), and 

from a more micro-dynamic perspective, the extent to which knowledge flows are 

geographically mediated (Azouley et.al., 2011). But looking at the micro-mechanisms 

driving the network evolution of scientific collaboration has yet to be done. As actors 



usually are not able to cast their gaze across the entire network, on the basis of their 

localized view they form ties and make decision based upon the intersection with those 

that are socially proximate (Robins et.al., 2005). 

 

The notion of the lone genius 

Both the Kuhnian and Dosian view has been studied from numerous perspectives and 

from multiple levels, and over the years a large pool of knowledge has been established. 

One of the more persistent notions is that of the lone genius as driver of scientific 

discovery. This has long been tradition in both the history and philosophy of science, 

and has a tendency of equating great ideas to sole scientists, as seen in the form of e.g. 

the Nash Equilibrium, Arrow’s theorem of impossibility, Newtonian mechanics and 

Einstein’s theory of relativity. With the increased professionalization of science post-

World War II, a new term for describing the focus on research collaboration emerged: big 

science. The term Big Science describes a series of changes in the scientific community 

that occurred during and after World War II. The making of science shifted from 

individual or small group efforts, “Small Science”, to relying heavily on large scale 

research projects, mostly characterized by their extremely high monetary costs and large 

increase in the number of collaborating, often international, partners (Barabási, 2002; 

Newman M. , 2001; Wagner & Leydesdorff, 2005). 

Following, more and more empirical evidence indicates that we have transcended into a 

new paradigm, where scientific discovery is not lead by so called lone ‘stars’, or big egos, 

but instead by a group of people, from a multitude of institutions, having a diverse 

knowledge set and capable of operating more and more complex instrumentation (Katz 

& Martin, 1997; Newman, 2002, 2004). Thus the change in the mechanisms governing 

the production of scientific knowledge are not only found at these large scale 

collaboratives, but has also spilled over into regular science (Wucthy et.al., 2007.   

With the locus of innovation thus located in collaborative networks, this pends the two 

critical questions: How and why modern scientific collaborations evolve and take the 

forms they do and what separates a highly innovative scientist from a less so?  

 



Research challenging the notion of the lone genius 

Extensive literature has dealt with this issue, both from a scientific collaboration 

perspective and with other innovative units as focus. Under the assumption that the 

premises for collaboration are similar, empirical findings show e.g. that diversity of 

knowledge can facilitate innovation through recombination (Henderson & Clark, 1990), 

that structural positions and increasing the number of co-authors result in increased 

scientific production and impact (Wuchty et.al., 2007; Abbasi et.al., 2011), that the 

number of organizational boundaries crossed are negatively related to innovation unless 

the collaborators taken together spans otherwise distant units (Bercovitz & Feldman, 

2011). Despite this accumulation of knowledge on the collaborative process, there is still 

little understanding of the role of structural dynamics (like transitivity and preferential 

attachment) in shaping the structure and formation of collaboration and knowledge 

creation (Phelps et.al., 2012; Ahuja, Soda & Zaheer, 2012). The structural understanding 

has thus far been dominated by an intent on reproducing the topological form of real 

world networks (e.g. Erdös & Rényi, 1959; Watts & Strogatz, 1998; Barabási et.al., 2002). 

This form has largely ignored an extensive tradition in both the literature from sociology, 

psychology and economics regarding the behavior and characteristics of individuals. In 

this paper we employ an alternative approach allowing us to model both the structural, 

nodal and behavioral characteristics. Thus we are able to represent network and behavior 

change as the result of dynamics being driven by different tendencies and especially 

structurally based micro-mechanisms.    

Collaboration in research 

The earliest collaborative paper appearing in a scientific journal ever to be recorded was a 

paper in the Philosophical Transactions of the Royal Society, by Hooke, Oldenburg, Cassini & 

Boyle published in 1655 (Beaver & Rosen, 1978). At that time collaboration were driven 

by totally different rules than we see today. Spatial constraints, especially geographically 

but also the mere structure and availability of education greatly inhibited the possibilities 

for collaboration. Fasting forward, an especially large change in these premises can be 

seen after WWII. An increasing professionalization of science, and the increase in overall 

funding, has resulted in the absorptive capacity (Wagner & Leyesdorff, 2005) and 

interconnectedness of the scientific community as a whole to increase enormously.  

