

AN INVESTIGATION OF STUDENTS’

KNOWLEDGE, SKILLS AND STRATEGIES

DURING PROBLEM SOLVING IN OBJECT-

ORIENTED PROGRAMMING

by

Hester Maria Havenga

ii

AN INVESTIGATION OF STUDENTS’ KNOWLEDGE, SKILLS AND STRATEGIES

DURING PROBLEM SOLVING IN OBJECT-ORIENTED PROGRAMMING

by

HESTER MARIA HAVENGA

submitted in accordance with the requirements
for the degree of

DOCTOR OF PHILOSOPHY IN MATHEMATICS, SCIENCE AND TECHNOLOGY
EDUCATION

in the subject

TECHNOLOGY EDUCATION

at the

UNIVERSITY OF SOUTH AFRICA

PROMOTER: PROF E MENTZ

JOINT PROMOTER: PROF MR DE VILLIERS

JUNE 2008

iii

Abstract

__

The object-oriented paradigm is widely advocated and has been used in South African
universities since the late 1990s. Object-oriented computer programming is based on the
object-oriented paradigm where objects are the building blocks that combine data and
methods in the same entity.

Students’ performance in object-oriented programming (OOP) is a matter of concern. In
many cases they lack the ability to apply various supportive techniques in the process of
programming. Efficient knowledge, skills and strategies are required during problem solving
to enhance the programming process. It is often assumed that students implicitly and
independently master these high-level knowledge, skills and strategies, and that teaching
should focus on programming content and coding structures only. However, to be successful
in the complex domain of OOP, explicit learning of both programming and supportive
cognitive techniques is required.

The objective of this study was to identify cognitive, metacognitive and problem-solving
knowledge, skills and strategies used by successful and unsuccessful programmers in OOP.
These activities were identified and evaluated in an empirical research study. A mixed
research design was used, where both qualitative and quantitative methods were applied to
analyse participants’ data. As a qualitative research practice, grounded theory was applied
to guide the systematic collection of data and to generate theory.

The findings suggest that successful programmers applied significantly more cognitive-,
metacognitive- and problem-solving knowledge, skills and strategies, also using a greater
variety, than the unsuccessful programmers. Since programming is complex, we propose a
learning repertoire based on the approaches of successful programmers, to serve as an
integrated framework to support novices in learning OOP. Various techniques should be
used during problem solving and programming to meaningfully construct, explicitly reflect on,
and critically select appropriate knowledge, skills and strategies so as to better understand,
design, code and test programs. Some examples of teaching practices are also outlined as
application of the findings of the study.

Key terms:

Cognition; Constructivism; Grounded theory; Knowledge; Metacognition; Object-oriented
programming; Problem solving; Qualitative methods; Quantitative methods; Skill; Strategy;
Successful programmer; Unsuccessful programmer.

iv

Acknowledgements

__

My sincerest thanks and appreciation go to:

• My promoter, Prof Elsa Mentz, for her guidance in leading me in this study. Her
valuable insight, detailed feedback and support in the research process enabled me
to complete this study;

• My joint promoter, Prof Ruth de Villiers, for her leadership, insight, rigorous
comments and for teaching me a research approach;

• The following individuals for their support in one or another way: Prof P Engelbrecht,
Prof HJ Steyn, Prof FJ Potgieter, Prof JL de K Monteith, Prof BW Richter, Prof H
Kruger, Prof G Drevin, Prof B Smit, Dr G Koekemoer, Dr R Goede, Dr S Ellis, Dr G
Reitsma, Ms J Viljoen, Ms L le Roux, Ms C Van Rensburg, Ms C Moraal;

• My dad, Paul and my mum, Lina for their support and motivation;
• My husband Kobus and daughters Roelien and Ane, and my son Johan, for their

understanding when I was not always available to them;
• Soli Deo gloria.

v

Table of contents

Title Page ... ii
Abstract... iii
Acknowledgements .. iv
Table of contents...v
List of figures...x
List of tables ... xi
List of program segments... xii
Appendices .. xii
CD ... xii
Glossary of terminology .. xiii

1. Theoretical background and real-world problem statement

1.1 Introduction..1

1.2 Background..2

1.3 Problem statement, research question and subquestions ..3

1.4 Research objectives...4

1.5 Delineation and limitations ...5

1.6 Research framework and methodology..5

1.7 Data to be collected and research instruments ..6

1.8 Significance of the study ..7

1.9 Brief chapter overviews..7

1.10 Conclusion ...9

2. Research design and methodology

2.1 Introduction...10

2.2 Epistemological paradigm, research design and methodology....................................12

2.3 The interpretivist paradigm ... 13

2.4 Research practice – grounded theory ... 16

2.4.1 Overview .. 16

2.4.2 The process of generating a grounded theory ..16

2.5 Research considerations with regard to this study...19

2.5.1 Relevance of interpretivism..19

2.5.2 Relevance of grounded theory ..21

2.5.3 Reliability, validity and reflexivity...22

2.6 The positivist paradigm...24

 2.6.1 Relevance of the positivist paradigm .. 24

 2.6.2 Reliability and validity ... 24

2.7 Research methods: data collection techniques ..25

2.7.1 Research plan and participants .. 25

2.7.2 Object-oriented computer program...26

2.7.3 Written document – participants’ thinking processes 27

2.7.4 Questionnaire... 28

2.7.5 Ethical aspects ...29

vi

2.8 Research methods: data analysis techniques ..29

2.8.1 Computer program analysis.. 30

2.8.2 Textual document analysis – using the support of Atlas.ti.........................30

2.8.3 Questionnaire data analysis...30

2.9 Qualitative data analysis software – Atlas.ti..31

 2.9.1 Application of Atlas.ti ..31

 2.9.2 The harmony between grounded theory and Atlas.ti.................................38

2.10 Chapter conclusion... 40

3. Cognitive, metacognitive and problem-solving knowledge and

skills in object-oriented programming

3.1 Introduction... 42

3.2 Object-oriented programming..44

3.2.1 The need to change to the object-oriented paradigm44

3.2.2 The origin of object-oriented programming languages45

3.2.3 An overview of object-oriented programming..45

3.2.3.1 Object ...46

3.2.3.2 Class...47

3.2.3.3 Attributes and methods..47

3.2.3.4 Constructors and destructors ...48

3.2.3.5 Abstractions and associations ..48

3.2.3.6 Polymorphism and dynamic binding..50

3.2.3.7 Advantages and disadvantages of object-oriented programming...50

3.2.4 Programming notations and models ...51

3.2.4.1 Patterns in object-oriented programming..52

3.2.4.2 UML – an important graphical notation.. 52

3.2.4.3 CRC cards ...53

3.2.5 Problem and design spaces in object-oriented programming53

3.3 Cognitive knowledge and skills in object-oriented programming54

3.3.1 Memory, comprehension, reasoning, decision making, creative and critical

 thinking in object-oriented programming ...54

3.3.1.1 Memory and cognitive load ...54

3.3.1.2 Comprehension, reasoning, decision making, creative and

 critical thinking...57

3.3.2 Bloom’s taxonomy ..60

3.3.3 Some practical means of cognitive support..63

3.4 Metacognitive knowledge and skills in object-oriented programming66

3.4.1 Metacognitive knowledge in general..66

3.4.2 Metacognitive knowledge in object-oriented programming68

3.4.3 Some practical examples of metacognitive support ..69

3.5 Problem-solving knowledge and skills in object-oriented programming70

 3.5.1 Factors that relate to the level of difficulty of problems.....................................70

3.5.1.1 The structuredness of problems ..70

3.5.1.2 The complexity of problems..71

3.5.1.3 The dynamicity of problems .. 71

3.5.1.4 The domain specificity or context of problems.................................71

vii

3.5.2 Steps in problem solving..74

3.5.2.1 Problem understanding ...74

3.5.2.2 Program designing.. 74

3.5.2.3 Program coding... 75

3.5.2.4 Program testing ..75

3.5.3 Level of expertise and problem solving ...76

3.5.4 Some practical means of support during problem solving78

3.6 Chapter conclusion ...80

4. Cognitive, metacognitive and problem-solving strategies in
object-oriented programming

4.1 Introduction...81

4.2 Strategic aspects of performance ... 82

4.3 Cognitive strategies...84

4.3.1 Rehearsal strategy in object-oriented programming ...85

4.3.2 Elaboration strategy in object-oriented programming................................... 86

4.3.3 The organisation-and-integration strategy in object-oriented programming..88

4.4 Metacognitive strategies ... 90

4.4.1 Planning strategy in object-oriented programming ..91

4.4.2 Monitoring strategy in object-oriented programming...92

4.4.3 Regulation strategy in object-oriented programming ..93

4.4.4 Reflection in object-oriented programming ...95

4.5 Problem-solving strategies in object-oriented programming ..97

4.5.1 Problem-solving strategies during programming ...97

4.5.1.1 Bottom-up strategy...98

4.5.1.2 Top-down strategy ...98

4.5.1.3 Integrated strategy ...99

4.5.1.4 As-needed strategy... 99

4.5.1.5 Trial-and-error strategy..99

4.6 Chapter conclusion ...100

5. Empirical research and data analysis

5.1 Introduction... 102

5.2 Analysis of participants’ computer programs and thinking processes.................... 104

5.2.1 Measurement criteria..105

5.2.2 Example 1: A poor program ..110

5.2.2.1 Cognitive knowledge and skills ... 111

5.2.2.2 Metacognitive strategies ...113

5.2.2.3 Problem-solving strategy...114

5.2.2.4 Application of measurement criteria in the Delphi program.........114

5.2.3 Example 2: An excellent program ..118

5.2.3.1 Cognitive knowledge and skills ..119

5.2.3.2 Metacognitive strategies ...122

5.2.3.3 Problem-solving strategy...124

5.2.3.4 Application of the measurement criteria in the Java program125

5.2.4 Evaluation of the computer programs: Participants 31 and 32......................129

viii

5.2.5 Quantitative analysis - statistical methods..132

5.2.6 Evaluation of all participants’ computer programs and thinking processes .134

 5.2.6.1 Cognitive knowledge and skills ... 134

5.2.6.2 Metacognitive strategies ... 135

5.2.6.3 Problem-solving strategies.. 136

5.2.6.4 Values allocated for object-oriented programming 136

5.2.6.5 Correlations between various constructs................................... 140

5.2.7 Knowledge, skills and strategies used by successful programmers.............141

5.2.8 Application of interpretivism and positivism in Section 5.2 146

5.3 Qualitative analysis of participants’ thinking processes using Atlas.ti software.......147

5.3.1 The coding process of two detailed examples in Atlas.ti 148

 5.3.1.1 The coding process of Participant 29’s thinking processes 149

 5.3.1.2 The coding process of Participant 32’s thinking processes 150

5.3.2 The organisation of codes into families and identification of themes152

5.3.3 Theme 1: Cognitive knowledge, skills and strategies154

5.3.4 Theme 2: Metacognitive knowledge, skills and strategies158

5.3.5 Theme 3: Problem-solving knowledge, skills and strategies160

5.3.6 Theme 4: Errors and problems during programming162

5.3.7 Theme 5: Additional support during programming 163

5.3.8 Application of interpretivism and grounded theory in Section 5.3 and

 the generation of themes... 163

5.4 Statistical analysis – questionnaire ...168

5.4.1 Biographical information ..168

5.4.2 Closed-ended questions.. 169

5.4.2.1 Cognition knowledge and skills ..170

5.4.2.2 Metacognitive strategies ...175

5.4.2.3 Problem-solving strategies..178

5.4.2.4 Mean values, standard deviations and correlation of various

 constructs ... 181

5.4.3 Open-ended questions...182

5.4.4 Application of positivism and interpretivism in Section 5.4 186

5.5 Triangulation between different analysis methods ...187

5.6 Measures to ensure rigour and quality of data .. 199

5.6.1 Qualitative measures..199

5.6.2 Quantitative measures ...200

5.7 Overview of the research findings ..200

5.7.1 Cognitive knowledge, skills and strategies ...201

5.7.2 Metacognitive knowledge, skills and strategies ...202

5.7.3 Problem-solving knowledge, skills and strategies...................................... 203

5.7.4 Application of knowledge and skills in object-oriented programming.......... 204

5.8 Chapter conclusion ...204

6. Discussion and conclusion

6.1 Introduction...206

6.2 Discussion of the findings of this study ... 207

6.2.1 Response to Subquestions 1.1 and 2.1: Cognitive knowledge, skills

 and strategies ..208

6.2.2 Response to Subquestions 1.2 and 2.2: Metacognitive knowledge,

ix

 skills and strategies ... 208

6.2.3 Response to Subquestions 1.3 and 2.3: Problem-solving knowledge,

 skills and strategies ... 209

6.2.4 Response to Subquestion 3.1: Differences between unsuccessful and

 successful programmers ... 210

6.2.5 Performance patterns of unsuccessful and successful participants 212

 6.2.5.1 Imbalances between the constructs .. 212

6.2.5.2 Performance profile of unsuccessful and successful

 participants ... 214

6.3 A learning repertoire of knowledge, skills and strategies for object-oriented

programming ...217

6.3.1 Research methodology applied ... 217

6.3.2 A proposed learning repertoire for the effective learning of OOP............... 217

6.4 Application of this study to teaching and learning ... 221

6.5 Recommendations and future research directions.. 226

6.6 Chapter conclusion ...226

References ... 228

x

List of figures

Figure 1.1 Structure of the thesis ... 8

Figure 2.1 An overview of the research design..11

Figure 2.2 An example of selected text with the associated code 21

Figure 2.3 Various tools available in Atlas.ti ...32

Figure 2.4 Different steps in the analysis of participants’ thinking processes with

 Atlas.ti .. 33

Figure 2.5 One hermeneutic unit with many primary documents.................................. 34

Figure 2.6 Atlas.ti qualitative software ...34

Figure 2.7 An extract of text from a primary document in Atlas.ti 35

Figure 2.8 Examples of codes in Atlas.ti ...36

Figure 2.9 Examples of quotations associated with the code ‘Java:constructor’ 36

Figure 2.10 An example of a memo in Atlas.ti ... 37

Figure 2.11 An example of families in Atlas.ti .. 37

Figure 2.12 An example of a network structure in Atlas.ti .. 38

Figure 3.1 Various goals, knowledge, skills, strategies and their application in

 an object-oriented program ..43

Figure 3.2 The Vehicle class, Bus subclass and Bus-object ...47

Figure 3.3 A vehicle’s registration number, subdivided into chunks 64

Figure 3.4 An example of a memory diagram .. 64

Figure 3.5 An example of a semantic network ...65

Figure 4.1 Various goals, knowledge, skills, strategies and their application in

 an object-oriented program... 82
Figure 4.2 An example of a reminder in Delphi .. 86
Figure 4.3 Watch and Trace functions displaying the value of the variable ‘year’

currently in memory during program execution...94

Figure 5.1 Design form of the first application program of P31 117

Figure 5.2 Compilation of P31’s program showing numerous errors117

Figure 5.3 Java output from the Date class and Test class programs of P32............. 127

Figure 5.4 P29’s data is assigned to the DATE_CLASS hermeneutic unit

 for analysis within the primary document ...149

Figure 5.5 An example of the coding process and highlighted text of P29 150

Figure 5.6 P32’s data is assigned to the DATE_CLASS hermeneutic unit

 for analysis within the primary document .. 151

Figure 5.7 An example of the coding process and highlighted text of P32....................152

Figure 5.8 Grouping of codes into the possible coded ‘families’................................. 153

Figure 5.9 Selected codes in the problem-solving coded family153

Figure 5.10 An integrated representation of the themes that emerged

 from participants’ thinking processes .. 166

Figure 5.11 Extraction from the Cognitive knowledge, skills and strategies category ...166

Figure 6.1 Possible imbalances in unsuccessful participants’ thinking....................... 213

Figure 6.2 Possible imbalances in successful participants’ thinking........................... 214

Figure 6.3 Performance profile of unsuccessful participants 215

Figure 6.4 Performance profile of successful participants.. 215

Figure 6.5 A learning repertoire of cognitive, metacognitive and problem-solving

 knowledge, skills and strategies in an OOP task....................................... 219

xi

List of tables

Table 1.1 Research questions and subquestions ...4

Table 2.1 A summary of principles in the Information System field.................................15

Table 2.2 The application of Klein and Myers’ (1999) seven principles in this study....20

Table 2.3 The research plan in this study..26

Table 2.4 Requirements for writing the Date class program...27

Table 2.5 Data collection and analysis methods ..29

Table 2.6 A summary of grounded theory concepts and their associated methods

 or tools in Atlas.ti .. 40

Table 3.1 The taxonomy of Benjamin Bloom et al. (1973) ..61

Table 3.2 Analysis of cognitive skills in object-oriented programming62

Table 3.3 Causes of errors during programming ..73

Table 3.4 Categories for ensuring program correctness ... 75

Table 3.5 Examples of expertise during problem solving..77

Table 5.1 Measurement criteria for the analysis of Delphi and Java programs

 and thinking processes ..106

Table 5.2 Analysis of Delphi and Java programs and thinking processes of all

 the participants ... 108

Table 5.3 Examples of P31’s cognitive knowledge and skills (or the lack thereof)111

Table 5.4 Examples of P31’s metacognitive strategies (or the lack thereof)113

Table 5.5 Examples of P31’s problem-solving strategies (or the lack thereof)............114

Table 5.6 Marks allocated to P31 for OOP..118

Table 5.7 Examples of cognitive knowledge and skills used by P32119

Table 5.8 Examples of metacognitive strategies used by P32.......................................123

Table 5.9 The problem-solving strategy used by P32 ...125

Table 5.10 Marks allocated to P32 for OOP..128

Table 5.11 Summary and comparison of the marks allocated to P31 and P32 131

Table 5.12 Mean values and standard deviations for cognitive knowledge and

 skills ... 135

Table 5.13 Mean values and standard deviations for metacognitive strategies136

Table 5.14 Frequencies for selected problem-solving strategies.....................................136

Table 5.15 Summary statistics for OOP knowledge and skills 137

Table 5.16 Mean values and standard deviations for OOP knowledge and skills.........139

Table 5.17 Correlations between cognition, metacognition and OOP knowledge

and skills..140

Table 5.18 Allocated values of successful programmers ..142

Table 5.19 Means, standard deviations and practical significance of unsuccessful

and successful programmers.. 143

Table 5.20 Theme 1: Cognitive knowledge, skills and strategies – codes in Atlas.ti

 with associated quotations from participants’ thinking processes.............. 155

Table 5.21 Theme 2: Metacognitive knowledge, skills and strategies – codes in

Atlas.ti with associated quotations from participants’ thinking processes...158

Table 5.22 Theme 3: Problem-solving knowledge, skill and strategies – codes in

Atlas.ti with associated quotations from participants’ thinking processes...160

Table 5.23 Theme 4: Errors and problems during programming – codes in Atlas.ti

 with associated quotations from participants’ thinking processes................162

Table 5.24 Theme 5: Additional support during programming – codes in Atlas.ti

 with associated quotations from participants’ thinking processes................163

Table 5.25 Programming language currently used...169

xii

Table 5.26 Questions about cognitive knowledge and skills...171

Table 5.27 Questions about metacognitive strategies .. 176

Table 5.28 Questions about problem-solving strategies ...179

Table 5.29 Mean values and standard deviations for cognition, metacognition and

problem-solving sections ..181

Table 5.30 Correlations between constructs... 182

Table 5.31 Open-ended questions in the questionnaire.. 182

Table 5.32 Strategies, plans or useful ‘tricks’ that participants used when

writing a program ...184

Table 5.33 Problem-solving steps used by participants in a programming task 184

Table 5.34 Supportive memory representation techniques that participants used

during a programming task...185

Table 5.35 Triangulation between different analysis methods: P31’s data.................. 188

Table 5.36 Triangulation between different analysis methods: P24’s data.................. 190

Table 5.37 Allocated values of average participants... 192

Table 5.38 Triangulation between different analysis methods:

 average participants’ data.. 193

Table 5.39 Triangulation between different analysis methods: P29’s data.................. 195

Table 5.40 Triangulation between different analysis methods: P32’s data.................. 197

Table 6.1 Research questions and subquestions ... 207

Table 6.2 Facilitator practices in teaching cognitive knowledge, skills

and strategies... 223

Table 6.3 Facilitator practices in teaching metacognitive knowledge, skills

 and strategies... 224

Table 6.4 Facilitator practices in teaching problem-solving knowledge, skills

and strategies... 225

List of program segments

Program 5.1 Delphi program segment from the Date class program of P31
(First attempt) ... 115

Program 5.2 Delphi program segment from the Date class program of P31
 (Second attempt) .. 116
Program 5.3 Java program segment from the Date class program of P32125
Program 5.4 Java program segment from the Test class program of P32........................127

Appendices

Appendix A Consent form.. 239

Appendix B Ethical approval ...240

Appendix C Programming assignment ..241

Appendix D Codes in Atlas.ti ...244

Appendix E The questionnaire and mark sheet ...249

Appendix F Data of Participant 31, an unsuccessful programmer..................................256

Appendix G Data of Participant 32, a successful programmer ..260
Appendix H Article accepted for the South African Computer Journal272

CD .. inside back cover
1. A Java solution

2. A Delphi solution

3. Exported HTML file with codes, memos and families in Atlas.ti

xiii

Glossary of terminology

Class: a template or design pattern for an object.

Cognition: the mental processes used in the acquisition, storage, transformation and

application of knowledge.

Constructivism: a theory that emphasises how people construct their own learning and

understanding of the world through experiences, and by interpretation of those

experiences.

Expert: a knowledgeable person with superior skills in a particular field.

Grounded theory: using guidelines for the organisation of data, theory is developed that

provides relevant interpretations, applications, predictions and explanations.

Interpretivism: refers to knowledge that is intentionally obtained by means of the

interpretation and the meaning of constructs through a person’s lived experience.

Knowledge: information acquired through experience or education.

Metacognition: explicit knowledge of one’s own cognitive strengths and weaknesses that

affect memory performance.

Novice: a person who is inexperienced and new in a particular field.

Object (in the context of OOP): contains both data and operations in the same entity.

Object-oriented programming (OOP): a computer programming language based on the

object-oriented approach, whereby objects have the responsibility of carrying out

specific operations to solve a problem.

Positivism: focuses on science as an approach that verifies and confirms empirical

observations by means of measurable ways.

Problem solving: a complex cognitive process required to find an answer.

Skill: the ability to do a particular task.

Strategy: a designed plan to achieve a purpose and to solve a problem.

Successful programmer: a person who has achieved the outcomes and has dealt

efficiently with problems.

Triangulation: a method used by qualitative researchers to check and establish validity in

their studies.

Unsuccessful programmer: a person who did not achieve the stated outcomes.

1

1 Theoretical background and real-world problem

statement

1.1 Introduction

There are different approaches, called paradigms, to the way a programmer analyses,

designs and implements a computer program (Ragonis & Ben-Ari, 2005:203). The object-

oriented paradigm is based on a fundamentally different view from that of its predecessors

(Satzinger & Ørvik, 2001:2). Under the object-oriented approach, a computer system is

viewed as a collection of interacting objects with specific attributes and methods, where

objects have the responsibility of carrying out specific tasks (Garrido, 2003:26-27). Object-

oriented programming (OOP) is based on the object-oriented paradigm where objects are the

building blocks that combine data and methods in the same entity. This paradigm should

lead to easier maintenance and improved quality, productivity and flexibility (Satzinger &

Ørvik, 2001:2,9).

However, the learning and teaching of OOP is multidimensional and complex (Govender &

Grayson, 2006:1687). OOP is more abstract and comprehensive than its predecessors and

requires more depth to grasp (Northrop, 1992:247). It involves a rich environment in which

specific programming words, statements and constructs come together to be integrated in a

tightly defined way to solve a problem efficiently.

In the learning of object-oriented programming, the student must know what objects are

required, what behaviours they should exhibit, and what interactions occur between them

(§3.2). In order to understand the learning processes entailed in OOP, it is important to

investigate students’ programming processes and products to determine which high-level

knowledge, skills and strategies are actually used and which are optimally required.

Furthermore, educators need to play supportive roles that facilitate the acquisition of

appropriate activities and techniques as students learn to apply their knowledge, skills and

strategies in programming.

2

1.2 Background

Traditional programming languages such as Turbo Pascal, use a DOS (Disk Operating

System)-based operating system and many errors occurred when such programs were

executed within a Windows-based environment (§3.2.1). Programming in a DOS

environment was difficult without a user-friendly graphical interface, and programming

problems became more complex (Yousoof, Sapiyan & Kamaluddin, 2006:259). In addition,

data could easily be modified outside of its scope as global data in a program where it was

uncontrolled and unpredictable (Weisfeld, 2004:7-8).

The object-oriented paradigm addresses some of these problems. OOP involves solving

problems by identifying the real-world objects of a problem and creating programming

objects to simulate those objects and their processes (Sebesta, 2004:92). OOP includes

data abstraction that encapsulates the behaviour of data and hides access to data (Satzinger

& Ørvik, 2001:44). Furthermore, inheritance and dynamic binding were added to enhance

the reuse of existing software (Sebesta, 2004:458; Weisfeld, 2004:7-8) (§3.2.3). As a result

of various advantages, OOP became important in many applications and in software

development.

The object-oriented paradigm is widely advocated (Or-Bach & Lavy, 2004:82) and is used in

international higher education institutions. It was introduced in South African universities

from the late 1990s. Popular OOP languages that are currently taught are C#, Java, C++

(BSc or BSc Engineering) and Delphi (BEd and in-service teachers with Information

Technology as their major subject).

Students’ performance in programming is a matter of concern and the programming courses

have a high attrition rate (Govender & Grayson, 2006:1687). Ala-Mutka (2004:9) points out

that the biggest problem of novices is not their understanding of basic concepts but rather

learning how to apply these in a program. Since both BSc and BEd students have problems

in the learning of OOP, they should learn how to apply supportive knowledge, skills and

strategies to facilitate the process. These techniques are explicitly required in Information

Technology or Computer Science to support the learning of object-oriented programming. In

this regard, Haden and Mann (2003:70) mention the need for an accurate way of

understanding early programming performance to support students in becoming so-called

‘good-programmers’.

3

1.3 Problem statement, research question and
subquestions

It is often assumed that students implicitly and independently master the required high-level

knowledge, skills and strategies that foster effective programming, and that teaching should

focus on programming content and coding structures only. However, to be successful in the

complex domain of OOP, explicit learning of both facets is required.

Knowledge relates to information and skills acquired through experience or education. In

addition, it refers to what someone already knows (Concise Oxford English Dictionary,

2004:789; Neath & Surprenant, 2003:223). A skill can be defined as the ability to do a

particular task (Concise Oxford English Dictionary, 2004:1351), while a strategy is a

designed plan to achieve a specific purpose in the long term (Concise Oxford English

Dictionary, 2004:1425). A strategy includes a sequence of activities that are gradually

automatised. It is a dynamic process with problem solving as its aim (Gu, 2005:1, 6, 10, 16).

Since various high-level knowledge, skills and strategies are involved in the programming

process, the main research question is:

Which knowledge, skills and strategies are used during problem solving in object-

oriented programming?

This question is divided into subquestions, some of which relate primarily to theoretical

matters, and were answered by means of the literature study. Other subquestions relate to

actual experiences when students undertake object-oriented computer programming. These

questions were answered by taking certain theoretical concepts that emerged from the

literature study and using them to structure further exploration in original empirical

investigations.

Previous studies emphasise the role of a particular domain in supporting programming, e.g.

the cognitive (Ala-Mutka, 2004:2), metacognitive (Glaser, 1999:91-92) or problem solving

(Sternberg, 2006:424) domain. However, this study follows an approach in which cognitive,

metacognitive and problem-solving knowledge, skills and strategies are integrated to support

the learning of OOP. Cognition includes a wide range of mental processes used in the

acquisition, storage, transformation and application of knowledge (Sternberg, 2006:157).

Metacognitive knowledge is explicit knowledge of an individual’s own cognitive processes,

strengths and weaknesses, beliefs and conditions that affect memory performance (Gravill,

Compeau & Marcolin, 2002:1055; Koriat, 2002:267). Problem solving refers to all processes

involved with the aim of ‘finding an answer’ (Concise Oxford English Dictionary, 2004:1374).

4

The subquestions are shown in Table 1.1, along with references in parentheses to the

relevant chapter(s) in the study.

Table 1.1: Research questions and subquestions

Research questions and subquestions Chapters involved

1. Which knowledge and skills are used during problem
 solving in object-oriented programming?

1.1 Which cognitive knowledge and skills are used in OOP?

1.2 Which metacognitive knowledge and skills are used in
OOP?

1.3 Which problem-solving knowledge and skills are used in
OOP?

Literature study (3),
Empirical research (5),
Discussion and
conclusion (6)

2. Which strategies are used during problem solving in
 object-oriented programming?

2.1 Which cognitive strategies are used in OOP?

2.2 Which metacognitive strategies are used in OOP?

2.3 Which problem-solving strategies are used in OOP?

Literature study (4),
Empirical research (5),
Discussion and
conclusion (6)

3. What are the differences between the ways in which
unsuccessful and successful programmers apply
supportive knowledge, skills and strategies in OOP?

3.1 What are the differences between the ways in which
 unsuccessful and successful programmers apply
 cognitive, metacognitive and problem-solving knowledge,
 skills and strategies in OOP?

3.2 What contribution can be made to the practices of teaching
and learning OOP by applying the knowledge, skills and
strategies used by successful programmers?

Empirical research (5),
Discussion and
conclusion (6)

1.4 Research objectives

There is a need for the refinement of research on object-oriented design and programming

that explores the complexities of OOP (Bergin, Reilly & Traynor, 2005). There is also a need

to offer guidelines regarding appropriate activities to support the learning of OOP (Or-Bach &

Lavy, 2004:82). The main objective of this study is to identify knowledge, skills and

strategies that support students during problem solving in object-oriented programming. The

first specific objective is an attempt to identify cognitive, metacognitive and problem-solving

knowledge, skills and strategies used by successful and unsuccessful programmers in OOP.

Secondly, novices should be supported in learning OOP. The driving force behind this study

is the aim of improving the teaching and learning of OOP and to support students during

programming.

5

1.5 Delineation and limitations

The focus of this research is object-oriented programming, with the scope of the study being

limited to OOP students in higher education taking Information Technology or Computer

Science as a major subject. For programming languages, the BEd (Bachelor of Education)

students used Delphi and the BSc (Bachelor of Science) students used Java. Although there

are notable differences between these two languages, both are based on the object-oriented

paradigm. The following aspects were not the focus in this study:

• programming paradigms other than OOP;

• differences in language constructs of various OOP languages; and

• the curriculum in OOP.

1.6 Research framework and methodology

A theory provides a framework for interpreting observations (Schunk, 2000:3) and orientation

to the study (Henning, Van Rensburg & Smit, 2004:25, 26). Strauss and Corbin (1998:15,

22) describe theories as sets of well-developed related concepts and themes, which

constitute an integrated framework that can be used to explain or predict phenomena. The

research paradigm in this study is constructivist problem solving (§2.2, Fig. 2.1).

Constructivism emphasises that individuals construct knowledge through their actions in

what they learn and understand (Schunk, 2000:229). This research approach can help to

understand human thought and action, and to produce deep insights into phenomena (Klein

& Myers, 1999:67) such as object-oriented programming.

In this study, a mixed methodology is used that includes both qualitative and quantitative

methods in the analysis of the participants’ computer programs, thinking processes and

questionnaires (Fig. 2.1). Both interpretivism and positivism are applied. The study is mainly

interpretivist involving interpretation of participants’ thinking processes and programs, while

the positivist approach is used to combine interpretivism with statistically significant effects

for further clarification.

Various research practices can be used to guide interpretivist studies and to provide

consistency as the study progresses. One of these is grounded theory. The goal of

grounded theory as a research design in this study is to guide data collection and to derive

criteria for analysing the knowledge, skills and strategies of participants during computer

6

programming. In addition, grounded theory is an approach whereby theory and models can

be generated inductively from the collection and analysis of contextual data (Strauss &

Corbin, 1998:15; §2.4, §5.3, Chapter 6).

1.7 Data to be collected and research instruments

In order to answer the research questions, a literature study was used as well as empirical

research. Literature studies were undertaken in the areas of cognition, metacognition,

problem solving, knowledge and skills, strategies, object-oriented programming,

interpretivism, and positivism. The subsequent empirical study focuses on identifying and

evaluating knowledge, skills and strategies used by students during the process of computer

programming.

Population

Participants were cohorts in the years 2005 and 2006 of BSc (Faculty of Science) and BEd

(Faculty of Education) third-year students in Computer Science and Information Technology

respectively. They participated willingly in this research. Data was collected while

participants were designing and developing an object-oriented computer program to perform

complex calculations with dates from the calendar. Their associated thinking processes

were analysed as well. For the sake of convenience, all participants will be referred to in the

male gender.

An object-oriented computer program

The participants were required to design and create an object-oriented program relating to a

Date class (§2.7.2). This required mandatory calculations with dates, for example, precise

determination of which years – over an extended period – were leap years. Apart from the

specified functionality, the problem was open-ended and participants could decide to

incorporate additional functionality and usability features. They also needed to design a Test

class to determine whether the output of the Date class was correct. The programs could be

done in either the Delphi or Java programming language. The students’ computer programs

were analysed and assessed by the researcher by means of specific criteria that emerged

from the literature studies (Table 5.1, Table 5.2, §5.2).

Thinking processes

Participants were also requested to write down their thinking and problem-solving skills

during the programming process. This exercise was supported by a framework (Table 2.4)

to direct their thinking and problem-solving activities. In this way their thinking processes,

7

while undertaking computer programming, were made explicit for analysis. The researcher

analysed the participants’ thinking processes with the support of Atlas.ti, a software program

and knowledge workbench for qualitative analysis (§2.9, §5.3).

Questionnaire

To extend the research, the participants of 2006 completed a questionnaire about their

problem-solving processes during programming. It included closed-ended as well as open-

ended questions on the programming experience (Appendix E). The closed-ended questions

were statistically analysed by means of descriptive statistics (§5.2.5, §5.4). The open-ended

responses were analysed by comparing the answers of successful participants (§5.2.7, Table

5.18) to those of unsuccessful participants and discussing the differences between them.

1.8 Significance of the study

This study holds both theoretical and practical value. The theoretical significance is the

identification of specific knowledge, skills and strategies that can be applied with success in

the teaching of OOP. The practical contribution is the generation of a synthesised

framework, which integrates such knowledge, skills and strategies in a so-called ‘learning

repertoire’. The purpose of this framework is to support novices in the learning of OOP. In

addition, some examples of teaching and learning practices in OOP are outlined. An article

regarding this research has been submitted to and accepted for publication by the South

African Computer Journal (Havenga, Mentz & De Villiers, 2008) (Appendix H).

1.9 Brief chapter overviews

With the background of Section 1.3, which presents the questions to be addressed and

answered in this study, the following figure (Fig. 1.1) gives a brief overview of the structure of

the thesis. Chapter 1 makes it clear exactly what was studied. In this regard, the following

topics are addressed: the background, problem statement and research questions,

objectives, delineation and limitations, framework and methodology, data to be collected and

research instruments, significance of this study and a brief chapter overview. Chapter 2

gives a clear focus into the research design of this study with reference to the research

paradigm and methodology, data collection and data analysis methods used to answer the

research question. After an explanation of the approach and concepts of object-oriented

programming in Chapter 3, the chapter focuses on the cognitive, metacognitive and problem-

solving knowledge and skills required in OOP. Chapter 4 correspondingly focuses on

8

cognitive, metacognitive and problem-solving strategies in OOP. Chapter 5 describes how

the empirical research of this study focuses on ascertaining and evaluating the knowledge,

skills and strategies that students use during computer programming. In addition, differences

between successful and unsuccessful programmers are addressed with reference to the

respective forms of knowledge, skills and strategies that they applied during programming.

Findings are presented in Chapter 5 and are further discussed in Chapter 6. Moreover,

Chapter 6 answers the main research question and proposes a learning framework to

support students in the learning of OOP, particularly with respect to the various activities

involved in writing high-quality programs. Finally, the findings inform practice as the value of

explicit teaching of the knowledge, skills and strategies used by successful programmers, is

discussed.

Figure 1.1: Structure of the thesis

Chapter 1
Introduction

Chapter 2
Research design and

methodology

Chapter 5
Empirical research

results and analysis.
Evaluation of knowledge, skills

and strategies in OOP

Chapter 6
Discussion and

conclusion

Chapter 3
Knowledge and skills in

object-oriented
programming

Chapter 4
Strategies in object-

oriented programming

9

1.10 Conclusion

To conclude, an increased understanding of the skills and strategic processes involved in

learning object-oriented programming should lead to more effective instruction in computer

programming and better learning on the part of students. The objective of this study is to

contribute to the practice of teaching by explicitly including certain knowledge, skills and

strategies that have been demonstrated to be valuable in object-oriented programming.

The next chapter gives an overview of the research design, paradigm, data collection and

data analysis methods.

10

2 Research design and methodology

2.1 Introduction

The purpose of this chapter is to provide a clear focus into the research design of this study

with reference to the research paradigm and methodology, data collection and data analysis

methods used to answer the research question. Research is the origin of new ideas and

ways of thinking about the world. Formally, research refers to the systematic investigation

and study of materials and sources in order to establish facts and verify information (Concise

Oxford English Dictionary, 2004:993; Neuman, 2002:23).

The ontological foundations of this research may be found in the design and construction of

computer programs. Object-oriented programs (OOP) consist of data and operations that

are both encapsulated in an object. Furthermore, a class is a blueprint for an object

(Weisfeld, 2004:14; §3.2.3). In this regard, Reed (2003:256, 257) mentions that ontologically

all abstractions of OOP refer to representations where classes correspond with concepts. In

addition, instances (objects) and methods correspond with ‘knowledge of units’ and

‘knowledge of actions’ respectively.

Different epistemological paradigms can be used to explain or predict phenomena and guide

the research study (Henning et al., 2004:25, 26, 117; Schunk, 2000:4). Fig. 2.1 presents an

overview of the research design in this study. This research is constructivist-based within an

interpretivist epistemology and emphasises the construction of knowledge in which students

are actively involved (§2.2). Furthermore, this paradigm focuses on the construction of

knowledge in situations where problem solving is required in object-oriented programming.

This research employs mixed methods (Johnson & Onwuegbuzie, 2004:15; Cupchik, 2001)

whereby both qualitative and quantitative methodologies associated with interpretivism –

and, to a lesser degree, positivism – are applied. The research paradigm will be discussed

with reference to these qualitative and quantitative methodologies (§2.2, §2.3, §2.6) and

grounded theory will be introduced as a research practice for collecting and organising data

(§2.4). General research considerations with regard to this study are outlined in Section 2.5,

11

Qualitative research Quantitative research

*Interpretivism (§2.3) *Positivism (§2.6)

Grounded theory (§2.4) Statistical methods (§5.2.5)

Research paradigm:
Constructivist problem solving

Research methodology

Interpretation of findings and
discussion

while the specific data collection and analysis techniques used will be discussed in Sections

2.7 and 2.8 respectively. Finally, the use of Atlas.ti software in this study is outlined in

Section 2.9.

Figure 2.1: An overview of the research design

* Both interpretivism and positivism are included in the constructivist problem-solving paradigm; however this
study is mainly interpretivist where the interpretations of participants’ thinking processes and programs are
required. In addition, the positivist approach is applied to combine the interpretivist approach with statistically
significant effects for further clarification.

Data collection:

- An object-oriented computer program (§2.7.2)
- A written document recording participants’ thinking processes while
 undertaking computer programming (§2.7.3)
- A questionnaire (§2.7.4)

Data analysis:

- Use of emerging criteria (from theory) to evaluate students’ computer
 programs and thinking processes (Table 5.1, §5.2)
- Computer program analysis with the support of Atlas.ti software (§2.9, §5.3)
- Analysis of closed-ended and open-ended questions (§2.8.3, §5.4)
- Application of triangulation between different analysis methods (§5.5).

12

2.2 Epistemological paradigm, research design and
methodology

This research is constructivist-based within an interpretivist epistemology, and subscribes to

a learning philosophy that emphasises the active construction of knowledge. Constructivism

is a theory that emphasises how people construct their own learning and understanding of

the world through experiences and by interpretation and reflection on those experiences

(Cupchik, 2001). In addition, the constructivist approach seeks to develop consensus about

how to understand the focus of inquiry (Guba & Lincoln, 1989:44-45).

The epistemological paradigm, within which this study is located, as well as the concomitant

research design and methodology may, for purposes of this study, be termed constructivist

problem solving. As such, this paradigm focuses on the active construction of knowledge in

situations where problem solving is required in object-oriented programming. According to

Hadjerrouit (1999:172), the nature of object-oriented computer programming requires a

constructivist approach to problem solving and to the design of a new program for which

object-oriented concepts, language and problem-specific knowledge and skills are required.

Furthermore, embedded in this paradigm is a rich problem-solving environment where the

programming words, statements and constructs all come together and will be integrated in a

very specific way to solve the problem efficiently.

This research paradigm was chosen to emphasise the role of the programmer behind the

computer in constructing programming knowledge and solving the problem. In addition, it

refers to the researcher’s role in constructing knowledge about the students’ programming.

This constructivist problem-solving paradigm therefore has two perspectives. Firstly, it refers

to the students in their construction of a computer program. In object-oriented programming,

this implies that students should be actively involved in a particular form of problem solving

required in constructing a computer program and applying programming constructs such as

classes and objects. By using a programming language the programmer must be able to

select, organise and integrate various programming statements and constructs in such a way

that a new program is developed successfully.

Secondly, this paradigm refers to the researcher’s task in the construction of knowledge

regarding the students’ programming ‘constructs’, as she interprets and reflects on those

programming experiences. This implies a metaconstructive process where action,

interpretation and reflection are involved. In this way, knowledge is constructed from the

13

students’ intentions, meanings and various thinking processes during their programming of

the problem.

In this study, a mixed methodology was applied where both qualitative and, to a lesser

extent, quantitative, methods were used to address the research question (Fig. 2.1). In this

regard, Weber (2004:iv, vi, vii) refers to ‘deep similarities rather than deep differences’

between positivism and interpretivism. Both approaches are concerned with the process of

understanding the world. In addition, data can be analysed from both interpretivist and

positivist perspectives. Qualitative and quantitative methods are not mutually exclusive (De

Villiers, 2005b:13). In this study, the methods are complementary and parallel, as each

covers various facets of the research process and together they address what researchers

actually use in practice (Johnson & Onwuegbuzie, 2004:15; Cupchik, 2001). This implies

that the richness and thick description of thinking processes are combined with statistically

significant effects for further clarification.

The interpretivist paradigm, along with grounded theory as research practice, is discussed in

Sections 2.3 and 2.4 and the positivist paradigm is outlined in Section 2.6.

2.3 The interpretivist paradigm

A research paradigm explains or predicts phenomena, provides orientation and guides the

study (Henning et al., 2004:25, 26, 117; Schunk, 2000:4). Fig. 2.1 shows the mixed

methodology and dual paradigms that underlie the structure of this study, guiding the

researcher’s approach and supporting explanations of the phenomena that emerge.

Interpretivism is an appropriate paradigm for studies of complex human behaviour.

The interpretive approach originated in the social sciences, however it is increasingly applied

in Information Systems for research on the design and development of applications (De

Villiers, 2005b:12). The interpretivist paradigm refers to knowledge that is intentionally

obtained by means of the interpretation and meaning of constructs through the lived

experience of human beings. Thus interpretive research leads to subjective findings which

may differ between researchers, where the researcher ‘is an instrument’ to make sense of

what he or she perceives as important in the understanding of phenomena (De Villiers,

2005a:142; Weber, 2004:vi; Leedy & Ormrod, 2001:147). Interpretivism investigates

research questions and aims to explain human experiences, as it focuses on the

14

understanding of phenomena that occur in a natural setting (De Villiers, 2005b:12). In this

regard, Henning et al. (2004:20) mention that the researcher should look ‘at different places

and at different things’ in order to understand the phenomenon.

Various research practices can be used within interpretive studies, for example case studies,

ethnography, narratives and grounded theory. Grounded theory can be used to collect rich

data from multiple sources, to refine concepts, to define properties of categories and to

identify their relevant contexts (Charmaz, 2000:519). In the grounded theory approach,

analysis aims to reflect the perspectives until the saturation of data has occurred (Glaser &

Strauss, 1967:61; De Villiers, 2005a:148).

Interpretivism uses mainly qualitative methods to understand the phenomena. Qualitative

research refers to methodological approaches that rely on non-statistical methods of data

collection and analysis. Some examples of qualitative data are text, cultures and artefacts,

documents, journals, interviews, fieldwork, memos, e-mails, and scenarios as resources

(Berntsen, Sampson & Østerlie, 2004:3; Prasad & Prasad, 2002:7-8). The main purpose of

qualitative methods in this study is to interpret, that is, to gain insights about computer

programming so as to develop theoretical perspectives regarding the process of OOP

programming.

However, it is important that interpretive research itself should be considered to determine

whether this study indeed represents an interpretive approach. Klein and Myers (1999)

propose a set of principles for conducting and evaluating interpretive field studies from the

philosophical perspective of hermeneutics. These principles set standards to qualify and

further ground interpretive research in Information Systems (IS). They are shown in Table

2.1 and are applied to the present study in Table 2.2 in §2.5.1.

15

Table 2.1: A summary of principles in the Information System field
(Klein & Myers, 1999:72, 73)

A set of principles for conducting and evaluating interpretive studies

1 The fundamental principle of the hermeneutic circle:

This principle suggests that human understanding is achieved by iteration
considering the interdependent meaning of parts and the whole that they form, by
iterating between the parts and the whole in a cyclic manner. This principle of
human understanding is fundamental to all other principles.

2 The principle of contextualisation:

Critical reflection is required on the social and historical background of the research
settings, so that the intended audience can understand how the situation currently
under investigation emerged.

3 The principle of interaction between the researcher(s) and the subjects:

This requires critical reflection on how the research materials (or data) were socially
constructed through the interaction between the researcher and the participants.

4 The principle of abstraction and generalisation:

The idiographic details revealed by the interpretation of data resulting from
Principles 1 and 2 should be related to theoretical, general concepts that describe
human understanding and social actions.

5 The principle of dialogical reasoning:

Dialogical reasoning requires sensitivity to possible contradictions that may emerge
between the theoretical preconceptions guiding the research design and the actual
findings (i.e. “the story that the data tells”) with subsequent cycles of revision.

6 The principle of multiple interpretations:

This requires sensitivity to possible differences in interpretations among the
participants, as expressed in their multiple narratives of the same sequence of
events under study. Similar to multiple-witness accounts.

7 The principle of suspicion:

Sensitivity is required to possible ‘biases’ and systematic ‘distortions’ in the
information collected from the participants.

Klein and Myers (1999) propose that these seven principles for the evaluation of

interpretive research, should also serve as guidelines for conducting this type of research.

The principles are practically applied to the context of the present study in Subsection

2.5.1.

16

2.4 Research practice – grounded theory

2.4.1 Overview

Various research practices can be used as methodologies for guiding interpretivist studies

and to provide consistency as the study progresses (De Villiers, 2005b:17). One of these is

grounded theory, which, as shown in Fig. 2.1, will be used in this study as a means of

collecting and organising data.

Grounded theory was initially proposed in 1967 by Glaser and Strauss (1967) with the

purpose of providing a research framework. In 1998, Strauss and Corbin (1998:21)

developed a more detailed description of grounded theory and gave guidelines for the

organisation of data using a set of well-developed categories. Appropriate use of grounded

theory processes and methods compositely forms an explanatory scheme.

The main purpose of grounded theory is to commence with the data and use it to develop

theory that provides relevant interpretations, applications, predictions and explanations

(Leedy & Ormrod, 2001:154; Glaser & Strauss, 1967:1, 2, 249; Chapter 6). The grounded

theory method specifies an analytic strategy to collect rich data from multiple sources. It

involves a process of collecting data to fill conceptual gaps, applying constant comparative

analysis, refining concepts, defining the properties of the categories and identifying their

relevant contexts (Boychuk Duchscher & Morgan, 2004:607; Charmaz, 2000:519).

Grounded theory is thus an approach where theory is generated inductively from the analysis

of the data as concepts are formulated into a logical systematic and explanatory scheme (De

Villiers, 2005b:22; Strauss & Corbin, 1998:21).

2.4.2 The process of generating a grounded theory

One of the major steps in grounded theory is the coding of data. In this regard certain

terminology is explained in more detail:

• coding refers to the analytic processes through which data is fractured, conceptualised,

and integrated to form theory (Strauss & Corbin, 1998:3);

• a category refers to a concept that represents a phenomenon (Strauss & Corbin,

1998:101);

• a main category refers to a core category to which other categories are related

(Henning et al., 2004:132);

17

• a theme represents a ‘chunk of reality’ that can be used as a basis for an argument

(Henning et al., 2004:107);

• a theory denotes a set of well-developed categories and/or themes that are

systematically integrated to yield a rich, dense theory that explains some phenomenon

(Boychuk Duchscher & Morgan, 2004:608; Henning et al., 2004:107).

The purpose of codes is to capture the meaning of data and to classify a large amount of

textual data (Muhr, 2004:32). Codes serve to provide new perspectives on data and to guide

the researcher during the analysis process. Related codes can be grouped into categories,

which develop inductively, guided by the data. The process of category refinement is

continuous until the main categories are identified and integrated into a coherent whole. The

collection and analysis of data is therefore a recursive process until saturation has occurred.

Grounded theory strives towards verification through the process of saturation, which is

achieved when no further evidence emerges and when multiple behaviours indicate similar

properties and patterns (De Villiers, 2005b:24; Goulding, 1998:52).

In a grounded theory study, data analysis occurs through various coding procedures: open

coding, axial coding, selective coding and the development of a theory (Leedy & Ormrod,

2001:155; Charmaz, 2000:514-516). These different procedures are explained in more

detail.

• Open coding

Open coding is the first analytic process of coding. Its purpose is to mark text or other

informative data and to associate codes with the marked segments of text. Data is

decomposed into parts (concepts) and is marked line-by-line and coded as shown in

the example in Fig. 2.2 (Subsection 2.5.2). During the process of open coding, the

following types of questions should be asked: What is going on? What is the

participant saying? Data is therefore decomposed and the parts are compared and

grouped together in a new way into a category. This process of grouping concepts into

higher levels of abstraction is called categorising and this forms the basis of grounded

theory construction (Henning et al., 2004:131). The selection of groups for comparison

highlights the various similarities and differences, which is vital for defining the different

categories (Glaser & Strauss, 1967:55).

• Axial coding

Axial coding is defined as ‘the process of relating categories to their subcategories’

(Strauss & Corbin, 1998:124). The purpose is to refine the information about each

category and its subcategories, determining more about a category in terms of its

18

conditions, context, strategies and consequences (Leedy & Ormrod, 2001:155).

Different codes are linked and the focus is on relationships between the various

categories, implemented by this linking of associated codes (§2.5.2). However,

Henning et al. (2004:132) mention that linking between various categories may be

implicit or hidden and could take place on a conceptual level only.

• Selective coding

Selective coding is the process whereby a main category is selected to which other

categories are related (Henning et al., 2004:132; Neuman, 2002:423). It is a process

where categories are organised around a central explanatory concept where major

categories are related (Strauss & Corbin, 1998:161). Finally, each category may

become a new theme (§5.3). It is a process of integrating and refining the emerging

theory. Strauss and Corbin (1998:161) mention various techniques that can be used to

facilitate the integration process, namely writing a storyline, using diagrams or using

computer programs.

• Interpretation and the development of a theory

Qualitative interpretation is constructed from the findings. According to Denzin and

Lincoln (2000:23), the process of interpretation is critical as theory, methods, actions

and policies all come together. An understanding of what constitutes a theory is

important. Boychuk Duchscher and Morgan (2004:608) and Strauss and Corbin

(1998:21) emphasise that theory denotes a set of well-developed categories that are

systematically integrated in yielding a rich, dense theory that explains some

phenomenon. The theory must be usable in practical applications, should provide a

perspective on behaviour, and should guide and provide a style for research. Thus, the

grounded theory approach can be applied in Information Systems in the process of

generating theory. This, in turn, can lead to models and/or representations to explain

specific phenomena in the domain under consideration (De Villiers, 2005b:25; Chapter

6).

Glaser and Strauss (1967:3-5) cite four criteria for a well-constructed grounded theory.

These criteria will be applied in Chapter 5:

• fit: the categories and properties should fit the realities being studied;

• work: in order to work, the theory should explain variations in behaviour;

• relevance: this is achieved when a grounded theory both fits and works; and

• modifiability: the emerging theory is open to adaptation as new data is integrated.

19

2.5 Research considerations with regard to this study

The relevance of interpretivism and grounded theory to this study is discussed in the

following subsections. The issues of reliability, validity and reflexivity are also addressed.

2.5.1 Relevance of interpretivism

The main research objective of interpretive research is the interpretation of actions or

meanings of participants’ lived experience (§2.3, §5.2, §5.3). Interpretivism can be applied to

investigate meanings such as the thinking processes of programmers during the process of

object-oriented programming, as was done in the present study. With reference to the

award-winning paper of Klein and Myers (1999:67-94), their scope is limited to interpretive

research in the context of field studies that also include in-depth case studies. The present

study does not include case studies. However, the set of principles in Table 2.1 are

applicable to this study, because the interpretation and meaning of ‘lived experience’ – in this

case, thinking processes – is fundamental to the goal of understanding OOP thinking

processes, so as to help students to program better and lecturers to teach better. The

rigorous use of these principles can also support reliability, validity and grounding in

interpretivist research (Pozzebon, 2004:281).

Table 2.2 is an extension of Table 2.1. In Table 2.2, each of the seven principles of Klein

and Myers (1999:72-73) is used as a header, followed in each case by a description of how

the principle is applied in this study. Cross-references in parentheses indicate the

appropriate subsection/s of the empirical work, which is described and discussed in Chapter

5.

A question in §2.3 queries whether or not this study is indeed an interpretive approach. The

information in Table 2.2 indicates that this is the case and interpretive research is relevant to

this study.

20

Table 2.2: The application of Klein and Myers’ (1999) seven principles in this study

Application of a set of principles for conducting and evaluating interpretive studies

1 The fundamental principle of the hermeneutic circle:

Achieving human understanding by iterating between the parts and the whole that they form.

Neither the parts (programming statements) nor the whole (the computer program) can be
understood without reference to each other. Referencing specific programming statements in the
program is necessary to understand the purpose of the entire program (§5.2, §5.3).

2 The principle of contextualisation:

Reflection on the social and historical background of the research setting to explain the current
situation under investigation.

Participants who took Computer Studies or some other computer-programming course prior to their
university studies, might demonstrate superior problem-solving skills and strategies during the
programming process.

3 The principle of interaction between the researcher(s) and the subjects:

Reflection on how the data was constructed through the interaction between the researcher and
the participants.

How are computer programs constructed and how are they related to the associated thinking
processes? Data will emerge from interaction between the researcher and participants. The
researcher will direct the students’ thinking and programming by means of specific requirements for
the calculations with dates and by requesting the students to reflect and record their thinking
processes (Table 2.4; Appendix C).

4

The principle of abstraction and generalisation:

Relating the idiographic details revealed by the interpretation of data resulting from Principles 1 and
2 to theoretical, general concepts that describe human understanding and social actions.

The students’ specific thinking processes and programming statements must be related to generic
problem solving in object-oriented programming (§5.2, §5.3).

5 The principle of dialogical reasoning:

Sensitivity to possible contradictions between the theoretical preconceptions guiding the research
design and actual findings that may emerge from subsequent cycles of revision.

The researcher is sensitive to possible contradictions between theoretical foundations and the data
that emerges from the research. She will acknowledge such and will make the basis of the
research process as transparent as possible to the reader (§5.2, §5.3, §5.4).

6 The principle of multiple interpretations:

Sensitivity to possible differences in interpretations among the participants, in the same sequence
of events under study. Similar to multiple-witness accounts where all participants recall an event
as they personally perceived it.

It requires sensitivity to analyse the different interpretations by participants of the same computer
program and the different approaches to constructing it (§5.2, §5.3).

7 The principle of suspicion:

Sensitivity to possible ‘biases’ and systematic ‘distortions’ in the information collected from the
participants.

Biases and distortions in the participants’ written thinking processes should be identified.
Furthermore, there should be explicit avoidance of bias on the part of the researcher, in her
interpretation of the qualitative data (§5.3).

21

2.5.2 Relevance of grounded theory

Grounded theory is an approach whereby theory and models can be generated inductively

from the collection and analysis of contextual data. It can be applied in Information System

(IS) research, including areas such as OOP, to synthesise a theoretical framework, which

leads to models (De Villiers, 2005b:25; Chapter 6). The initial goal of grounded theory as a

research design in this study is therefore to guide data collection, and to derive criteria for

analysing the knowledge, skills and strategies of participants during computer programming.

Such criteria emerged inductively from the literature study (Table 5.1).

The subsequent steps of a grounded theory process, introduced in §2.4.2, will be revisited in

the section below, and applied to the present study.

• Open coding

In open coding, data is decomposed into parts, marked line-by-line and coded. During

the process of open coding, the following questions must be asked: What is the

participant saying? Which actions did the participant take during programming? In the

example of Fig. 2.2, the programming statement below (extracted from a ‘thinking

processes’ document – see §2.7.3) could be coded as indicated after the arrow. The

colons in the New code separate further descriptions for the purpose of elaborating the

meaning of the code:

 linked

 to

 Selected text New code

Figure 2.2: An example of selected text with the associated code

The code java:constructor:initialise was later categorised in the cognitive knowledge,

skills and strategies category, as an indication of the application of knowledge and skills

in OOP.

• Axial coding

In axial coding, different categories are combined in new ways to make connections.

The researcher focuses on the categories that may be clustered together or may be

subdivided into subcategories (Fig. 5.10). Several closely related concepts can be

organised into a major topic of interest. Furthermore, it may suggest dropping or

Constructor – receives values from the testprogram

 java:constructor:initialise

22

adding a theme or examining other themes in more depth (Neuman, 2002:423). For

example, the theme Cognitive knowledge, skills and strategies is examined in more

depth in Chapter 5.

• Selective coding

During selective coding, a main category is selected to which other categories are

related. Selective coding involves scanning data and previous codes and looking

selectively for cases that illustrate themes (Henning et al., 2004:132; Neuman,

2002:423). The selection of groups for comparison makes the similarities and

differences distinct. Using axial and selective coding in Atlas.ti, a category can be

coded as a coded family; and a coded family usually becomes one theme in the study

(Henning et al., 2004:137, §2.9 §5.3). For example, a coded family named Cognitive

knowledge, skills and strategies is a theme in §5.3.3 and is comprised of several

different codes that relate to aspects within the cognitive domain.

• Interpretation and the development of a theory

Qualitative interpretation with a final thematic pattern is constructed from findings

(Henning et al., 2004:106). During the process of interpretation, different methods and

actions all come together to motivate and defend the interpretations and to develop an

emerging theory on the programs and thinking processes in OOP. Chapters 5 and 6

give details on such an emerging theory relating to participants’ thinking processes.

The reliability and validity of qualitative analysis methods are addressed in the next

subsection. Furthermore, reflexivity with reference to the researcher’s beliefs will be briefly

outlined.

2.5.3 Reliability, validity and reflexivity

• Reliability and validity

Interpretivism uses mainly qualitative methods to understand phenomena and to

describe, interpret and build theory (Leedy & Ormrod, 2001:101,102). However,

multiple methods and/or sources of analysis should be used to ensure reliable and valid

data. Reliability refers to consistency or repetition of the same results under identical or

similar conditions. Validity refers to the truthfulness i.e., whether the findings of the

study are true (accurately reflecting the real situation) and certain (whether the findings

have been backed by evidence) (Guion, 2002:1; Neuman, 2002:164,171). However, in

23

practice, qualitative researchers apply reliability and validity principles in different ways

than those used by quantitative researchers. One method used in qualitative research

is triangulation.

• Triangulation

Triangulation is a method used by qualitative researchers to check and establish

validity in their studies (Golafshani, 2003:597; Guion, 2002:1). Du Plooy (2001:38)

defines triangulation as the combination of two or more data-collection methods, and

advises the use of multiple sources of information to obtain data. Different types of

triangulation can explain the richness of human behaviour and are suitable where a

complex phenomenon is studied (Cohen, Manion & Morrison, 2000:112,115). Guion

(2002:1) distinguishes between five different types of triangulation, namely data

triangulation, investigator triangulation, theory triangulation, methodological

triangulation and environmental triangulation. In this study, methodological

triangulation was used. Methodological triangulation establishes validity between

different methods e.g., the use of qualitative and quantitative methods (Guion, 2002:2).

It was applied in the present study by using both qualitative analysis with the aid of

Atlas.ti (§2.9, §5.3), and various statistical methods (§5.2, §5.2.5) to analyse

participants’ computer programs and thinking processes (§5.5). Further data was also

elicited by means of a questionnaire.

• Reflexivity

Reflexivity is a subjective concept that refers to personal experience, which influences

the thoughts and meanings of a researcher. The researcher’s beliefs guide the

research work and her background influences the interpretation of data (Williamson,

2006:86; Denzin & Lincoln, 2000:19). The present researcher has been involved in

Computer Science/Information Technology for many years as an examiner of provincial

matriculation examination papers. She is also a lecturer for BEd Computer Science

students. This study gives the researcher the opportunity to build on personal

experience, to support the students and to establish trust and effective communication,

as she gains new insights through reflective research. In such a situation, any form of

bias on the part of the researcher must be avoided, as also mentioned in Principle 7 in

Table 2.1 and 2.2. In the mixed methodology of this study, a positivist approach was

used to obtain further insights by means of statistical analysis. This is discussed in the

next section.

24

2.6 The positivist paradigm

2.6.1 Relevance of the positivist paradigm

The positivist paradigm (Fig. 2.1) refers to knowledge that is absolute and objective. Such

knowledge is discovered by means of systematic investigation of phenomena in a controlled

environment. Positivism focuses on science as an approach that verifies and confirms

empirical observations by means of measurable ways where findings are ‘true’ (Cupchik,

2001). In this paradigm, the observer is separated from the observed findings. This

paradigm uses mainly quantitative methods to analyse data. Data collection comprises

measurements such as those obtained from experiments, which are frequently processed by

statistical analysis. Furthermore, a quantitative study may confirm or reject the hypothesis

that was tested (Cupchik, 2001).

The positivist paradigm was applied in this study to add another facet of analysis by

‘measuring’ data to explain the success of participants (e.g., Table 5.2, Table 5.15, Table

5.26 - 5.28) and to ensure reliability and validity of data. The statistics used in this study

include the following: factor analysis, reliability testing, descriptive statistics (mean value and

standard deviation), and practical significance (effect size and correlation), all of which are

outlined in Subsection 5.2.5 and applied in Sections 5.2 and 5.4.

2.6.2 Reliability and validity

Quantitative research measures variables with the purpose of explaining, predicting and

controlling phenomena (Leedy & Ormrod, 2001:101). Various statistical techniques can be

used to check reliability and validity of data, and inferences are based on actual and

objective experiences (Johnson & Onwuegbuzie, 2004:14).

