Raman spectroscopy for medical diagnostics — From in-vitro biofluid assays to in-vivo cancer detection

Kenny Kong a, Catherine Kendall b,c, Nicholas Stone b,c, Ioan Notingher a,⁎

a School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
b University Exeter, College of Engineering Mathematics and Physical Science, Exeter, Devon EX4 4QJ, United Kingdom
c Gloucestershire Hospital NHS Foundation Trust, Biophotonic Research Unit, Gloucester GL1 3NN, United Kingdom

ARTICLE INFO

Available online 22 March 2015

Keywords:
Raman spectroscopy
Diagnostics
Biophotonics
Tissue
Cells
Biofluids

ABSTRACT

Raman spectroscopy is an optical technique based on inelastic scattering of light by vibrating molecules and can provide chemical fingerprints of cells, tissues or biofluids. The high chemical specificity, minimal or lack of sample preparation and the ability to use advanced optical technologies in the visible or near-infrared spectral range (lasers, microscopes, fibre-optics) have recently led to an increase in medical diagnostic applications of Raman spectroscopy. The key hypothesis underpinning this field is that molecular changes in cells, tissues or biofluids, that are either the cause or the effect of diseases, can be detected and quantified by Raman spectroscopy. Furthermore, multivariate calibration and classification models based on Raman spectra can be developed on large "training" datasets and used subsequently on samples from new patients to obtain quantitative and objective diagnosis. Historically, spontaneous Raman spectroscopy has been known as a low signal technique requiring relatively long acquisition times. Nevertheless, new strategies have been developed recently to overcome these issues: non-linear optical effects and metallic nanoparticles can be used to enhance the Raman signals, optimised fibre-optic Raman probes can be used for real-time in-vivo single-point measurements, while multimodal integration with other optical techniques can guide the Raman measurements to increase the acquisition speed and spatial accuracy of diagnosis. These recent efforts have advanced Raman spectroscopy to the point where the diagnostic accuracy and speed are compatible with clinical use. This paper reviews the main Raman spectroscopy techniques used in medical diagnostics and provides an overview of various applications.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents

1. Introduction .. 122
2. Raman spectroscopy techniques ... 122
 2.1. Raman micro-spectroscopy ... 122
 2.2. Selective-sampling Raman micro-spectroscopy ... 122
 2.3. Coherent anti-Stokes Raman spectroscopy (CARS) and stimulated Raman spectroscopy (SRS) ... 123
 2.4. Surface enhanced Raman spectroscopy (SERS) .. 123
 2.5. Spatially offset Raman spectroscopy (SORS) and transmission Raman spectroscopy (TRS) ... 123
 2.6. Fibre-optic Raman probes ... 123
3. In-vivo and in-vitro Raman diagnostics based on tissue analysis 124
 3.1. Brain cancer ... 124
 3.2. Breast cancer .. 124
 3.3. Lung cancer .. 126
 3.4. Skin cancer .. 126
 3.5. Oesophagus .. 127
 3.6. Prostate cancer ... 128
 3.7. Colorectal cancer ... 128
 3.8. Bone disease .. 128

⁎ Corresponding author.
E-mail address: Ioan.Notingher@nottingham.ac.uk (I. Notingher).

This review is part of the Advanced Drug Delivery Reviews theme issue on “Pharmaceutical applications of Raman spectroscopy - from diagnosis to therapeutics”.

Corresponding author.
E-mail address: Ioan.Notingher@nottingham.ac.uk (I. Notingher).

http://dx.doi.org/10.1016/j.addr.2015.03.009
0169-409X/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
4. Biofluid diagnostic assays based on Raman spectroscopy
 4.1. Diabetes and glucose level monitoring
 4.2. Cancer diagnostics
 4.3. Asthma
 4.4. Inflammatory response
 4.5. Coagulant and anti-coagulant factors in human blood
 4.6. Malaria
 5. Conclusions

References

1. Introduction

Raman spectroscopy is a powerful analytical technique that can measure the chemical composition of complex biological samples, such as biofluids, cells and tissues. A Raman spectrum represents a molecular fingerprint of the sample and provides quantitative information regarding its chemical makeup. Biochemical changes in cells and tissues, that may either be caused or are the cause of a disease, can lead to significant changes in the Raman spectra. The potential of Raman spectroscopy arises from its ability to detect such biochemical changes at a molecular level, and therefore, can be used for diagnostics, prognostics or as a tool for evaluating new therapies.

Raman spectroscopy has several features that are advantageous for medical diagnostics. It has high chemical specificity and molecular information can be obtained without requiring staining or labelling. Changes in the molecular composition of biological samples as measured by Raman spectroscopy can be used to build multivariate calibration and classification models, which allow quantitative and objective diagnosis for independent patients. Raman spectroscopy relies on scattering of light by molecules and information regarding the vibrational modes of the molecules can be obtained using visible or near-infrared lasers. Thus, Raman spectroscopy can take advantage of the advanced optical microscopy technologies, optical fibres, miniaturised lasers and other photonic devices, to improve diagnostic performance and speed. Often the measurements are carried out in back-scattering geometry without requiring transmission of light through the specimen. This feature is useful in particular for in-vivo diagnostic and for examination of thick tissue specimens (e.g. surgical resections), without requiring micro-sectioning. The use of visible or near-infrared light for excitation also reduces the absorption effects of water, allowing measurements of body fluids or cells within water environments.

Similar to other optical techniques, Raman spectroscopy can provide real-time (or near real-time) molecular information and high-resolution imaging at relatively low cost compared to other well-established medical imaging techniques (e.g. ultrasound, magnetic resonance imaging, etc.). This is an important feature as often the clinical implementation and translation of technologies are limited by practical, logistical and financial factors.

One of the main draw-backs of Raman spectroscopy, that so far has partly limited the translation into the clinic, is the relatively low efficiency of the inelastic light scattering compared to elastic scattering, fluorescence emission or absorption of infrared light. The low Raman signals have often limited the speed of the technique. Compromises to reduce acquisition times can decrease diagnosis accuracy when spectra are acquired with insufficient signal-to-noise ratios, or with spatial under-sampling. Nevertheless, new strategies have been recently developed to address this limitation: imaging modalities based on non-linear Raman scattering, multimodal integration and selective-sampling Raman microscopy, the use of nanomaterials and photonic structures to enhance the Raman signals, fibre-optics probes for hand-held diagnostic devices and endoscopes, spatially-offset and needle-probes for deep and subsurface diagnostics. These developments have made important steps toward maximising the diagnostic accuracy and speed, and often rely on cost-effective solutions that are likely to be adopted into the healthcare services.

