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ABSTRACT 

 
This study assessed the mycological and aflatoxin contamination of peanuts 

collected from Kinshasa, DRC and Pretoria, South Africa. Forty peanut samples 

were collected randomly at informal markets in the two cities and analysed for 

mycoflora and aflatoxins (B1, B2, G1 and G2) using standard methods. The results 

indicated that 95% and 100% of peanut samples collected from Kinshasa and 

Pretoria, respectively were contaminated with aflatoxigenic fungi with Kinshasa’s 

samples being the most contaminated (up to 49, 000 CFU/g). Seventy percent (70 

%) of Kinshasa-samples and 35% of Pretoria-samples exceeded the maximum 

allowable limit of aflatoxin B1 set by JECFA (5 ppb). Statistical evidence showed a 

significant positive correlation between mycoflora and aflatoxin level for Kinshasa-

samples (r = 0.4743, p < 0.005) while Pretoria-samples showed no correlation. The 

study reveals that high level of contamination in Kinshasa-samples could be due to 

the tropical nature of the climate and poor storage conditions as compared to 

Pretoria which is sub-tropical and sanitary regulations are enforced.  

 

 

Key terms: Aspergillus; aflatoxigenic fungi; mycotoxin; aflatoxin; peanut; Kinshasa; 

Pretoria; DRC; South Africa; HPLC; fluorometer 
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CHAPTER ONE: INTRODUCTION 

 

1.1. INTRODUCTION 

Developing countries, especially in Africa, face many socio-economic challenges of 

which poor food security and food safety are paramount (Schmidhuber and Tublello, 

2007). The Food and Agriculture Organization (FAO) defines food security as a 

situation that exists when all people, at all times, have physical, social, and economic 

access to sufficient, safe, and nutritious food to meet their dietary needs and food 

preferences for an active and healthy life (Schmidhuber and Tublello, 2007). But in 

Africa, these challenges associated with ever-increasing human population and 

poverty lead more people to consume contaminated food (Devereux, 2009). As the 

world’s second largest and second most populous continent after Asia, Africa counts 

the largest number of people dying of hunger (around 33%) (Wiesmann, 2006) and 

the issues of food safety are frequently subjugate to issues of food security 

(Shephard, 2003).  

 

Mycotoxins, secondary metabolites produced by fungi, are toxic to both animals and 

humans and their occurrence in the food chain may have public health effects (Wu et 

al., 2011). The International Agency for Research on Cancer (IARC) (1993) has 

reported that aflatoxins, especially aflatoxin B1 (AFB1), are the most potent natural 

carcinogenic substances and are being linked to severe illnesses and also increase 

the risk of liver cancer in humans. Several food crops such as maize (Zea mays L.), 

peanut (Arachis hypogaea), sorghum (Sorghum bicolour L.), millets (Pennisetum 

glaucum) and tree nuts are susceptible to contamination by aflatoxigenic fungi 

(Aspergillus flavus and A. parasiticus) (Kamika and Takoy, 2011). 
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Aflatoxins are more prevalent in tropical and sub-tropical areas where environmental 

conditions such as high temperature and humidity prevail, which favour the growth of 

fungi and production of mycotoxins on the crops (Klich, 2007). More often discreet 

and only few perceptible, moulds form a part of many microorganisms which 

contaminate foods in storage or before when the conditions are favourable (Moss, 

1996; D’mello, 2003). Concerning the above, many countries as well as multilateral 

agencies have established regulations to protect human beings from consuming 

highly contaminated food (Kamika and Takoy, 2011). 

 

Democratic Republic of Congo (DRC) is located in central Africa and shares an 

extremely long border with nine neighbouring countries. As Africa’s third largest 

country, the DRC boasts a land area of 2 344 872 km2 including deep equatorial 

forests. It has an estimated population of 70 million and Kinshasa as its capital; this 

is the largest city in the country with an estimated population of 10 million inhabitants 

in 2010 (Romaniuk, 2011; Tuakuila et al., 2012). This country is home to over 200 

different ethnic and linguistic groups with several customers (Fearon, 2003). It lies on 

the equator with a tropical hot and humid climate (Allison et al., 2009). In the low 

central basin average annual temperatures are around 25 ⁰C, while at the higher 

altitudes the temperatures hover around 20 ⁰C with an average annual rainfall in 

Kinshasa of 56 inches (1 422 mm) (Allison et al., 2009). From an economic 

perspective, after ten years of war and approximately 15 years of instability, the 

humanitarian crisis in the DRC remains among the most complex, deadly and 

prolonged ever documented since World War II (Coghlan et al., 2006). This situation 

has resulted in massive socio-economic hazards, food crises and malnutrition. For 

many in the DRC, food is not necessarily a part of daily life and when it is available, it 
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does not usually contain all the nutrients for a healthy life. The Congolese cuisine 

varies widely, but staple foods comprise cassava flour, maize, sweet potatoes and 

perch. In rural communities, meat is a delicacy reserved for special days while fish is 

seen as a primary food source (Allison et al., 2009). Peanut butter is commonly used 

in Congolese recipes (Tollens, 2002). According to the International Fund of 

Agriculture and Development (IFAD) (2001), the per capita gross national product 

(GNP) of the country is the world’s third lowest and agriculture contributed nearly 

58 % towards the GDP growth in 1996 compared to 26 % in 1977. 

 

Due to the above, people are forced to find food by any means necessary and this 

compromises issues of food safety (Tollens, 2002). Good hygiene in food handling 

and basic hygiene practices are often neglected and there are no rigorous food-

safety regulations and no strategy for the surveillance of food-borne diseases. 

Conditions such as cancer, kwashiorkor and malnutrition are amongst the major 

public health issues in the DRC (Ryder et al., 2000; Barclay et al., 2003; De Merode, 

et al., 2004; Longo-mbenza et al., 2007). Food contaminated by mycotoxins may be 

one of many possible contributing factors (Jiang et al., 2008). There are few or no 

control and preventative measures in various food-chain systems in place during 

processing and preservation of food products to prevent mycotoxin contamination 

(Wagacha and Muthomi, 2008).  Coghlan et al. (2006) reported malnutrition as a 

primary factor contributing to 10.9 % of all deaths in the east of the country and 

8.1 % in the west of the Congo (DRC). A study conducted by Longo-mbenza et al. 

(2007) amongst semi-urban schoolchildren from Kinshasa indicated high levels of 

malnutrition. The report of the FAO on the state of food insecurity in the world stated 

that the DRC had the highest number of undernourished people in the world during 
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the period of 1990-1992 to 1997-1999 (FAO, 2001). Consequently, people in the 

DRC experience food insecurity and concerns around food safety every day; this 

situation severely endangers the lives of the people and keeps them in crucial 

chronic food insecurity (FAO, 2001). Recently, the United Nations Development 

Programme (UNDP) reported that 59 % of Congolese people live on less than 

US$1.25/d and ranks the DRC bottom of 187 countries on its 2011 human 

development index (Canadian International Development Agency, 2011). 

 

The republic of South Africa (RSA) is a country in the Southern African region 

located at the southern tip of Africa. The country covers a coastline stretches of 2 

798 km from a desert border in the northwest along the Atlantic Ocean and then 

along the Indian Ocean to a border with subtropical Mozambique in the northeast. 

South Africa has an estimated population of approximately 47.39 million (2006 

figure) divided into multi-ethnic groups. Pretoria is the legislative capital city 

(Statistics SA, 2006). The RSA has a generally temperate climate with a desert 

region in the northwest and a climate similar to the tropics along the eastern 

coastline (Partridge, 1997). The climatic zones in the Southern African region vary 

from the extremely arid environment in the Namib Desert in the farthest northwest to 

the lush subtropical climate in the east along Mozambique and the Indian Ocean 

(Partridge, 1997). South Africa has a mixed economy with rate of poverty and low 

GDP per capita which is ranked in the top 10 countries in the world for income 

inequality, seeing a wide income gap between its wealthiest and poorest citizens 

(Statistics SA, 2006). The Black majority still has a substantial number of rural 

inhabitants who lead largely impoverished lives and this is the result of many years 

of colonial and racist apartheid policies designed to create general conditions 
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unfavourable to the well-being of Black people (Petersen et al., 2010). From an 

agricultural perspective, the South African agricultural industry is highly developed 

and the country is placed as one of the largest producers of chicory roots, cereals, 

maize, grapefruit, castor-oil seed, sisal, pears and fibre crops while South African 

cuisine is heavily meat-based (Machethe, 2004).  

 

Commonly called ‘the poor man’s nut’, peanut (Arachis hypogaea L.) is an important 

oilseed and food crop worldwide, serving as food for man and livestock (Nautiyal, 

2002). It is also used as a source of nutrition for malnourished children (Nagai et al., 

2009). Since it costs little and the crop is produced locally, peanuts are highly 

consumed raw, cooked (roasted or boiled) or mixed with other food substances 

(vegetables, meats, fishes, etc.) as a source of oil and is considered as an everyday 

meal by many Congolese families, rich or poor. According to the country rankings on 

peanut meal for domestic consumption, the DRC has been ranked 11th in the world 

with 46 000 Mt/yr while South Africa is ranked 28th in the world with 10 000 Mt/yr 

(Index Mundi, 2012). However, this figure might be higher since the DRC does not 

have the means to monitor peanut consumption in its entire territory due to war. 

Various traditional methods are employed in the processing and preservation of the 

peanut and some of these practices encourage fungal growth and mycotoxin 

production (Nautiyal, 2002). This becomes a serious health concern since it is very 

difficult to remove aflatoxins once in food (Moss, 1996). In addition, Kamika and 

Takoy (2011) reported that Kinshasa has favourable environmental conditions for 

fungal growth and production of aflatoxin in many of the Congolese staple foods, 

including maize and peanut. 
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Compared to the DRC, South Africa is a food-secure nation (Statistics SA, 2002) and 

has a well-developed agricultural industry which provides a modern food market with 

its requirements to satisfy consumers with a big variety of processed food products 

(Maenetje and Dutton, 2007). In addition, it is considered to be the biggest peanut 

exporter in Africa and produces between 80 000 t and 250 000 t of peanut per 

annum which is mostly used for plant protein and oil (Nautiyal, 2002; Kamburona, 

2007). In spite of strict regulatory controls, fungal growth and mycotoxin production 

are still present and are found in most of the food commodities and foodstuffs all 

over the nation. Maize collected from Limpopo Province was found to have a high 

incidence of mycotoxin, especially aflatoxin (Mamphuli, 2007). Peanut butter given to 

schoolchildren from the Transkei region, Eastern Cape, was also found to have high 

levels of aflatoxin (Williams et al., 2004); and barley, wheat, etc., also contained high 

aflatoxin levels (Mashinini and Dutton, 2006). Although South Africa has the capacity 

to feed itself, a part of the population such as those from the rural areas still suffers 

from food insecurity and poor food safety (Koch, 2011). According to Statistics SA 

(2002), there are around 14.3 million people facing food insecurity and 43 % of 

families that experience a major food crisis (Hendriks, 2005; Maponya, 2008). As a 

result of this situation, some people, particularly those in food-insecure households 

in both urban and rural areas, are exposed to aflatoxins by consuming foods 

contaminated with products of fungal growth. In 1991, Bressac and colleagues 

reported that humans and animals in South Africa are exposed to high levels of 

aflatoxins through their diets.  

 

Despite the fact that several studies have been carried out and focused on aflatoxin 

(Ciegler and Bennett, 1980; Viljoen, 2003; Brera, 2008; Capriotti et al., 2011), poor 
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food safety in Africa is still a major concern, particularly with regard to the 

consumption of aflatoxin-contaminated food (Shephard, 2003; Wagacha and 

Muthomi, 2008). Furthermore, in the DRC very few studies have been reported on 

peanut and aflatoxin contamination (Kamika and Takoy, 2011) and given the current 

socio-economic status of this country, research in this area is urgently needed. In 

addition to that, the DRC and South Africa are presented as areas with a high 

prevalence of chronic infection with hepatitis viruses, therefore a high incidence of 

hepatocellular carcinoma has been reported (Sitas et al., 2008). Consequently, the 

levels of aflatoxin present in food crops such as peanuts for human consumption 

from the DRC and South Africa need further investigation. 

 

1.2. PROBLEM STATEMENT 

Considered as the most important mycotoxin, aflatoxin is a natural potent carcinogen 

known to affect both humans and animals. The evidence on a synergistic interaction 

between aflatoxin and hepatitis B virus contamination in the incidence of liver cancer 

with hepatocellular carcinoma as the most prevalent type has been reported (Moss, 

1996). Sub-Saharan African countries such as the DRC as well as South Africa are 

seen to be hyperendemic areas for hepatitis B virus infection (Sitas et al., 2008). In 

addition, a correlation exists between socio-economic status and exposure to 

mycotoxins such as aflatoxins (Shephard, 2003). Due to the scarcity of food and lack 

of regulation due to war and food insecurity Congolese people are exposed to 

contaminated food and this is an alarming situation. Unfortunately, this problem is 

mostly neglected in many developing countries, since the aflatoxin contamination is 

often sporadic and hidden. In view of the fact that food consumption is one of the 

major factors affecting the health of both human, continuous surveillance of aflatoxin 
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levels in peanut samples should be implemented in order to prevent the consumption 

of aflatoxin-contaminated food. This study will investigate the incidence of 

aflatoxigenic fungi and aflatoxins in peanut samples obtained from both Kinshasa 

and Pretoria. 

 

1.3 GENERAL AIM AND OBJECTIVES 

The main aim of this study is to determine the level of aflatoxin contamination in 

peanuts sold at informal markets in one city in Southern and Central Africa.  

 

In this regard, the objectives of this study were to: 

 identify and compare the fungal strains from both Kinshasa and Pretoria 

peanut samples using macroscopic characteristics 

 quantify the level of aflatoxins in peanut samples collected from both 

Kinshasa and Pretoria 

 validate and analyse aflatoxin contamination of peanut samples using 

fluorometry and HPLC compare fluorometry and HPLC methods for the 

determination of aflatoxin in peanut 

 

1.4 SIGNIFICANCE OF THE STUDY 

Although research on mycotoxins, especially aflatoxins, has received increasing 

attention worldwide, in the DRC, research on this subject is still very scarce (Kamika 

and Takoy, 2011). However, there is evidence to suggest that aflatoxin 

contamination is a major food-safety concern in the DRC where the environmental 

conditions and socio-economic problems are conducive to poor storage 

management and subsequent food spoilage and aflatoxin contamination. By 
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assessing the natural occurrence of aflatoxins in peanuts collected from Kinshasa 

and comparing these results to those obtained in samples collected from Pretoria, it 

is hoped that the data will provide base that could be used by policy markers 

especially from DRC. This survey will provide much-needed data from a country 

where conflict has largely prevented important research from being conducted. The 

results will be important in informing the crafting of food safety and possibly 

agricultural marketing policies in urban Kinshasa.  