In this study, the mixed method research design, combining interpretivism and positivism,

provided a “complementary and parallel” approach to “promote shared responsibility” for

research quality and to cover various facets of the research process in practice (Johnson &

Onwuegbuzie, 2004:15, 24; Cupchik, 2001). Leedy and Ormrod (2001:101) emphasise that

by using both quantitative and qualitative research methods, a researcher is not limited and

can “learn more about the world”. The data collection and analysis techniques used in this

study are described in §2.7 and §2.8 respectively to explain the process in more detail.

25

2.7 Research methods: data collection techniques

In this section, the research plan and the participants are discussed briefly to set the context,

after which, the various data collection techniques used in this study, are outlined. Finally,

there is a brief mention of the ethical aspects involved.

2.7.1 Research plan and participants

The empirical research shown in Fig. 2.1 was done over two years of study, namely 2005

and 2006, investigating situations where participants gained experience in object-oriented

computer programming. In the second year, the research was extended by means of a

questionnaire, which required participants to answer specific questions about their

programming experiences.

• Data collection in 2005

- Students were required to write a Date class program, an object-oriented computer

program to execute complex calculations with dates (§2.7.2, §5.2). The text of the

Date class task is given in Appendix C. The programs were collected as data and

retained by the researcher for subsequent analysis.

 - Associated with each Date class programming task, students recorded their thinking

processes during the programming experience (§2.7.3). These also became data in

the form of documents (Fig. 5.4, Fig. 5.6).

• Data collection in 2006

- The next cohort of students was also required to write the Date class program to

execute complex calculations with dates (§2.7.2, §5.2). The programs were collected

as data and retained by the researcher for subsequent analysis.

 - Associated with each Date class programming task, students recorded their thinking

processes during the programming experience (§2.7.3). These also became data in

the form of documents (Fig. 5.4, Fig. 5.5).

 - In addition, in 2006, a questionnaire with closed-ended and open-ended questions

was given to participants to extend the research (§2.7.4).

26

The scenario and the data collection techniques are summarised in Table 2.3:

Table 2.3: The research plan in this study

Year Participants n Programming
language

Data collection techniques

BEd 3rd year 11 Delphi

2005

BSc 3rd year 17 Java

1. Date class program: a computer
 program regarding dates and leap years

2. Written document of participants’
 thinking processes during programming

BEd 3rd year 3 Delphi

2006

BSc 3rd year 17 Java

1. Date class program: a computer
 program regarding dates and leap years

2. Written document of participants’
 thinking processes during programming

3. Questionnaire

Total 48

The participants in this study were third-year Computer Science students (Table 2.3). The

first group (BEd students) were from the Faculty of Education, and used Delphi as an object-

oriented programming language (rows 1 and 3 in Table 2.3). The second group (BSc

students) were from the Faculty of Science and used Java as an object-oriented

programming language (rows 2 and 4 in Table 2.3). The data collection techniques will now

be discussed in more detail.

2.7.2 Object-oriented computer program

Each participant was required to design and create an object-oriented program relating to a

Date class (Table 2.4, §5.2, Appendix C). This required certain calculations with dates. It

was an open-ended question and participants had to decide personally which calculations

were necessary in the program. At the very least, it was compulsory for the program to

determine which years were leap years and the difference between any two dates in the

range 1 January 1800 to the current date. Programmers had to bear in mind that specific

months have 31 days and others 30 days, and that, when a year is a leap year, February has

29 days instead of 28 days. The participant also had to design a Test class or ‘driver’

program to determine whether the output of the Date class program was correct. Both

programs could be written in either the Delphi or Java programming language. Table 2.4 (an

extract from the programming task in Appendix C) shows important requirements, which

were given to participants to direct their programming:

27

Table 2.4: Requirements for writing the Date class program

Date class

Include the following:

Variables

Constructor

Input: today’s date

Use the following methods (Java); procedures and functions (Delphi):

 setTodaysDate (format: yyyymmdd)

 getDay(); getMonth(); getYear()

 isLeapYear() – test for leap years

 dateDifference() – calculate the difference between two dates

Application or Test class:

 Instantiate an object

 Decide which method of input will be used (files/streams/
 components, etc.)

 Decide what exception handling is necessary if any dates are
 incorrect

Requirements for the determination of leap years

Fundamental to the program was that students had to calculate when a year was a valid leap

year. Leap years are required so that the calendar is in alignment with the earth's motion

around the sun. A leap year is a year with one extra day inserted into February; therefore, a

leap year has 366 days, with 29 days in February instead of the usual 28 days. In the

Gregorian calendar, which is the calendar used by most modern countries, the following

rules determine which years are leap years:

Every year divisible by 4 is a leap year;
However, a year divisible by 100 is not a leap year;
There is one exception: if the year is also divisible by 400, then it is a leap year.

The years 1800, 1900, 2200 are not leap years but the years 2000, 2004, 2400 are leap

years (Thorsen, 2007).

2.7.3 Written document – participants’ thinking processes

During the process of programming the Date class task, participants were required to reflect

on and to write down their thinking and problem-solving processes. This exercise was

supported by the use of a framework to direct these related processes. The complete text of

28

the programming assignment is given as Appendix C. This reflection and the written records

made the participants’ thinking processes during OOP explicit for subsequent analysis.

2.7.4 Questionnaire

The purpose of the questionnaire in 2006 was to extend the research and to determine

students’ cognitive and practical behaviour during the problem-solving process involved in

writing the computer program. No ideal questionnaire including questions about knowledge,

skills and strategies in object-oriented programming was readily available; therefore, a new

questionnaire was designed for this study based on theoretical concepts that emerged from

the literature studies in Chapters 3 and 4.

The questionnaire was divided into categories for (i) cognitive knowledge and skills,

(ii) metacognitive strategies and (iii) problem-solving strategies. For example, the category

for cognitive knowledge and skills comprised various skills from Bloom’s taxonomy. For each

of these six cognitive skills (knowledge, comprehension, application, analysis, synthesis and

evaluation, §3.3.2), three questions were compiled that related it to the OOP domain. These

three questions per skill were included to enhance reliability, and all three therefore needed

to be consistent and had to measure the same construct or issue (e.g., knowledge). In

compiling the questionnaire, the questions referring to one specific issue were deliberately

not grouped according to the categories or subcategories, but were distributed throughout

the questionnaire to enhance reliability. The questionnaire and mark sheet are given in

Appendix E.

A pilot version of this questionnaire was given to a small group of participants, comprising

one honours student, one fourth-year student, and three Computer Science lecturers. The

purpose was to check the clarity of each question, to eliminate complexities, and to gain

feedback on technical issues such as layout and numbering within the questionnaire and the

time necessary to complete it. It was also important to determine which questions were

ambiguous or confusing. The pilot questionnaire served well and certain improvements were

made.

29

2.7.5 Ethical aspects

This study carries the approval of the Dean of the Faculty of Education and the Head of the

School of Computer Science to conduct this research with students as participants. Each

student participated willingly in the study and completed a consent form (Appendix A). The

consent form also guaranteed confidentiality of participants. Moreover, this study carries the

approval of the Ethical Committee and Research Director of the tertiary education institution

where this research was conducted (Appendix B).

2.8 Research methods: data analysis techniques

The main purpose of the qualitative methods used in this study was to gain insight into the

nature of problem solving in OOP and to develop theoretical perspectives regarding this

phenomenon (Chapter 6). The data analysis techniques are discussed briefly.

Table 2.5 indicates the various types of data collected, namely computer programs, textual

documents and questionnaire data, relating them to their associated data analysis methods:

Table 2.5: Data collection and analysis methods

Data collection
methods

Data analysis methods

Object-oriented computer
programs
(Date class and Test class)

- Computer programs analysed manually, using a framework
 of measurement criteria that emerged from the theoretical
 literature studies (Table 5.1)

- Factor analysis and sample adequacy (§5.2.5)

- Descriptive statistics (mean, standard deviation) (Table 5.12,
 Table 5.16, Table 5.19)

- Reliability (Cronbach-alpha values >= 0.5) (§5.2.6)

- Practical significance with reference to effect size and
 correlation (Table 5.17, Table 5.19, §5.2.5)

Written documents
describing participants’
thinking processes

 Textual document analysis using the Atlas.ti software
 program and knowledge workbench for qualitative analysis
 (§2.9, §5.3)

Questionnaire data
Closed-ended questions:

- Factor analysis and sample adequacy (§5.2.5)

- Descriptive statistics (mean, standard deviation) (§5.2.5, §5.4)

- Reliability (Cronbach-alpha values >= 0.5) (Table 5.26 – 5.28)

- Correlation (Table 5.30)

Open-ended questions: a discussion of each question (§5.4.3)

30

2.8.1 Computer program analysis

All participants’ computer programs (§2.7.2) were analysed qualitatively using a framework of

specific criteria (Table 5.1) that emerged from the literature study chapters (Chapters 3 and

4). Analysis of the Date class programs in the programming languages Delphi and Java was

done according to these measurement criteria, which relate to the various knowledge, skills

and strategies used in OOP. For each category in Table 5.1, the participant received a mark

(score) out of 4, except for the problem-solving section where participants could have used

more than one strategy for which 8 marks were therefore allocated. In addition, quantitative

analysis was done, including factor analysis and sample adequacy; the determination of

descriptive statistics such as mean values with standard deviation of all categories (§5.2.5);

reliability of constructs; and the practical significance of various constructs to report

measures such as effect size and correlation.

2.8.2 Textual document analysis – using the support of Atlas.ti

Each participant’s thinking processes (§2.7.3) were also analysed. This qualitative process

was done by means of Atlas.ti software, which provided support to the researcher during the

analysis process as well as during the interpretation and organisation of participants’ thinking

processes. It also facilitated the application of grounded theory in practice as described in

§2.5.2 and §5.3. The use of Atlas.ti for the purpose of textual analysis is explained more

extensively and specifically in Section 2.9.

2.8.3 Questionnaire data analysis

To extend the research and data collection of 2005, the participants of 2006 completed a

questionnaire about their problem-solving processes during programming (§2.7.4). This was

done after they had completed their Date class programming tasks. It also provided a means

of collecting relevant personal information from each participant.

Questionnaires frequently make use of rating scales to determine behaviour and opinions.

The Likert scale originates from Rensis Likert, who developed this technique for the

assessment of attitudes (Neuman, 2002:182). The present questionnaire employs a Likert

scale on the continuum: ‘never’, ‘seldom’, ‘often’ and ‘always’, using a 4-point scale so as to

31

avoid any middle options. There were also several open-ended questions. The

questionnaire (Appendix E) comprises the following subsections:

• Cognitive knowledge and skills;

• Metacognitive strategies; and

• Problem-solving strategies.

Mean values of each category were calculated and findings will be reported in Chapter 5.

The findings of the open-ended questions are discussed in Subsection 5.4.3.

2.9 Qualitative data analysis software – Atlas.ti

2.9.1 Application of Atlas.ti

Atlas.ti is powerful software that supports the researcher in handling large amounts of data

during the process of qualitative analysis. Various types of data can be analysed, including

textual, graphical, audio and video data (Muhr, 2004:2, 5). The present researcher decided

to use Atlas.ti due to the large amount of data (48 participants) and to optimise the analysis

process with various tools incorporated in Atlas.ti (Fig. 2.3). A complete description of the

analysis process is shown in §5.3.1 and §5.3.2, along with two detailed examples.

This section is included to explain the researcher’s activities during the Atlas.ti analysis

process. The description is illustrated with screen displays. It provides snapshots of the

process to set the context for the full empirical study of Chapter 5.

• The researcher’s task during analysis

Each participant’s thinking processes were saved as a primary document (PD) and

analysed by the researcher with the support of Atlas.ti. The researcher opened and

scrutinised each participant’s document (Fig. 2.6, Fig. 2.7). Various notable

connotations or significances emerged repeatedly (or, in some cases, less commonly)

from the different student’s texts. The researcher defined codes to represent each of

these connotations, then she highlighted and selected segments of text from each PD

and assigned the appropriate codes to them. The purpose of the codes, therefore, is to

capture the meaning of data. For example, ‘Design a constructor for the Date.java

class’ in a participant’s document is assigned the following code: ‘java:constructor’ (Fig.

2.7). This process was conducted for all participants’ data and thereafter the codes

were organised by the researcher into possible ‘families’ that could subsequently

32

become themes. The researcher was responsible for the decisions made in the

analysis process, however, the use of Atlas.ti software supported the researcher in

various ways.

• The support of Atlas.ti software

Various techniques are available to support the analysis process of large amounts of

data. Tools incorporated in Atlas.ti are: a text search tool, auto coding tool, query tool,

redundant code analyser, and HTML and XML generators. Furthermore, tools such as

an object manager, network editor and code tree help the researcher to navigate

through the data structures and concepts (Muhr, 2004:35). Fig. 2.3 shows various tools

incorporated in Atlas.ti:

Figure 2.3: Various tools available in Atlas.ti

• The Atlas.ti methodology

Muhr (2004:3) mentions additional principles of the Atlas.ti methodology: visualisation,

integration, serendipity and exploration. Visualisation is possible in Atlas.ti to support

human perception by displaying relationships between objects. Integration refers to the

hermeneutic unit that integrates all the primary documents (Fig. 2.5). Serendipity refers

to ‘finding something without having searched for it’ (Muhr, 2004:3), and exploration is

the directed process of getting data as part of constructive activities.

• Two principal modes of Atlas.ti

The two principal modes or levels of working with Atlas.ti were both applied in this

study. The textual level refers to the researcher’s activities, such as the coding of text

33

(Fig. 2.7) and the adding of comments (§2.8, Fig. 5.5, Fig. 5.7). The conceptual level

refers to model building by the researcher, whereby codes are linked to diagrams to

form networks (Fig. 2.12; Muhr, 2004:25, 26) and possible themes (Fig. 5.10). These

activities all support the process of developing a grounded theory. Fig. 2.4

consolidates the researcher’s role by giving an overview of the steps during this

qualitative analysis process (§5.3):

The documents containing each participants’ thinking processes
were collected, typed in MS Word and saved as .rtf files (Fig. 2.6)

Codes were defined, each with a particular meaning,
and assigned to specific items of text (Fig. 2.7)

Different codes were organised into coded families (Fig. 2.11)

Themes were identified for each coded family (§5.3)

Figure 2.4: Different steps in the analysis of participants’
thinking processes with Atlas.ti

In cases where the students’ documents were written in the Afrikaans language, the

selected text was translated into English for the purposes of this study. After the codes

had been allocated to different segments in the thinking processes of participants (Fig.

2.7), related codes were grouped or categorised into families that became possible

themes (§5.3). Each theme could be represented with a network structure generated

by Atlas.ti (Fig. 2.12). Output could be displayed in an Atlas.ti editor, sent to the

printer, or saved as a file. The entire hermeneutic unit (comprising all the participants’

documents) could be exported in an XML-format. A CD with this entire file is included

in the back cover of this thesis as part of the study.

A description of the main workspace in Atlas.ti follows, along with a sequence of illustrations.

• Primary documents

Each participant’s thinking processes were saved as a primary document (PD) and

analysed by the researcher with the support of Atlas.ti. Within Atlas.ti, all the different

primary documents are linked to one hermeneutic unit (HU) (Fig. 2.5) and can be

selected from a drop-down list (Fig. 2.6).

34

 Hermeneutic unit (HU)

 Primary document 1

 Primary document 2

 .

 .

 .

 Primary document n

Figure 2.5: One hermeneutic unit with many primary documents
(adapted from Muhr, (2004:66))

When clicking on the top left drop-down arrow of the screen captured in Fig. 2.6, the

available primary documents are shown and a specific document can be selected from

the drop-down list to display the contents of that primary document. On the left-hand

side of Fig. 2.6, the name of the first primary document (P1:1BEDBJ05.rtf) is

highlighted.

Hermeneutic unit

Primary document Quotes Codes Memos

Figure 2.6: Atlas.ti qualitative software

In order to edit primary documents within Atlas.ti, the word-processing documents

should be saved in rich text format (.rtf), which is a standard feature in most word

processing programs. As shown in Fig. 2.7, which displays a text extract from a PD,

P1

P2

Pn

35

the documents (students’ thinking processes) were typed and saved in rich text format

before they could be assigned as primary documents to Atlas.ti in a HU.

• Coding process

Various types of coding can be used in Atlas.ti (Muhr, 2004:116,117):

- Open Coding creates a new code;

- In-Vivo Coding creates a code from a selected text;

- Code-by-List selects existing codes from the code list; and

- Quick Coding codes with the currently selected code.

Fig. 2.7 portrays an extract from the coding process of Participant 32’s (P32) thinking

processes. In the window on the left-hand side, specific lines of text were selected and

highlighted by the researcher for the purpose of assigning codes to them. These lines

were originally written in Afrikaans by the participant, and have been translated into

English immediately below the highlighting.

In the window on the right-hand side, an area is shown with the codes and memos.

The numbers {8-1} in parentheses associated with the highlighted code

‘java:constructor {8-1}’ refer to: (groundedness:density) where groundedness is the

number of quotations associated with this specific code (namely 8) and density is the

number of codes connected to this code (namely 1) (Muhr, 2004:118). The numbers

(11:17) in parentheses after the unhighlighted code ‘java:constructor (11:17)’ refer to

the row number (11) where the highlighted text associated with a specific code starts,

and the row number (17) where that text ends. Furthermore, in a code, ‘java:…’ refers

to BSc students who used Java as programming language and ‘delphi:…’ refers to BEd

students who used Delphi as the programming language.

 2. Design a constructor for the Date.java class:
 a. Purpose? The constructor should read in the date.

Primary document Codes Memos

Figure 2.7: An extract of text from a primary document in Atlas.ti
(with the participant’s text translated from Afrikaans to English below)

36

Fig. 2.8 shows examples of various codes in Atlas.ti

Figure 2.8: Examples of codes in Atlas.ti

• Quotations

Quotations are selected pieces of text that explain thinking during programming.

During the process of coding, different quotations can be selected from the primary

document (Fig. 2.7, Fig. 2.9) and marked as such. A quotation list can be printed to

display all occurrences of a particular code in the form of its associated quotations from

all the primary documents (n=48).

 Translated quotations for: java:constructor

 19:3 If a Date class is designed…
 20.6 Write down the constructor
 20:17 Write constructor
 32:3 Design constructor for Date.java ...
 32:5 The constructor should include a date
 41:5 Constructor – Years 1800/02/02
 42:8 I will start by writing down a class

Figure 2.9: Examples of quotations associated with the
code ‘Java:constructor’

• Memos

Memos are similar to codes, but their main purpose is to capture the researcher’s

comments and thoughts about data (Fig. 2.10) rather than content of the textual data in

hand. They can also be attached to quotations. Memo writing entails the making of

reflective notes regarding the data (Henning et al., 2004:132), and can also be used to

provide more information about the codes. Charmaz (2000:517) describes memo

writing as an intermediate step between coding and the completed analysis. It serves

to keep the researcher focused, to connect categories and to define the memos’

purpose in a bigger picture. Furthermore it aids in interpretation of data.

37

 Figure 2.10: An example of a memo in Atlas.ti

• Families and networks

After the codes have been assigned to different segments in all the primary documents,

related codes are grouped or categorised as a coded family to form a possible theme.

Fig. 2.11 shows examples of five families that emerged from the Date class HU (§5.3).

Figure 2.11: An example of families in Atlas.ti

Each theme can be represented with a network structure in Atlas.ti (Fig. 2.12). Network

structures allow conceptualisation by connecting similar elements in a visual diagram

(Muhr, 2004:33). In Atlas.ti, the network editor provides a method to create and

manipulate these network structures. ‘CF’ at the bottom of Fig. 2.12 refers to the

‘Coded Family’:

38

Figure 2.12: An example of a network structure in Atlas.ti

A final thematic pattern is constructed from which the researcher should perceive the overall

picture. This view should emphasise the meaning between various categories, as well as the

purpose of each specific category (Henning et al., 2004:106, 107, Fig. 5.10).

To summarise this section, Atlas.ti is an integrated collection of various tools that support the

researcher in the process of qualitative analysis. Within Atlas.ti, all participants’ data, in the

form of primary documents, is linked to one hermeneutic unit. Various quotations, codes and

memos can be respectively selected, assigned, or created, in the process of refining data

from multiple sources into themes to explain and clarify students’ thinking processes during

OOP.

2.9.2 The harmony between grounded theory and Atlas.ti

It is important to note that grounded theory had an explicit influence on the design of the

qualitative analysis software of Atlas.ti (Henning et al., 2004:114, 117, 122; §2.5.2). The role

of Atlas.ti in the present grounded study is outlined in more detail below.

The qualitative analysis in this study involved the interpretation of the documents setting out

the students’ thinking processes in object-oriented programming. Coding processes are

central both to grounded theory and to most of the software packages used as tools for this

purpose (Henning et al., 2004:130). Different forms of grounded theory coding – open

coding, axial and selective coding – are available in Atlas.ti, and were used to analyse the

39

documents as explained in §2.5.2. The selection and grouping of related codes highlighted

various similarities and differences, which were vital for defining the different categories

(Glaser & Strauss, 1967:55). Grounded theory strives towards verification through the

process of saturation, which is achieved when no further evidence emerges (Goulding,

1998:52). In the analysis process with Atlas.ti, the researcher decided to continue with the

analysis process until all the participants’ thinking processes had been processed. In fact,

saturation of data did not occur until near the very end.

Grounded theory analysis entails the inductive refinement of categories to more abstract

levels and the integration of categories into a coherent whole that can ‘explicate, clarify,

illuminate and also explain’ (Henning et al., 2004:116, 117) various processes. The use of

axial and selective coding in Atlas.ti supports the coding of categories into coded families,

and a coded family usually becomes one theme in the study (Henning et al., 2004:137,

§2.5.2, §5.3).

Table 2.6 summarises the main grounded theory concepts and their associated methods or

tools in Atlas.ti.

40

Table 2.6: A summary of grounded theory concepts and their
associated methods or tools in Atlas.ti

Grounded theory concept Methods or tools in Atlas.ti that implements the
grounded theory concept

Open coding

The analytic process through which
concepts are identified and their properties
and dimensions are discovered in the data
(Strauss & Corbin, 1998:101).

Coding

The procedure of associating a quotation with a code.
Various types of coding can be used in Atlas.ti (Muhr,
2004:116,117, §2.9.1):

• Open coding (creates a new code);

• In-Vivo coding (creates a code from selected text);

• Code-by-list (selects existing codes from the code
list); and

• Quick coding (codes with the currently selected
code).

Axial coding

The process of relating categories to their
subcategories, linking categories at the
level of properties and dimensions (Strauss
& Corbin, 1998:123)

Linking of codes

The linking of various categories takes place on a
conceptual level to determine relationships among
categories (Muhr, 2004:214).

Selective coding

The process of integrating and refining the
theory (Strauss & Corbin, 1998:143).

Families

Families are used in Atlas.ti to classify a group of
objects. Coded families are a group of codes that
belong together (Muhr, 2004:191, 192).

Building theory

A theory is a set of well-developed
concepts related through statements of
relationship, which together constitute an
integrated framework that can be used to
explain or predict phenomena (Strauss &
Corbin, 1998:15).

Model-building activities

In Atlas.ti, the conceptual level focuses on model-
building activities such as designing a network that links
various nodes (Muhr, 2004:26, 107, 211).

2.10 Chapter conclusion

The purpose of this chapter was to provide a clear focus on the research design of this study

with particular reference to the paradigm and methods used to answer the research question.

The overall epistemology, research design and methodology were introduced in §2.2, while

the role of the interpretive paradigm was outlined in Section 2.3. Grounded theory was used

in this study as the main research practice for the collection and organisation of data (§2.4).

41

Section 2.5 outlined the relevance of interpretivism and grounded theory in this study, while

the role of the positivist paradigm was summarised in Section 2.6. Sections 2.7 and 2.8

addressed methods of data collection and analysis respectively. Reliability and validity were

discussed with reference to qualitative and quantitative research methods. Statistical

analysis of the questionnaire was discussed in Section 2.8. Section 2.9 was devoted to

explaining how participants’ thinking processes were analysed with Atlas.ti software. This

fairly lengthy section is intended to set the scene for the empirical analysis presented in

Chapter 5. Finally, the relationship between grounded theory and Atlas.ti was mentioned.

The purpose of using Atlas.ti in this study was outlined, and its application was described

and illustrated.

Chapters 3 and 4 comprise the literature study component of this research. In Chapter 3, the

cognitive, metacognitive and problem-solving knowledge and skills necessary in OOP are

considered, laying a foundation for Chapter 4, which discusses the respective cognitive,

metacognitive and problem-solving strategies.

42

3 Cognitive, metacognitive and problem-solving

knowledge and skills in object-oriented

programming

3.1 Introduction

It is not well understood how people learn to program and solve a problem in computer

science (Traynor & Gibson, 2004:2). According to Deek (1999:1), learning to program is a

complex cognitive task that includes learning the programming language, comprehending

existing programs, modifying written programs, composing new programs and using

debugging techniques. In the process of learning object-oriented programming (OOP), the

student must know which objects, behaviours and interactions are important in the problem

domain. There is a need for the refinement of research that explores the difficulties of OOP.

There is also a need for guidelines about specific types of knowledge and skills to support

the learning of OOP (Or-Bach & Lavy, 2004:82; Staats & Blum, 1999:13).

Efficient knowledge and skills on the part of the programmer are necessary during the

processes of problem solving, decision making, planning and critical thinking in OOP.

Knowledge relates to information and skills acquired through experience or education and

also refers to what someone knows (Concise Oxford English Dictionary, 2004:789; §1.3).

Declarative knowledge refers to the knowledge of facts while procedural knowledge refers to

knowledge of procedures that can be implemented in a task (Sternberg, 2006:229). Both

types of knowledge are important in OOP. A skill can be defined as the ability to do a

particular task (Concise Oxford English Dictionary, 2004:1351; §1.3).

Fig. 3.1 shows various types of knowledge and skills, whose application in OOP is explored

in this chapter. This includes the cognitive, metacognitive and problem-solving knowledge

and skills necessary in OOP. The shaded blocks in Fig. 3.1 present the goal, various types

of knowledge and skills, and their application in OOP that will be addressed in this chapter.

43

 GOAL

 KNOWLEDGE AND

 SKILLS

 STRATEGIES

 APPLICATION

Figure 3.1: Various goals, knowledge, skills, strategies and their application in an
object-oriented program

After an explanation of the approach and concepts of object-oriented programming (§3.2),

this chapter focuses on the cognitive, metacognitive and problem-solving knowledge and

skills necessary in OOP. These three topics are addressed in Sections 3.3, 3.4 and 3.5

respectively. Chapter 4 builds upon Chapter 3 as it correspondingly focuses on cognitive,

metacognitive and problem-solving strategies in OOP.

Furthermore, various guidelines and practical means of support during the learning of OOP

are discussed in some detail in different sections of the chapter.

To solve the
programming problem

successfully

Use of the necessary knowledge and skills:
cognition, metacognition and

problem solving

The purposeful selection and management
of cognitive, metacognitive and

problem-solving strategies

Efficient application of the knowledge, skills
and strategies in order to solve the
programming problem successfully

44

3.2 Object-oriented programming

There are different approaches, called paradigms, to the way a programmer analyses,

designs and implements a program (Ragonis & Ben-Ari, 2005:203). The object-oriented

paradigm is widely advocated internationally in many higher education institutions (Or-Bach

& Lavy, 2004:82), and was introduced in South African universities a few years ago. This

section elaborates on the object-oriented paradigm, the origin of OOP languages,

programming notations and models as well as problem and design spaces in OOP.

3.2.1 The need to change to the object-oriented paradigm

Changing to the object-oriented paradigm was advisable due to many problems in software

development:

• Programming languages need a specific platform or operating system. Most programs

must run on the Windows platform, but traditional programming languages, such as

Turbo Pascal need a DOS-based operating system and many errors occurred when

such programs were executed within a Windows-based environment (§1.2);

• Programming in a DOS environment was difficult without a user-friendly graphical

interface;

• In the former procedural paradigm, the main program lay in control. Since global

declaration of data was permitted, it resulted in difficulty in modifying and testing of

programs because the data may change in any procedure (Rosson & Alpert,

1990:356);

• Programming problems became more complex and the programs consequently

became cumbersome (Yousoof et al., 2006:259).

The object-oriented approach addresses some of these problems. Object-oriented

programming is based on this approach, where objects are models of real-world entities that

have the responsibility of carrying out specific tasks to solve the problem (Garrido, 2003:26-

27). Most software applications can run on a Windows platform, have a user-friendly

graphical interface, and each object is responsible for its own behaviour (Shalloway & Trott,

2002:6,12-15).

45

3.2.2 The origin of object-oriented programming languages

The origin of OOP can be traced to SIMULA 67, but it was later fully developed in the

programming language Smalltalk in the late 1960s. The program units in Smalltalk are

objects, which encapsulate local data and methods. All computing is done by the sending of

messages to an object to invoke a method (Sebesta, 2004:92, 93).

C++ was built on the programming language C to support OOP. It was designed by Bjarne

Stroustrup at Bell Laboratories in 1980. In 1990, Sun Microsystems designed Java. The

fundamental goal was to provide greater simplicity and reliability than C++. Anders Hejlsberg

designed Delphi, which first appeared in 1995. It is a Windows programming development

tool, which extended Borland Pascal language by providing object-oriented support and a

graphical user interface for programming. The latest OOP language is C#, which was

developed along with the .NET platform in 2000 by Anders Hejlsberg (Sebesta, 2004:92, 93,

106).

3.2.3 An overview of object-oriented programming

This subsection gives an overview of the building blocks of an object-oriented program.

Moreover, key features of an OOP language will be discussed. It concludes with a summary

of the advantages and disadvantages of an OOP language.

The main building block of the object-oriented approach is an object, which is a self-

contained entity with both data and methods. This means that an object stores attributes and

determines its behaviour in a program with methods (Satzinger, Jackson & Burd, 2004:175).

Methods replace the procedures of traditional programming and are invoked by messages

send to the object. An object may change its own values by receiving messages. For

example, the method setName(String myName) can be invoked and the object responds by

assigning a String type.

Objects are based on classes, which indicate the specific type of an object. A class is

therefore the blueprint of an object. When an object is instantiated, the class specifies how

an object is built and defines the attributes and methods of all objects created with that

specific class (Weisfeld, 2004:14). A class is divided into an interface and implementation

section. The interface provides communication between a unit and other units. Within the

interface, the instantiation and operation of objects are defined. For example, the method

46

function getName:String; // return a name

is defined in the interface section. Only the public attributes and methods are part of the

interface (Weisfeld, 2004:18). Details should rather be contained in the implementation

section. The user should not be able to make any changes to the implementation part, which

is private to the unit and contains the inner details of the class declared, i.e.:

 function TForm1.getName:String;
 begin

 Result := fName;

 end;

The focus of object-oriented programming is to enhance reusability and extensibility

(Sebesta, 2004:384). Class libraries are examples of highly reusable classes. These can be

used for easy implementation of additional functionality, for example, uses Sysutils in Delphi

for string/integer conversion or import JOptionPane in Java to create a standard dialog box

that prompts the user for a value. Extensibility can be implemented by using inheritance to

extend and modify existing classes (Weisfeld, 2004:76). For example the Bus and Motorcar

subclasses can inherit from the Vehicle parent class some general attributes and properties.

The greatest benefit of object-oriented programming is that the user can interact with the

computer by manipulating objects on the computer screen. In this regard, Heines and

Schedlbauer (2007:1) mention that graphical user interface (GUI) programming provides a

vehicle to teach OOP effectively. The GUI is the interactive part of a program, where the

user comes in contact with the complete system via the interface where input and output

occured (Satzinger et al., 2004:531).

The basic elements and features of the object-oriented approach are defined and discussed

in more detail.

3.2.3.1 Object

As already stated, an object is the main building block within the object-oriented paradigm,

where objects have the responsibility of carrying out specific tasks (Garrido, 2003:26-27).

Some real-world examples of an object are a bus, a book or a student. Objects are therefore

items that people think about, identify, act upon or apply concepts to (Satzinger & Ørvik,

2001:17).

47

3.2.3.2 Class

Students should gain a clear understanding of the rich concepts ‘object’ and ‘class’ (Eckerdal

& Thuné, 2005:89, 92, 93). A class is a general category, whereas an object is a specific

instance (Satzinger & Ørvik, 2001:39). Similar objects are grouped together into classes that

also specify the type of the object. A class can also be described as a template or design

pattern for a possible object (Eckel, 2003:35; Weisfeld, 2004:14). Particular objects are

called instances or instantiations of a class, for example, the bus with registration number,

PGK456GP is an instance of the Bus subclass, as shown in Fig. 3.2

 Class Subclass Object

Figure 3.2: The Vehicle class, Bus subclass and Bus-object

3.2.3.3 Attributes and methods

In the object-oriented approach, both the attributes and operations are equally important.

Attributes are descriptive properties of an object, for example, a bus object has the properties

registrationNumber, routeNumber and maintenanceDate. These attributes are stored within

an object and represent the state of the object.

An operation determines the behaviour of an object or what the object can do. Examples of

possible methods for the bus object are getRegistrationNumber(), changeRoute(..) and

getMaintenanceDate(). A method may be invoked by sending a message to it that might

change the state of the object. The method name, parameters and return type of a method

are required (Schach, 2005:19; Sebesta, 2004:459; Weisfeld, 2004:10). Methods are

specified as public, protected or private depending on their availability to one or more classes

or subclasses.

Both the attributes and methods are encapsulated or bundled in an object to control the

access to objects (Weisfeld, 2004:8). Each object is therefore a self-contained entity to carry

out its role (Lewis, Pérez-Quiñones & Rosson, 2004:18). Information hiding differs from

encapsulation because information hiding is a technique whereby details of each class’s

performance are hidden from other classes to isolate the effects of changing design

decisions (Lewis et al., 2004:18).

Bus
PGK456GP

Vehicle

48

3.2.3.4 Constructors and destructors

Two special methods play important roles in OOP, namely constructors and destructors.

Constructors are called when creating new objects to allocate memory and initialise

variables. Delphi uses the constructor Create to create an object. In Java, all objects are

explicit heap dynamic i.e., created explicitly on the heap during runtime, and are allocated

with the new-operator (Sebesta, 2004:487).

Destructors are called to reclaim heap storage and destroy objects. Java does not make use

of a destructor but uses implicit garbage collection i.e., there is no need for the programmer

to write code for the destructor (Sebesta, 2004: 432, 440, 478). Delphi uses the Free

method to destroy an object. Free automatically checks for a nil reference before calling the

Destroy method (destructor).

A programming language is object-oriented if it supports abstraction, inheritance and

polymorphism (Sebesta, 2004:458; Stroustrup, 1995:2). These principles will be discussed

in more detail in the following subsections.

3.2.3.5 Abstraction and associations

Abstraction is the ability to define and use variables and operations that allow the details to

be ignored. The purpose of abstraction is to simplify the presentation of entities during

programming and to reduce complexity (Sebesta, 2004:16, 428, 429). Two different kinds of

abstraction are distinguished: process abstraction and data abstraction.

Process abstraction refers to the calling of a subprogram (method/procedure/function)

without providing the details of the subprogram (Sebesta, 2004: 428,429). For example, the

details of a sortArray(int[] myArray) method are hidden from the Java programming

environment.

Data abstraction refers to the declaration of the type and the operations on objects that are

contained in a single unit to restrict data access by means of messages sent to the methods

(Schach, 2005:19, 185; Sebesta, 2004:420). Global declaration of data leads to difficulty in

modifying programs, because the data may change within different methods (§3.2.1). The

solution is data abstraction. In Java, an abstract data type is declared and defined in one

single unit named a class. In Delphi, a user-defined unit is an example of an abstract data

type. For example,

TCalculate = class(TObject);

49

Different abstraction principles are used in the object-oriented approach, namely

classification and instantiation; generalisation and specialisation; and aggregation and

composition (Satzinger & Ørvik, 2001:92-95).

Classification and instantiation

Classification refers to the principle by which different things can be classified in a category

according to similar properties. Similar objects are grouped together into classes that also

specify the type of the object. Objects of a specific class, such as Vehicle, represent a set of

properties that are typical to the Vehicle class. Although the bus, PGK456GP has properties

that are typical of ‘bus vehicles’, it has some particular properties that are specific to the bus

PGK456GP (Fig. 3.2), such as its colour and registration number.

Generalisation and specialisation

A class should not be designed for a particular task but rather for a particular kind of task

(Lewis et al., 2004: 18). In programming, a special case of the generalisation relationship is

inheritance, which is considered as an is-a relationship, where the derived classes inherit

attributes and methods from the parent class (Schach, 2005:499-502; Weisfeld, 2004:27). In

biological terms, a child inherits certain characteristics from its parents. In the same way,

inheritance provides a framework in OOP for hierarchies where the derived class or subclass

inherits attributes and methods from its parent class or superclass. However, in OOP the

class with more functionality (subclass) inherits from the class with less functionality (parent

class) because less functionality is included in a more general class (Hadar & Leron,

2008:44).

Inheritance makes reuse possible and reduces the amount of duplicate program code

(Sebesta, 2004:459). The purpose of inheritance relationships is that new object types need

not be designed from scratch, but are variations of an existing class.

For example: A Bus is-a Vehicle.

In this simple statement, ‘Bus’ can be considered a subclass and ‘Vehicle’ a class.

Furthermore, the is-a relation indicates an inheritance relationship between Bus and Vehicle,

indicating that the attributes and methods applicable to the Vehicle class are also ‘available’

to the Bus subclass. In the case of single inheritance, a class can inherit from one class

only. However, some problems can be solved with multiple inheritance. When a subclass

has more than one parent class, there is a situation of multiple inheritance (Schach,

2005:195; Sebesta, 2004:459-460).

50

Aggregation and composition

Aggregation refers to an association that specifies the whole-part or has-a relationship where

an object is composed from other objects (Satzinger & Ørvik, 2001:43, 94). For example, a

Bus has-a steering wheel, one engine and many seats.

Composition is a stronger form of aggregation among the different parts. In other words, if

the whole is deleted, so will be all the parts. Aggregation is like a collection of things,

whereas composition implies that an object is part of the containing object (Shalloway &

Trott, 2002:34-35).

3.2.3.6 Polymorphism and dynamic binding

The word polymorphism means multiple forms and implies different forms of methods. In

OOP, this means that different objects may respond individually to the same message,

therefore the same method may indicate different implementations. With polymorphism, we

can implement new types that share common logic (Weiss, 2000:43). Polymorphism also

supports greater abstraction, where a single message can evoke different behaviours

(Rosson & Alpert, 1990:357).

It is sometimes necessary that a method of the parent class may be overridden by its derived

class. This happens when a method call is bound dynamically (during program execution) to

the method in the proper class. These methods have the same name and similar operations.

This is called dynamic binding (Sebesta, 2004:460-461).

3.2.3.7 Advantages and disadvantages of object-oriented programming

To summarise, the transition to the object-oriented paradigm occurred due to certain

strengths of OOP:

• In the object-oriented paradigm, each object is responsible for its own behaviour and

such responsibilities must be clearly defined in the program (Shalloway & Trott, 2002:6,

12-15).

• The object-oriented paradigm considers the attributes and operations to be equally

important and emphasises information hiding. This makes development and

maintenance easier and promotes reuse (Schach, 2005:18-23).

• The organisation into a hierarchy of a superclass with one or more subclasses is a

characteristic. This reduces the amount of programming code (Satzinger & Ørvik,

2001:5).

51

• The availability of user-friendly interfaces (Graphical User Interfaces or GUIs) has

revolutionised the support for end-users working on desktop applications (Satzinger &

Ørvik, 2001:7). There is a natural harmony between GUIs and the visual programming

languages that support users and that ease the process of programming. Examples of

visual programming languages are the object-oriented languages, Delphi and Visual

Basic, where different buttons or objects can be organised on a visible form.

• The object-oriented paradigm addresses quality, productivity and flexibility (Satzinger &

Ørvik, 2001:9). Quality refers to the measure of the standard of a product. Inheritance

enhances productivity, because many lines of code can be eliminated and can rather

be inherited. Moreover, in terms of flexibility, extension of a particular class is easier in

OOP than in the procedural paradigm. Maintenance is therefore easier in the object-

oriented paradigm.

• Many authors mention that OOP is more natural than the procedural programming

paradigm, because an object refers to a ‘thing’ in real life (Satzinger & Ørvik, 2001).

The object-oriented paradigm also has some disadvantages:

• OOP requires the ability on the part of the programmer to grasp complex patterns of

interactions between objects. Neubauer and Strong (2002:280, 285) refer to the need

for an object-oriented programmer to capture requirements, recognise patterns, model

visually and think critically.

• Learning the object-oriented paradigm takes longer than the ‘normal’ learning curve.

Furthermore, problems are harder to solve (Schach, 2005).

• The programming environment can be complex or even confusing (Kölling, 1999:8, 9).

Different notations and models were designed for the object-oriented approach to support the

learning of computer programming and these will be discussed in more detail in the next

subsection.

3.2.4 Programming notations and models

Various notations and models can be used to help students direct their thinking during OOP.

The following programming notations and models will be discussed in more detail: patterns

applied in OOP, UML as a graphical notation, and CRC cards.

52

3.2.4.1 Patterns in object-oriented programming

The concept of patterns was originated by the architect Christopher Alexander, who defined

a pattern as a discovered solution that has been tried and tested over a considerable period

of time in order to solve problems (Alexander, Ishikawa, Silverstein, Jacobson, Fiksdahl-King

& Angel, 1977). In the context of architecture, Alexander et al. (1977) describe the use of

253 recognition patterns as a ‘pattern language’ to support understanding of the problem

domain and to create a design after the problem domain has been understood (Shalloway &

Trott, 2002:xviii, xi).

During a presentation in 1996 at OOPSLA (ACM Conference on Object-Oriented Programs,

Systems, Languages and Applications), Christopher Alexander (Alexander, 1996:3)

transferred this architectural concept to the context of OOP and emphasised the relevant

features of a pattern language. He pointed out that it:

• has a moral component, that is, it plays a significant role in human life;

• creates morphological coherence in the things which are made; and

• it is generative and allows people to create a complete coherent structure by

following certain steps.

These features direct our thinking in OOP towards the creation of software that is significant

and dynamic in a way that allows programmers to generate a complete software system by

following certain steps (Alexander, 1996:3).

Beck and Cunningham (1989:1) use some of Alexander’s ideas (1977) regarding patterns

and apply them in the OOP language Smalltalk. In the 1990s, Gamma, Helm, Johnson and

Vlissides wrote about ‘design patterns’, which are solutions to specific problems in object-

oriented design. They describe various design patterns in OOP (Gamma et al., 1995:2).

3.2.4.2 UML – an important graphical notation

Grady Booch presents a language-independent notation for documenting the design of a

system. Booch (1991:156) designed a standard for expressing object-oriented thinking by

means of UML (Unified Modelling Language). UML is mainly a graphical notation used to

communicate concepts. It supports object-oriented design by means of various diagrams

that are language-independent and no programming code is involved. UML communicates

important object-oriented concepts, interactions and behaviours of a system to ensure that

the software system is built correctly (Fowler, 2000:5-9). However, UML is not executable

and, even when using it, it is sometimes difficult for students to implement design

applications in a programming language (Schulte & Niere, 2002:1).

53

3.2.4.3 CRC cards

CRC cards (Class-Responsibility Collaboration cards) refer primarily to a technique for

teaching people how to work with objects. CRC cards help explore the interaction between

classes and key responsibilities of a class. Beck and Cunningham used CRC cards to teach

Smalltalk (an object-oriented language) (Beck & Cunningham, 1989). The absence of a

complex notation makes CRC cards valuable as a technique for learning object-orientation

(Fowler, 2000:9, 77).

To summarise, different notations, patterns and models, some of which have been briefly

described, are used to support the learning of OOP. Despite these tools, there are still

programmers who find it difficult to design and program in the object-oriented domain

(Schulte & Niere, 2002:1). An overview of the problem and design spaces in OOP follows.

3.2.5 Problem and design spaces in object-oriented programming

The problem space is a space containing the programmer’s mental representations in terms

of specific requirements of a program (Purao, Bush & Rossi, 2001:2). The design space

contains the mental representations of the programmer’s interpretation in terms of specific

solutions to the program (Purao et al., 2001:2). In terms of the problem space in OOP, the

programmer needs to understand that the program requires the use of objects that interact

with each other by means of message sending. In terms of the design space in OOP, the

programmer needs to interpret the program and represent a correct solution for the problem.

Purao et al. (2001:3-5) make the interesting claim that the problem space and design space

are not on the same plane and they represent two different dimensions during programming.

Cleenewerck (2003:1) believes that students get overwhelmed in the amount of objects and

messages and he calls this phenomenon ‘lost in object space’, as a description of the

situation where students complain about the complexity of OOP. The development of a

solution needs interpretation, application and expansion of knowledge and skills during

programming. Programmers have to learn systematic techniques to develop a program from

a conceptual model of the problem domain (Bennedsen & Caspersen, 2004). Support by

means of cognitive knowledge and skills can play an important role in programming. The

importance of cognition is discussed next, along with the associated knowledge and skills.

54

3.3 Cognitive knowledge and skills in object-oriented
programming

The term cognition includes a wide range of mental processes used in the acquisition,

storage, transformation and application of knowledge. Formally, cognition can be defined as

the mental action of acquiring knowledge through thought, experience and the senses

(Concise Oxford English Dictionary, 2004:278). Cognition focuses on “what learners know

and the way they come to know it” (Schunk, 2000:24). Ragonis and Ben-Ari (2005:209)

emphasise that the processes and understanding that take place during the execution of a

task are more important than the achievements.

Efficient cognitive knowledge and skills are necessary during the processes of problem

solving, decision making, critical thinking and reasoning in OOP. Students must understand

the knowledge and apply different skills in OOP in order to do so successfully. A plethora of

high-level skills is involved in the programming process. However, the focus in this section is

on memory, comprehension, reasoning skills, and decision making, as well as on creative

and critical thinking. Bloom’s taxonomy and different means of support are also discussed.

3.3.1 Memory, comprehension, reasoning, decision making, creative and
critical thinking in object-oriented programming

The effective use of memory skills and comprehension is vital during the processes of the

learning and writing of computer programs. A brief overview is given of the memory and

reasoning skills required in comprehension.

3.3.1.1 Memory and cognitive load

Memory refers to different processes and dynamic mechanisms of storing within, retaining in,

and retrieving information from the brain (Sternberg, 2006:157). There are different models

of memory; however working memory and long-term memory will be discussed in more

detail.

• Working memory and cognitive load

Working memory refers to an integrated part of memory that stores and manipulates

information temporarily. It has a multi-functional character in order to combine

processing and storage, and to facilitate different cognitive activities such as reasoning,

comprehension and learning (Baddeley, 2003:829). Working memory is that memory

55

which stores incoming information immediately, but for a short time span only

(Sternberg, 2006:170). It is thus limited in duration and, with regard to capacity, it can

hold only a small amount of information. It is also described as the immediate memory

where basic cognitive operations are carried out (Neath & Surprenant, 2003:69).

Different areas in the left and right brain hemispheres respectively are involved in the

working memory (White & Sivitanides, 2002:62).

Working memory is a basic component of intellectual achievements and higher

cognitive functions such as reasoning, language processing and problem solving and it

is a critical component of intelligence (Sternberg, 2006:498). Jonides and Nee

(2006:181,192) mention that in many cognitive tasks, the major difference between

individuals concerns the variation in their working memory capacity and the associated

issue of how many items can be retrieved. Yousoof et al. (2006:259) suggest that the

processing of information to solve problems also occurs within working memory.

Working memory thus plays an important role in the programmer’s interpretation of the

program (§3.2.5).

The cognitive load of a task is related to the interactivity between various elements

within the working memory that can influence the storage of information. Yousoof et al.

(2006:262) claim that cognitive load is the core complex area that needs to be

addressed during learning to program. Additionally, ill-structured problems (§3.5.1.1) –

many OOP problems are ill structured – present “immense cognitive loads” for

programmers (Tan, Turgeon & Jonassen, 2001:97). In OOP, different aspects increase

cognitive load such as learning the syntax, understanding the semantics, making

decisions and designing an algorithm, identifying classes and collaborations, and

finally, the creation of a complete program consisting of many objects with specific

subtasks (Cleenewerck, 2003). If cognitive load can be managed in a systematic way,

then many programming difficulties can be overcome (Yousoof et al., 2006:259).

• Long-term memory, encoding, retrieval and reconstruction

Long-term memory stores information over a long period, but in such a way that it can

be recalled. Long-term memory is organised into a network of interconnected nodes of

information that structure material into mental images. During the learning process,

these structures are modified, as new information is integrated with prior knowledge. It

is important that the information is systematically organised in order to improve memory

skills (Schunk, 2000:144). The hippocampus is an important part of the brain that is

involved in the integration and consolidation of information and the transfer of newly

56

synthesised information into long-term memory. It plays an important role in complex

learning (Sternberg, 2006:187).

The structure of memory changes due to the continual construction and reconstruction

of knowledge. Knowledge can be represented with a schema. The schema is dynamic

and organises knowledge at different levels and reflects an individual’s knowledge,

experience and expectations about an aspect (Neath & Surprenant, 2003:264,245).

Yousoof et al. (2006:259) and Sternberg (2006:218) mention that the organisation of

knowledge in the mental network of an expert is more complex and more extensive

than that of a novice. Experts will therefore solve problems more easily than novices

(Table 3.5, §3.5.3).

Different processes are involved in the transfer of information to long-term memory.

Deliberate attention to information and the creation of associations between new and

prior information may increase transfer (Sternberg, 2006:197). Important processing

occurs during the encoding and retrieval of information (Neath & Surprenant,

2003:103).

Encoding involves the processing of new information and preparation for storage in

long-term memory (Schunk, 2000:143). The manner in which knowledge is encoded

determines which retrieval cues will activate such knowledge. Different types of

information are also encoded in long-term memory, for example: semantic encoding,

visual encoding and acoustic encoding (Sternberg, 2006:168,196). For example, in

computer programming, semantic encoding is required for the ‘programming word’

length, which has different meanings for strings and for arrays in Java. In the case of

strings, length is a method, and in the case of arrays, length is a field. Visual encoding

is required for the programming types such as Byte (starting with a capital letter – a

wrapper class) and byte (written in lower case – presenting number values), which are

different in Java, since it is a case-sensitive programming language. Delphi, on the

other hand, is not a case-sensitive programming language.

Retrieval refers to the active triggering of associations in memory to recall relevant

information (Schunk, 2000:157). Categorisation can effect retrieval of information

(Sternberg, 2006:207). For example, the categorisation of different types of control

structures (for, while, switch) in Java may support the retrieval of information from

memory.

57

3.3.1.2 Comprehension, reasoning, decision making, creative and critical thinking

• Comprehension

Comprehension in programming includes all the activities involved in the writing,

modifying and debugging of a program (Zhang, 2005:4, 10). Comprehension is based

on the role of concepts. Concepts are units of human knowledge that can be

processed in memory. In an object-oriented program, concepts may become possible

objects that can be implemented in programming code (Rajlich & Wilde, 2002:271,

272).

Processes of language comprehension are important in programming and include the

syntax and semantics of a language. Syntax refers to the grammar and structure of

sentences (Sternberg, 2006:323). In a programming language, syntax refers to

expressions, statements and program units. The output of the following Java

statements will differ, because of the difference in syntax:

 System.out.println(1+2+3); // the answer is the numerical value 6

 System.out.println(”1”+”2”+”3”); // the answer is the string 123

Semantics refers to the meaning of words and it is necessary to encode meanings

through concepts within the human memory. In a programming language, semantics

refers to the meaning of expressions, statements and program units (Sebesta,

2004:114). The meaning, or semantics, of a statement is related to the syntax of that

statement (Sebesta, 2004:114). For example, the meaning of the following Delphi

statement is that program statements should be repeated:

 For k := 10 downto 1 do

 begin

 …

 end;

Since OOP involves more than merely applying the syntax and understanding the

semantics, a programmer must think in terms of objects. Which objects exist in the

problem domain? What is their behaviour and how will these objects communicate?

Different types of reasoning skills are involved in a programming task.

58

• Reasoning

Reasoning refers to the mental processes involved in problem solving to explain,

classify, determine sources, infer and evaluate (Schunk, 2000:288-292). Different

types of reasoning can be distinguished: inductive reasoning, deductive reasoning and

analogical reasoning. Logical thinking is important during reasoning and Govender and

Grayson (2006:1692) emphasise that the ability to engage in sound logical thinking

should be a prerequisite for programming.

 Inductive reasoning

 This type of reasoning occurs where general rules are developed from knowledge and

previous examples (Schunk, 2000:290). Inductive reasoning involves searching for a

rule or extrapolating on an existing rule. For example:

 A Bus can transport people

 A Bus is a Vehicle

 Therefore, a Vehicle can transport people

 Inductive reasoning is not always appropriate or accurate, for example, an invalid

induction is: a dolphin is a mammal and a dolphin can swim, therefore a mammal can

swim. Similarly, in the Bus example above, if the term Vehicle was replaced by

Container in lines 2 and 3, it would be an example of flawed reasoning. In OOP

inductive reasoning is used to determine general ‘rules’ to identify objects that can

respond to the same message in different ways. This implies polymorphism, which

allows more flexibility in the design and provides generic programming (Garrido,

2003:239). For example, a method call ‘drive’ is interpreted differently by a bus, a

bicycle and a train (§3.2.3.3).

 Deductive reasoning

This is the converse of inductive reasoning. During deductive reasoning, the student

proceeds from general concepts to specific conclusions (Schunk, 2000:291). This type

of reasoning involves the combination of existing information by specific mental

operations. A well-known example of deductive reasoning is a syllogism. A syllogism

consists of premises and a conclusion (Schunk, 2000:291) for example:

 All Buses are Vehicles

 PGK456GP is a Bus

 Therefore, PGK456GP is a Vehicle

59

In OOP, deductive reasoning is used when possible subclasses inherit attributes and

methods defined by the superclass (parent class). The subclass Bus is-a Vehicle,

implies that the Bus inherits properties and methods from the Vehicle class.

 Analogical reasoning

During analogical reasoning, similarities are determined between concepts. For

example, a programmer determines similarities and differences between classes and

applies them to new experiences. A programmer can abstract a solution from a

previous problem and relate that information to a new problem. In the successful use

of analogical reasoning, students must be able to extract objects from the problem

domain (§3.2.5), compare them to their prior knowledge and recognise similarities

between the new program and previous programs (Staats & Blum, 1999:14).

• Decision making

We are constantly making judgements and decisions every day. The word decision

refers to the conclusion reached after consideration (Concise Oxford English

Dictionary, 2004:768). During decision making, different options are considered one by

one and a selection is made according to the acceptability, or the elimination, of

different options (Sternberg, 2006:443,444). Boy (2005:2) refers to different levels of

decision making. Sometimes immediate decision making is necessary and sometimes

decision making may require considerable time when it uses complex cognitive activity

and resources to decide on an action. It will take extensive time to program an entire

software system to fulfil all requirements. Decision making is important during the

programming process, for example, a decision should be made about which type of

iteration loop such as for… or while… would be appropriate for a specific problem.

• Creative thinking

Creativity refers to the process of producing something that is both original and

worthwhile (Sternberg, 2006:429,437). The creative individual may develop an idea

into a meaningful contribution and with recognised value. Some characteristics of

creative people include high motivation, dedication to standards of excellence, self-

discipline, many hours of hard work and the application of insight, divergent thinking

and risk-taking (Sternberg, 2006:437). In OOP the identification of classes can be

classified as a creative process, and the steps during programming, as a logical activity

(White & Sivitanides, 2002:62).

60

• Critical thinking

Critical thinking refers to logical thinking, reasoning, classification and analogies. It

includes intricate problem-solving skills and strategies to addresses complex issues

and to improve their outcomes. There are no general rules or principles to apply to the

solving of ill-structured problems. For such problems, critical thinking skills are

necessary (Tan et al., 2001:97). Many OOP problems are ill structured (§3.5.1.1) and

there are multiple ways to solve these problems i.e., there are different acceptable

solutions. Programmers must work through problems, generate their thoughts, and

then analyse these thoughts critically to design accurate, high-quality programs. Tan et

al. (2001:97, 98) emphasise the value of argumentation as a process that engages

learners in critical thinking. It is an important facet of a problem-solving strategy to

provide opportunities for programmers to form arguments for their preferred solutions.

Comprehension, reasoning, decision making, creative and critical thinking involve working

through problems, determining appropriate programming variables, selecting statements and

types, determining their logical order in a class and/or method, and putting it all together in

the design of accurate, high-quality programs. These are definitely not trivial tasks for a

novice programmer!

To structure different cognitive abilities involved in OOP, Bloom’s taxonomy (Bloom,

Krathwohl & Masia, 1973:186-193) will be used, which presents various categories of

learning in the cognitive domain. The higher levels relate to forms of thinking that are much

harder to master.

3.3.2 Bloom’s taxonomy

Bloom et al. (1973) define different types of learning in the cognitive domain. Bloom’s

taxonomy presents six categories of learning that may also be applied to problem solving.

These categories are hierarchically ordered; each level progresses to higher levels of

learning. The cognitive domain includes knowledge, comprehension, application, analysis,

synthesis and evaluation as shown in Table 3.1 (Grant, 2003:96; Bloom et al., 1973:186-

193).

61

Table 3.1: The taxonomy of Benjamin Bloom et al. (1973)

Category

Description

Knowledge Specific facts and ways of remembering

Comprehension Grasping the meaning of material

Application The use of previously-learned material in new situations

Analysis The breaking down of material into parts or sub-problems

Synthesis The combining of parts to form a new or original whole

Evaluation Judging the value of material

Bloom’s taxonomy was revised by Anderson and Krathwohl (2001) to include new

developments in cognitive psychology. However, for the purpose of this study, the original

taxonomy of Bloom will be applied in the programming domain.

Categories of cognitive learning are important in order to determine the depth and level of

cognitive skills required during a task such as computer programming. Bloom’s taxonomy

(1973:186-193) is used in this study, because:

• its framework, or hierarchical structure, is suitable for determining and evaluating the

range of cognitive abilities used during OOP (Oliver, Dobele, Greber & Roberts,

2004:227);

• it is a mature way of analysing the cognitive depth and difficulty of learning or

performing a given task (Oliver et al., 2004:227; Xu & Rajlich, 2004:176);

• problem solving is one of the key aspects of programming and is on the higher levels of

Bloom’s taxonomy (Govender & Grayson, 2006:1687); and

• it can provide insight into differences in problem solving between novices and experts

(Zant, 2005).

High cognitive demands characterise the learning of OOP. Table 3.2 shows the application

of Bloom’s taxonomy to the understanding, designing, coding and testing of an object-

oriented program.

 62

Table 3.2: Analysis of cognitive skills in object-oriented programming (synthesised by the author)

OOP Implementation

Cognitive skills

Bloom et al., (1973)

UNDERSTAND
- Define and remember facts (Zant, 2005) e.g. define an object.
- Understand and interpret a problem. Construct an internal representation of the
 problem (Matlin, 2002:362).

- Recall information
- Understand and interpret a problem.

Knowledge
Comprehension

DESIGN
- Recall previous knowledge of OOP classes and objects.
- Identify possible classes and methods.
- Construct a design in the context of familiar designs (e.g. use case diagrams).
- Analyse the programming problem and compare possible designs.
- Design classes with general properties and methods and design additional
 methods.
- Evaluate a design.

- Recall information
- Interpret a programming problem
- Use previous designs (diagrams, use cases)
- Analyse and compare solutions
- Categorise, combine, and modify a design

- Interpret and evaluate the proposed design.

Knowledge
Comprehension
Application
Analysis
Synthesis

Evaluation

CODE
- Recall previous designs, understand concepts (Zant, 2005).
- Understand and interpret the design.
- Construct programs in the context of familiar solutions (Zant, 2005).
- Analyse the programming problem in subproblems.
- Develop solutions to new and complex problems (Zant, 2005).

- Implement exception handling and debugging techniques (Xu & Rajlich,
 2004:176). Evaluate the programming solution.

- Recall information
- Understand and interpret the design
- Use previous solutions in a new program
- Analyse and compare solutions
- Categorise, combine, design and modify the
 program
- Interpret and evaluate the solution.

Knowledge
Comprehension
Application
Analysis
Synthesis

Evaluation

TEST
- Recall previous programs and their output.
- Interpret and judge the program to determine whether the problem was solved
 correctly.
- Apply previous debugging techniques to identify possible errors.
- Analyse the solution and check the code rigorously.
- Test the output using test data.
- Modify the solution if necessary. Implement debugging techniques and
 evaluate the solution (Xu & Rajlich, 2004:176).

- Recall information
- Understand and interpret a solution

- Use previous solutions in a new program
- Analyse and compare solutions
- Categorise, combine, design, modify
- Interpret and evaluate the thinking and
 problem solving.

Knowledge
Comprehension

Application
Analysis
Synthesis
Evaluation

 63

This taxonomy gives an overview of the depth of cognitive skills involved during

programming. As explained, Table 3.2 demonstrates how different levels of Bloom’s

taxonomy are applied during the understanding, designing, coding and testing stages of an

object-oriented program. These are complex processes involving the application of many

cognitive skills in order to solve the problem successfully. Note that knowledge is the first

skill mentioned in Bloom’s taxonomy, however various types of knowledge are required

during all the processes of programming.

During the process of understanding a programming problem, knowledge and

comprehension skills are needed to understand and interpret the problem. During the

design, code and test steps of programming, all levels of Bloom’s taxonomy are necessary.

The importance of Bloom’s taxonomy is emphasised by Zant (2005) who claims that it is

difficult for a novice programmer to become an expert without progressing through each of

the six levels. Xu and Rajlich (2004:176) emphasise that during the debugging of a program,

all levels of Bloom’s taxonomy are necessary. However, it is important to note that the

application of these levels may vary in different programming contexts and at different

stages.

Students must understand the program as a whole, but should also apply knowledge and

skills to program the logical details of each method and determine the associations between

classes. Cognitive skills such as attention, memory, reasoning, problem solving and

practical programming skills must be applied in a specific way to solve the problem

successfully (§3.3.1, §5.2.3, Program 5.3, Program 5.4). Some practical means of support

are given in the next subsection.

3.3.3 Some practical means of cognitive support

Practical means of cognitive support include chunking and the construction of memory

diagrams, semantic networks and schemas. These factors are addressed in the bullets

following, with the appropriate subcategories of Bloom’s taxonomy indicated in parentheses

at the end of each point.

• Chunking

Chunking is the meaningful combination of information to improve retrieval of

information (Gu, 2005:16; Schunk, 2000:140). In OOP, this could mean that various

necessary attributes are combined and encapsulated in a specific object. For example,

 64

a vehicle’s registration number may be chunked in a meaningful way as shown in

Fig. 3.3: [Knowledge, Comprehension]

KPG

123

GP

Figure 3.3: A vehicle’s registration number,
subdivided into chunks

• Memory diagrams

A memory diagram focuses on key points relating to the meaning of a program

fragment. It helps students in the understanding of object-oriented programming

concepts (Holliday & Luginbuhl, 2003). For example, Fig. 3.4 represents the reference

of myName to the String “Peter” (in Java). Using such diagrams, will help students

understand the meaning of a ‘reference’ to objects (Java does not use pointers but

rather references to objects). [Comprehension]

 Variable Reference String object

Figure 3.4: An example of a memory diagram

• Semantic networks

A semantic network or semantic net is a graphical notation for representing knowledge

of the problem domain by means of interconnected nodes. This can help the

programmer to determine specific requirements and possible solutions in the problem

space and design space (§3.2.5). A node contains the concept, and links connect

nodes with other nodes. A semantic network has three kinds of elements: concepts,

relationships that link two associate concepts, and instances of a relation – that is two

concepts linked by a specific relation (Huan Keat, 2004).