This paper reviews the main Raman spectroscopy techniques used for biomedical diagnostics and provides an overview of applications, including biofluids, cells and tissues. The article does not aim to be a complete record of all papers in this research area, but instead focuses on selected papers that emphasise recent advances or define new trends in the field. Section 2 describes the main Raman spectroscopy techniques, including methods for spectral imaging of cells and tissue. Section 3 presents diagnostics examples of tissue samples, in-vivo and ex-vivo imaging, in-vivo diagnosis based on hand-held fibre probes and SORS. Section 4 focuses on Raman spectroscopy assays for biofluid analysis, including blood, saliva, urine and tear samples.

2. Raman spectroscopy techniques

2.1. Raman micro-spectroscopy

The use of excitation lasers with wavelengths in the visible and near-infrared regions permits efficient coupling of Raman spectrometers with optical microscopes [1]. Such Raman micro-spectrometers allow mapping of the molecular properties of the samples with diffraction-limited spatial resolution (300–500 nm). The most common method for obtaining Raman spectral images is by raster-scanning the sample through the laser spot (or scanning the laser spot across the sample) and then applying a uni- or multivariate spectral model to each Raman spectrum. Raman spectral imaging based on line-mapping [2] (i.e. laser beam expanded to form a line spot on the sample surface) can considerably decrease the imaging time compared to single-point raster-scanning, up to a factor equal to the number of simultaneously-measured sampling points, provided the laser power used for single-point mapping can be maintained over the whole laser line. Recent studies have demonstrated that an increase of a factor of 10 can realistically be achieved for imaging tissue samples, compared to point-by-point scanning [3]. More recently, multifocal Raman micro-spectrometers based on diffractive optical elements [4] or spatial light modulators [5] have been proposed for simultaneous read-out of multiple Raman spectra. Shuttering systems using different masks or arrays of optical fibres were used to couple the microscope to the Raman spectrometer by matching the pattern of the laser beams on the sample to the fibre/slit pattern. If only uni-variate Raman models are used, the speed of Raman spectral imaging can be significantly increased by wide-field Raman microscopy: the laser is expanded to illuminate the entire area of the sample and the scattered Raman light corresponded to selected wavenumbers are imaged on a CCD [6]. This approach may be difficult in applications where variations in the baseline of Raman spectra may often obscure the small differences in the Raman bands used for discrimination in the diagnostic model.

2.2. Selective-sampling Raman micro-spectroscopy

In many medical applications, for example the assessment of resection margins during cancer surgery, it is desirable to obtain high-resolution Raman spectral images for large samples (e.g. 1–5 cm). In such cases, the techniques based on raster-scanning are often not suitable because of the long data acquisition time required for recording the datasets of Raman spectra. For example, achieving
Raman spectral images for a 1 cm × 1 cm tissue sample at a spatial resolution of ~20 μm, requires typically acquisition times of one day (~5 h per 1 mm²) [7–9]. In selective sampling, information regarding the spatial features of the sample, either measured by an alternative optical technique [7,10] or estimated in real-time from the Raman spectra [11,12], can be used to reduce the number of Raman spectra by more than two orders of magnitude.

The first approach developed by Rowlands et al. [13] estimated the main features of the sample in real-time; the next sampling point for Raman spectroscopy is selected as the location with the maximum absolute difference between two interpolating surfaces for the already measured Raman spectra. In regions of the sample with few spatial features, the two interpolants should converge on the same result. However, in the regions with a higher level of spectral variation, the difference between the two interpolants provides an indication of the optimal point to measure next. In this way, the algorithm samples regions of uncertainty with high resolution, at the expense of regions containing relatively few spatial features. The feasibility of using this selective sampling method for imaging cells and tissues has been demonstrated [10–12]. A different approach for determining the optimal positions of the sampling points for Raman spectroscopy is to use a much faster alternative imaging technique that has high sensitivity to the features of interest but not necessarily high specificity; these features of interest are then used to generate and prioritise the sampling points for Raman spectroscopy [7]. The key advantages of this approach are: i) reduced number of Raman spectra, hence fast data acquisition and processing and ii) the spatial-resolution is not compromised by the reduced number of Raman spectra because resolution is determined by the alternative optical technique used to establish the spatial features of the sample (e.g. confocal fluorescence microscopy [6]).

2.3. Coherent anti-Stokes Raman spectroscopy (CARS) and stimulated Raman spectroscopy (SRS)

Spontaneous Raman scattering, which relies on a single excitation laser beam, is an incoherent phenomenon because the molecular vibrations in a sample are not correlated. Coherent Raman spectroscopy techniques rely on non-linear effects to increase the speed and spatial resolution of Raman spectroscopy by inducing coherent molecular vibrations in the sample. Coherent anti-Stokes Raman spectroscopy (CARS) uses a “pump” laser (frequency νp) and a “Stokes” laser (frequency νS) to drive coherent vibrations of the molecules at selected frequencies (frequency νvb). Typically, one laser frequency is fixed at νS and the other is tuned to νp to excite the molecular vibrational mode of interest at a frequency νvb = νp − νS. In this process, three photons are absorbed, two “pump” photons and one “Stokes” photon, and the signal corresponding to “anti-Stokes” photons of frequency νAS = 2νp − νS is detected to create the CARS images. CARS has been mostly used to image cells and tissues by exciting the CH stretching vibrations (2600–3000 cm⁻¹) in lipids and proteins [14]. Recently, broadband CARS techniques, in which multiple Raman transitions are probed simultaneously, have been extended in the fingerprint region to allow imaging of biological tissues with improved molecular contrast [15].

Stimulated Raman scattering (SRS) is based on only one “pump” and one “Stokes” photons. When the difference between the frequencies of the “pump” and “Stokes” photons matches the frequency of a molecular vibrational mode νvb = νp − νS, stimulated excitation of vibrational transitions occurs. In this case the “Stokes” beam experiences stimulated Raman gain while the pump beam experiences stimulated Raman loss. High-frequency modulation of either “Stokes” or “pump” beams can be used to detect the small beam intensity changes and generate high-speed images at selected vibrational frequencies. Compared to CARS, SRS is free of non-resonant background and high-speed images of cells and tissues have been reported [16]. Both CARS and SRS microscopy are based on non-linear optical effects, therefore the spatial-resolution of these techniques is superior to spontaneous Raman microscopy.