 

1.3. LIMITATIONS OF THE STUDY 

The high costs of sample collection especially from DRC and analysis limited the 

number of samples that could be collected and analysed from both cities. The 

sample size therefore might not be representative of the actual situation on the 

ground. However, as a preliminary study, this serves an important purpose as the 

findings presented here may be taken to the next level in subsequent studies. 

 

1.5 CHAPTER LAYOUT 

Chapter Two contains the review and critical analyses of the theory and previous 

research regarding mycotoxins (aflatoxins), especially AFB1, its incidence, economic 

and health effects, strategy for its prevention and legislation established to avoid 

aflatoxin contamination in human food. 

 

Chapter Three is aligned with the methodology used to assess aflatoxins including 

AFB1, AFB1, AFG1 and AFG2 levels. This chapter describes the sampling method, 

and the aflatoxin extraction and determination method using fluorometry and high-

pressure liquid chromatography (HPLC). 
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Chapter Four sets out the results as obtained in this study; a discussion of the 

results is also provided by comparing the findings with those previously reported in 

the literature. 

 

Chapter Five provides the general discussion of the findings presented and 

interpreted in chapter four. 

The conclusion is considered as Chapter Six and illustrates the research question 

answered and provides recommendations for further study  
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CHAPTER TWO: LITERATURE REVIEW 

 

2.1. MYCOTOXINS 

Mycotoxins are secondary metabolites produced by microscopic filamentous fungi, 

which can develop on food crops (maize, wheat, groundnut, etc.) and in some cases 

on commodities of animal origin (meat products, sausages) (Milicevic et al., 2010). 

Mycotoxins are harmful to vertebrates when they are absorbed through ingestion, 

inhalation, or dermal absorption. It has been shown that ingestion of contaminated 

food/feed is the main source of mycotoxin exposure to both humans and animals 

(Milicevic et al., 2010). 

 

The word mycotoxin comes from the Greek word ‘mykes’, meaning mould, and 

‘toxicum’ meaning poison, and the diseases caused by them are called 

mycotoxicoses (Viljoen, 2003; Brera et al., 2008). Historically, mycotoxins have 

probably been present in food and feed since early in the history of humanity and 

some of their effects have been recognised for centuries (Viljoen, 2003). The first 

documented mycotoxicosis, gangrenous ergotism or St. Anthony’s fire, known since 

the Middle Ages, is a human disease resulting from consuming rye contaminated 

with Claviceps purpurea. There have been many mycotoxin-related outbreaks in the 

past century which have led to numerous deaths, e.g. ‘yellow rice disease’ in Japan 

and Alimentary Toxic Aleukia (ATA) which killed many Russian people. In the 1930s, 

another ‘Russian’ disease linked to mycotoxin exposure in the Ukraine led to the 

death of many horses (Ciegler and Bennett, 1980; Capriotti et al., 2011).  
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But the scientific interest in mycotoxins and their implications for human and animal 

health began in the 1960s when 100 000 young turkey poultry died in England from 

a seemingly new disease, 'Turkey “X” disease’, followed suddenly by the death of as 

many as 5 000 partridge and pheasants poultry on a single farm, 14 000 ducklings 

on another farm and severe losses  of ducklings, reported from as far as Kenya and 

Uganda; these events triggered renewed attention being paid to the mystery killer 

disease (Klich, 2007). 

 

Presently more than 300 mycotoxins are known, but the scientific interest has thus 

far been concentrated simply on more or less 10 compounds presenting a known 

toxicological impact on human and animal health (Wu et al., 2011). Among them, 

aflatoxins, ochratoxins, fumonisins, trichothecenes, deoxynivalenol (DON), and 

zearalenone (ZEA) are the major groups of mycotoxins mostly studied. These 

mycotoxins have been shown to be associated with genotoxic effects, carcinogenic 

effects, immunotoxic effects, mutagenic effects, nephrotoxic effects and teratogenic 

effects in animal and human health (Moss, 1996; Brera et al., 2008).  

 

Mycotoxins are mainly produced by fungal species belonging to the genera 

Aspergillus, Penicillium and Fusarium which are ubiquitous in the environment (Klich, 

2007). Under varying conditions, also depending on the species and strain, specific 

fungi produce a particular mycotoxin, specific fungi produce many mycotoxins or 

again a specific mycotoxin is produced by a variety of fungi (Viljoen, 2003).  

Environmental conditions and the nature of substrate determine the type of fungi that 

dominate in particular food crops, and in some cases the type of mycotoxins 

produced (Marquardt, 1996). Environmental conditions, especially temperature and 
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humidity, influence fungal production of mycotoxins, thus the presence of fungi even 

at high infection rates does not necessarily imply that mycotoxins are present. In 

addition, different strains of a given fungal species differ in their ability to produce 

mycotoxins. In most instances, mycotoxins produced can remain within the infected 

material long after signs of fungal infection have disappeared (Viljoen, 2003).  

 

The type and level of mycotoxin production result from the interaction between fungi, 

the host and the environment (Pitt, 2000). It has been estimated that 25 % of crops 

produced worldwide are contaminated each year with ‘unacceptable’ levels of 

mycotoxins during food production, processing, transport and storage (Kamika and 

Takoy, 2011). Of these, the economic, health and environmental impacts of these 

fungal toxins have pushed our understanding of food safety and food poisoning 

(Marquardt, 1996). Since aflatoxins represent the most widespread risk to food 

safety in tropical Africa and because of the interest and objectives of this study, 

aflatoxins will be discussed further in the following sections. 

 

2.1.1. Aflatoxins 

Aflatoxins are mycotoxins that have been well-known since the outbreak of ‘Turkey 

“X” disease’ in England, first isolated and characterised from Aspergillus flavus; this 

mould is a common contaminant of poorly stored grains (Klich, 2007). Aflatoxins are 

now known to be mainly produced by Aspergillus flavus, Aspergillus parasiticus, 

Aspergillus nomius (Do and Choi, 2007). Aflatoxins have received most attention due 

to their significance in agricultural production loss, threats to human health and 

potential threats to food safety. There are roughly 20 known aflatoxins but only four 

of these (aflatoxins B1, B2, G1 and G2) are widely studied because of their toxic 
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effects. AFB1 is the most pernicious of these toxins (Moss, 1996; Henry et al., 1999; 

Lewis et al., 2005; Wangikar et al., 2005; Kamika and Takoy, 2011).  

 

2.1.1.1. Chemistry of major aflatoxins 

Major aflatoxins have been classified into B and G series due to their fluorescence 

being blue and green in UV, respectively (Pavao et al., 1995). The B series, AFB1 

and AFB2 are chemically known as difurocoumarocyclopentenones and the G series 

(AFG1, AFG2) are difurocoumarolactone series (Fig. 2.1). Structurally the 

dihydrofuran moiety, containing a double bond, and the constituents linked to the 

coumarin moiety are of importance in producing biological effects. For the B series, 

cyclopentenone was reported to be responsible for the major toxicity observed (Fung 

and Clark, 2004).  

 

Figure 2.1: Chemical structures of main aflatoxins (Jaimez et al., 2000) 

 

It has been demonstrated that aflatoxins are potent liver toxins and their effects vary 

with dose, length of exposure, species, breed and diet or nutritional status. 

Considerable doses generate acute toxicity and chronic exposure to low levels may 

result in cancer (Marquardt, 1996). 
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2.1.1.2. Aflatoxin-producing fungi 

Fungi are spread worldwide, and constitute invisible inocula that can contaminate 

food, thereby producing effects that are life-threatening (Newberne, 1974). 

Aspergillus species, microscopic filamentous fungi, are widespread in nature as well 

and are regarded as soil fungi (Gourama and Bullerman, 1995). As a member of a 

large phylum of Ascomycota, the Aspergillus genus contains roughly 185 species 

within 18 groups with morphological, genetic and physiological similarity (Botton et 

al., 1990; Roquebert, 1998). In addition, around 20 species are human and animal 

pathogens (Sanglard, 2002; Barkai-Golan and Paster, 2008). Generally less exigent 

on the environmental conditions of the substrate, they have a wide geographical 

distribution, but are found mostly in the tropical and subtropical regions. They can 

develop on various substrates including food commodities of plant origin (peanut, 

maize, wheat, etc.) and in some cases also on commodities of animal origin (meat 

products, sausages, milk) (Castegnaro and Pfohl-Leszkowicz, 2002). Their growth 

on the substrate can lead to the alteration of nutritional and dietetic qualities of the 

products and also to the production of mycotoxins (Barkai-Golan and Paster, 2008). 

 

Aspergillus species contain a large number of mycotoxigenic species such as 

Aspergillus alliaceous, Aspergillus carbonarius, A. flavipes, A. flavus, A. parasiticus, 

A. fumigatus, A. nomius, A. tamari, A. versicolor, A. terreus, A. niger, A. bombycis, A. 

ochraceoroseus, A. pseudotamari, etc., among them. Some species including A. 

fumigatus and A. niger can be directly pathogenic to humans and animals by being 

able to invade the living tissues and provoke illnesses such as aspergillosis (Badillet 

et al., 1987; Judson, 2004). Figure 2.2 illustrates an example of A. flavus and A. 

parasiticus spores. 
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Figure 2.2: Scanning electron microscopy pictures of (a) A. parasiticus; and (b) A. flavus 

spores (Rodriguez et al., 2007) 

 

Historically, only A flavus, A. parasiticus and A. nomius have been known as 

producers of aflatoxins (Ehrlich et al., 2007). However, Coppock and Christian 

(2007) have since reported that A. bombycis, A. ochraceoroseus and A. 

pseudotamari are also capable of producing aflatoxins. 

 

a. Conditions of Aspergillus species and aflatoxin production 

In the course of evolution, Aspergillus species as fungi have diversified to exploit a 

wide variety of habitats and different species therefore require different conditions for 

optimal growth (Klich, 2007). Classified as storage fungi, several Aspergilus species 

grow at 22-25 ºC; the thermophilic species (A. fimigatus) develop at 37-40 ºC and 

can also reach 57 ºC (Table 2.1) (Badillet et al., 1987; Klich, 2007). Moreover, the 

optimal temperature for fungal growth and aflatoxin production for A. flavus and A. 

parasiticus is 35º C with 0.95 aw and 33 ºC with 0.99 aw, respectively, and neither 

Aspergillus species produce aflatoxins when developed below 7.5 ºC or above 40 ºC 

(Pitt, 2000). 
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Table 2.1: Environmental factors for Aspergillus growth and aflatoxin production 

  Aspergillus flavus Aspergillus parasiticus 

G
ro

w
th

 

 Minimum Optimum Maximum Minimum Optimum Maximum 

T(⁰C) 10-12 33 43 12 32 42 

Water 

activity* 

0.8 0.98 >0.99 0.80-0.83 0.99 >0.99 

pH 2 5-8 >11 2 5-8 >11 

A
fla

to
x
in

 

p
ro

d
u

c
tio

n
 

T(⁰C) 13 16-31 31-37 12 25 40 

Water 

activity* 

0.82 0.92-0.99 >0.99 0.86-0.87 0.95 >0.99 

pH - - - 2 6 >8 

Source: International Commission on Microbiological Specifications for Foods (1996) 

*water activity: aw  

 

It was emphasised that the range for aflatoxin production was narrower than that for 

growth (Pitt, 2000). In spite of the nature of substrate, which includes a number of 

nutrients and pH values ranging from pH 4 to pH 8, and temperatures ranging 

between 10 ⁰C to 37 ⁰C, water activity (aw) was higher than 0.6 aw; the composition 

of the atmospheric gases (CO2, O2, etc.) around the toxigenic fungus represents 

another factor affecting toxin production (Ellis et al., 1993; 1994). According to Ellis 

et al. (1994), A. flavus growth and aflatoxin production occur in carbon dioxide-

enriched atmospheres in the presence of oxygen. However, temperature (related to 

hot or warm conditions) and water activity (related to humidity or moisture) are major 

factors in the growth of fungi and mycotoxin production (Belli et al., 2004). This 

temperature and humidity range is found in most of the African countries where a 

tropical and subtropical climate prevails (Hell and Mutegi, 2011). 

 

Cotty and Jaime-Gracia (2007) reported that heat or drought stress increases peanut 

susceptibility and favours fungal colonisation. Fungal colonisation can occur anytime, 

from pre-harvest, harvest and post-harvest time when the crop is exposed to warm, 
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moist conditions (Hell and Mutegi, 2011). However, Aspergillus species commonly 

produce aflatoxin during storage (Kamika and Takoy, 2011). 

 

Aspergillus often forms powdery or granular colonies and the colour of the colonies 

allows for easy species identification, e.g. green-yellow for Aspergillus flavus, gray-

green for A. fumigatus, yellow-rose for A. versicolor, etc. Indeed, A. flavus and A. 

parasiticus are broadly differentiated from each other primarily by the colour of their 

colonies (orange yellowish) and the morphology of their conidial structures (Steyn, 

1980; Pitt, 2000). 

 

The presence of aflatoxins in food crops can occur even in the absence of visible 

mould infestation due to a ceased vital cycle of the microorganism or by the effect of 

a removal of the mould due to food processing. Conversely, the presence of a visible 

mould on the surface of a food product does not represent a clear indication of the 

presence of a mycotoxin such as aflatoxins (Viljoen, 2003). 

 

2.1.1.3. Biosynthesis of aflatoxin B1 

The aflatoxins constitute a number of structurally related metabolites which differ 

considerably in their biological effects. However, all of them contain a coumarin ring 

combined to a bisdihydrofurano moiety and additionally either a cyclopentenone ring 

(B series) or a six-membered lactone ring (G series). Of all these toxins, AFB1 is the 

one with the greatest biological activity. Carcinogenic in several animal species, 

AFB1 reveals itself as the most potent hepatocarcinogen known in the rat and the 

rainbow trout (Yu and Cleveland, 2007).  It has been reported that it is probable that 

the enzymes of aflatoxin biosynthesis and of other polyketides are similarly arranged 
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in discrete particles in the post-mitochondrial fraction (Wild and Turner, 2002). The 

aflatoxin biosynthesis is also characterised by 29 clustered aflatoxin pathway genes 

and can be described in two major stages: an early stage from acetate to 

Versicolorin A (VERA) (coloured pigment in brick-red, yellow, or orange) and a later 

stage from demethyl-sterigmatocystin (DMST) to AFB1 (colourless under normal 

light and fluorescent-blue under UV light) (Yu and Cleveland, 2007). 