A semantic network can support learners in organising their knowledge, reduce

cognitive load during problem solving and can support object-oriented learning

(Jonassen, 2004:61). It can be implemented in object-oriented design where a network

exhibits different relationships. For instance, an is-a relationship between concepts can

be represented (Huan Keat, 2004:2). Fig. 3.5 shows an example of a semantic network

where a Bus is-a Vehicle and the Bus also has-a steering wheel, has wheels and can

myName
“Peter”

 65

move (§3.2.3.6). These are indications of different relationships between the Bus, a

Vehicle, the steering wheel, wheels and the attribute of movement, all portrayed in a

single diagram. [Analysis]

 is-a

 has-a has can

Figure 3.5: An example of a semantic network
(adapted from Mentz, 1998:73)

• Schemas

A schema organises and represents information meaningfully (Schunk, 2000:145).

Different schemas can be used to represent object-oriented information. An application

domain schema represents the objects and functions for a specific problem. Object

schemas include structural details of an object (attributes and methods) (Détienne,

2002:60, 61). [Analysis, Synthesis]

This section overviewed cognitive knowledge and skills during programming. The

importance of working memory and cognitive load, long-term memory, comprehension,

reasoning, decision making, creative and critical thinking were emphasised. Bloom’s

taxonomy (Bloom et al., 1973) was used to structure categories of learning in the cognitive

domain with reference to the programming domain. Moreover, some practical means of

cognitive support during programming were given. In the next section, the importance of

metacognitive knowledge and skills is outlined.

Bus

Vehicle

steering
wheel

wheels move

 66

3.4 Metacognitive knowledge and skills in object-oriented
programming

The term metacognition refers to the conscious planning, control and evaluation of one’s own

cognitive processes, such as thoughts, memories and actions that engage in learning

processes (Shimamura, 2000:313; Sternberg, 2006:197). It relates to the knowledge, skills

and strategies that are required for a specific task, as well as how and when to apply these

activities to complete the task successfully (Schunk, 2000:180-181). Metacognitive activity

includes awareness by learners of the strengths and weaknesses of their abilities and the

management of learning and task development, particularly in a complex environment such

as OOP (Gravill et al., 2002:1055).

Metacognition consists of metacognitive knowledge and metacognitive control of experiences

(Flavell, 1979:907-909). Metacognitive knowledge refers to the acquired knowledge about

cognitive processes, while metacognitive control refers to the use of different metacognitive

strategies.

Since metacognition plays a critical role in successful programming (Gravill et al., 2002:1055;

Staats & Blum, 1999:13), it is important to study metacognitive activity to ensure that

students can better apply and control their cognitive resources. The focus in this section is

on general metacognitive knowledge and skills, metacognitive knowledge and skills in OOP

and, finally, different means of metacognitive support. Metacognitive control by means of

different strategies will be addressed in Chapter 4.

There is a relationship between metacognition and working memory (Shimamura, 2000:315).

Working memory is involved in the processes of temporary activation and storage of

information and these processes must be controlled by means of selection and manipulation

of information. The frontal cortex is an important part of the brain that contributes to

metacognition (Shimamura, 2000:315).

3.4.1 Metacognitive knowledge in general

Metacognitive knowledge, skills and strategies improve performance, and students should

learn to apply these activities in specific situations (Schunk, 2000:184).

 67

Metacognitive knowledge refers to explicit knowledge about an individual’s own cognitive

strengths and weaknesses, beliefs, conditions and variables that affect memory

performance, encoding and retrieval strategies. It also addresses the effects of all these on

learning and remembering (Koriat, 2002:267). Metacognitive knowledge involves knowledge

of a person, knowledge of a task and knowledge of different strategies (Flavell, 1979), each

of which is considered in the points following.

• Knowledge of a person

The programmer must have knowledge of himself. This may include:

- motivation;

- intrinsic goal orientation (Bergin et al., 2005:82; Panaoura & Philippou, 2005);

- interests, strengths, weaknesses (Gravill et al., 2002:1055);

- level of expertise in a specific domain (Ertmer & Newby, 1996:4);

- prior knowledge and previous experiences (Ertmer & Newby, 1996:8);

- judgement and beliefs about personal learning (Ertmer & Newby, 1996:6); and

- the learner’s understanding of his own memories and the way he learns (Panaoura

& Philippou, 2005).

• Knowledge of a task

Learners must have knowledge regarding the task they are undertaking. This includes

knowledge about the characteristics of a memory task that make it easier or harder

(Schneider & Lockl, 2002:227). It is also important to estimate knowledge about a task.

Gravill et al. (2002:1055) refer to the importance of correct estimation: without effective

metacognitive knowledge, over-estimation or under-estimation of specific tasks may

occur. Ertmer and Newby (1996:5) found in their research that experts tend to apply

metacognitive knowledge and strategies during a task and are more aware of the

conditions under which such knowledge and actions should be applied.

• Knowledge of strategies

Knowledge about metacognitive strategies is needed in order to plan different

strategies. These strategies will be discussed in Chapter 4.

 68

3.4.2 Metacognitive knowledge in object-oriented programming

Metacognition is an important component in problem solving (Hammouri, 2003:576) and this

could be one of the reasons for performance differences in OOP. Staats and Blum (1999:13)

emphasise that understanding the object-oriented paradigm requires an increase in different

types of cognitive and metacognitive skills. This subsection addresses the specific

application to OOP of Flavell’s (1979:906-911) categories of metacognitive knowledge, which

were introduced in the previous subsection.

• Knowledge of the programmer

Factors such as the type of personality, strengths and weaknesses in problem solving,

interest in computer programming, study possibilities, employment opportunities in the

field of computing, and different learning styles can affect the way a student

understands new material. It may also affect the student’s performance in computer

programming (Grant, 2003:97). For example, the right-brain hemisphere deals with the

creative and artistic processing, whereas the left hemisphere deals with the logical

processing (White & Sivitanides, 2002:62). In OOP, the identification of classes is

more creative (right hemisphere) and the steps during programming are more logical

(left hemisphere).

• Knowledge of the programming task

Prior knowledge of the programming task, level of expertise and previous OOP

experience may influence a student’s behaviour and the ability to complete a new

program successfully. Knowledge about the cognitive processes involved in

understanding, designing, coding and testing computer programs fosters successful

programming (Table 3.2). Previous experience and knowledge about former

programming tasks will make planning for a new task easier. Another factor is that

novices pay considerable attention to debugging computer programs. They lack in-

depth knowledge about programming and try to solve errors by means of repetitive

debugging efforts. Carbone, Mitchell, Gunstone and Hurst (2002:2) suggest that

novices should explicitly aim to use metacognitive skills in the initial design of a

computer program.

• Knowledge of programmer’s own strategies

 Programmers must have knowledge about strategy-selection mechanisms, and

strategy execution. This is addressed further in §4.5.1 in Chapter 4.

 69

Different forms of metacognitive knowledge and skills are important during the

understanding, designing, coding and testing of a program. Various practical approaches to

metacognitive support are discussed in §3.4.3 and §4.4.

3.4.3 Some practical examples of metacognitive support

In this subsection, various practical examples of metacognitive support within the complex

domain of learning to program are discussed. As in an earlier subsection, the different types

of metacognitive knowledge are indicated in parentheses at the end of each point.

• Journal or reflective diary

The purpose of a journal is to give learners the opportunity to make brief notes about

their feelings, frustrations, expectations, goals and problems in specific aspects of

programming. This is an effective way to reflect on the programming task. Students

may use a weekly diary to reflect upon their plans during the week (Fekete, Kay,

Kingston & Wimalaratne, 2000:145). [Knowledge of the programmer, knowledge of a

task]

• Goal setting, outcomes and self-motivation

Goal setting and self-motivation can contribute to effective learning during programming

(Gravill et al., 2002:1063). A goal reflects the purpose of doing a task and refers to the

quantity and quality of performance, whereas goal setting refers to establishing an

objective to serve as the aim of one’s actions (Schunk, 2000:100, 104). Outcomes

expectations are personal beliefs about the outcomes to be achieved, and motivation is

the process of goal-directed behaviour with the aim of succeeding in a task (Schunk,

2000:106, 334). The novice programmer should be motivated and set various goals

related to the completion of a programming project. [Knowledge of the programmer,

knowledge of a task]

• Metacognitive scaffolding

Metacognitive scaffolding refers to ways of supporting students and providing guidance

during the learning process (Xun & Land, 2004:5, 12-13). It involves providing just

enough support to novice programmers so that they will use the processes, yet still be

able to perform when the support is removed, as they gravitate towards independent

programming. In other words, programmers should be able to develop and use their

knowledge and skills to generate programs on their own when the scaffolding support is

 70

removed. For example, the methods required in a new class can initially be given to

novices to direct their thinking. However, they should subsequently be able to identify

their own methods in a new class without any support. [Knowledge of a task]

To summarise this section, metacognitive activity includes awareness by learners of the

strengths and weaknesses of their own abilities in developing an object-oriented program.

Finally, they should demonstrate the correctness of their own programs. Many hours of

practicing programming will enhance the development of such metacognitive processes.

Necessary knowledge and skills in problem solving will be discussed in the next section.

3.5 Problem-solving knowledge and skills in object-
oriented programming

Problem solving means “finding a way out of difficulty” (Polya, 1981:ix) or “finding an answer”

(Concise Oxford English Dictionary, 2004:1374). Solving problems, sometimes difficult ones,

is part of daily decision making. However, problem solving is a complex cognitive process

where various possible solutions must be identified in order to select the best one to achieve

a goal (Schunk, 2000:191). Since the process is complex, students require support during

this process. Different kinds of problem situations require different strategies and

interactions. This section considers factors that relate to the level of difficulty of programs,

steps in problem solving, expertise and problem solving and some practical means of

support during problem solving.

3.5.1 Factors that relate to the level of difficulty of problems

Some problems are more difficult to solve than others. Jonassen (2004:3-9) mentions four

factors that relate to the level of difficulty of problems. Problems vary according to their

structuredness, complexity, dynamicity and domain specificity. Each will be outlined in more

detail.

3.5.1.1 The structuredness of problems

A well-structured problem is a problem in which the goal is clearly stated and all the

information required to solve it is present. However, in an ill-structured problem there is

uncertainty about which concepts are necessary to solve the problem. This kind of problem

 71

is complex, open-ended, not well defined, and some of the information necessary to solve it

is missing or there are several possible solutions to the problem (Xun & Land, 2004:5,7;

Jonassen, 2003b; Ormrod, 2003:280; Tan et al., 2001:97). Moreover, the problem space

(§3.2.5) of ill-structured problems may be larger than that of well-structured problems and

there may be multiple problem spaces available (Xun & Land, 2004:8).

Students learn to represent well-structured problems, but fail to solve ill-structured problems.

Solving ill-structured problems poses its own set of cognitive and metacognitive requirements

to the problem solver (Xun & Land, 2004:8). Sternberg (2006:406) suggests that ill-

structured problems can be described as insight problems. This means that learners should

restructure their representation of the problem to be solved. An example of an ill-structured

problem in OOP is the requirement mentioned in §2.7.2 of this study, that students write a

Date class program to include some of the many possible calculations with dates. At the

very least, this program had to determine leap years and the difference between two dates,

and there are many other possible calculations that an enterprising problem solver could

think of. This is an open-ended and real-world problem that is difficult to solve.

3.5.1.2 The complexity of problems

Jonassen (2004:67) classifies complexity of problems by the number of issues, functions or

variables involved in the problem. In the context of solving OOP problems, the student

should know which objects are relevant and which behaviours and interactions exist between

these objects. These various dimensions make decisions difficult.

3.5.1.3 The dynamicity of problems

The dynamicity of a problem indicates whether it is impacted by a change in conditions. For

example, changes in one factor may impact on others, causing variable changes, in turn, in

other factors (Jonassen, 2004). When the problem itself is changing, a continuous

understanding and searching for new solutions is necessary (Jonassen, 2003b:5). In OOP,

the state of an object may change due to the receiving of messages. Memory allocation,

exception handling and threads are also examples of programming activities that may result

in a change in programming conditions.

3.5.1.4 The domain specificity or context of problems

Problems also differ according to their domain specificity (Jonassen, 2003b:6). OOP has a

complex domain and particular difficulties occur due to the requirement to define and use

complicated structures or operations, such as classes and methods. Objects have the

 72

responsibility of carrying out specific tasks to solve the problem (Garrido, 2003:26-27).

Objects should therefore be programmed with the necessary functionality to implement the

appropriate methods.

There are many factors that make programming a complex task for novice programmers who

then tend to make errors. Possible causes of errors in programming are listed in Table 3.3,

structured into categories according to the three main themes of this chapter, namely:

cognitive-, metacognitive- and problem-solving issues.

 73

Table 3.3: Causes of errors during programming

 Cognitive issues that lead to programming errors

- There is a major cognitive load involved in programming (Tan, Biswas & Schwartz, 2006:828, 830;

 Yousoof et al., 2006:262).

- Novices lack the problem domain knowledge to understand the problem and hence to propose a

 solution (Traynor & Gibson, 2004:2).

- Novice programmers have limited knowledge (Ala-Mutka, 2004:2).

- Novices have difficulty with logical thinking (Chmura, 1998:56).

- Students have difficulty developing a strategy for decomposing a problem into subproblems or

 components (Keefe, Sheard & Dick, 2006:1).

- Students do not fully understand the intricate mechanisms of programming, such as parameter

 passing (Keefe et al., 2006:1).

- Novices have problems in implementing abstract programming techniques in different situations

 (Keefe et al., 2006:1).

- Students do not understand OOP concepts (Keefe et. al., 2006:1).

- Students struggle to decompose the full program into smaller steps (Chmura, 1998:56).

- Certain topics are isolated and consequently little is known about them (Schulte & Niere, 2002:1).

Metacognitive issues that lead to programming errors

- Novice programmers fail to reflect and articulate on the abstract object-oriented principles (Schulte

 & Niere, 2002:2).

- Students should reflect on the correctness of their programming and should submit a broad range

 of test cases (Edwards, 2004:26).

Problem-solving issues that lead to programming errors

- Programming students confuse problem solving with coding (Traynor & Gibson, 2004:2).

- Students do not think in object structures (Schulte & Niere, 2002:1).

- There is a gap between the abstract approach and the hands-on knowledge necessary to

 implement the program (Schulte & Niere, 2002:2).

- There are many hierarchical levels of complexity (Pressing, 1999:3).

- The functionality of object-oriented programs is distributed over many objects, each with specific

 subtasks to perform (Cleenewerck, 2003:2).

- Certain problems vary according to the level of dynamicity involved (Jonassen, 2003b).

- There is a tendency to develop a fixation on a particular type of problem, with the result that

 students lack the ability to solve new problems in different ways (Sternberg, 2006:412).

 74

3.5.2 Steps in problem solving

Different kinds of problems may be solved differently. Students can, however, be guided by

means of specific steps to support the particular problem-solving process in hand. Xun and

Land (2004:8) identify the major processes for problem solving in ill-structured domains as

problem presentation, generation and selection of solutions, making justifications, and

monitoring or evaluating solutions. However, Deek, Turoff and McHugh (1999:332-335)

focus explicitly on the problem-solving models used in programming and propose an

integrated methodology that combines problem solving and programming. They identify the

following steps in their problem-solving model: formulating the problem, planning the

solution, designing the solution, translating the solution, testing the solution and delivering

the solution. The following problem-solving steps are selected to be discussed in more

detail: problem understanding, program designing, program coding and program testing

(Table 3.2).

3.5.2.1 Problem understanding

During the process of reading a problem description, the programmer uses memory and

skills to form concepts. Concepts are units of knowledge that can be processed within

working memory. Understanding involves asking questions to fully comprehend the problem,

that is, to determine the unknown or to define exactly what is being asked in the question

(Schunk, 2000:195). Problem understanding implies the construction of an internal

representation of the problem (Matlin, 2002:362). During problem understanding a decision

must be made about the relevant information that will be required to solve this particular

problem.

3.5.2.2 Program designing

Appropriate representation of the problem is important and therefore students must construct

a meaningful conceptual framework of the problems as a foundation for design. It is

necessary for learners to organise and display problems to enhance their mental

representations and problem-solving processes (Jonassen, 2003a:366). The more students

are able to represent and model problems, the better they will be able to transfer those skills

to well- and ill-structured problems (Jonassen, 2003a:364). OOP requires a clear decision

about what objects, behaviours and interactions are needed (§3.2.3). Program design in this

context may involve design of the problem domain (e.g. classes and objects), operating

environment (e.g. database management, persistent objects and SQL), and the user

interface (e.g. the graphical user interface, menus, buttons) (Satzinger & Ørvik, 2001:143-

146).

 75

3.5.2.3 Program coding

Coding a solution involves the use of logical reasoning and deduction, as one applies the

language syntax and programming constructs and synthesises a whole new program to

solve the problem (Stamouli & Huggard, 2006:109-118; §3.3.1.2). In the process of coding

the solution, knowledge and skills relating to one kind of problem can be transferred to

another. However, transfer can be either negative or positive. Negative transfer occurs

when the experience of solving a previous problem makes it harder to solve a subsequent

one. Positive transfer occurs when solving a previous problem makes it easier to solve the

new one (Sternberg, 2006:413). The various diagrams generated during the design process

must be interpreted and ‘translated’ into programming code, as the different forms of

knowledge and practical skills are applied in the context of a specific programming language.

3.5.2.4 Program testing

Program testing refers to checking the correctness of the solved problem. Stamouli and

Huggard (2006:113) mention different categories for ensuring program correctness:

syntactical correctness, functional correctness, design correctness and input/output

validation and performance correctness. These are shown in Table 3.4.

Table 3.4: Categories for ensuring program correctness
(Stamouli & Huggard, 2006:114)

Category

Description

Syntactical correctness A program is syntactically correct when it compiles
without errors.

Functional correctness A program should fulfil the requirements of the problem
specification.

Design correctness A program should be correctly structured to enable
extensibility.

Input/output validation and
performance correctness

A program should cater for invalid input and should be
optimised in terms of length and execution time.

Finally, practical skills are required during program testing to debug a computer program and

understand error messages (Chmura, 1998:56). The best predictor skill to use during

program testing is experience. Prior exposure to solve similar problems will support skills

during program testing (Jonassen, 2004:13).

To support the understanding of successful problem solving, various differences between

experts and novices in OOP are discussed in §3.5.3.

 76

3.5.3 Level of expertise and problem solving

A novice programmer is one who is undergoing the process of learning the required

knowledge and skills for programming, while an expert programmer is one who successfully

applies knowledge and skills to solve a programming problem effectively (Govender &

Grayson, 2006:1689). Experts and novices differ in the way they solve problems. Some of

the abilities and approaches of experts are indicated in Table 3.5, structured (as in Table 3.3)

under the main themes of this chapter, namely cognitive-, metacognitive- and problem-

solving knowledge and skills (specifically in the context of programming) (§5.2.3). Note that

the cognitive categories are ordered according to levels of Bloom’s taxonomy as indicated in

parentheses.

 77

Table 3.5: Examples of expertise during problem solving

Cognitive knowledge and skills

- Expert programmers possess a well-organised, carefully-learned knowledge structure (Ala-Mutka,

2004:2; Glaser, 1999:91-92) [knowledge].

- Experts perceive large, meaningful patterns that guide their thinking with rapid pattern recognition

(Glaser, 1999:91-92) [knowledge, comprehension].

- Experts rely on the recall of re-organised material, forming meaningful chunks (Yousoof et al.,

2006:259; Matlin, 2002:136; §3.3.3) [knowledge, comprehension].

- Experts apply their knowledge to the goal structure of the problem (Glaser, 1999:91-92)

[application].

- Experts work through different levels of abstraction and some identify further sub-problems

(Rosson & Alpert, 1990:349) [application, analysis].

- Experts can decompose a large procedure into smaller units (Or-Bach & Lavy, 2004:84) [analysis].

- Experts are better at reconstructing missing portions of information from material that is partially

remembered (Matlin, 2002:136) [synthesis].

- Experts show high accuracy in solving the problem and reaching the outcomes (Sternberg,

2006:426) [evaluation].

Metacognitive knowledge and skills

- Experts use selective memory search strategies and effective metacognitive processes (Rosson &

Alpert, 1990:349).

- The experts’ knowledge enables them to use self-regulatory processes with great skill – they

monitor their own problem-solving activities (Glaser, 1999:91-92).

Problem-solving and programming knowledge and skills

- Experts can solve a problem quickly, although they often appear to spend more time in problem

representation (Sternberg, 2006:424).

- Experts define methods with associated classes, whereas novices tend to define classes first and

thereafter methods (Pennington, Lee & Rehder, 1995:210).

- Experts’ problem-solving skills entail selective search of memory – they have fast access pattern

recognition and representational capability (Sternberg, 2006:424).

- Experts can access multiple possible interpretations (Sternberg, 2006:424-425).

 - Experts apply various problem-solving strategies and plan sufficiently (Deek, 1999:2).

 78

3.5.4 Some practical means of support during problem solving

There are various practical means of support during problem solving, some of which have

already been mentioned in §3.3.3 and §3.4.3. This subsection emphasises applying

program documentation, understanding example programs, using help support, using the

Internet, understanding a program and completing partial solutions, using trace tables,

creating test data and using pair programming. Note that the steps in problem solving are

indicated in parentheses.

• Program documentation

This includes comments in the program that explain and highlight the purpose of a

program or program segments. Good documentation also serves to ease the process

of program maintenance. Making a program more understandable and more readable,

supports maintenance, testing and debugging tasks. Nurvitadhi, Leung and Cook

(2003:13) found in their research that method comments in Java increase low-level

program understanding. This facilitates the task of reusing and extending by means of

inheritance (Nurvitadhi et al., 2003:16). An example of program documentation is

indicated by ‘//’; for example:

import javax.swing // the JOptionPane class [Problem understanding]

• Example programs

The use of example programs supports understanding and problem solving within the

programming process. Such examples can be used as templates to support thinking

during the programming of a new problem. [Problem understanding]

• Help support

Most development environments include a Help facility. Delphi’s Help system contains

extended descriptions and example code, and educators may regard this as a source

of many potential learning opportunities. Searching for help by using the OnClick-event

handler will, for example, provide the student with a full example of such an event

handler, explain its association with actions such as the OnExecute-method and

describe how and when to use it. [Program coding]

• The Internet

Learners can download various examples of similar problems and study those

examples explaining the program code. Many websites are available to support the

learning of programming, examples being:

http://delphi.about.com/ and http://java.sun.com/ [Program coding]

 79

• Understanding a program and completing partial solutions

Learning support can be provided by supplying partially completed solutions to a

program and requiring the students to complete the missing parts (Yousoof et al.,

2006:260). For example, students could receive a partially completed Delphi or Java

solution and be required to complete a method in order to sort different bus routes

according to the driverNumber. [Program coding, Program testing]

• Trace tables

A trace table can be used to track the order of program execution line-by-line.

[Program coding, Program testing]

• Test data

Students should be able to explicitly demonstrate the correctness of their programs

(Edwards, 2004; Or-Bach & Lavy, 2004:85). This can be done by using test data and

submitting test cases. Students must explicitly learn a testing approach. Edwards

(2004:27) refers to the practice of test-driven development, a technique whereby

students write test cases before proceeding with new code. This can increase a

student’s confidence and comprehension of the programming process and also provide

positive feedback. [Program coding, Program testing]

• Pair programming

To support comprehension, students may program together in collaborative pairs,

which is known as pair programming. In a study by McDowell, Werner, Bullock and

Fernald, (2002:38), it was found that students who programmed in pairs, produced

better programs and completed the course at higher rates than students who

programmed independently. Pair programming is a programming style in which two

programmers work together continuously on the same program to solve the problem

(Williams, Wiebe, Yang, Ferzli & Miller, 2002:197). One participant is the driver who

operates the keyboard and the other participant is the navigator who constantly reviews

code and watches for potential upcoming problems during programming of the solution.

From time to time, participants should swap roles within a pair. Keefe et al. (2006:8)

emphasise that pair programming is successful when both students participate actively

in the process. During pair programming students can improve their problem-solving

skills, the quality of programming code and the testing of their programs (Keefe et al.,

2006:2, 3). Students working together should understand the program as a whole and

should apply various programming skills in a specific way to help each other to solve

the problem successfully. [Program coding, Program testing]

 80

3.6 Chapter conclusion

Learning to program is a complex and multi-dimensional task. Particularly, in an object-

oriented domain it involves the application of differing knowledge and skills during the

problem-solving process. The better we understand the problems that can potentially occur

during programming, the better we can teach programmers which skills to use and how to

apply them in generating an object-oriented program.

This chapter has given an overview of various aspects of object-oriented programming

(§3.2). Different aspects of programming were addressed with reference to cognition,

metacognition and problem-solving knowledge and skills in the object-oriented domain. The

cognitive requirements of the programming process were discussed with reference to the

role of memory, thinking, reasoning in OOP (§3.3); and the importance of Bloom’s taxonomy

in OOP (§3.3.2). In the section on metacognitive knowledge and skills, the importance of

self-knowledge, task-knowledge and strategy knowledge was emphasised (§3.4). In

addition, various types of problems and different steps in problem solving were discussed

(§3.5).

Furthermore, some guidelines and practical means of cognitive support (§3.3.3),

metacognitive support (§3.4.3), and support during problem solving in OOP (§3.5.4) were

pointed out.

Students can use strategies to help them to achieve specific goals. Chapter 4 builds on

Chapter 3 and will correspondingly focus on the role of cognitive, metacognitive and

problem-solving strategies during OOP.

 81

4 Cognitive, metacognitive and problem-solving

strategies in object-oriented programming

4.1 Introduction

Chapter 3 outlined the roles of cognitive, metacognitive and problem-solving knowledge and

skills in object-oriented programming (OOP). This chapter builds further on this foundation

by discussing specific cognitive, metacognitive and problem-solving strategies that provide

support to students during the learning of OOP.

A strategy is a designed plan to achieve a specific purpose in the long term (Concise Oxford

English Dictionary, 2004:1425, §1.3). It is a set of procedures to accomplish a cognitive task

and involves putting different skills together to achieve a specific outcome (Kirkwood,

2000:512; Lemaire & Fabre, 2005:12; Schunk, 2000:382). Gu (2005:1, 6, 10, 16) suggests

that a strategy is a dynamic process with problem solving as its aim. It involves different

activities such as reflecting on the progress and outcome of a task. Strategies are an

important part of the learning experience (Filcher & Miller, 2000:61).

The focus in this chapter is on cognitive, metacognitive and problem-solving strategies and

their application in OOP. These three strategies are addressed in Sections 4.3, 4.4 and 4.5

respectively. Fig. 4.1 is a follow-up of Fig 3.1. The shaded blocks in Fig. 4.1 indicate various

goals and strategies that are explored in this chapter and their application in OOP.

Furthermore, various guidelines and practical ways of using strategies during the learning of

OOP, are discussed in some detail in various parts of the chapter.

 82

 GOAL

 KNOWLEDGE AND

 SKILLS

 STRATEGIES

 APPLICATION

Figure 4.1: Various goals, knowledge, skills, strategies and their application in an
object-oriented program

4.2 Strategic aspects of performance

Various factors influence the use of strategies. Lemaire and Fabre (2005:15) propose a

conceptual framework for investigating strategic aspects of performance and refer to strategy

repertoire, strategy execution and strategy selection. In addition, Gu (2005:9-10) refers to

strategy performance that can influence the task. A brief overview of each of these aspects

will be given with reference to this study.

To solve the
programming problem

successfully

Use of the necessary knowledge and skills:
cognition, metacognition and

problem solving

The purposeful selection and management
of cognitive, metacognitive and

problem-solving strategies

Efficient application of the knowledge,
skills and strategies in order to solve the

programming problem successfully

 83

• Strategy repertoire

The strategy repertoire refers to the sum of all strategies that may be involved in a

specific task. Programming is complex and the application of multiple strategies is

necessary. Gu (2005:7) mentions that, because of the dynamic nature of strategies,

the ideal strategy is made up of metacognitive and cognitive strategies. However,

problem solving is a major component of the programming process, so problem-solving

strategies are also included in this study. Therefore, the repertoire of strategies in this

study includes cognitive, metacognitive and problem-solving strategies appropriate for

OOP (Fig. 6.5).

It is difficult in specific tasks to ‘see’ specific evidence of strategic use and people are

sometimes unaware of the strategies that they use (Lemaire & Fabre, 2005:17).

However, by analysing the computer programs and thinking processes of different

students, inferences can be made with regard to the strategic approaches students are

using that could explain their variations in performance (§5.2).

• Strategy execution

Strategy execution focuses on the actual use of strategies and also considers how

rapidly and accurately programmers perform (Lemaire & Fabre, 2005:15). Fast and

accurate programming performance is required during a practical programming test or

in an examination. During strategy execution, the retrieval of data is necessary. In the

process of organising information during learning, the use of strategies may support

retrieval of knowledge (Sternberg, 2006:207, 221).

• Strategy selection

Strategy selection addresses how people choose between strategies for a given task.

Selection is influenced by the complexity of the problem, as well as by the awareness

and use of different strategies and expertise (Lemaire & Fabre, 2005:15). Furthermore,

the selection of strategies can explain individual and situational differences in a task

(Morris & Schunn, 2005:33). Various strategies may be used in combination for a

programming task and it is therefore difficult to determine precisely the effectiveness of

a strategy. However, learners tend to choose strategies that they believe will result in

the most effective performance (Roberts & Newton, 2005:132).

 84

• Strategy performance

Strategy performance depends on factors such as the learners (their values, skills,

attitudes, prior knowledge and motivation), the programming problem (structuredness,

complexity and dynamicity, domain specificity (§3.5.1)) and the learning environment,

such as the explicit teaching of strategies (Gu, 2005:12). When sequencing specific

activities repetitively in various situations and tasks, experts preserve the effect and

take up less working capacity (Gu, 2005:9). Through practice, experts may automate

various processes during the application of different strategies. Experts form rich

organised schemas of information and consolidate sequences of steps into routines

that require little control, thereby freeing their working-capacity to better monitor their

performance (Sternberg, 2006:425).

The next section will discuss cognitive strategies, while §4.4 overviews metacognitive

strategies, and §4.5 addresses specific problem-solving strategies, all in the context of OOP.

These sections will give an overview of the strategies, as well as discussing their role and

application in OOP. In addition, some practical means of implementing these strategies will

be discussed in each section.

4.3 Cognitive strategies

Section 3.3 introduced the concept of cognitive knowledge and skills in OOP. This section

builds on that concept by addressing specific strategies. A cognitive strategy is a plan for

orchestrating cognitive resources efficiently in a way that is goal-directed, actively selected

and situation-specific (Schunk, 2000:382; Weinstein & Meyer, 1991:17). Cognitive strategies

help us to remember, select and organise information within memory (Schunk, 2000:382).

The hippocampus in the brain is the part of memory that acts as a rapid learning system. It

temporarily maintains new experiences until they are assimilated more permanently

(Sternberg, 2006:100). However, working memory is limited in duration (§3.3.1.1) and

information is lost if not learned well. The recall of information can be improved by cognitive

strategies, which maintain information in working memory (Schunk, 2000:139-140).

Strategies represent sequences of cognitive knowledge and skills that should produce a

response that takes up less working memory capacity and requires less time to perform (Gu,

2005:9; Hertzog & Robinson, 2005:112; §3.3.1). The cognitive strategies that will be

discussed are rehearsal, elaboration and organisation (Bergin et al., 2005:82).

 85

4.3.1 Rehearsal strategy in object-oriented programming

Rehearsal strategies involve using different techniques to support memory activities.

Kayashima, Inaba and Mizoguchi (2005) claim that rehearsal is vital for maintaining content

in working memory. It involves “keeping information active” in memory and supporting

learners in selecting important information (Sternberg, 2006:197; Bergin et al., 2005:82;

§3.3.1). Rehearsal strategies are useful for learning in complex domains, such as

programming, but they entail more than the mere repetition of information. During the

process of rehearsal, the programmer attends to and selects important information from text

(Bergin et al., 2005:82). When students use specific programming constructs repeatedly

during practice, for example:

the for... or do...while iteration

the syntax of these constructs is remembered more easily. Another example of the

application of the rehearsal strategy occurs when the programmer reads and rereads a

problem description to select possible objects. If this task is done repetitively, the details are

grasped and the selection of objects becomes more trivial.

Some practical means of implementing the rehearsal strategy are paying focused attention,

as well as distributed practice and using reminders:

• Focused attention

Attention refers to the process of focusing on a limited amount of information from the

enormous amount of information available through various cognitive processes

(Sternberg, 2006:62). The programmer should concentrate and maintain awareness of

the programming problem in hand. The problem description should be read and reread

continuously to support selection of the possible objects (§3.2.3). In this way, the

programmer can actively focus on specific information to answer the question and

actively plan future programming actions.

• Distributed practice

Distributed practice refers to learning sessions, which are spaced over time. Memory is

less effective when learning sessions are crammed together in a very short space of

time (Sternberg, 2006:198, §6.4). This implies that students should have regular

programming sessions at reasonable intervals to optimise their learning and to enhance

their application of programming skills in various contexts.

 86

• Using reminders

 Reminders are often used as external memory aids to increase the likelihood that

people will remember specific information (Sternberg, 2006:202). When typing the

word button1. in an event handler, Delphi responds by displaying available properties

and methods (procedures and functions) from which the user can select, as shown in

Fig. 4.2.

 Figure 4.2: An example of a reminder in Delphi

4.3.2 Elaboration strategy in object-oriented programming

Elaboration strategies help learners to integrate new information with prior knowledge, move

information into long-term memory, and make it more meaningful (Sternberg, 2006:199)

(§3.3.1). By keeping information active in working memory, elaboration increases and

supports the permanent storage of information in long-term memory (Schunk, 2000:156;

Vögele & Wild, 2003:3). Elaboration strategies also support the encoding and retrieval

processes, because they link to prior knowledge (Schunk, 2000:144). General elaboration

strategies include: questioning, note taking (Schunk, 2000:384), creating analogies and

summarising (Bergin et al., 2005:82), all of which expand information by adding something

new to make it more meaningful. During elaboration, a programmer must connect new

information to prior knowledge. For example:

Application of the FloatToStr function (real number conversion to the String type) in a

Delphi program, when the programmer has existing knowledge about the IntToStr

function (integer number conversion to the String type).

Elaboration strategies also include the use of analogies between different programming

solutions. Successful analogical use implies the creation of mental models whereby students

extract objects from the problem, compare them to their personal knowledge base, and

recognise relevant similarities between the new problem and previous problems solved

(Staats & Blum, 1999:14).

 87

Some practical approaches include generative note taking, summarising, asking questions,

and creating analogies. These approaches are discussed in more detail.

• Generative note taking

 Generative note taking involves more than copying information. Rather, generative

note taking should elaborate, integrate information and focus on the learning outcomes

(Bergin et al., 2005:82; Schunk, 2000:387). This means that a programmer should take

notes and construct meaningful detail about good programming practice and style in a

way that refers to syntax, grammar style, semantics, documentation and prompt lines

(Malik & Nair, 2003:71).

• Summarising

In summarising, a learner may use his own words to emphasise the main ideas in text

(Schunk, 2000:385) and to present information concisely (Bergin et al., 2005:82).

Summaries should be of restricted length, and should include important points only.

For example, students can summarise the benefits of the object-oriented approach and

may note points such as how to enhance the quality, productivity and flexibility of

information systems. During summarising, the student must understand the content of

a problem and explain it briefly in his own words.

• Asking questions

 Questioning is an important strategy to achieve higher-order learning outcomes

(Schunk, 2000:386). Learners should ask the lecturer or trainer questions about

programming and must then use the answers to elaborate on their previous knowledge.

It is interesting that experts spend relatively more time than novices in figuring out a

problem (Sternberg, 2006:424). The asking of questions supports programmers in this

process, as they elaborate on the amount, organisation and use of knowledge required

to solve a new programming problem.

• Creating analogies

During analogies, similarities between concepts are identified. In this way, a

programmer can abstract a solution from a previous problem and relate that information

to a new situation. This means that the programmer should make meaningful links

between formerly solved problems and a new programming problem. This requires

knowledge of the specific domain to solve the problem (Schunk, 2000:198, 200).

 88

4.3.3 The organisation-and-integration strategy in object-oriented
programming

Bergin et al. (2005:85) believe that rehearsal, elaboration and organisational strategies are

not as useful in the introductory learning of OOP as they are in other academic domains.

More research is necessary in the particular case of OOP. The organisation strategy in the

context of OOP also includes the integration of various knowledge and skills, whereby a

programmer combines code to design a whole new program or software application.

Therefore, the organisation-and-integration strategy is suggested in this programming

context.

This strategy is appropriate, because it organises and combines different knowledge and

skills with the goal of achieving a holistic problem solution. Neath and Surprenant

(2003:102) emphasise that the organisation of information helps the organiser to

comprehend and remember new information. Diagrams may be used to organise large

amounts of information (§3.3.3). Caspersen and Kölling (2006:1) point out that some

students do not naturally have the skills to combine different OOP constructs in an organised

way. However, these skills can be learned. The organisation of information is essential for

good problem solving. With the organisation-and-integration strategy, a programmer

integrates all the necessary information within one program to solve the problem.

Furthermore, experts perform better because they present new material in a coherent way

(Sternberg, 2006:396,421). The organisation-and-integration strategy can support

programmers in the combination of objects, methods and attributes within a class to form a

new and correct programming solution.

Various examples of the organisation-and-integration strategy follow:

• Organisation

 During organisation, learners organise and build connections with the information they

receive (Filcher & Miller, 2000:63). New facts are incorporated and require the

reorganisation of prior knowledge (Rajlich & Wilde, 2002:272). This is particularly

useful in the case of “complex material”, where such organisation improves retrieval by

linking associated items of relevant information (Schunk, 2000:156,387). As an

example, if a programmer has prior knowledge about the primitive types such as int

and boolean, the organisation strategy can help him to gain knowledge about wrapper

classes (Integer, Boolean) and build connections with the new information

(Wigglesworth & Lumby, 2000:119).

 89

• Outlining

 Outlining is a popular strategy used to emphasise important points that are highlighted

by bold text. Outlining is also important in a programming language. It can be applied

either in the description of a programming problem to emphasise main points or in the

code of a programming language where, for example, reserved words appear in bold

within a computer program and cannot be redefined in any program. Examples of

reserved words are class, type, private, static (Malik & Nair, 2003:24).

• Categorical clustering

This strategy organises items into a set of categories (Sternberg, 2006:200). For

example, the programmer might organise various programming types into categories,

such as primitive data types: char, byte, int, boolean; and reference types, such as

array and class.

• Selecting the main idea

Basic understanding of the requirements of any new program includes identifying and

selecting the necessary objects for that problem domain (Sicilia, 2006:6; Bergin et al.,

2005:82; Satzinger et al., 2004:243). Students may highlight and select verbs in a

problem description as an indication of possible methods for the new program.

Underlining should be selective, to emphasise important concepts in the problem

statement. This approach helps to ensure correct understanding of a programming

problem. Students can underline nouns in a problem statement to identify possible

objects (Sicilia, 2006:6), for example:

The XYZ-Company is planning to reorganise bus drivers

• Determining the flow of information

 Programmers should determine the input, output, flow of information and parameter

passing in a program (Satzinger et al., 2004:258). This can be done by means of

diagrams (use case diagrams, system sequence diagrams) or by the use of arrows

between method headings (without method bodies) to indicate possible parameter

passing between different methods.

 90

• Separation

This entails the separation of the main concepts from the details. When using abstract

classes in OOP, the abstract class cannot be instantiated and any subclass of the

abstract class must provide implementations of all the inherited abstract methods

(Sebesta, 2004:461).

Cognitive strategies, as described in this section, can help programmers to remember, select

and organise information in memory. However metacognitive strategies, by means of which

individuals monitor their own cognition, can also support the programmer in different ways

and will be discussed in detail in §4.4.

4.4 Metacognitive strategies

To achieve the goal of successful programming, students build further on cognition and

manage their own learning by means of metacognitive strategies. Metacognition, introduced

in Section 3.4, is cognition about cognition and refers to mental operations that direct,

monitor and support cognitive processes and that improve learners’ abilities to achieve a

goal (Kapa, 2001:318). Metacognition may influence behaviour, cognition and improve

human learning (Schwartz & Perfect, 2002:5). It involves selective attention, conflict

resolution, error detection and control (Shimamura, 2000:313).

A number of models for metacognition have been proposed (Gama, 2004; Ertmer & Newby,

1996; Flavell, 1979). For example, Ertmer and Newby (1996) refer to the following

metacognitive strategies: planning, monitoring and evaluation. Bergin et al. (2005) discuss

self-regulated learning with regard to introductory performance of students in their third level

of introductory OOP and refer to planning, monitoring and regulation strategies. Moreover,

Bloom’s taxonomy is used in this study, which includes evaluation as the highest level of

skills in the cognitive domain (§3.3.2, Table 3.1, Table 3.2). Therefore, to prevent possible

confusion between evaluation as a cognitive skill or as a metacognitive strategy, the term

regulation strategy will be used in this study with relation to the metacognitive domain.

Bergin et al. (2005:81, 82) found that students who perform well in programming use more

metacognitive-management strategies than lower performing students. As stated above, this

includes planning, monitoring and regulation of cognitive processes, as well as reflection on

what occurs throughout the execution of a task. Each of these strategies will be discussed in

more detail with reference to the task of programming.

 91

4.4.1 Planning strategy in object-oriented programming

Planning strategies refer to the setting of goals, skimming text before reading, and analysis

of different tasks (Bergin et al., 2005:82). Planning should be conducted up-front to

determine the sequence of specific information processing activities (Gilhooly, 2005:61;

Kapa, 2001:319). The planning approach helps to activate prior knowledge, support

comprehension, increase successful task completion and contribute in producing a quality

solution (Ertmer & Newby, 1996:11). Planning is critical to the learning of programming. In

fact, a lack of planning can result in poor understanding and trial-and-error strategies in

attempts to solve the problem (Staats & Blum, 1999:15) (§4.5.1.5). In OOP, it is important to

decide on an appropriate strategy to solve the particular problem. Planning can be

enhanced with active questioning during or prior to the task (Staats & Blum, 1999:15). The

analysis of a programming problem, identification of objects and methods, and the

application of a strategy, are necessary to solve the problem and achieve the goal.

Successful problem solvers use more time and resources in planning their complete program

than unsuccessful problem solvers do, and they spend more time initially on their design

(Sternberg, 2006:396, Appendix G). This enables them to prevent certain potential errors

proactively. Some practical examples of the planning strategy include the planning of the

program and planning the debugging process.

• Planning the program

Programmers should plan their programs in advance, set goals and consider the

problem requirements. For this purpose, they can write planning details in a journal,

making short notes on their intentions, including problems anticipated with specific

aspects of the programming process.

• Planning the debugging strategy

Students should plan their debugging process by determining in advance which

debugging strategy/ies to use. They should think ahead to anticipate potential

problems and take actions to avoid them, rather than to react to problem situations as

they occur (Kirkwood, 2000:526,527).

 92

4.4.2 Monitoring strategy in object-oriented programming

Learners use monitoring strategies to control their own programming activities. Monitoring

applies to all processes that allow the individual to observe, reflect on and experience his

own cognitive processes (Schwartz & Perfect, 2002:4, 5). It plays a vital role in the cognitive

performance of complex problem solving. Monitoring guides the process of finding a solution

as programmers aim to achieve their goals (Hertzog & Robinson, 2005:110,111).

During monitoring, a learner can transfer the use of a strategy from one task to another. For

example a successful strategy in one specific problem could be used in an isomorphic

problem. Problems are considered to be isomorphic when their formal structure is the same

and only the content differs (Sternberg, 2006:223,400).

In the true spirit of metacognition, programmers should also be able to monitor their own

strategic use. The application of an incorrect strategy may result in different and sometimes

incorrect performance (Bergin et al., 2005:82; Lemaire & Fabre, 2005:19). For example, if

the output of the program is wrong, another strategy should be chosen. It is therefore

important to learn the conditions under which it is appropriate to apply each particular

strategy. Some practical means of monitoring are given below:

• Self-questioning

‘Ask-yourself’ questions serve a useful role in reflecting on one’s knowledge and skills

about the programming task. Students should query themselves to monitor whether

they know the material they have studied. Hammouri (2003:576) emphasises that

successful problem solvers use self-questioning consciously or unconsciously and

monitor their own performance. Self-questioning enables students to direct their own

problem-solving strategies. For example, learners could ask themselves questions

about the accessibility of methods.

• Help-seeking

Help-seeking refers to acquiring support when needed (Aleven, McLaren, Roll &

Koedinger, 2004:227). Aleven et al. (2004) created a taxonomy for help-seeking

activities to determine metacognitive behaviour. In programming, help-seeking can be

done by finding help in a textbook or by on-line help, as was done by many students in

this study during the programming of the Date class – see §5.3.7.

 93

• Monitoring their own strategy use

 Programmers should monitor their own use of strategies in the programming process.

For example, the plan should be monitored to note whether events evolved according

to the initial plan, or not.

• Investigating alternatives

Students tend to use the first solution that comes to their mind. They should monitor

their performance and investigate alternative solutions to improve the quality of their

programming, as well as the quality of their code. Such monitoring should include

consideration of their approaches to correctness, testing and extendibility (Caspersen &

Kölling, 2006:2).

4.4.3 Regulation strategy in object-oriented programming

Regulation strategies are the continuous modification of one’s cognitive activity and self-

evaluation to determine whether the problem is being solved successfully (Bergin et al.,

2005:83). The chosen strategy must result in effective performance and fulfilment of the

goal. Furthermore, all of the subgoals must be satisfied to ensure that the problem is solved.

Regulation also involves the identification of errors in a task (Bergin et al., 2005:82).

Students should improve the accuracy of their self-judgement and refine their insight into the

task (Bergin et al., 2005:82; Roberts & Newton, 2005:132,154; Kapa, 2001:320). However,

Sternberg (2006:224) posits that monitoring is a bottom-up process, keeping track of current

understanding, whereas regulation is a top-down process of central control over these

strategies. Using a strategy in a totally new way, on occasions, may support the sudden

understanding of a problem as a learner gains new insight into the situation (Sternberg,

2006:406). Some practical means of applying the regulation strategy are the following:

• Rereading and going back

 During regulation, the programmer can go back and reread the problem description to

check whether the problem was solved successfully, whether appropriate test data was

used, and whether the correct output was delivered (Bergin et al., 2005:82).

• Identification of errors and demonstration of accuracy for quality control

 Programming errors identified during the monitoring process should be changed and

corrected. Edwards (2004:26) emphasises that programmers should personally

demonstrate the correctness of their own code and they should do so by using more

 94

than just debugging skills in the process. Programmers must be aware of various

measures to determine the correctness of a program (rubrics, types of assessment,

etc.).

• Debugging and program tracing

 Debugging techniques can support problem solving. Programmers should apply their

knowledge of syntactic and semantic errors to debug a program and ensure

correctness. For example, the Trace-function serves to show the next statement to be

executed, while the Watch-function displays the value in memory at a specific time,

thus identifying errors when the actual value of an item of data does not correspond

with the anticipated value (Barrow, Miller, Malan & Gelderblom, 2005:367). The

programmer can see what happens during program execution with the aid of tracing

functions in the programming environment and can reflect on the way the problem was

programmed. A programmer could, for example, trace the flow of a computer program

to fully comprehend the working of a while loop and monitor program execution.

Program tracing of each line in the program can be done in OOP languages such as

Delphi, as shown in the code fragment of Participant 29 (P29) in Fig. 4.3:

Watch function:

Trace function:

Figure 4.3: Watch and Trace functions displaying the value of the variable ‘year’
currently in memory during program execution

 95

• Reaction to feedback

Concrete feedback is important for the improvement of performance (Edwards,

2004:27) and occurs particularly in the interpretation of error messages during program

execution (Shannon, 1999:xxiii). Some reactions to feedback include the improvement

of program quality and accuracy. The purpose is to adjust a program to deliver the

correct output. However, with no corrective feedback, the same mistakes may be

perpetuated (Tan et al., 2006:828; Kapa, 2001:320).

• Making predictions

Students should fully comprehend the source code, consider how programming

statements would behave, and should predict how a change to their code would result

in a change in program behaviour (Edwards, 2004:27). Moreover, students should

hypothesise about what behaviour they expect from specific methods or from the

complete program.

4.4.4 Reflection in object-oriented programming

This subsection addresses reflection, which includes the planning, monitoring and regulation

processes addressed in the previous subsections. Reflection differs from the other three

strategies, in that it is not a separate, subsequent activity, but rather a continuous activity that

should take place through every step and phase of the programming process. Reflection is

defined as “serious thought or consideration” and the word “reflect” means to “think deeply or

carefully” (Concise Oxford English Dictionary, 2004:1208). It includes actions during the

planning, monitoring and regulation of a task to control one’s thought processes.

Furthermore, reflection is a dynamic process of receiving feedback to successfully complete

a task such as programming (Edwards, 2004:26). For example, after all syntax errors have

been corrected, the program may still not give the correct output. In such cases, students

must explicitly investigate the correctness of their code in terms of its semantics and reflect

on their prior thinking to identify the cause of these errors (Edwards, 2004:26).

Reflection makes it possible for learners to apply their metacognitive knowledge, skills and

strategies gainded from previous experiences and transfer them successfully into new

programming situations. It allows learners to consider plans before, during and after

engaging in a task (Breed, 2006, Ertmer & Newby, 1996:14).

 96

Various models explain the importance of reflection during a task (Ertmer & Newby 1996:15;

Schön, 1983:26). However, Gama’s model, the Reflection Assistant Model (RA), focuses on

metacognitive aspects in problem-solving environments (Gama, 2004:668-677). The RA is

organised around different problem-solving stages: preparation to solve the problem,

production stage and evaluation stage. Two additional conceptual stages were created: pre-

task reflection and post-task reflection (Gama, 2004:671). Pre-task reflection refers to

metacognitive aspects relevant when considering a new problem, as the learner becomes

aware of useful strategies, available resources and the focused attention needed to succeed

in the problem-solving activity. Post-task reflection refers to metacognitive aspects where

learners create a space to ponder their actions during the completed problem-solving

activities and compare them with the pre-task reflection (Gama, 2004:672).

Kapa (2001:317) found that learning was significantly more effective when provision was

made for metacognitive support during each problem-solving step. With reference to Table

3.2 (§3.3.2), relating to cognitive skills used in the OOP process, programmers should reflect

during:

• Understanding: to plan their own programming process and reflect on their planning

decisions;

• Designing: to represent their problem mentally, relate new information to prior

knowledge, monitor their own program design and make the necessary changes and

reflect on their design. For example, they should check that all the necessary classes

are included in their UML design (§3.2.4.2);

• Coding: to plan their own coding process, implement their design with programming

code, continuously modify their program and regulate their own programming. For

example, they should reflect on their problem-solving processes, which may result in a

better approach for solving a specific problem;

• Testing: to interpret and judge the program output. This includes checking the

accuracy of their own judgement, refining their personal insight, and the correction of

syntax and semantic programming errors.

In this section, the metacognitive strategies of planning, monitoring, regulation and reflection

were discussed. Programmers should apply metacognitive strategies to direct their solution

 97

process. They should continuously reflect on their activities during the entire process of

programming to achieve the goal that leads to the required outcome (Kapa, 2001:330).

Finally, important problem-solving strategies can be applied in OOP and will be addressed in

§4.5.

4.5 Problem-solving strategies in object-oriented
programming

The general concept of problem solving in OOP was considered in Section 3.5. This section

narrows down the concept by focusing on specific problem-solving strategies that can be

used to support OOP. Schunk (2000:196) distinguishes between general and specific

problem-solving strategies. General strategies include trial-and-error, means-ends analysis,

hill climbing or moving forward, divide-and-conquer, brainstorming and heuristics (Garton,

2004:46; Robinson-Riegler & Robinson-Riegler, 2004:498-499; Schunk, 2000:196). Cañas,

Antolí, Fajardo and Salmerón (2005:96) claim that the application of appropriate problem-

solving strategies reduces cognitive demands and speeds up performance. Such

approaches include a pattern of repeatable actions that define a specific style of solving

problems.

4.5.1 Problem-solving strategies during programming

In order to gain a deeper understanding of approaches to programming, there is a need to

understand which strategies students follow during object-oriented program development. A

programming strategy involves the understanding of how to apply programming knowledge

and how to solve the underlining problem efficiently (De Raadt, Watson & Toleman, 2006:1).

In many cases, it is expected of novice programmers to use an implicit approach and to

develop their own strategies as they learn to program. A study by De Raadt et al. (2006:2)

investigated the explicit teaching of problem-solving strategies in programming. It was found

that the results lay on a continuum ranging from “no teaching of any programming strategies

at all” through to “explicit teaching of strategies to novice programmers”. Different problem-

solving strategies are important during programming and are discussed in more detail.

 98

4.5.1.1 Bottom-up strategy

A bottom-up strategy emphasises the detail and planning of individual parts that are

combined to form larger components and to build higher levels of abstraction (Dunsmore,

1998:7). With this strategy, understanding progresses from the more specific to the more

general (Shaft, 1995:26).

Bottom-up implies writing the code and then chunking program basics into higher-level

abstractions (Zhang, 2005:6; Storey, Wong & Müller, 1997). In terms of OOP, this strategy

focuses on the refinement of each method before proceeding with the programming of more

classes/subclasses. Thus, a method in a class model is defined and refined before

proceeding to other methods (Détienne, 1995:145).

For example, in the Date class program, discussed in detail in Chapter 5, the detail of a

fundamental method (DaysOfMonth()) is defined before proceeding with the next method

(isLeapYear). In a study by Détienne (1995:137), it was anticipated that novice object-

oriented programmers would use a bottom-up strategy. However, Corritore and Wiedenbeck

(2000:139) emphasise that the bottom-up strategy is used more often by procedural

programmers. Furthermore, expert programmers working in an unknown domain or task use

a bottom-up strategy (Corritore & Wiedenbeck, 2000:139-148).

4.5.1.2 Top-down strategy

In the top-down strategy, high-level planning and understanding of the complete system are

addressed up-front, without initially going into low-level details. The top-down strategy starts

with goals and thereafter finds plans to achieve the goals. With a top-down approach,

understanding progresses from the general to the more specific (Zhang, 2005:7; Brooks,

1983:546).

Pennington et al. (1995:198) found that expert object-oriented designers used the

requirements of the problem to focus on the creation of classes and methods. They spent

more time on the design of a program than novice object-oriented designers. Novices hope

that the classes they have created will be useful later, while experts create classes only as

needed. Within this strategy, a programmer makes certain hypotheses and then confirms or

rejects them according to the evidence in program code (Rajlich & Wilde, 2002:271). All the

methods are defined in the class before proceeding with the refinements of each method.

For example, in a top-down design, the following methods should be defined in the Date

 99

class task of this study before proceeding with the detail: DaysOfMonth() and isLeapYear()

etc.

Programmers with knowledge of the domain and task use a top-down, goal-oriented or

hypothesis-driven strategy during understanding. Corritore and Wiedenbeck (2000:139)

emphasise that the top-down strategy is used more by object-oriented-programmers in the

early phases but that they tend to make increasing use of the bottom-up strategy during the

maintenance of tasks.

4.5.1.3 Integrated strategy

The integrated strategy is applied where the programming code is developed in a more

haphazard fashion. The programmer may switch between different strategies. An integrated

strategy combines top-down and bottom-up strategies in different levels of abstraction.

Conklin (2006:135) refers to the importance of the bottom-up approach in providing the basic

knowledge needed for programming, as well as the role of the top-down approach in

understanding the correct context of programming. This hybrid approach can be useful in

large programs where systematic understanding is not possible (Pacione, 2004:23; Von

Mayrhauser & Vans, 1997). One class is defined along with its methods before proceeding

to the next class and its methods. It is important to integrate the pieces of information in

OOP into a whole program (Kapa, 2001:317).

4.5.1.4 As-needed strategy

When the programmer attempts to minimise the amount of code that has to be understood,

he uses the as-needed strategy. The focus in this strategy is not on the overall design, but

on a specific part that has to be modified (Pacione, 2004:23; Corritore & Wiedenbeck,

2000:140). The as-needed approach makes it possible for a programmer to change only the

required areas in a program (Young, 1996). However, these observations were made during

program maintenance and not during the programming of a new task.

4.5.1.5 Trial-and-error strategy

This strategy is applied when a learner attempts to reach a solution without having had any

explicit planning strategy. Trial-and-error construction occurs as successful tasks are

established and unsuccessful tasks are abandoned (Schunk, 2000:32), leading to a gradual

form of development. This strategy is used when a part of the solution fails to work, where

the programmer has difficulties or is confused (Edwards, 2004:26). Novice Computer

Science students rely on the trial-and-error strategy to fix errors and debug a program.

 100

Edwards (2004:27) suggests that most novices focus on the development of programs and

use synthesis skills to write a program, but advises that they should first master basic

comprehension and analysis skills to avoid a trial-and-error strategy.

In this section, various problem-solving strategies were discussed: bottom-up, top-down,

integrated, as-needed and trial-and-error. These strategies support the learning of problem

solving in OOP. Some practical means of problem solving are mentioned.

• Create a class with method stubs

Method stubs are method bodies, such as procedures and functions in Delphi that

consist of minimal programming code. Novices are able to understand separate

constructs, but lack the skills to organise these constructs in a coherent way. The aim

is to break down all methods into smaller chunks to decrease the complexity of the

program. For example, for methods that do not return values, the method body is

empty and methods with return values consist only of a single return statement

(Caspersen & Kölling, 2006:1, 2). This is probably an example of the integrated

strategy, where both the top-down and bottom-up approaches are used.

• Prevent strategy fixation

Problem solvers can fixate on a strategy that usually works in many different situations,

but that is not necessarily appropriate for certain specific problems (Sternberg,

2006:411). For example, it is sometimes necessary to use the top-down strategy in a

new program and the as-needed strategy in program maintenance tasks (§4.5.1.4)

4.6 Chapter conclusion

The role of this chapter, as a follow up to Chapter 3, is to examine the relationship between

the theoretical concepts of cognitive, metacognitive and problem-solving knowledge and

skills and their practical implementation in various strategies. Programmers must have

knowledge about the different strategies and how to select and apply them in a programming

task (§4.2). The role of cognitive strategies, rehearsal, elaboration and organisation-and-

integration was mentioned in OOP (§4.3). In the section on metacognitive strategies, the

importance of planning, monitoring, regulation and reflection was emphasised (§4.4).

Furthermore, various practical problem-solving strategies that support program

comprehension and development were discussed (§4.5). The selection and application of

 101

various strategies has been described and practical examples have been given.

Programmers should explicitly learn these strategies and apply them during programming.

Students can use knowledge, skills and strategies to help them to reach specific goals. In an

empirical study, Chapter 5 will identify and evaluate the knowledge, skills and strategies that

students use during computer programming.

 102

5 Empirical research and data analysis

5.1 Introduction

Chapter 3 outlined the roles that cognition, metacognition and problem-solving knowledge

and skills play in object-oriented programming. In Chapter 4, specific cognitive,

metacognitive and problem-solving strategies were discussed that provide support to

students during the learning of OOP. This chapter describes how the empirical research of

this study focuses on ascertaining and evaluating the knowledge, skills and strategies that

students use during computer programming. In addition, this chapter sets out to answer the

main research question:

Which knowledge, skills and strategies are used during problem solving in

object-oriented programming?

Chapter 2 addressed the applicability of interpretivism (§2.3, §2.5.1), grounded theory (§2.4,

§2.5.2) and positivism (§2.6) to this study. Data collection methods and analysis methods

were also discussed in Chapter 2 (§2.7, §2.8). The current chapter implements the research

design and methodology of Chapter 2 as it considers the interpretation of participants’

computer programs, their thinking processes and the questionnaire. The chapter also

discusses the analysis of empirical materials as the raw data is converted to final patterns of

meaning (§2.7, §2.8, Fig. 5.10).

The empirical research in this study was done over two years, namely 2005 and 2006,

investigating situations where participants gained experience in object-oriented computer

programming. The participants were third-year Computer Science students (Table 2.3)

namely, BEd students from the Faculty of Education using Delphi as an object-oriented

programming language and BSc students from the Faculty of Science, who used Java as an

object-oriented programming language (§2.7.1). All participants (n=48) were required to

complete the Date class programming task (Date class and Test class, Appendix C) and to

record their thinking processes while they did the programming (§2.7). In the second year

 103

(i.e., 2006) the research was extended by a questionnaire requiring the participants to

answer specific questions about their programming experiences. For the sake of

convenience, all participants will be referred to in the male gender. As stated in Chapter 2

(§2.9.1), the author translated the text of the students’ thinking processes into English in

cases where these had originally been written in the Afrikaans language. Where necessary,

the original version was edited. The translated quotations are shown in italics in this chapter.

This study employed specific strategies to ensure that the main question was answered by

the data collection and analysis processes; which are depicted diagrammatically in Fig. 2.1 in

Section 2.1 and are summarised below:

Data collection techniques:

• Computer program and thinking processes: all participants were required to

- complete the Date class and Test class programs; and

- record their thinking processes during programming (§2.7, §5.2, §5.3, Table 2.5);

• Questionnaire: after the computer program had been written, the participants of 2006

completed a questionnaire focused on the experience of doing the programming task

(§2.7.4, §5.4, Table 2.5).

Data analysis techniques:

• Each participant’s program and thinking processes were analysed by specific

measurement criteria, as indicated in Table 5.1 (§5.2);

• The participants’ thinking processes were analysed with the aid of the Atlas.ti software

introduced in Sections 2.9 (Table 2.5), (§5.3);

• Questionnaire analysis (§5.4): the closed-ended questions were analysed statistically,

and are considered in Subsection 5.4.2. The open-ended questions are discussed in

§5.4.3.

Description of the emerging theory:

Finally, coherence between the different data sources was investigated to identify final

patterns of meaning and to describe the emerging theory that leads to a model to explain the

specific phenomena (§2.4.2, Fig. 5.10, Fig. 6.5, Havenga et al., 2008).

Triangulation was applied, whereby both quantitative and qualitative methods were used to

analyse participants’ programs and their written thinking processes (see Section 5.5).

 104

5.2 Analysis of participants’ computer programs and
 thinking processes

After explaining the measurement criteria and outlining the general analysis and scoring of

the computer programs and thinking processes, this section highlights two particular cases,

namely a poor program and an excellent program respectively. The analyses of these two

examples were conducted in the same way as those of all the other participants’ programs

and thinking processes (Table 5.2, §5.2.2, §5.2.3, §5.2.4).

Following this, statistical analysis on the raw scores of all the participants is presented

(Table 5.2), investigating the constructs of cognition, metacognition and problem solving and

their relationship to OOP. Section 5.2 culminates by considering what particular knowledge,

skills and strategies are used by successful programmers (§5.2.7).

Analysis strategy used in subsections §5.2.1 to §5.2.4:

• All participants’ computer programs and thinking processes were analysed using the

measurement criteria that emerged from Chapters 3 and 4 (Table 5.1, Table 5.2);

• An example of a poor program was selected, along with the relevant participant’s

thinking processes. This represents the detailed knowledge, skills and strategies (or

the lack thereof) of the participant and is discussed in detail (Table 5.2, §5.2.2,

Programs 5.1 and 5.2, Appendix F). The selection was made according to low scores

for the measurement criteria;

• An example of an excellent program was selected, along with the participant’s thinking

processes. This represents the detailed knowledge, skills and strategies of the

participant and is discussed in detail (Table 5.2, §5.2.3, Programs 5.3 and 5.4,

Appendix G). The selection was made according to high scores for the measurement

criteria.