This has resulted in not only the whole community of science being more inter-

connected, but also the sciences themselves becoming more and more inter-dependent, 

and thereby reliant on the focal scientist’s ability to connect and collaborate (Wagner & 



Leydesdorff, 2005; Newman, 2001,  2004). On the dark side of this, empirical findings 

also show that despite the rising frequency of inter-university collaboration, this is not 

driven as a result of increasing equality or reduced coordination costs. Instead it is mostly 

governed by an intensification of social stratification with a concentration of the 

production of scientific knowledge in few high-prestige centers of high impact science 

(Jones et.al. 2008). While this has been shown from a university perspective, little 

research has been done from an evolutionary micro-perspective, showing the governing 

motivations for single researchers to collaborate. Following, a question in the need of 

further treatment is why scientists increasingly choose to collaborate? 

 

Reasons to collaborate 

In their literature review of collaborative research, Katz & Martin (1997) note that in 

essence collaborative research has become the model per se in many fields of science due 

to specific benefits: First that it facilitates division of work and the pooling of intellectual 

expertise. Second they note that collaborating permits the accomplishment of projects 

that could not be realized by a lone scientist. This can be seen especially in 

interdisciplinary studies or research involving specific instrumentation (Chombalov et.al., 

2002). Collaboration increases the number of studies that can be undertaken and 

therefore, the probability that an author’s work will be accepted for publication in a 

journal (Barnett et al., 1988). The empirical findings in this fields also points in the 

direction that co-authored papers present a higher quality than those which are single-

authored (Laband and Tollison, 2000), which leads to a higher impact (Wutchy et.al., 

2007; Katz and Martin, 1997). 

While this may suggest an existence of spatial constraints on collaboration, favoring face-

to-face contact and the enforcing of the “30-feet collaboration rule”, recent empirical 

evidence has given more sound to the “death of distance” point (Cairncross, 1997), 

showing a remarkable rise in the inter-university collaboration since especially 1975 

(Jones et.al., 2008). In the same study the authors also find that research conducted in-

between universities are more likely to increase average citation score, suggesting an 

increased performance when research is conducted in teams spanning multiple 

institutions.  



Hypotheses 

Revisiting the Matthew Effect 

One of the most established facts in network theory is the concept of cumulative 

advantage. Prior research has shown a highly skewed distribution of productivity among 

scientists, resulting in an effect where highly productive researchers maintain or increase 

their productivity while scientist who produces very little produce even less later on 

(Allison & Stewart, 1984). Even though originally developed as a means to explain 

advancement of scientists by Robert Merton in 1968, the notion of the Matthew Effect, 

i.e. the rich gets richer while the poorer gets poorer, has been shown to have general 

applicability as a mechanism for inequality across many temporal processes (DiPrete & 

Eirich, 2006).  Barabási & Albert (1999) use the notion of preferential attachment in their 

mathematical modeling of graph evolution, finding a large correlation with real world 

networks, and thus explaining the scale-free networks usually found in both collaboration 

and information, e.g. citation networks. The establishment of centralized research 

centers, as seen in the case of Large Scale Research Facilities, the epitome of the new 

paradigm in science, has often been instigated to negate this unequal division, due to its 

formalization of collaboration (Lauto & Valentin, 2013).    

On the nodal level, preferential attachment increases researchers’ tendency to seek out 

highly central new collaboration partners. When new ties are formed, they tend to be 

directed towards researchers who already have many collaboration partners and are 

central to the social structure. Researchers who are already central to the network will 

have many opportunities for collaboration, and potentially also opportunities to pick the 

most promising collaboration partners. Based on this Rich-gets-richer mechanism, we 

propose:  

H1: researchers who are central in the collaboration network experience 

increased probability of forming new ties (preferential attachment). 

Proximity and distance 

Proximity and distance between interaction partners have been shown to affect the 

probability of tie formation and outcome, in that proximity increases the probability of 

tie formation, but the ties established across distance and boundaries tend to result in 

higher performance. Geographical proximity increases probability and frequency of 

random encounters potentially resulting in collaboration. Organizational proximity share 

this feature and further serves as a framework for commonality of norms and incentives. 