 

2.1.1.4. Bioactivation of aflatoxin B1 

Like many other chemical carcinogens, AFB1 requires bioactivation to a reactive 

toxic metabolite-activation as an important stage in its toxicity expression (Donnelly, 

1998). Aflatoxin B1 cannot itself be the toxic molecule but it is metabolised in the 

animal body in a complex network of reactions and it is the result of this metabolism 

which determines both acute and chronic toxicity (Figure 2.3). Many researchers 

have studied the relationship between the biological activity of AFB1 and its 

metabolism, and have shown the evidence that AFB1 needs metabolic activation to 

exert its carcinogenic and mutagenic effects (Gallagher et al., 1994; Kirby et al., 

1996; Niu et al., 2008). After ingestion, AFB1 presents a short half-life; 65 % of the 

quantity absorbed after 90 min is removed from the blood and plasma and 

metabolised by the liver to a reactive epoxide intermediate. It has been estimated 

that in human liver monogenates, the half-life of AFB1 is 15 min (Fung and Clark, 

2004; Bastaki et al., 2010). 
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Figure 2.3: Metabolism of AFB1 leading to reactive metabolites and biomarkers (Wild and 

Turner, 2002) 

 

In the metabolism, however, the first step of it takes place in the hepatocyte, with 

nonreversible detoxification which lea to the formation of hydroxylated metabolites 

(AFM1, AFQ1, AFP1, AFB2a), followed either by reversible detoxification through 

aflatoxicol formation, or by activation through the generation of AFB1-8-9-epoxide 

(Neal, 1998). 

 

However, AFB1 is mainly bio-activated by cytochrome P450-dependent 

monooxygenase which results in the production of many metabolic products such as 
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aflatoxin Q1, aflatoxin P1, aflatoxin M1 and aflatoxin B1-8-9-epoxide. Aflatoxin B1-8-

9-expoxide has been reported to be the most toxic metabolite (Do and Choi, 2007). 

Cytochrome P-450 monooxygenase has been demonstrated as a key factor in the 

metabolic activation of several chemical carcinogens such as AFB1, various 

heterocyclic and aromatic amines, and specific nitro-aromatic compounds (Viljoen, 

2003). 

 

Among these metabolic products, aflatoxin B1-8-9-epoxide has been shown as an 

important metabolite synthesised in the animal liver and can react with guanine 

residues in DNA and lead to depurination (Moss, 1996; Yu and Cleveland, 2007; 

Donnelly, 1998). The net result is gene mutation. The most regularly induced 

mutation is the GC→TA transversion, potentially leading to carcinogenesis (Bressac 

et al., 1991; Smela et al., 2001). In addition, the epoxide occurs in endo- and exo-

forms. The exo-epoxide is highly electrophilic and reacts with several macro-

molecular (Smela et al., 2001). The activated AFB1, aflatoxin B1-8-9-epoxide can 

bind to glutathione, cellular proteins, RNA and DNA. The binding of aflatoxin B1-8-9-

epoxide to DNA has been investigated in rats and was found to take place at the 

critical nucleophilic sites of DNA and identified to form 2,3-dihydro-2-(N7-guanyl)-3-

hydroxy-aflatoxin B1 (Fung and Clark, 2004), which is also associated with tumour 

development in animals (Dashwood et al., 1989). However, when bound to 

glutathione, aflatoxin B1-8-9-epoxide produces another metabolite which is less toxic 

Wild and Turner, 2002). Wild and Turner (2002) reported that there is evidence that 

the interaction of DNA with aflatoxin is not direct, but rather a process of activation 

through an epoxide metabolic activation pathway. 
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Many mineral elements including Zn2+, Cu2+ and Fe2+ are also essential for this 

activation by contributing to the cyclisation of the polyketide precursors and also 

affecting the induction of the enzymes of secondary metabolism (Do and Choi, 

2007). In light of this, AFB1 may be seen as a multiple menace by its carcinogenic, 

teratogenic, and mutagenic effects and also by its immunosuppressive effects (Do 

and Choi, 2007). 

 

2.1.2. Aflatoxin B1 and its health effects 

The evidence of mycotoxin effects on human and animal health has been 

demonstrated by many studies on laboratory animals and extrapolated to humans. 

After several studies on the correlation between mycotoxin-contaminated food and 

cancer in humans, the carcinogenic effects of mycotoxins, especially AFB1, have 

been established (Moss, 1996). 

 

The impact of mycotoxins on human and animal health depends on the gender, age, 

length of exposure, dose, species (in the case of animals), etc. (Newberne, 1974; 

Moss, 1996). Human intoxication by mycotoxins may occur via dermal contact, 

ingestion and inhalation. Ingestion through consumption of contaminated food is the 

most likely and relevant route (Ciegler and Bennett, 1980; Brera et al., 2008). 

Aflatoxin B1 is shown to be the most toxic and therefore the most studied because of 

its effects on human and animal health. In terms of concentration and time of 

exposure, AFB1 can have an acute as well as chronic effect on humans and 

animals. The liver was found to be the principal target of AFB1 (Harrison et al., 1993) 

although other organs such as the kidney, stomach, lung, salivary and lachrymal 

glands, colon, and skin may be affected (Harrison et al., 1993; Henry et al., 1999). 
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The following section will explain in detail the acute and chronic effects of AFB1 on 

humans and animals. 

 

2.1.2.1. Acute effects of aflatoxin B1 

The acute toxicity of AFB1 is brought about by ingesting a considerable dose 

through aflatoxin-contaminated food. The ingestion of high-level aflatoxins which 

produces an acute hepatic failure (hepatic necrosis), is generally manifested by 

haemorrhage, oedema, alteration in digestion, changes to the absorption, mental 

changes and coma (Williams et al., 2004). In developing countries (Southeast Asia 

and sub-Saharan Africa) people are exposed to high levels of AFB1; there is high 

level of AFB1 exposure in humans and which may result in aflatoxicosis (Lewis et al., 

2005). 

An acute outbreak of aflatoxicosis in India associated with the consumption of 

aflatoxin-contaminated corn and hepatitis has been reported and over 100 deaths 

occurred and the ingested dose causative of the event was estimated at 2 mg/d to 6 

mg/d over a month. Males were more susceptible and were affected twice as much 

as females (Khlangwiest, 2011). In China, aflatoxicosis caused the deaths of 13 

children due to acute hepatic encephalopathy (Brera et al., 2008). More recently, one 

of the largest aflatoxicosis outbreaks occurred in rural Kenya in 2004, resulting in 

317 cases with 125 deaths (Lewis et al., 2005). A case-control study of this acute 

aflatoxicosis outbreak was conducted by identifying the risk factors for contamination 

of implicated maize and quantified biomarkers. The outcomes of the study revealed 

that the aflatoxin concentrations in maize, the serum aflatoxin B1-lysine adduct 

concentrations, and positive hepatitis B surface antigen titres were all associated 

with the case status (Azziz-Baumgartner et al., 2005). 
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In South Africa, isolated outbreaks of aflatoxicoses have been recorded on a farm 

where animals had been fed with inappropriately harvested and stored maize 

(Kellerman et al., 1988). It has been established that the consumption of 

contaminated food with 1.7 mg/Kg for a short time could result in severe liver 

damage, and a single dose of 75 mg/Kg may cause death (Stewart, 1997). Studies 

carried out on animals have demonstrated that some animals are remarkably more 

sensitive to AFB1 intoxication than others, e.g. day-old ducklings and the adult dog 

exhibited LD50 values of 0.35 mg/kg and 0.5 mg/kg body weight, respectively,  while 

rats and mice had LD50 values of 9 mg/kg (Moss, 1996). 

 

2.1.2.2. Chronic effects of aflatoxin B1 

The chronic toxicity of AFB1 results from long-term exposure to low or moderate 

levels and does not lead to immediate symptoms as dramatic as acute aflatoxicosis 

(Moss, 1996). It is reported that chronic exposure to aflatoxin leads to a high risk of 

developing cancer, especially liver cancer, as well as stunted growth and delayed 

development in children. Developing countries have been reported as having the 

highest incidence of liver cancer as well as the highest risk of chronic aflatoxin 

exposure (Figure 2.4). It has been estimated that more than 5 billion people in the 

developing countries are at risk of chronic aflatoxin exposure through consumption of 

contaminated foods (Wu et al., 2011). 

 

a. Role in cancer development 

Aflatoxins, especially AFB1, are among the most potent naturally occurring 

carcinogens known and may induce tumours in many humans and animals (Moss, 

1996; Shen and Ong, 1996; Moss, 2002). Classified as human carcinogen group A1 
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by the IARC (1993), it is predominantly perceived as an agent promoting liver cancer 

in humans, although it can also be involved in lung cancer (Williams et al., 2004). 

Aflatoxin may have a synergistic effect with other diseases such as kwashiorkor, 

HIV/AIDS, hepatitis B or C or with other mycotoxins, for example, fumonisin B1, T-2 

toxin, zearalenone, etc. (Omer, 2001; Kew, 2002; Wangikar et al., 2005; Orsi et al., 

2007). Aflatoxin B1 has also been shown to possess immunosuppressive effects 

(Creppy, 2002), teratogenic effects (Wangikar et al., 2005), and mutagenic effects 

(Harris, 1990; Shen and Ong, 1996) in several animal species. 

 

Figure 2.4: Correlation between populations with high liver-cancer rates and high risk of 

chronic aflatoxin exposure (National Institute of Environmental Health Sciences, 2011) 

 

b. Liver cancer 

Chronic aflatoxin exposure results mostly in primary liver cancer of which 

hepatocellular carcinoma (HCC) is by far the predominant type (Wild and Hall, 2000; 

Turner et al., 2005). In addition to aflatoxin exposure, it has been reported that 
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several factors such as hepatitis B/C viral infection, nitrosamines, alcohol, etc., may 

contribute towards the development of liver cancer in humans (Viljoen, 2003). A 

strong synergy has been reported between aflatoxin and hepatitis B (HB) and/or C 

(HC) with aflatoxin being approximately 30 times more potent in persons with 

hepatitis B than in those without the virus (Williams et al., 2004). A study 

investigating the induction of hepatocellular carcinoma in tree shrews exposed to 

human hepatitis B virus (HBV) and AFB1 showed that there is a synergistic role 

between AFB1 and HBV in the development of HCC (Yan et al., 1996). Wong et al. 

(1977) utilised Salmonella typhimurium T98 for testing the mutagenic effect of AFB1 

and found that the compound has a relative mutagenic potency of 100 and 

suggested that the mutagenicity and carcinogenicity of this compound is associated 

with the bisdihydrofuran moiety. Miranda et al. (2007) analysed the DNA damage 

induced by AFB1 in Dunkin-Hartley guinea pigs and found that there is a relationship 

between the levels of DNA damage and the consumption of AFB1 in the liver cells. 

These authors also reported that exposure to this toxin increases the level of DNA 

damage in liver cells significantly, which is a key step in liver-cancer development. 

 

Liver cancer has become a major public health problem being the third most frequent 

cancer accounting for 695 000 deaths in 2008 and 550 000 to 600 000 new cases 

each year, with an estimated 42 000 deaths occurring every year in sub-Saharan 

Africa (Wu et al., 2011). There is evidence that human exposure to high levels of 

AFB1 in food and hepatocellular carcinoma occurs more frequently in developing 

countries where the incidence of hepatitis B virus is also high (Henry et al., 1999; 

Smela et al., 2001; Lu, 2003; Turner et al., 2005).  
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Carcinogenic effects of AFB1 on humans and animals have been well documented. 

In particular, AFB1 was identified as carcinogenic in rainbow trout (Moss, 1996; 

Coppock and Christian, 2007). In the USA, some studies reported aflatoxins as the 

cause of epizootic hepatitis in dogs and as the cause of mouldy corn poisoning in 

pigs (Coppock and Christian, 2007). Aflatoxin B1 has been demonstrated to have a 

carcinogenic effect in rainbow trout, duck, rat, mouse, monkey and marmoset 

(Ciegler and Bennett, 1980). It is also reported as being a potent carcinogen in rats, 

causing liver cancer, but it is much less carcinogenic in mice (Moss, 1996). It has 

been reported that when fed with a diet containing 30 mg/Kg of AFB1, 11 ducks 

developed hepatocellular carcinoma (Lu, 2003). In their study, Svoboda et al. (1966) 

recorded that three out of six Fischer rats fed with 1.0 mg/Kg of AFB1 in the diet also 

developed hepatocellular carcinoma.  

 

Although the carcinogenic effects of AFB1 on various animals have been 

demonstrated, some researchers remain unconvinced (Viljoen, 2003). This, despite 

the additional evidence on the role of AFB1 in human liver cancer provided by both 

Hsu et al. (1991) and Bressac et al. (1991), by demonstrating that 50% of human 

liver tumour tissues collected from Southern China and Southern Africa were 

associated with high dietary AFB1. Hepatocellular carcinoma incidence contained a 

single point mutation in the tumour suppressor gene p53 and the majority of the 

detected mutations were GC→TA transversions at codon 249 (arginine to serine) 

and this mutation was isolated in people living with hepatocellular carcinoma (HCC) 

(Stewart, 1997). 
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Several epidemiological studies have been aimed at showing the evidence of the 

carcinogenic effects of AFB1 and the correlation between exposure to AFB1 in diet 

and the incidence of human liver cancer around the world (Ciegler and Bennett, 

1980; Moss, 1996). In 1996, a cohort study combined with a molecular dosimetry 

approach to assess the effects of aflatoxin exposure was performed in the Penghu 

Islets where the HCC mortality rate was highest in Taiwan. The results implied that 

elevated risk of HCC among the residents may be attributable to their heavy 

exposure to aflatoxins and high hepatitis B surface antigen (HBsAg) carrier rate 

(Chen et al., 1996). High aflatoxin concentrations in the diet have also been linked to 

increased liver-cancer risk in mainland China (Wu, 2004). 

 

Recently, some studies recorded the presence of liver tumours in the areas where 

there is high aflatoxin exposure and demonstrated that AFB1 has high mutagenic 

effects. Patients with liver cancer or cirrhosis were found to have this kind of 

mutation in their plasma (Montesano et al., 1997; Kirk et al., 2006). It has been 

reported that aflatoxin B1-associated mutagenesis represents a plausible cause for 

the higher chromosome instability observed in Chinese HCC (Pineau et al., 2008). 

This mutagenic effect associated with the carcinogenic effect was also demonstrated 

in the mouse and in Drosophila (Ciegler and Bennett, 1980). 

 

In addition, Hosny et al. (2008) has reported that mutagenesis by aflatoxin may have 

played a role in high levels of human hepatocarcinogenesis in Egypt. Aflatoxin B1 

can be inhaled and is implicated in lung cancer, but there is only weak evidence 

supporting this (Georggiett et al., 2000). In a study of agricultural workers exposed to 
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aflatoxins, a two- to three-fold increase in the risk of hepatocellular carcinoma and 

biliary tract cancer was found (Fung and Clark, 2004).  