Analysis strategy used in subsections §5.2.5 to §5.2.7:

• A detailed description of certain statistical measurements is given in Subsection 5.2.5.

• All participants’ computer programs and thinking processes were analysed using these

statistical measurements, including confirmatory factor analysis, sample adequacy,

reliability testing, descriptive statistics, such as the mean value and standard deviation,

practical significance with reference to effect size and the relationship between two

variables as represented by the correlation coefficient (Table 5.2, §5.2.6).

• Specific knowledge, skills and strategies used by successful participants are discussed

(§5.2.7, Table 5.2, Table 5.18).

 105

5.2.1 Measurement criteria

This subsection describes how the performances of the 48 students in the Date class and

Test class computer programs and their thinking processes were analysed, according to the

measurement criteria in Table 5.1. The raw scores obtained are given in Table 5.2. The

criteria were generated from the theoretical literature studies of Chapters 3 and 4 and

originated from, among others, the following subsections:

• Cognitive knowledge and skills (§3.3);

• Metacognitive strategies (§4.4);

• Problem-solving strategies (§4.5);

• OOP knowledge and skills (§3.2).

Several of the criteria that refer to aspects of programming performance were obtained from

Sebesta (2004). Table 5.1 categorises each criterion and indicates its origin. Scores were

allocated as follows: for each subcategory in Table 5.1, participants obtained a mark (score)

out of 4, except for the problem-solving category where they could use more than one

strategy. As a result, 8 marks were allocated for this section. However, participants who

used the trial-and-error strategy obtained zero (0) for this section, since it was not considered

an acceptable problem-solving strategy (§4.5.1.5).

Each participant obtained a total mark in the form of a percentage. The detailed mark

allocations as well as the totals are shown in Table 5.2.

Subsections 5.2.2 and 5.2.3 present two detailed examples relating to a poor program and

an excellent program respectively. The associated analyses were conducted in the same

way as the analyses of all the other participants’ data.

 106

Table 5.1: Measurement criteria for the analysis of Delphi and Java programs and thinking processes

Measurement criteria

Categories:
 Knowledge, skills and strategies

Reference:
Section (§) or Table

Maximum
marks

Cognitive knowledge and skills

Evidence of knowledge of the programming language Knowledge 4

Interpretation of the problem

Comprehension

4

Application of prior knowledge in a new program

Application

4

Analysis of the problem – breaking it down in steps

Analysis

4

Design of a new program

Synthesis

4

Evaluation of the solution

Evaluation

§3.3.2

Table 3.1
Table 3.2

4

Metacognitive strategies

Evidence of planning during programming

Planning

4

Evidence of monitoring tasks during programming

Monitoring

4

Evidence of regulation or modification to correct flaws
during programming

Regulation

§4.4.1- §4.4.3

4

Problem-solving strategies

Application of problem-solving strategies during
programming

Bottom-up, top-down, integrated,
as-needed

§4.5

8

 107

Table 5.1 (continued): Measurement criteria for the analysis of Delphi and Java programs and thinking processes

Measurement criteria

Category:
OOP knowledge and skills

Reference:
 Section (§) or Table

Maximum
marks

Analysis of the program requirements Program requirements analysis §3.5.2.1 4

*Programming techniques used: indentation, readability, variable
names and declaration

Programming techniques Sebesta (2004:193-195) 4

*Application of the correct use of programming statements Programming statements

Sebesta (2004:293-313,
321-337)

4

Application of user-friendliness and usability User-friendliness – 4

Design of classes and instantiation of objects Classes and objects §3.2.3.1, §3.2.3.2 4

Application of methods, such as constructors, mutators and accessors Method application §3.2.3.3 4

*Decision on the accessibility: public, private Access control Sebesta (2004:459) 4

*Application of parameter passing: number, order, type of variables Parameter passing Sebesta (2004:356-367) 4

Application of reasoning skills in OOP Reasoning §3.3.1.2 4

*Application of exception handling Exception handling Sebesta (2004:542-544) 4

*Application of program structure and scope Program structure and scope Sebesta (2004:211-215) 4

Actual solution to the problem Solution of problem §3.5, §3.5.2 4

Evaluation of the Date class and Test class Program evaluation §3.5.2, §3.3.2 4

Evidence of correct program output and test data used Correctness of output – 4

Total

100 (%)

 *Criteria were selected to reflect on general characteristics of programming as applied in the Date class and Test class programs of this study (Sebesta,
 2004:8). All the participants’ thinking processes and computer programs were analysed using these measurement criteria. Their scores are shown in Table
 5.2. Certain criteria refer to information in the thinking processes and others relate to performance in the programming task.

 108

Table 5.2: Analysis of Delphi and Java programs and thinking processes of all the participants (n=48)

Category BEd 2005 (n1 = 11) BSc 2005 (n2 = 17 – continued on next page)

 Participant number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Cognitive knowledge, skills

Knowledge 4 2 2 2 4 4 4 3 4 3 3 4 4 4 4 3 4 4 4 4 4 4 4 3 4

Comprehension 3 2 2 3 3 4 4 3 4 3 3 4 4 3 4 3 4 4 4 3 4 4 4 3 4

Application 2 3 2 2 3 4 4 3 3 3 3 4 4 3 4 2 4 3 4 3 4 4 4 3 4

Analysis 3 2 2 2 3 4 3 3 3 2 2 4 3 3 3 2 4 3 3 3 4 3 4 2 3

Synthesis 2 2 1 1 2 4 3 2 3 2 2 4 3 2 3 1 4 2 3 2 4 3 4 2 3

Evaluation 2 1 1 1 2 3 3 2 3 1 1 4 3 2 3 0 3 0 2 0 3 2 3 2 2

Metacognitive strategies

Planning 2 3 3 3 3 4 4 3 4 3 3 4 4 3 4 2 4 4 4 3 4 3 4 3 4

Monitoring 1 1 0 2 3 3 3 3 4 2 2 4 3 2 3 2 4 3 2 0 4 0 4 1 3

Regulation 2 1 0 1 2 3 3 3 3 1 1 4 2 2 2 0 3 1 1 0 3 0 3 1 2

*Problem-solving strategies 8 8 0 8 0 8

OOP knowledge and skills

Proper requirements analysis 2 2 1 2 4 4 4 3 3 3 3 4 3 3 4 3 4 4 4 3 4 3 4 2 3

Programming techniques 2 2 1 2 4 4 4 2 4 3 3 4 4 3 4 2 4 1 4 3 4 3 4 2 3

Programming statements 3 3 1 3 3 4 4 3 4 3 3 4 4 3 4 1 4 0 4 3 4 3 4 3 3

User-friendliness 1 2 1 2 4 3 4 3 4 2 3 3 2 0 3 0 0 0 1 0 2 0 2 0 0

Classes and objects 2 3 0 3 3 4 4 3 3 2 2 4 4 3 3 2 4 0 4 3 4 3 4 2 3

Method application 2 3 1 3 3 4 3 3 3 2 2 4 4 3 3 2 4 0 3 2 4 2 4 2 3

Access control 3 3 0 3 4 4 4 4 4 3 3 4 4 4 4 3 4 0 4 3 4 3 4 3 3

Parameter passing 3 3 0 3 4 4 4 4 4 3 3 4 4 3 4 2 4 0 4 3 4 3 4 3 3

Reasoning 3 3 1 3 3 3 4 3 3 2 2 4 3 3 3 2 4 2 3 2 4 3 4 2 3

Exception handling 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 1 0 0 0 3 0 0

Program structure and scope 3 3 1 3 3 4 4 3 4 3 3 3 4 3 3 1 3 0 3 2 3 3 4 3 3

Solution of problem 2 1 0 2 2 3 3 3 2 2 2 4 3 2 3 0 3 0 3 2 4 2 4 2 3

Program evaluation 1 1 0 2 2 3 3 3 2 1 1 3 3 2 3 0 3 0 2 0 3 2 4 1 2

Correctness of output 0 0 0 0 0 0 1 0 0 0 0 3 0 0 3 0 0 0 0 0 0 0 3 0 0

TOTAL (%) 56 54 20 56 72 85 85 70 79 57 58 95 80 64 82 41 83 39 75 52 86 61 94 45 69

 *Problem-solving strategy B
U

B
U

І

B
U

B
U

B
U

B
U

B
U

B
U

B
U

B
U

B
U

B
U

B
U

T
D

T
D

B
U

B
U

B
U

B
U

B
U

IG

IG

І IG

* BU = Bottom-up, TD = Top-down, IG = Integrated strategy

 109

Table 5.2 (continued): Analysis of Delphi and Java programs and thinking processes of all the participants (n=48)

Category BSc 2005 cont BEd 2006(n3=3) BSc 2006 (n4 = 17)

 Participant number 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Cognitive knowledge and skills

Knowledge 4 4 4 4 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Comprehension 4 4 4 4 4 2 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4

Application 4 4 4 4 3 1 4 4 4 3 4 4 4 3 4 4 4 4 4 4 3 4 4

Analysis 4 3 4 4 3 1 4 4 4 4 4 4 4 3 4 4 4 3 4 4 3 4 3

Synthesis 3 3 4 4 3 1 4 3 3 3 4 4 4 2 3 4 4 2 4 3 2 4 3

Evaluation 3 2 4 4 3 1 4 2 3 3 3 3 3 2 3 3 4 2 4 3 1 3 3

Metacognitive strategies

Planning 3 4 4 4 3 0 4 4 3 3 3 3 4 2 4 3 3 4 4 4 4 4 4

Monitoring 0 3 4 4 3 1 4 3 3 3 2 1 2 2 3 2 2 3 3 2 2 3 3

Regulation 0 2 3 3 2 0 4 3 3 3 2 1 2 1 2 1 2 3 3 2 1 2 3

*Problem-solving strategies 8 8 8 8 8 0 8 8 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8

OOP knowledge and skills

Programming requirements analysis 3 4 4 4 4 1 4 4 4 4 4 4 4 3 4 4 4 3 4 4 3 4 4

Programming techniques 3 4 4 4 4 1 4 3 3 4 4 4 4 3 4 3 4 4 4 4 3 4 4

Programming statements 3 3 4 4 3 0 4 3 3 4 4 4 4 3 4 3 4 4 4 4 3 4 3

User-friendliness 0 0 3 4 3 2 4 3 1 2 1 2 3 1 2 1 2 2 4 3 2 3 3

Classes and objects 3 3 4 4 3 0 4 3 4 4 4 4 4 3 4 4 4 3 4 4 3 4 3

Method application 3 3 4 4 3 0 4 3 3 4 3 3 3 3 3 3 4 3 4 3 2 3 3

Access control 3 4 4 3 3 0 4 3 3 3 4 4 4 3 4 4 4 3 4 4 4 3 4

Parameter passing 3 4 4 4 3 0 4 4 3 4 4 4 4 3 4 4 4 4 4 4 4 4 4

Reasoning 3 3 4 4 3 1 4 3 3 4 4 4 4 2 3 3 4 3 4 4 2 4 3

Exception handling 0 0 3 3 1 0 4 2 1 3 0 1 2 1 1 0 3 1 4 1 2 2 2

Program structure and scope 3 3 4 4 3 2 4 3 3 3 3 3 4 3 4 4 4 3 4 3 3 3 3

Solution of problem 3 3 4 4 3 0 4 3 3 3 4 4 4 2 3 3 4 3 4 3 2 4 3

Program evaluation 2 2 4 4 2 0 4 3 1 3 3 3 4 2 3 2 3 3 4 3 2 4 3

Correctness of output 0 0 3 4 2 0 4 1 0 2 2 2 3 0 3 0 3 1 3 2 0 0 3

TOTAL (%) 65 73 96 97 76 16 100 80 66 85 82 82 90 62 85 75 90 77 97 84 67 86 84

 *Problem-solving strategy B
U

B
U

B
U

IG

B
U

T
E

T
D

B
U

T
E

IG

B
U

B
U

B
U

B
U

B
U

B
U

B
U

T
D

B
U

B
U

B
U

T
D

B
U

* BU = Bottom-up, TD = Top-down, IG = Integrated strategy, TE = Trial-and-error. P31 and P32’s data are highlighted as an indication of a poor and an excellent program
respectively.

 110

Subsections 5.2.2 and 5.2.3 present detailed examples of a poor program and an excellent

program, done by Participants 31 and 32 respectively. In these discussions:

• Occurrences of concepts referred to by the measurement criteria in Table 5.1 were

extracted by selecting specific words of the thinking processes that represented

particular criteria (Table 5.3, central column);

• Examples are given of associated computer statements from these programs (Table

5.3, third column);

• The way participants implemented each category of measurement criteria is discussed.

This approach highlights the relationship between participants’ thinking processes and their

associated programs. Note that, prior to this detailed analysis of the two selected

participants, marks were allocated to all the participants according to the measurement

criteria (see Tables 5.1, 5.2 and 5.11).

5.2.2 Example 1: A poor program

This subsection discusses the investigation of a poor program in DELPHI in which

Participant 31 (P31) had problems in applying different knowledge, skills and strategies

during the Date class programming task. P31 submitted two separate incomplete programs

in an attempt to solve the Date class task, namely Programs 5.1 and 5.2 (Appendix F).

Tables 5.3 – 5.5 display the application of the measurement criteria given in Table 5.1 (first

column of Tables 5.3 – 5.5), with reference to P31’s corresponding thinking processes

(central column) and/or Delphi computer program segments (third column). In most

situations, the central column contains italicised statements extracted from P31’s written

thinking processes. Appendix F, the data of Participant 31, contains P31’s programs and

written thinking processes.

 111

5.2.2.1 Cognitive knowledge and skills

A discussion follows regarding P31’s Date class programs and thinking processes in the

cognitive domain (§3.3.2, Table 3.1, Table 3.2, Table 5.1). Table 5.3 presents examples of

data in the cognitive domain in association with the measurement criteria.

Table 5.3: Examples of P31’s cognitive knowledge and skills (or the lack thereof)

Cognitive knowledge and skills

Measurement criteria Thinking processes Evidence in the program

Evidence of knowledge of the
programming language

Mark: 2

Knowledge

A form is created.
Add the components on the
Delphi form.

Components added on the
Delphi form: Label, GroupBox,
EditBox and Button.
LblOutput1 := …

[Incomplete statements]

Interpretation of the problem

Mark: 2

Comprehension
I had problems to interpret leap
years.

Leapyear := 1904 or 1936 or
2004;
[Years named, not calculated]

Application of prior
knowledge in a new program
Mark: 1

Application
I think that GroupBoxes will be
a better choice.

There was very little evidence
in P31’s program to illustrate
application

Analysis of the problem –
breaking it down in steps

Mark: 1

Analysis
I have asked when it is a leap
year.

If edtLeapyear =
 Leapyear; then

…
[Incomplete statements]

Design of a new program

Mark: 1

Synthesis
An if-statement was necessary
for leap years.

If edtInput2 := February then
 lblOutput:= '28 or 29 Days';
[Incomplete calculations]

Evaluation of the solution

Mark: 1

Evaluation
My program does not work.

There was no evidence of
program execution.

• Knowledge, comprehension and application skills

Table 5.3 shows examples of cognitive skills, or rather the lack of such, as displayed by

P31. The participant did not understand the programming problem and used the

textbook to access additional information. Furthermore, P31 lacked knowledge of the

syntax of basic programming statements and made unnecessary errors. One example

 112

is: LblOutput1.caption … where he omitted to add the caption property to the Label

component – see row 3 of Table 5.3.

 Concerning comprehension, P31 initially had problems understanding when a year is a

leap year. He did not realise that programmers had to personally program this

calculation! The following assignment statement was incomplete: Leapyear := 1904 or

1936 or 2004, where the participant omitted to add ‘Leapyear’ before each ‘or’ boolean

operator (Program 5.2, Table 5.3). In addition, this participant displayed limited

knowledge of OOP and found it difficult to apply his knowledge in the Date class

programs (§3.2). For example, he should have decided on a testDate() method

(function or procedure) to determine the number of days in each month.

• Analysis, synthesis and evaluation skills

Table 5.3, rows 6 and 7 refers to programming lines in which P31 attempted to

determine whether a year was a leap year. However, programming statements were

entered without any calculations: if edtLeapyear = Leapyear; then ... The programmer

should have determined the specific number of days for each month. For example,

February could have 28 or 29 days depending on whether a year was a leap year.

Moreover, it was difficult for P31 to use synthesis skills (§3.3.2, Table 3.1, Table 3.2).

This participant clearly found it difficult to complete the Date class program.

Program self-evaluation is a continuous process during programming. It includes the

evaluation of program statements, program segments and the evaluation of the

complete program. P31 should have applied his knowledge and skills to evaluate the

correctness of the program, and to diagnose the problems. Instead, he made the

statement: My program does not work. Practical skills are required during program

testing to debug a computer program and to understand error messages. Furthermore,

P31 should have used test data to determine whether the program was producing the

correct output.

 113

5.2.2.2 Metacognitive strategies

A discussion follows on P31’s Date class task and thinking processes in the metacognitive

domain (§3.3.2, Table 3.1).

Table 5.4: Examples of P31’s metacognitive strategies (or the lack thereof)

Metacognitive strategies

Measurement criteria Thinking processes
Evidence in the

program

Evidence of planning during
programming

Mark: 0

Planning

No evidence of planning was
found.

No evidence of planning.

Evidence of monitoring tasks
during programming

Mark: 1

Monitoring

I still have problems. My
program does not work.

My program did not show me
errors.

Incomplete evidence of
monitoring. P31 should
monitor his own
performance to identify
errors.

Evidence of regulation or
modification to correct flaws
during programming

Mark: 0

Regulation

I don’t know if it is correct.

No evidence of regulation;
instead, ignorance on this
aspect was evident.

• Planning, monitoring and regulation strategies

No evidence of any planning strategy was found. P31 mentioned that he encountered

problems with the program and tried to go back to study the textbook (§3.4, §4.4, Table

5.4, Appendix F). He could not identify the programming errors. P31 was not able to

monitor and regulate his programming task and could not solve the problem. This

implies that he could not make a diagnosis nor make the necessary changes or correct

any errors: I don’t know if it is correct.

 114

5.2.2.3 Problem-solving strategy

P31 used the trial-and-error strategy during the programming process. This strategy is

applied when a learner attempts to reach a solution without using any explicit planning

strategy (§4.5.1.5, Table 5.5). The following statement indicates this strategy: I have typed

all the things that I thought should be in the program.

Table 5.5: Examples of P31’s problem-solving strategies (or the lack thereof)

Problem-solving strategy

Measurement criteria Thinking processes
Evidence in the

program

Application of problem-solving
strategies during programming

Mark: 0

Trial-and-error

I have typed all the things
that I thought should be in
the program

Not applicable

5.2.2.4 Application of measurement criteria in the Delphi program

P31’s performance in the OOP computer program was analysed to determine whether he

was able to apply his knowledge and skills in writing the program. P31 submitted two

separate incomplete programs in an attempt to solve the Date class task, namely Program

5.1 and Program 5.2 respectively (see Appendix F for the full attempts). In Programs 5.1

and 5.2 immediately following, which are extracts from Appendix F, very few program

segments occur that could be highlighted for measurement of criteria in OOP, since the

correct approach was clearly absent. Moreover, very few cognitive, metacognitive and

problem-solving knowledge, skills and strategies were used. The result was incomplete

computer programs.

Note that the highlighted program segments in Programs 5.1 and 5.2 following are

associated with certain of the measurement criteria from Table 5.1. The relevant categories

of the specific measurement criteria are included in framed labels. For example, in the

programming statement in Program 5.1,

lblNaam: TLabel;

the category, User-friendliness, inserted by the researcher, refers to the measurement

criterion: Application of user-friendliness and usability. The researcher’s comments in

Program 5.1 and Program 5.2 following are included in square parentheses.

 115

unit Datum_u; // [First application program saved as Datum_u]

interface

uses

 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
 StdCtrls, Buttons;

type

 TFrmDatums = class(TForm)
 lblNaam: TLabel; User-friendliness

 gpbSkrikkeljare: TGroupBox;
 …

 private

 { Private declarations }
 public

 { Public declarations }

 end;

var

 FrmDatums: TFrmDatums;

implementation

 …

procedure TFrmDatums.btnSkrikkeljaarClick(Sender: TObject);

begin;

end;

procedure TFrmDatums.btnMaandClick(Sender: TObject);

begin

If edtInvoer2 := Januarie, Maart, Mei, Julie, Augustus, Oktober, Desember then
lblUitvoer:= '31 Dae';

 If edtInvoer2 := Februarie Programming statements // [incomplete and wrong]

then
lblUitvoer:= '28 of 29 Dae'; // [incomplete and wrong]

 If edtInvoer2 := April, Junie, September, November then
lblUitvoer:= '30 Dae';
end;

procedure TFrmDatums.btnOKClick(Sender: TObject);

Dae:=Integer;
begin

If radDaeVerloop := checked Programming statements // [incomplete and wrong]

then

Dae:=edtDatum2-edtDatum1;
lblUitvoer3:= ''Dae'';

 If radVerskilTussenDatums := checked
then

Dae:=edtDatum2-edtDatum1; Programming techniques // [incomplete and wrong]

lblUitvoer3:= ''Dae'';

end;

Program 5.1: Delphi program segment from the Date class program of P31
(First attempt)

 116

unit Datum_u; [Second application program saved as Datum_u.~pas]

interface

uses

 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
 StdCtrls;

type

 TFrmDatums = class(TForm)
 lblNaam: TLabel; User-friendliness

 gpbSkrikkeljare: TGroupBox;
 lblInvoer1: TLabel;
 edtSkrikkeljaar: TEdit;
 lblUitvoer1: TLabel; User-friendliness

 btnSkrikkeljaar: TButton;
 procedure btnSkrikkeljaarClick(Sender: TObject);

 private

 { Private declarations }
 public

 { Public declarations }
 end;

var

 FrmDatums: TFrmDatums;

implementation

{$R *.DFM}

procedure TFrmDatums.btnSkrikkeljaarClick(Sender: TObject);

var Skrikkeljaar:Integer;
NieSkrikkeljaar:string;

begin

Skrikkeljaar := 1904 or 1936 or 2004; Reasoning // [incomplete and wrong]

If edtSkrikkeljaar = Skrikkeljaar ;
 Programming statements // [incomplete and wrong]

then
 lblUitvoer1 := 'skrikkeljaar'; Programming statements // [incomplete and wrong]

end;

end. // [This program cannot be compiled]

Program 5.2: Delphi program segment from the Date class program of P31
(Second attempt)

 117

Figure 5.1: Design form of the first application program of P31

Program 5.1 showed that P31 was able to use various buttons when designing a form for the

user (Fig. 5.1), namely: editBox, label, groupBox, radiobuttons and bitmapButtons. However,

he experienced difficulties in writing the required functionality for each button. For example,

he could not program the calculations for the LeapYear button (‘Skrikkeljaar’ button) at all.

Furthermore, he had problems with the programming required to calculate the difference

between two dates. In compiling P31’s program, numerous errors were indicated by the

compilation shown in Fig. 5.2:

Figure 5.2: Compilation of P31’s program showing numerous errors

 118

Table 5.6 displays the marks allocated to P31 for the OOP section. No program output was

possible from either Program 5.1 or Program 5.2.

Table 5.6: Marks allocated to *P31 for OOP

Measurement criteria for OOP

Marks
(4)

Analysis of the program requirements 1

Programming techniques used: indentation, readability, variable names and
declaration

1

Application of the correct use of programming statements 0

Application of user-friendliness and usability 2

Design of classes and instantiation of objects 0

Application of methods, such as constructors, mutators and accessors 0

Decision on the accessibility: public, private 0

Application of parameter passing: number, order, type of variables 0

Application of reasoning skills in OOP 1

Application of exception handling 0

Application of program structure and scope 2

Actual solution to the problem 0

Evaluation of the Date class and Test class 0

Evidence of correct program output and test data used 0

* P31’s programs are included in Appendix F.

The final marks for all sections, as well as the overall percentage are shown in Table 5.11 in

Subsection 5.2.4, where they are compared with those of P32.

5.2.3 Example 2: An excellent program

Example 2 relates to an excellent program written in JAVA in which P32 applied insightful

knowledge, skills and strategies in the programming of the Date class task. P32 submitted

two separate complete programs for the Date class and Test class respectively (see

Appendix G). Segments of these programs are shown in Programs 5.3 and 5.4 in §5.2.3.4.

These programs are excellent examples of well-designed, accurate code. Tables 5.7 – 5.9

show application of Table 5.1’s measuring criteria (first column of Tables 5.7 – 5.9), with

reference to P32’s corresponding thinking processes (central column) and/or Java computer

program segments (third column). In most situations, the central column contains italicised

statements extracted from P32’s recorded thinking processes.

For the full text of P32’s excellent thinking processes, see the second part of Appendix G.

Effective use of supportive knowledge, skills and strategies was clearly in evidence.

 119

Note: the % sign or ‘modulus’ refers to the remainder when a specific number is divided by

100 or 400 to determine whether a year is a leap year (§2.7.2). Marks were allocated to the

participant according to the measurement criteria (Table 5.1, Table 5.2, Table 5.11).

5.2.3.1 Cognitive knowledge and skills

This subsection investigates the cognitive knowledge and skills that P32 used in his thinking

processes and/or computer program (§3.3.2, Table 3.1, Table 3.2).

Table 5.7: Examples of cognitive knowledge and skills used by P32

Cognitive knowledge and skills

Measurement
criteria

Thinking processes Evidence in the program

Evidence of
knowledge of the
programming
language

Mark: 4

Knowledge

Create a constructor for the
Date.java class: the constructor
should receive a date.

You need to import the
BufferedReader,
InputStreamReader … use the
while and Boolean.

BufferedReader console = new
BufferedReader (new

InputStreamReader(System.in));

…

public Datum() throws IOException

…

while (trueDate == false)

{

 System.out.print("Wat is vandag se

 datum (DD Month YYYY): ");

…

}

Interpretation of
the problem

Mark: 4

Comprehension

I should create the testDate method
to test the dates. This method will
receive a date and must test its
correctness according to the
calendar, for example: 45
Wednesday 1203 is an invalid date.

public boolean testDate(int

dayTemp, String monthTemp, int

yearTemp)

{

 int monthNum;

 int numDays = 0;

 boolean testMonth = false;

 boolean testDay = false;

 boolean testYear = false;

…

}

Application of
prior knowledge
in a new program

Mark: 4

Application

Test century years – year mod (%)
100. If this equals 0, then it is a
century year.

Century leap year: year mod 400, if
it equals 0, then it is a century leap
year. Not a century leap year: year
mod 4, if this equals 0 then it is a
leap year.

{

 if (yearTemp % 400 == 0)

 yearSkrik = true;

…

}

 120

Table 5.7 (continued): Examples of cognitive knowledge and skills used by P32

Measurement
criteria

Thinking processes Evidence in the program

Analysis of the
problem –
breaking it down
in steps

Mark: 4

Analysis

Which calculations are
needed to determine a leap
year and what are the return
values?

Purpose? … test correctness

Parameters? dayTemp,
monthTemp, yearTemp

Input, Output? return
boolean

Variables needed? …
testMonth, testDay, testYear

Calculations? test year,
leapYear, months

Return? Return true value if
boolean is true else return
false

{

 if (yearTemp % 100 == 0)

…

 if (yearTemp % 400 == 0)

 yearSkrik = true;

 else if (yearTemp % 4 == 0)

 yearSkrik = true;

 testYear = true;

}

Design of a new
program

Mark: 4

Synthesis

Write DateDifference()
method:

Subtract: calculate the largest
date.

Use boolean to determine the
largest e.g. firstBiggest.
...compare years and
thereafter months and then
days.

if (year1 > year2) firstBiggest = true;

else if (year2 > year1) firstBiggest = false;

else if (year1 == year2)

{

 if (month1Num>month2Num)

 firstBiggest = true;

 else if (month2Num>month1Num)

 firstBiggest = false;

…

}

Evaluation of the
solution

Mark: 4

Evaluation

Problems? Many!! The
method was difficult … and I
should include many
exceptions for leap years.

The biggest problem was the
difference between days.

I also have a few
ArrayOutOfBound
exceptions. This was solved
with diagrams.

public void datumsVerskil() throws

IOException
…

for (int i = 0; i < numYears1; i++)
{
 if ((1800 + i) % 100 == 0)
 if ((1800 + i) % 400 == 0)

 numSkrikYears1++;
 else

 numNieSkrikYears1++;
 else if ((1800 + i) % 4 == 0)
 numSkrikYears1++;
 else

 numNieSkrikYears1++;

}

 121

• Knowledge

P32 was able to apply his knowledge when writing a computer program. Table 5.7

shows examples of this as he refers to constructor, class, while-iteration, boolean and

various ways of input: BufferedReader, InputStreamReader. He also used knowledge

to test whether a condition is true by means of the while-statement. This displays

procedural knowledge e.g., knowledge of how to perform specific activities during

programming (§3.1).

• Comprehension skills

 P32 comprehended what he had read about the programming problem, evaluated his

understanding of the problem, was able to extract the important concepts and could

determine the distinctive features of the problem. (Table 3.1, Table 5.7). This

participant mentioned that only valid dates were acceptable. He comprehended the

concept ‘valid date’ and suggested that input dates should be tested. This shows that

he understood when a date is invalid and what a leap year meant.

• Application skills

P32 applied his knowledge and skills in the new programming problem and used it to

calculate leap years. He used prior knowledge and previously-written programs in new

problems, by applying his acquired knowledge, facts, techniques and rules in a different

way (§3.2.5, Table 3.1, Table 5.7). This participant determined correctly that leap years

should be divided by 4 and by 100. Century leap years should also be divided by 400,

using modulus or mod (%) in the calculation. If the remainder equals 0 then the year is

a leap year (§2.7.2, Appendix G).

• Analysis skills

Table 5.7 includes examples of specific questions (Purpose? Parameters? etc.) that

P32 posed to analyse the problem (§3.3.2): Which calculations are needed to

determine a leap year and what are the return values? During decision making,

different options were considered and a selection was made according to these

options.

He worked out how to calculate the difference between two dates, for example,

between 18 October 2006 and 09 May 1984 (see Fig. 5.3). He also established how to

calculate leap years. The if-statement was required to achieve this (Table 5.7).

 122

• Synthesis skills

P32 had the ability to organise and combine different programming statements and

incorporated various methods, such as DateDifference() and testLeapYear() to form a

new application (§3.3.2, Program 5.3, Program 5.4). He combined the Date class and

the Test class in such a way that new objects were created in the Test class that were

instantiations of the Date class (Appendix G). Correct decisions were made to

complete the program successfully.

• Evaluation skills

A computer program should be judged and evaluated (§3.3.2, Table 3.1). Table 5.7

gives examples of problems that occurred during the programming of the Date class

task. P32 was able to articulate and solve his own problems. For example, he

mentioned that the most difficult part of the program was determining the difference

between two dates. However, he was able to use knowledge and various skills to solve

the problems.

Other examples of sound evaluation are demonstrated by the way this participant

solved the problem with the ArrayOutOfBound exception and how he used test data to

determine that the output of his program was correct (Fig. 5.3). He also mentioned that

certain exception-handling techniques should be included to test for leap years.

5.2.3.2 Metacognitive strategies

P32’s thinking processes and computer programs display examples of metacognitive

strategies including: planning (§4.4.1), monitoring (§4.4.2) and regulation (§4.4.3). Table 5.8

shows the scores assigned using Table 5.1’s measuring criteria with reference to P32’s

corresponding thinking processes and/or computer program segments. The central column

contains statements extracted from P32’s thinking processes and the column on the right

displays associated programming statements from the Java computer program (Programs

5.3 and 5.4).

 123

Table 5.8: Examples of metacognitive strategies used by P32

Metacognitive strategies

Measurement
criteria

Thinking processes Evidence in the program

Evidence of
planning during
programming

Mark: 4

Planning

• Create framework for Date and
Test class

• Create a constructor

• Create the testDate method

• Test with the Test class

• Test for leap years

• Update the test program, test the
testLeapYear() method

• Write the dateDifference()
method

• Update the test program.

public Datum() throws IOException

…

public boolean testDate(…)

…

public void toetsSkrikkelJaar()
 throws IOException

…

 public void datumsVerskil() throws
 IOException

…

Evidence of
monitoring tasks
during
programming

Mark: 4

Monitoring

Create the constructor.

I have problems reading in the date
in the correct format.

The dateDifference() method is
difficult and I cannot think of a way
immediately.

It is difficult to determine how to
count from the first date up to the
second date. I cannot think of a
way to do it right now.

System.out.print("Wat is vandag se
datum (DD Month YYYY): ");

…

yearTemp =
Integer.parseInt(yearStr);
monthTemp =
input.substring(3,(input.length()-5));
String dayStr = input.substring(0,2);
dayTemp = Integer.parseInt(dayStr);

trueDate = testDate(dayTemp,
monthTemp, yearTemp);

Evidence of
regulation or
modification to
correct flaws during
programming

Mark: 4

Regulation

I have problems determining a
specific date format and decided on
the format: DD Month YYYY e.g.,
16 October 2006.

In the dateDifference() method I
can add the days from 1 January
1800 up to date1. This method is
difficult and I should provide for
many exceptions, especially for
leap years

{

if ((1800 + i) % 100 == 0)
 if ((1800 + i) % 400 == 0)
 numSkrikYears1++;

 else

…

}

• Planning strategy

P32 used well-structured planning strategies to set goals and to analyse the

programming task. For example: ‘Create a framework’, ‘Create a constructor’, and

‘Create the testDate method’ (Table 5.8). During this strategy, an appropriate

sequence of actions was followed to plan the new program. P32’s thinking processes

included multiple steps of explicit objectives, goals and strategies for the programming

 124

task and he stated clearly what he intended to achieve as indicated in Table 5.8. By

using a comprehensive planning strategy and sticking to the plan, P32 enhanced

successful task completion and produced a quality solution.

• Monitoring strategy

P32 indicated that he had problems with the correct date format and the difference

between two dates (Table 5.8): It is difficult to determine how to count from the first

date up to the second date. I cannot think of a way to do it right now. He reflected on

his own cognitive processes and recognised the situations that he did not understand;

he paused, reconsidered the problem and then decided what to do (§4.4.2). This

strategy allowed effective management of the programming process and enabled him

to guide the process to a satisfactory solution.

• Regulation strategy

P32 was continuously able to modify his own cognitive activity (§4.4.3). He identified

various errors during monitoring and made appropriate changes to regulate his own

cognitive processes. For example, he had problems with the date format and decided

to use the following fixed format: DD Month YYYY (Table 5.8). It was also necessary to

include certain exceptions to handle leap years. This participant was able to regulate

his progress, build on his own strengths, exploit possible solutions and eventually to

resolve the programming problems.

5.2.3.3 Problem-solving strategy

Participants were allowed to use more than one problem-solving strategy during

programming (§4.5). However, as indicated in Table 5.9, P32 used the top-down strategy

only, and with great success. This strategy entails the type of understanding that progresses

from the general to the more specific (§4.5.1.2). This strategy is explicitly indicated by P32’s

actions when he starts ‘with the framework for the Date class and Test class’, with the

method headings only. The top-down strategy requires high-level planning and

understanding of the overall system, without initially going into low-level details.

 125

Table 5.9: The problem-solving strategy used by P32

Problem-solving strategy

Measurement criteria Thinking processes
Evidence in the

program

Application of problem-solving
strategies during programming

Mark: 8

Top-down strategy

I will start with the framework for
the Date class and Test class,
headings, import given methods,
etc.

Not applicable

5.2.3.4 Application of the measurement criteria in the Java program

The computer programs were analysed to determine whether participants applied their

knowledge and skills during programming the Date class and Test class. Program 5.3

following is an extract from P32’s Date class program (Appendix G). Program 5.4 is a

segment of the driver or Test class program determining the correct output (Appendix G).

The highlighted segments in Programs 5.3 and 5.4 are associated with certain of the

measurement criteria in Table 5.1. The corresponding categories of the specific

measurement criteria, shown in framed labels, were added by the researcher.

import java.io.BufferedReader; Programming statements

import java.io.InputStreamReader;
import java.io.IOException;

public class Datum

{
BufferedReader console = new BufferedReader (new InputStreamReader(System.in));
 Programming statements

 String[] months31 = { "Januarie", "Maart", "Mei", "Julie", "Augustus", "Oktober",
 "Desember" }; Programming statements

 String[] months30 = { "April", "Junie", "September", "November" };
 String[] months = { "Januarie", "Febuarie", "Maart", "April", "Mei", "Junie",

 "Julie", "Augustus", "September", "Oktober", "November", "Desember" };

 private int day, year; Access control

 private String month;

 boolean trueDate = false; Programming statements

 public Datum() throws IOException Exception handling

 //Konstruktor van die Datum klas
 { Method application

Program 5.3: Java program segment from the Date class program of P32

 126

 // Lees vandag se datum in wanneer objek gemaak word
 String input = ""; Programming techniques

// Toets dan die datum
 int dayTemp, yearTemp;

 String monthTemp;

 while (trueDate == false) Programming statements

 { Reasoning

 System.out.print("Wat is vandag se datum (DD Month YYYY): ");
 // Lees datum in
 input = console.readLine();
 String yearStr = input.substring((input.length()-4),input.length());
 yearTemp = Integer.parseInt(yearStr); Programming statements

 monthTemp = input.substring(3,(input.length()-5));

 String dayStr = input.substring(0,2);
 dayTemp = Integer.parseInt(dayStr);

 trueDate = testDate(dayTemp, monthTemp, yearTemp);
 // Toets datum Parameter passing

 if (trueDate == false)
 System.out.println("Datum was inkorrek ingevoer, doen asb weer");
 // Indien inkorrek, herhaal die vraag User-friendliness

 else

 {
 year = yearTemp; Reasoning

 // Stel waardes van ingeleesde datum gelyk aan globale veranderlikes

 for (int i = 0; i < months.length ; i++) Programming statements

 if (monthTemp.equalsIgnoreCase(months[i]))
 {month = months[i]; Programming statements

 day = dayTemp;}

 }
 }
 Access control Parameter passing

 public boolean testDate(int dayTemp, String monthTemp, int yearTemp)

 // Metode wat ek geskryf het om die datums wat ingelees word, te toets
 { Method application

 int monthNum;

 int numDays = 0;
 boolean testMonth = false; Programming techniques

 boolean testDay = false;
 boolean testYear = false;
 boolean yearSkrik = false;

 if (yearTemp >= 1800)
 // Toets of jaartal groter is as 1800, soos aangewys
 {
 if (yearTemp % 100 == 0) Programming statements

 // Toets vir skrikkeljare, bedoel vir Februarie met sy verskil in dae
 if (yearTemp % 400 == 0)
 yearSkrik = true; Programming statements

 }

…} // Complete program in Appendix G

Program 5.3 (continued): Java program segment from the Date class program of P32

 127

public class Toetsklas Classes and objects

{
 public static void main (String[] args) throws IOException
 { Exception handling

 BufferedReader console = new BufferedReader(new
 InputStreamReader(System.in));
 String input = "";
 Datum datum = new Datum(); Classes and objects

 …

} …

}// Complete program in Appendix G

Program 5.4: Java program segment from the Test class program of P32

What is today’s date (DD Month YYYY): 18 October 2006

 Your Choice: 1
 Type in the year number (Any year from 1800): 1984
 The year 1984 is a leap year

 Your Choice: 2
 First date (DD Month YYYY of ‘today’s date’): today’s date [18 October 2006]
 Second date (DD Month YYYY of ‘today’s date’): 09 May 1984
 The difference between these dates is: 8197 days.

 Measurement criteria: Solution of problem

 Program evaluation

 Correctness of output

Figure 5.3: Java output from the Date class and Test class programs of P32

 128

In Programs 5.3 and 5.4 and in the program output given in Fig. 5.3, certain portions are

highlighted to indicate examples of the OOP measuring criteria from Table 5.1. Table 5.10

shows the marks allocated to P32 for the OOP section. As in the previous categories, P32

obtained full marks for all the criteria.

Table 5.10: Marks allocated to *P32 for OOP

Measurement criteria for OOP

Marks
(4)

Analysis of the program requirements 4

Programming techniques used: indentation, readability, variable names and
declaration

4

Application of the correct use of programming statements 4

Application of user-friendliness and usability 4

Design of classes and instantiation of objects 4

Application of methods, such as constructors, mutators and accessors 4

Decision on the accessibility: public, private 4

Application of parameter passing: number, order, type of variables 4

Application of reasoning skills in OOP 4

Application of exception handling 4

Application of program structure and scope 4

Actual solution to the problem 4

Evaluation of the Date class and Test class 4

Evidence of correct program output and test data used 4

* P32’s complete programs are included in Appendix G.

The final marks for all sections, as well as the overall percentage, are shown in Table 5.11,

where they are compared with those of P31. Analysis of P32’s thinking processes and

computer programs revealed sound examples of cognitive, metacognitive and problem-

solving knowledge, skills and strategies, which were used successfully to complete the Date

class and Test class programs. Due to the length of the complete program (Appendix G),

segments of code were selected and are displayed in Programs 5.3 and 5.4. These illustrate

P32’s approach to the aspects addressed by the measurement criteria relevant to this

example.

 129

5.2.4 Evaluation of the computer programs: Participants 31 and 32

P31 had problems in applying the various skills of Bloom’s taxonomy during computer

programming, especially the higher-order skills required during problem solving (analysis,

synthesis and evaluation). These findings are in line with those by Zant (2005), who claims

that it is difficult for a novice programmer to become an expert without progressing through

each of the six levels of Bloom’s taxonomy (§3.3.2).

P31 also found the different metacognitive strategies challenging. No evidence of planning

or regulation was given and little evidence of monitoring was included during the

programming task (Table 5.4). P31 used the trial-and-error strategy and typed programming

code without any explicit planning, as indicated in Table 5.5: I have typed all the things that I

thought should be in the program. These findings are in line with those by Détienne

(2003:21), who emphasises that the lowering of the level of control may result in using the

trial-and-error strategy. This participant did not use the skills required for OOP, as shown in

Programs 5.1 and 5.2.

P31 could not interpret and judge the program. He did not have a concept of the big picture

and tried to program without fully understanding the programming question and without

applying knowledge, skills and strategies to solve the problem successfully. For example, he

had problems using the correct programming statements. This is also evident in his inability

to apply procedural knowledge to determine the problem’s solution (§3.1).

P31 is an example of an unsuccessful programmer (§3.5.3, §5.2.7) who displays limited

knowledge and thinking skills in the programming domain. He could not demonstrate an

understanding of OOP basics, such as defining classes, using the correct programming

statements, creating and/or using methods and applying error handling. Furthermore, he

could not solve the actual problem nor could he provide evidence of program output (Fig.

5.2). He showed deficiencies in cognitive, metacognitive and problem-solving knowledge,

skills and strategies. This is supported by the examples given in §3.3.3, §3.4.3, §3.5.4, and

§4.4. Table 5.11 shows that P31 obtained a final mark of only 16%.

By contrast, P32 did very well and completed the programming task with a final mark of

100% as shown in Table 5.11. He used correct programming statements and applied

procedural knowledge to solve the problem (§3.1). Furthermore, P32 used all the skills of

Bloom’s taxonomy and applied various metacognitive strategies during the programming

 130

process (§3.3.2). He clearly used a top-down approach during problem solving and program

comprehension and applied his OOP skills very effectively.

P32 is an example of a successful programmer (§3.5.3, Table 3.5), who showed evidence

of a well-organised personal knowledge structure. This is clearly illustrated in the different

examples given in Tables 5.7 to 5.9, Programs 5.3 and 5.4, program output in Fig. 5.3,

Appendix G and §5.2.7. He perceived large meaningful patterns, which guided his thinking

and he worked through different levels of abstraction during the programming process. This

participant could decompose the Date class program into smaller problem-solving units and

he could determine which calculations were necessary. Moreover, he used detailed

planning, monitoring and regulation strategies to reflect on the programming task.

P32 used a top-down strategy and applied different OOP skills very effectively to solve the

problem. He started with goals and specific plans to solve the problem, which he succeeded

in doing, and he completed the Date class and Test class. He used test data effectively to

determine whether the program’s output was correct (Fig. 5.3). P32 appropriately

orchestrated all the knowledge, skills and strategies to solve the problem completely.

The marks allocated to Participants 31 and 32 are shown in Table 5.11, indicating the scores

they obtained for each criterion, as well as the final percentage each obtained.

Possible solutions to the Date class programming task are provided, one in Java and one in

Delphi. They are included on the CD inside the back cover of this thesis.

 131

Table 5.11: Summary and comparison of the marks allocated to P31 and P32

Category P31 P32

Cognitive knowledge and skills

Evidence of knowledge of the programming language 2 4

Interpretation of the problem 2 4

Application of prior knowledge in a new program 1 4

Analysis of the problem – breaking it down in steps 1 4

Design of a new program 1 4

Evaluation of the solution 1 4

Metacognitive strategies

Evidence of planning during programming 0 4

Evidence of monitoring tasks during programming 1 4

Evidence of regulation or modification to correct flaws during programming 0 4

*Problem-solving strategies [8] 0 8

*Bottom-up (BU) / Top-down (TD) / Integrated (IG) / Trial-and-error (TE) TE TD

OOP knowledge and skills

Analysis of the program requirements 1 4

Programming techniques used: indentation, readability, variable names and
declaration

1 4

Application of the correct use of programming statements 0 4

Application of user-friendliness and usability 2 4

Design of classes and instantiation of objects 0 4

Application of methods, such as constructors, mutators and accessors 0 4

Decision on the accessibility: public, private 0 4

Application of parameter passing: number, order, type of variables 0 4

Application of reasoning skills in OOP 1 4

Application of exception handling 0 4

Application of program structure and scope 2 4

Actual solution to the problem 0 4

Evaluation of the Date class and Test class 0 4

Evidence of correct program output and test data used 0 4

TOTAL 100 (%) 16 100

 132

5.2.5 Quantitative analysis – statistical methods

Various statistical methods are applied in this study, including confirmatory factor analysis,

reliability testing, descriptive statistics and practical significance calculations. These

methods, which are explained in this subsection, are used to analyse the raw data in Table

5.2, and the findings are outlined in the following subsection (§5.2.6).

• Confirmatory factor analysis

The purpose of factor analysis is to discover simple patterns of relationships between

variables and to determine whether the observed variables can be explained largely or

entirely in terms of a much smaller number of variables called factors. Confirmatory

factor analysis was used to validate the constructs formed i.e., cognition,

metacognition, problem solving and OOP. According to Johnson and Wichen

(1992:396), if variables can be grouped by their correlations, then each group of

variables represents a single underlying construct or factor. Factor analysis was based

on the correlation matrix. The method of Kaiser was used to determine the number of

factors extracted i.e., all the factors with eigenvalues greater than 1 were extracted.

In addition, the Kaiser-Meyer-Olkin measure (KMO) of sampling adequacy (Kaiser,

1970) was used. Kaiser (1974) recommends the following interpretation concerning the

study population based on the KMO measure:

a) values below 0.5: unacceptable;

b) between 0.5 and 0.7: moderate;

c) between 0.7 and 0.8: good;

d) between 0.8 and 0.9: great; and

e) above 0.9: superb.

• Reliability testing

The reliability of the scale of each construct was also tested. According to Field

(2005:666), another way of looking at reliability is to say that two people who are the

same in terms of the construct being measured should get the same score. The

Cronbach-alpha measure is utilised for this purpose. The Cronbach-alpha coefficient

(α) measures reliability and has a value between 0 and 1 (Gliem & Gliem, 2003). Kline

(1999) mentions that a value above 0.7 is good. However, after consulting the

statistical consultation services at the institution where the research was done, it was

decided that a value above 0.5 is also acceptable, since this is a high correlation of

effect size (Ellis & Steyn, 2003:52).

 133

• Descriptive statistics

The following descriptive statistics are included:

- the mean value as a measure of central location (x);

- standard deviations (s) as a measure of spreading; and

- Spearman rank correlation (r) as a measure of a monotone relationship between

variables where:

a) r = 0.1 implies a small effect;

b) r = 0.3 implies a medium effect;

c) r = 0.5 implies a large effect.

Data with an r-value of 0.5 or higher, is considered as practically significant (Ellis &

Steyn, 2003:52; Steyn, 2002).

• Practical significance: effect size calculations and correlation

Effect size

The Cohen’s d value was used to calculate the effect size for the difference between

means. This value is given by:
1 2

max

x x
d

s

−

= , where 1x and 2x represent the mean

values of the groups to be compared respectively and maxs is the maximum standard

deviation (Ellis & Steyn, 2003). Cohen (1988) gives the following guidelines for

interpretation of the effect size:

a) d = 0.2 implies a small effect;

b) d = 0.5 implies a medium effect;

c) d = 0.8 implies a large effect.

Correlation

The Cohen’s (1988) d value for relationships between two variables is given by d r=

where r represents the correlation coefficient. Guidelines for the interpretation of the

effect size (Steyn, 2002) are:

a) d = 0.1 implies a small effect;

b) d = 0.3 implies a medium effect;

c) d = 0.5 implies a large effect.

 134

5.2.6 Evaluation of all participants’ computer programs and thinking
 processes

Table 5.2 (which has already been discussed with regard to the performance of P31 and

P32) illustrates the submarks and final percentage allocated to each participant. The scale

was from 1 to 4, where 1 implies a low test score and 4 a high test score. However, before

giving an overview of the overall scoring, various categories of marks are addressed. The

values for each category namely, cognitive knowledge and skills, metacognitive strategies,

problem-solving strategies and object-oriented programming, and the success rate in terms

of correct program output are discussed. In addition, the correlation between various

constructs is outlined.

5.2.6.1 Cognitive knowledge and skills

In this subsection, the following statistical measures are used: sample adequacy, factor

analysis and reliability, mean values and standard deviations of cognitive knowledge and

skills. Table 5.2 provides the raw data.

• Sample adequacy, factor analysis and reliability

The KMO measure of information adequacy is 0.87, which indicates a suitable (‘great’)

amount of data to perform a factor analysis (see Subsection 5.2.5) i.e., the size of the

sample is more than adequate. The Kaiser method extracts one factor that shows that

all the variables within the cognitive category – knowledge, comprehension, application,

analysis, synthesis and evaluation – are highly correlated amongst themselves, hence

the construct (cognitive knowledge and skills) is valid. The extracted factor explains

79.52% of the total variation. The scale of the construct is found to be reliable with a

Cronbach-alpha value of 0.95, which implies that the cognitive category as a whole

forms a reliable construct.

• Mean values and standard deviation

Table 5.12 shows the mean values (x) as well as the standard deviations (s) for all the

participants (n=48) for each cognitive subcategory. The maximum score used for each

section was 4. The mean values range from x = 3.73 (knowledge) to x = 2.40

(evaluation). The notable decreasing tendency in the x columns shows that

participants experienced problems in using the higher-order skills (§3.3.2), especially

synthesis and evaluation of computer programs. This indicates that participants had

some difficulty in combining parts of a problem to form a new program (synthesis) and

in evaluating their program. The mean value, namely 3.23, for the complete construct

(cognitive knowledge and skills) is shown in the last row of Table 5.12.

 135

Table 5.12: Mean values and standard deviations for cognitive
knowledge and skills

Cognitive knowledge
and skills

x s

Knowledge 3.73 0.61

Comprehension 3.65 0.60

Application 3.48 0.74

Analysis 3.25 0.79

Synthesis 2.88 0.96

Evaluation 2.40 1.09

Construct 3.23 0.71

5.2.6.2 Metacognitive strategies

The statistical measures applied in this subsection are: sample adequacy, factor analysis

and reliability; mean values and standard deviations of metacognitive strategies. These

methods were introduced in §5.2.5 and, once again, Table 5.2 provides the raw data.

• Sample adequacy, factor analysis and reliability

For this construct (metacognitive strategies), the KMO measure of information

adequacy is 0.67, which indicates a moderate amount of data to perform a factor

analysis (§5.2.5). The Kaiser method extracted one factor, which shows that all the

variables – planning, monitoring and regulation – are correlated amongst themselves.

The extracted factor explained 78.09% of the total variation. The scale of this construct

is found to be reliable with a Cronbach-alpha value of 0.86.

• Mean values and standard deviation

During the programming process, participants struggled more with the monitoring

(x = 2.44) (§4.4.2) and regulation strategies (x = 1.92) (§4.4.3) than with the planning

strategy (x = 3.40) (§4.4.1), as shown by the mean values and construct

(metacognitive strategies) in Table 5.13. The mean value, namely 2.58, for the

complete construct is shown in the last row. Participants could not easily reflect on

their programming task and found it difficult to manage their thinking during

programming (§4.4.4).

 136

Table 5.13: Mean values and standard deviations
for metacognitive strategies

Metacognitive
strategy

x s

Planning 3.40 0.79

Monitoring 2.44 1.15

Regulation 1.92 1.11

Construct 2.58 0.91

5.2.6.3 Problem-solving strategies

Table 5.14 contains frequencies of the problem-solving strategies selected by various

participants, using the raw data of Table 5.2. As shown in Table 5.14, only two participants

used no strategy at all. The great majority (34) of participants used the bottom-up strategy

(§4.5.1.1), whereas some participants (5) used the top-down (§4.5.1.2) and five participants

used an integrated strategy (§4.5.1.3). Two participants used trial-and-error (§4.5.1.5). The

majority of participants used the bottom-up strategy, probably because they experienced

problems with planning a framework of the overall program and found it easier to start with

the details of a class or a method.

Table 5.14: Frequencies for selected problem-solving strategies

Problem-solving strategy
Participants

(n=48)

Bottom-up 34

Top-down 5

Integrated 5

Trial-and-error 2

None 2

5.2.6.4 Values allocated for object-oriented programming

In this subsection, the following statistical measures are applied to the raw data from Table

5.2: sample adequacy, factor analysis and reliability, mean values and standard deviations of

OOP.

 137

• Sample adequacy, factor analysis and reliability

The KMO measure of information adequacy is 0.90, which indicates a highly suitable

amount of data to perform a factor analysis (§5.2.5). The Kaiser method extracted two

factors, namely OOP ability and Program execution, which are shown in the central and

last columns of Table 5.15. The table below shows various OOP variables that

contribute to one or both factors and that measure different aspects of the OOP

knowledge and skills construct.

Table 5.15: Summary statistics for OOP knowledge and skills

OOP knowledge and skills

Factor 1

(OOP ability)

Factor 2

(Program
execution)

Analysis of the program requirements 0.62 0.42

Programming techniques used: indentation, readability,
variable names and declaration

0.83 0.37

Application of the correct use of programming statements 0.91

Application of user-friendliness and usability 0.67

Design of classes and instantiation of objects 0.92

Application of methods, such as constructors, mutators and
accessors

0.85 0.34

Decision on the accessibility: public, private 0.92

Application of parameter passing: number, order, type of
variables

0.94

Application of reasoning skills in OOP 0.75 0.48

Application of exception handling 0.88

Application of program structure and scope 0.78

Actual solution to the problem 0.80 0.48

Evaluation of the Date class and Test class 0.72 0.60

Evidence of correct program output and test data used 0.88

The first factor measures participants’ OOP ability whilst the second measures program

execution in the OOP context. Hence, there are two groups of variables measuring

different aspects of OOP. OOP ability refers to participants’ ability to apply various

OOP knowledge and skills such as the correct use of programming statements, design

of classes and instantiation of objects, accessibility of methods, parameter passing and

program structure and scope. The second factor, Program execution, refers to the

application of various knowledge and skills to ensure correct program execution, for

example, user-friendliness, exception handling and correct program output.

 138

Since both factors measure different aspects of OOP, this construct (OOP knowledge

and skills) will be treated as a whole. The two factors extracted, explained 79.83% of

the total variation. The scale of this construct is found to be reliable with a Cronbach-

alpha value of 0.96 (§5.2.5).

Complex variables are variables that contribute to both factors i.e., those that appear in

both factor columns in Table 5.15 and are indicated with an asterisk below.

OOP ability: variables loading high on factor 1

- Application of parameter passing: number, order, type of variables;

- Decision on the accessibility: public, private;

- Design of classes and instantiation of objects;

- Application of the correct use of programming statements;

- Application of program structure and scope;

- *Analysis of the program requirements;

- *Programming techniques used: indentation, readability, variable names and

declaration;

- *Application of methods, such as constructors, mutators and accessors;

- *Application of reasoning skills in OOP;

- *Actual solution to the problem; and

- *Evaluation of the Date class and Test class.

Program execution: variables loading high on factor 2

- Application of exception handling;

- Evidence of correct program output and test data used;

- Application of user-friendliness and usability.

Reliability was also tested for these factors. The Cronbach-alpha values (§5.2.5) for

these two factors are α = 0.96 and α = 0.81 respectively, meaning that all the OOP

variables within one construct are found to be reliable i.e., the OOP variables are the

same in terms of the construct being measured.

 139

• Mean values and standard deviation

Table 5.16 illustrates mean values and standard deviations of the various OOP

knowledge and skills that comprise the object-oriented programming category in this

study, listing them in ascending order of x . The last row shows the mean and

standard deviation of the OOP construct as a whole (x = 2.71).

Table 5.16: Mean values and standard deviations for OOP knowledge and skills

OOP knowledge and skills x s

Application of exception handling 0.92 1.26

Evidence of correct program output and test data used 1.00 1.37

Application of user-friendliness and usability 1.94 1.33

Evaluation of the Date class and Test class 2.35 1.18

Actual solution to the problem 2.71 1.13

Application of methods, such as constructors, mutators and
accessors

2.92 0.94

Application of reasoning skills in OOP 3.08 0.82

Application of program structure and scope 3.06 0.8

Design of classes and instantiation of objects 3.17 1.06

Application of the correct use of programming statements 3.27 0.98

Programming techniques used: indentation, readability, variable
names and declaration

3.31 0.93

Decision on the accessibility: public, private 3.35 1.00

Application of parameter passing: number, order, type of variables 3.42 1.03

Analysis of the program requirements 3.42 0.82

 Construct 2.71 0.85

Very few participants included exception handling in their programs (x = 0.92). A

possible explanation is that they did not know how to apply exception handling. The

mean value for correct program output and test data is x = 1.00, indicating that only a

few participants were able to design, write and test the complete program successfully

(§3.2).

Although user-friendliness has a relatively low mean value of x = 1.94, a contributing

factor is that many participants conducted the programming in Java, a language that

requires highly detailed programming. Considerably more time would be required to

program a graphical user interface with buttons, labels, etc. (depending on the Java

 140

Application Programming Interface being used). By contrast, it is simpler in Delphi,

where it is possible to use an available graphical user interface, in which different

messages can be used to support user-friendliness and usability. The mean value for

solving the actual programming problem is only x = 2.71, and the mean value for

evaluating the whole problem with both classes (Date class and Test class) included,

is x = 2.35.

High mean values occurred for certain criteria. For example, the participants did not

experience problems in analysing and determining the program requirements. They

applied programming techniques such as indentation and readability satisfactorily.

They used descriptive variable names and could declare the variables correctly.

Participants could distinguish between different ways of method accessibility. Overall,

they experienced problems with user-friendliness and usability, exception handling and

in obtaining the correct output from their programs, indicating that many of them were

making semantic errors in their code.

5.2.6.5 Correlations between various constructs

There is an indication that possible correlations exist between participants’ expertise in

cognition, metacognition and OOP knowledge and skills. The Spearman correlations

between pairs of these variables (§5.2.5) are shown in Table 5.17. This test is also aimed at

testing for a monotone relationship between variables to indicate the practical significance.

In all the constructs measured, correlations are larger than 0.5 and therefore relevant in

practice (Ellis & Steyn, 2003:52; Steyn, 2002).

Table 5.17: Correlations between cognition, metacognition
and OOP knowledge and skills

Construct r

Cognition

Metacognition
0.63**

Cognition

OOP
0.89**

Metacognition

OOP
0.73**

** Practically significant (Steyn, 2002).

 141

The high correlation between cognition and OOP (r = 0.89) implies that certain predictions

can be made about successful programming in cases where a programmer makes effective

use of all his cognitive knowledge and skills (Table 5.17). This shows that the higher-order

thinking skills, such as analysis, synthesis and evaluation, are required during a

programming task. This was possibly the reason why P31 experienced problems completing

and solving the programming problem, as he did not use all the forms of cognitive knowledge

and skills (Table 5.3 – Table 5.5).

Note that the correlation between cognition and metacognition is lower (r = 0.63) than the

correlation between cognition and OOP (r = 0.89). The correlation between metacognition

and OOP is r = 0.73. This indicates that the use of metacognition and reflection can support

problem-solving performance in OOP. If the participants had used all the metacognitive

strategies they would have been able to manage their own programming performance better

and guide themselves towards finding the solution.

5.2.7 Knowledge, skills and strategies used by successful programmers

Subsections 5.2.2 and 5.2.3 were detailed studies of the performance and approach of two

particular programmers, one who produced a poor program and another who wrote an

extremely successful program, respectively. This section takes a more general view of the

characteristics of a number of ‘unsuccessful’ and ‘successful’ programmers, as defined by

the present researcher. With reference to the measurement criteria in Table 5.1 it was

decided to classify successful and unsuccessful programmers according to their application

of knowledge, skills and strategies during problem solving in OOP.

Table 5.18 was extracted from Table 5.2 by selecting all participants who scored 3 or 4 for

the measurement criterion ‘Correctness of output’. A successful performance cannot be

determined solely by the final percentage obtained. Note in Table 5.2 that some participants

obtained a total of more than 80%, but did not achieve correct program output (e.g.

Participants 6 and 7). P7, for example, obtained a final mark of 85% but obtained only 1 out

of 4 for correct program output. It was therefore decided that the factor of correct program

output, which indicates whether or not a participant’s program(s) executed successfully, is a

better indication of successful programming than the final percentage. Furthermore, in Table

5.16 the mean value for the criterion of ‘Correctness of output and test data used’ is only

1.00. With this background, the measure of success for program output on a scale of 4 was

defined as: x ≥ 3, leading to the generation of Table 5.18 out of Table 5.2 to show only the

‘successful participants’. The success measure is indicated by a shaded block.