Finally, cognitive proximity decrease costs of interaction and increase efficiency (Lauto & 

Valentin, 2013; Bercovitz & Feldman, 2011). Based on this we develop three hypotheses: 

H2a: Common organizational affiliation increases the probability of tie 

formation. 

H2b: Common institutional environment increases the probability of tie 

formation. 

H2c: Cognitive proximity of research fields increases the probability of tie 

formation1 

 

Birds of a feather.. 

Recently empirical findings in social networks show the existence of a much more 

skewing effect, namely that of the “rich club effect”, meaning that prominent nodes 

direct their ties towards each other (Newman, 2002). Finding significance for the 

existence of this in the real world network of scientific collaboration, especially in a 

world instigated to negate this, would give an indication of a tendency both an increasing 

inequality – i.e. scientists that does prefer to collaborate, even though their merits can be 

equally high, are increasingly eased out of the network.   

Thus we hypothesize:   

H3a: Highly active researchers tend to form new collaborations with other highly 

active researchers. 

To tease out to which extent this rich club effect is either a phenomenon based on social 

status or performance we will also employ the number of citations, and test for whether 

the network are dominated by performance homophily:    

H3b: High impact researchers tend to form new collaborations with other high 

impact researchers. 

 

Empirical Setting 

As our empirical setting we choose the Spallation Neutron Source (SNS) and the High 

Flux Isotope Reactor (HFIR) located at Oak Ridge National Laboratories, Tennessee. 

Established in 1943, the facility is a multidisciplinary center financed by the U.S. 

                                                        
1 The model included in this paper does not test for this hypotheses. 



Departmen of Energy. The facility conducts both basic and applied science in specifically 

the areas of neutron science, biological system, energy and high energy physics, advanced 

materials, supercomputing and national security. Approximately 4,600 scientists are 

employed and the facility had a budget of USD 1.65 billion in 2011. Since 2006, the 

research program in neutron science is managed by the Neutron Sciences Directorate. 

ORNL/NSD employs 600 scientists, technicians, and administrative staff and operates 

two of the world’s most advanced neutron scattering facilities: a Spallation Neutron 

Source (SNS), which became operative in 2006, and a High Flux Isotope Reactor 

(HFIR), completed in 1965 and renovated in 2007. 

Big Science and Large Scale Research Facilities 

When the research involves site specific, large and complex instrumentation, as is the 

case with Big Science, collaboration is especially common (Katz & Martin, 1997). Due to 

the complexity of using the different instrumentation and in the diverse knowledge 

skillsets necessary to be able to analyze the output, co-authoring and collaboration at 

these sites can be thought attributed to necessity as well as to intellectual overlapping or 

spontaneous meetings. Accordingly when the knowledge base of a research project is 

characterized by a high level of complexity and dispersed pool of expertise, the locus of 

innovation will be more likely centered in collaborative networks (Powell, et. al., 1996).  

We choose the setting of a Large Scale Research Facility, because it provides us with a 

geographical localized multi-institutional context, with distinct roles assigned to 

scientists, according to e.g. the instruments they are operating or whether they are 

residents or visiting scientists. At the same time a facility like this serves as an extreme 

case of the paradigm change and professionalization in science earlier mentioned.    

Some articles have focused on these sites, but has thus far either delved with the learning 

perspectives of the individual (Boisot et.al., 2011; Autio et.al.. 2003), drivers of 

internationalization (Lauto & Valentin, 2013) or various case studies focusing on the 

different ‘spillover’ effects (Langford & Langford, 2000; Merz & Biniok, 2010). Big 

Science requires big budgets, big planning and big collaborative effort. The trade-off for 

these big time investments are the potential for breakthrough discoveries, both in the 

scientific world and as spillovers in the form of inventions with, as shown, radical 

potential. Research in multi-institutional collaboration in the natural sciences has been 

primarily dominated by historians, sociologists and anthropologists, focusing on in 

particular on high-energy particle physics (Chombalov et.al., 2002). This has provided an 



excellent, but disproportionate view on collaboratives in big science as "post-traditional 

communitarian formations with object-centered management, collective consciousness, 

and decentralized authority" (Ibid., p. 751). This has even been described as an example 

of the new model for collaboration in science (Knorr Cetina, 1999). This notion has 

since been challenged in (Chombalov et. al., 2002) in where it is shown that this mode of 

organizing in multi-institutional research projects is the exception of the rule, and largely 

found in the HEPP community. 