 

c. Lung cancer 

In addition of being a potent hepatocarcinogen, AFB1 has been reported as a 

pulmonary carcinogen in experimental animals (Donnelly et al., 1996) and 

epidemiological studies have revealed the link in humans (Inoue et al., 2011). A 

study by Cusumano (1991) reported the presence of aflatoxins in sera from patients 

with lung cancer. However, there was no significant correlation found to provide 

evidence for a causal relationship between aflatoxin exposure and development of 

lung cancer in humans. Nevertheless, when van Vleet et al. (2002)  compared 

aflatoxin B1 activation and cytotoxicity in human bronchial cells expressing 

cytochromes P450 1A2 and 3A4, they reported an evidence link between the 

inhalation of aflatoxin B1-contaminated dusts and increased lung-cancer risk. These 

authors stated that the link is possible under conditions in which appropriate human 

cytochromes P450 (CYPs) are expressed in the lung.  A study conducted by 

Dvorackova et al. (1981) has demonstrated the evidence of the role played by the 

toxin in two cases of lung cancer in patients having a pulmonary Aspergillus 

mycosis. Another study evaluating the rate of mortality among peanut workers, 

showed increased rates of overall mortality and lung-cancer mortality (Cusumano, 

1991). Additionally, in a study on the assessment of the human lung exposure risk to 

airborne AFB1 during farming activities, including swine feeding, Liao and Chen 

(2005) estimated that there is a potentially high risk for the bronchial region during 

swine-feeding activity. 
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d. Liver cirrhosis 

Liver cirrhosis is generally irreversible and a consequence of chronic liver disease 

characterised by fibrous scarring and hepatocellular regeneration of the normal 

hepatic structure of regenerative nodules and fibrotic tissue (Kim et al., 2005). 

Cirrhosis is most commonly caused by alcoholism, hepatitis B and C, and fatty liver 

disease, but has many other possible causes. Some cases are idiopathic, i.e., of 

unknown cause. Little has been reported on the existent link between aflatoxin 

exposure and liver cirrhosis (Wild and Gong, 2010). An etiological study of liver 

cirrhosis conducted in Gambia reported the implications of aflatoxin in the rate of 

morbidity and mortality of Gambian people (Kuniholm et al., 2008).  

 

e. Role in immunosuppression 

Immunosuppressive agents are substances that inhibit or prevent activity of the 

immune system by suppressing the cell-mediated immunity, the humoral immunity, 

etc. (Williams et al., 2004). Previous studies have shown that AFB1 is an 

immunosuppressive substance in humans and in various animals (Bondy and 

Pestka, 2000; Meissonnier et al., 2008; Jiang et al., 2008). An immunological study 

conducted on chicks demonstrated that the progeny chicks from hens consuming an 

aflatoxin-spiked diet were increasingly susceptible to disease owing to suppression 

of humoral and cellular immunity (Qureshi et al., 1998). Other studies have shown 

that exposure to aflatoxins, especially AFB1, can affect the developing immune 

system during embryonic development (Todd and Bloom, 1980; Potchinsky and 

Bloom, 1993). When injected into 18-day-old chicken embryos, aflatoxin caused 

significant DNA damage in B and T lymphocytes (Qureshi et al., 1998). Theoretically, 

by impairing DNA-dependent RNA polymerase, therefore inhibiting RNA and protein 
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synthesis, they could damage the proliferation and differentiation of immune cells, 

immunoglobulin, and cytokines (Fung and Clark, 2004). Since both aflatoxin and HIV 

are immunosuppressive agents, Jiang et al. (2008) hypothesised that aflatoxin 

exposure may also influence the pattern of infection leading to an immune 

dysfunction of people living with HIV/AIDS. In addition, Sahoo and Mukherjee (2001) 

reported that AFB1 is an immunosuppressive in Indian major carp even at the lowest 

dose of 1.25 mg/kg of body weight of toxin treatment. On the contrary, Raisuddin et 

al. (1993) reported that at low levels, aflatoxin may enhance the susceptibility of the 

rats to infection and tumorigenesis. 

 

f. Role in undernutrition 

Mostly affecting children, undernutrition has been defined as the outcome of 

insufficient food intake and repeated infectious diseases. This included underweight 

and too short for one’s age, dangerously thin, and deficient in vitamins and minerals 

(UNICEF, 2006). It has been reported that in sub-Saharan Africa, approximately 

50 % of the 4.5 million deaths of children under the age of five are associated with 

undernutrition and growth impairment and aflatoxin contamination seemingly is the 

main contributor (Turner et al., 2007). Aflatoxin B1 has been also implicated to the 

aetiology of kwashiorkor and marasmic kwashiorkor in humans (Sibanda et al., 

1997). This association has been reported from several African countries including 

Sudan, Nigeria, South Africa, Liberia, Rwanda, Ghana and the Philippines (Seres 

and Resurrection, 2003). Oyelami et al. (1997) reported the presence of aflatoxins in 

the lungs of children who died from kwashiorkor and miscellaneous diseases in 

Nigeria. In 1998, autopsy kidney specimens from Nigerian children with kwashiorkor 

and miscellaneous diseases were analysed for the presence of aflatoxin and 
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researchers found that aflatoxins can be detected in the kidneys of children exposed 

to aflatoxins (Oyelami et al., 1997) and this was related to the possible effects of 

AFB1 to kwashiorkor. In contrast, another study carried out on the effects of AFB1 

on the development of kwashiorkor in Swiss albino mice concluded that AFB1 could 

not have contributed to the development of kwashiorkor (Kocabas et al., 2003). 

 

g. Role in fertility  

Aflatoxin was reported to affect the reproduction capacity and fertility of both animal 

and humans (IARC, 2002). A study on the determination of AFB1 effects on Ram 

epididymal and ejaculatory sperm viability and mortality demonstrated that AFB1 

could also decrease epididymal and ejaculatory sperm viability and motility and could 

therefore affect male fertility (Tajik et al., 2007). Another study trying to discover the 

relationship between aflatoxin levels and infertility in human males, reported that 

when exposed to aflatoxin, albino rats produced deleterious effects on the 

spermatozoa that resembled those observed in the semen of infertile men exposed 

to aflatoxin (Ibeh et al., 1991). 

 

h. Teratogenic effects 

Previous studies have reported aflatoxin, especially AFB1, as a teratogenic agent to 

animals and humans due to its disturbance in the development of the embryo or 

foetus by stopping the pregnancy or producing a congenital malformation (Datta and 

Kulkani, 1994; Fung and Clark, 2004). In addition, AFB1 was incriminated to cross 

the placental barrier, and thus can adversely affect foetal systems, to increase still-

births and neonatal mortality (Wild et al., 1991; Hendriks, 2005; Maxwell et al., 

2000). Ciegler and Bennett (1980) reported the teratogenic effect of AFB1 in 
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hamster, guinea pig and rat. In contrast, Vismara and Caloni (2007) when evaluating 

the embryo toxicity of aflatoxin B1 using the frog embryo teratogenesis assay-

Xenopus and the bio-activation with microsome activation systems, reported that 

AFB1 should be a strong teratogen in hamsters, but its effect in rats is equivocal and 

it is extremely limited in mice. These authors showed that AFB1 alone is not embryo-

toxic but when bio-activated with MAS-rate or MAS-human the percentage of 

mortality and malformed larvae increased significantly. In human, in utero exposure 

to aflatoxin could be detected on assaying maternal venous peripheral blood and 

cord blood for AFB1-lysine adducts. In Gambia, there was a highly significant 

correlation between adduct levels in maternal venous and matched cord sera 

indicating maternal dietary intake to be an important determinant of the carcinogenic-

induced damage in the foetus (Wild et al., 1991). 

 

i. Synergistic effects with other mycotoxins 

Another threat of AFB1 effects is its possible synergistic action with other mycotoxins 

which can lead to increased effects in humans and animals. A study conducted by 

Wangikar et al. (2005) on the teratogenic effects in pregnant New Zealand white 

female rabbits of simultaneous exposure to ochratoxin A and aflatoxin B, 

demonstrated that AFB1 was teratogenic with an antagonistic interaction with 

ochratoxin A1. An investigation into the comparative acute and combinative toxicity 

of AFB1 and fumonisin B1 (FB1) in animals and human cells found that these two 

toxins interacted to produce alterations in the toxic responses with a strong additive 

interaction noted in the cases of F344 rats and mosquito fish (Mckean et al., 2006). 

Furthermore, Orsi et al. (2007) also recorded the synergistic action of toxic effects of 

AFB1 and FB1 in the liver and kidney. 



34 

 

2.2. ECONOMIC IMPACT 

Aflatoxin-producing mould is ubiquitous in the natural environment and can enter the 

food chain (Vesley, 1999). Due to the effects of aflatoxin on human and animal 

health, international trade bodies and health authorities have imposed limits of 

aflatoxins allowable in various crops. For example, in the European Union (EU), the 

presence of aflatoxins in peanuts is strictly monitored and regulated to guarantee 

their safety with a limit of 2 µg/kg for AFB1 and 4 µg/kg for AFs (van Egmond, 1995). 

These restrictions may cause major agricultural and economic problems since 

aflatoxins could occur in the field, during harvest, storage or during processing 

(Dorner and Cole, 2002). D’mello (2003) reported that aflatoxin is the most important 

problem regarding quality of peanuts worldwide. 

 

Aflatoxins, especially AFB1, can also contaminate many other commodities such as 

Brazil nuts, pistachio nuts, cottonseed meal, and maize and grain sorghum during 

growth, harvesting, processing, storage and shipment, thereby causing serious 

economic losses due to production losses, loss of export markets and rejection of 

produce at import ports (Pitt, 2000; Kamika and Takoy, 2011). For example, in the 

United States of America, growers in Texas, Louisiana and Mississippi sustained 

losses estimated at $85 million to $100 million from maize that could not be utilised 

for human consumption because of high levels of aflatoxin (Henry et al., 1999). It has 

been estimated that both cattle farming and food packaging/processing industries in 

North America lose around $5 billion each year because of mycotoxin contamination 

(Olsen et al., 2008). In West African countries such as Senegal where peanut is an 

important export crop, the quantities of peanut exports declined substantially during 

the period of 1961 (269 436 t) to 2000 (1 792 t) because of increasing restrictions on 
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importation of contaminated produce into the EU. This has huge economic 

ramifications for African exporters and growers (Henry et al., 1999; Boakye-Yiadom, 

2003). It has been reported that the biggest peanut-exporting regions which include 

USA, China, Argentina and Africa would experience economic losses of up to $450 

million per year if the EU aflatoxin standard of 4 µg/kg were to be imposed worldwide 

(Wu, 2004). Africa alone, due to the more stringent mycotoxin limitations, has lost 

export opportunities estimated by the World Bank at US$ 650 million each year in 

exports of cereals, dried fruit and nuts due to the European Union regulations 

(Roberts and Unnevehr, 2003).  

 

2.3. NATURAL OCCURRENCE OF AFLATOXIN IN AFRICA 

In Tunisia, Ghali et al. (2008) investigated the presence of aflatoxin in foods (spices, 

dried fruits, sorghum and rice) and reported that aflatoxins were detected in all 

analysed commodities with a contamination frequency of 50.5 % and AFB1 was 

found in 37 % of the samples. 

 

In Morocco, Juan et al. (2008) found aflatoxins by using IAC clean-up with liquid 

chromatography and fluorescence detection in peanuts (5 % of total aflatoxins and 

5 % of AFB1), dried raisins (20 % of aflatoxins and AFB1), dried figs (30 % of 

aflatoxins and 5 % of AFB1), walnuts (30 % of aflatoxins and AFB1) and pistachio 

nuts (45 % of aflatoxins and AFB1) with the highest contamination levels of AFB1 in 

walnut (2 500 µg/kg) and in pistachio nut (1 430 µg/kg).  

Groundnut is an important crop in Senegal; however, it is subjected to many surveys 

due to environmental conditions that are favourable for fungal growth and aflatoxin 

production nationwide (Diop et al., 2000). Park and Njapau (1989) analysed 73 
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peanut samples for AFB1 and found that 100 % of the samples contained AFB1 

ranging from 20 µg/kg to 200 µg/kg. Ndiaye et al. (1999) analysed peanut oil 

samples for aflatoxins by HPLC and found that 85 % of the samples contained AFB1 

with a mean of 40 µg/kg. Diop et al. (2000) analysed artisanal and industrial peanut 

butter for aflatoxins by HPLC and found that 40 % of the samples contained AFB1 at 

a concentration of >5 µg/kg.  This finding has had a great impact on the groundnut 

trade and therefore on the economy and confirmed that Senegalese peanuts are 

often contaminated with AFB1 at a level substantially higher than the allowable limit 

in terms of specifications (Ndiaye et al., 1999; Diop et al., 2000). 

 

In Nigeria, one of the West African countries with climatic conditions very favourable 

for fungal growth and mycotoxin contamination, a number of studies have been 

conducted to investigate the presence of aflatoxins in a wide range of foods and 

foodstuffs. Ibeh et al. (1991) reported the presence of aflatoxins in various food 

samples collected from Nigeria; 15 % of yam flour, 40 % of cassava flour, 30 % of 

garri, 20 % of beans and melon and 10 % of rice samples were contaminated with 

aflatoxins. Akano and Atanda (1990) also investigated the presence of aflatoxin in 

peanut cake samples and found AFB1 levels ranging from 375 µg/kg to 455 µg/kg in 

28 of the 32 samples. Bankole et al. (2005) analysed dry-roasted groundnuts for 

aflatoxins by TLC and reported that 64.2 % of the samples were found to contain 

AFB1 with a mean of 25.5 µg/Kg. Another survey reported the presence of AFB1 in 

maize with a mean of 22 µg/kg (Bankole et al., 2004). These reports reveal that 

AFB1 is present in Nigerian foodstuffs with concomitant economic and health 

problems.  
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In Botswana, a survey showed that Botswana peanuts are contaminated with 

aflatoxigenic fungi and aflatoxins (Mphande et al., 2004). Another survey reported 

the presence of aflatoxin ranging from 12 µg/kg to 329 µg/kg in raw peanut (Barro et 

al., 2002).  

 

In order to estimate the relative exposure of Tanzanian people to aflatoxins, Kimanya 

et al. (2008) collected maize samples for analysis. Their results showed the 

presence of high levels of aflatoxin exceeding the Tanzanian limit (10 µg/kg) in 

maize samples. 

 

In Uganda, several crops (480 samples) were investigated for aflatoxin and beans 

were found to be the most contaminated (72% of the samples) and 4% of the 

samples showed a concentration of up to 1 µg/Kg (Alpert et al., 1971). Later, Kaaya 

and Kyamuhangire (2006) reported the presence of Aspergillus, Fusarium, 

Penicillium and Rhizopus and high levels of AFB1 in maize. 

 

Since aflatoxicosis outbreaks have occurred in Kenya, a large number of foods and 

foodstuffs have been investigated. Lewis et al. (2005) reported the presence of high 

levels of AFB1 ranging from 20 µg/kg up to 1 000 µg/kg in the offending maize. 