 142

Table 5.18: Allocated values of successful programmers

Values allocated to successful programmers

 Participant number

12 15 23 28 29 32 38 40 42 44 48

Category

Cognitive knowledge and skills

Knowledge 4 4 4 4 4 4 4 4 4 4 4

Comprehension 4 4 4 4 4 4 4 4 4 4 4

Application 4 4 4 4 4 4 4 4 4 4 4

Analysis 4 3 4 4 4 4 4 4 4 4 3

Synthesis 4 3 4 4 4 4 4 3 4 4 3

Evaluation 4 3 3 4 4 4 3 3 4 4 3

Metacognitive strategies

Planning 4 4 4 4 4 4 4 4 3 4 4

Monitoring 4 3 4 4 4 4 2 3 2 3 3

Regulation 4 2 3 3 3 4 2 2 2 3 3

*Problem-solving strategies 8 8 8 8 8 8 8 8 8 8 8

OOP knowledge and skills

Program requirements analysis 4 4 4 4 4 4 4 4 4 4 4

Programming techniques 4 4 4 4 4 4 4 4 4 4 4

Programming statements 4 4 4 4 4 4 4 4 4 4 3

User-friendliness 3 3 2 3 4 4 3 2 2 4 3

Classes and objects 4 3 4 4 4 4 4 4 4 4 3

Method application 4 3 4 4 4 4 3 3 4 4 3

Access control 4 4 4 4 3 4 4 4 4 4 4

Parameter passing 4 4 4 4 4 4 4 4 4 4 4

Reasoning 4 3 4 4 4 4 4 3 4 4 3

Exception handling 3 0 3 3 3 4 2 1 3 4 2

Program structure and scope 3 3 4 4 4 4 4 4 4 4 3

Solution of problem 4 3 4 4 4 4 4 3 4 4 3

Program evaluation 3 3 4 4 4 4 4 3 3 4 3

Correctness of output 3 3 3 3 4 4 3 3 3 3 3

TOTAL (%) 95 82 94 96 97 100 90 85 90 97 84

*Problem-solving strategy

B
U

T
D

IG

B
U

IG

T
D

B
U

B
U

B
U

B
U

B
U

 * BU = Bottom-up, TD = Top-down, IG = Integrated strategy

The proportion of successful participants from the Delphi programmers (i.e., those who

produced the correct output) was only 1 out of 14, or 7.14%. The corresponding proportion

for Java programmers was 10 out of 34 participants, or 29.41%. A possible explanation for

the better performance of Java programmers is the fact that they were BSc students who

received instruction in programming from their first year of study, while the BEd students only

started learning to program in their second year. Another factor is that the BEd students

were more focused on the teaching of programming in schools, whereas the BSc students

focus on formal programming tasks as applied in industry. In total, only 11 out of 48

participants, or 23%, were successful. It should be remembered that the participants

completed the instructional component of the course two or three months before doing the

 143

Date class task, due to other information technology modules being interspersed with

programming in their third year studies. Table 5.19 shows the means and standard

deviations for unsuccessful and successful participants for subcategories of the three major

categories.

Table 5.19: Means, standard deviations and practical significance of
unsuccessful and successful programmers

Category

Unsuccessful
programmers

(37)

Successful
programmers

(11)

Practical
significance

 x s x s d

Cognitive knowledge and skills 3.05 0.71 3.85 0.20 1.13*

Knowledge 3.65 0.68 4.00 0.00 0.51

Comprehension 3.54 0.65 4.00 0.00 0.71

Application 3.32 0.78 4.00 0.00 0.87*

Analysis 3.08 0.80 3.82 0.40 0.93*

Synthesis 2.62 0.92 3.73 0.47 1.21*

Evaluation 2.05 0.97 3.55 0.52 1.55*

Metacognitive strategies 2.36 0.88 3.33 0.54 1.10*

Planning 3.24 0.83 3.91 0.30 0.81*

Monitoring 2.19 1.13 3.27 0.79 0.96*

Regulation 1.65 1.06 2.82 0.75 1.10*

OOP knowledge and skills 2.44 0.77 3.62 0.29 1.53*

Program requirements analysis 3.24 0.86 4.00 0.00 0.88*

Programming techniques 3.11 0.97 4.00 0.00 0.92*

Programming statements 3.08 1.04 3.91 0.30 0.80*

User-friendliness 1.62 1.30 3.00 0.77 1.06*

Classes and objects 2.97 1.12 3.82 0.40 0.76

Method application 2.70 0.94 3.64 0.50 1.00*

Access control 3.19 1.08 3.91 0.30 0.67

Parameter passing 3.24 1.12 4.00 0.00 0.68

Reasoning 2.89 0.81 3.73 0.47 1.04*

Exception handling 0.46 0.80 2.55 1.21 1.73*

Program structure and scope 2.86 0.88 3.73 0.47 0.99*

Solution of problem 2.41 1.09 3.73 0.47 1.21*

Program evaluation 2.00 1.08 3.55 0.52 1.44*

Correctness of output 0.35 0.72 3.18 0.40 3.93*

* d = 0.8, large effect size; d = 0.5, medium effect size (Ellis & Steyn, 2003:51).

 144

Practical significant differences with a large effect size were found between successful and

unsuccessful participants within all subcategories except for knowledge, comprehension,

classes and objects, access control and parameter passing, where practical significant

differences of a medium effect size occurred. A discussion follows on the knowledge, skills

and strategies that unsuccessful and successful participants used during their programming

task.

• Cognitive knowledge and skills

Unsuccessful participants could not readily apply higher-order thinking skills.

Consequently, they had problems in interpreting their errors, they could not complete

the program, and many did not obtain output.

The successful programmers achieved mean values of more than 3.5 on a 4-point

scale for the higher-order thinking skills (application, analysis and synthesis) necessary

during programming. This indicates that these participants explicitly used cognitive

knowledge and skills while programming. It was noted that the successful participants

used all the levels of Bloom’s taxonomy given in the cognition section (Table 3.1, Table

5.19). Their performances illustrate that programmers should understand a problem

precisely, and be able to interpret and evaluate their programming solutions. These

findings correspond with Zant’s (2005) results.

• Metacognitive strategies

Unsuccessful participants found it difficult to apply metacognitive activities during

programming. They encountered problems in monitoring and regulating (x = 1.65)

their cognitive resources. Very few of them applied any form of regulatory strategy.

Successful participants made extensive use of metacognitive strategies that included

planning (x = 3.91) and monitoring (x = 3.27). However the mean value of their

regulation strategy is slightly lower than 3 (x = 2.82), which implies that they could

improve on their use of regulation strategies during programming. These findings

correspond with findings by Hertzog and Robinson (2005:110, 111), who mention that

monitoring plays a vital role in the cognitive performance of complex problem solving,

since it can be used to guide the process of finding a solution.

 145

• Problem-solving strategies

Although most of the unsuccessful participants used a bottom-up strategy (27), some

wrote that they worked without using any specific problem-solving strategies (2). Two

used trial-and-error, three used a top-down strategy, and three used the integrated

strategy.

As shown in Table 5.18, seven successful participants used the bottom-up strategy,

two used top-down, and two participants used the integrated strategy during program

comprehension. Note that no successful participant used the trial-and-error strategy.

This also implies that using trial-and-error is less successful than other problem-solving

strategies in OOP.

• Knowledge, skills and strategies in OOP

Unsuccessful participants did not obtain the required program output. Instead, they

spent time iterating through their programming code to address errors, without

understanding which sections were incorrect and how to rectify them. Such

participants were much less accurate in their efforts to reach an appropriate solution.

Successful participants systematically applied different knowledge, skills and strategies

during programming. With the exception of ‘Exception handling’ (x = 2.55), all the

other mean values are above 3 on a 4-point scale (Table 5.19). Participants should

use more explicit exception-handling techniques in their programs to prevent errors

during execution. Raising an exception is a useful way to signal that the routine could

not execute normally, for example, when its input values are invalid (string instead of an

integer type).

• Mean values for cognition, metacognition and OOP

The unsuccessful participants have a mean value of x = 3.05 and successful

participants have a mean of x = 3.85 for cognitive knowledge and skills. There are

also differences for metacognition, where the unsuccessful participants have a mean of

x = 2.36 and for successful participants x = 3.33. For OOP the unsuccessful

participants have a mean value of x = 2.44 and for successful participants x = 3.62

on the 4-point scale. This data implies that successful participants used various

knowledge and skills in Bloom’s taxonomy, they reflected on their programming tasks,

they were in control of their problem-solving activities and they had the ability to

complete their programs successfully (Table 5.19).

 146

5.2.8 Application of interpretivism and positivism in Section 5.2

• Interpretivism

Principle 1 of Klein and Myers (1999; Table 2.1, Table 2.2) relates to the hermeneutic

circle, advocating iteration between parts and the whole that they form. The researcher

adhered to this principle as she analysed each participant’s program as well as the

detailed programming statements that comprise it, to determine which knowledge, skills

and strategies were applied during problem solving (Table 5.2).

In addition, the researcher applied Principle 6 (Klein & Myers, 1999), which requires

sensitivity to different interpretations by participants of the same computer program.

For example, she noted that P31 had problems interpreting leap years (§5.2.2.1, Table

5.3) whereas P32 experienced no problems in interpreting and implementing leap years

(§5.2.3.1, Table 5.7).

• Positivism

Positivism is applied in this section as an approach that verifies and confirms empirical

observations by means of measurable ways to ensure reliability and validity of data

(§2.6.2). The statistics are based on the raw scores obtained and given in Table 5.2,

and the statistical methods include the following: factor analysis and sample adequacy,

reliability testing, descriptive statistics (mean values and standard deviations), and

practical significance in Subsection 5.2.7.

To summarise this section, it appears that use of all the levels of Blooms’ taxonomy is

required, as well as reflection on the programming task – including planning, monitoring and

regulation. Successful participants used problem-solving strategies efficiently during

programming. It can thus be said that application of certain knowledge, skills and strategies

is required in order to complete an object-oriented program effectively and to obtain the

correct program output.

 147

5.3 Qualitative analysis of participants’ thinking
 processes using Atlas.ti software

This section discusses the qualitative aspects of the empirical study, for which the ground-

work was laid in Chapter 2 in Subsections 2.9.1 and 2.9.2. All the participants’ thinking

processes were analysed with the support of Atlas.ti software. Since there was a large

amount of textual data in this study, it was decided to use Atlas.ti, which is an excellent

software package to support such analysis.

Atlas.ti is a powerful tool for qualitative analysis. It provided support to the researcher during

the analytical process, organisation and interpretation of participants’ thinking processes and

in the practical application of grounded theory (§2.4). Two examples are presented in

Subsections 5.3.1.1, 5.3.1.2 and 5.3.2 to illustrate and explain the detailed process of data

analysis. Various themes that emerged from the data are discussed in Subsections 5.3.3 to

5.3.7. Subsection 5.3.8 discusses the application of interpretivism and grounded theory and

the themes that emerged, which are shown in Fig. 5.10 and further elaborated in Fig. 6.5 in

Chapter 6.

The analysis strategy in this section was addressed as follows:

• Participants’ written thinking processes were typed in Microsoft Office (Microsoft Word)

and saved as a Rich Text Format (.rtf) file with each participant’s number being used as

the file name;

• A new hermeneutic unit (HU) (Fig. 2.4, Fig. 2.5) was created and saved under the

name DATE_CLASS in Atlas.ti. Each participant’s .rtf file was saved within this single

HU as a primary document (PD);

• As stated above, each primary document was assigned to the hermeneutic unit. The

PDs were opened, one at a time, to enable specific text to be coded (Fig. 2.5, Fig. 2.6);

• Each participant’s thinking processes were read on the screen and particular words,

sentences or paragraphs that represented explicit ideas, units of meaning or thinking

processes in OOP were selected. A specific code was awarded to the selected text by

labelling the written text in the PD (Fig. 2.7). Open coding was used during this task

(§2.5.2). The process was repeated iteratively, selecting items of text that were an

indication of notable concepts during the programming process. Some memos were

also created during the coding process to record the researcher’s comments (§2.9.1).

 148

• This coding process continued until saturation of data was achieved (§5.3.2);

• Different codes were organised into coded families in Atlas.ti (§2.9), which might

represent a category. Axial and selective coding were used during this process

(§2.5.2);

• Three months later, further analyses were repeated on the same data, to refine the

coded families and to enhance reliability. Each code was highlighted with a specific

colour to indicate that it might belong to a specific family. Thereafter, each code

considered as a candidate for a specific family was checked according to that family’s

correct description (Fig. 2.11). A list of all the codes is printed in Appendix D;

• Finally, specific themes were identified from the coded families (§2.9.1). Each theme

could be used ‘as the basis for an argument’ and themes were organised to describe

the research results as a whole (Henning et al., 2004:106-107) (Fig. 5.10). The

strategy is summarised and illustrated in Fig. 2.4.

The two principle modes of working with Atlas.ti were applied in this study. Firstly, the textual

level was used which refers to all activities of coding text from the written thinking processes,

and secondly, the conceptual level was used in the form of model building by linking codes to

form networks (§2.9).

5.3.1 The coding process of two detailed examples in Atlas.ti

It is not possible to discuss all the coding processes, however, two illustrations of data

analysis are given in this subsection.

Subsection 5.2.7 proposed a definition for ‘successful participants’ and presented their

scores in Table 5.18. The coding processes of two of these successful participants (P29 and

P32) are explained in detail in the next subsections. P29 used Delphi and P32 used Java as

the programming language. The thinking processes of all participants (n=48) were analysed

in exactly the same way as the two examples in this subsection. Subsections 5.3.1.1 and

5.3.1.2 describe in detail how the data of two participants was coded, while 5.3.2 explains

how the coded data of all participants was integrated by organisation into families and

themes.

 149

5.3.1.1 The coding process of Participant 29’s thinking processes

The steps in analysing P29’s thinking processes with Atlas.ti follow:

• Thinking processes were collected

P29’s PD was opened to enable specific text to be coded. Fig. 5.4 shows this

participant’s document while Fig. 5.5 demonstrates an extract from the coding process

of a segment from the primary document (P29 point 2).

Figure 5.4: P29’s data is assigned to the DATE_CLASS hermeneutic unit
for analysis within the primary document

• Codes were assigned to specific text

P29’s thinking processes were read on the screen and particular words, sentences or a

paragraph that represented explicit ideas, units of meaning or thinking processes in

OOP were selected. A specific code was awarded to the selected text by labelling the

written text in the PD. Open coding was used during this task (§2.5.2). The process

was repeated iteratively, selecting items of text that indicated the important ideas of

P29. The highlighted text in Fig. 5.5 is a translation from the Afrikaans language with

the following thinking processes.

 150

read the assignment with precision and get the big picture. Present the big picture

of what is asked.

The code that was assigned to this selected segment is:

delphi:assignment:read with precision:determine big picture.

Henning et al. (2004:105) emphasise that it is important to resist the temptation to

repeat codes, therefore the names of codes were selected to describe the meanings of

the selected words or text as closely as possible. This enhances the accuracy of

assignment of text to specific codes. Consolidation in the form of combining similar

codes occurs in subsequent steps. The numbers in parentheses (9:10) after the code

refer to the row number where the highlighted text associated with a specific code

starts, and the row where that text ends (§2.9.1). The left column of Fig. 5.5 shows

how point 2 of Fig. 5.4 was highlighted and the right column gives the code that was

allocated to the selected text:

Figure 5.5: An example of the coding process and highlighted text of P29

5.3.1.2 The coding process of Participant 32’s thinking processes

The steps in analysing P32’s thinking processes with Atlas.ti follow:

• Thinking processes were collected

P32’s PD was opened to enable specific text to be coded. Fig. 5.6 shows the primary

document while Fig. 5.7 demonstrates an extract of the coding process.

 151

Figure 5.6: P32’s data is assigned to the DATE_CLASS hermeneutic unit
for analysis within the primary document

• Codes were assigned to specific text

P32’s thinking processes were read on the screen and particular words, sentences or a

paragraph were selected, as explained for P29. Specific codes were awarded to

selected text by labelling it in the PD, for example, the highlighted text in Fig. 5.7 is a

translation of P32’s point 1 in Fig. 5.6:

Initially create the framework for the Date.java and Testclass.java, such as

headings, imports, given methods etc.

It was assigned to the code:

java:assignment:framework of Date and Test class.

In addition, the memo (ME – 06/12/29 [4]) (Fig. 5.7) refers to the note by the

researcher:

Approach:Top-down! – general to more specific programming details

This comment indicates a top-down programming approach.

 152

Figure 5.7: An example of the coding process and highlighted text of P32

5.3.2 The organisation of codes into families and identification of themes

The coding process continued until saturation of data was achieved (§2.9.2). Saturation

occurs when no distinctly new codes emerged. Saturation did not occur until near the very

end, demonstrating the value of having 48 participants. However, it was decided to continue

the coding process until the thinking processes of all the participants had been analysed.

• Different codes were organised into families

All the codes in the hermeneutic unit, which comprised all of the 48 PDs, were

organised into possible coded families. Groups of related codes can be classified into

subsets or families (§2.9.1). Partitioning various associated codes into families reduces

the number of “chunks” requiring the researcher’s attention (Muhr, 2004:191, 192) and

further supports the analysis process. A segment of coding is shown in Fig. 5.8 with

possible coded families indicated by a specific colour. The name of a possible coded

family is indicated after each code. The selection of a name for each coded family was

inductively guided by the data (§2.9). For example, the code:

delphi:assignment:ask questions

is an indication of the metacognition family; and

delphi:assignment:determine leap years

is an indication of the cognition family, as indicated on the right-hand side of Fig. 5.8.

 153

Code-Filter: All
__

HU: DATE_CLASS
File: [C:\Documents and Settings\Administrator\My Documents\Scientific Software\ATLASti\Te...\DATE_CLASS.hpr5]
Edited by: Super
Date/Time: 07/01/26 07:12:26 PM

__

delphi:assignment:ask questions // metacognition (blue)

delphi:assignment:cannot apply problem // problem/error (yellow)
delphi:assignment:confused with procedures and functions // problem/error (yellow)

delphi:assignment:determine difference between two dates // cognition (red)

delphi:assignment:determine leap years // cognition (red)
delphi:assignment:difficult:not clear guidelines // problem/error (yellow)

Figure 5.8: Grouping of codes into the possible coded ‘families’

All the coded families were identified in the same way as in Fig. 5.8. Once again, this

was done by the grouping of various related codes and integrating them into families

(Fig. 5.9). The researcher organised the codes into families as a manual process and

selected appropriate names for the families, guided inductively by the data.

The codes on the bottom left in Fig. 5.9 represent various examples of the problem-

solving family. The left side of the list below the family list (top pane), displays the

codes that are already assigned to the selected problem-solving family. The right side

of the list displays all the codes that are not currently assigned to this selected family.

List of selected families

 Codes already assigned to the Codes not currently assigned
 problem-solving family to the problem-solving family

Figure 5.9: Selected codes in the problem-solving coded family

 154

• Inductive refinement of categories

Grounded theory analysis entails the inductive refinement of categories to more

abstract levels and the integration of categories in a coherent whole that could explain

various processes (§2.9.1). Using the terminology of Atlas.ti, a ‘family’ represents a

‘category’. Following the generation of families from the codes, various themes were

identified from the families in this study, with five major themes emerging:

1. Cognitive knowledge, skills and strategies (in short, termed Cognition)

2. Metacognitive knowledge, skills and strategies (Metacognition)

3. Problem-solving knowledge, skills and strategies (Problem solving)

4. Errors and problems during programming (Errors and problems)

5. Additional support during programming (Additional support).

It is notable that the first three of these themes, while emerging naturally from the empirical

analysis in this study, correspond closely with the major aspects investigated in the literature

review of Chapters 3 and 4. It was equally clear that many participants made inadequate

use of the skills and strategies embodied in these themes. The themes will be discussed in

Subsections 5.3.3 to 5.3.8.

5.3.3 Theme 1: Cognitive knowledge, skills and strategies

In this subsection, the first of the five emergent themes, namely cognitive knowledge, skills

and strategies is discussed. Table 5.20 presents Theme 1, where the various codes defined

in Atlas.ti that are relevant to cognition, are shown along with associated quotations from the

thinking processes.

The relevant participant’s number appears in parentheses in the second column. It can be

seen that the theme consists of various subthemes. Table 5.20 is followed by a discussion

of each subtheme.

 155

Table 5.20: Theme 1: Cognitive knowledge, skills and strategies – codes in Atlas.ti
with associated quotations from participants’ thinking processes

Theme 1: Cognitive knowledge, skills and strategies

Codes in Atlas.ti

Associated quotations from participants’
recorded thinking processes

Subtheme 1.1: Knowledge and comprehension skills

- delphi : assignment : determine leap
 years
- delphi : OOP uses objects in the program
- java : assignment : determine
 requirements
- java : assignment : must understand
 basic principles in programming

- java : test : dates valid

- I find out when it is a leap year [P31]

- OOP uses objects in the program [P7]
- First determine requirements [P20]

- A programmer should understand basic principles
 [P15]
- You should understand whether a date is valid or not
 [P20]

Subtheme 1.2: Application and analysis skills

- delphi : programming : determine
 variables required
- delphi : planning : determine scope :
 private or public
- delphi : planning : think about class
 structure
- delphi : buttons : consider the screen
 layout
- java : dates : compare : calculate days
- java : assignment : which methods are
 necessary in the class
- java : assignment : what instance
 variables should be declared?
- java : date : separate day, month, year

- Which variables do I need? [P30]

- Insert private and public [P11]

- Firstly I thought about the class structure [P10]

- Think about the screen layout [P29]

- I have decided to compare two dates [P25]
- Which methods should be in the class? [P21]

- Which instance variables are needed? [P18]

- I receive the date as a string and separate it into
 days, months and year [P40]

Subtheme 1.3: Synthesis and evaluation skills

- delphi : programming : implementation :
 procedures and functions
- java : dates : convert dates to days:
 subtract : convert
- java : test : dates valid
- java : test : leap years

- java : programming : compile, change
 errors
- java : program : program execute
 correctly : 100%
- java : test class : test output

- Now write functions for each date, month and year
 [P9]
- I need a method for conversion to number of days
 [P36]
- I also need a method to test for valid dates [P23]
- There should be a function that tests for leap years
 [P19]
- I have compiled and corrected errors [P41]

- The program is working 100% [P40]

- I tested the constructor to determine if it received the
 correct data [P32]

Subtheme 1.4: Rehearsal, elaboration and organisation-and-integration strategies

- java : class design : determine general
 and specific cases

- When designing the class, I ask myself about the
 general and special cases in each situation [P23]

 156

• Subtheme 1.1: Knowledge and comprehension skills

As indicated in the examples, participants mentioned the importance of specific

knowledge (§3.3.2). P7 had knowledge about OOP and mentioned the requirement of

using objects in a program. Participants 15 and 20 referred to the understanding of

program requirements, which includes all the required functionality as well as the

constraints applicable to the Date class program. Knowledge and comprehension skills

are also required to determine whether a date is valid [P20] and when a year is a leap

year [P31]. Most of the participants knew about variables, methods and programming

statements such as if, while and for. In general, these examples illustrate that most

participants remembered facts and interpreted the programming problem. With

reference to Zant (2005), these results confirm the importance of interpretation of the

programming problem.

• Subtheme 1.2: Application and analysis skills

Application refers to the use of previously learned material in new situations, while

analysis refers to the break-down of material into subparts (§3.3.2, Table 3.1). P29

used application skills when he considered, and later designed, a user-friendly screen

layout to determine leap years and when he decided on the input and output involved.

Whilst analysing the programming problem, decisions should be made about instance

variables [P18, P30] and methods. P21 mentioned that specific methods should be

included in the program. For example, various calculations were necessary in the

getDay()-method. Such calculations demand analytical reasoning and computational

skills to provide the correct number of days for each month. P40 mentioned that he

started with the analysis of the date e.g., 10 April 2006 and decided to separate the

day, month and year. Examples emerged from participants’ thinking processes where

they thought about the implementation of the programming problem. This implies that

various decisions were made on the programming details such as the screen layout,

variables and methods, and the required calculations to determine leap years.

However, some participants did not use detailed application and analysis skills and

could not solve the problem i.e., P31 (Table 5.3).

• Subtheme 1.3: Synthesis and evaluation skills

The combining of parts to form a new whole relates to synthesis, while evaluation is the

activity of judging the value of material (Table 3.1). During synthesis, participants

proposed a variety of different statements to implement the problem in a program, for

example functions to determine the days, months and year [P9] and to convert the

number of days [P36]. P36 tested the loop value and added the required number of

 157

days. In addition, he used a flag to test for leap years. After creating an object, P23

called the getTest() method and assigned a boolean value to the variable, depending

on the correctness of the date. These thinking processes reflect on some examples of

synthesis skills. However, the indication was that not all participants mentioned

synthesis skills or they could not apply these skills in their programs. Some participants

could not complete the program, and many did not obtain output i.e., P3, P24 and P31

(Table 5.2).

Evaluation is the highest level on Bloom’s taxonomy and is used to determine whether

the complete program works. Participant 40 noted that he made the necessary

changes and that his programs executed correctly thereafter (Table 5.20, Table 5.2). A

program can still be incorrect semantically, even when all the syntax errors are

corrected. It is of concern that only a few participants mentioned the use of test data in

their thinking processes. For example, P32 used a subsequent process of testing. He

mentioned that he had tested the constructor to determine whether it received the

correct data (Appendix G). This was followed with the testing of the testLeapYear()

method, and finally the test program was updated to determine whether the

dateDifference() method was working. Furthermore, P32 provided for many exceptions

in the calculations for leap years. Emerging from the data was the ability of only a few

participants to evaluate the correctness of their programs and to ensure the correct

output.

Subthemes 1.1 to 1.3 indicate that only some participants applied all the skills of

Bloom’s taxonomy – knowledge, comprehension, application, analysis, synthesis and

evaluation – to solve the problem successfully. These findings are in line with Carbone

et al. (2002:2), who mention that programming is ‘extremely cumulative’, therefore

previous knowledge and skills are used in each successive programming task.

• Subtheme 1.4: Rehearsal, elaboration, organisation-and-integration strategies

These strategies are used to support attention, to help integrate new information with

prior knowledge, and to organise knowledge and skills with a whole solution in mind

(§4.3). It was not possible to identify clear examples of rehearsal, elaboration and

organisation-and-integration strategies since participants did not mention them

explicitly. However, an implicit example of the elaboration strategy (§4.3.2) was

mentioned when P23 asked whether provision should be made for general and specific

cases for each situation. Possible reasons for the unsuccessful use of cognitive

strategies could also be that participants did not verbalise knowledge about these

 158

strategies, they did not use cognitive strategies or they did not know how to apply such

strategies during programming.

Participants’ examples of knowledge, skills and strategies in the cognitive domain were

discussed in this subsection. Theme 2 gives an overview of various metacognitive

knowledge, skills and strategies.

5.3.4 Theme 2: Metacognitive knowledge, skills and strategies

Various examples of metacognitive knowledge, skills (§3.4) and strategies (§4.4) are shown

in Table 5.21 and, as was the case with Theme 1, various subthemes emerged and are

discussed.

Table 5.21: Theme 2: Metacognitive knowledge, skills and strategies – codes in Atlas.ti
with associated quotations from participants’ thinking processes

Theme 2: Metacognitive knowledge, skills and strategies

Codes in Atlas.ti

Associated quotations from participants’ recorded
thinking processes

Subtheme 2.1: Metacognitive knowledge and skills

- delphi : assignment : ask questions

- delphi : assignment : cannot apply
 problem
- java : approach : application of trial-
 and-error : difference between dates

- I read the question carefully and determined what was
 being asked? What are the specifications? [P29]

- I have the correct idea, but cannot apply it [P5]

- I don’t have a plan, but will try to code by means of trial-
 and-error [P34]

Subtheme 2.2: Metacognitive strategies

- java : time management : 3 to 5
 hours
- java : assignment : framework of
 Date and Test Class
- java : error : calculate days for leap
 year incorrectly : must add 1 day
- java : approach : reread assignment,
 write thinking down
- java : reflection : should send the
 date to the constructor
- java : test : difference between dates

- Time spent on this assignment was 3 to 5 hours [P41]

- Create framework for Date and Test class ... [P32]

- I determined the difference in days but was incorrect
 with 1 day [P39]
- I reread the question with attention and insight [P30]

- I could send the date to the constructor [P33]

- I recall a function to determine the difference – to decide
 on addition or subtraction [P23]

 159

• Subtheme 2.1: Metacognitive knowledge and skills

Prior knowledge acquired from previous programming tasks can ease planning for a

new task. In this regard, P29 asked many questions to set the context and to support

his comprehension of the new task, for example: What are the specifications? P5

mentioned that he had the correct idea but that he could not apply it in a programming

problem. This implies that he had an awareness of himself and his inability to complete

the task. P34 mentioned his knowledge of the trial-and-error strategy that he had used

during other programming experiences: I don’t have a plan but will try to code by

means of trial-and-error. Some examples emerged from this analysis where

participants indicated knowledge about the self-as-learner programmer, as well as

knowledge about programming (§3.4.2).

• Subtheme 2.2: Metacognitive strategies

The participants mentioned only a few metacognitive strategies (§4.4, Table 5.21). P32

asked focused questions to elicit knowledge about the task and thus to direct his own

thinking. He was goal-directed and planned his own programming task (§4.4.1). P32

asked questions about the framework for the Date and Test class (Table 5.8, Fig. 5.6).

Very few participants monitored their own programming tasks (§4.4.2). P39 had

problems calculating the difference between days, and P33 mentioned that he could

initialise the constructor. The other participants did not mention their monitoring

activities or were not aware of this strategy i.e., P3, P31 (Table 5.2, Table 5.4).

Some participants used the regulation strategy when they modified their own programs

(§4.4.3). P32 went back to determine whether the problem was solved (Table 5.8).

P33 regulated his own programming when he realised that he could send the date to

the constructor, and P23 recalled a function and decided on addition or subtraction to

determine the difference (Table 5.21).

It should be mentioned that application of the regulation strategy entails more than the

interpretation of error messages only. It is a complex process that requires insight into

the entire program and continuous modification of one’s cognitive activity is needed to

determine whether the programming problem has been successfully solved (§4.4.3).

There is an indication that most of the participants applied no regulation strategies

during programming of the Date class.

Reflection includes planning, monitoring and regulation (§4.4.4). The Reflection

Assistant Model (RA) of Gama (2004:668-677) refers to pre-task reflection and post-

 160

task reflection. An example of pre-task reflection is: I use previous Java experiences,

and the Java textbook [P35]. An example of post-task reflection is: I could send the

date to the constructor [P33]. Analysis from the data indicates that participants did not

explicitly apply reflective thinking during programming.

5.3.5 Theme 3: Problem-solving knowledge, skills and strategies

Examples of problem-solving knowledge, skills and strategies that participants used during

programming are displayed in Table 5.22 and are discussed in this subsection.

Table 5.22: Theme 3: Problem-solving knowledge, skills and strategies – codes in
Atlas.ti with associated quotations from participants’ thinking processes

Theme 3: Problem-solving knowledge, skills and strategies

Codes in Atlas.ti

Associated quotations from participants’ recorded
thinking processes

Subtheme 3.1: Problem-solving knowledge and skills

- delphi : steps : think about problem :
 how to solve problem
- java : assignment : overall picture :
 calculate dates
- java : assignment : which methods
 are necessary in the class

- java : approach : determine input,
 interface, calculations, test input

- Think about the problem. How will I solve this problem?
 [P5]
- When starting the class, keep the overall picture in mind
 [P16]
- The question that I asked myself in the beginning
 was: which methods should be in the class and how can I
 calculate them? [P21]
- determine input, design the interface and basic
 components, process and test the input [P44]

Subtheme 3.2: Problem-solving strategies

- delphi : strategy : complete all the
 detail program code of specific
 component before continuing with
 the next
- java : approach : date class : empty
 methods
- java : approach : application of trial-
 and-error : difference between
 dates

- I will complete the code for a specific component before
 continuing with the next component [P6]

- I will start with empty methods in my Date class as well as
 a constructor [P43]
- I don’t have a plan and will code in trial-and-error and
 hope to succeed [P34]

 161

• Subtheme 3.1: Problem-solving knowledge and skills

Participants thought about the problem. P5 analysed the problem, while P16

determined the overall picture. It is necessary to decide which methods and

calculations should be included in a class [P21]. P44 mentioned the following problem-

solving steps during programming: determining input, designing the interface and basic

components, processing and testing the input. In contrast, P31 did not follow any

specific sequence of steps during problem solving (Table 5.5). The data analysis

indicated that only some participants mentioned explicit problem-solving steps in their

written thinking processes. (Some problems during programming are outlined in

Theme 4 in §5.3.6).

• Subtheme 3.2: Problem-solving strategies

In most cases, participants did not clearly mention which strategy they used. Only P34

mentioned explicitly that he used the trial-and-error strategy: I don’t have a plan and will

code in trial-and-error and hope to succeed. Other participants described the steps

they used during the problem-solving process, and inferences could therefore be made

from their descriptions to determine which problem-solving strategy they had used

during program comprehension i.e., top-down, bottom-up, integrated, as-needed or

trial-and-error strategy (§4.5.1).

P6 explained that he finishes all the programming code that is associated with a

specific component before continuing with the next component. This implies that he

proceeded from the specific to the general, indicating the bottom-up strategy. Implicit

examples of the top-down approach were described by P43, who started with empty

methods and a constructor (Table 5.22), and P32 who reported, I will start with the

framework for the Date class and Test class, headings, import given methods, etc.

(Table 5.9). However, Lin (2001:23) emphasises that programmers should explicitly

learn problem-solving strategies and should apply them systematically during

programming, but this did not appear to take place with the participants in this study.

With reference to the Serendipity principle of Atlas.ti (§2.9), two additional themes were

found without being searched for, namely Errors and problems, and Additional support during

programming. A discussion of these two themes follows, as Theme 4 and Theme 5,

respectively.

 162

5.3.6 Theme 4: Errors and problems during programming

Some examples of errors and problems that occurred during programming appear in Table

5.23, followed by a discussion of this theme.

Table 5.23: Theme 4: Errors and problems during programming – codes in Atlas.ti with
associated quotations from participants’ thinking processes

Theme 4: Errors and problems during programming

Codes in Atlas.ti

Associated quotations from participants’
recorded thinking processes

- delphi : error messages : not
 displayed : don't know what is problem
- java : error : forgot main method :
 public static main
- java : exception handling : complex
- java : error : difficult to compile Java
 on computer
- java : error message : cannot
 diagnose the problem
- java : method : don’t know how to
 copy part of a string

- The program didn’t show me errors [P31]

- I forgot to insert the statement: public static main
 [P43]
- Exception handling is complicated [P33]
- The program cannot associate with the Date class and
 cannot compile [P41]
- my program didn’t show errors and I don’t know what
 the problem is [P34]
- I cannot remember how to copy ‘IZ’ from ‘ELIZNA’
 [P39]

Participants made elementary mistakes such as the following:

 The program cannot associate with the Date class and cannot compile [P41]

 I forgot to insert the ‘public static main’ statement [P43]

 It is complicated to do the exception handling [P33]

 I cannot remember how to copy ‘IZ’ from ‘ELIZNA’ [P39]

 The program didn’t show me errors [P31].

Some students could not apply exception handling [P34] and/or interpret errors [P31]. These

errors were not due to a lack of time, because participants had a full week to complete the

task. Possible reasons why some of these participants did not succeed were investigated.

Some had not used the correct syntax [P39] and could not compile the program [P41]. In

addition, P33 could not apply exception handling.

 163

5.3.7 Theme 5: Additional support during programming

Various examples of supplementary support used by students during their OOP experiences

are shown in Table 5.24, followed by a discussion of this theme.

Table 5.24: Theme 5: Additional support during programming – codes in Atlas.ti with
associated quotations from participants’ thinking processes

Theme 5: Additional support during programming

Codes in Atlas.ti

Associated quotations from participants’
recorded thinking processes

- delphi : bibliography : Internet
- java : bibliography : internet websites
- delphi : bibliography : study guide

- java : bibliography : previous Java
 code
- delphi : bibliography : Delphi textbook
- java : bibliography : C# text book
- java : bibliography : previous Java
 assignments
- java : approach : lecturer : motivation :
 passion

- Wikipedia.com for the requirements of leap years [P29]
- Using Google.com [P35]

- Used computer science study guide for classes and
 objects [P29]
- Used sources: Big Java and previous code [P48]

- Used the Delphi textbook [P30]
- Used C#: How to program [P37]
- I have used previous Java assignments [P44]

- It makes a big difference if the lecturer cares and has
 a passion for what she is doing – it affects both [the
 student and lecturer] [P25].

Many participants consulted their textbooks: Big Java [P48], the Delphi textbook [P30] or C#:

How to program [P37]. Others used previous Java assignments [P44], their Computer

Science study guide for the theory of classes and objects [P29], the Internet (Wikipedia) for

the requirements of leap years [P29] and Google.com [P35]. One participant also mentioned

the importance of a motivated lecturer who displays passion for lecturing OOP [P25].

5.3.8 Application of interpretivism and grounded theory in Section 5.3 and the
 generation of themes

• Interpretivism

The researcher applied Principle 5 of Klein and Myers (1999; Table 2.1, Table 2.2)

during the analysis of each participant’s complete program. This principle advises that

the researcher should be sensitive to possible contradictions between theoretical

foundations and the data that emerges through the research process. Moreover, the

researcher should make the research process as transparent as possible to the reader.

Such contradictions occurred in this study. From the theoretical chapters it is clear that

programmers should use various cognitive and metacognitive strategies (§4.3, §4.4)

 164

during their programming process, however only a very few examples of use of

cognitive strategies and metacognitive strategies (with specific reference to regulation),

emerged from the empirical data. Subsections 5.3.1.1 and 5.3.1.2 gave a detailed and

transparent overview of the analysis process using Atlas.ti. Furthermore, detailed

examples of participants’ thinking processes were given in Tables 5.20 to 5.24.

In addition, the researcher applied Principle 7 (Klein & Myers, 1999), which requires

sensitivity to biases and distortions identified in the written thinking processes of

participants. Furthermore, the researcher had to explicitly avoid bias in her own

interpretation of the qualitative data of the Date class task (Table 5.20). This had to be

applied in the study, particularly where deficiencies were identified in unsuccessful

programmers. This led to the conviction that such deficiencies can be addressed by

applying supportive measures, as outlined in Chapter 6 (Fig. 6.5).

• Grounded theory

It is important to mention that grounded theory (which is one of the major research

methodologies selected for this study) had a strong influence on the original design of

the qualitative analysis software, Atlas.ti (§2.5.2), which was used in this research.

Grounded theory is an approach where theory is generated inductively from the

analysis of the data as concepts are formulated into a logical, systematic and

explanatory scheme (§2.9, Fig. 5.10, Fig. 6.5).

The qualitative analysis in this study involved interpretation of the students’ thinking

processes. Different steps of grounded theory – open coding, axial and selective

coding – were applied in Atlas.ti, as explained in §2.5.2. Furthermore, selections from

participants’ recorded thinking processes were assigned to codes, which were

organised into coded families within Atlas.ti.

Saturation did not occur until near the very end, demonstrating the value of having 48

participants and also confirming the utility of having programmers representing two

variants of OOP, namely Java and Delphi. Finally, themes are identified and theory is

generated inductively from the analysis of data and further elaborated in an explanatory

scheme in Chapter 6.

To code data into themes, the researcher must manually recognise possible themes

from the data and identify the emerging concepts. According to Neuman (2002:421),

 165

this process rests on four abilities that were applied in this study, and which were

relevant:

- recognising patterns in the data, for example, recognition of the Cognitive knowledge,

skills and strategies pattern in Subsection 5.3.3;

- thinking in terms of systems and concepts, for example, Fig. 5.8 in Subsection 5.3.2

shows examples where various skills required in OOP were identified;

- having in-depth background knowledge, for example, knowledge about OOP as

outlined in Section 3.2; and

- possessing relevant information, for example, the importance of cognitive support in

the learning of OOP was overviewed in Subsections 3.3.3, 4.3.1, 4.3.2, 4.3.3 and

5.3.3.

Each theme should capture qualitative richness to explain specific phenomena such as OOP.

During selective coding, the following five themes emerged from the foregoing analysis and

were identified by the researcher. The section or table of relevance is given in parentheses

in the list below:

- Cognitive knowledge, skills and strategies (§5.3.3, Table 5.20)

- Metacognitive knowledge, skills and strategies (§5.3.4, Table 5.21)

- Problem-solving knowledge, skills and strategies (§5.3.5, Table 5.22)

- Errors and problems during programming (§5.3.6, Table 5.23)

- Additional support during programming (§5.3.7, Table 5.24).

These themes are integrated in a schematic representation given in Fig. 5.10. Some themes

are more important and can be described as the foundation and the pillars of the framework.

They are dynamic and interactive (§6.3) and are indicated by the grey background in Fig.

5.10, namely:

- Cognitive knowledge, skills and strategies

- Metacognitive knowledge, skills and strategies

- Problem-solving knowledge, skills and strategies.

It became clear that many participants’ OOP experiences was characterised by Theme 4,

Errors and problems, which confounded the process, resulting in incomplete programs and

lack of correct output. Fortunately, the discerning use of Theme 5, Additional support, can

assist programmers to address and overcome these problems and errors that occur during

programming.

 166

 facilitates

 serve as

 foundation

 confound

Figure 5.10: An integrated representation of the themes that emerged
from participants’ thinking processes

Glaser and Strauss (1967:3-5) cite four criteria for a well-constructed grounded theory, all of

which are applied in this section (§2.4):

- Fit

The categories and properties fit the realities being studied, which includes various

knowledge, skills and strategies during OOP. The various codes used for the Cognitive

knowledge, skills and strategies category, are an example of ‘fit’ (Fig. 5.11).

Cognitive knowledge, skills and strategies

delphi:assignment:determine leap years {3-0} knowledge

java:assignment:determine requirements {5-1} skills [comprehension]
delphi:buttons:consider the screen layout {12-0} skills [application]

java:assignment:methods: which methods are necessary {5-1} skills [analysis]
delphi:programming:implementation:procedures and functions {2-0} skills [synthesis]

java:program:program execute correctly: 100% {1-0} skills [evaluation]
java:class design:determine general and specific cases {1-0} strategies [organisation-and-integration]

…

Figure 5.11: Extraction from the Cognitive knowledge, skills and strategies category

- Work

In order to work, the theory should explain variations in behaviour. This relates to

variations between students’ thinking processes during programming, which have been

Theme 1:
Cognitive knowledge,
skills and strategies

Theme 2:
Metacognitive

knowledge, skills and
strategies

Theme 3:
Problem-solving

knowledge, skills and
strategies

Programming
process

Theme 5:
Additional
support

Theme 4:
Errors and
problems

 167

discussed comprehensively in this chapter. For example, a detailed analysis of the

thinking processes of P29 and P32 was presented in Subsections 5.3.1.1 and 5.3.1.2.

Subsection 5.3.2 relates to data from all the participants, as the codes were organised

and refined into families. In this process, mention was made of knowledge, skills and

strategies used in OOP, as well as problems that occurred – further illustrations of

addressing variations in behaviours.

- Relevance

This is achieved when a grounded theory both fits and works, which was the case in

this study, as shown in the previous two points.

- Modifiability

The emerging theory, which will be further elaborated in Chapter 6, is open to

adaptation as new data is integrated.

Fig. 5.10 will be extended in Chapter 6 (Fig. 6.5) in the learning repertoire of OOP where the

importance of cognitive, metacognitive and problem-solving knowledge, skills and strategies

is emphasised and applied in a framework to support the learning of OOP.

 168

5.4 Statistical analysis – questionnaire

To extend the research, the participants of 2006 completed a questionnaire about their

knowledge, skills and strategies in programming (§2.7.4). Twenty participants completed this

questionnaire. Since no ideal questionnaire was available for this purpose, a customised

questionnaire was designed (see Appendix E).

Details about the participants were given in Subsection 2.7.1, and are elaborated in

Subsection 5.4.1, using information obtained from the first paragraph of the questionnaire.

Biographical information is given, after which various examples of significant constructs are

discussed. In Subsections 5.4.2 and 5.4.3, the closed-ended and open-ended questions are

addressed respectively.

The analysis strategy in this section was addressed as follows:

• Closed-ended questions: the purpose was to determine participants’ knowledge, skills

and strategies used during the OOP process (§5.4.2). The use of cognitive knowledge

and skills, metacognitive strategies and problem-solving strategies as given in the

questionnaire was analysed using the following statistical measurements: sample

adequacy, factor analysis, reliability testing and descriptive statistics (mean values and

standard deviations) (§5.2.5).

• Open-ended questions: four questions were asked to elaborate on the questionnaire

responses and to collect additional information on students’ behaviour during

programming, for example, to determine whether the students viewed themselves as

successful in programming (§5.4.3). The open-ended responses were analysed by

comparing the answers of successful participants (5.2.7, Table 5.18) to unsuccessful

participants and discussing the differences between them.

5.4.1 Biographical information

Biographical information provides details such as the participants’ average age, gender,

programming experience, qualification for which enrolled, and preferred programming

language. Only 20 students participated in 2006 and completed the questionnaire.

 169

Average age and gender

Participants’ average age ranged between 19 and 26 years. Most were male (18), with only

two students being female.

Degree and programming experience

Most of the 2006 students were enrolled for the BSc degree (17) and only three were

studying towards a BEd. Except for four students, all the others were in their third year. Five

had no prior experience in the form of higher-grade or standard-grade Computer Studies at

school. Many students had prior experience in different programming languages,

summarised in Table 5.25. Note that some students knew more than one programming

language.

Table 5.25: Programming language currently used

Programming language/s
currently used

Number of
students

Java 16

Delphi 3

C++ 0

C# 15

Visual Basic 5

Other 6

5.4.2 Closed-ended questions

The questionnaire (Appendix E) was divided into categories for A: Cognitive knowledge and

skills, B: Metacognitive strategies and C: Problem-solving strategies. In order to enhance

reliability, the questions were deliberately not grouped according to these three categories.

For each category, three related questions were presented on each issue (i.e., subcategory)

within it. All three questions were designed to measure the same construct. For example,

the following questions refer to evaluation within the cognitive knowledge and skills category:

Question 16: I can explain the use of specific programming statements in my solution.
Question 30: I find it difficult to evaluate my programming solution to determine if I
 have solved the problem correctly.
Question 38: If two different solutions of the same problem are given to me, I can
 select the best solution

 170

Note that Question 30 is a negative statement. This was taken into account in the analysis

process.

As stated, these sets of related questions were not explicitly listed together within one of the

structured categories, A, B or C, but were distributed throughout the questionnaire. The

mark sheet (see Appendix E), however, groups the three consistent questions for each issue,

indicating related action verbs such as the following: justify, evaluate and compare in the

case of the Evaluation subcategory. Tables 5.26 – 5.28 show the questions grouped by

categories, along with various statistics.

The questionnaire utilised the following Likert scale on a continuum: ‘never’, ‘seldom’, ‘often’

and ‘always’, represented respectively by scores 1, 2, 3 and 4. The decision to use a 4-point

scale was taken to avoid middle options.

5.4.2.1 Cognitive knowledge and skills

The raw data from the questionnaire was analysed using the following statistical measures:

sample adequacy, factor analysis and reliability, mean values and standard deviations of

cognitive knowledge and skills.

• Sample adequacy, factor analysis and reliability

The KMO measure of sample adequacy of the raw data from the closed-ended

questions is 0.43. This indicates that the amount of data is inadequate to perform a

factor analysis. However, the scale reliability measure (Cronbach alpha) was

calculated and is shown in Table 5.26. For the subcategories (e.g., knowledge), where

the scale is not reliable, no summary statistics are provided, but the questions are

discussed individually after the table. In addition, statistics for the cognitive knowledge

and skills category are shown in the cases of reliable subcategories.

• Mean values, standard deviation and reliability

Table 5.26 depicts all the questions in the cognition section (§3.3). The mean values

with standard deviations and Cronbach-alpha values for each subcategory are also

included. Only four out of six subcategories are reliable constructs and have a

Cronbach-alpha value greater than 0.5 (§5.2.5). These are: comprehension,

application, synthesis and evaluation.

 171

Table 5.26: Questions about cognitive knowledge and skills

(Knowledge, comprehension, application and analysis)

Cognitive knowledge and skills

Subcategory x s Question

No

Statements x s

24
When I program, I try to remember what the lecturer had said or what I had read in the textbook that is
relevant to the problem in hand

 3.15 0.67

33 In the preparing for a test, I make sure that I can define or describe a new programming concept 3.00 0.73
Knowledge

α< 0.5
– –

36 I find it difficult to know what the program, as required by the problem description, is supposed to do 3.30 0.57

*1 The first time I learn a new programming concept, I make sure that I understand it 3.15 0.75

12 I can predict what the output of a program will be 3.20 0.70

Comprehen-
sion

α = 0.66**

3.18 0.52

14 I find it difficult to interpret a programming question 3.15 0.49

2 When I write a new program, I know which programming statements to apply 2.70 0.66

10 I can complete the programming code of a given incomplete program 2.85 0.67
Application

α = 0.68**
2.92 0.62

22 I can easily classify different types of methods, such as a constructor, destructor, mutator and accessor 3.20 1.01

3 I find it difficult to analyse a given programming problem 3.05 0.51

8 It is hard for me to break down a problem into smaller parts 3.40 0.60 Analysis

α < 0.5
– –

31
When I read a programming question, I can easily distinguish between the necessary and unnecessary parts
of the description

3.10 0.79

* Comprehension construct reliable if question 1 is excluded.
**Reliable constructs (α > 0.5), (Ellis & Steyn, 2003).

 Underlined question numbers indicate negative statements (Appendix E). This negativity was taken into account in the analysis process.

 172

Table 5.26 (continued): Questions about cognitive knowledge and skills
(Synthesis and evaluation)

Subcategory x s Question

No

Statements x s

4 I can create test data for a new program 3.40 0.68

6 I can easily design a solution for a new programming problem 2.85 0.81
Synthesis

α = 0.80**
3.12 0.60

27 I can combine the necessary programming statements successfully in a new program 3.10 0.64

16 I can explain the use of specific programming statements in my solution 3.70 0.47

30 I find it difficult to evaluate my programming solution to determine if I have solved the problem correctly 3.30 0.86
Evaluation

α = 0.80** 3.43 0.66
38 If two different solutions of the same problem are given to me, I can select the best solution 3.30 0.92

**Reliable constructs (α > 0.5), (Ellis & Steyn, 2003).

 Underlined question numbers indicate negative statements (Appendix E)

 173

- Knowledge

This subcategory, for which the relevant statements in the questionnaire are 24, 33 and

36, has a Cronbach-alpha value < 0.5, and thus did not form a reliable construct.

Statements 24 and 33 relate to basic aspects of learning such as remembering what

was taught in class, details they had read, and what core programming constructs they

have mastered in preparation for a test. The respective means were 3.15 and 3.00,

indicating that participants coped well with remembering these basic concepts of

knowledge.

However, in statement 36, a mean value of x = 3.30 in this negative statement shows

that participants found it difficult to understand the requirements of problem

descriptions. This implies that they had problems determining what is expected from

them in a new program. This refers mainly to students’ inability to interpret a given

problem description, although it could, on occasions, be due to inadequate problem

descriptions.

- Comprehension

Statements 1, 12 and 14 (Table 5.26, Table 3.1) relate to comprehension in the context

of extracting key points from the problem statement. With statement 1 excluded, a

reliable construct was formed with statements 12 and 14 (α = 0.66). Understanding is

crucial to goal setting and in planning how to proceed. Participants indicated that they

could indeed predict what the output would be. Although some participants found

interpretation difficult, they were able to use comprehension skills during programming.

- Application

Students should be able to apply programming statements in a new program, to

complete code within a given incomplete program and to classify different methods, as

indicated by statements 2, 10 and 22 (α = 0.68) (Table 5.26, Table 3.1, Table 3.2,

§3.3.2). Participants found it difficult to determine whether their knowledge and skills

are appropriate in new situations. The mean value for the application subcategory was

x = 2.92, which is slightly lower than the mean value for comprehension (x = 3.18).

These results show that participants found it difficult to apply their knowledge and skills

in a new program.

 174

- Analysis

Statements 3, 8, and 31 refer to situations where participants had to differentiate

between parts of the program. Some participants found it difficult to analyse a given

programming problem, to decompose a problem into smaller parts and to distinguish

between the necessary and unnecessary parts of the description. During analysis,

participants should determine which methods are necessary in a particular class and

which programming statements should be used. For example, is an if-... or a switch-

statement necessary to determine the specific days of each month and what is the

difference between those two statements?

- Synthesis

Synthesis is required when designing and combining specific programming statements

in a coherent way in order to develop a new solution. In Table 5.26, statements 4, 6

and 27 formed a reliable construct regarding synthesis (α = 0.80). The mean value for

the synthesis subcategory (x = 3.12) is higher than the mean value for application.

Students are sometimes confronted with a new programming problem that they find

difficult to solve. In such cases some of the participants tried to code the new program

by combining various programming statements without using the previous categories of

application and analysis. Such students may not succeed in the programming task.

- Evaluation

Evaluation and testing of a complete program should also be part of the programming

process. Statements 16, 30 and 38 in Table 5.26 relate to the use of evaluation skills

during programming. Some of the evaluation may occur during the programming

process and sometimes it may occur after completion of the task. The mean value (x

= 3.43) is higher than the mean in any of the previous subcategories. This result

probably occurred because the questionnaire is an indication of participants’

perceptions of a programming task. However, when relating these results to their

actual performances in the Date class task, it became clear that most did not use

evaluation skills. Another reason is that participants probably used evaluation without

applying the previous subcategories.

 175

5.4.2.2 Metacognitive strategies

The following statistical measures are used in this subsection: sample adequacy, factor

analysis and reliability, mean values and standard deviation of metacognitive strategies.

(The questionnaire provides the raw data).

• Sample adequacy, factor analysis and reliability

There was an inadequate amount of data to perform a factor analysis, as indicated by

the KMO measure of 0.43. However, the reliability (Cronbach alpha) was calculated

and is shown in Table 5.27. No summary statistics are provided for those

subcategories where the scale was found not reliable (e.g., monitoring). For these

subcategories, the questions are discussed individually. For the subcategories with

reliable scales, individual questions as well as the whole construct (metacognitive

strategies) are summarised statistically.

• Mean values, standard deviation and reliability

Table 5.27 shows examples of statements in the planning, monitoring and regulation

subcategories (§4.4). The mean values and standard deviations were calculated. Two

of the three subcategories are reliable constructs, with a Cronbach-alpha value larger

than 0.5, namely, planning and regulation. The table is followed by discussion of each

construct.

 176

Table 5.27: Questions about metacognitive strategies

Metacognitive strategies

Subcategory x s Question
No

Statements x s

9 I plan the solution of my program to achieve the goal 3.20 0.70

18 I write down plans to direct my thinking in programming 2.30 1.08
Planning

α = 0.53**
2.95 0.59

20 I think about what I should do first to solve a new programming problem 3.35 0.59

15 When I program, I stop once in a while and go over what I have already programmed 2.75 1.07

37 I ask myself questions to make sure that I understand a difficult programming statement when I use
it in a program

2.85 0.93
Monitoring

α < 0.5
– –

40 When I program, I trace the program’s execution with a trace table 1.45 0.60

7 Even when the program is difficult to write, I go back and modify it until the problem is solved
successfully

3.32 0.67

25 I take the programming statements that have errors in them and adjust them until I have solved the
problem successfully

3.25 0.55
Regulation

α = 0.68**
3.37 0.48

28 I reread the description of a difficult problem to make sure that I have understood it correctly and
that it is correctly programmed

3.53 0.61

** Reliable constructs (α > 0.5), (Ellis & Steyn, 2003).

 177

- Planning

Statements 9, 18 and 20 were used to determine whether students plan their

programming as whole tasks in the metacognitive domain (Table 5.27). The mean

value for planning is x = 2.95. Although participants felt that they planned their

programs upfront, responses to statement 18 show that only a few participants actually

wrote down the plans to direct their thinking, and the mean value is x = 2.30.

- Monitoring

This subcategory was not a reliable construct, with the Cronbach α < 0.5 (Table 5.27),

therefore each statement is detailed separately (15, 37 and 40). Participants indicated

via statement 15 that they stopped once in a while to review what they had already

programmed (x = 2.75). In response to statement 37, some of them agreed that they

had asked themselves questions to ensure that they understood a difficult programming

statement. This is shown by a mean of 2.85. However, the means indicate that

participants could use monitoring more frequently. Furthermore, participants rarely use

a trace table (statement 40, §3.5.4) (x = 1.45). A possible reason for this is that it

takes time, and it is sometimes difficult to complete a trace table of a programming

application with more than one class.

- Regulation

Statements 7, 25 and 28 were used to determine whether students view regulation of

the programming process as being important. These statements formed a reliable

construct (α = 0.68) (§4.4.3). The statements include the following actions that should

be employed during programming: rereading the problem description of a difficult

program to understand it, going back and modifying the program until it is solved, and

adjusting incorrect programming statements. The mean value for the regulation

category is x = 3.37. Such a high mean value was not expected for regulation, as the

means for the previous categories, planning and monitoring were lower. A possible

explanation could be that the participants tried to solve the problem by continuously

modifying cognitive activity and self-evaluation to determine whether they had solved

the problem successfully (§4.4.3). However, much of the regulation conducted, relates

to the modification of erroneous programming that was identified during monitoring. It

appears that some participants’ unsuccessful attempts to modify a specific program

segment were due to the fact that they could not identify the real problem.

 178

5.4.2.3 Problem-solving strategies

Sample adequacy, factor analysis and reliability, mean values and standard deviations are

various statistics discussed in this subsection. The calculations are based on data obtained

from the questionnaire.

• Sample adequacy, factor analysis and reliability

Once again, the amount of data was inadequate to perform a factor analysis (0.51).

However, the Cronbach-alpha values, which indicate reliability, are shown in Table

5.28. For all the subcategories where the scale was found not to be reliable, the

questions are discussed individually (e.g., as-needed). For the subcategories with

reliable scales, individual questions as well as the whole construct (problem-solving

strategies) are summarised statistically.

• Mean values, standard deviation and reliability

Table 5.28 reveals different examples of problem-solving strategies. The

subcategories that formed reliable constructs with a Cronbach-alpha value greater than

0.5, are bottom-up (§4.5.1.1), top-down (§4.5.1.2), integrated (§4.5.1.3) and trial-and-

error strategies (§4.5.1.5). The mean value for the different problem-solving strategies

varies from x = 2.57 to x = 2.89. This implies that participants may have been unsure

about the use of problem-solving strategies and did not know the difference between

them or could not apply them correctly. A more detailed discussion of each strategy

follows after the table.

 179

Table 5.28: Questions about problem-solving strategies

Problem-solving strategies

Subcategory x s Question No Statements x s

23 When I program, I start with all the details of a method before proceeding with the next method 2.65 0.93

29 During programming, I start with the details, such as variables of a specific class before programming the details of the
next class

2.85 0.75 Bottom-up

α = 0.80**

2.77 0.71

39 When I program, I complete the programming code of one class before proceeding with the programming code of the
next class

2.80 0.83

5 Before programming, I consider the whole solution before going into the details of the solution 3.40 0.60

13 When I program, I start with the declaration of all the methods of one class, before proceeding with the detailed
programming of each method

2.63 1.01
Top-down

α = 0.61**

2.89 0.64

32 When I program, I start with the declaration of all the classes before proceeding with the details of each class 2.60 0.88

19 When I program, I start with the declaration and details of the first class and methods before proceeding with the next
class

2.70 0.80

35 When I program, I start with the declaration of a framework for a certain class and proceed with all the methods of the
same class before starting with the framework and details of the next class

2.70 0.92
Integrated

α = 0.87**

2.57 0.82

42 I program the whole class with its details and complete it before proceeding with the next class 2.30 1.03

11 I can alter specific parts of a programming solution when the requirements have changed 3.30 0.57

17 I only make changes to a specific method when required due to errors in my program 3.15 0.59
As-needed

α < 0.5
– –

26 During modification of a given program, I expand a specific section only 2.70 0.47

21 I try to program a possible solution and hope that it will work 2.30 0.80

34 I do not know where to start with the programming of a new problem 3.25 0.55 Trial-and-error

α = 0.75**

2.67 0.58

41 During programming, I use any possible solution that would work, but not necessarily the very best solution 2.45 0.76

** Reliable constructs (α > 0.5), (Ellis & Steyn, 2003). Underlined question numbers indicate negative statements (Appendix E)

180

- Bottom-up

Statements 23, 29 and 39 were intended to determine whether participants used the

bottom-up strategy in programming. The indication was that participants used this

strategy when starting with the details of a class, such as variables and the

implementation of methods, before proceeding to more general programming with

higher levels of abstraction (§4.5.1.1). The mean value is x = 2.77 on a 4-point Likert

scale, representing participants’ perceptions of using this strategy during a task. In

actual fact, this value indicates that participants had difficulty in identifying exactly

which problem-solving strategy they had applied during programming.

- Top-down

The top-down strategy is represented by statements 5, 13 and 32. A mean value of

x = 2.89 is obtained. Participants indicated that they had used this strategy when they

first completed a framework of methods, for example getDay(), getMonth(), getYear()

within a class, before proceeding to programming the details of each method (§4.5.1.2).

Only a few participants mentioned that they had used the top-down strategy during the

actual programming process.

- Integrated strategy

In Table 5.28, statements 19, 35 and 42 refer to descriptions of the integrated strategy.

This is a strategy in which a programmer uses both the bottom-up and top-down

strategies during computer programming, and switches between them may occur

(§4.5.1.3). The mean value for the integrated strategy is x = 2.57. Participants who

used this strategy started with a framework of a class or methods and completed their

details before proceeding with a next class. This low value illustrates that participants

were not sure which problem-solving strategy they were using in a programming task.

- As-needed strategy

The Cronbach alpha was < 0.5 and therefore this strategy is not a significant construct

(Table 5.28). Statements 11, 17 and 26 refer to changes and modifications of a given

program in which only a specific section is expanded. This strategy is used mainly

during maintenance of software programs when a specific part of the program has to be

modified. It is therefore more relevant to updates and changes within existing

programs (§4.5.1.4).

181

- Trial-and-error strategy

A mean value of x = 2.67 (Table 5.28) reveals that certain participants indicated that

they used this strategy. These students tried to program a possible solution and hoped

that it would work (Statement 21). The participants who took this approach had

difficulty in completing their programs. However, this can ultimately lead to a gradual

form of program development (§4.5.1.5).

5.4.2.4 Mean values, standard deviations and correlation of various constructs

Although the constructs (cognition, metacognition and problem solving) could not be

validated (inadequate amount of data), mean values along with standard deviations have

been calculated and are shown in Table 5.29

Table 5.29: Mean values and standard deviations for cognition,
 metacognition and problem-solving sections

Construct x
s

Cognition 3.16 0.50

Metacognition 3.15 0.43

Problem solving 2.72 0.38

The highest mean value occurs in the cognitive domain with x = 3.16 on a Likert scale of 1

to 4. This indicates that most questionnaire participants made use of cognitive knowledge,

and skills during the programming task. There was also reasonable evidence of

metacognitive activities in programming, as indicated by a mean of x = 3.15. The lowest

mean is for problem-solving strategies with a value of x = 2.72. Possible reasons for this

result are that they lacked knowledge of specific problem-solving strategies or were unable to

apply these approaches in a programming task. In many cases, it is expected that novice

programmers would use an implicit approach, rather than develop their own strategies as

they learn to program. Next, the correlations between the constructs will be discussed.

182

Table 5.30: Correlations between constructs

Construct r

Cognition
Metacognition

0.31

Cognition
Problem solving

0.33

Metacognition
Problem solving 0.45

The indication is that there was a positive correlation between different constructs, which

means that cognitive, metacognitive and problem-solving knowledge, skills and strategies

may support the learning of OOP (Table 5.30).

5.4.3 Open-ended questions

The questionnaire also included four specific open-ended questions about programming,

which are shown in Table 5.31. These were analysed manually in a qualitative way and are

discussed after the table.