2.4. Surface enhanced Raman spectroscopy (SERS)

An alternative method to enhance the weak signals in spontaneous Raman spectroscopy is to use metallic nanostructures capable to provide surface enhanced Raman scattering [17]. When the molecules of interest are adsorbed or located in the vicinity of such a nanostructure, enhancement of the Raman scattering occurs due to the resonant interaction of light with the surface plasmons excited at the surface of the structure (electromagnetic enhancement) [18,19]. This resonant interaction creates an enhanced electric field (10−100) localized to a region of only few nanometres from the surface. This increase in the localised electric field subsequently can lead to a ~10⁵–10⁶ fold enhancement for the Raman bands for molecules located in the vicinity of the surface. An additional enhancement, chemical enhancement, can also be observed for molecules adsorbed at the surface of the nanostructure due to electronic interactions between the molecule and surface. Physico- or chemisorption perturbs the polarisability tensors of the molecules, leading to changes in the intensity of Raman bands [20]. In addition, resonant Raman scattering effects can be observed due to excitation into a charge-transfer transition [21]. Another strategy in SERS diagnostics is the use of tailored nanoparticles as markers conjugated with specific antibodies. The corresponding antibodies are labelled by SERS-active nanoparticles, comprising of metallic nanoparticles with chemisorbed Raman reporter molecules. The feasibility of this approach for tissue diagnostics has been demonstrated [22].

2.5. Spatially offset Raman spectroscopy (SORS) and transmission Raman spectroscopy (TRS)

Traditional Raman spectroscopy, when illuminating and collecting light from the same area, in tissues usually has a maximum penetration depth of a few hundred microns, thus, restricting analysis to the surface or near-surface area of samples. The development of spatially offset Raman spectroscopy (SORS) has enabled spectral measurements from volumes as deep as 10–20 mm into the sample. SORS involves collecting the scattered light away from the point of laser illumination [23,24]. With increasing spatial offset of the collection and the illumination points, measurements deeper in tissue are possible. Clinical applications of deep Raman techniques may include applications in urology, bone and breast disease [25–27].

Transmission Raman spectroscopy (TRS) is an extreme form of SORS, whereby the collection and illumination points are on opposite sides of the sample [28]. This approach is ideally suited for bulk analysis of opaque/turbid materials and has been shown to be feasible through a many millimetres of tissues. Despite the sample being opaque, light from the laser can pass through the sample via light scattering processes and many of these photons contain Raman information, and thus transmission Raman spectroscopy is feasible. Applications to breast cancer diagnosis have been investigated [29].

The combination of the powerful techniques of SERS and SORS has led to the development of the novel approach of surface enhanced spatially offset Raman spectroscopy (SESORS). To date it has been demonstrated that the presence and location of up to 4 labelled nanoparticles can be measured through tissue thicknesses of between 20 and 50 mm [30,31]. Bisphosphonate-bone functionalization [32] and glucose sensing [33] have also been demonstrated.

2.6. Fibre-optic Raman probes

Raman spectroscopy is suitable for use with fibre-optic probes, making it potentially ideal as a medical diagnostic tool for assessment of hollow organs. Fibre-optic probes designed for in vivo use must
overcome signal-to-noise ratio challenges, and face the major problem of Raman signals and photoluminescence generated in the laser delivery fibres themselves. For certain applications, all this must be achieved with a probe of very small size to enable access to body cavities, and in a sufficiently short time to allow accurate measurement from a moving target organ [24–27]. Furthermore, spectral sampling volumes can be critical for accurate identification of early disease in certain conditions such as dysplasia, when probing for early disease close to the surface of an organ [26,27]. Further miniaturisation can allow measurement of Raman signals through needles (see Fig. 1) and thus allow access to solid organs such as lymph nodes, prostate and breast [34–38].

To avoid the intense background signal generated in the fused-silica fibres in the fingerprint region (600–1800 cm\(^{-1}\)), some fibre-optic Raman probes have been developed to work in the high-wavenumber region (2400–3800 cm\(^{-1}\)) [29]. These probes can use a single fibre for guiding laser light to the sample and for collecting the Raman scattered light. This configuration has been demonstrated to provide high-quality high-wavenumber Raman spectra of tissue with almost no Raman background signal from the fibre [39]. An alternative method has been explored for filtering the elastically scattered laser line from the collection fibres and thus minimising the induction of background signal from fibres. This uses in-line fibre Bragg gratings (FBG) to reject/reflect the laser light in the collection path. A Raman probe was built consisting of one excitation fibre and six multicore single-mode fibres (19 cores) with inscribed FBGs as collection fibres [40].

3. In-vivo and in-vitro Raman diagnostics based on tissue analysis

3.1. Brain cancer

Around 45% of brain tumours are gliomas, which are currently diagnosed by a combination of CT scanning, magnetic resonance imaging and electroencephalogram, followed by surgical excision for definitive identification of pathology. Because often neoplastic tissue cannot be distinguished from healthy tissue during the surgery, one of the key challenges in brain tumour surgery is to delineate normal tissue from tumour in order to avoid neurologic deficit associated with damaging functional cerebral structures. On the other hand, incomplete removal of the tumour increases the risk of tumour recurrence.

Early work by Koljenovic et al. showed that fibre-optic Raman probes based on the high-wavenumber spectral region (2400–3800 cm\(^{-1}\)) can be used to characterise porcine brain tissue ex-vivo [41]. The measurement of the high-wavenumber spectral region avoids the background Raman scattering from silica fibres while still providing high-chemical specificity and diagnostic power [39,42]. The authors developed multivariate classification model (least-squares fitting) that allowed discrimination of brain structures based on the biochemical contrast. The Raman spectra of grey matter was characterised by high intensity bands associated with proteins, DNA, and phosphatidylcholine compared with white matter, while the spectra of white matter was dominated by spectral features corresponding to cholesterol, sphingomyelin, and galactocerebroside.

The potential of using a fibre-optic Raman probe for in-vivo diagnostics of brain tumours was investigated by Kirsch et al. [43]. Raman spectral maps over areas 3.6 × 3.2 mm\(^2\) allowed label-free diagnosis of induced metastatic brain tumours in mice with accuracy of ~250 μm [43]. Krafft et al. used Raman spectroscopy in the fingerprint region (600–1800 cm\(^{-1}\)) to investigate primary brain cell density [44]. For high-grade gliomas, the Raman spectra had higher contribution from nuclei acid compared to normal tissue. The authors also demonstrated the ability to create Raman spectral images by raster-scanning, which were in good correlation with the images obtained by H&E staining [45]. Spectral images of brain tissue with higher-spatial resolution have been reported using coherent Raman micro-spectroscopy techniques. CARS imaging tuned to probe C–H molecular vibrations was used to analyse human tumours (glioblastoma, brain metastases of melanoma and breast cancer) induced in an orthotopic mouse model [46]. As all brain tumours have significantly lower lipid content compared to the normal parenchyma, CARS images can clearly delineate the tumour borders and infiltrations. Ji et al. developed a technique based on SRS for real-time imaging guidance for brain tumour surgery [47]. SRS images obtained at 2930 and 2845 cm\(^{-1}\), bands corresponding to lipids and proteins, allowed differentiation of tumour from nonneoplastic tissue in an infiltrative human glioblastoma xenograph mouse model (correlation between SRS and H&E images for glia infiltration was \(k = 0.98\)). The technique was also used in-vivo during surgery on mice to image tumour margins that were undetectable under standard operative conditions (Fig. 2).