Another survey carried out by Mutegi et al. (2009) analysed the prevalence and 

factors associated with aflatoxin contamination of peanuts from western Kenya. Two 

regions were selected and it was found that peanut samples from both regions were 

contaminated with aflatoxins, in some cases >2 500 µg/Kg. Very few studies on 

aflatoxin occurrence have been conducted in the DRC. In 1977, Brudzynski et al. 

analysed peanuts, maize and dried cassava for AFB1 and found that the toxin was 
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present in almost all the samples and 33% of cassava contained AFB1 ranging from 

less than 12 µg/Kg to greater than 1 000 µg/Kg. Additionally, Masimango and 

Kalengayi (1982) analysed food and foodstuffs for aflatoxins by TLC with 

spectrophotometry for quantitation. They reported that sweet potatoes, groundnuts, 

dried cassava roots, powder of cassava roots, maize meal, banana powder, and 

sorghum contained aflatoxins with high levels in sweet potatoes and groundnuts. 

Recently, Kamika and Takoy (2011) reported high levels of AFB1 in peanuts 

collected from Kinshasa.  

 

In South Africa, although there is well-developed commercial farming sector, 

mycotoxins, especially aflatoxins, are sporadically found mostly in maize (Shephard, 

2003). Dutton and Kinsey (1995) investigated the presence of mycotoxins in cereals 

and animal feed in KwaZulu-Natal Province, South Africa and found aflatoxins in only 

6% of 417 samples of agricultural commodities. According to several newspaper 

reports, peanut butter used to feed schoolchildren was contaminated with total 

aflatoxins and AFB1 at concentrations of up to 27 µg/Kg,163 µg/Kg and 16 505 

µg/Kg, respectively (Williams et al., 2004). 

 

2.4. LEGISLATION 

The United Nations Food and Agricultural Organization (FAO) is charged with 

ensuring the security and safety of food for human and animal consumption. In so 

doing it has to ameliorate both microbiological (including algae, moulds, etc.) and 

chemical (mycotoxins, phycotoxins, etc.) hazards which may contaminate food and 

feed (WHO, 2002). Consequently, many international regulatory agencies and 

countries have established legislation for maximum limits of mycotoxins and monitor 
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mycotoxin levels especially aflatoxin levels in susceptible crops (Moss, 2002; 

Creppy, 2002). According to the FAO (2004) at least 100 countries have specific 

regulations to deal with mycotoxins or with at least regulatory limits on aflatoxins; 13 

countries do not have specific regulations while 50 countries, of which 40 are from 

Africa, have no regulations/no data exist (Figure 2.5). Only eight African countries 

have existing regulations for aflatoxin, viz. Cote d’Ivoire, Egypt, Kenya, Malawi, 

Nigeria, Senegal, South Africa and Zimbabwe (van Egmond, 1989; FAO, 1997; van 

Egmond, 1999; Shephard, 2003). Figure 2.6 presents a map which highlights African 

countries with mycotoxin (aflatoxin) regulations. 

 

Currently, the European Union enforces stringent maximum residue levels for total 

aflatoxin and AFB1 levels in human commodities of 4 µg/kg and 2 µg/kg, 

respectively (Moss, 2002), which enforcement has impacted on the export of food 

commodities from several African countries. The FAO and the WHO were faced with 

the dilemma of setting the limits of aflatoxin in human foods against high background 

levels of malnutrition and the danger that aflatoxin would produce liver cancer. They 

have established the upper aflatoxin limits of 30 µg/kg in foods for human 

consumption (Moss, 1996), while the Codex Alimentarius Commission and the 

JECFA have adopted the maximum limit for total aflatoxins as 15 µg/Kg in peanut, 

and 10 µg/Kg in peanut processed for human consumption, which means that half of 

those concentrations are applicable in terms of AFB1 (Freitas and Brigido, 1998; 

Codex, 2001). 
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Figure 2.5: Percentage of global population covered by mycotoxin regulation in 2003 (FAO, 

2004) 

 

Figure 2.6: African map highlighting the presence or absence of mycotoxin regulation (in 

most case aflatoxins) (FAO, 2004) 

Nevertheless, it should be mentioned that the WHO prescribed the maximum limit for 

AFB1 in various foodstuffs is 5 µg/kg (Papp et al., 2002). Table 2.2 illustrates the 

tolerance levels of AFB1 in foods in some developing countries. 
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Table 2.2: A selection of tolerated levels of aflatoxin B1 in food  

Countries Max level (µg/kg) Products 

Argentina  

Brazil 

India 

Nigeria 

South Africa 

Zimbabwe 

0 

15 

30 

20 

5 

5 

Groundnuts, maize 

products  

All foodstuffs 

All foods 

All foods 

All foods 

Foods 

Source: Boutrif and Canet (1998) 

 

South Africa is one of the few African countries known to have a regulation for 

aflatoxin in foods and feeds; the maximum tolerable limit for aflatoxins and AFB1 has 

been in existence for years and is fixed at 10 µg/Kg and 5 µg/Kg, respectively 

(Viljoen, 2003). However, in the DRC the existing limit permissible is unknown and 

the country may be classified among those with no data available, therefore no 

specific regulation exists for mycotoxins (Kamika and Takoy, 2011). Although the 

mycotoxin regulations are the way to protect populations against consumption of 

contaminated foods, unfortunately, in developing countries, these regulations are 

very difficult to enforce because of poor socio-economic and humanitarian conditions 

and limited food supplies (van Egmond, 1999; Creppy, 2002; Shephard, 2003). 

 

2.5. COMMON ANALYTICAL METHODS FOR AFLATOXIN ANALYSIS 

The need to meet the regulatory limit control of mycotoxins such as aflatoxins in 

foods and feeds for human or animal consumption has resulted in a plethora of 

methods from conventional analytical methods to rapid methods (Shephard, 2008). 

In addition, the accuracy and sensitivity of these methods in the determination of 

mycotoxin have become important requirements to meet food-safety concerns and 
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stringent legislated regulations (Shephard, 2009). Among those methods, 

conventional analytical methods such as thin-layer chromatography, liquid 

chromatography (LC) and gas chromatography (GC) have been widely used for 

decades and revealed high sensitivity for the determination of aflatoxins. In the 

history of mycotoxin analysis, TLC has been reported as one of the pioneering 

methods but it is often used as a mycotoxin-screening method due to several 

challenges in the quantification of toxins (Zheng et al., 2006). However, the LC 

methods such as HPLC, LC-MS, LC-MS/MS are seen as powerful methods for the 

screening and quantification of a number of mycotoxins when large numbers of 

samples are being assayed (Pascale, 2009).  

 

The GC, indeed, is considered to be used in more technical laboratories for the 

analysis of particular mycotoxins which are not easily detected by HPLC. 

Unfortunately, due to the time consuming during the process and competition within 

the food and feed industry while using these conventional analytical methods, the 

need to develop rapid methods have been raised (Shephard, 2008). Most of the 

rapid screening methods rely on the reaction antigen-antibody to detect mycotoxins 

from the samples. Among those, enzyme-linked immunosorbent assays (ELISAs), 

flow-through membrane-based immunoassay, immunochromatographic assay, 

fluorometric assay with immunoaffinity clean-up column or solid-phase extraction 

clean-up column, fluorescence polarisation methods have been reported as the most 

used (Zheng et al., 2006). Besides having the disadvantages of being more a 

screening method rather than a quantitative method, rapid screening methods have 

demonstrated a very important advantage of being an easy-to-use and fast method 

during analysis when referring to reference methods (Shephard, 2008). Despite the 
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rapid development of analytical methods and sophisticated instrumentation, the 

basic key to laboratory performance of all methods lies in ensuring the accuracy and 

reliability of the analytical results which are important to food-safety programmes 

(Shephard, 2008). 
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CHAPTER THREE: MATERIALS AND METHODS 

 

3.1. DESCRIPTION OF THE STUDY AREAS 

Agro-ecological zones provide useful information on climate, including radiation, 

rainfall, temperature and humidity for the particular purpose (Quiroz et al., 2001). 

Since environmental factors such as humidity, temperature, etc., play a major role in 

fungal spoilage and aflatoxin production in food crops, the agro-ecological zone map 

gives a good indication of zones (humid, subhumid and semi-arid) with high risk 

(Figure 3.1). 

 

Figure 3.1: Agro-ecological zones in Africa highlighting zones with high/low risk of fungal 

spoilage and aflatoxin contamination 
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3.1.1. Kinshasa 

Locality – Kinshasa is both a city and province in the Democratic Republic of Congo 

(DRC) and is located along the south bank of the Congo River (latitude: 4⁰ 19’ 47 S, 

longitude: 15⁰ 18’ 54 E). It is divided into four districts which are further divided into 

24 municipalities (communes) (Wikipedia, 2011a). 

Climate – Kinshasa is situated in a tropical wet and dry climate region which 

experiences a lengthy rainy season between October and April, with temperatures 

ranging between 29.4⁰C and 37.8⁰C, with high humidity, and a short dry season 

between May and August, with temperatures ranging from 18.3⁰C to 26.7⁰C, with low 

humidity (Hightower et al., 2009). Kinshasa’s dry season is slightly cooler than the 

wet season with the average minimum and maximum temperatures for the study 

area described in Table 3.1.  

 

Table 3.1: Average temperature and precipitation of Kinshasa, DRC  

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Average 

high 

(⁰C) 

31 31 32 32 31 29 27 29 31 31 31 30 

Average 

low (⁰C) 

21 22 22 22 22 19 18 18 20 21 22 21 

Average 

rainfall 

(mm) 

135 145 196 196 156 8 3 3 30 119 222 142 

Average 

rainy 

days 

11 11 12 16 12 1 0 1 5 11 16 15 

Source: Wikipedia (2011a) 

 

Sample collection – A total of 20 raw peanut samples (500 g each) were randomly 

collected from Kinshasa during the rainy season between November and December 

in 2010 which is considered to be a late sowing period. The samples were 
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purchased from street hawkers, local markets and retail shops in Matadimayo, 

Kinseso, Kimwenza, Ngaliema, Ndjili Brasserie and were estimated to be at least 1 

month old. Figure 3.1 shows a typical informal market in Kinshasa. The samples 

were collected in nylon bags, shipped to the MRC Promec Unit Laboratory (South 

Africa) and stored at 4 °C until analysis.  

 

 

Figure 3.2: Sampling point situated in Ngaliema, Kinshasa, DRC (photo by I. Kamika) 

 

3.1.2. Pretoria 

Locality – Pretoria is the legislative capital city of South Africa which is located at 

approximately 50 km north of Johannesburg in the northern part of the Gauteng 

Province (latitude: 25⁰44’46’S, longitude: 28⁰11’17’E). Divided into many suburbs 
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and townships, this city lies at an altitude of about 1 350 m above sea level, in a 

warm, sheltered, fertile valley, surrounded by the hills of the Magaliesberg range 

(Wikipedia, 2011b). 

Climate – Pretoria has a moderately dry subtropical climate, specifically a humid 

subtropical climate with long hot and rainy summers and short cool and dry winters. 

Table 3.2 provides the average temperature as well as precipitation data for Pretoria.  

 

Table 3.2: Average temperature and precipitation in Pretoria, South Africa  

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Average 

high 

(⁰C) 

29 28 27 24 22 19 20 22 26 27 27 28 

Average 

low (⁰C) 

18 17 12 8 5 5 8 12 14 16 14 17 

Average 

rainfall 

(mm) 

136 75 82 51 13 7 3 6 22 71 98 110 

Average 

rainy 

days 

14 11 10 7 3 1 1 2 3 9 12 15 

Source: Wikipedia (2011b) 

 

Sample collection – A total of 20 raw peanut samples (500 g each) were collected 

randomly from Pretoria city during the summer months between January and March 

in 2011. The samples were purchased from street hawkers, local markets and retail 

shops in Marabastad, Bosman Street and Sunnyside and were estimated to be at 

least 1 month old according to the retailer’s comments (Figure 3.3). The samples 

were placed in nylon bags, shipped to the MRC, Promec Unit Laboratory (South 

Africa) and stored at 4 °C until analysis. 
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Figure 3.3: Sampling point situated at Marabastad, Pretoria, South Africa (photo by I. 

Kamika) 

 

3.2. MYCOLOGICAL ANALYSIS 

A total of 40 peanut samples were analysed for mycological contamination (isolation 

and identification of Aspergillus species). The isolation of Aspergillus section flavi 

was carried out using Aspergillus flavus and parasiticus agar (AFPA). The growth 

media were prepared by mixing 20 yeast extract, 10 g peptone, 0.5 g ferric 

ammonium, 0.002 g dichloran, 0.1 g chloramphenicol, and 1 mℓ ethanol (2%) and 

diluted in 1 000 mℓ of distilled water. Chloramphenicol and dichloran were added in 

the media to inhibit bacterial growth. The pH of the media was adjusted to pH 4.5 

using 1.0 N HCl and 1.0 N NaOH and autoclaved for 15 min at 121°C, at a pressure 

of 15 psi and cooled down in a water-bath at approximately 50 °C.  

 

The growth of fungal species was determined using the spread-plate method after 

dilution (APHA, 2001). Briefly, under aseptic conditions, peanut samples (500 g) 

were finely ground to obtain a homogeneous mixture  using the commercial blender 

(VICAM) and 1 g from each sample was mixed with sterile distilled water (9 mℓ) 
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followed by a serial dilution. One millilitre from each dilution was transferred to the 

Petri-dishes and a cooled medium was spread on top and mixed gently for 1 min to 2 

min. The mixture was allowed to solidify and then incubated at 30 °C for 3 d. The 

fungi were isolated from enumeration plates showing well-separated colonies and 

identified using macroscopic characteristics including colony colours, colony texture, 

reverse colour and soluble pigment (Pitt and Hocking, 1997; Elbashiti et al., 2010). 

During this experimental study, each samples were analysis five times for 

mycological biomass. Thereafter, the number of fungal colonies per gram of sample 

was calculated and expressed in colony-forming units per gram (CFU/g) which 

represent the biomass (Equation (3.1)): 

    

 

3.3. AFLATOXIN ANALYSIS IN PEANUT SAMPLES 

Two methods were used for the analysis namely the fluorometric and HPLC 

methods. The experimental study was performed in triplicate for each sample. 

 

3.3.1. Aflatoxin analysis using fluorometric method (VICAM) 

Fluorometric analysis was performed at the laboratory of the Department of 

Agriculture, Ermelo, Mpumalanga, South Africa. 