Data and Method 
Collaborations evolve within social spaces comprised of a complex interlocking of socio-

demographic, organizational and intellectual factors each of which pushes and pulls 

researchers toward interacting with specific individuals. One simple, but powerful, 

indicator of collaboration is the co-authoring of an article. Collaboration on articles 

creates a social network, the study of which allows us to understand some of the 

characteristics of a particular discipline or research site, to identify the invisible colleges 

(Wagner, 2008) and social groups that exist in all scientific fields. Studies in this have 

shown the potential of using social network analysis in opening up an interesting line of 

investigation in this respect (Barabási et al., 2002; Newman, 2001). Yet, the research 

specifically on structural integration, social homophily and how ability affects this, has 

been hampered by a lack of longitudinal analysis, with analysis up till now mainly 

consisting of snapshots. Not having a longitudinal perspective will greatly reduce the 

ability to causally infer the direction of selection and influence (Borgatti & Halgin, 2011). 

Indeed separating these mechanisms is central to addressing the issue of endogeneity in 

network papers (Steglich et.al. 2010). But to the best of our knowledge, no studies have 

combined a longitudinal network framework studying the evolution of scientific 

collaborations, incorporating both structural and behavioral effects. Thus the network 

effects of e.g. transitivity and preferential attachment will skew the results when not 

properly controlled for. The approach utilized in this paper thereby contributes to an 

active research domain, which seeks to disentangle social selection from influence 

(Snijders et.al., 2007; Steglich et.al. 2010), and draws upon recent statistical advances in 

the network literature to model such processes with greater confidence (Snijders 2001; 

Steglich et.al. 2010).  

 



Data 

The empirical study investigates the evolution of scientific collaboration the context of 

ORNL/NSD. Since 2006, all peer-reviewed publications based on research utilizing 

ORNL/ NSD data and resources, or conducted by staff affiliated with ORNL/NSD are 

publicly listed on the directorate’s website. We refer to these publications as 

ORNL/NSD-based research. We retrieved full bibliometric records from ISI-Web of 

Science of the publications produced in the period from 2006 to 2009. Due to the 

calculative complexity of the simulation models, it was necessary for the trial run used in 

this paper to limit the total amount of publications. The criteria for selection were thus 

set as a) at least 4 citations b) each author should at least figure twice the first year of 

appearance and c) each author should at least be present in two time periods. This left us 

with a total of 108 distinct authors and 439 publications.     

Method: Modeling Dynamic Networks 

The fundamental network consists of only two basic elements – the nodes and ties 

between these nodes (Wasserman & Faust, 1994). The nodes represent some actor and a 

tie between two actors suggests the existence of a flow or bond, in our instance a co-

authorship tie. 

To model the temporal dynamics of networks at the LSRF, I apply a stochastic actor-

based approach. Here, the evolution of social networks, in terms of tie establishment and 

termination between the different actors, is driven by exogenous as well as endogenous 

forces. In detail that means the probabilities of tie changes is modeled as a function of 

individual actor characteristics as well as their network position. It enables to capture 

endogenous effects, which are of high importance when explaining the evolution of 

social networks, as mentioned earlier. Even though this is a powerful analytic tool, some 

fundamental underlying assumptions has to be met (see also Snijders et al., 2010): 

First, the network under analysis evolves as a stochastic process driven by the actors, 

which have control over their ties. This fundamentally implies that ties are directed, 

hence send by one actor and received by another, where the former controls the tie 

establishment. Here the methodology of using one-mode projections a two-mode 

network (resulting in undirected networks) would basically violate these assumptions. But 

as proposed in (Snijders, 2010) this can be controlled for through the choice of the 

pairwise conjuctive model, where a pair of actors is chosen and reconsiders whether a tie 

will exist between them. The tie will exist if both agree, and it will not exist if at least one 



does not choose it. We lose, of course, information on who made the initial contact, and 

the interpretation of the results should reflect this potential of selection bias.    