Medyukhina et al. have reported new algorithms for automated calculation of quantitative values (such as cell density, nucleus-to-cytoplasm ratio, average nuclear size) that can be used for objective diagnostic of brain tumours based on non-linear Raman microscopy [48]. Using co-registered two-photon excited fluorescence (TPEF) and CARS images of human brain tumour samples, the grayscale information was used to detect the location of the cell nuclei while the gradient information allowed delineation of the nuclear and cellular boundaries.

3.2. Breast cancer

Breast cancer is the second most common cancer and the most common cause of death from cancer among women [50]. In Europe, more than ~450,000 new patients are diagnosed each year. Treatment depends on the type, stage and grade of the breast cancer [50]. Early detection of tumours through X-ray mammography screening has led to a significant increase in survival rates, as well as more conservative treatments and improved cosmetic outcomes. Nevertheless, mammography has a high-rate of false-positives and further biopsy diagnosis by histopathology is required (70–90% of biopsies are found to be for benign lesion) [51]. Therefore, new alternative techniques for in-vivo diagnosis are required.

Early work by Haka et al. showed that Raman spectroscopy can discriminate between breast malignancies and healthy breast tissue [52]. Kneipp et al. used multivariate spectral analysis to discriminate between normal duct epithelia and epithelium-derived breast tumours [53]. More recently, Kong et al. used Raman micro-spectroscopy to compare spectra obtained from ductal carcinoma (DC), surrounding inflammatory stroma and tissue areas containing other components of healthy breast tissue (lobules, ducts, stroma, fat) [10]. The authors showed that the Raman spectra of DC have more intense spectral bands assigned to nucleic acids (788 cm\(^{-1}\), 1098 cm\(^{-1}\)) compared to other tissue structures. The Raman spectra of tumour-surrounding inflammatory stroma had lower intensity bands corresponding to collagen and higher intensity bands assigned to nucleic acids compared to the Raman spectra of normal stroma.
Stone et al. investigated the potential for in-vivo diagnosis using TRS [54]. The main aim of the study was to measure the composition of breast calcifications and provide diagnosis for the lesions containing them — calcium oxalate is found only in benign lesions and calcium hydroxyapatite found in proliferative lesions, which include benign and malignant lesions. These preliminary studies carried out on breast phantoms showed the potential to identify calcium hydroxyapatite and calcium oxalate monohydrate from depths of up to 2–3 cm (Fig. 3). The approach of using in-vivo TRS to link the composition of breast calcification with the pathology would improve the efficiency of breast cancer screening and avoid unnecessary biopsies. A parallel study on 235 calcifications from 110 patients demonstrated the significant negative correlation between carbonate concentration and advancing malignant pathology grade [55]. TRS has been shown to provide a prediction of carbonate concentration in calcium hydroxyapatite from measuring the phosphate 960 cm$^{-1}$ peak alone [56].

Raman spectroscopy has also been proposed for detection of tumour margins during breast cancer surgery, both in-vivo and ex-vivo. A handheld Raman probe was developed for in-vivo collection of single-point Raman spectra during surgery [57]. The authors measured 30 Raman spectra from nine patients: 29 from margins subsequently found to be negative on pathology examination (21 were composed of normal breast tissue whereas 8 contained fibrocystic change) and 1 spectrum from a margin subsequently found to be positive on pathology examination (high-grade ductal carcinoma in-situ). Although only one malignant sample was included, this study showed the potential for in-vivo detection of tumour margins during surgery. Alternatively, confirming negative resection margins can be achieved by analysing the surface of the resection specimen ex-vivo. To avoid sampling errors due to single point measurements, CARS has been used to provide molecular images of breast tissue and identify the tumour margins and differentiate its subtypes [58]. The authors were able to image ex-vivo human normal breast tissue, benign proliferative, as well as in-situ and invasive carcinomas. By analysing the morphological features (geometry and distribution of cancer cell nuclei) in the CARS images (typically 120 μm × 120 μm), cancerous lesions were separated from normal tissue and benign proliferative lesion: 80% of intermediate-grade invasive ductal carcinoma (IDC) and 85% of high-grade IDC were correctly distinguished [58]. A recent study based on selective-sampling Raman microscopy using integrated auto-fluorescence imaging and Raman spectroscopy demonstrated the feasibility to detect mammary carcinomas ex-vivo within time-scales compatible with intra-operative use for breast conserving [10]. In this technique, Raman spectra in the fingerprint region (600–1800 cm$^{-1}$) were collected at the locations indicated by the auto-fluorescence images. Objective diagnosis of mammary ductal carcinoma was achieved with only 250–550 Raman spectra for 5 mm × 5 mm tissue specimens (equivalent to ~15 min) [10].

In addition to the assessment of resection margins, the feasibility of using Raman spectroscopy for intra-operative assessment of sentinel axillary lymph nodes during breast cancer surgery has also been explored [59]. Horsnell et al. demonstrated the ability to discriminate normal and metastatic lymph nodes using multivariate classification models, achieving 85–92% sensitivity and 88–100% specificity in a leave-one-out cross-validation [60].
3.3. Lung cancer

Lung cancer is the second most common cancer in humans and, despite advances in surgical, radiotherapeutic, and chemotherapeutic treatments, long-term survival rate remains low (5% at 10 years for non-small cell lung cancers) [61]. One of the main reasons for the low survival-rates is that ~75% of patients have late-stage disease, when effective treatment is unlikely to succeed. The feasibility of screening for high-risk populations is currently debated in Europe and the USA [62].

One of the major challenges for the CT screening programmes is related to the high-rate of false positives, which highlights the need for improved diagnostic techniques.