 

3.3.1.1. Chemicals and reagents 

All solvents used were of analytical grade and purchased from Merck (Darmstadt, 

Germany). VICAM kits included the column AflaTest®, developers, microfibre filters 

(3.1) 
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(1.5um, 11cm), VICAM fluted filter paper (24 cm), Tween-20 solution, culture tubes, 

disposable cuvettes, 15 x 85 mm test tubes, 12 x 75 mm cuvettes with cups, and 

plastic beakers. Non-iodised sodium chloride, methanol HPLC grade, phosphate 

buffer solution (PBS), and acetonitrile HPLC grade, were obtained from Sigma, 

Johannesburg, RSA. The VICAM kits where obtained from VICAM (Watertown, MA, 

USA).  

 

3.3.1.2. Apparatus 

A VICAM V1 Series 4 fluorometer purchased from VICAM (MO, USA) was used in 

this study, as well as a four-position pump stand, a blender with stainless-steel 

container, a calibrator bottle, a digital scale with AC adapter, and graduated cylinders 

(VICAM).  

 

3.3.1.3. Validation of VICAM analytical method 

To determine the precision and recovery of the fluorometric analysis, peanut 

samples were purchased from a supermarket and spiked with AFB1, AFB2, AFG1 

and AFG2 (Sigma-Aldrich, South Africa) as total aflatoxin at levels of 5 µg/Kg, 

15 µg/Kg and 20 µg/Kg (see section 3.3.2.3) into 25 g raw peanut samples 

suspected to contain less than 2 µg/Kg of aflatoxin. The spiking was done in triplicate 

and extraction of the spiked peanuts was done as described below.  The precision, 

linearity, accuracy and recovery tests were performed. The recovery of AFB1 from 

spiked peanut samples was determined as follows (Equation (3.2)): 

 

       

 (3.2) 
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where: 

X is the recovered concentration of aflatoxin 

Y is the spiked concentration of aflatoxin 

 

3.3.1.4. Sample preparation and aflatoxin determination using fluorometry 

A total of 40 peanut samples (500 g each) were ground finely using the commercial 

blender (VICAM) until fine particles and homogeneity were obtained. A ground 

peanut sample aliquot of 25 g was weighed out together with 5 g of sodium chloride 

and placed in a blender jar. Methanol: water (125 mℓ) in the ratio 70:30 was added to 

the jar and the sample was blended at a high speed for 2 min. The blended sample 

was poured into a fluted filter paper, the filtrate was collected in a clean plastic 

beaker and 15 mℓ of the filtered extract was diluted with 30 mℓ distilled water. Two 

end caps from every affinity column to be used were removed, the tip of every 

column top cap was cut off to use as coupling columns and attached to the outlets of 

15 mℓ glass syringe barrels on the pump stand.  

 

The diluted extract was filtered through a microfibre filter in a plastic funnel placed in 

the top outlet of the glass-syringe barrel attached to a specific affinity column and 15 

mℓ of the filtered extract was collected in the syringe. The extract was passed 

through the affinity column at the rate of about 1 to 2 drops/s with the aid of a 

pressure pump or manual pressure from a bigger syringe. Distilled water (10 mℓ) was 

passed through the AflaTest® affinity column at the rate of about 2 drops/s. This was 

repeated until air came through the column. The affinity column was eluted by 

passing 2 mℓ HPLC grade methanol through the column at the rate of 1 to 2 drops/s 

and collecting the entire sample elute in a glass cuvette. AflaTest® developer was 
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added to the eluant, thereafter it was mixed well and the aflatoxin concentration was 

determined in the sample after 60 s by using a fluorometer (VICAM) previously 

calibrated. 

 

3.3.2. Aflatoxin analysis using the HPLC system 

Analysis using HPLC was performed at MRC, PROMEC Unit. 

3.3.2.1. Chemicals and reagents 

All solvents used to quantify aflatoxins in the samples were of HPLC grade unless 

otherwise specified and purchased from Sigma-Aldrich (Cape Town, South Africa). 

The solvents included methanol, acetonitrile, toluene and acetic acid. Non-iodised 

sodium chloride and phosphate buffer solution (PBS) were also purchased from 

Sigma (Cape Town, South Africa). Solvents and water were degassed for 20 min in 

an ultrasonic bath (Model EIA CP104, Italy). Individual aflatoxin (B1, B2, G1 and G2) 

standards were purchased from Sigma-Aldrich (Cape Town, South Africa). 

 

3.3.2.2. Apparatus 

An Agilent 1100 HPLC system consisting of a quaternary pump, auto-sampler from 

Agilent technologies (CA, USA), fluorescence detector from Agilent technologies 

(FLD, Darmstadt, Germany) was used for all separation. A photochemical reactor for 

enhanced detection (PHRED) (Aura, NY) was used to enhance the detection. The 

chromatographic column consisted of a Phenomenex Synergi 4 µm POLAR-RP 80A 

(150 X 4.6 mm id) column packed with C18 material (Phenomenex, Torrance, NY) at 

25 °C). 
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3.3.2.3. Standard preparation 

Aflatoxin standard solutions were prepared for the purpose of quantitative analysis 

by HPLC. Briefly, individual aflatoxin (AFB1, AFB2, AFG1, AFG2) (Sigma-Aldrich) 

samples at appropriate amounts were weighed out to prepare a stock solution of 

14.3 mg/Kg, 5.7 mg/Kg, 10.9 mg/Kg and 15.4 mg/Kg for AFB1, AFB2, AFG1 and 

AFG2, respectively, in toluene-acetonitrile (9/1). The absorbance (A) read at 350 nm 

as well as the molar absorbance coefficient (ε) and the molecular weight (MW) for 

each aflatoxin were used to determine the concentration of each standard (see 

Equation (3.3)):  

 

    

(MW of AFB1, 312; AFB2, 314; AFG1, 328; AFG2, 330) 

While the molar absorbance (ε) was calculated with the following 

equation: 

 

Where Abs is the absorbance , and mM the millimolar concentration. 

To prepare the intermediate mixed standard solution (188 µg/Kg for AFB1, 68 µg/Kg 

for AFB2, 480 µg/Kg for AFG1 and 218 µg/Kg for AFG2); an appropriate amount of 

individual aflatoxin was transferred into a vial, evaporated to dryness at 600C and 

reconstituted in 2 mℓ of methanol for HPLC.  

 

3.3.2.4. Validation of analytical method using the HPLC system  

The aflatoxin analysis was carried out according to the method reported by 

Gnonlonfin et al. (2010) with slight modification. Briefly, to validate the method, 10 g 

(3.3) 
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of ground peanut samples suspected to contain less than 2 µg/Kg of aflatoxin were 

spiked with a mixed aflatoxin standard solution at different concentrations (5 µg/Kg, 

10 µg/Kg, 20 µg/Kg) and vortexed immediately for 20 min. The spiked peanut 

samples were allowed to stand and 1 g of sodium chloride along with 25 mℓ of 80 % 

methanol were mixed with each spiked peanut sample and shaken at 250 rpm for 30 

min using the orbital shaker. After shaking, the spiked peanut samples were 

centrifuged at 4 000 rpm for 5 min at 5 °C and filtered using filter paper (Whatman 

No.1). 

 

The filtrate (10 mℓ) was diluted with 40 mℓ of distilled water and 10 mℓ of the diluted 

filtrate was then passed through the AflaTest® immunoaffinity column at a flow rate 

of 1 to 2 drops/s. The column was washed with 15 mℓ of distilled water and then the 

aflatoxin was eluted with 3 mℓ of methanol. The eluent was dried under nitrogen gas 

at 60°C, reconstituted using 200 µℓ of methanol and stored at 4 °C until use. 

Aflatoxins (B1, B2, G1, G2) were analysed in HPLC system (Agilent Model 1100 

HPLC system) equipped with a quaternary pump set at a flow rate 1.5 mℓ/min and 

connected to a fluorescence detector (FLD) set at 365 nm as an excitation 

wavelength and 435 nm as emission wavelength. A post-derivatization was 

performed using a photochemical reactor for enhanced detection (PHRED). The 

mobile phase used was 0.1 M KH2PO4:acetonitrile:methanol:acetic acid 

(690/150/75/20, v/v/v/v) and the recovery of aflatoxins from spiked peanut samples 

was determined as previously described. 
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3.3.2.5. Determination of aflatoxin from peanut samples using HPLC 

The method by Gnonlonfin et al. (2010) was used for aflatoxin analysis with slight 

modification. A total of 40 raw peanut samples (500 g each) were collected and 

ground finely using a commercial blender (VICAM, MO). An aliquot of 10 g of each 

sample was weighed out and mixed with 1 g of sodium chloride as well as 25 mℓ of 

methanol-water (80/20, v/v) used as an extraction solution. 

 

The mixture was shaken at 250 rpm for 30 min using an orbital shaker (Stuart SSL1, 

Stone, Staffordshire, UK); thereafter centrifuged at 4 000 rpm for 5 min at 5 °C and 

filtered using filter paper (Whatman No.1). After filtration, the filtrate (10 mℓ) was 

diluted with 40 mℓ of distilled water and 10 mℓ of the diluted filtrate was then passed 

through the AflaTest® immunoaffinity column (VICAM, MO, USA) at a flow rate of 1 

to 2 drops/s. The column was washed with 15 mℓ of distilled water and then 

Aflatoxins were eluted with 3 mℓ of methanol into an amber vial (4 mℓ). The eluate 

was dried under nitrogen gas at 60 °C, reconstituted using 200 µℓ of methanol and 

stored at 4 °C until use.  

 

The purified extracts were analysed for aflatoxins (B1, B2, G1, G2) by a reversed-

phase isocratic HPLC system (Agilent Model 1100 HPLC system) with a mobile 

phase 0.1 M KH2PO4:acetonitrile:methanol:acetic acid (690/150/75/20, v/v/v/v). The 

system was equipped with a quaternary pump set at a flow rate of 1.5 mℓ/min and 

connected to a fluorescence detector (FLD) set at 365 nm as an excitation 

wavelength and 435 nm as emission wavelength. The purified extracts (20 µℓ) were 

injected via a thermostatted Agilent 1100 Series auto-sampler. For enhanced 

detection, post-column derivatization was performed using an online photochemical 
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reactor for enhanced detection (PHRED) attachment. Data were collected and 

processed using HP ChemStation (Darmstadt, Germany) for LC software.  

 

3.4. STATISTICAL ANALYSIS 

The data were statistically analysed using Stata: Data Analysis and Statistical 

Software. An Independent-Samples T-Test was used to compare the means of the 

fluorometry and HPLC results. The tests for relationships were carried out using the 

Pearson Correlation Index and the interpretation was performed at two-sided 95% 

confidence limit. Regression analysis was also used to determine the linearity of the 

results for validation. 
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CHAPTER FOUR: RESULTS AND DISCUSSION 

 

4.1. MYCOLOGICAL ANALYSIS 

The results revealed that 95 % and 100 % of the samples collected from Kinshasa 

and Pretoria, respectively, were contaminated with either A. flavus or A. parasiticus. 

In general, the total colony counts ranged from 0 CFU/g to 49 000 CFU/g and 40 

CFU/g to 21 000 CFU/g for peanut samples collected from Kinshasa and Pretoria, 

respectively (Figure 4.1). There was a significant difference between Kinshasa and 

Pretoria samples (p < 0.001). 

 

Table 4.1: Biomass level of aflatoxigenic fungi in raw peanut samples collected from 

both Kinshasa and Pretoria (n=5) 

Kinshasa Pretoria 

ID Biomass (CFU/g) ID Biomass (CFU/g) 

K1 13 000±707.05 P1      390±70.71 

K2   2 300±71.20 P2      240±65.25 

K3   7 000±1354.05 P3        40±14.14 

K4      140±21.00 P4 21 000±1414.21 

K5      230±28.00 P5      410±7.07 

K6 49 000±1344.00 P6      540±14.14 

K7   2 400±141.00 P7      110±14.14 

K8        40±3.5 P8      450±28.28 

K9 47 000±6070.50 P9      160±42.43 

K10      140±49.02 P10      400±56.57 

K11      270±64.00 P11      160±28.28 

K12   1 100±92.50 P12      190±28.28 

K13 17 000±566.00 P13      190±14.14 

K14 10 000±212.00 P14      350±25.21 

K15        30±10.25 P15      150±21.20 

K16        20±23.21 P16      460±49.50 

K17   1 900±141.00 P17      340±56.57 

K18          0±1.00 P18      700±21.21 

K19      300±35.20 P19        40±3.54 

K20   9 000±1450.20 P20      270±42.43 
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Figure 4.1: An example of Pretoria ground peanut samples plated on AFPA and showing a 

growth of aflatoxin-producing fungi 

 

There was a high incidence of Aspergillus in the samples collected from Kinshasa; 

this may be due to both climatic and environmental factors since peanut samples 

were collected during a hot period of the year with heavy rain. This result 

corroborates those previously reported by several authors (Sanders et al., 1985; 

Sanders et al., 1993; Cotty and Jaime-Gracia, 2007). The presence of aflatoxigenic 

fungi (e.g. A. flavus and A. parasiticus) in peanut samples has been previously 

reported elsewhere and the results presented in this study are therefore comparable 

with those reported earlier (Umeh et al., 2000; Barro et al., 2002; Mphande et al., 

2004; Bankole et al., 2005). The aflatoxigenic fungi were differentiated from other 

fungi by macroscopic characteristics such as colony colour, colony texture, reverse 

colour and soluble pigment (Figure 4.1).  
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4.2. AFLATOXIN ANALYSIS USING THE FLUOROMETRIC METHOD (VICAM) 

4.2.1. Validation of the fluorometric method  

 

4.2.1.1. Precision and recovery  

In general, the method shows high sensitivity for the extraction of aflatoxins (B1, B2, 

G1 and G2) in raw peanut samples with recovery values obtained from the spiked 

samples in the range of 70.58 % to 101.60 % for the various aflatoxin concentrations 

combined. The RSD for precision was less than 15 % for all the samples spiked with 

aflatoxins at different concentrations.  

 

Table 4.2: Recoveries and precision of total aflatoxin spiked at different 

concentrations in clean peanut samples 

Aflatoxin Spiked 
level 
(µg/Kg) 

Mean 
amount 
recovered 
(µg/Kg) 

SD Recovery 
        (%) 

RSD 
  (%) 

Aflatoxin (B1, B2, 
G1, G2) 

5   5.08 0.34 101.60 6.70 

 10   7.93 1.92   79.30 4.23 

 20 14.12 1.00   70.58 7.10 

 

Similar results have been reported by Stroka et al. (2000) when validating a method 

combining an immuno-affinity column clean-up and thin-layer chromatography (TLC) 

for the determination of aflatoxins in various food matrices. These authors reported 

that peanut butter samples are some of the most difficult matrices for aflatoxin 

analysis, thus obtaining high recovery (as indicated in Table 4.2) is a good indication 

that the method is likely to give satisfactory performance.  
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4.2.1.2. Linearity validation 

Linearity was determined by extracting and injecting samples fortified with aflatoxins 

in triplicate as described by Gnonlonfin et al. (2010). Calibration curves between the 

spiked concentrations vs. the response (concentration recovered) and correlation 

coefficient (R2), y-intercept and slope of the regression line were used to evaluate 

the linearity of the relationship as reported by Rahmani et al. (2010). Figure 4.2 

shows the results of linearity validation. The results showed good linearity (R2 = 

0.9996) in the range 5 µg/Kg to 15 µg/Kg.  