Table 5.31: Open-ended questions in the questionnaire

Question
No Open-ended question

43 Would you describe yourself as successful or unsuccessful in computer
programming? Please motivate

44 Do you make use of any special strategies, plans or useful ‘tricks’ when you write a
computer program? If so, please give all the details

45 During programming of a new class, I use the following sequence of general steps
to solve a problem (please specify your sequence in detail)

46 Do you make use of any supportive memory representation techniques during
your programming task? If you do, give a diagram or a description of all the
details please

• Question 43

Participants were required to classify themselves as successful or unsuccessful in the

programming domain. Note that this section is only applicable to the participants of

2006 who were required to complete the questionnaire (Participants 29 to 48) (Table

183

5.2). According to their descriptions, only six participants rated themselves as

successful, namely Participants 32, 36, 40, 41, 44 and 47. Furthermore, when

comparing the number of self-rated successful participants in this question to the

information in §5.2.7 (Table 5.18), it is interesting to note that according to the

successful output of the Date class program (Program output: x ≥ 3 on a scale of 4),

Participants 32, 40 and 44 were indeed successful, obtaining marks of 100%, 85% and

97% respectively.

With reference to Table 5.2, Participants 36, 41 and 47 also described themselves as

successful. P36 obtained 82%, P41 obtained 75% and P47 obtained 86%, although

they did not provide the correct program output (Program output: x < 3 on a scale of 4).

These participants probably require additional knowledge, skills and strategies to

become truly successful programmers.

Although Participants 29, 38, 42 and 48 obtained satisfactory program output and

scored 3 or 4 on a 4-point scale for successful programming, they did not describe

themselves as successful programmers. Yet, they obtained high marks for the

cognitive, metacognitive, problem-solving and OOP categories in Table 5.18, namely

97%, 90%, 90% and 84% respectively.

The successful participants, as indicated from their program output in Table 5.18,

and who completed the questionnaire in 2006, are P29, P32, P38, P40, P42, P44 and

P48, four of whom did not view themselves as successful in programming (P29, P38,

P42 and P48).

• Question 44

It is important to understand how programmers think and, in this question, the

participants indicated whether they used any special strategies, plans or useful ‘tricks’

during programming. Three successful participants mentioned that they do not employ

any such problem-solving strategies (P38, P42 and P48). Eight participants responded

that they use certain strategies, plans or ‘tricks’, and these are shown in Table 5.32.

Note that P30 mentioned that he had studied existing examples to support him in the

programming process i.e., he applied the knowledge and comprehension skills of

Bloom’s taxonomy (§3.2.2). By contrast, P29, P32 and P40 successfully applied

knowledge and skills in analysing and synthesising a new program. For example, P29

visualised the whole program; P32 used a point-by-point strategy as illustrated in the

184

detailed analysis in Appendix G, and P40 decomposed the problem into subproblems.

These are higher-order skills that can enhance the programming process.

Both P41 and P44 used the test and reason out strategy. However, P41 was

unsuccessful, whereas P44 was successful with regard to program output. As shown

in Table 5.2, P44 obtained 3 marks for the application of regulation strategies, and P41

obtained 1. Furthermore, P41 experienced difficulties with the correct programming

techniques, statements, application of various methods, reasoning skills in OOP and

exception handling (Table 5.2). P41 obtained 75% and P44 obtained 97%. However,

both participants used the bottom-up approach.

Table 5.32: Strategies, plans or useful ‘tricks’ that participants used when
writing a program

Question 44: Strategies, plans and useful ‘tricks’ used by participants

Unsuccessful participants Successful participants

- Study examples [P30]

- Determine general and specific cases [P34]

- Build the same as Lego-blocks [P36]

- Test and reason out [P41]

- Visualise the whole program [P29]

- Working point by point [P32]

- Try to break down the problem into

 subparts [P40]

- Test and reason out [P44]

• Question 45

The purpose of this question was to determine whether participants used a specific

sequence of general steps during programming a new class.

Table 5.33: Problem-solving steps used by participants in a programming task

Question 45: Problem-solving steps used by participants

Unsuccessful participants Successful participants

- Use an example, plan and extend [P30]

- Read question, use text book, try to program [P31]

- Design GUI, methods, output [P33]

- Design methods, test methods and class, modify

 [P34]

- Design class, methods, modify if necessary [P35]

- Design class, determine scope, complete [P36]

- Write constructor, initialise variables, write

 methods, test errors [P37]

- Write variables, constructor, methods, detail [P41]

- Write class, methods, use variables [P46]

- Visualise, use components, methods, test [P29]

 Determine purpose, parameters, input, output
 variables required, calculations, return values
 and problems [P32] (see Appendix G)

- Methods, constructors, complete detail [P38]

- Methods, declare variables, test methods [P40]

- Write variables, constructor, methods, test

 program, use tests data [P42]

- Start with the class, extend the class [P44]

- Determine methods, variables, constructor and
 complete the detail [P48]

185

Based on Table 5.33, specific problem-solving steps used by successful programmers

can be inferred:

Step 1: Determine the purpose of the program.

Step 2: Make decisions about the framework of the program, input, output and

 variables, calculations, return values required.

Step 3: Complete the details of the constructor and all other methods.

Step 4: Test the program using test data and solve the problem

Note that these steps are similar to the detailed steps during OOP shown in Table 3.2,

which refers to understanding, designing, coding and testing of a program (§3.3.2)

and applies all the levels of Bloom’s taxonomy in each step.

• Question 46

This question set out to determine whether or not participants used supportive memory

representation techniques during programming. Examples are extracted and given in

Table 5.34.

Table 5.34: Supportive memory representation techniques that
participants used during a programming task

Question 46: Supportive memory representation techniques used by participants

Unsuccessful participants Successful participants

- Underline important information [P30]

- Try to remember what the lecturer explained [P31]

- Math functions, graphs, tables and notes [P36]

- Use decision trees for if-statements [P41]

- I make use of a diagram [P29]

- I show the program flow [P40]

Two of the successful programmers mentioned supportive memory representations. The

other successful programmers made no explicit use of specific memory representations.

The unsuccessful programmer, P30, mentioned underlining of important information, that

emphasises important concepts in the problem statement. P31 tried to remember what the

lecturer had explained. This is an example of knowledge and comprehension skills as

outlined in Subsection 3.2.2 in Bloom’s taxonomy (Table 3.1). P36 referred to the use of

functions, graphs, tables and notes to support him in the programming process. He obtained

82%, but could not provide correct program output (Table 5.2). P41 used decision trees for

if-statements, however, he also encountered problems in providing correct output. These

examples of approaches used by unsuccessful programmers emphasise the need for explicit

186

teaching of metacognitive approaches and problem-solving skills and strategies to support

effective programming.

5.4.4 Application of positivism and interpretivism in Section 5.4

• Positivism

Positivism was applied in Subsections 5.4.2.1 to 5.4.2.4 for the verification and

confirmation of empirical observations by using statistical measurements to ensure

reliability and validity of data (§2.6.2). The statistics are based on the raw scores given

in Tables 5.26 to 5.30 of the closed-ended questions and include the following:

descriptive statistics (mean values and standard deviations), correlations between

constructs and reliability testing.

• Interpretivism

Interpretivism was used to investigate participants’ subjective and reflective

interpretations (§5.4.3) regarding the issue of whether or not they consider themselves

as successful programmers, what special strategies they used while programming,

which sequence of steps they follow during problem solving, and whether they used

supportive memory representation techniques during a programming task (§5.4.3). The

following principles laid down by Klein and Myers (1999) (Table 2.2) were considered in

the analysis of participants’ thinking processes in the open-ended questions:

Principle 4, Abstraction and Generalisation, suggests that the specific interpretation of

data and idiographic findings of the study should be related to general concepts. This

study does so by relating the students’ specific thinking processes and programming

statements to generic problem solving in object-oriented programming. This may

explain differences between unsuccessful and successful participants as shown in

Question 43. Furthermore, generic problem-solving steps may be identified from

participants’ thinking processes, as shown in Table 5.33 (Question 45) and the

subsequent text.

Principle 7, Suspicion, was also applied. The researcher acknowledges that identifying

biases and distortions in the written thinking processes of participants requires sensitivity and

she deliberately did it as objectively as possible. In addition, the researcher explicitly

avoided bias in her interpretation of the qualitative data of the open-ended responses.

187

5.5 Triangulation between different analysis methods

Triangulation is a method used by qualitative researchers to check and establish validity in

their studies (§2.5.3). Methodological triangulation establishes validity between different

analysis methods (Guion, 2002:2). This section takes triangulation further by describing the

relationship between the quantitative (§5.2, §5.2.5) and qualitative (§2.9, §5.3) analysis

methods by referring to the participants’ cognitive, metacognitive, problem-solving and OOP

activities. This is done by comparing statistical data, extracted from Table 5.2, with

associated details from the Atlas.ti records (Section 5.3). Note that analysis of participants’

computer programs and thinking processes is an indication of their actual performance

during the programming process whereas the analysis of the questionnaire (the closed-

ended questions, and to a lesser extent, the open-ended questions) indicates participants’

perceptions about themselves and about their programming behaviour.

Certain participants were selected as explained in the second set of bullets below, and their

scores from particular aspects of the computer programs were tabulated against extracts

from their thinking processes:

• Measurement criteria from Table 5.1 were selected. The marks obtained for those

criteria (Table 5.2) are presented in the first column of each of the tables following.

Although values for only analysis, synthesis and evaluation, in the case of cognition,

are presented, the mean value for the complete construct is given.

• Examples of participants’ associated thinking processes are given in the central

column.

• The relationship between these two analysis methods is summarised in the third

column by referring to participants’ cognitive, metacognitive, problem-solving and OOP

activities.

Tables 5.35 to 5.40 are presented in ascending order of total scores obtained by participants

(see Table 5.2). Data of the following participants is presented:

• two unsuccessful participants, P31 and P24, who used Delphi and Java respectively.

The weakest participant and a participant obtaining a mark near 50% were selected

(Tables 5.35 and 5.36 – participants’ total scores are given in the header row);

• eight average participants: P1, P4, P10, P11 (Delphi), P14, P22, P26, P39 (Java),

obtaining scores between 55% and 65% (total scores given in second-last row of

Tables 5.37 and average score in the header row in Table 5.38); and

• two successful participants: P29 (Delphi) and P32 (Java), who obtained 97% and 100%

respectively (Tables 5.39 and 5.40 – total scores are given in the header row).

188

Table 5.35: Triangulation between different analysis methods: P31’s data

Participant 31 (Delphi – unsuccessful programmer: 16%)

Quantitative analysis
(Table 5.2)

Qualitative analysis: Atlas.ti
(Section 5.3)

Triangulation

Cognition

 * x = 1.33

Analysis: 1
Synthesis: 1
Evaluation: 1

I find out when it is a leap year (Table 5.20, Sub-
theme 1.1).
I had problems to interpret leap years.
An if statement was necessary for leap years
(Analysis).
I still have problems (Synthesis).
My program does not work (Evaluation) (Table 5.3).

The thinking processes reflect the problems that P31
experienced during programming. The mark that he obtained

for cognition (x = 1.33), as well as the detailed marks for

Analysis, Synthesis and Evaluation confirm that he was
unable to apply cognitive activities in the program.

Metacognition

 x = 0.33

Planning: 0
Monitoring: 1
Regulation: 0

My program does not work. My program did not show
me errors (Monitoring).

 I don’t know if it is correct (Regulation) (Table 5.4.).

No evidence was found of any planning or regulation strategy
as indicated by both the thinking processes and the marks for
these subcategories. The mean value for metacognition

(x = 0.33) further emphasises that P31 could not diagnose

the errors nor make the necessary changes or correct them.

Problem solving

 x = 0

Application of problem-solving
strategies during programming

I have typed all the things that I thought should be in
the program (Table 5.5).

P31 used a trial-and-error strategy during the programming
process, as implicitly indicated in his thinking processes. This
is reflected where zero marks were allocated for trial-and-
error, since it was not considered an acceptable strategy
(§5.2.1).

OOP knowledge and skills

 x = 0.5

Application of various OOP
knowledge and skills. Program
5.1, Program 5.2, Fig 5.2

Very few examples of programming knowledge and
skills were included. I have problems with the
programming of classes (see Appendix F).

This participant had deficiencies in OOP and could not solve
the problem as indicated by the thinking processes.
Compilation of P31’s program in Fig. 5.2 shows numerous
errors. This is also reflected in the mark that he obtained for

OOP (x = 0.5).

 *The mean value for the complete cognition construct of P31, was converted to a mark out of 4 (Table 5.2)

189

Table 5.35 relates to P31, a very weak programmer with a final score of 16%. He had

problems in applying the various skills of Bloom’s taxonomy (x = 1.33). P31 could not

interpret and judge the program, and lacked the concept of a holistic view. No evidence of

regulation was given and little evidence of monitoring emerged. Compilation showed many

errors, but the participant was unable to monitor or regulate his work by using compilation to

evaluate it. In contrast, he stated that the program did not show errors.

P31 used the trial-and-error strategy and typed programming code without any explicit

planning. He displayed limited knowledge and thinking skills in the programming domain

(Programs 5.1 and 5.2). Furthermore, he could not solve the actual problem nor could he

produce program output (Fig. 5.2). He had deficiencies in various domains as indicated in

both the computer program and thinking processes. The programming process was

ineffective and the final product was non-functional.

Table 5.36 following also relates to an unsuccessful programmer, P24 with a score of 45%.

190

Table 5.36: Triangulation between different analysis methods: P24’s data

Participant 24 (Java – unsuccessful programmer: 45%)

Quantitative analysis
(Table 5.2)

Qualitative analysis: Atlas.ti
(Section 5.3)

Triangulation

Cognition

 x = 2.5

Analysis: 2
Synthesis: 2
Evaluation: 2

Subtract the date variables (day, month, year) from the
original date to determine the difference (Analysis).
I should use: if, for, while to solve the problem (Synthesis).
Does the method execute according to what was expected?
(Evaluation).

Some analysis, synthesis and evaluation skills were
demonstrated in P24’s thinking processes. However, he had
problems in applying his knowledge and skills in the context
of a new program. This is reflected in the mark obtained for

the cognition construct (x = 2.5).

Metacognition

 x = 1.67

Planning: 3
Monitoring: 1
Regulation: 1

Planning:
- Describe class
- Determine types of variables, required methods
- Describe steps to determine the difference between two
 dates
The method should return a value (Monitoring)
Write a test program to test the class (Regulation).

Although this participant aimed to use some appropriate
steps in planning the program as shown in the second
column, he could not follow them through by using
monitoring and regulation strategies efficiently. This is
confirmed by 1.67 for metacognition.

Problem solving

 x = 0

Application of problem-
solving strategies during
programming

A bottom-up approach was demonstrated in the thinking
processes where P24 referred to details of the Date class
e.g., Describe class … required methods.

P24’s thinking processes demonstrated a bottom-up
approach. In contrast, his incomplete program showed the
framework of methods, which is an indication of a top-down
approach. As a result of this discrepancy, he obtained zero
marks for this section.

OOP knowledge and
skills

 x = 1.79

Application of various OOP
knowledge and skills

Only a few examples of programming knowledge and skills
were included e.g., The method should return a value …
use an if, for, while to solve the problem … write a test
program to test all methods

The program was incomplete without evidence of detailed
programming. He could not solve the problem and did not
produce correct program output as confirmed by a mean of
1.79 for the OOP construct. The final score of 45 indicates
potential but inability to bring the task to closure.

191

P24, the second ‘unsuccessful programmer’, showed potential, as he mentioned some valid

examples of analysis, synthesis, evaluation, and planning. He obtained mean values of 2.5,

1.67 and 1.79 for cognitive, metacognitive and OOP activities respectively (Table 5.36).

Unfortunately he demonstrated little evidence of monitoring and regulation. Note that,

although P24’s thinking processes indicated a bottom-up approach, the incomplete program,

by contrast, showed the framework of methods, which indicates a top-down approach. This

indicates a degree of confusion, and this is a clear case where explicit teaching of skills and

strategies might have made a difference. He obtained zero for the problem-solving category.

He could not use the formulae to calculate leap years and the difference between two dates.

Furthermore, P24 was unable to solve the actual problem and could not provide evidence of

program output.

When comparing P24 to P31 (Tables 5.36 and 5.35), some indication of progress is in

evidence. P24 used more cognitive knowledge and skills and obtained a mean of 2.5. By

contrast, P31 obtained only 1.33. Furthermore, P24 was able to plan his task (3) and

indicate the use of regulation (1); whereas P31 did not show any evidence of planning or

regulation strategies at all (he obtained 0 for both). Both participants obtained zero marks for

the problem-solving strategy. However, P24 used more OOP knowledge and skills (1.79)

than P31 (0.5).

The next part of the discussion considers eight so-called ‘average participants’. Table 5.37

was extracted from Table 5.2 by selecting participants who obtained overall percentages

between 55% and 65%. The table shows their detailed scores and the group means of these

average participants for all subcategories and major categories.

192

Table 5.37: Allocated values of average participants

Average participants (55%-65%)

 Delphi Java

Participant number 1 4 10 11 14 22 26 39 x

Cognitive knowledge, skills 3.14

Knowledge 4 2 3 3 4 4 4 4 3.50

Comprehension 3 3 3 3 3 4 4 3 3.25

Application 2 2 3 3 3 4 4 3 3.00

Analysis 3 2 2 2 3 3 4 3 2.75

Synthesis 2 1 2 2 2 3 3 2 2.13

Evaluation 2 1 1 1 2 2 3 2 1.75

Metacognitive strategies 2.53

Planning 2 3 3 3 3 3 3 2 2.75

Monitoring 1 2 2 2 2 0 0 2 1.38

Regulation 2 1 1 1 2 0 0 1 1.00

*Problem-solving strategies 8 8 8 8 8 8 8 8 8.00

OOP knowledge and skills 2.60

Proper requirements analysis 2 2 3 3 3 3 3 3 2.75

Programming techniques 2 2 3 3 3 3 3 3 2.75

Programming statements 3 3 3 3 3 3 3 3 3.00

User-friendliness 1 2 2 3 0 0 0 1 1.13

Classes and objects 2 3 2 2 3 3 3 3 2.63

Method application 2 3 2 2 3 2 3 3 2.50

Access control 3 3 3 3 4 3 3 3 3.13

Parameter passing 3 3 3 3 3 3 3 3 3.00

Reasoning 3 3 2 2 3 3 3 2 2.63

Exception handling 0 0 0 0 0 0 0 1 0.13

Program structure and scope 3 3 3 3 3 3 3 3 3.00

Solution of problem 2 2 2 2 2 2 3 2 2.13

Program evaluation 1 2 1 1 2 2 2 2 1.63

Correctness of output 0 0 0 0 0 0 0 0 0.00

TOTAL (%) 56 56 57 58 64 61 65 62 59.88

*Problem-solving strategy B
U

B
U

B
U

B
U

B
U

IG

B
U

B
U

Table 5.38 is based on Table 5.37, summarising and integrating the data of the average

participants by giving the mean scores obtained. In addition, certain stereotypical examples

of their thinking processes are given to support triangulation.

193

Table 5.38: Triangulation between different analysis methods: average participants’ data

Participants P1, P4, P10, P11, P14, P22, P26, P39 (Average partcipants: 60%)

Quantitative analysis
(Table 5.2)

Qualitative analysis: Atlas.ti
(Section 5.3)

Triangulation

Cognition

 x = 3.14

Analysis: x = 2.75

Synthesis: x = 2.13

Evaluation: x = 1.75

- A leap year is a year that can be divided by 4 without a remainder [P1]
 (Analysis).
- Use the procedure Add(value:integer) [P11] (Synthesis).
- The program cannot be compiled [P39] (Evaluation).

These participants could not fully apply higher-
order thinking skills, although there was evidence of
awareness of such skills. They battled with the
calculations. Only a few evaluated their programs
and this is confirmed by the average mark that they

obtained for the evaluation subsection (x = 1.75).

Metacognition

 x = 2.53

Planning: x = 2.75

Monitoring: x = 1.38

Regulation: x = 1.00

- Create new unit, use various procedures … functions, create new
 application, program event handlers [P11] (Planning).
- I should convert the string to an integer [P14] (Monitoring).
- I determined the difference in days but was incorrect with 1 day
 [P39] (Regulation).

The average participants found it difficult to apply
metacognitive activities during programming. In
particular, they struggled with monitoring and
regulation of cognitive resources, as shown by the
general lack of such in the thinking processes.

They obtained x = 1.38 for monitoring and x =

1.00 for regulation strategies.

Problem solving

 x = 8

Application of problem-
solving strategies during
programming.

- I use two dates with the year, month and day fields [P1].
- I will start with the Data class unit and use various procedures and
 functions [P11].
- The program requires classes with various methods [P22].
- What is the date? Which format is required? [P26].
- I start with the number of days for each month [P39].

The second column shows some examples of the
participants’ detailed descriptions with reference to
variables and methods required in the Date class.
Seven participants used the bottom-up strategy and
one used the integrated strategy [P22]. All
participants obtained 8 for this section.

OOP knowledge and
skills

 x = 2.60

Application of various OOP
knowledge and skills

Participants’ thinking processes indicated discernment, but insufficient to
complete the task correctly. Some examples:
- … insert procedure add, procedure subtract [P11].
- … use parseInt to convert string values to integer [P22].

Participants had problems with user-friendliness,
exception handling and program evaluation. None
of them scored marks for correctness of output.

The mean for OOP is x = 2.60. This is confirmed

by their thinking processes.

194

Some fairly good examples of programming knowledge and skills were evidenced in these

programs. However, the average participants should improve on the use of higher-order

thinking skills. They had problems in transferring their knowledge and skills to a new

program in a context with which they were not familiar.

These participants found it difficult to apply metacognitive activities, such as self-efficacy and

self-judgement, during programming. They encountered particular problems in monitoring

(x = 1.38) and regulating (x = 1.00) their cognitive resources. Very few of them applied

any form of regulatory strategy and this hindered refinement and finalisation of the programs.

With regard to problem-solving skills, the scores allocated were high, due to clear evidence

of use of strategies. Seven used the bottom-up approach and one the integrated strategy

(P22). This indicates that most of them commenced with the details of a method or unit and

then proceeded to higher levels of abstraction (§4.5.1.1). Many students used strategies

implicitly not explicitly, which is not the same as having an optimal approach, and it is of

concern that the ‘average’ student was unable to complete the task successfully.

Participants obtained 53% and more for various programming sections, indicating a grasp of

syntax and semantics. However, they encountered problems in programming user-

friendliness, exception handling and program evaluation. None of them obtained any marks

for the ‘correctness of output’ criterion. Overall, they encountered problems with synthesis,

evaluation, regulation, and application of certain aspects of OOP knowledge and skills during

the programming process.

To consolidate, these findings indicate, firstly, that the participants were ineffective in overall

problem solving and, secondly, that they were unable to integrate fine-grained generic

reasoning processes with their technical programming knowledge. To address the first, they

used problem-solving skills adequately in the process of designing and coding a program,

but they were not able to use problem-solving skills and mathematical cognition effectively to

determine the complex formulae for calculations with dates. The thinking processes played

an important role in pinpointing this problem. With regard to the second issue, participants

had satisfactory knowledge and comprehension of basic programming syntax and semantics,

but because many of them applied coding processes to implement flawed reasoning, their

programs were doomed to failure. In addition, creativity and metacognition were not in

evidence when handling the specialised aspects such as usability and exception handling.

The discussion now moves on to ‘successful programmers’ who scored 97% and 100%.

195

Table 5.39: Triangulation between analysis methods: P29’s data

Participant 29 (Delphi – successful programmer: 97%)

Quantitative analysis
(Table 5.2)

Qualitative analysis: Atlas.ti
(Section 5.3)

Triangulation

Cognition

 x = 4

Analysis: 4
Synthesis: 4
Evaluation: 4

I determine the requirements and visualise the final
result. How wilI I proceed to solve the problem? I
consider the screen layout. Make changes to the form
and test the program.

P29 is a successful participant and obtained 97%. He had
insight into the problem and used all the skills of Bloom’s
taxonomy effectively. He made the required changes to the
program and tested the output. These thinking processes
are confirmed by an average of 4 for the cognitive section.

Metacognition

 x = 3.67

Planning: 4
Monitoring: 4
Regulation: 3

Planning

I reread the problem with attention; design application
form; create new Date unit; design framework for
procedures; include calculations within procedures and
functions; test the program.
I should make a few changes to the program e.g. set
boundaries (months = 12) … insert a few error messages.
(Monitoring and Regulation).

P29 is goal-oriented and applied various metacognitive
strategies to monitor his programming performance. His
control of cognitive resources, as mentioned in his thinking
processes, is reflected in the marks that he obtained for
planning and monitoring (4). However, he could improve on
the use of regulation strategies (3).

Problem solving

 x = 8

Application of problem-
solving strategies during
programming

I read the assignment with attention and determine the big
picture. I start to solve the problem. I design a new form.
I create a new Date class unit and complete the details of
that unit.

An integrated approach was followed, where P29 referred to
both the big picture and to details of a specific unit. For this
section, he obtained 8.

OOP knowledge and
skills

 x = 3.86

Application of various OOP
knowledge and skills (Fig 4.3)

Sound examples were given of programming knowledge
and skills e.g., create the framework for the Date class ...
calculate the difference between dates … use a procedure
or function.

P29 solved the problem. A mean value of x = 3.86, was

awarded for this section. This is confirmed by various
examples of programming knowledge and skills.

196

P29 had a solid knowledge base from which to work. His thinking processes indicate that he

spent more time determining how to proceed and how to solve the problem. This is

confirmed with scores of 4 for analysis and synthesis. Furthermore, he had holistic insight

into the programming problem and applied cognitive, metacognitive, problem-solving and

OOP activities to solve the problem successfully (Table 5.39). He used planning strategies

to direct his thinking and carefully monitored his own thinking processes.

An integrated problem-solving approach was followed, as P29 referred to both the big picture

and the details of a specific unit. He solved the problem, however, he could improve on

exception-handling techniques to prevent possible run-time errors.

Table 5.40 following relates to the final selected programmer, P32, another successful

programmer – the best of the entire group – who obtained a score of 100%.

197

Table 5.40: Triangulation between different analysis methods: P32’s data

Participant 32 (Java – successful programmer: 100%)

Quantitative analysis
(Table 5.2)

Qualitative analysis: Atlas.ti
(Section 5.3)

Triangulation

Cognition

 x = 4

Analysis: 4
Synthesis: 4
Evaluation: 4

Which calculations are needed … Purpose? Parameters?
Input, Output? Calculations? (Analysis) (Fig. 5.7).

Write DateDifference() method: Subtract: calculate the
largest date … compare years and thereafter months and
then days (Synthesis).

The biggest problem was the difference between days
(Evaluation) (Table 5.7, Appendix G).

P32 used all the skills of Bloom’s taxonomy. He worked
through different levels of abstraction and could determine
which calculations were required. His detailed thinking
processes, shown in Appendix G, are confirmed by a mean of
4 for cognition.

Metacognition

 x = 4

Planning: 4
Monitoring: 4
Regulation: 4

Create framework for Date and Test class, ... Create a
constructor … (Planning).

The dateDifference() method is difficult and I cannot think
of a way immediately (Monitoring).

In the dateDifference() method I can add the days from 1
January 1800 up to date1. This method is difficult and I
should provide for many exceptions, especially for leap
years (Regulation) (Table 5.8).

He applied various metacognitive strategies during the
programming process. P32 used planning strategies to set
goals and to analyse the programming task. He identified
various errors during monitoring and made appropriate
changes to regulate his own cognitive processes. This is
reflected in the mark he obtained (4) for this section.

Problem solving

 x = 8

Application of problem-
solving strategies during
programming

I will start with the framework for the Date class and Test
class, headings, import given methods, etc. (Table 5.9, Fig.
5.7).

P32 clearly used a top-down approach during problem solving
and program comprehension and applied his OOP skills very
effectively. A mark of 8 was awarded to the problem-solving
construct.

OOP knowledge and
skills

 x = 4

Application of various OOP
knowledge and skills
Programs 5.3 and 5.4,
program output (Fig. 5.3).

Excellent examples of programming knowledge and skills
were included in the thinking processes (Tables 5.7 to 5.9,
Fig. 5.7, §5.2.7 and Appendix G).

Sound examples of OOP were illustrated in both the computer

program (x = 4) and the detailed discussion in the thinking

processes.

198

P32 has a well-organised personal knowledge structure and worked through different levels

of abstraction during the programming process (Table 5.40). As indicated by his thinking

processes, for example, I cannot think of a way immediately, P32 put the problem aside for a

while without consciously reflecting on it. As time went by, he obtained new perspectives on

the problem. This is an example of incubation (Sternberg, 2006:419). P32 used a more

systematic approach and his detailed analysis skills (Table 5.7, Appendix G) are evidence of

the fact that he spent much time on thinking about the problem. He further showed high

accuracy in reaching the appropriate solution. P32 used a top-down strategy and applied

different OOP skills very effectively to solve the problem. He used test data to determine

whether the program’s output was correct (Programs 5.3 and 5.4, program output Fig. 5.3).

In conclusion, P32 deliberately focused on the programming problem and integrated all the

required knowledge, skills and strategies to succeed. He compared his performance with the

goal and produced a convergence solution where various cognitive, metacognitive, problem-

solving and OOP activities were integrated to solve the problem with aplomb. These actions

are reflected in a final mark of 100%, clearly showing P32 to be the best programmer in the

study.

P32 was better than P29 where he (P32) more effectively regulated his programming task

and applied all OOP knowledge and skills such as exception handling and access control

(Tables 5.39, 5.40 and 5.2)

To summarise this section, methodological triangulation was applied to establish validity

between different analysis methods. It is clearly illustrated in the different examples in

Tables 5.35 to 5.40 that the participants’ thinking processes were reflected in their scores

and in their performances with relation to the kind of programs they produced.

Furthermore, unsuccessful, average and successful participants demonstrated different kinds

of thinking patterns. This is confirmed by the statistical measurements in the first column of

each table.

Unsuccessful participants did not have a plan during programming. They had deficiencies in

various domains and consequently could not provide evidence of program output. The

average participants had problems with synthesis, evaluation, monitoring and regulation

during programming. They preferred to start their programming at the level of details and

then proceed to higher levels of abstraction.

199

Average participants could handle the basic aspects of programming, but had problems in

the programming of user-friendliness, exception handling and program evaluation. Although

they obtained x = 2.60 for OOP, they scored zero for the correctness of output.

By contrast, successful participants orchestrated various knowledge, skills and strategies in a

comprehensive way. They spent much time on thinking about the problem. In addition, they

selectively combined various programming statements in such a way that they could solve

the problem and give evidence of correct output.

The results from Tables 5.35 to 5.40 indicate a close relationship between the quantitative

and qualitative analysis methods by referring to participants’ thinking processes and

computer programs. Each of these tables covers various activities and together they

address which kinds of knowledge, skills and strategies participants actually use during OOP

and their impact on the effectiveness of the programming process.

5.6 Measures to ensure rigour and quality of data

Chapter 2 (§2.5.3, §2.6.2) refers to various measures to ensure the rigour and quality of

data. The qualitative and quantitative measures used in this study are discussed below.

5.6.1 Qualitative measures

Data was triangulated so as to investigate data analysed by more than one method.

Students provided detailed and descriptive thinking processes, along with their computer

programs, to outline the various knowledge, skills and strategies that they applied during the

programming task. In addition, a questionnaire was completed by some of the students.

The following qualitative measures were used:

• Detailed descriptions were obtained of students’ thinking processes (§5.3). A CD

containing the complete analysis process is provided with this thesis – see pocket on

inside of back cover.

• Methodological triangulation was applied as the researcher used quantitative and

qualitative analysis methods to support a main theory (§5.2, §5.3 and §5.4, §5.5).

• The grounded theory data analysis was aimed towards a process of saturation.

However, saturation did not occur until near the very end, on account of the fact that two

programming languages, Delphi (P1 to P11; P29 to P31) and Java (P12 to P28, P32 to

200

P48; Table 5.2) were used. However, the researcher decided to continue the analysis

process until all participants’ thinking processes had been analysed (§5.3).

• The researcher moved forward from the codes to a coded family, and backwards, from

the coded family to codes. This bidirectional iteration supported reconsideration of the

correctness of families (§5.3) and the consequent emerged themes.

• The researcher’s efforts in striving for coherent interpretations of different resources

(§5.2, §5.3) and in triangulating various analysis methods (§5.5) contribute to validity.

• Various of the Klein and Myers’ principles (1999, Table 2.1, Table 2.2) were applied to

further ensure reliability in Sections 5.2 to 5.4.

• An overview of the themes and the emerging grounded theory was outlined in Subsection

5.3.8.

5.6.2 Quantitative measures

The following quantitative measures were used to ensure validity and reliability (§2.5.2):

• Sample adequacy and factor analysis (Table 5.15) were conducted to validate the scales

of the constructs (§5.2.6).

• Cronbach-alpha statistics were used as a measure of internal consistency and reliability

(Table 5.26 – 5.28).

• Descriptive statistics were used to show the means and standard deviations (Table 5.12,

Table 5.13, Table 5.16, Table 5.19, Table 5.26 – 5.29);

• Correlations (r) between various constructs were investigated (Table 5.17 and Table

5.30);

• The practical significance (effect size) between successful and unsuccessful

programmers was determined in terms of various constructs (Table 5.19).

5.7 Overview of the research findings

In this study, students were asked to program a Date class and a Test class. Whilst it is

impossible to identify ideal knowledge, skills and strategies for every programming problem,

some inferences can be made about general prerequisites for problem solving in the OOP

process. With this objective, different constructs were addressed in this chapter and findings

are provided from the following analyses:

201

• analysis of computer programs and thinking processes (§5.2);

• qualitative analysis of participants’ thinking processes with the support of Atlas.ti (§5.3);

• statistical and qualitative analysis of the questionnaire (§5.4); and

• triangulation between different analysis methods (§5.5).

The methods were complementary, as each presented a different perspective and covered

various facets of the research process (§2.2). The various constructs are reviewed below:

5.7.1 Cognitive knowledge, skills and strategies

• Computer programs and thinking processes

The mean scores showed a downward tendency from the first subcategory of Bloom’s

taxonomy (§3.2.2) to the last. This implies that many participants could not effectively

analyse, synthesise and evaluate their computer programs (Table 5.12). It was notable

that all of the eleven successful participants used all of Bloom’s subcategories (Table

5.18, Table 5.19). There was however, a slight downward tendency among these

successful participants from a score of 4.00 (knowledge, comprehension and

application) to 3.55 (evaluation).

Regarding the themes that emerged from the analysis by means of Atlas.ti (Subthemes

1.1 – 1.3), participants’ thinking processes illustrate that they did indeed comprehend

the core concepts and applied their knowledge and skills in a program. However,

certain participants indicated that completing and evaluating a new object-oriented

program is difficult (Table 5.20). Only a single reference was made to the explicit use

of cognitive strategies (Subtheme 1.4, Table 5.20). Participants had problems with the

organisation-and-integration strategy, and it was clear that they found it difficult to

structure the various programming statements and methods into a coherent whole.

To indicate the relationship between participants’ computer programs and thinking

processes, various examples were extracted and discussed. Triangulation was

conducted between different analysis methods of participants’ data, as outlined in

Section 5.5.

202

• Questionnaire

By contrast, analysis of the questionnaire data – which related to students’ perception

and not to their actual performances – presented a slight increase in synthesis

(x = 3.12) and evaluation (x = 3.43) skills (see Table 5.26). It was expected that the

mean values would decrease as the implementation of cognitive skills becomes more

complex on the higher levels of Bloom’s taxonomy (Table 3.1). This interesting

discrepancy shows that participants over-estimated their cognitive skills. This probably

occurred because they were conscious of their explicit aims to accurately synthesise a

program and evaluate it. This finding is in line with the finding by Edwards (2004:27),

which suggests that most novices focus on the development of programs and use

synthesis skills to write a program, but they should first master the basic

comprehension and analysis skills. Zant (2005) also claims that it is difficult for a

novice programmer to become an expert without progressing through each of the six

levels of Bloom’s taxonomy.

5.7.2 Metacognitive knowledge, skills and strategies

• Computer programs and thinking processes

The analysis of computer programs as shown in Table 5.13, revealed a downward

tendency from planning (x = 3.40) to regulation (x = 1.92) in the analysis of computer

programs. Most participants could plan the programming process, set goals, and

analyse tasks, but had problems managing (monitoring) and regulating their own

activities. Subtheme 2.2 (Table 5.21) from Atlas.ti analysis showed examples of

problems where participants could not reflect on their own programming task:

I have the correct idea but cannot apply it [P5].

Examples of monitoring and regulation in Theme 2.2 were:

I determined the difference in days but was incorrect with 1 day [P39].
I could [have] sent the date to the constructor [P33].

• Questionnaire

As was the case in Subsection 5.7.1, where a decrease was expected in line with the

decrease in performance, the values of perceptions in the questionnaire actually

increase. For example the mean value for regulation (x = 3.37) was significantly

higher than the mean value for planning (x = 2.95) (Table 5.27). When programmers

do not monitor their performance, this may force them to use regulation strategies as

203

they attempt to modify and/or correct programming problems, usually unsuccessfully.

Here too, participants’ perceptions of themselves did not correspond with the actual

scores assigned to their programming of the Date class. This occurred because they

did not know which part of the code was wrong and had not monitored the

programming process adequately. Much of the regulation conducted is enforced

regulation relating to the iterative modification of specific program segments, without

success (Table 5.2).

Although the successful participants used planning, monitoring and regulation

strategies (Subtheme 2.2, Table 5.21), they could have applied regulation more

explicitly. The programmer should understand the task and should have self-

knowledge as well as knowledge regarding appropriate problem-solving strategies.

These results are in line with other researchers’ findings. Programmers should use

monitoring to observe and reflect on their programming experiences (Schwartz &

Perfect, 2002:4, 5) and regulation of their cognitive activity by continuous modification

during programming. Bergin et al. (2005:81) mention that students who perform well in

programming use more metacognitive management strategies than lower-performing

students. Programmers should reflect on their programming, improve the accuracy of

judgment and refine their insight into the task (Bergin et al., 2005:82; Roberts &

Newton, 2005:132,154; Kapa, 2001:320).

5.7.3 Problem-solving knowledge, skills and strategies

• Computer program and thinking processes

Certain participants did not have the necessary problem-solving knowledge and skills

and asked questions such as (Theme 3, Table 5.22):

How will I solve this problem? [P5]

Other participants, by contrast, used the required knowledge and skills to solve a

problem:

When starting the class, keep the overall picture in mind [P16],
The question that I asked myself in the beginning was: which methods should be
in the class and how can I calculate them? [P21]

Most participants described using the bottom-up strategy in their thinking processes.

However, it appears that they lacked explicit knowledge of appropriate problem-solving

strategies in program comprehension. With reference to Table 5.14, 34 participants

204

used the bottom-up strategy, while only five used top-down, five used the integrated

strategy and two used trial-and-error. Détienne (2003:21) mentions that the lowering of

the level of control may result in using the trial-and-error strategy. Two participants did

not use any specific strategy (Table 5.14, Table 5.22, Subtheme 3.2). Cañas et al.

(2005:96) claim that the learning of appropriate problem-solving strategies reduces

cognitive demands and accelerates performance.

• Questionnaire

The use of strategies as mentioned in the questionnaire was low. Mean values ranged

from x = 2.57 to x = 2.89 (Table 5.28). All the mean values were less than 3 on the

Likert scale of 1 to 4. In this case, participants’ perceptions of their abilities, as

indicated by their questionnaire responses, correspond with the actual scores assigned

to their performance during programming of the Date class task. All the forms of data

indicate that they experienced problems in using explicit problem-solving strategies.

5.7.4 Application of knowledge and skills in object-oriented programming

The mean value for solving the actual programming problem was only x = 2.71 (Table 5.16).

Moreover, participants experienced overall problems with user-friendliness and usability,

exception handling and in obtaining the correct output from their programs. Many of these

problems arose from logic errors in the code and a lack of insight into the semantics of the

programming language. Only some participants were able to design, write and test the

program successfully.

As had been stated previously, the measure of success for program output was defined as:

x ≥ 3, on a scale of 4 (Table 5.18, §5.2.7). Using this benchmark, only 11 out of 48

participants, 23%, were successful. The successful participants applied a variety of

knowledge, skills and strategies during programming.

5.8 Chapter conclusion

This chapter addressed the empirical research conducted for this study. The focus was on

describing knowledge, skills and strategies used by students during computer programming.

Both qualitative and quantitative research practices were used. The participants’ object-

oriented computer programs and written documents were analysed by means of program

205

analysis and Atlas.ti software. A questionnaire was designed to determine which cognitive

knowledge and skills, as well as metacognitive and problem-solving strategies students use

during OOP. Responses to closed-ended questions were statistically analysed and

responses to open-ended questions were discussed.

Grounded theory had a strong influence on the qualitative analysis software of Atlas.ti

(§2.5.2), which was applied in Section 5.3. Different steps of grounded theory – open

coding, axial and selective coding – were used in Atlas.ti, as explained in §2.5.2. Finally,

theory in the form of themes was generated inductively from the analysis of data. This will be

further elaborated in an explanatory scheme in Chapter 6.

Students can use knowledge, skills and strategies to help them to reach specific goals.

Chapter 6 will focus on a learning repertoire, which represents the role of cognitive,

metacognitive and problem-solving activities during OOP (Fig. 6.5). Furthermore, certain

implications for the teaching of OOP will be outlined.

206

6 Discussion and conclusion

Grounded theories...are likely to offer insight, enhance understanding, and
provide a meaningful guide to action (Strauss & Corbin, 1998:12)

6.1 Introduction

The purpose of this study was to investigate which knowledge, skills and strategies are used

during problem solving in object-oriented programming (§1.3, Tables 1.1 and 6.1). The

underlying research ethos of the study is constructivist problem solving, which refers to the

students’ active construction of computer programs and their application of programming

constructs such as classes and objects. It also relates to the researcher's construction of a

body of knowledge regarding the students’ programming processes, and her interpretation of

and reflection on those programming experiences.

Both qualitative and quantitative research was used (Fig. 2.1) and the findings are therefore

based on a dual research approach (§2.2, §2.3, §2.6). When applying grounded theory

(§2.5.2) in this study, the aim was to inductively generate theory from concepts that emerged

out of the literature chapters as well as from empirical data analysis. Qualitative and

quantitative methodologies associated with interpretivism and positivism were applied to

combine the interpretivist approach with statistically significant effects for further clarification

(Fig 2.1).

This chapter focuses on the underlying concepts from the literature and the empirical

research findings (§6.2) and proposes a learning repertoire, which can serve as a framework

to support the learning of object-oriented programming (Fig. 6.5). In addition, suggestions

are made regarding how the specific knowledge, skills and strategies used by successful

participants can be applied in the practices of teaching. The learning repertoire is presented

in Section 6.3, while Section 6.4 applies the findings by suggesting ways in which

facilitators/educators can implement them in the teaching and learning of OOP.

207

6.2 Discussion of the findings of this study

Discussion follows of findings from the literature and from empirical research with reference

to the research questions and subquestions in Tables 1.1 and 6.1. The discussion focuses

more explicitly on the empirical findings than on the literature, because the literature studied

(Chapters 3 and 4) was used as a foundation for the criteria used in data collection and

analysis. The literature is therefore implicitly and intrinsically part of the study and its

findings. The questions and subquestions in Table 6.1 are not answered singly in sequence.

Rather, the discussion is structured by combining questions from the same domains e.g.,

Questions 1.1 and 2.1 from the cognitive domain, Questions 1.2 and 2.2 from the

metacognitive domain, and Questions 1.3 and 2.3 with regard to problem-solving. Question

3.1 is answered in Subsection 6.2.4, based on a discussion regarding successful and

unsuccessful participants. Finally, Question 3.2 is addressed in Section 6.4 by contributing

to the practice of teaching knowledge, skills and strategies that are used by successful OOP

programmers.

Table 6.1 Research questions and subquestions

Which knowledge, skills and strategies are used during problem solving in object-
oriented programming?

1. Which knowledge and skills are used during problem solving in object-
 oriented programming?

1.1 Which cognitive knowledge and skills are used in OOP?

1.2 Which metacognitive knowledge and skills are used in OOP?

1.3 Which problem-solving knowledge and skills are used in OOP?

2. Which strategies are used during problem solving in object-oriented
 programming?

2.1 Which cognitive strategies are used in OOP?

2.2 Which metacognitive strategies are used in OOP?

2.3 Which problem-solving strategies are used in OOP?

3. What are the differences between the ways in which unsuccessful and
 successful programmers apply supportive knowledge, skills and strategies in
 OOP?

3.1 What are the differences between the ways in which unsuccessful and successful
 programmers apply cognitive, metacognitive and problem-solving knowledge,
 skills and strategies in OOP?

3.2 What contribution can be made to the practices of teaching and learning OOP by
 applying the knowledge, skills and strategies used by successful programmers?

208

6.2.1 Response to Subquestions 1.1 and 2.1: Cognitive knowledge, skills and
strategies

This subsection briefly summarises specific responses with reference to the questions in

Table 1.1 and 6.1, to determine which cognitive knowledge, skills (Question 1.1) and

strategies (Question 2.1) are used in OOP.

Results from the literature study indicate that Bloom’s cognitive categories of learning are

appropriate norms for evaluating the range of cognitive abilities (§3.3.2, Table 3.1). Analysis

of participants’ computer programs and thinking processes according to Bloom’s six levels

revealed that participants could not readily apply higher-order thinking skills (Table 5.2, Table

5.12, Tables 5.35 and 5.36). Some students lacked important application and analysis skills

or tried to synthesise without using all the preceding levels in Bloom’s taxonomy (Table 5.20,

Subtheme 1.2, Subtheme 1.3, Table 5.26, §5.7.1).

A cognitive strategy is a plan for orchestrating cognitive resources efficiently and helps us to

remember, select and organise information within memory (§4.3). Many students found it

difficult to organise and integrate various programming statements in a coherent way and did

not know how to apply cognitive strategies during programming (Table 5.20, Subtheme 1.4).

The Date class task is an example of an open question. This is a critical dimension, since

there are many choices and a programmer should make specific decisions. It is essential for

students to focus and maintain attention on the problem and the programming process, and

to organise their cognitive processes in ways that direct their thinking. In addition, they

should learn explicit strategies to support such organisation of their thinking processes while

they tackle a programming problem.

6.2.2 Response to Subquestions 1.2 and 2.2: Metacognitive knowledge,
skills and strategies

Responses relating to metacognitive activities used during OOP are consolidated in this

subsection. The following questions are answered: Which metacognitive knowledge, skills

(Question 1.2) and strategies are used in OOP? (Question 2.2) (Tables 1.1 and 6.1).

Metacognition includes the awareness by learners of the strengths and weaknesses of their

abilities and the management of their own cognitive processes. In addition, reflection

includes actions during the planning, monitoring and regulation of a task (§4.4.4).

209

The results of this study show that some participants did not indicate any use at all of specific

metacognitive knowledge and skills. Some mentioned awareness of their weaknesses and

their inability to complete the programming task (§3.4.1, Table 5.21, Subtheme 2.1, Table

5.23). It was clearly found that programmers who applied metacognition performed better in

this programming task (e.g., P32).

Metacognitive strategies are required to direct, monitor and support cognitive processes.

Explicit metacognition can improve activities such as selective attention, error detection and

control. Results showed that most participants were able to plan a computer program but

had problems in managing their own programming activities (monitoring) and in regulating

their performance (Table 5.13, Table 5.21: Subtheme 2.2). In some cases students

repetitively tried to correct errors but failed to do so. Possible reasons are:

• they could not identify the errors in the program;

• they made incorrect interpretations of error messages;

• they lacked the expertise to diagnose the cause or to address their errors; and/or

• they had problems monitoring their progress.

In programming, help-seeking can be done by consulting a textbook or by accessing on-line

help (§4.4.2). A few students used help-seeking strategies to regulate and promote

programming e.g., reading manuals or books, studying previous assignments, asking the

lecturer and searching relevant websites (Table 5.24, Theme 5). In such situations, students

should know how to transfer previous programming experiences and how to contextualise

these successfully in new situations.

6.2.3 Response to Subquestions 1.3 and 2.3: Problem-solving knowledge,
skills and strategies

The responses regarding problem-solving knowledge, skills and strategies are outlined in this

subsection (Table 1.1 and Table 6.1), namely Which problem-solving knowledge, skills

(Question 1.3) and strategies (Question 2.3) are used in OOP?

During problem solving, various possible solutions must be identified in order to select the

best one to achieve a goal (§3.5). The empirical research showed that many participants

could not apply appropriate problem-solving steps in their programs, as outlined in Tables

5.2, 5.22 (Theme 3) and Table 5.23 (Theme 4). Furthermore, they battled to solve and test

210

the actual program. Even although participants probably had knowledge of problem-solving

steps, some could not apply them.

In order to gain a deeper understanding of the programming process, students’ strategies

during object-oriented program development were investigated (§4.5). It is difficult to identify

specific evidence of strategic use and program comprehension, and students are sometimes

unaware of the strategies that they use. Various strategies may be used in combination in

order to perform different programming tasks. However, learners tend to choose strategies

that they believe will result in the most effective performance (Roberts & Newton, 2005:132,

§4.2).

The majority of participants used the bottom-up strategy (34) as shown in Table 5.14. Only

one participant mentioned explicitly that he used the trial-and-error strategy. It seems that

participants used a strategy implicitly without knowing how to direct their thinking during

problem solving. Results from the questionnaire show that students were not able to

distinguish clearly between the various strategies. They did not have explicit knowledge

about different problem-solving strategies as confirmed by the results (Table 5.2, Table

5.28).

From reflection on the findings of the last three subsections, it became clear that cases

occurred in this study (as well as in the researcher’s general experience of teaching

programming) where students had a reasonable grasp of coding and programming

constructs – on occasions even sufficient to earn a reasonable mark (score) – but they failed

to master the semantics of programming. Furthermore, many such students did not have a

holistic grasp of the problem and were over-involved in details. Their inadequate problem-

solving skills and/or the inability to comprehend the semantics resulted in non-functional

computer programs (e.g. P20, obtained 52%, Table 5.2).

6.2.4 Response to Subquestion 3.1: Differences between unsuccessful and
successful programmers

This subsection addresses responses to Subquestion 3.1 where successful and

unsuccessful participants apply/do not apply knowledge, skills and strategies during

programming (Tables 1.1 and 6.1). What are the differences between the ways in which

unsuccessful and successful programmers apply cognitive, metacognitive and problem-

solving knowledge, skills and strategies in OOP?

211

Cognitive knowledge, skills and strategies

Unsuccessful participants battled to decompose the problem scenario and to relate subparts

to the overall structure. With regard to actual programming (§5.2, Table 5.2), they could not

readily apply higher-order thinking skills. Although they used knowledge and comprehension

skills, their programs indicate that they debugged and evaluated the code without using

detailed application and analysis skills. As a result, they had problems in interpreting their

errors, they could not complete the program, and many did not obtain output.

For the higher-order thinking skills (analysis, synthesis and evaluation) required for

programming, the successful participants received a mean value of more than 3.5 on a 4-

point scale (Table 5.19). Their ability to apply all the levels of Bloom’s taxonomy in a task

was clear and they achieved a high level of accuracy in solving the problem (Table 5.18,

Table 5.19, Table 5.20, Subtheme 1.3). It is notable that they spent more time on the

analysis phase and on differentiating how parts are inter-related within the complete

program. Their performances illustrate that programmers should understand the problem

precisely and they should interpret and evaluate their programming solutions. These findings

are in line with Carbone et al., (2002:2) who mention that programming is ‘extremely

cumulative’, and that previous knowledge and skills are therefore used in each successive

programming task.

Although cognitive knowledge was clearly evident, only one successful participant explicitly

mentioned a cognitive strategy that was used during programming (Table 5.20, Subtheme

1.4). Possible reasons could be that participants did not use cognitive strategies, or they did

not realise that they were applying such strategies, or they did not know how to do so in

programming. In this regard, Bergin et al. (2005:85) show that cognitive strategies are not as

useful in the learning of introductory OOP as they are in other domains.

Metacognitive knowledge, skills and strategies

Unsuccessful participants found it difficult to apply metacognitive activities during

programming as they encountered problems in monitoring and regulating their cognitive

resources. Very few of them applied any form of regulatory strategy. They could not easily

reflect on the task and their own understanding of it, and found it difficult to manage their

thinking and reasoning (Subtheme 2.2, Table 5.21).

By using detailed planning strategies, successful participants were able to complete their

tasks and to produce high-quality solutions (Table 5.19). Most participants monitored their

progress and effectively managed their cognitive resources in the process of finding a

212

solution (Table 5.18). The regulation strategy of successful participants was slightly lower

than 3 (x = 2.82, Table 5.19), which implies that they could improve further on regulatory

strategies during programming. These findings correspond with Hertzog and Robinson

(2005:110, 111) who suggest that monitoring plays a vital role in cognitive performance of

complex problem solving and that it guides the process of finding a solution.

Problem-solving knowledge, skills and strategies

Unsuccessful participants did not obtain the required program output. Some encountered

problems in systematically applying problem-solving strategies. Instead, they spent time

iterating through their programming code to address errors without understanding which

sections were incorrect and how to rectify them. Such participants were much less accurate

in their efforts to reach an appropriate solution. Although most of the unsuccessful

participants used a bottom-up strategy (27), some wrote that they worked without using any

specific problem-solving strategies (2). Two used trial-and-error, three used a top-down

strategy, and three used the integrated strategy (Table 5.2).

Successful participants had considerable domain knowledge and highly efficient problem-

solving skills, which they were able to apply successfully in the task. During program

comprehension, seven of them used the bottom-up strategy (§4.5.1.1), two the top-down

(§4.5.1.2), and two the integrated strategy (§4.5.1.3). None of the successful participants

used the trial-and-error strategy (§4.5.1.5). This appears to indicate that it is not a successful

approach in OOP, whereas all the other problem-solving strategies were used effectively

(Table 5.2, Table 5.18).

6.2.5 Performance patterns of unsuccessful and successful participants

It is clear from the research results that unsuccessful and successful participants differ in the

way they apply various cognitive, metacognitive and problem-solving activities. In order to

facilitate a view of these differences, the relationship between these constructs is portrayed

visually by a performance profile that represents the differences between the activities used

by unsuccessful and successful participants.

6.2.5.1 Imbalances between the constructs

To provide a clearer picture of the role of cognition, metacognition and problem solving,

certain differences between unsuccessful and successful programmers are elaborated in a

way that indicates various imbalances between the constructs. If cognitive, metacognitive

213

and problem-solving knowledge, skills and strategies are applied in a balanced way, only

small differences should occur between the values obtained for each construct.

With regard to the unsuccessful participants (who did not obtain program output, Table 5.2),

the diagram in Fig. 6.1 emphasises imbalances between their cognitive (C), metacognitive

(M) and problem-solving (P) abilities. The mean values for each construct (cognition and

metacognition), as obtained from Table 5.19, are displayed in parentheses. In the case of

the problem-solving construct, this was initially scored out of 8 (Section 5.2, Table 5.2) and

the mark obtained is converted so that all values are presented on a scale of 4.

The success rate (§5.2.7) shows that if the values obtained are below 3 (on a 4-point scale),

there are deficiencies in the performance of that specific construct. To be viewed as

successful in the various activities, the requirements are:

• to obtain a value ≥ 3 on a 4-point scale for each construct; and

• to minimise the differences between the various constructs.

Unsuccessful in OOP

C (x = 3.05) M (x = 2.36)

P (x = 3.57)

Figure 6.1: Possible imbalances in unsuccessful participants’ thinking

The imbalances between cognition, metacognition and problem solving indicate areas where

there are some deficiencies. For example, Fig. 6.1 shows that unsuccessful participants

obtained 3.05 (cognition), 2.36 (metacognition) and 3.57 (problem solving) respectively.

They could improve on the use of cognitive and metacognitive activities. Note that the high

mean value obtained for problem solving refers to the explicit or implicit use of specific

strategies during the programming task. Only two unsuccessful participants did not use any

strategy at all and two used trial-and-error (Table 5.2).

With reference to successful participants, Fig. 6.2 shows that they obtained 3.85 (cognition),

3.33 (metacognition) and 4 (problem-solving) for each construct respectively. This

represents greater uniformity in performance and, furthermore, all the values are greater than

214

3. These participants could however improve on the use of metacognitive knowledge, skills

and strategies.

Successful in OOP

C (x = 3.85) M (x = 3.33)

P (x = 4)

Figure 6.2: Possible imbalances in successful participants’ thinking

To further represent such imbalances between the three constructs, a performance profile is

applied, which concisely presents deficiencies in specific subconstructs of each domain (e.g.

evaluation in the Cognitive domain). This is outlined in the subsection below.

6.2.5.2 Performance profile of unsuccessful and successful participants

Participants displayed specific thinking patterns during the programming process. These are

summarised by means of a performance profile (PP) representing the detailed differences

between unsuccessful and successful participants that emerged from Tables 5.19 and 5.2.

The performance profile may display an overall thinking pattern of a group of participants

during a programming task. In addition, problem areas in unsuccessful participants’ thinking

processes can be identified and then addressed by applying corrective measures such as

those presented in Fig. 6.5 in the next section.

In Tables 5.18 and 5.19 and the subsequent discussion, general profiles of unsuccessful

(PPun) and successful participants (PPsuc) are shown and explained. The performance

profiles of unsuccessful and successful programmers are shown in Fig. 6.3 and Fig. 6.4

respectively, followed by an explanation of the variables in the profile.

The representation shown by the profile in Fig. 6.3 indicates whether participants were

unsuccessful or successful in the cognitive (C), metacognitive (M) and problem-solving (P)

constructs. The three major constructs – cognition, metacognition and problem solving –

appear in capital letters, while the detailed subconstructs of each (e.g. knowledge) are in

215

lower case letters. Where participants displayed various deficiencies (x < 3), these

subconstructs are displayed in square parentheses, otherwise round parentheses are used

(x ≥ 3, on a 4-point scale).

Unsuccessful participants

Figure 6.3 shows the performance profile of unsuccessful participants. Round parentheses

indicate the areas where they obtained success and square parentheses the areas where

they had deficiencies:

PPun: C(k, c, app, an) [s, e] M(p) [m, r] P(bu, td, ig) [te]

Figure 6.3: Performance profile of unsuccessful participants

 Where PP indicates the performance profile
 C = cognition construct
 M = metacognition construct
 P = problem-solving construct
 k = knowledge
 c = comprehension
 app = application
 an = analysis
 s = synthesis
 e = evaluation
 p = planning
 m = monitoring
 r = regulation
 bu = bottom-up
 td = top-down
 ig = integrated strategy

te = trial-and-error, not considered an acceptable problem-solving strategy (§5.2.1)

Fig. 6.3 indicates that unsuccessful programmers experienced problems in synthesising (‘s’)

and evaluating (‘e’) their programming problem (indicated by square brackets). In addition,

they could not apply monitoring and regulation strategies successfully. Most participants

obtained marks for problem-solving strategies, however, some used trial-and-error (‘[te]’ in

the profile) and did not obtain any marks.

Successful participants

Fig. 6.4 shows the profile of successful participants, namely, those who obtained program

output (Table 5.18, Table 5.19).

PPsuc: C(k, c, app, an, s, e) M (p, m) [r] P (bu, td, ig)

Figure 6.4: Performance profile of successful participants

216

Although these participants were successful, there is scope for them to improve on the use of

metacognitive strategies. Fig. 6.4 indicates that successful programmers competently

applied all the cognitive subconstructs (round parentheses). However, they could improve

on the use of metacognitive regulation strategies (‘r’) in OOP. All successful participants

obtained marks for problem-solving strategies and none of them used trial-and-error.

By comparing figures 6.3 and 6.4, three main differences emerged between unsuccessful

and successful participants:

• Successful participants applied synthesis and evaluation skills during programming,

while the unsuccessful did not;

• Monitoring was used by most successful programmers, but not by the unsuccessful;

and

• Some unsuccessful programmers used the trial-and-error strategy.

To summarise this subsection, the performance profile is an integrated representation that

concisely presents the performance of participants in OOP. The differences between Fig.

6.3 and Fig 6.4 indicate clearly that unsuccessful programmers displayed considerably more

deficiencies than successful programmers.

The performance profile is used in this study to represent the difference between the

unsuccessful and successful participants, but such a profile may equally well be used to

represent the performance of an individual with regard to cognitive, metacognitive and

problem-solving thinking patterns during a programming process.

The information presented in Sections 5.2, 5.3 and 5.4; and the general ethos of this study

indicates that various techniques are required to support and enhance the object-oriented

programming process. Some of the imbalances in performance can be addressed by

applying techniques and activities, for example, those used by successful participants (Table

5.19). Suggestions are made in the following sections, in particular, the proposal in §6.3 of a

learning framework or learning repertoire to support students in the learning of OOP.

217

6.3 A learning repertoire of knowledge, skills and
 strategies for object-oriented programming

6.3.1 Research methodology applied

The constructivist theory claims that knowledge is actively constructed by a learner (§2.1).

The process of OOP is constructivist-driven as programmers continuously make high-level

decisions in ‘constructing a programming solution’ and in solving the problem successfully.

Students must be actively involved in selecting, constructing, reflecting and applying their

knowledge, and skills in OOP.

Grounded theory had a strong influence on the qualitative analysis of this study as indicated

in Section 5.3. A grounded theory is generated inductively from the analysis of the data, as

concepts are formulated into a logical, systematic and explanatory scheme (§2.9), as shown

in Fig. 5.10. Different steps of grounded theory were used along with the analytical tool,

Atlas.ti, as explained in §2.5.2. Various themes emerged from this process, each of which

captures qualitative richness to explain specific phenomena in OOP (§5.3.3 – §5.3.8; Table

5.20 – Table 5.24, Fig. 5.10). From the ‘families’ identified, five major themes were

generated:

• Cognitive knowledge, skills and strategies;

• Metacognitive knowledge, skills and strategies;

• Problem-solving knowledge, skills and strategies;

• Errors and problems during programming; and

• Additional support during programming.

The first three themes correspond with the major aspects investigated in the literature review

of Chapters 3 and 4, while Errors and problems; and Additional support emerged naturally

from the empirical analysis.

6.3.2 A proposed learning repertoire for the effective learning of OOP

Programmers must apply the sum of their knowledge, skills and strategies in a programming

task (§4.2). Since programming is highly complex, a learning repertoire is proposed to

facilitate and support students in learning OOP and in active, holistic involvement in the

programming process. Its content is drawn from the underlying literature and from the

218

empirical research of this study, highlighting ways in which successful participants solved

the programming problem.

This subsection proposes the learning repertoire, which represents cognitive, metacognitive

and problem-solving knowledge, skills and strategies in OOP and their interrelationships. It

is shown as an integrated framework in Fig. 6.5 and is based upon observation and scientific

study that emphasises how successful students construct their own learning and

understanding during programming and how they reflect on those experiences by means of

setting goals, monitoring their performance and regulating their progress (Havenga et al.,

2008, Appendix H).

Various dimensions are integrated in the repertoire, which explicitly distinguishes between

knowledge and skills on the one hand, and strategies on the other. Knowledge and skills

form the core. Cognitive knowledge and skills on all levels of Bloom’s taxonomy are required

for the understanding, designing, coding and testing of a programming problem. Specific

emphasis is placed on the higher-order thinking skills. Setting of goals, a high level of

motivation, and knowledge about specific tasks are required in the metacognitive domain. In

addition, adequate programming knowledge and skills are essential to the ability to complete

a new program successfully.