An early study conducted by Huang et al. [63] used Raman spectroscopy to distinguish tumour from normal bronchial tissue specimens, squamous cell carcinoma and adenocarcinoma. The Raman spectra of malignant tumour tissue was characterised by higher intensity bands corresponding to nucleic acids, tryptophan and phenylalanine and lower signals for phospholipids, proline and valine, compared to normal tissue. The authors found that the ratio of the Raman band intensity at 1445 cm$^{-1}$ and 1655 cm$^{-1}$ had high discrimination power between normal and tumour tissues.

Raman spectroscopy has also been used to predict the prognosis of non-small cell lung cancer patients by analysing surgically resected tissue sections [64]. Raman microscopy based on raster-scanning and multivariate statistical analysis was able to predict early postoperative cancer recurrence with a sensitivity of 73% and specificity of 74%. The analysis of the Raman spectra indicated that high porphyrin levels in normal samples and intense bands corresponding to DNA in the tumour samples allowed discrimination between normal and tumour tissue. The use of CARS to provide differential diagnosis of lung-carcinoma (adenocarcinoma, small cell carcinoma and squamous cell carcinoma) was also investigated [65]. CARS images corresponding to the CH2 vibrational mode (2845 cm$^{-1}$) were analysed using pattern recognition algorithms and indicated significant morphological differences between normal tissue and tumour regions: cancer regions showed higher density of cells compared to normal regions, and the size and configuration of the cells corresponded with defined parameters [66].

The feasibility of increasing the diagnosis specificity for pre-neoplastic lesions in-vivo was investigated by integrating Raman spectroscopy measurements to a bronchoscope based on white light and auto-fluorescence [67]. White light and auto-fluorescence images allowed identification of suspicious lesions, areas from which Raman spectra were measured with acquisition times of 1 s. The authors showed that sensitivity of 96% and a specificity of 91% for discrimination of pre-neoplastic lesions (leave-one-out cross validations) by developing multivariate statistical models.

3.4. Skin cancer

Skin cancer is the most common type of cancer in humans. In the UK and USA more than 100,000 and 1,000,000 cases, respectively, are diagnosed annually [68,69]. Given the easy optical access to skin, numerous studies have investigating the use of Raman spectroscopy for in-vivo diagnosis of skin cancers. Preliminary work by Lieber et al. using a fibre-optic Raman probe indicated high-diagnosis accuracy for non-melanoma skin cancers: 100% sensitivity and 91% specificity for discriminating tumours from normal skin [70]. More recently, Liu et al. developed a hand-help Raman probe that allowed real-time (less than 1 s) in-vivo diagnostic [71]. Using this probe in a study on more than 1000 cases of skin cancers and other skin diseases, the authors showed...
that it is possible to distinguish malignant and premalignant from benign lesions, melanomas from benign pigmented skin lesions, and melanomas from seborrhoeic keratoses, with sensitivities between 95% and 99% [59]. Nevertheless, the specificity of these models was low, ranging between 15% and 54%, when discriminating malignant melanoma from non-melanoma pigmented lesions and seborrhoeic keratosis [71].

For high-risk BCCs, Mohs micrographic surgery (MMS) is the best treatment option. In this technique sequential layers of skin tissue are excised and the entire resection margin is assessed intra-operatively by frozen-section histopathology. This procedure ensures complete removal of tumour cells, while sparing as much healthy tissue as possible. The 5-year recurrence rate for BCC treated by MMS is 1.4–2.5%, significantly lower than 3.2–10% for standard excision [72]. Nevertheless, the high costs associated with intra-operative assessment of tissue resections by frozen section histopathology have limited the widespread implementation of MMS. Early studies by Nijssen et al. showed that BCC can be discriminated from normal tissue based on a higher intensity of Raman bands associated with nucleic acids [73]. A two-step classification model achieving 100% sensitivity and 93% specificity (leave-one-out cross-validation) was developed to diagnose BCC based on Raman spectra obtained by raster-scanning over areas of 0.005–0.4 mm² [73]. Laraona-Puy et al. reported a classification model based on selected Raman bands characteristic to nucleic acids and proteins that allows discrimination of BCC from normal tissue with 90 ± 9% sensitivity and 85 ± 9% specificity [8]. This multivariate classification model was then applied to tissue sections from new patients and obtained objective diagnosis images that agreed with histopathology. To increase the speed of diagnosis, a multimodal approach based on CARS, second-harmonic generation (SHG) and two-photon excited fluorescence (TPEF) has been recently developed elsewhere [74]. The application of CARS/TPEF/SHG multimodal microscopy allows for a characterisation of the architecture and biochemical composition, i.e., the morphochemistry of frozen section biopsy specimens. In doing so a rapid discrimination between healthy and dysplastic/tumourous tissue comparable with the gold-standard histopathology can be obtained [74,75]. Algorithms were developed to facilitate handling and interpretation of the multimodal spectra obtained by raster-scanning over areas of 0.005–0.4 mm² [73].

In response to the twin stimuli of the need for improved surveillance and targeted endotherapies, a number of emerging technologies are being developed with the aim of improving the identification of Barrett’s oesophagus and associated neoplasia. The ability of Raman spectroscopy to discriminate between 8 pathological groups from normal squamous through to cancer has been demonstrated. A biopsy targeting model, differentiating normal vs. Barrett’s vs. dysplasia/adenocarcinoma, achieved a high level of agreement with consensus pathological opinion [77]. Much work in the oesophagus has been aimed at the development of a fibre-optic Raman probe for in vivo use, designed to be compatible with medical endoscopes. Initial work in rat models in-vitro showed potential for in vivo applications [78]. Safety and feasibility of using Raman probes in the oesophagus were shown using an Enviva Visionex probe. 400 spectra in 20 patients were measured using 5 second acquisition times, although discrimination of pathology was poor [79] due to large sampling depths. This was followed up with a custom-built probe which was used to discriminate Barrett’s, low-grade dysplasia (LGD) and high-grade dysplasia...
In vivo diagnosis of oesophageal cancer with Raman fibre-optic probes has been reported with sensitivity 91% and specificity 94%, although subtypes of cancer or degrees of dysplastic change were not differentiated. This study measured 263 oesophageal Raman spectra from 80 patients (33 with cancer) with relatively fast acquisition times of 0.4–0.5 s [81,82]. Accurate recognition of pathology subtypes using spectra acquired in 1 s using a Raman probe, giving sensitivities and specificities for normal squamous of 87% and 96% respectively, Barrett’s/LGD 72% and 91%, HGD/adenocarcinoma 86% and 88%. Using a 2 group model with spectra acquired over 5 s the detection rate of HGD/adenocarcinoma remained 86%, but the specificity was greatly improved at 98% [83].