 

 

Figure 4.2: Standard curve highlighting the regression linear of fluorometric analysis 

 

4.2.1. Determination of aflatoxin in the raw peanut samples 

Table 4.3 summarises the total aflatoxin levels found in peanut samples using the 

fluorometric method. In general, peanut samples collected from both Kinshasa and 

Pretoria were contaminated with total aflatoxin ranging from ND to 825.67 µg/Kg and 

ND to 45.09 µg/Kg, respectively. Ninety-five per cent (19/20) of Kinshasa samples 

were contaminated with aflatoxins, and 60 % exceeding both the maximum limit of 
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15 µg/Kg and 10 µg/Kg for total aflatoxin as set by the Codex Committee on Food 

Additives and the WHO maximum limit (Otsuki et al., 2001). On the other hand, 80 % 

of samples collected from Pretoria were positive with 30 % and 15 % of the samples 

exceeding the maximum limit of 10 µg/Kg and 15 µg/Kg set by WHO and the Codex 

Committee on Food Additives, respectively. In the context of EU regulations 90 % 

and 50 % of Kinshasa and Pretoria samples, respectively, were found to be above 

the 4 µg/Kg concentration permissible. A statistical analysis carried out using the t-

test showed a significant difference (p < 0.001) between samples from Kinshasa and 

Pretoria. 

 

Table 4.3: Average aflatoxin levels in peanut samples collected from Kinshasa and 

Pretoria 

Samples from Kinshasa Samples from Pretoria 

ID Aflatoxin 

(µg/Kg) 

ID Aflatoxin 

(µg/Kg) 

K1    36.80 P1   2.73 

K2      8.20 P2   3.24 

K3  550.00 P3   7.90 

K4      6.75 P4   7.13 

K5      6.50 P5 13.27 

K6  532.90 P6   9.37  

K7    19.63 P7   7.43 

K8    ND* P8   2.67 

K9  520.53 P9 12.37 

K10    23.92 P10   ND 

K11      4.83 P11   3.13  

K12  825.67 P12   4.59 

K13   32.24 P13 ND 

K14 127.93 P14   2.18  

K15     4.02 P15 ND 

K16     7.97 P16 21.83  

K17 209.91 P17 45.09 

K18   32.56 P18 11.52 

K19   41.22 P19 ND 

K20     5.12 P20 41.80 

*ND: Not detected 
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In the DRC, similar results have been reported by Kamika and Takoy (2011), who 

reported that 70 % of peanut samples (out of 60) collected in Kinshasa exceeded the 

recommended limit of 5 µg/Kg for AFB1. The researchers revealed that 

contamination may arise as a result of climatic conditions (high humidity, high 

temperature, etc.), poor transportation and storage practices and poor phytosanitary 

regulation. For samples collected from Pretoria, the results reported in the present 

study are similar to those reported by Lotter and Krohm (1988). These authors, when 

investigating the level of aflatoxins in several food crops collected from 

Johannesburg, reported very low levels of contamination. Compared to the findings 

in Kinshasa samples, the presence of aflatoxin in low concentrations in Pretoria 

samples might be due to the presence of regulation, as well as environmental factors 

which are not as favourable for fungal contamination and aflatoxin production as in 

Kinshasa. 

 

4.3. AFLATOXIN ANALYSIS BY USING HIGH-PRESSURE LIQUID 

CHROMATOGRAPHY (HPLC) 

 

4.3.1. Validation of analytical method using HPLC 

4.3.1.1. Precision and recovery validation 

Table 4.4 illustrates the recovery and precision of the analytical method using HPLC. 

The different recoveries of the B and G series of aflatoxins are shown in Table 4.4. 

Aflatoxin B1 was the aflatoxin analogue with high recoveries for the various 

concentrations followed by AFB2. The recoveries of AFB1 and AFB2 were found to 

be generally higher than those of AFG1 and AFG2 and were in line with those 

previously reported by Gnonlonfin et al. (2010) and Rahmani et al. (2010). These 
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authors reported that to be validated, a method is required to have recovery in the 

range 70 % to 110 % or >70 %. Though low, the recoveries for AFG1 and AFG2 

were still acceptable. This result also reveals high sensitivity of the analytical method 

due to the absence apparent of interferences in the chromatograms (Figure 4.3). 

 

Table 4.4: Precision and recoveries of each aflatoxin analogue at different spiking 

levels 

Aflatoxin 

analogue 

Spiking 

level 

(µg/Kg) 

Average 

recovery 

(µg/Kg) 

    SD Recovery 

(%) 

RSD 

(%) 

AFB1     5 4.93 0.54 98.53 10.88 

   10 8.73 0.59 87.33   6.73 

   20     17.04 1.68 85.18   9.84 

AFB2     5  4.02 0.25 80.47   6.22 

   10  6.17 0.93 61.67 15.10 

   20 13.97 3.37 69.87 24.14 

AFG1     5   3.15 0.32 63.00 10.22 

   10   5.75 0.89 57.47 15.52 

   20 12.83 1.40 64.17 10.94 

AFG2     5   2.92 0.50 58.47 17.19 

   10   5.92 0.64 59.23 10.87 

   20 13.75 1.90 68.77 13.85 

 

The run time used was shorter than 15 min when compared to the method reported 

by Gnonlonfin et al. (2010). This might be due to the modification made in the current 

method in terms of mobile phase (0.1 M KH2PO4/ACN/MeOH/AA, 690/150/75/20, 

v/v/v/v), column temperature (35 °C), pump and flow rate used (quaternary pump set 

at 1.5 mℓ/min). For the precision test, these results revealed a relative standard 

deviation (RSD) in the range of 6.22 % to 24.14 % with AFB2 showing the lowest 

RSD in raw peanut samples spiked with 5 µg/Kg followed by AFB1 at 10 µg/Kg. This 

result meets the minimum requirement (RSD≤20 %) as reported by Rahmani et al. 

(2010). However, when compared to the requirement of ≤ 15 % as reported by 
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Gnonlonfin et al. (2010), the RSDs of AFB2, AFG1 and AFG2 at 20 µg/Kg, 10 µg/Kg 

and 5 µg/Kg, respectively, were higher than the recommended limit. 

 

Figure 4.3: Liquid chromatograms of spiked peanut samples highlighting the recoveries of 

aflatoxin analogue at different concentrations 

 

4.3.1.2. Linearity validation 

Figure 4.4 gives a summary of the results of the linearity validation with regression 

coefficient value ranging from 0.984 to 0.9995 demonstrating good linearity in the 

range from 5 µg/Kg to 20 µg/Kg. This result is in agreement with the results reported 

by Braga et al. (2005), who, when validating a new method for the quantification of 

aflatoxins in Maytenus ilicifolia by HPLC-FLD, reported a very good linearity for all 

aflatoxins from spiked samples. 
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Figure 4.4: Standard curve highlighting the linear regression for the HPLC method 

 

4.3.1.3.  Specificity for HPLC method 

The specificity is defined as the ability of the method to measure the analyte in the 

presence of its potential impurities (Rahmani et al., 2010). Figure 4.5 illustrates the 

specificity of the HPLC method. The results revealed a good chromatography with 

acceptable baseline and resolution of each aflatoxin highlighting the absence of 

interference with good separation of aflatoxin analogues. The results also showed a 

consistency for the retention time of each aflatoxin which was 6.176, 8.081, 9.082/5 

and 12.103 for AFG2, AFG1, AFB2 and AFB1, respectively. However, the specificity 
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of the method was considered satisfactory and agreed with the findings reported by 

both Rahmani et al. (2010) and Gnonlonfin et al. (2010). 

 

Figure 4.5: Liquid chromatograms highlighting the specificity of the HPLC method 

 

4.3.2. Determination of aflatoxins in peanut samples using the HPLC system 

After validation, the HPLC method was used to quantify aflatoxins in raw peanut 

samples. The results showed that all samples were contaminated with total 

aflatoxins with an exception of the Pretoria sample (P10) where no aflatoxin was 

detected (Table 4.5). In terms of individual aflatoxins (B1, B2, G1, G2) all samples 

except P10 were contaminated with AFB1 at levels ranging from 2.1 µg/Kg to 

543.93 µg/Kg (98 %, 39/40), AFB2 ranging from 2 µg/Kg to 210.92 µg/Kg (80 %, 

32/40), AFG1 ranging from 2.05 µg/Kg to 310.29 µg/Kg (58 %, 24/40) and AFG2 

ranging from 2 µg/Kg to 192.93 µg/Kg (58 %, 24/40). Peanut samples collected from 

Kinshasa appeared to be more contaminated than those collected from Pretoria with 

AFB1 levels ranging from 2.19 µg/Kg to 543.93 µg/Kg while the highest for Pretoria 
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was 35.39 µg/Kg. Generally, AFB1 in all peanut samples was the most predominant 

of all aflatoxins. Aflatoxin G was not found in several of the peanut samples, 

especially those collected from Pretoria. This is in agreement with the findings of 

Alam et al. (2010) who reported that amongst all fractions, AFB1 is normally the 

most predominant in food and feed products. In addition, the absence of AFG in the 

same samples could be explained by the fact that several A. flavus isolates do not 

produce AFG (Alam et al., 2010). The present results clearly indicate that AFB1 and 

total aflatoxin levels exceeded the European Union and the World Health 

Organization (WHO) permissible limits of 2 µg/Kg and 4 µg/Kg and 5 µg/Kg and 10 

µg/Kg, respectively (Codex Alimentarius Commission, 2001; Moss, 2002, Papp et 

al., 2002). Peanut samples collected from Kinshasa showed the most contamination 

than those from Pretoria (p < 0.001) revealing a 100 % (20/20) and 95 % (19/20) 

contamination with AFB1 and total aflatoxin more than the EU maximum limit. When 

compared to the WHO maximum limit, 70 % of Kinshasa’s samples were 

contaminated with aflatoxins above the maximum limit, with 80 % being for AFB1. 

Kinshasa samples with the highest contamination (K12: 543.93 µg/Kg for AFB1 and 

1 258.07 µg/Kg for total aflatoxins, see Table 4.5) appeared to be 110 times more 

contaminated than the WHO maximum limit for AFB1 and total aflatoxins, 

respectively. 

 



68 

 

Table 4.5: Aflatoxin levels (B1, B2, G1 and G2) in raw peanut samples collected from Kinshasa and Pretoria 

Sample from Kinshasa    Sample from Pretoria    

Aflatoxin concentration (µg/Kg) 

ID AFB1 AFB2 AFG1 AFG2 AFS ID AFB1 AFB2 AFG1 AFG2 AFS 

k1 20 8.94 5.97 6.74 41.65 P1 3.29 2 ND ND 5.29 

k2 5.34 3.82 ND ND 9.16 P2 2.91 2 ND ND 4.91 

k3 439.02 95.94 102.84 201.93 839.73 P3 4.28 2.01 2.27 ND 8.56 

k4 4.95 ND ND 3.19 8.14 P4 3.84       2.1 2.32 ND 8.26 

k5 5.21 2.12 ND ND 7.33 P5 6.71 2.31 2.18 2   13.2 

k6 319 115.27 92.19 172.01 698.47 P6 6.29 4.93 ND ND 11.22 

k7 11.29 5.91 3.19 2.38 22.77 P7 2.19 ND ND ND 2.19 

k8 2.19 ND ND ND 2.19 P8 4.27 2.93 ND 2.31 9.51 

k9 281.92 78.93 102.93 110.2 573.98 P9 7.95 2.29 3.92 2.01 16.17 

k10 14.83 4.29 9.21 6.21 34.54 P10 ND ND ND ND ND 

k11 3.21 2.01 2.45 3.1 10.77 P11 2.38       2.1 ND ND 4.48 

k12 543.93 210.92 310.29 192.93 1258.07 P12 2.73       2.3 ND ND 5.03 

k13 18.29 7.38 11.92 5.06 42.65 P13 2.1 ND ND ND     2.1 

k14 82.1 27.11 19.29 30.21 158.71 P14 3.29 ND ND ND 3.29 

k15 3.2 2.17 ND ND 5.37 P15 2.39 ND ND ND 2.39 

k16 5.93 3.19 2.17 3.74 15.03 P16 14.49 3.93 5.94 7.92 32.28 

k17 123.95 56.49 47.74 38.84 267.02 P17 35.39    16.3 9.48 12.31 73.48 

k18 23.83 9.7 5.92 7.45 46.9 P18 7.59 3.94 2.05 2.01 15.59 

k19 34.81 14.83 8.82 13.92 72.38 P19 ND ND ND ND ND 

k20 4.73 2.12 2.32 ND 9.17 P20 26.01 12.93 9.77 5.32 54.03 
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Figure 4.6 illustrates the relationship between aflatoxin level and microbial biomass 

in peanut samples. In general, the results revealed that peanut samples collected 

from both Kinshasa and Pretoria contained both toxin-producing fungi and aflatoxin. 

Kinshasa’s samples showed a direct relationship between fungal and aflatoxin 

concentration with an exception of sample K12 that appeared to have a very high 

aflatoxin level vs. low fungal concentration. On the other hand, Pretoria’s samples 

showed a very weak relationship between both fungal and aflatoxin concentrations. 

When compared to Kinshasa samples, peanut samples collected from Pretoria 

showed low concentrations of both fungal spoilage and aflatoxin contamination. 

Statistical evidence showed no correlation (r = -0.0629, p > 0.05) between microbial 

biomass and aflatoxin level from the Pretoria samples. Peanut samples collected 

from Kinshasa showed a significant correlation (r = 0.4743, p < 0.001) between 

microbial biomass and aflatoxin level. This is in agreement with the results published 

by Kuhn and Ghannoum (2003) and by Blair (2008) who reported that the presence 

or absence of toxin-producing fungi is a poor indicator of the presence or absence of 

mycotoxins.  
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Figure 4.6: Comparison of aflatoxin and biomass level in peanut samples collected from 

Kinshasa and Pretoria 

 

Colonisation of peanuts by aflatoxin-producing fungi (Aspergillus flavus and A. 

parasiticus) has often resulted in aflatoxin accumulation at harvest in Argentina 

(Passone et al., 2009). However, when comparing the aflatoxin results and the 

mycological results of this study, a disagreement was found since in peanut samples 

P10 and P19 no aflatoxin was found; on the other hand, sample K18 showed no 

growth of aflatoxin-producing fungi but revealed high levels of aflatoxin. The findings 

of this study revealed that the aflatoxins can occur in food crops, even in the 

absence of visible mould infestation, either due to a ceased vital cycle of the 
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microorganism or due to the effect of removal of the mould by the technological 

processing of the food commodity. Conversely, the presence of a visible mould on 

the surface of a food product does not provide a clear indication of the presence of a 

mycotoxin such as aflatoxins (Viljoen, 2003; Achar et al., 2009).  