Second, tie changes are assumed to be a gradual process, taken in the form of a series of 

mini-steps – hence modeled in continuous time. This is usually valid for persistent 

relationships such as friendship, trust, strategic alliances et cetera. In contrast, 

relationships based on event data, such as phone calls, e-mails or, as in this case, co-

authored publications are a non-replicable event, and hence in general cannot be 

interpreted as enduring. Nevertheless, co-authorship is in this instance seen as a proxy 

for more enduring relationships – potentially both friendship and/or professional. In 

order to accommodate this, a co-authorship is in this data seen as enduring – i.e. having 

established a tie at time t means the tie is persistent at time t+1. This will tend to 

overestimate the number of established ties as no dissolutions are allowed, and thus the 

results will tend to overestimate the effect of behavior change.  

   

Separating selection from influence 

Stochastic actor-based networks basically consist of some a rate function, controlling the 

changes in the network, an objective function consisting of a set of individual parameters 紅賃 which determine how likely it is for an actor i to change their own ego-network in a 

particular way, and a behavior function. The decisions are modeled as the outcome of 

changes made by actors in a series of micro-steps.  In the decision process, i has the 

opportunity to choose between some set C, containing all possible ties with other 

network actors to remain either unchanged or change from being absent 岫剣┸ 捲銚岻  to 

present 岫剣┸ 捲長岻 , and vice versa. Almost at the same time they have the opportunity to 

change their behavior, and either increments of decrements his or hers score on the 

behavioral variable. 

Consequently, the probability of the overall network to change to some new state  隙 or 

some new behavior 傑 is given by the formula: 
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It basically resembles a multinomial logistic regression, modeling the probability that an 

actor chooses a specific (categorical) new network configuration X, or new behavior Z, 

as proportional to the exponential transformation of the resulting network’s objective or 

behavior function. This model for tie probabilities was also used by Powell et.al., 2005. 

 

Dependent Variables 

As the modeling in the SIENA-methodology employed in this paper are given by a) the 

network dynamics and b) the behavioral dynamics, these are subjects to change almost 

simultaneously, and thus making it possible to control for the structural dynamics of 

networks, e.g. transitivity and preferential attachment. Thus I model the dependent 

variable as mentioned in equation (1) and the behavioral dynamics are modeled as 

mentioned in equation (2) with a transformation of the citations variable into an ordinal, 

on a scale of 1-52.   

Key Variables 

The individual parameters can be divided into three categories: (i.) Network base effects, 

referring to the actors general tendencies to form ties in a particular way, independent of 

alter and ego's network position and other characteristics. (ii.) Degree related effects 

capturing the endogenous influence of several effects associated with alter and ego's 

degree of ties. (iii.) Covariates which are exogenous characteristics of the actor. These 

variables are all included in both the objective function and the behavioral. In the 

following I discuss in detail the main effects included in the model. 

 

Additionally to these structural variables, another set of degree related measures are of 

particular interest against the background of this study. CENTRALITY (ALTER) represents 

the tendency of actors to form ties to alters already receiving a high amount of in-

degrees, hence popular ones. A positive alter popularity implies a self-reinforcing 

mechanism that over time leads to increasing dispersion of the degree distribution of the 

networks. It can be interpreted as the impersonation of the Matthew Effect or 

preferential attachment in network structuralism. This effect has been shown numerous 

times to drive co-authorship networks and acts as a structural control for teasing out the 

assortativity effect. 

 

                                                        
2 This effect has yet to be included in this working paper. 



DEGREE ASSORTATIVITY refers to the preference of actors to form ties with alters based 

on their own as well as the alters degree. Because this is an un-directed network only the 

out-out degree measurement can be used. The out-out combination represent a 

measurement for homophily and social stratification in the network pattern, and in the 

case of the LSRF that active social scientists (in the form of co-authorships) team up 

with scientists with similar social activity. 

 

TRANSITIVITY is another effect most commonly found to drive network evolution. It 

describes the tendency of a triad to be closed, i.e. if i are friends with j and k, what is the 

probability that j and k also will be friends. Basically it tells something about the degree 

of clustering in the network.  

 

CITATION SIMILARITY is a dyadic transformation of citations defined in such a way that it 

is scaled between 0 and 1, with 0 meaning that one author has the minimum value of 

citations and the other has the maximum (maximum dissimilarity), and 1 meaning that 

two authors has the same citations (maximum similarity). 

 

SAME ORGANIZATION is a binary variable indicating whether or not the scientists stem 

from the same institutions. 