Raman spectral mapping of oesophageal tissue micro-sections has been used to characterise the biochemical changes underlying the spectral differences. Pseudo–colour principal component score maps were used identify altered cellular constituents associated with malignancy. Dysplastic glandular tissue showed higher levels of DNA, actin and oleic acid, whereas normal squamous tissue had a higher glycoprotein content [84]. Rapid mapping of tissue sections using Raman spectroscopy has the potential to be used as an automated histopathology tool. Hutchings et al. showed that mapping could be performed in clinically applicable timescales e.g. 2 mm diameter sections over 30–90 min, and that this was sufficient to discriminate pathology [3,85].

3.6. Prostate cancer

Prostate cancer is one of the most cancer types in men, accounting for approximately a quarter of all new cancer cases. Crow et al. were the first to describe the use of Raman spectroscopy in prostatic disorders [86]. Raman spectra obtained from the prostate suggested that the variations in the glycoprotein and nucleic acid content between benign prostatic hyperplasia (BPH) and adenocarcinoma [86]. As Raman spectroscopy examines tissue at the molecular level, it has the potential to provide additional prognostic information in early prostate cancer. Raman spectroscopy can be used in determining the biochemical basis for the different pathologies within the prostate gland [87]. Further, the authors suggested that the potential in-vivo applications of the technique could be for guiding prostate biopsy procedures and the intra-operative assessment of tumour resection margins during radical prostatectomy. In vitro, Raman spectroscopy can be used to accurately identify BPH and three different grades of prostatic adenocarcinoma. The prostate algorithm was able to differentiate benign samples (benign prostatic hyperplasia and prostatitis) from prostate cancer, with an overall accuracy of 86%. As Raman probes are suitable for use during endoscopic, laparoscopic, or open procedures, this work paves the way for in vivo studies [88].

Raman spectra were measured from two well–differentiated, androgen-sensitive cell lines and two poorly differentiated, androgen-insensitive cell lines to differentiate between carcinoma prostate cell lines of varying degrees of biological aggressiveness. Crow et al. were able to identify the individual cell lines with an overall sensitivity of 98% and a specificity of 99% and demonstrated promising results of Raman spectroscopy in the diagnosis and grading of carcinoma of the prostate [89]. Grubisha et al. demonstrated the low-level and simultaneous determination of many complexed forms of prostate specific antigen (PSA) using surface-enhanced Raman scattering (SERS) [90].

A recent review summarises clinical applications of the various Raman technologies available for prostate cancer diagnosis [91].

3.7. Colorectal cancer

Early identification and eradication of tumours is critical for improving the treatment outcome for patients with colorectal cancer. Although screening by colonoscopy has significantly increased the survival rates for patients, this technique has low specificity for discrimination of adenoma and early adenocarcinomas from benign hyperplastic polyps in-vivo. Other reviews have detailed the application of optical techniques to colon cancer [92,93]. Initial studies using near-infrared Raman spectroscopy investigated in vitro differentiation of normal mucosa, metaplastic and adenomatous polyps and adenocarcinomas, achieving sensitivities and specificities greater than 90% when compared with conventional histopathology [38,79]. In the first in-vivo study using ‘Visionex’ Enviva fibre-optic Raman probes, the probe passed down the accessory channel of a conventional colonoscope showed the ability to differentiate between normal colon and hyperplastic and adenomatous polyps with a sensitivity of 100%, specificity of 89% and overall accuracy of 95% with spectra measured from 19 regions of 9 polyps in 3 patients [94]. Elsewhere, an in-house developed Raman probe for ex-vivo measurements on 105 colon specimens from either biopsies or partial colectomies (41 normal specimens, 18 hyperplastic polyps and 46 adenocarcinomas) from 59 patients. Diagnostic accuracy was in excess of 98%. This study did not include adenomas, which are an intermediate pathological group in the stepwise progression from normal tissue to adenocarcinomas. With acquisition times of 5 s, the authors developed diagnostic algorithms that identified normal tissue with 98.8–99.8% sensitivity 100% specificity, hyperplastic polyps with 100% sensitivity and 100% specificity, and cancerous tissue with 100% sensitivity and 98.1–99.7% specificity [95].

A confocal endoscopic two–fibre-optic probe [35] was utilised on ex-vivo colonic tissues to evaluate its potential in vivo performance. Biopsies were collected and snap frozen, then measured with the probe applied to the epithelial surface once defrosted. A miniature Raman-endoscope system was used to measure spectra sequentially over a period of several weeks to monitor tumour progression in 4 mice with recognisable tumour lesions. Molecular changes in the tumour as it progressed, such as altered collagen type I and lipid content were measured and they were able to classify 86.8% of samples correctly as tumour versus normal tissue, when compared to histopathology [96].

Recent work by Short et al. has examined the possible use of high frequency Raman spectroscopy in the colon, measuring wavenumbers in the range 2050 to 3100 cm−1 [97]. Although discriminatory peaks were mostly detected at lower wavenumbers, measuring in this higher range reduces the effects of tissue auto-fluorescence and emissions in the fibre-optic probe itself. This means that cheaper probes can be produced without the need to filter the light within the probe. This small study in ex vivo fresh tissue samples has shown that discrimination of pathology subtypes is possible using these higher wavenumbers with 1 second acquisition times.

Raman spectroscopy has also been investigated as a potential adjunct to histopathology, with the ultimate aim of either automated sample analysis, or digital staining of a tissue section to assist pathologist analysis. Rapid Raman mapping of snap-frozen tissue sections used in conjunction with chemometric analytical techniques to interpret spectral information, and demonstrated the ability to identify many subtle histological features of colorectal polyps. This technique thus has the potential to reveal more biochemical information about a tissue sample than standard chemical staining [98].

3.8. Bone disease

Many bone diseases arise because of subtle changes in the bone protein chemistry but these are invisible to conventional techniques like X-rays. Raman spectroscopy is potentially able to detect these subtle molecular changes and its potential to enhance the diagnosis of osteoarthritis (OA), brittle bone disease and fragility fractures has been investigated. Frequency shifts serve as an important source of contrast in assessing tissue composition such as carbonate substitutions for phosphate positions in bone. The extracellular matrix also provides another source of contrast to bone tissue composition. The extracellular matrix contains many protein-rich vibrational modes, corresponding
predominantly to collagen features such as amide backbone, protein secondary structure, and side chain composition.

Early studies compared the Raman spectral features of bone with those of their major components, such as hydroxy and carbonated apatite [99]. Raman spectroscopy has been used to evaluate alterations to bone composition associated with ageing, disease, or injury to aid in the diagnosis and prediction of fragility fractures [100]. OA is a common debilitating disease that results in degeneration of cartilage and bone in the synovial joints. Raman spectroscopy has shown that subtle changes in the molecular structure of the subchondral bone matrix, or inherent differences, exist in both the medial and lateral (beneath intact cartilage) compartments of OA knees [101].