219

Object-oriented programming

Program development
Program maintenance

Cognitive strategies Metacognitive strategies

Rehearsal Planning

Elaboration Monitoring

Organisation- Regulation
and-integration

Problem-solving strategies

Top-down, bottom-up,
integrated, as-needed

Figure 6.5: A learning repertoire of cognitive, metacognitive and problem-solving
knowledge, skills and strategies in an OOP task

Dynamic interaction, indicated by the arrows in Fig. 6.5, occurs as the specific cognitive,

metacognitive and problem-solving activities support the various core knowledge and skills

and are applied to the milieu of OOP. As an example, successful object-oriented

R
e

fl
e

c
ti

o
n

C
o

n
s

tr
u

c
ti

o
n

Selection

Application

Knowledge and skills:

Cognition
Knowledge of Bloom’s taxonomy:

- Knowledge
- Comprehension
- Application
- Analysis
- Synthesis
- Evaluation

 Metacognition
 Knowledge of:

- Self
- Task
- Strategies

Problem solving
 Knowledge of:

- Kinds of problems
- Steps in problem solving
- Expertise

220

programming requires the application of skills from Bloom’s taxonomy, particularly analysis,

synthesis and evaluation to determine whether a program is correct, and to rectify it if not.

Use of the strategies lying outside the core can enhance the knowledge and skills, and are

used within the processes of Construction, Reflection and Selection in OOP, shown in blocks

in Fig. 6.5 and elaborated below. The three dashed arrows on the left, the right and below

the core indicate the dynamic and continuous use of cognitive, metacognitive and problem-

solving strategies in the first three processes, while the bold arrow above the core relates to

the Application (see block) of these activities in designing new programs and maintaining

existing ones.

• Construction

The use of cognitive strategies can enhance acquisition of the knowledge and skills in

Bloom’s taxonomy. Rehearsal supports the learning of facts about OOP (knowledge)

and the grasping of programming content (comprehension). Elaboration can facilitate

the use of previously learned material in new situations (application) and the

decomposition of a problem into subproblems (analysis). The organisation-and-

integration strategy can support programmers in combining objects, methods and

attributes in a class (synthesis), and in testing the correct solution (evaluation). Object-

oriented programmers should be actively involved in their tasks, using prior knowledge

and applying a repertoire of knowledge and skills to help them recall information and

organise it in memory during the process of constructing a program.

• Reflection

Students should reflect on their cognitive processes during OOP by conducting

deliberate planning, monitoring and regulation. They should question themselves,

discover misconceptions, identify errors and continuously modify their programs in

order to succeed. Such reflection places them in control of the programming task as

they explicitly query the correctness of their code and reflect on their prior thinking to

identify errors and correct flaws. Appropriate responses to feedback and the

continuous improvement of code help to optimise the solution and to achieve the

required outcomes.

• Selection

The ability to make discerning selections helps students to choose a suitable problem-

solving strategy for a given problem. They may select and apply one or more problem-

solving strategies during program comprehension to help them reach specific goals.

221

For example, effective use of a top-down strategy demonstrates that a student has

holistically conceptualised the entire program involving multiple classes, instances and

methods.

• Application

 Finally and, in consolidation, the construction, reflection and selection of knowledge,

skills and strategies have to be applied in OOP tasks to develop new programs and

maintain existing ones. Learning to program is an active process of knowledge

construction, reflection, and selection of appropriate activities to ensure successful

programming. It is not the intention that every strategy should be applied in every

situation. Different forms of knowledge, skills and strategies are relevant to different

content and contexts. Relevant, customised subsets of the repertoire can be used as

required.

Learning OOP requires a balanced approach of all the different activities involved. This

implies, for example, that the application of Bloom’s skills alone, without explicit reflection, or

the application of strategies without applying analysis, synthesis and evaluation skills will not

support successful completion of a new program. In such cases, students must explicitly

query the correctness of their problem-solving and programming processes, and reflect on

their prior thinking to identify errors and to correct flaws.

6.4 Application of this study to teaching and learning

This section practically applies the findings of this study by addressing Subquestion 3.2 –

What contribution can be made to the practices of teaching and learning OOP by applying

the knowledge, skills and strategies used by successful programmers?

The section briefly discusses areas where participants may improve on their thinking

processes during programming. It also refers to teaching practices.

An in-depth analysis and plan on how to proceed are required in order to succeed, as did

P32 and some others (Appendix G). Students should strengthen their abilities in the

application of higher cognitive skills and they should apply such skills and strategies

frequently. They should evaluate programming statements and segments during the

programming process and at the end. This sometimes requires realignment of thoughts and

222

the application of additional skills and strategies to solve the problem and to determine

whether the goal was achieved.

Where programmers have adequate knowledge combined with metacognition, they should

be able to identify appropriate responses to correct the errors. Students should reflect on

their programming, particularly on the semantics of their statements. They should pause

periodically and check for errors to improve the accuracy of their reasoning and their

programs. To foster this, students should be supported with various strategies that can help

them to take corrective action in their programs and assess the output. Furthermore,

students need explicit teaching on how to apply metacognitive strategies and the habits of

reflection, which are essential in programming.

These activities should be addressed during the teaching and learning processes. The types

of activities should be explained, demonstrating how they can be applied in a task (Table

6.3). In this regard, De Raadt et al. (2006:2) emphasises the need for explicit teaching of

problem-solving strategies in programming. Students must learn how to investigate

programming problems at a deeper level. A detailed test plan helps to ensure program

correctness (Table 3.4). Practical skills are required for the processes of program testing,

program debugging and the comprehension of error messages (§3.5).

Good teaching practices complement instruction on OOP content and constructs by also

imparting information about valuable knowledge, skills and strategies (Fig. 6.5). However,

these practices should be implemented gradually to prevent cognitive overload of students.

The cognitive load of a task is related to the interactions between various elements within

working memory (§3.3.1.1). However, cognitive load can be managed in a systematic way.

The educator or facilitator should teach a few supportive activities at a time, provide various

programming examples, give regular feedback and create a reflective environment in which

students should learn the required qualities to succeed.

Examples of facilitator practices are given in Tables 6.2 – 6.4. These practices can be used

to teach explicit knowledge, skills and strategies, which should contribute to deeper

understanding and support students in overcoming programming difficulties in the complex

multi-facetted domain of OOP.

223

Table 6.2: Facilitator practices in teaching cognitive knowledge, skills and strategies

Knowledge, skills and
strategies

Facilitator practices

Rehearsal strategy,
knowledge and
comprehension

- Explain and clarify new concepts in detail
- Focus students’ attention when explaining concepts (§4.3.1)
- Demonstrate practical ways of interpreting a textual programming problem (Table 3.2, §3.5.2)
- Find evidence of students’ knowledge of the programming language (Table 5.1)
- Provide guidelines to support the programming process (Table 2.4)
- Advise students to underline and select the main concepts in a programming problem (§4.3.3)
- Discuss inherent requirements of the particular program e.g., what is a leap year? (Table 5.20, Theme 1)

Elaboration strategy,
application and analysis

- Select items of content and ask directed questions that elaborate on previous knowledge (§4.3.2)
- Demonstrate the use of memory diagrams to explain, for example, objects or arrays (§3.3.3)
- Instruct students to study sections in a textbook to elaborate on specific content (Theme 5, §5.3.7)
- Emphasise generative note-taking and integration of information (§4.3.2)
- Guide students in working step-by-step during program analysis and in asking questions about the purpose,
 parameters, variables and return values (P32, Appendix G, Theme 1, Table 5.7)
- Explain CRC cards for the identification of classes and their relationships (§3.2.4.3)
- Illustrate the use of a semantic network for displaying different relationships e.g., an is-a relationship between
 concepts (§3.3.3)

Organisation-and-integration
strategy, synthesis and
evaluation

- Organise a class into constructor(s), mutators and accessors (Questionnaire, Question 22, Appendix E, Table 5.26)
- Explain different types of programming problems, using several examples (Questionnaire, Question 38, Table 5.26)
- Demonstrate how to integrate various programming statements in a new programming problem (Questionnaire,
 Question 27, Table 5.26)
- Guide learners in setting their own programming questions and designing their solutions (§3.3.2)
- Demonstrate and explain the use of specific statements in a program (Table 5.26, Question 16)
- Evaluate and verify two programs that solve the same problem and explain how to select the best one (Table 5.26,
 Question 38)
- Instruct students on how to generate appropriate test data for the program (Table 3.2, Table 5.1)

224

Table 6.3: Facilitator practices in teaching metacognitive knowledge, skills and strategies

Knowledge, skills and
strategies

Facilitator practices

Planning

- Direct students’ thinking in terms of goal setting (§3.4.3)
- Deliberately plan a programming solution (§4.4.1)
- Simulate a planning strategy for a specific programming problem (§4.4.1)
- Motivate students to design planning schemes for their problem solving and programming

Monitoring

- Suggest that students use a journal or reflective diary to record the difficulties they experience (§3.4.3)
- Motivate students to use help-seeking and self-questioning (§4.4.2)
- Instruct students to monitor their own strategic use (§4.4.2)
- Teach various debugging techniques and encourage students to apply specific ones, such as Watch and Trace (§4.4.3)
- Discuss ways of determining how programming statements would behave and predict how a change in programming
 code would result in a change in program behaviour
- Advise the use of trace tables to track behaviour of a well-functioning program

Regulation

- Provide meaningful feedback to students when they experience difficulties in their programming (§4.4.3)
- Instruct students to re-read and to go back to the programming problem to ensure accuracy of their programs (§4.4.3)
- Teach students how to implement corrective measures and how to react to feedback (§4.4.3)
- Demonstrate how to interpret error messages and how to make the required changes to a program
- Show students how to make predictions about the correctness of their programs (§4.4.3)
- Motivate students to use the given rubrics to determine the correctness of their programs
- Advise students to utilise metacognitive knowledge, skills and strategies from previous experiences and transfer these

successfully into new programming situations (§4.4.4)

Reflection

- Guide students in developing a reflective approach towards the programming solution (§4.4.4)
- Motivate students to ask questions, to self-question, to identify possible misconceptions, and to continuously modify their
 program in the process of achieving an optimal solution (§4.4.4)
- Encourage students to explicitly investigate the correctness of their code and to reflect on their prior thinking in order to
 identify errors
- Direct students in checking the accuracy of their judgement, in refining their personal insight, and in correcting programming
 errors (§4.4.4)
- Provide regular opportunities for students to explicitly reflect on their own programming task

225

Table 6.4: Facilitator practices in teaching problem-solving knowledge, skills and strategies

Knowledge, skills
and strategies

Facilitator practices

Problem-solving
knowledge, skills and
strategies

- Categorise problems into different types, where each type requires specific knowledge, skills and strategies (§3.5.1)
- Explain and highlight the purpose of a program or program segments (§3.5.4)
- Explain example programs and the reasoning that underlies the solutions of these (§3.5.4)
- Require students to download various examples of similar problems and to explain the programming code (§3.5.4)
- Require students to study programming examples from the Help file and to explain these examples to the group (§3.5.4)
- Discuss trace tables in one or more classes and demonstrate how to use them to determine whether the problem was
 successfully solved
- Teach how to use custom-developed test data (§3.5.4, Table 3.4)
- Explicitly introduce collaborative learning, e.g. pair programming, where students can support each other in the
 programming process (§3.5.4)
- Provide exposure to various types of programming problems e.g., structured and unstructured (open) problems
- Teach specific problem-solving skills (§3.5.1)
- Provide an incomplete program and ask students to complete specific sections e.g., methods (Questionnaire, Question 11,
 Table 5.28)

Expertise

- Teach students to answer open-ended questions (§4.5)
- Instruct students to test program segments individually as well as to test the program as a whole (Table 5.7, §5.2.3.1)
- Provide instruction in detailed problem representation skills in order to solve problems more efficiently (Table 3.5)
- Explain how to understand multiple interpretations of the same problem (Table 3.5)
- Teach a diagnostic approach to correcting flaws and errors in programming (Table 5.1)

226

This section contributes to the practice of teaching by listing examples of techniques that

OOP educators can integrate into their instruction. The knowledge, skills and strategies in

the preceding tables can be explicitly taught to support students in successful learning of

OOP. The use of these approaches can lead to positive differences in the achievement and

success of students. However, such an approach takes time. It requires more class time

and possibly workshop sessions.

6.5 Recommendations and future research directions

To be successful in OOP, programmers require explicit learning both of programming content

and higher-order mental activities. The findings of this study, which distinguish between

successful and unsuccessful programmers, indicate the need for a framework to support

novice programmers. This should address programming subject matter as well as cognitive,

metacognitive and problem-solving knowledge, skills and strategies. Fostering awareness

and application of the latter among learners sets a particular challenge to educators

(lecturers) to identify creative and effective means of doing so.

Although this framework focuses mainly on OOP, it can also be applied to support students

in other programming paradigms, such as procedural programming. However, due to the

particular complexities of OOP, the framework focuses specifically on a holistic view where

different kinds of decisions are required in programming one or more classes.

Future work will concentrate on the role of the lecturer or facilitator in conducting explicit

teaching of the required knowledge, skills and strategies and supporting students by creating

an educational environment in which the learning repertoire can be effectively applied. This

may also require a search for appropriate strategic tools to facilitate the practices. The

development of assessment criteria to test the effective application of the activities of the

learning repertoire in an OOP task should further support the students.

6.6 Chapter conclusion

The purpose of this chapter was to discuss the findings of this study with the specific aim of

answering the research question. Throughout the chapters, meticulous attention was paid to

ethical aspects, thus strenghtening the integrity of the data obtained and also protecting

227

confidentiality of participants (Appendix A, Appendix B). Both qualitative and quantitative

research was used (§2.2) and the findings are applied to combine the interpretivist approach

with statistically significant effects for further clarification (§5.2, §5.3, §5.4). The grounded

theory method was used as an analytic strategy to collect rich data from multiple sources, to

define the properties of the categories and identify their relevant contexts. Grounded theory

is generated inductively from the analysis of data as concepts are formulated into a logical

systematic and explanatory scheme (§6.3). The positivist paradigm was applied to add

another facet of analysis by ‘measuring’ data to ensure reliability and validity (Table 5.2,

Tables 5.26 – 5.28). The statistics used in this study include the following: factor analysis,

reliability testing, descriptive statistics and practical significance, all of which are outlined in

Subsection 5.2.5 and applied in Sections 5.2 and 5.4.

Methodological triangulation was applied by describing the relationship between the

quantitative and qualitative analysis methods by referring to the participants’ cognitive,

metacognitive, problem-solving and OOP activities. This was done by comparing statistical

data (Table 5.2) with associated details from the Atlas.ti records. A questionnaire was

administered to measure participants’ perceptions.

Two major contributions of this study are the identification of specific types of knowledge,

skills and strategies that are required during OOP, and the suggestion of guidelines and

support in the learning of OOP that were generated as a result of this research. A detailed

framework or learning repertoire was proposed, whereby various actions are integrated to

support programmers in meaningfully constructing, and critically selecting, various

knowledge, skills and strategies which support understanding, as well as explicit reflection on

the activities involved in OOP. Implementation of the activities represented in Section 6.3

and the teaching practices outlined in Section 6.4, should help programmers in

understanding, designing, coding and testing object-oriented programs.

228

References

Ala-Mutka, K. (2004). Problems in Learning and Teaching Programming – a literature study
for developing visualizations in the Codewitz-Minerva project. Retrieved July, 2006, from
http://www.cs.tut.fi/~edge/literature_study.pdf

Aleven, V., McLaren, B., Roll, I. & Koedinger, K. (2004). Toward tutoring help seeking.

Applying cognitive modeling to meta-cognitive skills. Retrieved October, 2007, from
www.pitt.edu/~bmclaren/HelpSeeking-ITS04.pdf

Alexander, C. (1996). The Origins of Pattern Theory. The Future of the Theory, and The

Generation of a Living World. ACM Conference on Object-Oriented Programs, Systems,
Languages and Applications (OOPSLA).

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I. & Angel, S.

(1977). A Pattern Language. Towns, Buildings, Construction. New York: Oxford
University Press.

Anderson, L. W. & Krathwohl, D.R. (Ed.). (2001). A Taxonomy for Learning, Teaching and

Assessing: A Revision of Bloom's Taxonomy of Educational Objectives. New York:
Longman.

Baddeley, A. (2003). Working memory: looking back and looking forward. Neuroscience,

4:829-939.

Barrow, J., Miller, L., Malan, K. & Gelderblom, H. (2005). Introducing Delphi Programming.

Theory through practice (4th ed.). Cape Town: Oxford University Press.

Beck, K. & Cunningham, W. (1989). A laboratory for teaching object-oriented thinking.

OOPSLA Conference Proceedings. SIGPLAN Notices, 24(10):1-6.

Bennedsen, J. & Caspersen, M.E. (2004). Teaching Object-Oriented Programming –

Towards Teaching a Systematic Programming Process. Retrieved June, 2006, from
www.cs.umu.se/~jubo/Meetings/ECOOP04/Submissions/BennedsenCaspersen.pdf

Bergin, S., Reilly, R. & Traynor, D. (2005). Examining the Role of Self-Regulated Learning on

Introductory Programming Performance. International Computing Education Research
(ICER), 2005:81-86.

Berntsen, K.E., Sampson, J. & Østerlie, T. (2004). Interpretive research methods in

Computer Science. Retrieved March, 2006, from
http://www.idi.ntnu.no/~thomasos/paper/interpretive.pdf

Bloom, B.S., Krathwohl, D.R. & Masia, B.B. (1973). Taxonomy of Educational Objectives.

Book 2: Affective Domain. London: Longman Group.

Booch, G. (1991). Object Oriented Design with applications. New York: The

Benjamin/Cummings Publishing Company.

229

Boy, G.A. (2005). Decision Making: A Cognitive Function Approach. Proceedings of the
Seventh International NDM Conference. Amsterdam: The Nederlands:1-20.

Boychuk Duchscher, J.E. & Morgan, D. (2004). Grounded theory: reflections on the

emergence vs. forcing debate. Journal of Advanced Nursing, 48(6):605-612.

Breed, E.A. (2006). 'n Analise van die reflektiewe vermoëns van effektiewe en oneffektiewe

leerders in rekenaarprogrammering. MEd dissertation. Potchefstroom: North-West
University.

Brooks, R. (1983). Towards a theory of the comprehension of computer programs.

International Journal of Man-Machine Studies, 18:543-554.

Cañas, J.J., Antolí, A., Fajardo, I. & Salmerón, L. (2005). Cognitive inflexibility and the

development and use of strategies for solving complex dynamic problems: effects of
different types of training. Theoretical Issues in Ergonomics Science, 6(1):95-108.

Carbone, A., Mitchell, I.J., Gunstone, R. & Hurst, A.J. (2002). Designing programming tasks

to elicit self-management metacognitive behaviour. International Conference on
Computers in Education, (ICCE 2002), Auckland, New Zealand.

Caspersen, M.E. & Kölling, M. (2006). A Novice’s Process of Object-Oriented Programming.

OOPSLA. Portland,1-9.

Charmaz, K. (2000). Grounded Theory. Objectivist and Constructivist Methods. In N.K.

Denzin & Y.S. Lincoln (Ed.). Handbook of Qualitative Research. (2nd ed.). London: Sage
Publications.

Chmura, G.A. (1998). What abilities are necessary for success in Computer Science?

SIGCSE Bulletin, 30(4):55-58.

Cleenewerck, T. (2003). Lost in Object Space. Retrieved June, 2006, from

http://prog.vub.ac.be/Publications/2003/vub-prog-tr-03-22.pdf

Cohen, J. (1988). Statistical Power Analysis for the behavioural Sciences. (2nd ed.). Hillsdale,

NJ: Erlbaum.

Cohen, L., Manion, L. & Morrison, K. (2000). Research methods in education (5th ed.).

London: RoutledgeFalmer.

Concise Oxford English Dictionary. (2004). Oxford: Oxford University Press.

Conklin, W.A. (2006). Bottom-Up meets Top-Down: A New paradigm for Software

Engineering Instruction. Proceedings of the 10th Colloquium for Information Systems
Security Education 2006:131-136.

Corritore, C.L. & Wiedenbeck, S. (2000). Direction and Scope of Comprehension-Related

Activities by Procedural and Object-Oriented Programmers: An Empirical Study. IEEE
Computer Society,139-148.

Cupchik, G. (2001). Constructivist Realism: An Ontology that Encompasses Positivist and

Constructivist Approaches to the Social Sciences. Retrieved October, 2007, from
www.qualitative-research.net/fqs-texte/1-01/1-01cupchik-e.pdf

230

De Raadt, M., Watson, R. & Toleman, M. (2006). Chick Sexing and Novice Programmers:
Explicit Instruction of Problem-Solving Strategies. 8th Australasian Computing Education
Conference, 52:1-8.

De Villiers, M.R. (2005a). Three approaches as pillars for interpretive Information Systems

research: development research, action research and grounded theory. In J. Bishop & D.
Kourie. Research for a Changing World: Proceedings of SAICSIT 2005:142-151. ACM
International Conference Proceedings Series.

De Villiers, M.R. (2005b). Interpretive research models for Informatics: action research,

grounded theory, and the family of design- and development research. Alternation,
12(2):10-52.

Deek, F.P. (1999). A framework for an automated problem solving and program development

environment. Journal of Integrated Design and Process Science, 3(3):1-13.

Deek, F.P., Turoff, M. & McHugh, J.A. (1999). A Common Model for Problem Solving and

Program Development. IEEE Transactions on Education, 42(4):331-336.

Denzin, N.K. & Lincoln, Y.S. (Ed.). (2000). Handbook of Qualitative Research. (2nd ed.).

London: Sage Publications.

Détienne, F. (1995). Design strategies and knowledge in object-oriented programming:

Effects of experience. Human-Computer Interaction, 10:129-169.

Détienne, F. (2002). Software Design – Cognitive Aspects. London: Springer.

Détienne, F. (2003). Memory of past designs: distinctive roles in individual and collective

design. Journal of Cognitive Technology, 1(8):16-24.

Du Plooy, G.M. (2001). Communication Research: Techniques, Methods and Applications.

Lansdowne: Juta.

Dunsmore, A. (1998). Comprehension and Visualisation of Object-Oriented Code for

Inspections. Retrieved June, 2006, from
http://www.cis.strath.ac.uk/research/efocs/papers/EFoCS-33-98.pdf

Eckel, B. (2003). Thinking in Java. (3rd ed.). New Jersey: Prentice Hall.

Eckerdal, A. & Thuné, M. (2005). Novice Java Programmers’ Conceptions of “Object” and

“Class”, and Variation Theory. ITiCSE:89-93.

Edwards, S.H. (2004). Using Software Testing to Move Students from Trial-and-Error to

Reflection-in-Action. Proceedings of the 35th SIGCSE Technical Symposium on
Computer Science Education 2004:26-30.

Ellis, S.M. & Steyn, H.S. (2003). Practical significance (effect sizes) versus or in combination

with statistical significance (p-values). Management Dynamics, 12(4):51-53.

Ertmer, P.A. & Newby, T.J. (1996). The expert learner: strategic, self-regulated, and

reflective. Instructional Science, 24:1-24.

Fekete, A., Kay, J., Kingston, J. & Wimalaratne, K. (2000). Supporting reflection in

introductory Computer Science. SIGCSE, 144-148.

231

Field, A.P. (2005). Discovering Statistics using SPSS. (2nd ed.). London: Sage Publications.

Filcher, C. & Miller, G. (2000). Learning strategies for distance education students. Journal of

Argricultural Education, 41(1):60-68.

Flavell, J.H. (1979). Metacognition and cognitive monitoring. A new area of cognitive

developmental inquiry. American Psychologist, 34(10):906-911.

Fowler, M. (2000). UML Distilled. A Brief Guide to the Standard Object Modeling Language.

(2nd ed.). Boston: Addison-Wesley.

Gama, C. (2004). Metacognition in Interactive Learning Environments: The Reflection

Assistant Model. Proceedings of the 7th International Conference on Intelligent Tutoring
Systems. 2004:668-677.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995). Design Patterns. Elements of

Reusable Object-Oriented Software. Boston: Addison-Wesley.

Garrido, J.M. (2003). Object-Oriented Programming: From Problem Solving to Java.

Massachusetts: Charles River Media.

Garton, A. (2004). Exploring Cognitive Development: The Child as Problem Solver. Malden,

M.A.: Blackwell Publishers.

Gilhooly, K.J. (2005). Working memory and strategies in reasoning. In M.J. Roberts & E.J.

Newton (Eds.). Methods of Thought: Individual Differences in Reasoning Strategies. NY:
Psychology Press.

Glaser, B.G. & Strauss, A.L. (1967). The Discovery of Grounded Theory. Strategies for

Qualitative Research. London: Weidenfeld and Nicolson.

Glaser, R. (1999). Expert knowledge and processes of thinking. In R. McCormick, C.
 Paechter (Eds.). Learning and Knowledge. London: Paul Chapman.

Gliem, J.A. & Gliem, R.R. (2003). Calculating, Interpreting and Reporting Cronbach’s Alpha

Reliability Coefficient for Likert-Type Scales. Retrieved February, 2007, from
www.alumni-osu.org/midwest/midwest%20papers/Gliem%20&%20Gliem--Done.pdf

Golafshani, N. (2003). Understanding reliability and validity in qualitative research. The

Qualitative Report, 8(4):597-607.

Goulding, C. (1998). Grounded theory: the missing methodology on the interpretivist

agenda. Qualitative Market Research: An International Journal, 1(1):50-57.

Govender, I. & Grayson, D. (2006). Learning to program and learning to teach programming:

A closer look. ED-Media 2006 Proceedings:1687-1693.

Grant, N.S. (2003). A Study on Critical Thinking, Cognitive Learning Style, and Gender in

Various Information Science Programming Classes. Proceedings of the 4th conference on
Information Technology Curriculum. 2006:96-99. ACM International Conference
Proceedings Series.

Gravill, J.I., Compeau, D.R. & Marcolin, B.L. (2002). Metacognition and IT: The influence of

self-efficacy and self-awareness. Eighth Americas Conference on Information
Systems:1055-1064.

232

Gu, P.Y. (2005). Learning Strategies: Prototypical Core and Dimensions of Variation.
Retrieved August, 2006, from http://www.crie.org.nz/research_paper/Peter_Gu.pdf

Guba, E.G. & Lincoln, Y.S. (1989). Fourth generation evaluation. Newbury Park, California:

Sage Publications.

Guion, L.A. (2002). Triangulation: Establishing the validity of qualitative studies. Institute of

Food and Argricultural Sciences,1-3.

Hadar, I. & Leron, U. (2008). How intuitive is object-oriented design? Communications of the

ACM. 51(5):41-46.

Haden, P. & Mann, S. (2003). The Trouble with Teaching Programming. Retrieved April,

2008, from www.naccq.ac.nz/conference04/proceedings_03/pdf/63.pdf

Hadjerrouit, S. (1999). A constructivist approach to object-oriented design and programming.

Integrating Technology into Computer Science Education,171-174.

Hammouri, H.A.M. (2003). An investigation of undergraduates’ transformational problem

solving strategies: cognitive/metacognitive processes as predictors of holistic/analytic
strategies. Assessment & Evaluation in Higher Education, 28(6):571-586.

Havenga, H.M., Mentz, E. & De Villiers, M.R. (2008). Knowledge, skills and strategies for

successful object-oriented programming: a proposed learning repertoire. South African
Computer Journal [in press].

Heines, J.M. & Schedlbauer, M.J. (2007). Teaching Object-Oriented Concepts Through GUI

Programming. Retrieved August, 2008, from
www.cs.umu.se/~jubo/Meetings/ECOOP07/Submissions/HeinesSchedlbauer.pdf

Henning, E., Van Rensburg, W. & Smit, B. (2004). Finding your way in qualitative research.

Pretoria: Van Schaik Publishers.

Hertzog, C. & Robinson, A.E. (2005). Metacognition and Intelligence. In O. Wilhelm & R.W.

Engle (Eds.). Handbook of Understanding and Measuring Intelligence. London: Sage
Publications.

Holliday, M.A. & Luginbuhl, D. (2003). Using Memory Diagrams When Teaching a Java-

Based CS1. Retrieved June, 2006, from
http://sol.cs.wcu.edu/~holliday/papers/acmse03.pdf

Huan Keat, T. (2004). Semantic Networks. Retrieved June, 2006, from

http://ww2.cs.fsu.edu/~huanktoh/project/Semantic%20Networks.pdf

Johnson, R.B. & Onwuegbuzie, A.J. (2004). Mixed method research: A research paradigm

whose time has come. Educational Researcher, 33(7):14-26.

Johnson, R.A. & Wichen, D.W. (1992). Applied Multivariance Statistical Analysis. (3rd ed.).

New Jersey: Prentice Hall.

Jonassen, D. (2003a). Using cognitive tools to represent problems. Journal of Research on

Technology in Education, 35(3):362-381.

Jonassen, D. (2003b). What is problem-solving? Retrieved March, 2007, from

http://media.wiley.com/product_data/excerpt/79/07879643/0787964379.pdf

233

Jonassen, D.H. (2004). Learning to Solve Problems: An Instructional Design Guide. San
Francisco: Pfeiffer.

Jonides, J. & Nee, D.E. (2006). Brain mechanisms of proactive interference in working

memory. Neuroscience, 139:181-193.

Kaiser, H.F. (1970). A second generation little jiffy. Psychometrika, 35(3):401-415.

Kaiser, H.F. (1974). An index of factorial simplicity. Psychometrika, 39(1):31-36.

Kapa, E. (2001). A metacognitive support during the process of problem solving in a

computerized environment. Educational Studies in Mathematics, 47:317-336.

Kayashima, M., Inaba, A. & Mizoguchi, R. (2005). What Do You Mean by to Help Learning of

Metacognition? Retrieved March, 2007, from
www.ei.sanken.osaka-u.ac.jp/pub/documents/AIED05-Kaya.pdf

Keefe, K., Sheard, J. & Dick, M. (2006). Adopting XP Practices for Teaching Object Oriented

Programming. Proceedings of the 8th Australasian Computing Education Conference.
52:10. ACM International Conference Proceeding Series.

Kirkwood, M. (2000). Infusing higher-order thinking and learning to learn into content

instruction: a case study of secondary computing studies in Scotland. Journal of
Curriculum Studies, 32(4):509-535.

Klein, H.K. & Myers, M.D. (1999). A set of principles for conducting and evaluating

interpretive field studies in Information Systems. MIS Quarterly, 23(1):67-94.

Kline, P. (1999). The handbook of psychological testing. (2nd ed.). London: Routledge.

Kölling, M. (1999). The problem of teaching object-oriented programming. Part 1:

Languages. Journal of Object-Oriented Programming, 11(8):8-15.

Koriat, A. (2002). Metacognition research: an interim report. In T.J. Perfect & B.L. Schwartz

(Eds.). Applied Metacognition. UK: Cambridge University Press.

Leedy, P.D. & Ormrod, J.E. (2001). Practical Research. Planning and Design. (7th ed.). New

Jersey: Merrill Prentice Hall.

Lemaire, P. & Fabre, L. (2005). Strategic aspects of human cognition: Implications for

understanding reasoning. In M.J. Roberts & E.J. Newton (Eds.). Methods of Thought.
Individual Differences in Reasoning Strategies. New York: Psychology Press.

Lewis, T.L., Pérez-Quiñones, M.A. & Rosson, M.B. (2004). A Comprehensive Analysis of

Object-Oriented Design: Towards A Measure of Assessing Design Ability. ASEE/IEEE
Frontiers in Education Conference. 16-21.

Lin, X. (2001). Designing metacognitive activities. Educational Technology Research and

Development, 49(2):23-40.

Malik, D.S. & Nair P.S. (2003). Java Programming: From Problem Analysis To Program

Design. United States: Thomson.

Matlin, M.W. (2002). Cognition. (5th ed.). Fort Worth: Harcourt College Publishers.

234

McDowell, C., Werner, L., Bullock, H. & Fernald, J. (2002). The effects of pair-programming
on performance in an introductory programming course. SIGCSE Bulletin, 38-42.

Mentz, E. (1998). ‘n Ondersoek na Semantiese Nette in Probleemoplossing vir die Skoolvak

Wiskunde. MSc dissertation. Potchefstroom: Potchefstroom University for CHE.

Morris, B.J. & Schunn, C.D. (2005). Rethinking logical reasoning skills from a strategy

perspective. In M.J. Roberts & E.J. Newton. (Eds.). Methods of Thought. Individual
Differences in Reasoning Strategies. New York: Psychology Press.

Muhr, T. (2004). User’s Manual for ATLAS.ti 5.0. (2nd ed.). Retrieved May, 2007, from

http://www.atlasti.com/downloads/atlman.pdf

Neath, I. & Surprenant, A.M. (2003). Human Memory. (2nd ed.). Australia: Thomson

Wadsworth.

Neubauer, B.J. & Strong, D.D. (2002). The object-oriented paradigm: More natural or less

familiar? Journal of Computing Sciences in Colleges, 18(1):280-289.

Neuman, W.L. (2002). Social Research Methods. Qualitative and Quantitative Approaches.

(4th ed.). Boston: Allyn and Bacon.

Northrop, L.M. (1992). Finding an Educational Perspective for Object-Oriented Development.

Proceedings of OOPSLA 1992:245-249.

Nurvitadhi, E., Leung, W. & Cook, C. (2003). Do class comments aid Java program

understanding? 33rd IEEE Frontiers in Education Conference. 2003:13-17.

Oliver D., Dobele, T. Greber, M. & Roberts, T. (2004). This Course Has A Bloom Rating Of

3.9. In R. Lister & A. Young (Eds.). Conferences in Research and Practice in Information
Technology. 6th Australasian Computing Education Conference. (ACE2004). 30:227-231.

Or-Bach, R. & Lavy, I. (2004). Cognitive activities of abstraction in object orientation: An

empirical study. The SIGCSE Bulletin, 36(2):82-86.

Ormrod, J.E. (2003). Educational Psychology. Developing Learners. (4th ed.). Ohio: Merril

Prentice Hall.

Pacione, M.J. (2004). Evaluating a Model of Software Visualisation for Software

Comprehension. University of Strathclyde: Department of Computer and Information
Sciences.

Panaoura, A. & Philippou, G. (2005). The measurement of young pupils’ metacognitive ability

in mathematics: The case of self-representation and self-evaluation. Retrieved May,
2007, from http://cerme4.crm.es/Papers%20definitius/2/panaoura.philippou.pdf

Pennington, N., Lee, A.Y. & Rehder, B. (1995). Cognitive Activities and Levels of Abstraction

in Procedural and Object-Oriented Design. Human-Computer Interaction, 10:171-226.

Polya, G. (1981). Mathematical Discovery. On Understanding, Learning, and Teaching

Problem Solving. New York: John Wiley.

235

Pozzebon, M. (2004). Conducting and Evaluating Critical Interpretive Research: Examining
Criteria as a Key Component in Building a Research Tradition. In B. Kaplan, D.P. Truex,
D. Wastell, A.T. Wood-Harper & J.I. DeGross (Eds.). Information Systems Research:
Relevant Theory and Informed Practice. Norwell, MA: Kluwer Academic Publishers.

Prasad, A. & Prasad P. (2002). The coming of age of interpretive organizational research.

Organizational Research Methods, 1(1):4-11.

Pressing, J. (1999). Cognitive complexity and the structure of musical patterns. Proceedings

of the 4th Conference of the Australasian Cognitive Science Society. Australia: University
of Newcastle.

Purao, S., Bush, A. & Rossi, M. (2001). Problem and Design Spaces during Object-Oriented

Design: An Exploratory Study. Proceedings of the 34th Hawaii International Conference
on System Sciences.

Ragonis, N. & Ben-Ari, M. (2005). A long-term investigation of the comprehension of OOP

concepts by novices. Computer Science Education, 15(3):203-221.

Rajlich, V. & Wilde, N. (2002). The Role of Concepts in Program Comprehension.

Proceedings of IWPC. 2002:271-278. CA: IEEE Computer Society Press.

Reed, A. (2003). Object-Oriented Programming and Objectivist Epistemology: Parallels and

Implications. The Journal of Ayn Rand Studies, 4(2):251-284.

Roberts, M.J. & Newton, E.J. (2005). Strategy usage in a simple reasoning task: overview

and implications. In M.J. Roberts & E.J. Newton (Eds.). Methods of thought. Individual
Differences in Reasoning Strategies. New York: Psychology Press.

Robinson-Riegler, G. & Robinson-Riegler, B. (2004). Cognitive Psychology. Applying the

Science of the Mind. Boston: Pearson.

Rosson, M.B. & Alpert, S.R. (1990). The cognitive consequences of object-oriented design.

Human-Computer Interaction, 5:345-379.

Satzinger, J.W., Jackson, R.B. & Burd, S.D. (2004). Systems Analysis and Design in a

Changing World. (3rd ed.). Boston: Thomson Course Technology.

Satzinger, J.W. & Ørvik, T.U. (2001). The Object-Oriented Approach. Concepts, System

Development, and Modeling with UML. Boston: Course Technology.

Schach, S.R. (2005). Object-Oriented and Classical Software Engineering. (6th ed.). Boston:

McGraw-Hill.

Schneider, W. & Lockl, K. (2002). The development of metacognitive knowledge in children

and adolescents. In T.J. Perfect & B.L. Schwartz (Eds.). Applied Metacognition. UK:
Cambridge University Press.

Schön, D. (1983). The Reflecting Practitioner: How Professionals Think in Action. London:

Temple Smith.

Schulte, C. & Niere, J. (2002). Thinking in Object Structures: Teaching Modelling in

Secondary Schools. 6th Workshop on Pedagogies and Tools for Learning Object
Oriented Concepts. ECOOP.

236

Schunk, D. (2000). Learning Theories. An Educational Perspective. (3rd ed.). New Jersey:
Prentice-Hall.

Schwartz, B.L. & Perfect, T.J. (2002). Introduction: Toward an applied metacognition. In T.J.

Perfect & B.L. Schwartz (Eds.). Applied Metacognition. UK: Cambridge University Press.

Sebesta, R.W. (2004). Concepts of Programming Languages. (6th ed.). Boston: Pearson

Addison Wesley.

Shaft, T.M. (1995). Helping programmers understand computer programs: The use of

metacognition. Data Base Advances, 26(4):25-46.

Shalloway, A. & Trott, J. (2002). Design Pattern Explained: A New Perspective on Object-

Oriented Design. Boston: Addison Wesley.

Shannon, C. (1999). Developer’s Guide to Delphi Troubleshooting. Texas: Wordware

Publishing.

Shimamura, A.P. (2000). Toward a cognitive neuroscience of metacognition. Consciousness

and Cognition, 9:313-323.

Sicilia, M-A. (2006). Strategies for Teaching Object-Oriented Concepts with Java. Computer

Science Education, 16(1):1-18.

Staats, W.J. & Blum, T. (1999). Enhancing an Object-Oriented Curriculum: Metacognitive

Assessment and Training. ASEE/IEEE Frontiers in Education Conference 1999:13-19.

Stamouli, I. & Huggard, A. (2006). Object-oriented programming and program correctness:

The student’s perspectives. International Computing Education Research,109-118.

Sternberg, R.J. (2006). Cognitive Psychology. (4th ed.). United Kingdom: Thomson

Wadsworth.

Steyn, H.S. (jr) (2002). Practically significant relationships between two variables. SA Journal

of Industrial Psychology, 28(3):10-15.

Storey, M.-A.D., Wong, K. & Müller, H.A. (1997). How Do Program Understanding Tools

Affect How Programmers Understand Programs? Retrieved April, 2006, from
 www.cs.uvic.ca/~mstorey/papers/scp.pdf

Strauss, A. & Corbin, J. (1998). Basics of Qualitative Research. Techniques and Procedures

for Developing Grounded Theory. London: Sage Publications.

Stroustrup, B. (1995). Why C++ is not only an object-oriented programming language.

 OOPSLA 1995:1-13. Addendum to the Proceedings.

Tan, J., Biswas, G. & Schwartz, D.L. (2006). Feedback for Metacognitive Support in Learning

by Teaching Environments. Retrieved May, 2007, from
www.teachableagents.org/papers/p828-cogsci.pdf

Tan, S.C., Turgeon, A.J. & Jonassen, D.H. (2001). Develop Critical Thinking in Group

Problem Solving through Computer-Supported Collaborative Argumentation: A Case
Study. Journal of National Resources and Life Science Education, 30:97-103.

237

Thorsen, S. (2007). Why are leap years used? Time and Date AS. Time and Date.com.
Retrieved October, 2007, from http://www.timeanddate.com/date/leapyear.html

Thramboulidis, K.C. (2003). A Constructivism-Based Approach to Teach Object-Oriented

Programming. Journal of Informatics Education and Research, 5(1):1-14.

Traynor, D. & Gibson, P. (2004). Towards the development of a cognitive model of

programming, a software engineering approach. Retrieved June, 2006, from
http://www.cs.nuim.ie/~pgibson/Research/Publications/E-Copies/PPIG04.pdf

Vögele, E. & Wild, K. (2003). Task Understanding as Regulating Entity of Cognitive Learning

Strategy use. Retrieved August, 2006, from http://www.ezw.uni-
freiburg.de/uploads/media/03_earli_voegele_wild.pdf

Von Mayrhauser, A. & Vans, A.M. (1997). Program Understanding Behavior during
Debugging of Large Scale Software. Seventh Workshop on Empirical Studies of
Programmers,157-179.

Weber, R. (2004). Editor’s Comments. The rhetoric of positivism versus interpretivism: A

personal view. MIS Quarterly, 28(1):iii-xii.

Weinstein, C.E. & Meyer, D.K. (1991). Cognitive learning strategies and college teaching.

The Directions for Teaching and Learning, 45:15-26.

Weisfeld, M. (2004). The Object-Oriented Thought Process. (2nd ed.). Indiana: Developer’s

Library.

Weiss, M.A. (2000). Data Structures and Problem Solving using C++. Tokyo: Addison-

Wesley.

White, G.L. & Sivitanides, M.P. (2002). A theory of the relationships between cognitive

requirements of computer programming languages and programmers’ cognitive
characteristics. Journal of Information Systems Education, 13(1):59-66.

Wigglesworth, J. & Lumby, P. (2000). Java Programming. Advanced Topics. United States:

Course Technology.

Williams, L., Wiebe, E., Yang, K., Ferzli, M. & Miller, C. (2002). In support of pair

programming in the introductory Computer Science course. Computer Science
Education, 12(3):197-212.

Williamson, K. (2006). Research in constructivist frameworks using ethnographic techniques.

Library Trends, 55(1):83-101.

Xu, S. & Rajlich, V. (2004). Cognitive process during program debugging. IEEE International

Conference on Cognitive Informatics. 2004:176-182.

Xun, G.E. & Land, S.M. (2004). A conceptual framework for scaffolding ill-structured

problem-solving processes using question prompts and peer interactions. Educational
Technology Research and Development, 52(2):5-22.

Young, P. (1996). Program Comprehension. Retrieved April, 2006, from

http://vrg.dur.ac.uk/misc/PeterYoung/pages/work/documents/lit-survey/prog-
comp/index.html

238

Yousoof, M., Sapiyan, M. & Kamaluddin, K. (2006). Reducing cognitive load in learning
computer programming. Transactions on Engineering, Computing and Technology,
12:259-262.

Zant, R.F. (2005). Problem Analysis and Program Design: Using Subsystems and Strategies.

Retrieved June, 2006, from
http://isedj.org/isecon/2001/39b/ISECON.2001.Zant.pdf

Zhang, X. (2005). Analysis techniques for Program Comprehension. Retrieved July, 2006,
from
www.cs.uoregon.edu/~xzhang/documents/AreaExam-long%20version/position.pdf

239

Appendix A: Consent form

I, __ (First name and surname) and

student number_________________________, state that I have not been put under any

pressure to participate in this evaluation exercise, and have willingly participated in it.

I realise that the findings of the evaluation will be used for research purposes and that

findings will be published.

I am assured that all my personal information will be handled with confidentiality.

Signed _______________________________________

Date ___

240

Appendix B: Ethical approval

This study carries the approval of the Dean of the Faculty of Education and the Head of the

School for Computer Science to conduct this research with students as participants. It also

meets with the approval of the Ethical Committee and Research Director of the tertiary

education institution where this research was conducted. However, it was required that no

explicit reference should be made to a subject group, school, and faculty of the university

where the study has been done and that the information regarding the participants should be

confidential.

241

Appendix C: Programming assignment

ENGLISH

1. Programming assignment

1.1 Create a Date class that includes calculations with dates. Assume that there is no

package available to do these calculations in the programming language you use. Use

the included test data as well as the required methods as shown in Table 1 on the

following page.

The new Date class must do the following:

• Calculate leap years. You must read in a year and determine if it is a leap year.

Also determine the number of days for each month

January, March, May, July, August, October, December: 31 days

February: 28 or 29 days – depends on whether it is a leap year or not (p 3)

April, June, September, November: 30 days

• Calculate the difference between two dates. You must read in two dates and

determine the difference between the first and second date.

1.2 Now write a Test class that uses the Date class and give the necessary output.

2. Write down your thoughts during the writing of the Date class on a piece of paper

2.1 Write down the question in your own words and understanding.

2.2 Write on a paper point by point all your thoughts, plans and steps down during the

programming of the Date class. If this is hard, write down all the questions you will ask

yourself during programming.

2.3 It is important to mention how you will start the programming – what is your first step.

2.4 Write down a complete bibliography – e.g. study guide, textbook, Internet address.

2.5 The programming must be your own work, and other people must not do the

programming for you! The value is that your own programming style can then be

determined.

Write down the time you have used to complete this task

242

3. Printout and output

Submit the following printouts – even if your program is not working:

3.1 Date class

3.2 Test class

3.3 Program output (if possible)

4. Paper with thoughts

Also submit the page with your detailed thoughts while programming the Date class! Include

the following and decide on additional methods if necessary:

Date class

Include the following:

Variables

Constructor

Input: today’s date

Use the following methods (Java); procedures and functions (Delphi):

 setTodaysDate (format: yyyymmdd)

 getDay(); getMonth(); getYear()

 isLeapYear() – test for leap years

 dateDifference() – calculate the difference between two dates

Application or Test class:

 Instantiate an object

 Decide which method of input will be used (files/streams/
 components etc.)

 Decide what exception handling is necessary if any dates are
 incorrect

Table 1

Calculate leap years as follows

Leap years:

Leap years are years that are divided by 4.

Century years are years (e.g. 2000) that are divided by 100 and 400, and these are leap

years as well.

Test data

Leap years: 1904, 1936, 2004

Not leap years: 1900, 2003, 1899

243

Difference between 2 dates: (must work with any two dates except future dates)

Test data 1

First date: 10 April 2006

Second date: 28 August 2006

The difference between these dates:… days

Test data 2

First date: 12 September 1899

Second date: today’s date

The difference between these dates: …days

5. Submission

E-mail all program files to my e-mail address. Also submit the page with your detailed

thoughts when we will complete the questionnaire.

6. Time frame

Please email your task before or on Tuesday 16 October 2006. You must complete a

questionnaire on Tuesday 17 October the 5th period.

THANK YOU

M Havenga

244

Appendix D: Codes in Atlas.ti

Code-Filter: All
__

HU: DATE_CLASS
File: [C:\Documents and Settings\Administrator\My Documents\Scientific Software\ATLASti\Te...\DATE_CLASS.hpr5]
Edited by: Super
Date/Time: 08/06/04 08:29:09 nm

__

delphi:approach:create unit:create main application with buttons

delphi:approximate:input:processing:output

delphi:assignment:ask questions
delphi:assignment:cannot apply problem

delphi:assignment:confused with procedures and functions
delphi:assignment:determine difference between two dates

delphi:assignment:determine leap years
delphi:assignment:difficult:not clear guidelines

delphi:assignment:don't know if it is the right answer
delphi:assignment:errors in program

delphi:assignment:insert procedures and functions
delphi:assignment:must learn how to interpret error messages

delphi:assignment:program not working:discouraged:struggle
delphi:assignment:read with precision:determine big picture

delphi:assignment:reread with attention
delphi:assignment:think about the new class

delphi:assignment:very difficult: problems
delphi:bibliography:Delphi textbook

delphi:bibliography:Internet

delphi:bibliography:study guide COMP 312
delphi:buttons:consider the screen layout

delphi:class new:declare in interface
delphi:class:function:be visible

delphi:class:function:returnValue
delphi:class:function:test:logical errors:correct

delphi:class:theory
delphi:error messages: insert

delphi:error messages: not displayed: don't know what is problem
delphi:function:framework design

delphi:input date:format yyyymmdd
delphi:knowledge: don't know date calculations: only year uses

delphi:look for an example:didn't find example
delphi:object attributes:initialize

delphi:OOP uses objects in the program
delphi:output:NumberOfDays only:integer

delphi:plan what to do:difficulty with programming
delphi:planning

delphi:planning:button event handlers program

delphi:planning:create new unit
delphi:planning:determine scope:private or public

delphi:planning:think about class structure
delphi:procedure:framework

delphi:procedure:initialize variable to zero
delphi:processing:daysDifferences:subtraction

delphi:processing:leapyear:divide4
delphi:processing:monthdays:case statement

delphi:programming: program is working
delphi:programming:copy value:convert to integer

delphi:programming:days per month determine
delphi:programming:declare in interface type and scope

delphi:programming:determine days:if statement

245

delphi:programming:determine variables required
delphi:programming:errors:not understand

delphi:programming:event handler:subtract dates
delphi:programming:implementation:procedures and functions

delphi:programming:implementation:program detail code
delphi:programming:implementation:remember:add Tform before procedure and function

delphi:programming:interface:procedure clear

delphi:programming:month:if statement
delphi:programming:program interface:structure of procedures and functions

delphi:programming:return result
delphi:purpose:determine days of month

delphi:purpose:input 2 dates:calculate difference
delphi:question read carefully

delphi:read more about classes and dates
delphi:reread assignment many times:think

delphi:start again:calculate dates:staying in same home
delphi:steps: example uses:difference between two dates

delphi:steps:class design
delphi:steps:class:calculate dates

delphi:steps:dates add and subtract
delphi:steps:think about problem:how to solve problem

delphi:strategy:ask questions
delphi:strategy:change programming code

delphi:strategy:complete all the detail program code of specific component before continuing with
next

delphi:strategy:first design form

delphi:strategy:more organized approach:enhance effective programming
delphi:test:range test:month

delphi:testing program
delphi:time management

deplhi:programming:date calculations
java:approach:'black box' programming

java:approach:1)write test class 2) write date class
java:approach:add days of each dates from year 0

java:approach:application of trail-and-error:difference between dates
java:approach:ask many questions during programming process

java:approach:ask questions:write all methods:test:correct:test
java:approach:class,constructor,methods,testclass,test

java:approach:date calculations
java:approach:date class:empty methods

java:approach:determine input,interface,calculations,test input
java:approach:find new ways to solve a problem

java:approach:lecturer:motivation:passion

java:approach:OOP:methods necessary for functionality
java:approach:programming difficult:start with an example to explain

java:approach:reread assignment, write thinking down
java:approach:write all methods without input, output

java:approach:write program with pencil before continue
java:assignment: don't have problems to determine leap years

java:assignment: was a challenge
java:assignment:2 classes:date class and test class

java:assignment:ask questions
java:assignment:determine difference between 2 dates

java:assignment:determine leap years
java:assignment:determine requirements

java:assignment:difficult programming:test days of month
java:assignment:difficult to plan

java:assignment:difficult to write down thinking during programming
java:assignment:direction needed to program

java:assignment:don't know how to calculate difference between 2 dates
java:assignment:framework of Date and Test Class with headings, imports and methods

java:assignment:glad to program again:also receive award

java:assignment:how to calculate necessary methods?
java:assignment:inheritance necessary?

246

java:assignment:knowlege that you can program
java:assignment:many questions were asked: purpose?, parameters?, input_output?, problems?

calculations and variables?
java:assignment:methods: which methods are necessary?

java:assignment:must understand basic principles in programming
java:assignment:overall picture:calculate dates

java:assignment:problems:determine days, difference between dates

java:assignment:reread e-mail
java:assignment:think again

java:assignment:type code without knowing why:unnecessary code
java:assignment:very confused:did programming a long time ago

java:assignment:what instance variables should be declared?
java:assignment:which methods are necessary in the class

java:assumption:date format:ddmmjjjj
java:assumption:methods write without code

java:bibliography:C# textbook
java:bibliography:Internet websites

java:bibliography:Java study guide
java:bibliography:Java text book

java:bibliography:previous Java assignments
java:bibliography:previous Java code

java:calculations:use integer only:String not necessary
java:class design:determine general and specific cases

java:class:create
java:class:framework

java:class:scope

java:class:theory
java:constructor

java:constructor:default
java:constructor:initialize

java:convert integer number to date
java:date:separate day, month, year

java:dates:compare:calculate days
java:dates:convert dates to days:subtract:convert

java:dates:two dates needed
java:day:add:return value:convert to date

java:determine day of month
java:error message: cannot diagnose the problem

java:error:calcalate days for leap year incorrectly:must add 1 day
java:error:calculate days, months and years wrongly

java:error:change return value
java:error:didn't program error management and handling

java:error:differDates:must use 3 loops

java:error:difficult to compile java on computer
java:error:don't know how to change error

java:error:error found:change variable names
java:error:error handling not very good

java:error:error handling write
java:error:error in calculation:difference between dates

java:error:exception handling:reread about this
java:error:exceptions: handle:ArrayOutOfBounds exception

java:error:forgot main method:public static main
java:error:generate:wrong dates

java:error:make necessary changes
java:error:not 100% working

java:error:should use array
java:error:syntax errors:correct them

java:exception handling:complex
java:fact

java:input
java:input:2 dates as parameters

java:input:date format: jjjjmmdd

java:input:date:determine year,month:output:leap year,days of month
java:input:today's date:from test class

247

java:instance variables determine
java:Internet:search: for 'substring'

java:java:AND operator:search website
java:leapYear:divided by 4

java:leapYear:website available
java:method:accessor:return values

java:method:calculate days of month

java:method:calculation
java:method:convert to integer:parseInt()

java:method:don't know how to copy part of string
java:method:save as string and integer format

java:method:substring date:convert to integer
java:method:testDate:return boolean value

java:method:validity check:convert to days
java:methods: if dates equal:return difference 0

java:methods:call get methods
java:methods:conversion:to integer

java:methods:conversion:toString:return value
java:methods:conversion:years

java:methods:dates differ:return boolean:biggest
java:methods:declare

java:methods:determine difference between months
java:methods:determine difference between years

java:methods:determine year difference
java:methods:difference between dates

java:methods:get and set methods

java:methods:leap years calculate
java:methods:mutator accessor

java:methods:mutator:0/1/more values
java:methods:program all get methods

java:methods:return values
java:methods:scope:private

java:methods:set methods use
java:methods:start:empty constructor

java:methods:start:empty methods
java:methods:test

java:methods:toString
java:methods:void:no return value

java:methods:year difference:determine leap years:add difference
java:object:attributes assign

java:object:create:instantiation of Date class
java:object:object call

java:oop:description of oop

java:oop:theory
java:parameter:receive

java:parameters:day,month, year receive
java:polymorphism:same constructor receives two dates

java:program:program execute correctly : 100%
java:programming:array:present days of month

java:programming:arrays:has problems with arrays
java:programming:comments in brackets

java:programming:compile, change errors
java:programming:exception handling

java:programming:if statement:dates test
java:programming:nested if statements

java:programming:output change to correct format
java:programming:switch:to set dates

java:programming:test
java:purpose:calculations with dates

java:purpose:determine difference between 2 dates
java:reflection:should send the date to the constructor

java:reread

java:reread:exception handling
java:reread:how to write class and testclass

248

java:reward:motivate student
java:search:internet:difference between 2 dates

java:start: write test class
java:start:analyse the problem:determine requirements

java:test Difference between dates: output:difference
java:test leap years

java:test program:update

java:test: days:boolean
java:test:dates valid

java:test:days of month
java:test:difference between dates

java:test:leap year: update test program
java:test:leapYear:boolean

java:test:leapYear:century:uses flags to test
java:test:LeapYear:divide by 4 or 100 and 400

java:test:leapyears:century:another formula uses
java:test:LeapYears:uses mod

java:test:months:1-12
java:test:test days

java:test:test one date
java:test:test simple program:test structure

java:test:years
java:testclass:call Date class 2 times:send 2 values

java:testclass:test output
java:testclass:write the test class

java:textbook: Java: reread

java:textbook:reread constructors
java:textbook:reread how to create a class

java:textbook:reread JOptionPane
java:time management: 3 to 5 hours

java:time management:1h30min
java:time management:2 hours

java:time management:4 hours
java:time management:4.5 hours

java:time management:5 hours
java:variables:assign

java:variables:boolean
java:variables:day, month, year

java:variables:declare
java:variables:determine

java:variables:global variables uses
java:variables:instance variables:day, month, year

java:variables:scope

java:variables:static
java:variables:type:integer,string

java:variables:use global variable
java:variables:variable assign:number of days in each month

249

Appendix E: The questionnaire and mark sheet

Personal information

1. Student number: ________________

2. Age: ___

3. Gender: __________

4. Degree you are registered for this year (mark applicable box with an X):

 If other, please specify___

5. What is your highest qualification in Computer Science / Information

Technology?

1st year 2nd year 3rd year

6. Did you take Computer Studies at school?

7. If yes, was it on HG (Higher grade) or SG (Standard grade)?

8. Did you have any prior programming experience before studying at the
university? Please give details of any programming courses you have passed:

9. In which programming language/s do you currently program? You may mark
more than one option:

Java 1
Delphi 2
C++ 3
C# 4
Visual Basic 5
Other 6

If other, please specify___

All information will be treated confidentially

BSc BEd BCom Other

Yes No

HG SG

Official use
only

250

QUESTIONNAIRE

Knowledge, Skills and Strategies in Object-Oriented Programming
Questionnaire

M Havenga

2006

INSTRUCTIONS

Read every statement and mark the statement that describes you best.

Scale

1. Never: the statement would never be true of you.

2. Seldom: the statement would seldom be true of you.

3. Often: the statement would often be true of you.

4. Always: the statement would be true of you all the time.

Cross out the number that describes you best.

Example 1 2 3 4

Try to answer according to how well the statement describes you, not how you think

the answer should be. There are no right or wrong answers to these statements!

Mark only one answer per statement.

Please be honest! Your impressions and opinions are really important to the

success of this research.

251

STATEMENT
Never

1

Seldom

2

Often

3

Always

4

1. The first time I learn a new programming concept, I make sure that I understand it. 1 2 3 4

2. When I write a new program, I know which programming statements to apply. 1 2 3 4

3. I find it difficult to analyse a given programming problem. 1 2 3 4

4. I can create test data for a new program. 1 2 3 4

5. Before programming, I consider the whole solution before going into the details of
 the solution.

1 2 3 4

6. I can easily design a solution for a new programming problem. 1 2 3 4

7. Even when the program is difficult to write, I go back and modify it until the problem is
 solved successfully.

1 2 3 4

8. It is hard for me to break down a problem into smaller parts. 1 2 3 4

9. I plan the solution of my program to achieve the goal. 1 2 3 4

10. I can complete the programming code of a given incomplete program. 1 2 3 4

11. I can alter specific parts of a programming solution when the requirements have
 changed.

1 2 3 4

12. I can predict what the output of a program will be. 1 2 3 4

13. When I program, I start with the declaration of all the methods of one class, before
 proceeding with the detailed programming of each method.

1 2 3 4

14. I find it difficult to interpret a programming question. 1 2 3 4

15. When I program, I stop once in a while and go over what I have already programmed. 1 2 3 4

252

STATEMENT Never

1

Seldom

2

Often

3

Always

4

16. I can explain the use of specific programming statements in my solution. 1 2 3 4

17. I only make changes to a specific method when required due to errors in my program. 1 2 3 4

18. I write down plans to direct my thinking in programming. 1 2 3 4

19. When I program, I start with the declaration and details of the first class and methods
 before proceeding with the next class.

1 2 3 4

20. I think about what I should do first to solve a new programming problem. 1 2 3 4

21. I try to program a possible solution and hope that it will work. 1 2 3 4

22. I can easily classify different types of methods, as a constructor, destructor, mutator and
 accessor.

1 2 3 4

23. When I program, I start with all the details of a method, before proceeding with the
 next method.

1 2 3 4

24. When I program, I try to remember what the lecturer had said or what I read in the
 textbook that is relevant to the problem in hand.

1 2 3 4

25. I take the programming statements that have errors in them and adjust them until I have
 solved the problem successfully.

1 2 3 4

26. During modification of a given program, I expand a specific section only. 1 2 3 4

27. I can combine the necessary programming statements successfully in a new program. 1 2 3 4

28. I reread the description of a difficult problem to make sure that I understood it correctly
 and that it is correctly programmed.

1 2 3 4

29. During programming I start with the details, such as variables of a specific class before
 programming the details of the next class.

1 2 3 4

30. I find it difficult to evaluate my programming solution to determine if I have solved the
 problem correctly.

1 2 3 4

253

STATEMENT Never
1

Seldom
2

Often
3

Always
4

31. When I read a programming question, I can easily distinguish between the necessary
 and unnecessary parts of the description.

1 2 3 4

32. When I program, I start with the declaration of all the classes before proceeding with
 the details of each class.

1 2 3 4

33. In the preparing for a test, I make sure that I can define or describe a new
 programming concept.

1 2 3 4

34. I do not know where to start with the programming of a new problem. 1 2 3 4

35. When I program, I start with the declaration of a framework for a certain class and
 proceed with all the methods of the same class before starting with the framework
 and details of the next class.

1 2 3 4

36. I find it difficult to know what the program, as required by the problem description, is
 supposed to do.

1 2 3 4

37. I ask myself questions to make sure that I understand a difficult programming statement
 when I use it in a program.

1 2 3 4

38. If two different solutions of the same problem are given to me, I can select the best
 solution.

1 2 3 4

39. When I program, I complete the programming code of one class, before proceeding
 with the programming code of the next class.

1 2 3 4

40. When I program, I trace the program’s execution with a trace table. 1 2 3 4

41. During programming I use any possible solution that would work, but not necessarily
 the very best solution.

1 2 3 4

42. I program the whole class with its details and complete it before proceeding with the
 next class.

1 2 3 4

254

43. Would you describe yourself as successful or unsuccessful in computer programming? Please motivate.

__

__

__

__

44. Do you make use of any special strategies, plans or useful ‘tricks’ when you write a computer program? If so, please give all

the details:

__

__

__

__

45. During programming of a new class, I use the following sequence of general steps to solve a problem (please specify your

sequence in detail):

__

__

__

__

46. Do you make use of any supportive memory representation techniques during your programming task? If you do, give a

diagram or a description of all the details please.

Thank you for your participation!

255

Mark sheet of the questionnaire

1. Scale values 1 = 1, 2 = 2, 3 = 3, 4 = 4

2. Grouping of items

COGNITIVE SKILLS Action verbs / words

Knowledge 24,33,36 Remember, define, know

Comprehension 1,12,14 Understand, predict, interpret

Application 2,10,22 Apply, complete, classify

Analysis 3,8,31 Analyse, break down, distinguish

Synthesis 4,6,27 Create, design, combine

Evaluation 16,30,38 Justify, evaluate, compare

METACOGNITIVE STRATEGIES

Planning 9,18,20 Estimate performance, plan to direct, what should do first

Monitoring 15,37,40 Stop once and go over, ask myself questions, trace program execution

Regulation 7,25,28 Go back and modify, adjust wrong statements, reread problem

PROBLEM-SOLVING STRATEGIES

Bottom-up 23,29,39 Details of each method, details e.g. variables, complete one class

Top-down 5,13,32 Overview whole solution, declare the methods of class, declare class

Integrated 19,35,42 Declarations and details of class, all methods of same class, whole class with details

As-needed 11,17,26 Alter specific part, changes specific method when needed, expand specific section

Trial-and-error 21,34,41 Hope it will work, confused and don’t know how to start, find any possible solution not the
best

Bold numbers indicate negative statements

256

Appendix F: Data of Participant 31, an unsuccessful
programmer

Programming examples

P31 submitted two separate application programs and both are included.