SAME ORGANIZATION TYPE is a binary variable indicating whether or not scientists are of 

the same institutional type, based on the following categories: 1= Resident at the SNS, 2 

= University, 3 = Research Lab and 4 = Business. 

 

  



 

Base effects 

The baseline effect is given with the DENSITY, or sometimes called degree, representing 

the general tendency to form ties at all. It can be interpreted as the benefits and costs 

between an arbitrary tie. Arbitrary means in this context a tie with an actor embodying 

no characteristics making him/her particularly attractive.  

 

For mathematical notation of effects see the RSiena Manual (Snijders et.al., 2013). 

 

Controls 

We include a number of controls to account for the possibility of spuriousness, 

alternative sources of influence and selection. To control for the propinquity of 

researchers choosing to collaborate due to different notions of homophily we control for 

whether they are the same SCIENTIST TYPE (measured as the average CHI-score). We also 

control for the number of citations (ln) received by researchers and for whether they are 

STAR SCIENTISTS meaning being in the 95th percentile.    

 

Table 1 depicts the complete list of variables included, and to be included, in the model:  

 

<< INSERT TABLE 1 HERE >> 

  



Findings 
Table 2 shows the results of a multinomial logistic regression based on the stochastic 

actor-based approach, with the behavioral function shown in table 3. 

 

<< INSERT TABLE 2 HERE >> 

 

All parameter estimations are based on 1,000 simulation runs. Convergence of the 

approximation algorithm is excellent for all the variables of the different models. It 

indicates whether the deviation of the simulated structures compared to the observed 

structures is acceptable (t-values < 0.1), and can be used to evaluate the goodness of fit 

of the different models. The parameter estimates can be interpreted as non-standardized 

coefficients obtained from logistic regression analysis (Steglich et al. 2010). Therefore, 

the parameter estimates that are reported can be read as log-odds ratio, i.e. how the log-

odds of tie formation change with one unit change in the corresponding independent 

variable. Odds ratio can be computed as the exponentiated form of the coefficients of 

each predictor. The estimated effect of citation similarity shows that similarity in amount 

of citations increases probability of researchers forming ties. We further see that 

transitivity is greatly significant meaning a high degree of clustering is present in our 

network. Contrary to our hypothesis, the measurement for preferential attachment 

comes out insignificant, meaning that the forming of network ties is not significantly 

guided by the establishment of ties to highly active researchers. At the same time though, 

the significance of the assortativity effects gives indication of the existence of a highly 

elitist effect where the scientists collaborating with the most predominantly chooses to 

collaborate with others of similar social visibility. We also find significance of the 

different proximity measures based on being from the same organization or being from 

the same institutional type, indicating that organizational proximity of it’s various forms 

are a significant driver of tie formation. 

Discussion 
The literature generally argues for a tendency of network actors to form network ties 

with others primarily based on some kind of homophily – either based on general 

characteristics (e.g. gender, age) (McPherson, et.al., 2001) or network structure (Burt, 

1982). In this network we see that scientists with similar citations are more likely to 



collaborate, indicating a more hierarchical than competitive environment. This can be 

seen in the context of the specificities of the facility i.e. that scientists working employed 

as experts on specific instruments usually are co-authored, making them the hubs of the 

Big Science world. 

The high degree of clustering in our network aligns with existing theory on small worlds 

particular persistent in networks based on scientific collaboration (Watts and Strogatz, 

1998). 

The insignificance of preferential attachment has to be seen together with the 

significance of assortativity (the tendency for highly active actors to form ties with other 

highly active) which suggests the existence of a “rich boys effect”, and that the creation 

of ties at the Spallation Neutron Source are more governed by social visibility, where 

scientist with large collaborative capacity choose to collaborate with other scientists with 

similar capacity. This creates a highly clustered and closed network, which is surprising 

given the paradigmatic change of scientific collaboration predicted in the theory building 

section. Potentially confounding factors such as discipline could serve as further inquiry 

into this relationship as figure 1 shows a high a degree of local clustering (transitivity) as 

well.  