SORS enables the chemistry of bone tissue to be safely determined several millimetres beneath the skin [102]. In-vivo SORS measurements have been carried out investigating the potential for the detection of OA [103]. Improvements in the quality of in vivo Raman spectra can be obtained using the inverse SORS approach [26], as greater laser powers can be applied for the same total laser intensity.

4. Biofluid diagnostic assays based on Raman spectroscopy

The analysis of biofluids, such as blood and urine, can enable powerful minimally invasive diagnostics for many diseases [104]. Biofluid assays have several key advantages (accessibility, require less invasive procedure, allow repeated sampling) and biofluid diagnostic can be implemented in a variety of healthcare scenarios, from being part of routine health checks to intra-operative monitoring of blood or therapeutic agents.

Bodily fluids can contain numerous biomolecules of diagnostic interest, although not always of sufficient concentration to be measured in solution with Raman spectroscopy. One highly affective approach to pre-concentrate the proteins found in the fluids is drop coated deposition Raman spectroscopy (DCDRS) (Fig. 5). This has been shown to provide an accurate measure of the concentration of protein mixtures in solutions even when pre-concentrated [105]. The use of DCDRS has been demonstrated in human tears indicating promise for measurement of both local and systemic disease biomarkers [106,107].

Fig. 5. Four human tear samples drop dried on calcium fluoride substrates and measured with 830 nm Raman microscopy. Top row white light images, subsequent rows are PC score maps and associated loadings (far right). All images are displayed on the same scale [106]. Reprinted with permission from Science Direct.
4.1. Diabetes and glucose level monitoring

For diabetes patients, the blood glucose levels must be monitored on a regular basis, in some cases as often as four or five times a day. Nevertheless, the current devices used for measuring blood glucose level rely on invasive procedures to produce a blood sample for analysis (e.g. requiring pricking), which are painful and inconvenient for patients.

Raman spectroscopy has been used to measure the concentrations of chemicals in blood serum (glucose, urea, proteins, cholesterol, triglycerides, etc.), with results in good correlation with reference values [108, 109]. Studies carried out on mouse blood samples showed that the Raman band characteristic to glucose at 1125 cm$^{-1}$ can be used to measure the concentration of glucose in the blood [109]. In vivo measurements performed transcutaneously (blood vessel in the mouse ear) showed a linear correlation coefficient of 0.91 between the glucose concentration recorded by Raman spectroscopy and reference values obtained by a blood glucose meter. To increase the sensitivity required for rapid glucose detection at the physiological concentrations’ clinically relevant range (0.56–25 mM), enhancement of the Raman signals by SERS has been proposed [110]. SERS substrates based on functionalized silver coated self-assembled polystyrene nanospheres were used to measure in vitro glucose levels within the physiological range with a root mean squared error of prediction of 4.62 mM [111]. Similar SERS substrates were implanted in mice and the feasibility of in vivo monitoring glucose levels by transcutaneous SESORS measurements was demonstrated [112].

A recent study employed Raman spectroscopy for diagnostic of type II diabetes by detecting molecular changes in the membranes of erythrocytes [113]. The membrane of red blood cells in patients with type II diabetes is continuously exposed to high blood glucose levels, leading to damage in structural components. Correlation between membrane damage and glucose levels has been established by high-performance liquid chromatography and thin-layer chromatography, but these techniques require laborious procedures [114]. Raman spectroscopy measurements in the high-wave number region showed that lipid damages (decreased liquidity, altered phospholipid organisation) in diabetic erythrocytes and multivariate statistical method achieved a diagnostic accuracy of 98.8% for differentiating diabetic versus normal erythrocytes.

4.2. Cancer diagnostics

Detection of genetic and epigenetic materials originating from tumour or circulating tumour cells in body fluids represents an attractive alternative for faster and non-invasive detection of early cancers.

The feasibility of analysing urine samples by Raman spectroscopy aimed at detection of prostate cancer cells was first investigated by Harvey et al. [115]. Integrated Raman microscopy and optical tweezers was used to discriminate between malignant cells and bladder cells, given the likelihood that both cell types will be present in urine samples. The Raman spectra of the two cell types suggested a higher concentration of nucleic acids and proteins in the bladder cells compared to the prostate cancer cells. Further work included androgen sensitive CaP cell-line LNCaP, primary benign prostate hyperplasia cells and primary urethral cells [116]. Multivariate classification models based on principal component-linear discriminate analysis indicated sensitivities and specificities of ~93% and 98% respectively, using a validation test based on blind comparison.

A proof-of-concept study was reported by Taleb et al. [117] that used Raman spectroscopy to analyse blood serum to discriminate cirrhotic patients with and without hepatocellular carcinoma. Hepatocellular carcinoma represents ~90% of primary liver cancers and is the third most common cancer death worldwide. Rapid and easy-to-use diagnostic tools are required to allow detection of tumours at early stages when patients are eligible for curative treatments. Multivariate spectral analysis models were developed achieving an overall rate of accuracy of ~86–91%. Similar proof-of-principle studies based on blood serum analysis by Raman spectroscopy have also been carried out for early diagnostic of breast [118] and head-and-neck cancers [119].

Raman spectroscopy has been extensively used for analysis of white blood cells as a potential diagnostic tool for lymphomas and leukaemia. Early work by Chan et al. showed that single-cell Raman microscopy was able to discriminate between normal human lymphocytes and transformed Jurkat and Raji lymphocyte cell lines based on highly reproducible biomolecular fingerprints [120]. The neoplastic cells were found to have lower DNA bands (785 cm$^{-1}$, 1098 cm$^{-1}$) but stronger band characteristic to proteins (1126 cm$^{-1}$, 1447 cm$^{-1}$) compared to normal lymphocytes. Multivariate statistical models based on Raman spectra achieved a sensitivity of 98.3% for cancer detection, with 97.2% of the cells being correctly classified as belonging to the normal or transformed type. The same research group found similar high diagnostic accuracy for normal T and B lymphocytes from healthy individuals and cells from leukaemia patients, based on Raman spectra of individual cells [121].

Apart from confocal Raman microscopy, SERS has also been proposed for phenotypic identification of white blood cells aimed at developing diagnostic tools for haematological malignancies [122]. Antibody-targeted, PEG-coated gold nanoparticles were used simultaneously to label three cell surface markers of interest on malignant B cells from the LY10 lymphoma cell line. The authors demonstrated the high specificity of these SERS particles on primary chronic lymphocytic leukaemia and LY10 cells.