 

In this study, the efficiency and sensitivity of HPLC and fluorometric methods on 

aflatoxin determination were investigated and compared (Figure 4.7). In general, the 

presence of aflatoxin was detected in peanut samples by both methods. Although 

both analytical methods showed good recoveries and precision, the HPLC method 

appeared to be more sensitive than the fluorometric method by revealing high levels 

of total aflatoxins in most of the peanut samples. A large difference in terms of 

aflatoxin levels was observed in peanut samples with high aflatoxin levels. Although 

the quantitative fluorometric method developed by VICAM has been reported to be a 

quick, easy-to-perform and accurate method for the analysis of aflatoxins in several 

commodities (Pena, 2010), the present study revealed certain inaccuracies when 

samples contained high or very low levels of aflatoxins.  
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Figure 4.7: Comparison of aflatoxin level obtained using HPLC and VICAM method 

(fluorometric method) in peanut samples collected from Kinshasa and Pretoria 

 

Though values of HPLC results obtained were found to be higher than VICAM 

results, the statistical evidence revealed a significant positive correlation (r = 0.912, p 

< 0.05). This evidence indicates that fluorometry is a good method to screen 

aflatoxin contamination in food crops such as peanuts. This result is in agreement 

with the finding reported by Pena (2010) when comparing the two methods for the 

analysis of aflatoxin M1 in cheese.  

To detect and quantify aflatoxins in food and feedstuff, several methods rely on their 

fluorescence. But, aflatoxin B1 and aflatoxin G1 have poor natural fluorescence in 
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aqueous solutions and their enhancement has been reported elsewhere as a better 

option (Dall’asta et al., 2003). Analytical methods with merits such as high rapidity, 

high sensitivity and accuracy to determine aflatoxins are needed in order to properly 

assess both the relevant risk of exposure to humans and animals and to ensure that 

the regulatory levels set by the countries and other multilateral organisations are met 

and correct by minimising the false positive/negative (Pascale, 2009). Zheng et al. 

(2006) reported that the fluorometric analysis (VICAM) coupled with the clean-up 

step using immuno-affinity column has been reported to be an effective, quantitative 

method for the detection of mycotoxins and is regarded as a rapid method. But its 

accuracy is mostly affected by the interferences present in several samples which 

can lead to a false negative or a false positive (Abbas et al., 2004).  

 

On the another hand, the HPLC method is an automated process with an improved 

accuracy, high sensitivity, reproducibility and precision but it is very expensive, its 

operation is complex and it is difficult to detect co-elution (Abbas et al., 2004). The 

difference between the fluorometry and HPLC methods in this study can be due to 

the high sensitivity, accuracy, and precision of the HPLC method over the 

fluorometry method as reported elsewhere (Abbas et al., 2004; Zheng et al., 2006; 

Pascale, 2009; Shephard, 2009). 
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CHAPTER FIVE: GENERAL DISCUSSION 

 

For centuries, fungi have been part of human activities and thousands and 

thousands have been isolated and identified (Ndlovu, 2008). Aspergillus genera 

have been found to be the fungi of primary interest because of their ability to produce 

mycotoxins and their negative effect on both human and animal health. A. flavus and 

A. parasiticus have long been recognised as major contaminants of organic and 

nonorganic materials and also produce aflatoxins (Hassan and Lloyd, 1995).  As 

common constituents of the microflora in air and soil, the presence of A. flavus and 

A. parasiticus in food such as peanut is obvious due to the suitability of the food crop 

to fungal spoilage and aflatoxin production (Moss, 2002; Kaaya and Kyamuhangire, 

2006). According to Kaaya and Warren (2005), the mycotoxigenic fungi and aflatoxin 

contamination in peanuts starts at the farm level and contamination occurs in both 

pre- and postharvest phases. In the present study, the incidence of aflatoxin-

producing fungi was reported in nearly all the samples analysed. Aflatoxin-producing 

fungi are ubiquitous and were also found in South African (Pretoria) as well as in 

DRC (Kinshasa) samples. Dutton and Westlake (1985), when investigating the 

occurrence of mycotoxins in 800 food/feed samples, revealed that A. flavus and A. 

parasiticus were the predominant species. In 1994, Dutton and Kinsey (1995) 

reported Aspergillus spp. at lower prevalence when compared to other fungi such as 

Penicillium spp. and Fusarium spp. in maize. Peanut samples from Kinshasa were 

found to be contaminated with more aflatoxin-producing fungi (A. flavus and A. 

parasiticus) than samples from Pretoria. Since peanut samples were collected during 

the period with the highest rainfall (Figure 3.2 and Table 3.1), this high contamination 

could be explained by the presence of high humidity, high temperature, crop 
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handling and storage in Kinshasa (Figure 3.2, Table 3.1) which appeared to be 

conducive to fungal growth and aflatoxin production. 

 

Aflatoxin contamination is the most important quality problem in peanuts worldwide 

with serious commercial implications. To minimise the health and economic 

implications associated with the presence of aflatoxins in food and feedstuff, several 

guidelines have been developed and legislation has been adopted, both at 

international and national levels. In South Africa, aflatoxin contamination is regulated 

by Regulation No. R. 313 of 1990, promulgated under the Foodstuffs, Cosmetics and 

Disinfectants Act, 1972 (Act No. 54 of 1972). According to the Act as well as the 

WHO, all foodstuffs containing more than 10 µg/kg aflatoxin, of which AFB1 should 

not be more that 5 µg/kg, are deemed contaminated and not fit for human 

consumption. In addition, the Codex Alimentarius Commission on Food Additives 

and Contaminants set the limit for total aflatoxin at15 µg/Kg, half of this limit being for 

AFB1(Henry et al., 1999). A stringent regulation has been reported by the European 

Commission which set the maximum limit for aflatoxins at 4 µg/Kg and for AFB1 at 2 

µg/Kg (Wu, 2004).  

 

The selection of sensitive methods is a prerequisite to accurately meet these 

regulations. Conventional analytical methods such as thin-layer chromatography 

(TLC), gas chromatography (GC) and high-performance liquid chromatography 

(HPLC) have been used to determine aflatoxin contamination in commodities (Zheng 

et al., 2006). Most of these methods are seen as laborious due to the time consumed 

during analysis, expertise required, cost, etc. Competition among food- and feed-

supply industries compelled manufactures to develop cost-effective methods which 



76 

 

employ cheap labour, are easy to use and rapid in delivering results; among those 

are enzyme-linked immuno-sorbent assay (ELISA), membrane-based immunoassay, 

fluorometric assay, etc. (Zheng et al., 2006). Since these methods are classified as 

fully quantitative, semi-quantitative, and screening methods, their use depends on 

the reason for the analysis (Pena, 2010). Prior to be used to assess aflatoxin levels 

in raw peanut samples, the methods were validated in terms of precision, recoveries, 

linearity and specificity. However, both methods (fluorometry and HPLC) were found 

to have good linearity, high precision and sensitivity to detect a significant amount of 

aflatoxins in peanut samples. The HPLC method was also found to be precise and 

highly accurate. This result is in agreement with the findings of both Gnonlonfin et al. 

(2010) and Rahmani et al. (2010) who reported that in terms of recovery, a method 

can be validated if the percentage recovery ranges between 70 % and 100 %. In 

terms of precision, the methods were validated to meet the minimum requirement as 

reported by Rahmani et al. (2010). 

 

Peanuts are among the most common nuts included in many diets worldwide and 

play an important role in the diets of several African populations, especially children, 

because of their high content of protein (approximately 25 %), fat and carbohydrate. 

Peanut is, however, also a suitable substrate for fungal spoilage and aflatoxin 

production (Kamika and Takoy, 2011). Several studies have been carried out in 

Africa on the nutritional values of peanut and its importance for undernourished 

children. However, very little has been done in the DRC even though it is reported to 

have a high prevalence of HBV in comparison to South Africa (Figure 2.4) (Williams 

et al., 2004). In the analysis of field samples for aflatoxin contamination, using the 

fluorometric method, the results revealed that approximately 60 % and 30 % of the 
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samples collected from Kinshasa and Pretoria, respectively, contained aflatoxin 

levels above the recommended JECFA and Codex Alimentarius Commission limits. 

Although aflatoxin levels were found to be higher when using HPLC, the results 

revealed that approximately 65 % and 25 % of samples from Kinshasa and Pretoria 

contained total aflatoxins above the recommended limits. Considering AFB1 alone, 

the results revealed that 85 % of Kinshasa’s and 35 % of Pretoria’s samples 

exceeded the limit of 5 µg/Kg (JECFA, 1998; Codex, 2001; Papp et al., 2002). 

Brudzynski et al. (1977) carried out a study on the occurrence of AFB1 in peanuts, 

maize and dried cassava sold at the local market in Kinshasa, DRC, and found that 

AFB1 levels ranged from 12 µg/Kg to 1 000 µg/Kg. In a previous study conducted by 

Masimango and Kalengayi (1982) on Congolese staple foods such as peanut, dried 

cassava roots, maize meal, sorghum, and sweet potatoes, the results revealed the 

presence of high levels of aflatoxins, especially AFB1. On the other hand, Kamika 

and Takoy (2011) reported high AFB1 levels of up to 937 µg/Kg in peanut samples 

collected from Kinshasa. Peanut samples from tropical regions appeared to be more 

contaminated. In 1991, 1 044 peanut samples collected from Brazil were analysed 

for aflatoxins; 940 samples contained aflatoxins with concentrations ranging from 30 

µg/kg to 5 000 µg/kg (Ellis et al., 1991). Oliveira et al. (2009) found that 44.2 % of 

240 peanut samples analysed were positive for aflatoxin at levels of between 0.5 

µg/kg and 103.8 µg/kg and nine of those samples had total aflatoxin levels higher 

than the Brazilian permissible limit (20 µg/kg). Still, in Brazil, in the state of Sao 

Paulo, peanuts have been recorded to contain high levels of AFB1 (from 51 µg/kg to 

420 µg/kg) (Nakai et al., 2008).  
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Omer et al. (2001), in a study on peanut-butter intake, demonstrated that peanut-

butter consumption has been identified as a strong risk factor of hepatocellular 

carcinoma (HCC) in a region with endemic aflatoxin contamination in Sudan. In 

several African countries, the incidence of aflatoxin in crops is correlated to the 

incidence of liver cancer. In Mozambique and Swaziland the incidence of liver cancer 

was found to be very high and a significant correlation between the level of aflatoxin 

consumption and the incidence of primary liver cancer was also reported, especially 

in adult males (Sibanda et al., 1997). However, since previous study reported that 

the DRC has high and an increasing incidence of liver cancer (Henry et al., 1999; 

Ryder et al., 2000), the presence of aflatoxin at high concentrations (100 times the 

maximum limit) is an alarming situation. 

 

In South Africa, a few isolated research conducted across the country reported the 

presence of aflatoxin in food for both human and animal consumption. Dutton and 

Kinsey (1995) further investigated the presence of mycotoxins in cereals and animal 

feedstuffs in Natal, South Africa and found aflatoxins in only 6 % of 417 samples of 

agricultural commodities. Recently, the study conducted by Ncube et al. (2010) 

reported the presence of aflatoxins at levels of up to 131 µg/Kg, 160 µg/Kg and 2 

µg/Kg in groundnut kernels collected from subsistence farmers in three South African 

provinces, namely KwaZulu-Natal, Mpumalanga and Limpopo, respectively. 

 

When comparing the HPLC results and those of fluorometry, aflatoxin levels from the 

same samples appeared to be higher when using HPLC (r = 0.912, p < 0.05) (Figure 

4.7). This revealed the sensitivity of the HPLC analytical method over the 

fluorometric methods developed by VICAM and classified the latter as a screening 
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method rather than a quantitative analytical method for aflatoxin detection. However, 

these two analytical methods were found to be effective due to their high recoveries 

and low relative standard deviations (RSD) when validating. The present result on 

the comparison between fluorometry and HPLC methods corroborates the results 

reported by Pena (2010).  
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CHAPTER SIX: CONCLUSION AND RECOMMENDATIONS 

There is evidence that the sub-Saharan African population is highly exposed to food-

borne aflatoxins, due to the tropical climate which is present in most of the African 

countries and provides optimal conditions for toxigenic fungal growth. Aflatoxins 

have been shown to cause a variety of toxic and adverse health effects in humans 

and these lead to reduced life expectancy in Africa. However, where quality control is 

absent, unsafe levels of aflatoxin are present. Since peanut is a suitable substrate 

for aflatoxin production as well as an important food crop and oilseed in the DRC and 

South Africa, the present study assessed and compared aflatoxin levels in raw 

peanut collected from Kinshasa and Pretoria. The results revealed that the methods 

(fluorometry and HPLC methods) used to assess aflatoxin levels in raw peanut were 

validated and found to be sensitive for aflatoxin (B1, B2, G1 and G2) detection. 

However, the HPLC method was more sensitive for aflatoxin detection than the 

fluorometry method. Peanut samples collected from both Kinshasa and Pretoria 

were contaminated with aflatoxins as well as AFB1. When using the fluorometry 

method, aflatoxins were found in the proportion of 65 % and 30 % for Kinshasa and 

Pretoria, respectively, which is above the WHO limit. Based on the HPLC method, 

the percentages of aflatoxin B1 recorded in peanut samples collected from Kinshasa 

(70 %) and Pretoria (35 %) were found to be higher than the percentages recorded 

using the fluorometry method.  

Furthermore, microbial biomass was also investigated in this study. The results 

revealed that peanut samples were contaminated with aflatoxin-producing fungi in 

the range of less than 1 CFU/g to 49 000 CFU/g and 40 CFU/g to 21 000 CFU/g in 

peanut samples collected from Kinshasa and Pretoria, respectively. The study shows 

that peanut samples from Kinshasa are more susceptible to fungi spoilage and 
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aflatoxin production than peanut samples collected from Pretoria. This might be due 

to the environmental factors, the socio-economic situation as well as lack of 

enforcement of food regulation. The study suggests that the DRC government 

should learn from South Africa in terms of policy design and implementation of food 

safety and security measures such as: 

 To initiate an awareness programme on mycotoxin contamination among 

subsistence, emerging-commercial and commercial farmers. 

 To design and build good warehousing which meets all safety requirements 

for storage of foods such as peanut. 

 To also establish a good peanut-transfer system from the storage facility to 

the shelling plants to selling points. 

 To develop adequate sanitary facilities as well as an effective pest-control 

programme. 

 To issue and enact a regulation preventing the selling of contaminated foods 

and feeds. 

However, there is a need for further studies to confirm the observation before 

one can make conclusion has would have serious implications. 
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