At facilities like SNS it is highly likely that the disciplines have a hard time finding 

convergence, i.e. the physicist focusing on crystallography or X-rays can have a hard time 

finding collaboration with micro-biologists. Taken together, the scientific collaboration 

network established at the Spallation Neutron Source seems to be governed much by the 

notion of homophily and a form of hierarchy based on performance. This should not 

necessarily be taken as a negative effect, as an assortative network tends to percolate 

more easily, creating a giant component faster than a disassortative. Thus high-degree 

nodes will tend to stick together in a form of core group, making dissemination of 

knowledge happen faster but at the cost of the size of the giant component (Matthew, 

2002). But as one of the arguments for centralizing scientific investigation and 

collaboration at places such as the SNS are funded upon an innate ability to facilitate 

inter-disciplinary collaboration, these finding suggests that the localization and structural 

features of LSRF are not enough to facilitate this meld. Instead the formation of the core 

group of highly active researchers, and the increased probability of forming ties with 

scientists of similar performance could even mean less inter-disciplinarity. But future 

analysis including scientific discipline is needed in directing this.  



Taken together our results suggest that connecting is not only a function of performance, 

but more of a social process governing the evolution of the entire network, much in line 

with the findings of Jones et.al., 2008. 

Conclusion 
In this paper we asked the questions what the governing dynamics driving scientific 

collaboration in modern day science are, and what separates high performing scientists 

from lesser so. Drawing from mostly empirical research on scientific collaboration, we 

showed that literature pointed towards a paradigmatic change in the conducting of 

science, placing more and more emphasis on the connective and collaborative capacity of 

scientists to team up and cross organizational boundaries. At the same time we 

concluded the need for a longitudinal perspective on if we are to say anything meaningful 

of the influence of networks on scientific collaboration. We proposed the hypotheses 

that science was increasingly driven by not only preferential attachment, but also by 

notions of proximity and homophily, with a special emphasis on the assortativity effect 

as a driver of the “rich old boys”-effect.  

We investigated this in the form of bibliometrical analysis of the empirical setting of large 

scale research facilities, more precisely located at Oak Ridge National Laboratories in 

Tennessee. We conducted the analysis based on a selection of the full bibliometric 

recording3, going from 2006-09, of publications affiliated with the Spallation Neutron 

Source and the High Flux Isotope Reactor. 

To test our hypotheses we employed a stochastic actor based network analysis to 

separate the selection and network dynamics from the behavior of external collaboration. 

By doing so we were able to analyze the cumulative and self-reinforcing effects of 

network dynamics. We find that we indeed see a network dominated not by the Matthew 

Effect, but even more both by assortativity and citation similarity, indicating both a 

highly unequal distribution of collaboration but also one dominated by some form of 

scientific hierarchy. We also found that the number of external collaborators is positively 

related to the formation of a tie. 

  

                                                        
3 In this paper, only a subset of the nodes is used. See appendix 2 for description of selection. 



The future directions of the paper 

As mentioned in a series of footnotes in this paper, we still need to do substantial work 

on the SIENA-model. Besides running the model on the full dataset, we also need to 

include the behavioral function of performance. The current model are based upon 

citations of publications in the same year as they appear. We are working on including a 

lagged citation variable instead, to truly model the effect of performance on network 

evolution, as scientists must be thought of as not being truly able to assess the impact 

papers before publication.     

Besides this, we also tend to include an analysis of the effect of cognitive distances, both 

in the analysis of network evolution and performance, based upon keyword analysis of 

papers published by the scientists at the SNS. Thus we are working both on the scripting 

of this in RSIENA, but we are also working on collecting full bibliometric data, not only 

on publications affiliated with SNS, but full bibliometric data on the authors affiliated 

with SNS. 

We also tend to code demographic data into the model, like gender and tenure based 

upon the full publication record of scientists.        
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Appendix 1  
Table 1. Exhaustive list of variables. Variables marked with a * are not incorporated in 
the model yet.  

Variable(s) Description 

Dependent Network Co-authorship network - Scientists have previously co-authored an article. 

Rate Parameters 
Period Effects 
 

 
The three transition periods (2006-07, 2007-08, 2008-09) 
 

Structural Dynamics 
Density 
Transitivity 
Alter centrality 
Assortativity effect  
 
*Betweeness 

 
The out-degree effect, basically the propensity of the network actors to form ties. 
The propensity to form ties with those whom one has had a prior indirect tie. 
The preferential attachment effect (sqr(alter centrality)) 
Reflects the tendencies for actors with high degrees to co-author with other actors 
with high degrees. 
Represents brokerage, i.e. the tendency for actors to position themselves between 
not directly connected others. 