DELPHI-program: Program 5.1 (first attempt)

unit Datum_u; // [saved as Datum_u]

interface

uses

 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
 StdCtrls, Buttons;

type

 TFrmDatums = class(TForm)
 lblNaam: TLabel;

 gpbSkrikkeljare: TGroupBox;
 lblInvoer1: TLabel;
 edtSkrikkeljaar: TEdit;
 lblUitvoer1: TLabel;

 btnSkrikkeljaar: TButton;
 gpbAantalDaePerMaand: TGroupBox;
 lblInvoer2: TLabel;
 edtMaand: TEdit;

 btnMaand: TButton;
 lblUitvoer2: TLabel;
 gpbDatums: TGroupBox;
 radDaeVerloop: TRadioButton;

 radVerskilTussenDatums: TRadioButton;
 btnOK: TButton;
 lblUitvoer3: TLabel;
 edtDatum1: TEdit;

 edtDatum2: TEdit;
 bmbClose: TBitBtn;
 bmbReset: TBitBtn;
 procedure btnSkrikkeljaarClick(Sender: TObject);

 procedure btnMaandClick(Sender: TObject);

 procedure btnOKClick(Sender: TObject);

 procedure bmbCloseClick(Sender: TObject);

 procedure bmbResetClick(Sender: TObject);

 private

 { Private declarations }
 public

 { Public declarations }

 end;

var

 FrmDatums: TFrmDatums;

257

implementation

{$R *.DFM}

procedure TFrmDatums.btnSkrikkeljaarClick(Sender: TObject);

begin;

end;

procedure TFrmDatums.btnMaandClick(Sender: TObject);

begin

If edtInvoer2 := Januarie,Maart,Mei,Julie,Augustus,Oktober,Desember then

lblUitvoer:= '31 Dae';
 If edtInvoer2 := Februarie
then

lblUitvoer:= '28 of 29 Dae';

 If edtInvoer2 := April, Junie,September,November then
lblUitvoer:= '30 Dae';
end;

procedure TFrmDatums.btnOKClick(Sender: TObject);

Dae:=Integer;
begin

If radDaeVerloop := checked

then

Dae:=edtDatum2-edtDatum1;
lblUitvoer3:= ''Dae'';
 If radVerskilTussenDatums := checked

then

Dae:=edtDatum2-edtDatum1;
lblUitvoer3:= ''Dae'';
end;

procedure TFrmDatums.bmbCloseClick(Sender: TObject);

begin

close;

end;

procedure TFrmDatums.bmbResetClick(Sender: TObject);

begin

 edtSkrikkeljaar.clear;
 edtMaand.clear;
 edtDatum1.clear;
 edtDatum2.clear;

 radVerloopVanDae.checked:= false;
 radVerskilTussenDatums.checked:= false;
 edtskrikkeljaar.Setfocus;
end;

end.

258

Participant 31

Program 5.2 (Second attempt)

This second application program of P31 was not correctly saved and could not be compiled.

unit Datum_u; // [saved as Datum_u.~pas]

interface

uses

 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
 StdCtrls;

type

 TFrmDatums = class(TForm)
 lblNaam: TLabel;
 gpbSkrikkeljare: TGroupBox;

 lblInvoer1: TLabel;
 edtSkrikkeljaar: TEdit;
 lblUitvoer1: TLabel;

 btnSkrikkeljaar: TButton;
 procedure btnSkrikkeljaarClick(Sender: TObject);

 private

 { Private declarations }

 public

 { Public declarations }
 end;

var

 FrmDatums: TFrmDatums;

implementation

{$R *.DFM}

procedure TFrmDatums.btnSkrikkeljaarClick(Sender: TObject);

var Skrikkeljaar:integer;

NieSkrikkeljaar:string;

begin

Skrikkeljaar := 1904 or 1936 or 2004;

If edtSkrikkeljaar = Skrikkeljaar ;
then

 lblUitvoer1 := 'skrikkeljaar';

end;

end.

259

Thinking processes of Participant 31

Programming processes: P31

Ek het nou eers die hele ‘vraag’ deurgelees om te kyk wat alles van my gevra word.
Bietjie nagedink oor die klas wat ek gaan skep.
Terug gegaan na die Delphi boek want ek sukkel met klasse.
Die vorm geskep met die nodige buttons wat ek dink ek gaan nodig kry.
My naam in ‘n label gesit.
Eerder Groupboxes ingesit want ek dink dit gaan beter werk.
Weer terug gegaan na ‘n ander boek. Uitgevind by my ma wanneer dit ‘n skrikkeljaar is.
‘n if-stelling ingesit vir skrikkeljaar.
Ek sukkel nog steeds.
My program wil nie werk nie.
Ek is moedeloos.
Gaan aan. My program wys nie my foute vir my nie, bly net in die ding waar mens die
program ontwerp.
Ek weet nie of my goed reg is nie.
Ek tik alles wat ek dink moet in wees.

260

Appendix G: Data of Participant 32, a successful
programmer

Programming example and thinking processes

Program in JAVA

import java.io.BufferedReader;

import java.io.InputStreamReader;
import java.io.IOException;

public class Datum

{
BufferedReader console = new BufferedReader(new InputStreamReader(System.in));

 String[] months31 = { "Januarie", "Maart", "Mei", "Julie", "Augustus", "Oktober",
 "Desember" };

 String[] months30 = { "April", "Junie", "September", "November" };
 String[] months = { "Januarie", "Febuarie", "Maart", "April", "Mei", "Junie",
 "Julie", "Augustus", "September", "Oktober", "November", "Desember" };

 private int day, year;
 private String month;

 boolean trueDate = false;

 public Datum() throws IOException
 // Konstruktor van die Datum klas

 {
 // Lees vandag se datum in wanneer objek gemaak word
 String input = "";
 // Toets dan die datum

 int dayTemp, yearTemp ;
 String monthTemp ;

 while (trueDate == false)
 {
 System.out.print("Wat is vandag se datum (DD Month YYYY): ");
 // Lees datum in

 input = console.readLine();
 String yearStr = input.substring((input.length()-4), input.length());
 yearTemp = Integer.parseInt(yearStr);

 monthTemp = input.substring(3,(input.length()-5));
 String dayStr = input.substring(0,2);
 dayTemp = Integer.parseInt(dayStr);

 trueDate = testDate(dayTemp, monthTemp, yearTemp);
 // Toets datum

 if (trueDate == false)
 System.out.println("Datum was inkorrek ingevoer, doen asb weer");
 // Indien inkorrek, herhaal die vraag

261

 else

 {

 year = yearTemp;
 // Stel waardes van ingeleesde datum gelyk aan globale veranderlikes

 for (int i = 0; i < months.length ; i++)

 if (monthTemp.equalsIgnoreCase(months[i]))
 {month = months[i];
 day = dayTemp;}

 }
 }

 public boolean testDate(int dayTemp, String monthTemp, int yearTemp)
 // Metode wat ek geskryf het om die datums wat ingelees word, te toets

 {
 int monthNum;
 int numDays = 0;

 boolean testMonth = false;
 boolean testDay = false;
 boolean testYear = false;
 boolean yearSkrik = false;

 if (yearTemp >= 1800)
 // Toets of jaartal groter is as 1800, soos aangewys
 {

 if (yearTemp % 100 == 0)
 // Toets vir skrikkeljare, bedoel vir Febuarie met sy verskil in dae
 if (yearTemp % 400 == 0)

 yearSkrik = true;
 else if (yearTemp % 4 == 0)
 yearSkrik = true;
 testYear = true;

 }
 for (int i = 0; i < months.length ; i++)
 // Gebruik arrays vir toets van korrekte aantal dae in die maande

 {
 if (monthTemp.equalsIgnoreCase(months[i]))
 {
 testMonth = true;

 for (int x1 = 0; x1 < months31.length; x1++)
 if (months[i].equalsIgnoreCase(months31[x1]))
 numDays = 31;
 for (int x2 = 0; x2 < months30.length; x2++)

 if (months[i].equalsIgnoreCase(months30[x2]))
 numDays = 30;
 }

 if (monthTemp.equalsIgnoreCase("Febuarie"))
 // Uitsondering gemaak vir Februarie
 {
 testMonth = true;

 if (yearSkrik == true)
 numDays = 29;
 else

 numDays = 28;
 }
 }

262

 if (dayTemp <= numDays)

 testDay = true;

 if (testYear == true && testMonth == true && testDay == true)
 // Om aan te dui of datum korrek is of nie
 return true;
 else

 return false;
 }

 public String kryDatum()
 // Metodes wat vereis was
 {
 return (day + " " + month + " " + year) ;

 }

 public String kryMaand()

 {
 return month;
 }

 public int kryJaar()
 {
 return year;
 }

 public void toetsSkrikkelJaar() throws IOException
 // Skrikkeljaar metode

 {
 // Lees in jaar ... bepaal dan of dit skrikkeljaar is
 int year = 0;
 int temp;

 while (year < 1800)
 // As verkeerd ingevoer word , herhaal die vraag
 {

 System.out.print("Tik in 'n jaar getal(Enige jaar vanaf 1800): ");
 String input = console.readLine();
 year = Integer.parseInt(input);
 // Lees in waarde van jaar

 if (year < 1800)
 // Toets die jaar se domein
 System.out.println("Inkorrek jaar");
 }

 if (year % 100 == 0)
 // Bepaal of jaar 'n skrikkeljaar is
 {

 if (year % 400 == 0)
 System.out.println("Die jaar " + year + " is 'n skrikkeljaar");
 else

 System.out.println("Die jaar " + year + " is nie 'n skrikkeljaar nie");

 }
 else if (year % 4 == 0)
 System.out.println("Die jaar " + year + " is 'n skrikkeljaar");

 else

 System.out.println("Die jaar " + year + " is nie 'n skrikkeljaar nie");
}

263

 public void datumsVerskil() throws IOException

 // Om verskil tussen 2 datums te bepaal
 {

 // Agv limitasie op jaargetal het ek 'n snaakse metode gebruik
 String input = "";
 int dayTemp, yearTemp;
 String monthTemp ;

 boolean firstDate = false;
 boolean secondDate = false;

 int[] numDaysMonths = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };

 // Om aantal dae in spesifieke maand te bepaal
 int day1 = 0;
 int day2 = 0;

 int year1 = 0;
 int year2 = 0;
 int month1Num = 0;
 int month2Num = 0;

 String month1 = "";
 String month2 = "";

 while (firstDate == false)
 // Invoer van eerste datum vind hier plaas
 {
 // volg selfde patroon as konstruktor, lees in en toets en stel dan gelyk aan

 //veranderlikes
 System.out.print("Eerste datum (DD Month YYYY of 'vandag se datum'): ");
 input = console.readLine();
 if (input.equalsIgnoreCase("vandag se datum"))

 input = this.kryDatum();
 String yearStr = input.substring((input.length()-4), input.length());
 yearTemp = Integer.parseInt(yearStr);

 monthTemp = input.substring(3,(input.length()-5));
 String dayStr = input.substring(0,2);
 dayTemp = Integer.parseInt(dayStr);

 firstDate = testDate(dayTemp, monthTemp, yearTemp);
 if (firstDate == false)
 System.out.println("Datum was inkorrek ingevoer, doen asb

 weer");
 else

 {
 year1 = yearTemp;

 for (int i = 0; i < months.length ; i++)
 if (monthTemp.equalsIgnoreCase(months[i]))
 month1 = months[i];
 day1 = dayTemp;

 }
 }

 while (secondDate == false)
 // Selfde as invoer van eerste datum

264

 {

 System.out.print("Tweede datum (DD Month YYYY of 'vandag se
 datum'): ");

 input = console.readLine();
 if (firstDate == true && secondDate == true)
 // As altwee datums korrek ingelees is
 {

 boolean firstBiggest = false;
 //Hierdie if …bepaal watter datum die grootste is
 for (int i = 0; i < months.length ; i++)
 // Kyk hier na hoeveelste maand die betrokke datum is

 {
 if (month1.equalsIgnoreCase(months[i]))
 month1Num = i + 1;

 if (month2.equalsIgnoreCase(months[i]))
 month2Num = i + 1;
 }

 if (year1 > year2)
 // Toets nou hierdie verskillle tussen die twee datums
 firstBiggest = true;

 // Toets eers jaargetal, dan maand en dan dag
 else if (year2 > year1)
 firstBiggest = false;
 else if (year1 == year2)

 {
 if (month1Num > month2Num)
 firstBiggest = true;
 else if (month2Num > month1Num)

 firstBiggest = false;
 else if (month1Num == month2Num)
 {

 if (day1 > day2)
 firstBiggest = true;
 else if (day2 > day1)
 firstBiggest = false;

 else if (day1 == day2)
 // Indien die 2 datums dieselfde is
 {

 System.out.println("Die verskil tussen hierdie datums
 is: 0 dae");
 firstDate = false;

 secondDate = false;

 }
 }
 }

 if (firstBiggest == true)
 // As eerste datum die grootste is
 {

 // Bepaal die aantal dae vanaf 01 januarie 1800 tot en met die datum wat
 // ingevoer is nadat altwee bepaal is word hulle van mekaar afgetrek
 int numYears1 = year1 - 1800 ;
 int numSkrikYears1 = 0 ;

265

 int numNieSkrikYears1 = 0 ;

 int totDays1 = 0;

 int numYears2 = year2 - 1800 ;
 int numSkrikYears2 = 0 ;
 int numNieSkrikYears2 = 0 ;
 int totDays2 = 0;

 // First Date
 for (int i = 0; i < numYears1; i++)
 //Aantal jare tussen 1800 en eerste datum wat skrikkeljare is of nie
 {

 if ((1800 + i) % 100 == 0)
 if ((1800 + i) % 400 == 0)
 numSkrikYears1++;

 else

 numNieSkrikYears1++;
 else if ((1800 + i) % 4 == 0)
 numSkrikYears1++;

 else

 numNieSkrikYears1++;
 }

 for (int i = 0; i < numSkrikYears1; i++)
 // Indien dit skrikkel jare is of nie, 366 dae of 365 dae ens
 totDays1 += 366 ;

 for (int i = 0; i < numNieSkrikYears1; i++)
 totDays1 += 365 ;

 for (int i = 1; i < month1Num; i++)

 // Dae in maande word bygetel vir die huidige jaar
 totDays1 += numDaysMonths[i-1];

 if (year1 % 100 == 0 && month1Num > 2)
 // Plus 1 ekstra omdat Februarie ekstra dag het in 'n skrikkeljaar
 {
 if (year1 % 400 == 0)

 totDays1 ++;
 }
 else if (year1 % 4 == 0 && month1Num > 2)

 totDays1 ++;
 totDays1 += day1;
 // Plus aantal dae vir daardie maand self

 // Second Date - Selfde as Eerste Datum
 for (int i = 0; i < numYears2; i++)
 {
 if ((1800 + i) % 100 == 0)

 if ((1800 + i) % 400 == 0)
 numSkrikYears2++;
 else

 numNieSkrikYears2++;
 else if ((1800 + i) % 4 == 0)
 numSkrikYears2++;
 else

 numNieSkrikYears2++;
 }

266

 for (int i = 0; i < numSkrikYears2; i++)

 totDays2 += 366 ;
 for (int i = 0; i < numNieSkrikYears2; i++)

 totDays2 += 365 ;
 for (int i = 1; i < month2Num; i++)
 totDays2 += numDaysMonths[i-1];
 if (year2 % 100 == 0)

 {
 if (year2 % 400 == 0)
 totDays2 ++;
 }

 else if (year2 % 4 == 0)
 totDays2 ++;
 totDays2 += day2;

 // Trek totale van dae van mekaar af om verskil te bereken

System.out.println("Die verskil tussen hierdie datums is: " + (totDays1-totDays2)
 " dae");

 }
 else
 // Selfde as boonste bracket, enigste verskil is in laaste reel

 {
 int numYears1 = year1 - 1800 ;
 int numSkrikYears1 = 0 ;
 int numNieSkrikYears1 = 0 ;

 int totDays1 = 0;

 int numYears2 = year2 - 1800 ;
 int numSkrikYears2 = 0 ;

 int numNieSkrikYears2 = 0 ;
 int totDays2 = 0;

 // First Date
 for (int i = 0; i < numYears1; i++)
 {
 if ((1800 + i) % 100 == 0)

 if ((1800 + i) % 400 == 0)
 numSkrikYears1++;
 else

 numNieSkrikYears1++;
 else if ((1800 + i) % 4 == 0)
 numSkrikYears1++;
 else

 numNieSkrikYears1++;
 }

 for (int i = 0; i < numSkrikYears1; i++)

 totDays1 += 366 ;
 for (int i = 0; i < numNieSkrikYears1; i++)
 totDays1 += 365 ;

 for (int i = 1; i < month1Num; i++)
 totDays1 += numDaysMonths[i-1];

267

 if (year1 % 100 == 0)

 {
 if (year1 % 400 == 0)

 totDays1 ++;
 }
 else if (year1 % 4 == 0)
 totDays1 ++;

 totDays1 += day1;

 // Second Date

 for (int i = 0; i < numYears2; i++)
 {
 if ((1800+i)%100 == 0)

 if ((1800+i)%400 == 0)
 numSkrikYears2++;
 else

 numNieSkrikYears2++;

 else if ((1800 + i) % 4 == 0)
 numSkrikYears2++;
 else

 numNieSkrikYears2++;
 }

 for (int i = 0; i < numSkrikYears2; i++)

 totDays2 += 366 ;
 for (int i = 0; i < numNieSkrikYears2; i++)
 totDays2 += 365 ;
 for (int i = 1; i < month2Num; i++)

 totDays2 += numDaysMonths[i-1];
 if (year2%100 == 0 && month2Num > 2)
 {

 if (year2%400 == 0)
 totDays2 ++;
 }
 else if (year2 % 4 == 0 && month2Num > 2)

 totDays2 ++;
 totDays2 += day2;

 // Is nou totDays2-totDays1 ipv andersom
 System.out.println("Die verskil tussen hierdie datums is: " +
 (totDays2-totDays1) + " dae");

 }
 }
 }
}

268

import java.io.BufferedReader;

import java.io.InputStreamReader;
import java.io.IOException;

public class Toetsklas
{

 public static void main (String[] args) throws IOException
 {
 BufferedReader console = new BufferedReader(new
 InputStreamReader(System.in));

 String input = "";
 Datum datum = new Datum();
 while (!input.equalsIgnoreCase("3"))

 {
 for (int i = 0; i < 20; i++)
 System.out.println ("");
 System.out.println ("Vandag se datum is: " + datum.kryDatum());

 System.out.println
 ("###");
 System.out.println ("# DATUM KLAS - TOETS PROGRAM #");
 System.out.println ("# #");

 System.out.println ("# 1. Toets of jaargetal 'n skrikkeljaar is of nie #");
 System.out.println ("# 2. Bereken die verkil tussen twee datums #");
 System.out.println ("# 3. Exit #");

 System.out.println ("# #");
 System.out.println ("##############################");
 System.out.print ("Jou Keuse: ");
 input = console.readLine();

 if (input.equalsIgnoreCase("1"))
 datum.toetsSkrikkelJaar();
 else if (input.equalsIgnoreCase("2"))

 datum.datumsVerskil();
 String temp = console.readLine();
 }
 }

}

269

Thinking processes of Participant 32

Vraag in my eie woorde:

Skryf ‘n Datumklas. Die klas moet vandag se datum inlees. Dit moet ook metodes bevat wat
kan bepaal of ‘n sekere jaargetal ‘n skrikkeljaar is of nie. Die verskil in dae tussen 2 datums
bereken.

My Programmeringsproses

1. Skep eers raamwerk vir Datum.java en Toetsklas.java, dit is goed soos opskrifte, imports,

gegewe metodes ens.

2. Skep konstruktor vir Datum.java klas:

a. Doel? Die konstruktor moet ‘n datum inlees. (Daarvoor benodig jy die
BufferedReader, InputStreamReader imports)

b. Parameters? Geen parameter nie
c. Invoer? ‘n Datum word ingelees. Dit sal moet getoets word. Gaan baie keer datums

getoets word? Ja, dus skryf ons ‘n metode vir datumstoets, nl. testDate (Verwys na
punt 3)

d. Uitvoer? Net as datum verkeerd ingevoer word. Gebruik ‘n while en Boolean om
herhaling van die vraag reg te kry. Boolean waarde word verkry deur testDate
metode. (Verwys na punt 3)

e. Probleme? Het gesukkel om datum in te lees in goeie formaat. Het dus vir gebruiker
‘n vaste formaat gevra om te gebruik nl. DD Month YYYY, bv. 16 Oktober 2006.

f. Waardes wat ingelees is, word gelyk aan globale veranderlike gestel. (Indien hulle
later gebruik sou wou word)

3. Moet nou testDate metode skep, vir toets van datums:

a. Doel? Hy moet ‘n datum wat ontvang is, toets of dit korrek is volgens ons kalender,
m.a.w. moet kan sê dat bv. 45 Woensdag 1203 ‘n ongeldige datum is.

b. Parameters? Sal moet datum wat getoets is ontvang, dus dayTemp, monthTemp,
yearTemp.

c. Invoer, Uitvoer? Daar is geen, het alle nodige data en sal net Boolean-waarde terug
stuur.

d. Veranderlikes betrokke?: Daar sal moet ‘n paar Boolean-veranderlikes wees nl.
testMonth, testDay, testYear ens. Ook ‘n numDays integer veranderlike geskep, om
te gebruik by dae toets

e. Berekeninge:
i Eerste jaar toets, moet groter wees as 1800. Toets dan of dit skrikkeljaar is of nie

(vir Februarie maand).
ii Dan die maande toets. Daarvoor skep arrays om te kan gebruik vir vergelyking.

Gebruik dan for lus om deur almal te hardloop en te vergelyk (Probleme: Moes 3
arrays skep omdat sekere maande ander hoeveelheid dae het. Ek het dit
agtergekom by dae toets. Moes ook ‘n uitsondering maak vir Februarie a.g.v. die
skrikkeljaar probleem.)

iii Nou dae toets. Het numDays veranderlike gebruik om dae te vegelyk. Kon dit so
toets.

iv As die toets positief was het dit die betrokke boolean verander na true
f. Return? Sal ‘n true waarde return as alle booleans van toetsdata waar is anders

return dit ‘n vals waarde.
g. Probleme? Net met die maand se toets. Moes dus die arrays gebruik.

270

4. Noudat nodige metodes vir konstruktor werkend is, kan ons dit toets met die
toetsprogram nl. Toetsklas.java. Om dit te kontroleer moet ons vinnig die gegewe
metodes nl. kryDatum, kryMaand, kryJaar by die Datum klas byvoeg. Toetsprogram kan
dan net vinnig datum.kryDatum() roep om te kontroleer.

5. Moet nou volgende metode vir Datum klas skryf, nl toetsSkrikkelJaar

a. Doel? Moet jaargetal inlees en dan toets of dit skrikkeljaar is of nie
b. Parameters? Geen, lees sy invoere, en return geen waardes nie
c. Invoer, Uitvoer? Invoer: Moet net jaargetal inlees. Die getal moet groter wees as

1800. Anders geen probleme nie. Uitvoer: Moet net eenvoudige uitvoer gee: is dit ‘n
skrikkeljaar of nie.

d. Veranderlikes? Net vir invoer.
e. Berekeninge? Moet toets of dit groter is as 1800, indien nie, herhaal weer die vraag.

Doen sommer altwee met ‘n while (year < 1800). Dan net die eenvoudige toets vir ‘n
skrikkeljaar:
i Toets eers of dit ‘n eeujaar is met, year % 100. Indien dit gelyk is aan 0, dan is dit

‘n eeujaar
ii Eeujaar: year % 400, as dit gelyk is aan 0 dan is dit ‘n skrikkeljaar, anders is dit

nie. Nie-Eeujaar: year % 4, as dit gelyk is aan 0 dan is dit ‘n skrikkeljaar anders
nie.

iii Gee uitvoer dan volgens wat afgelei is.
f. Probleme? Nie regtig nie, sodra ek agtergekom het dat dit ‘n nested-if sal benodig,

was dit baie maklik.

6. Opdateer die toetsprogram om die toetsSkrikkeljaar metode te toets. D.w.s. las net by ‘n

roep instruksie nl datum.toetsSkrikkeljaar();

7. Nou datumsVerskil() metode skryf:

a. Doel? Moet twee datums inlees en dan die verskil in dae tussen die twee bepaal.
b. Parameters? Geen, gebruik eie invoer. Return ook geen waardes nie, want hy maak

sy eie uitvoer.
c. Invoer, Uitvoer? Invoer: Moet 2 datums inlees. Gebruik hier dieselfde manier as die

konstruktor. Het net 2 stelle veranderlikes. Gebruik dus ook testDate metode.
Uitvoer? Moet net die verskil in dae uitvoer tussen die twee datums, m.a.w. net ‘n
veranderlike aan die gebruiker vertoon.

d. Veranderlikes? Die twee stelle vir datums. Twee booleans om aan te dui dat datums
korrek is, volgens testDate metode. Moet ook ‘n array skep om aan te dui hoeveel
dae daar in elke maand is nl. numDaysMonths.

e. Berekeninge? Moes dink aan ‘n metode om dae te kan bepaal en dan verskil tussen
die twee. Opsies was: 1. Om by een datum te begin en dan te tel totdat volgende
datum bereik is. Klink of dit moeilik gaan wees en kan nie dadelik aan ‘n duidelike
manier dink nie. 2. A.g.v. die grens bepaal die jaargetal nl. 1800, het daar ‘n ander
moontlikheid voorgekom. Kan die dae tel vanaf 1 Januarie 1800 tot en met datum1.
Doen dan dieselfde met datum2 en trek die 2 waardes van mekaar af. Het gevoel
opsie 2 is meer prakties. Opsie 2:

i Aftreksom. Moet dus bepaal watter datum is die grootste om aftreksom te kan
reg doen. (Kon datums ook net aftrek en dan positief maak. Het nie vir my reg
gevoel nie). Gebruik boolean om aan te dui watter is groter nl. firstBiggest. Het
eers jare vergelyk dan maande en laastens dae. Het uitsondering gemaak
indien hulle dieselfde is. Sal dan dadelik uitvoer gee dat verskil 0 dae is.

 ii As eerste datum groter is of nie maak amper geen verskil in bereken van
aantal dae van 01 Januarie 1800 tot en met betrokke datum nie. Maak net
verandering in aftreksom aan die einde. (Baie klein verandering)

 iii Bepaal eers hoeveelheid jare. Bepaal apart hoeveel is skrikkeljare en hoeveel
nie. Dan plus korrekte aantal dae by veranderlike vir aantal dae nl. totDays1.

271

 iv Gebruik dan array van aantal dae in maande en plus betrokke dae by vir die
huidige jaar se maande m.a.w. as dit die 5de maand is, plus aantal dae vir
maande by tot en met 5de maand. Maak uitsondering vir skrikkeljaar d.w.s.
een ekstra dag vir Februarie.

 v Plus dan aantal dae by bv. 9 Mei d.w.s. totDays1 + 9 dae.
 vi Bereken net so datum2 se totale dae nl. totDays2
 vii Trek dan die twee van mekaar af soos aangedui van watter is groter. Gee dan

uitvoer oor verskil tussen dae
f. Probleme? Baie! Met die lees het die metode maklik gevoel, maar is in werklikheid

nie. Moes baie uitsonderings maak, veral vir skrikkeljare ens. Grootste probleem was
los hande die manier waarop die verskil in dae bepaal gaan word m.a.w. opsies om
dae te tel. Het ook ‘n paar ArrayOutOfBounds exceptions gehad. Opgelos met
diagramme.

8. Opdateer nou weer die toetsprogram om die datumsVerskil() metode te toets met
datum.datumsVerskil();

9. Verander die toetsprogram in ‘n meer gebruikervriendlike omgewing deur ‘n “menu” in te
sit ens.

Addisionele Notas
Die dokument was saamgestel uit ‘n klomp los stukke notas wat ek gebruik het terwyl ek
geprogrammeer het. Die rede vir hierdie dokument is, omdat net ek self daardie notas sou
kon verstaan. Dit bevat baie persoonlike afkorting en gekrap, en sal nie vir enige iemand sin
maak nie. Die dokument is saamgestel sodat die leser kan sien op watter manier ek dink
gedurende die programmerings proses en watter vrae ek my self vra.

BRONNE
HORSTMANN, C., 2002. Big Java: programming and practice.

272

Appendix H: Article accepted for the
South African Computer Journal

Knowledge, skills and strategies for successful object-

oriented programming: a proposed learning repertoire

HM (Marietjie) Havenga

E (Elsa) Mentz

MR (Ruth) de Villiers

Abstract

Third year Computer Science students were studied in order to determine

which knowledge, skills and strategies they used during an object-oriented

programming task. Quantitative and qualitative methods were used to

analyse their computer programs and associated thinking processes.

Successful programmers applied significantly more cognitive, metacognitive

and problem-solving knowledge, skills and strategies, also using a greater

variety, than the unsuccessful ones. Based on the approaches of the

successful programmers, we propose a learning repertoire of integrated

knowledge, skills and strategies, which can serve as a framework to support

novices learning object-oriented programming (OOP).

Introduction

Learning and conducting object-oriented programming (OOP) is

multidimensional and complex (Govender and Grayson, 2006:1687). OOP

requires the use of specific knowledge, skills and strategies to solve problems

and write the associated programs. Successful and unsuccessful programmers

differ in the way they approach and solve programming problems. An

unsuccessful programmer is a person who did not achieve the stated

outcomes, while a successful programmer is one who did achieve them and

who dealt efficiently with problems (Govender and Grayson, 2006:1689).

Successful programmers possess a well-organised, carefully-learned

knowledge structure (Ala-Mutka, 2004:2); they use self-regulatory processes

Knowledge, skills and strategies for successful object-oriented programming:

a proposed learning repertoire

 273

and monitor their problem-solving activities (Glaser, 1999:91-92) and they

can solve a problem quickly, although they often appear to spend more time

in problem representation (Sternberg, 2006:424). These are some examples

of cognitive, metacognitive and problem-solving activities that are required in

programming. However, these are not merely personal or isolated learning

techniques, but rather distinct activities that should explicitly be integrated to

address a programming problem and solve it successfully.

This paper considers the following research questions:

1. What are the differences between the ways that successful and

unsuccessful programmers apply their knowledge, skills and strategies in

an object-oriented programming task?

2. How can novices be supported in learning OOP?

The objective of the first question was an attempt to identify cognitive,

metacognitive and problem-solving knowledge, skills and strategies used by

successful and unsuccessful programmers in OOP. To answer the second, we

attempted to integrate the approaches of successful programmers into a

learning repertoire that can serve as a framework for novices learning OOP.

Literature survey

Computer programming involves a rich environment in which specific

programming words, statements and constructs come together to be integrated

in a tightly defined way to solve a problem efficiently. This requires high-

level knowledge, skills and strategies. In general, the knowledge relates to

information and skills acquired through experience or education. A skill

refers to the ability to do a particular task, while a strategy is a designed plan

to achieve a purpose and to solve a problem (Concise Oxford English

Dictionary, 2004:789,1351,1425; Gu, 2005:1). It is often assumed that

students implicitly and independently master the required high-level

knowledge, skills and strategies, and that teaching should focus on

programming content and coding structures only. However, to be successful

in the complex domain of OOP, explicit learning of both facets is required.

This survey briefly overviews some aspects and techniques that can support

successful programming.

274

Cognition

The concept of cognition refers to the mental processes used in the

acquisition, storage, transformation and application of knowledge (Sternberg,

2006:157). In this regard Bloom’s taxonomy (1973) defines six types of

learning, hierarchically ordered according to the level within the cognitive

domain: knowledge; comprehension; application; analysis; synthesis; and

evaluation. The way in which these concepts are used (or not used) can

define the differences between successful and unsuccessful programmers

(Zant, 2005:1), where the six associated skills are, respectively: knowledge of

the programming language; interpretation of the programming problem;

application of prior knowledge in a new program; analysis of the problem;

design of a new program; and evaluation of the solution. Since programming

is ‘extremely cumulative’, novices must progress through each of Bloom’s six

levels to become truly successful (Carbone et al., 2002:2; Zant, 2005:1).

Recall of information can be improved by cognitive strategies (Schunk,

2000:139-144), such as rehearsal, elaboration and organisation (Bergin et al.,

2005:82). Rehearsal strategies, for example: focussing attention, structured

recall, and distributed practice over a period of time; can support recollection

and help to pinpoint important information within a context. In the

programming context, programmers who repetitively sequence activities in a

particular way ‘preserve the effect’, using less working capacity (Gu,

2005:9). Elaboration helps students to integrate new information with prior

knowledge by, for example, generative note taking, asking questions,

summarising, and creating analogies. The organisation strategy includes

extraction of the main idea from text as well as integration of concepts

(Bergin et al., 2005:82) with the goal of achieving a holistic problem

solution.

Metacognition (cognition about cognition)

Metacognitive knowledge is explicit knowledge of one’s own cognitive

strengths and weaknesses, beliefs and conditions that affect memory

performance (Gravill et al., 2002:1055; Koriat, 2002:267). Self-knowledge,

task-knowledge and strategy knowledge are required in the metacognitive

domain (Flavell, 1979). Metacognitive strategies include planning,

monitoring and regulation. In programming, planning entails analysis of the

problem and the identification of possible classes and methods to solve it,

while monitoring guides the process of finding a solution by means of self-

Knowledge, skills and strategies for successful object-oriented programming:

a proposed learning repertoire

 275

testing (Bergin et al., 2005:82). Regulation involves the continuous

modification of one’s cognitive activities to determine whether the problem is

being solved successfully. Bergin et al. (2005:83) discuss self-regulated

learning with regard to the performance of students in their third level of

introductory OOP. They found that students with high levels of intrinsic

motivation perform better and use more metacognitive-management strategies

than lower performing students.

Problem solving

Different kinds of problems are solved in different ways and require different

approaches. Students should understand how problems vary according to

their structuredness, complexity, dynamicity and domain-specificity

(Jonassen, 2004:3-9). In this regard, programming experience and exposure

play roles and Sternberg (2006:426) suggests that experts develop

sophisticated internal representations of certain kinds of problems, based on

their structural similarities.

Standard problem-solving strategies are: bottom-up, top-down, integrated, as-

needed and trial-and-error (Corritore and Wiedenbeck, 2000:139; Edwards,

2004:26; Zhang, 2005:7). Research shows that expert object-oriented

programmers tend to use top-down strategies during the early phases of

programming to understand systems holistically. In contrast, the same experts

may use a bottom-up strategy when programming in an unfamiliar context or

during program maintenance where individual parts are combined to form

larger components (Corritore and Wiedenbeck, 2000:139-148).

Object-oriented programming

OOP is based on the object-oriented approach, where objects are models of

real-world entities that have the responsibility of carrying out specific tasks to

solve the problem (Garrido, 2003:26-27). OOP involves various knowledge

and skills relating to data types, control structures, instantiation of objects,

methods, GUI tools, exception handling, database connectivity (Jackson and

Satzinger, 2003:3), input/output validation, performance correctness

(Stamouli and Huggard, 2006:113), debugging and the development of test

data. Due to the complexity of OOP, students have difficulty in applying the

required activities successfully (Govender & Grayson, 2006:1693). Explicit

276

teaching and learning of high-level knowledge, skills and strategies may

therefore be a requirement to support success in OOP.

Research design

The underlying research ethos of this study is constructivist problem solving,

which refers to the students' active construction of computer programs and

application of programming constructs such as classes and objects. It also

relates to the researcher's construction of a body of knowledge regarding the

students’ programming constructs, as she interprets and reflects on those

programming experiences. This implies a continuous process of

interpretation and reflection.

In a mixed methodology, both quantitative and qualitative research methods

were used to analyse participants’ computer programs and the associated

written thinking processes. Quantitative methods include statistical

calculations such as descriptive statistics, practical significance and

correlation. As a qualitative research practice, grounded theory was applied

to guide the systematic collection of data and to generate a model inductively

from the ongoing data collection and analysis to explain the specific

phenomenon (De Villiers, 2005:24; Glaser and Strauss, 1967:1).

Data collection

The research was conducted over a period of two years. The participants (n =

48) came from two groups: the first group, namely 2005, consisted of 11 BEd

and 17 BSc 3
rd

 year students, and the second group, namely 2006, comprised

three BEd and 17 BSc 3
rd

 year students. Students from both groups took

Computer Science as a major subject.

Each participant had to create an object-oriented program relating to leap

years. It was an open-ended question and participants had to decide

personally which calculations were necessary in the program. However,

some requirements were included to direct the programming process. At the

very least, the students should write a Date class program to calculate which

years are leap years and the difference between any two dates in the range 1

January 1800 to a later date. A Test class program was also required to

determine whether the output of the Date class was correct. The programs

could be done in either Delphi or Java. During the major process of

Knowledge, skills and strategies for successful object-oriented programming:

a proposed learning repertoire

 277

programming the Date class task, participants were required to record their

thinking and problem-solving processes in writing.

Data collection included both the computer programs and the recorded

thinking processes. Triangulation was applied by investigating data from

these two sources, i.e. the coded programs and the associated thinking

processes written by participants as they considered the problem and coded

their solutions. Finally, coherence between the different data sources was

investigated to identify patterns of meaning and to describe the emerging

theory that leads to the learning repertoire.

Data analysis and findings

Two approaches were followed. In the first approach, each program itself

and the recorded thinking processes were evaluated, using as an instrument, a

set of measurement criteria that had emerged from the literature review. The

24 criteria (or subcategories) shown in Table 1 originate from four major

categories: cognitive knowledge and skills; metacognitive strategies;

problem-solving strategies; and OOP knowledge and skills. Measurement of

23 of the criteria was scored on a 4-point scale where 1 indicates poor

performance and 4 an excellent performance. For the problem-solving

category with its single criterion, participants could use more than one

strategy, so a maximum of 8 was allocated instead of 4. Participants who

used the trial-and-error strategy received zero, since it was not considered an

acceptable problem-solving strategy. The 24 criteria thus score a total of 100.

As the indicator of ‘successful’ programming, participants had to obtain 3 or

4 for the ‘Correctness of output’ subcategory (last criterion in Table 1),

relating to evidence of correct program output and the test data used. Based

on this approach, there were 11 successful and 37 unsuccessful programmers.

The scores were analysed by descriptive statistics to determine the means and

standard deviations of successful and unsuccessful participants for all criteria

and for the overall categories. Practical significant differences (effect size)

between successful and unsuccessful participants were determined for all

criteria, as shown in Table 2. Guidelines for the interpretation of effect size

are as follows: d = 0.2 small effect; d = 0.5 medium effect; d = 0.8 large effect

(Cohen, 1988). Values ≥ 0.8 mean that the effect size of constructs is

regarded as practically significant (Ellis and Steyn, 2003). However,

278

Thompson (2001:82-83) warns that researchers should avoid using these

guidelines in an overly rigid way. In order to determine correlations between

the cognitive, metacognitive and OOP constructs, the Spearman ranked

correlation coefficient was used, as shown in Table 3. The correlation is

interpreted as follows: r = 0.1 small effect; r = 0.3 medium effect; and r = 0.5

large effect (Cohen, 1988). Data with an r-value ≥ 0.5 is considered as

practically significant (Ellis and Steyn, 2003:52; Steyn 2002).

The second analysis approach investigated the thinking processes of

participants, using the qualitative analytical software package, Atlas.ti. The

purpose was to identify various themes that emerged from the recorded

thinking processes. The researcher allocated codes to particular segments in

the typed textual data until sufficient similar patterns were identified,

indicating that saturation had occurred. After the codes were grouped and

categorised, various themes were identified.

Table 1: Measurement criteria and associated categories

Category Criterion

Cognitive knowledge and skills

Knowledge (4) Evidence of knowledge of the programming language

Comprehension (4) Interpretation of the problem

Application (4) Application of prior knowledge in a new program

Analysis (4) Analysis of the problem – breaking it down into steps

Synthesis (4) Designing a new program

Evaluation (4) Evaluation of the solution

Metacognitive strategies

Planning (4) Evidence of planning during programming

Monitoring (4) Evidence of monitoring tasks during programming

Regulation (4)
Evidence of regulation or modification to correct flaws

during programming

Knowledge, skills and strategies for successful object-oriented programming:

a proposed learning repertoire

 279

Table 1: Measurement criteria and associated categories continued

Category Criterion

Problem-solving strategies

 (8)

Application of problem-solving strategies: bottom-up,

top-down, integrated, as-needed

OOP knowledge and skills

Program requirements

analysis (4)
Analysis of the program requirements

Programming techniques (4)
*Programming techniques used: indentation, readability,

 variable names and declaration

Programming statements (4)
*Application of the correct use of programming

 statements

User-friendliness (4) Application of user-friendliness and usability

Classes and objects (4) Designing of classes and instantiation of objects

Method application (4)
Application of methods such as constructors, mutators

and accessors

Access control (4) *Decision on the accessibility: public, private

Parameter passing (4)
*Application of parameter passing: number, order, type

 of variables

Reasoning (4) Application of reasoning skills in OOP

Exception handling (4) *Application of exception handling

Program structure, scope (4) *Application of program structure and scope

Successful programming (4) Actual solution to the problem

Program evaluation (4) Evaluation of the Date class and Test class

Correctness of output (4) Evidence of correct program output and test data used

TOTAL (%)

* Criteria selected specifically to reflect on general characteristics of programming (Sebesta, 2004:8).

Quantitative findings re participants’ programs and thinking

processes
Table 2 summarises the measurement criteria for each category and its

subcategories, giving the: mean values, standard deviations and effect size for

280

successful and unsuccessful participants, respectively. The means for

cognition, metacognition and OOP are higher for successful participants than

for the unsuccessful. Practical significant differences with a large effect size

were found between successful and unsuccessful participants within all

subcategories except for knowledge, comprehension, classes and objects,

access control and parameter passing, where practical significant differences

of a medium effect size occurred.

Table 2: Means, standard deviations and practical significances for

unsuccessful and successful participants

Category
Unsuccessful

participants (37)

Successful

participants (11)

Practical

significance

(effect size)

 x s x s d

Cognition 3.05 0.71 3.85 0.20 1.13*

Knowledge 3.65 0.68 4.00 0.00 0.51

Comprehension 3.54 0.65 4.00 0.00 0.71

Application 3.32 0.78 4.00 0.00 0.87*

Analysis 3.08 0.80 3.82 0.40 0.93*

Synthesis 2.62 0.92 3.73 0.47 1.21*

Evaluation 2.05 0.97 3.55 0.52 1.55*

Metacognition 2.36 0.88 3.33 0.54 1.10*

Planning 3.24 0.83 3.91 0.30 0.81*

Monitoring 2.19 1.13 3.27 0.79 0.96*

Regulation 1.65 1.06 2.82 0.75 1.10*

Knowledge, skills and strategies for successful object-oriented programming:

a proposed learning repertoire

 281

Table 2: Means, standard deviations and practical significances for

unsuccessful and successful participants continued

Category
Unsuccessful

participants (37)

Successful

participants (11)

Practical

significance

(effect size)

 x s x s d

OOP constructs 2.44 0.77 3.62 0.29 1.53*

Program requirements

analysis
3.24 0.86 4.00 0.00 0.88*

Programming techniques 3.11 0.97 4.00 0.00 0.92*

Programming statements 3.08 1.04 3.91 0.30 0.80*

User-friendliness 1.62 1.30 3.00 0.77 1.06*

Classes and objects 2.97 1.12 3.82 0.40 0.76

Method application 2.70 0.94 3.64 0.50 1.00*

Access control 3.19 1.08 3.91 0.30 0.67

Parameter passing 3.24 1.12 4.00 0.00 0.68

Reasoning 2.89 0.81 3.73 0.47 1.04*

Exception handling 0.46 0.80 2.55 1.21 1.73*

Program structure and scope 2.86 0.88 3.73 0.47 0.99*

Successful programming 2.41 1.09 3.73 0.47 1.21*

Program evaluation 2.00 1.08 3.55 0.52 1.44*

Correctness of output 0.35 0.72 3.18 0.40 3.93*

*d = 0.8, large effect size; d = 0.5, medium effect size (Ellis and Steyn, 2003:51)

There are possible correlations between participants’ expertise in cognition,

metacognition and OOP knowledge and skills. Table 3 shows Spearman

correlations between pairs of these variables. In all the constructs measured,

correlations were greater than 0.5 and therefore relevant in practice (Steyn,

2002). The high correlation between cognition and the OOP construct (r =

0.89) implies that certain predictions can be made regarding successful

282

programming in cases where participants make effective use of all the

cognitive activities. The correlation between metacognition and OOP (r =

0.73) suggests that the use of metacognition and reflection can support

problem-solving performance in OOP.

Table 3: Correlations between cognition,

metacognition and OOP constructs

Construct r

Cognition

Metacognition
 0.63**

Cognition

OOP construct
 0.89**

Metacognition

OOP construct
 0.73**

** Practically significant (Steyn, 2002).

Analysis of the thinking processes with Atlas.ti
Five main themes emerged in an inductive grounded-theory approach from

the analysis of the participants’ thinking processes in association with their

programming of the Date class, namely: cognitive knowledge, skills and

strategies; metacognitive knowledge, skills and strategies; problem-solving

knowledge, skills and strategies; errors and problems in programming; and

additional support in programming.

Theme 1: Cognitive knowledge, skills and strategies

The unsuccessful participants did not refer to explicit evaluation skills as in

Bloom’s taxonomy nor to cognitive strategies. Responses indicating that they

used some of the skills in Bloom’s taxonomy are: I find out when it is a leap

year [P31]*; I first determine the requirements [P20]; Which variables do I

need? [P30]. Firstly, I thought about the class structure [P10]; Which

methods should be in the class? [P21]; I need a method to convert the

number of days [P36]. *[P31] refers to Participant 31, etc.

Successful participants applied the full set of skills from Bloom’s taxonomy,

some examples being: A programmer should understand basic principles

[P15]; I received the date as a string and separated it into days, months and

years [P40]. During synthesis and evaluation, participants integrated various

Knowledge, skills and strategies for successful object-oriented programming:

a proposed learning repertoire

 283

methods in the class: I also need a method to test for valid dates [P23].

Participant 40 referred to evaluation skills when he indicated that his program

was working 100%. Participant 23 applied the elaboration strategy in the

following statement: When designing the class, I ask myself about the general

and special cases in each situation.

Theme 2: Metacognitive knowledge, skills and strategies

Unsuccessful participants reflected and acknowledged their programming

weaknesses. Two examples are: I have the correct idea but cannot apply it

[P5]; I do not have a plan … [P34]. Some useful responses of unsuccessful

participants about metacognitive strategies are: I re-read the question with

attention [P30]; I could send the date to the constructor [P33]; I forgot to

insert close brackets [P41]; I have determined the difference in days but was

incorrect with one day [P39].

Successful participants applied a spectrum of metacognitive activities: I read

the question carefully and determined what was being asked? What are the

specifications? [P29]. Participant 32 used planning, monitoring and

regulation strategies: Many questions were asked to determine the purpose,

parameters, input, output, and problems of the programming task (planning).

He also reflected on the programming task: Problems? Many! The method

was difficult … and I should include many exceptions for leap years. The

biggest problem was the difference between days. I have a few

ArrayOutOfBounds exceptions. This was solved with diagrams (monitoring

and regulation).

Theme 3: Problem-solving knowledge, skills and strategies

Unsuccessful participants found it difficult to follow specific steps during

problem solving: I do not know if it is correct. I have typed all the things

that I thought should be in the program [P31]. I … will try to code by means

of trial-and-error [P34]. Participant 6 used the bottom-up strategy to solve

the problem: I will complete the code for a specific component before

continuing with the next component.

Successful participants described their systematic problem-solving steps in

more detail. For example: I determine the input, design the interface and

basic components, process and then test the input [P44]. Participant 32 used

284

the top-down strategy when he indicated: I will start with the framework for

the Date and Test class, headings, import given methods, etc.

Theme 4: Errors and problems in programming

This theme highlights examples of errors and problems, some of which also

relate to a lack of metacognitive strategies. Unsuccessful participants pointed

out: I wonder why I typed some of this code, because I will not use it [P39];

…exception handling is complicated [P33]. Some participants could not

apply exception handling or interpret errors [P31, P33]; others used incorrect

syntax [P39] and could not compile the program.

Successful participants were able to diagnose and correct their errors. Two

examples from P32: I had problems determining a specific date format

[P32]; …the Difference() method was difficult and I should provide for many

exceptions… [P32].

Theme 5: Additional support in programming

Both unsuccessful and successful participants referred to supplementary

means of support during the programming process: I used…previous code

[P48]; textbooks [P30]; …previous…assignments [P44]; and Wikipedia.com

for the requirements of leap years [P29].

Research questions revisited

This section answers the first research question: What are the differences

between the ways that successful and unsuccessful programmers apply their

knowledge, skills and strategies in an object-oriented programming task?

The answer relates to the three major themes that emerged from the grounded

theory analysis: cognitive-, metacognitive- and problem-solving knowledge,

skills and strategies that unsuccessful and successful participants apply/do not

apply in the process of a programming task.

Cognitive knowledge, skills and strategies

Unsuccessful participants battled to decompose the problem scenario and to

relate subparts to the overall structure. With regard to actual programming,

they could not readily apply higher-order thinking skills. Although they used

knowledge and comprehension skills, their programs indicate that they

debugged and evaluated the code without using detailed application and

Knowledge, skills and strategies for successful object-oriented programming:

a proposed learning repertoire

 285

analysis skills. As a consequence, they had problems in interpreting their

errors, they could not complete the program, and many did not obtain output.

For the higher-order thinking skills (analysis, synthesis and evaluation)

required for programming, the successful participants received a mean value

of more than 3.5 on a 4-point scale. Their ability to apply all the levels of

Bloom’s taxonomy in a task was clear and they achieved a high level of

accuracy in solving the problem. It is notable that they spent more time on

the analysis phase and differentiated how parts are inter-related in the

complete program. Their performances illustrate that programmers should

understand the problem precisely, interpret and evaluate their programming

solutions.

Only one successful participant explicitly mentioned a cognitive strategy that

was used during programming. Possible reasons could be that participants

did not verbalise knowledge about these strategies, they did not use cognitive

strategies, or they did not know how to apply such strategies in programming.

In this regard, Bergin et al. (2005:85) show that cognitive strategies are not as

useful in the learning of introductory OOP as they are in other domains.

Metacognitive knowledge, skills and strategies

Unsuccessful participants found it difficult to apply metacognitive activities

during programming; they encountered problems in monitoring and

regulating their cognitive resources. Very few of them applied any form of

regulatory strategy. They could not easily reflect on the task and their own

understanding of it, and found it difficult to manage their thinking and

reasoning.

By using detailed planning strategies, successful participants were able to

complete their tasks and produced high quality solutions. Most participants

monitored their progress and effectively managed their cognitive resources in

the process of finding a solution (Table 2). The regulation strategy of

successful participants was slightly lower than 3 (x = 2.82), which implies

that they could improve further on regulatory strategies during programming.

These findings correspond with Hertzog and Robinson (2005:110, 111), who

suggest that monitoring plays a vital role in cognitive performance of

complex problem solving and guides the process of finding a solution.

286

Problem-solving knowledge, skills and strategies

Unsuccessful participants did not obtain the required program output. Some

encountered problems in systematically applying problem-solving strategies.

Instead, they spent time iterating through their programming code to address

errors, without understanding which sections were incorrect and how to

rectify them. Such participants were much less accurate in their efforts to

reach an appropriate solution. Although most of the unsuccessful participants

used a bottom-up strategy (27), some wrote that they worked without using

any specific problem-solving strategies (2). Two used trial-and-error, three

used a top-down strategy, and three used the integrated strategy.

Successful participants had considerable domain knowledge and highly

efficient problem-solving skills, which they were able to apply successfully in

the task. Seven of them used the bottom-up strategy, two the top-down, and

two the integrated strategy during program comprehension. None of the

successful participants used the trial-and-error strategy. This appears to

indicate that it is not a successful approach in OOP, whereas all the other

problem-solving strategies were used effectively.

The second research question is: How can novices be supported in learning

OOP? It is answered by presenting a proposed learning repertoire.

Proposed learning repertoire

The constructivist problem-solving approach supports active involvement of

students in constructing computer programs and applying constructs such as

classes and objects. This paradigm also acknowledges the researcher’s part

in the construction of knowledge about the programming constructs of

students, where action, interpretation and reflection are vital.

Educators need to play supportive roles that facilitate the acquisition of

appropriate activities as students learn to apply the sum of their knowledge,

skills and strategies in programming. OOP is a dynamic and constructive

process involving various actions and dimensions. Since its complexity can

be overwhelming, we propose a learning repertoire in Figure 1 to serve as an

integrated framework to support novices in learning OOP. The content of the

repertoire is drawn from the empirical research, which highlights ways in

which successful participants solved the programming problem. Subsets of

the repertoire can be selected and used for a particular context or task.

Knowledge, skills and strategies for successful object-oriented programming:

a proposed learning repertoire

 287

Various dimensions are integrated in the repertoire, which explicitly

distinguishes between knowledge and skills on the one hand, and strategies

on the other. Knowledge and skills form the core. Cognitive knowledge and

skills on all levels of Bloom’s taxonomy are required for the understanding,

designing, coding and testing of a programming problem. Specific emphasis

is placed on the higher-order thinking skills such as analysis, synthesis and

evaluation. Setting of goals, a high level of motivation, and knowledge about

specific tasks are required in the metacognitive domain. In addition, adequate

programming knowledge and skills are essential to the ability to complete a

new program successfully.

Dynamic interaction, indicated by the arrows in Figure 1, occurs between the

core sections of cognitive, metacognitive and problem-solving activities. As

an example, successful object-oriented programming requires the

‘application’ of skills from Bloom’s taxonomy, particularly synthesis and

evaluation to determine whether a program is correct and to rectify it if not.

The dimensions in Figure 1 are supported by strategies lying outside the core.

Students can use these strategies to enhance the acquisition of knowledge and

skills, and can apply them during the processes of Construction, Reflection,

Selection and Application in OOP. The three dashed arrows on the left, the

right and below the core indicate the dynamic and continuous use of

cognitive, metacognitive and problem-solving strategies in the first three

processes, while the bold arrow above the core relates to the application of

these activities in designing new programs and maintaining existing ones.

• Construction

The use of cognitive strategies can enhance acquisition of the

knowledge and skills in Bloom’s taxonomy. Rehearsal supports the

learning of facts about OOP (knowledge) and the grasping of

programming content (comprehension). Elaboration can facilitate the

use of previously-learned material in new situations (application) and

the decomposition of a problem into subproblems (analysis). The

organisation-and-integration strategy can support programmers in

combining objects, methods and attributes in a class (synthesis) to

program and test the correct solution (evaluation). Object-oriented

programmers should be actively involved in their tasks, using prior

288

knowledge and applying a repertoire of knowledge and skills to help

them recall information and organise it in memory during the process of

constructing a program.

• Reflection

Students should reflect on their cognitive processes during OOP by

conducting deliberate planning, monitoring and regulation. They

should question themselves, discover misconceptions, identify errors

and continuously modify their programs in order to succeed. Such

reflection places them in control of the programming task as they

explicitly query the correctness of their code and reflect on their prior

thinking to identify errors and correct flaws. Appropriate responses to

feedback and the continuous improvement of code help to optimise the

solution and to achieve the required outcomes.

• Selection

The ability to make discerning selections, helps students to choose a

suitable problem-solving strategy for a given problem. They may select

and apply one or more problem-solving strategies during program

comprehension to help them to reach specific goals. For example,

effective use of a top-down strategy demonstrates that a student has

holistically conceptualised the entire program involving multiple

classes, instances, and methods.

• Application

 Finally and, in consolidation, the construction, reflection, and selection

of knowledge, skills and strategies must be applied in OOP tasks to

develop new programs and maintain existing ones. It is not the

intention that every strategy should be applied in every situation. The

various forms of knowledge, skills and strategies are relevant to

different contexts. Learning to program is an active process of

knowledge construction, reflection, and selection of appropriate

activities to ensure successful programming.

Learning OOP requires a balanced approach of all the different activities

involved. This implies, for example, that the application of Bloom’s skills

without explicit reflection; or the application of strategies without any

analysis, synthesis and evaluation skills will not support successful

completion of a new program. In such cases, students must explicitly query

Knowledge, skills and strategies for successful object-oriented programming:

a proposed learning repertoire

 289

the correctness of their own code and reflect on their prior thinking to

identify the errors and to correct flaws.

290

Conclusion

To be successful in OOP, programmers require explicit learning both of

programming content and higher-order mental activities. The findings of this

research, which distinguishes between successful and unsuccessful

programmers, indicate the need for a framework to support novice

programmers. This should address programming subject matter as well as

cognitive, metacognitive and problem-solving knowledge, skills and

strategies. Fostering awareness and application of the latter among learners

sets a particular challenge to educators (lecturers) to identify creative and

effective means of doing so.

We propose a learning repertoire that includes knowledge, skills and

strategies used by successful programmers. In order to apply this, various

activities should occur during programming to meaningfully construct,

explicitly reflect on, and critically select appropriate knowledge, skills and

strategies to understand, design, code and test high quality programs. This

involves the integration of specific cognitive, metacognitive and problem-

solving techniques in a balanced manner. Although this framework focuses

mainly on OOP, we believe that it can also be applied to support students in

other programming paradigms, such as procedural programming. However,

due to the particular complexities of OOP, the framework focuses specifically

on a holistic view where various different decisions are required in

programming one or more classes.

Future work will concentrate on the role of a lecturer or facilitator in the

explicit teaching of the required knowledge, skills and strategies, supporting

them in creating an educational environment in which the learning repertoire

can be effectively applied. The development of assessment criteria to test the

effective application of the activities of the learning repertoire in an OOP task

should further support the students.

Glossary

Novice: a person who is inexperienced and new in a particular field

Expert: a knowledgeable person with superior skills in a particular field

Knowledge, skills and strategies for successful object-oriented programming:

a proposed learning repertoire

 291

References

Ala-Mutka, K 2004. Problems in Learning and Teaching Programming – a

literature study for developing visualizations in the Codewitz-Minerva

project. Retrieved July 2006, from

http://www.cs.tut.fi/~edge/literature_study.pdf

Bergin, S, R Reilly & D Traynor 2005. Examining the Role of Self-Regulated

Learning on Introductory Programming Performance. ICER 2005:81-

86.

Bloom, BS, DR Krathwohl & BB Masia 1973. Taxonomy of Educational

Objectives. Book2: Affective Domain. London:Longman Group.

Carbone, A, IJ Mitchell, R Gunstone & AJ Hurst 2002. Designing

programming tasks to elicit self management metacognitive behaviour.

International Conference on Computers in Education, (ICCE 2002),

Conference Suite, North Harbour Stadium, Auckland, New Zealand.

Cohen, J 1988. Statistical Power Analysis for the behavioural Sciences. (2
nd

ed.). Hillsdale, NJ:Erlbaum.

Concise Oxford English Dictionary 2004. Oxford:Oxford University Press.

Corritore, CL & S Wiedenbeck 2000. Direction and Scope of

Comprehension-Related Activities by Procedural and Object-Oriented

Programmers: An Empirical Study IEEE Computer Society. 139-148.

De Villiers, MR (Ruth). 2005. Interpretive research models for Informatics:

action research, grounded theory, and the family of design- and

development research. Alternation 12.2: 10-52.

Edwards, SH 2004. Using Software Testing to Move Students from Trial-and-

Error to Reflection-in-Action. Proceedings of the 35
th
 SIGCSE

Technical Symposium on Computer Science Education:26-30.

Ellis, SM & HS Steyn 2003. Practical significance (effect sizes) versus or in

combination with statistical significance (p-values). Management

Dynamics 12.4:51-53.

292

Flavell, JH 1979. Metacognition and Cognitive Monitoring. A New Area of

Cognitive Developmental Inquiry. American Psychologist. 34.10:906-

911.

Garrido, JM 2003. Object-Oriented Programming. From Problem Solving to

Java. Massachusetts:Charles River Media, Inc.

Glaser, BG & AL Strauss 1967. The Discovery of Grounded Theory.

Strategies for Qualitative Research. London:Weidenfeld and

Nicolson.

Glaser, R 1999. Expert knowledge and processes of thinking. In: McCormick,

R, C Paechter (Eds.). Learning and Knowledge. London:Paul

Chapman.

Govender, I & D Grayson 2006. Learning to program and learning to teach

programming: A closer look. ED-Media 2006 Proceedings:1687-1693.

Gravill, JI, DR Compeau & BL Marcolin 2002. Metacognition and IT: The

influence of Self-Efficacy and Self-Awareness. Eighth Americas

Conference on Information Systems. 1055-1064.

Gu, PY 2005. Learning Strategies: Prototypical Core and Dimensions of

Variation. Retrieved August 2006, from

http://www.crie.org.nz/research_paper/Peter_Gu.pdf

Hertzog, C & AE Robinson 2005. Metacognition and Intelligence. In:

Wilhelm, O & RW Engle (Ed.). Handbook of Understanding and

Measuring Intelligence. London:Sage Publications.

Jackson RB & JW Satzinger 2003. Teaching the Complete Object-oriented

Development Cycle, Including OOA and OOD, with UML and the UP.

EDSIG:1-17

Jonassen, DH 2004. Learning to solve problems: an instructional design

guide. San Francisco:Pfeiffer.

Koriat, A 2002. Metacognition research: an interim report. In: Perfect, TJ &

BL Schwartz (Ed.). Applied Metacognition.UK: Cambridge University

Press:261-268.

Knowledge, skills and strategies for successful object-oriented programming:

a proposed learning repertoire

 293

Schunk, DH 2000. Learning Theories. An Educational Perspective. (3
rd

 ed.).

New Jersey:Merrill Prentice-Hall.

Sebesta, RW 2004. Concepts of Programming Languages (6
th

ed.).

Boston:Pearson Addison Wesley.

Stamouli, I & A Huggard 2006. Object-Oriented programming and Program

Correctness: The Student’s Perspectives. ICER:109-118.

Sternberg, RJ 2006. Cognitive Psychology (4
th
 ed.). United

Kingdom:Thomson Wadsworth.

Steyn, HS (jr) 2002. Practically significant relationships between two

variables. SA Journal of Industrial Psychology 28.3:10-15.

Thompson, B. 2001. Significance, effect sizes, stepwise methods, and other

issues: Strong arguments move the field. Journal of Experimental

Education 70: 80-93.

Zant, RF 2005. Problem Analysis and Program Design: Using Subsystems

and Strategies. Retrieved June 2006, from

 http://isedj.org/isecon/2001/39b/ISECON.2001.Zant.pdf

Zhang, X 2005. Analysis-based techniques for Program Comprehension.

Retrieved July 2006, from

www.cs.uoregon.edu/~xzhang/documents/AreaExam-

long%20version/position.pdf

	Cover page
	Title page
	Abstract
	Acknowledgements
	Contents
	List of figures
	List of tables
	Glossary
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Bibliography
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Appendix G
	Appendix H