Non-invasive prostate cancer screening methods using serum surface-enhanced Raman scattering (SERS) have been carried out using serum samples from 93 prostate cancer patients and 68 healthy volunteers by silver nanoparticles. Three types of kernel functions including linear, polynomial, and Gaussian radial basis function (RBF) were employed to build support vector machine (SVM) diagnostic models for classifying measured SERS spectra. The study showed that for the RBF kernel SVM diagnostic model achieved a diagnostic accuracy of 98.1%, demonstrating that label-free serum SERS analysis technique is a promising tool for non-invasive prostate cancer screening [123].

The feasibility of detecting circulating tumour cells in the blood by Raman spectroscopy has been recently investigated using integrated Raman spectroscopy and optical tweezers based on microfluidic chips. These integrated instruments allowed measurements of Raman spectra of individual blood cells and were able to detect spectral features characteristic to tumour cells [124,125]. The performance of this system was tested for a tumour cell model that consisted of leucocytes extracted from blood, breast cancer cells BT-20 and MCF-7 and leukaemia cells OCI-AML3. A multivariate spectral model was developed that allowed classification of the cells with sensitivities between 97 and 100% (determined by iterated 10-fold cross-validation) [124].

4.3. Asthma

Assignment of asthma patients to a correct category (mild, moderate, severe or very severe) is important to allow the selection of an optimal treatment. An assay based on Raman spectroscopy analysis of blood serum was proposed for diagnosing asthma and monitoring treatment response [126]. The assay was carried out on serum samples from 44 asthma patients of different grades (mild, moderate, treated severe and untreated severe) and from 15 reference subjects. The results showed that changes in protein structure and increase in Raman bands characteristic to DNA and glycosaminoglycans were linked with increase in asthma severity.

4.4. Inflammatory response

Raman spectroscopy was proposed to measure and quantify the concentration of C-reactive protein (CRP) in blood plasma [127]. CRP is a protein that can be used as a sensitive biomarker of inflammation...
and is often used to detect bacterial infection because it is less sensitive to viral infections. The typical concentration of CRP in humans is less than 10 mg/l, and can increase 2–3 orders of magnitude during inflammation. The concentration of CRP is typically measured using immunoassays that rely on laborious, expensive and time-consuming procedures. Berholt et al. showed that a multivariate model based on partial least square analysis (samples obtained from 40 patients) allowed quantification of CRP in blood serum with a root mean square error of cross-validation of 10.8 mg/l [127].

Raman spectroscopy was used to establish reliable biomarkers that can be used to distinguish between non-infectious systemic inflammatory response syndrome (SIRS) and sepsis [128]. The study was based on Raman spectral measurements of blood samples obtained from 31 patients with sepsis and 39 patients classified with SIRS without infection. A multivariate analysis model was developed that achieved a prediction accuracy of 80% on an independent dataset.

4.5. Coagulant and anti-coagulant factors in human blood

Multivariate analysis based on partial least square regressions was also used to measure the concentration of fibrinogen concentration in blood plasma [129]. Fibrinogen is a glycoprotein present in the human blood that helps coagulation (normal level of fibrinogen in the blood is 1.5–3 g/l). The activation of fibrinogen is involved in the pathogenesis of inflammation, tumour growth and various diseases (concentrations 4–8 g/l). This preliminary study carried out on blood samples from 34 patients achieved a root mean square error of prediction of 0.72 ± 0.05 g/l. While the accuracy of Raman spectroscopy was lower than the gold-standard assay (Clauss fibrinogen assay for measuring thrombin clotting time), Raman spectroscopy is an attractive technique as it can provide rapid and reagent-free quantitative results.

The use of Raman spectroscopy for monitoring the amount of heparin in patients’ blood during surgery has also been investigated [130]. Calibration models based on partial least squares were able to detect low concentrations of heparin in serum (~8 USP/ml) with a root mean square error of prediction ~4 USP/ml.

4.6. Malaria

Malaria is one of the most deadly diseases of humans, responsible for more than 1 million deaths in 2010 [131]. Early diagnosis of malaria is important for decreasing mortality rates and reducing the overuse of antimalarial drugs.

Raman spectroscopy has been extensively used for studying red blood cells, including comparison between healthy erythrocytes and erythrocytes infected with the malaria parasite Plasmodium falciparum [132,133]. Given the strong signals due to the resonant Raman scattering, the spatial distribution of haemoglobin and hemozoin was analysed within individual blood cells.

In addition to analysing the red blood cells, recent studies have focused on the analysis of blood plasma, as potentially a more efficient diagnostic method compared to blood smears. In malaria infected patients, rupture of erythrocytes releases hemozoin, heme and parasites into the blood stream, which can be detected by Raman spectroscopy analysis of plasma or serum in a more efficient way than current tests based on microscopic evaluation of blood smears. The feasibility of this approach has been investigated by Hobro et al. [134]. Raman spectroscopy was used to monitor the changes in plasma during Plasmodium infection in mice, following malaria disease progression over the course of 7 days (Fig. 6). The Raman bands corresponding to haemoglobin and hemozoin indicated changes in the very early stages of infection, as early as one day after Plasmodium infection. On the other hand, changes in membranes of erythrocyte were detected only around day 4, indicating that plasma-based Raman assay may be more advantageous for detection of malaria.

![Fig. 6. Principal component analysis of Raman spectra measured for blood plasma from Plasmodium infected mice. Samples are as follows: day 0 (red), day 1 (dark blue), day 2 (purple), day 3 (light blue), day 4 (orange) and day 7 (green). Mice A are shown as triangles, mice B as squares and mice C as circles [134]. Reprint with permission from the Royal Society of Chemistry.](image-url)
spectroscopy can measure both morphological and chemical information in samples and multivariate classification models can be developed to provide objective diagnosis of independent tissue samples obtained from new patients. The relatively low speed of Raman spectroscopy has been a main weakness for clinical translation. However, recent advances in multi-modal imaging and non-linear microscopy have demonstrated the ability to obtain high-contrast molecular images and provide objective diagnosis for samples with clinically relevant dimensions and at speeds compatible with clinical use. Important progress has also been reported in sub-surface deep Raman spectroscopy, and innovative solutions and optimised designs for fibre-optic and needle Raman probes have been reported for in-vivo diagnostic. The key challenge now is the clinical translation and adoption of Raman technologies in the healthcare service. These technologies must show improved clinical outcome based on randomised clinical trials and need to demonstrate cost-effectiveness compared to current practice.

References