*Knowledge overlap 
*Knowledge similarity 
 
Scientist focus 

The existence of a direct reference between ego and alter. 
Tendency to interact with those with similar quantities of keywords in knowledge 
area k. 
CHI based on publications at the facility (Avg.>2 = applied scientist else basic.) 

*Scientist type 
Same organization type 
*External collaboration 

1= Resident, 2=Secondment, 3= Single, 4=Multiple 
1= Facility, 2=University, 3=Research Lab, 4=Business 
Count of # of external collaborators 

Performance 
Similar citations 
*Research Productivity 

 
Tendency to interact with those with similar # of citations (fractional count). 
Number of publications for author i divided by total number of co-authers. 

Other effects 
Same organization 
Scientist type similarity 
Similar productivity 
Star Scientist 
*Scientist focus similarity 

 
Whether the two scientists are from the same institution. 
Tendency to collaborate with scientists of the same type. 
Scientists have similar levels of productivity in publications. 
Whether the scientists are in the 95th percentile of high performers 
Tendency to collaborate with scientist with same focus. 

*Performance (behavior 
function) 
 
*Period Effects 
*Linear Shape 
*Quadratic Shape 
*Knowledge similarity 
 
*Scientist Focus 

 

 
The four transition periods (2007-08, 2008-09, 2009-10, 2010-11) 
The basic drive toward external collaboration. 
The effect on the behavior on itself, as either self-limiting or self-reinforcing. 
Tendency to interact with those with similar quantities of keywords in knowledge 
area k 
Avg. CHI based on publications at the facility (>2 = applied scientist else basic. 



Table 2. Results from SIENA Model predicting tie formation 

Variable ȝ SE 

   

Hypotheses 1: 

Centrality (alter) 

Hypotheses 2a, 2b & 2c: 

Same Organization 

Same Organization type 

Cognitive distance 

Hypotheses 3a & 3b:  

Assortativity 

Similar citations 

 

0.4735 

 

1.2411* 

0.1325* 

- 

 

1.543** 

2.421** 

 

(0.39) 

 

(0.76) 

(0.06) 

- 

 

(0.28) 

(0.67) 

Rate Parameter Controls: 

Period 1 

Period 2 

Period 3 

 

1.2814** 

2.6304** 

0.7100** 

 

(0.10) 

(0.16) 

(0.08) 

Structural Controls: 

Density (Degree) 

Transitivity 

 

-2.9748** 

0.9219** 

 

(0.56) 

(0.20) 

Monadic and dyadic controls: 

Star scientist 

Same Scientist focus 

# of Citations (ln) 

 

 

3.1221** 

-0.12 

2.1132* 

 

 

(0.13) 

(0.1) 

(0.31) 

 

N=108 

*   p< 0.05. 

** p < 0.01 

Rate parameters above zero are always 

significant 

  

 

  



Table 3. Network density indicators 

Observation time 1 2 3 4 

Density 0.037 0.061 0.1110 0.124 

Average degree 3.907 6.467 11.720 13.140 

 

Table 4. Network turnover frequency 

Periods ど 蝦 な な 蝦 ど な 蝦 な Jaccard な 蝦 に 137 0 209 0.604 に 蝦 ぬ 281 0 346 0.552 ぬ 蝦 ね 76 0 627 0.892 

 

  



 

Table 6. Network visualizations (2006-09) 

 

2006 

 

2007 

 

2008 

 

2009 

Layout: R-package Statnet and using the Fruchterman-Reingold algorithm. 

  



Appendix 2 
The current implementation of the SIENA-model is based upon a series of criteria for 

selecting the population: 

1. Scientists have to publish at least two articles the first year of appearance. 

2. Scientists have to appear with published articles at least for two years. 

3. Scientists must be in the giant component of the final year. 

4. Scientists must have achieved at least 4 citations for the final year. 

The reason for doing this at this point is first and foremost to reduce the amount of 

nodes. Due to the computational complexity of the algorithms in the SIENA model the 

full model would take about 7 days, thus based on time constraints we chose this 

methodology.   

 


