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Abstract Potential evapotranspiration is an important component of hydrological modeling. In this study,
the objective is to project potential evapotranspiration in the future period 2011–2040 and understand their
changes in Zhejiang Province, East China. The sensitivity of potential evapotranspiration to five climatic
variables (solar radiation, daily minimum and maximum air temperature, relative humidity, and wind speed) is
analyzed based on observation data from 1955–2008 using a global sensitivity analysis method, Sobol’s
method. The changes in potential evapotranspiration during the future period are generated using one regional
climate model, Providing Regional Climates for Impacts Studies, with two global climate models, ECHAM5 and
Hadley Centre Coupled Model version 3, and their causes are analyzed based on sensitivity analysis results.
Global sensitivity analysis results reveal substantial spatial-temporal variations in the sensitivity of potential
evapotranspiration to climatic variables and unignorable interactions among climatic variables. Rather similar
spatial change patterns of annual mean potential evapotranspiration (PET) are generated for both general
circulation models; however, seasonal or monthly changes are very different due to different spatial-temporal
changes in climatic variables. Different contributory sources to potential evapotranspiration changes are
identified at different months and stations; the PET changes in 2011–2040 are mainly due to three climatic
variables including solar radiation, relative humidity, and daily minimum temperature.

1. Introduction

Evapotranspiration (ET), including evaporation and transpiration, plays a crucial role in the heat and mass
fluxes of global and regional atmospheric systems. Understanding the mechanism of ET is vital in agricultural
and hydrological studies at both global and regional scales [Liu et al., 2004;McVicar et al., 2007; Gu et al., 2008;
Van der Velde et al., 2013]. The most important expressions of ET include potential evapotranspiration (PET),
pan evaporation, and actual evapotranspiration; in particular, PET is a central element in hydrological modeling
and agricultural water management. Many studies have investigated the spatiotemporal variability of PET in
different regions [Xu et al., 2006; McVicar et al., 2007; Li et al., 2012; Fan and Thomas, 2013]. In China, a lot of
attention on potential evapotranspiration has also been gained in recent years [Ge et al., 2006; Li and Zhang,
2011;Wang et al., 2011, 2013], which have provided valuable information for diverse sectors such as agriculture,
hydrology, and forestry.

However, it is difficult tomeasure PET directly andmany formulations have been therefore developed to estimate
potential evapotranspiration. They are generally classified into three categories. The first category is temperature-
based formulations, which use temperature as themain input, including the Hargreavesmethod [Hargreaves and
Samni, 1982, 1985] and Blaney-Criddlemethod [Blaney and Criddle, 1950]. The second category is radiation-based
formulations, such as Makkink method [Makkink, 1957] and Priestley-Taylor method [Priestley and Taylor, 1972].
The last category is mass transfer based methods, including Rohwer method [Rohwer, 1931]. The well-known
Penman-Monteith (PM) method belongs to a mixture of the last two categories. Many researches focused on the
comparison of the above methods such as the work by Xu and Singh [2000, 2001] and indicated that the
Penman-Monteith (PM)method is probably themost appropriatemethod to estimate PET [Diodato and Bellocchi,
2007; Donohue et al., 2010].

Understanding the impact of climate variability/change on hydrological cycles is critical for water management.
Changes in precipitation and temperature have been widely investigated [e.g., Fowler et al., 2007; Li et al., 2007;
Onof and Arnbjerg-Nielsen, 2009; Xu et al., 2012]. However, the future changes in PET or actual evapotranspiration
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due to climate change are less often investigated. Li et al. [2012] investigated the spatiotemporal characteristics of
PET during 2011–2099 on the Loesss Plateau of China and found a continuous increase in PET in the future using
Hadley Centre Coupled Model version 3 (HadCM3) and downscaling software SDSM (Statistical Downscaling
Model). Wang et al. [2013] investigated the future changes in PET across the Tibetan Plateau using SDSM.

In many climate change impact analysis studies on hydrology or water resources, only temperature and
precipitation are incorporated into hydrological models by using temperature-based PET estimation methods or
just ignoring the changes in other climatic variables [e.g., Jha et al., 2004;Wang et al., 2012; Xu et al., 2013].Wang
et al. [2012] used projected daily temperature and precipitation in the future to drive a large-scale hydrological
model (Variable Infiltration Capacity model) to assess water resources in China and kept other climatic variables
unchanged. However, solar radiation, wind speed, and relative humidity might change under future climate
change, whichwill probably invalidate the use of temperature-based PET equations or assumption of unchanged
climatic variables. Therefore, it is of importance to investigate the sensitivity of PET to different climatic variables
and the impact of future climate change on PET. Several studies have used local sensitivity analysis methods such
as first-order approach or sensitivity coefficients to analyze the contributions of different climatic variables to pan
evaporation [Yang and Yang, 2012] and PET [Gong et al., 2006]. Local sensitivity analysis is usually carried out by
computing partial derivatives of the output functions with respect to the input factors or variables and addresses
sensitivity relative to point estimates of factor values [Saltelli et al., 2000]. Using these methods, interactions
among different input factors are often ignored. Recently, more complicated sensitivity analysis methods like
global sensitivity analysis methods become increasingly used [Xu and Mynett, 2006; Haynes and Millet, 2013]. A
global sensitivity analysis examines sensitivity with regard to the entire factor space, by apportioning the output
uncertainty to the uncertainty in the input factors, described by probability distribution functions that cover the
factors’ range of existence. Global sensitivity analysis has the advantage of considering interactions between
concerned input factors and is able to provide more information for contribution analysis.

The aim of this study is therefore threefold: (1) to identify the sensitive climatic variables to PET using a global
sensitivity analysis method, Sobol’s method, in Zhejiang Province, East China; (2) to project future changes in
PET in the period 2011–2040 using a regional climate model, Providing Regional Climates for Impacts Studies
(PRECIS); (3) to analyze the contributions of different climatic variables to PET changes in the future period. In
the analysis, the climatic variables include daily minimum and maximum air temperature, solar radiation,
wind speed, and relative humidity.

2. Materials and Methods
2.1. Study Area

Zhejiang Province (118°E–123°E, 27°N–31°N), with an area of about 1.04× 105 km2, is located in East China, Asia
(see Figure 1). The dominant climate of the province is Asian subtropical monsoon, which is characterized by
abundant precipitation and high temperature in summer and dry and cold winters. The annual mean temperature

Figure 1. Location of Zhejiang Province and meteorological stations used in the study.
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is 15°C–18°C. The annual mean precipitation varies between 980 and 2000mm. Mountains and hills dominate
the province. Due to the uneven temporal distribution of precipitation, Zhejiang Province suffers a lot from
floods, droughts, and typhoons. In this province, there are eight river basins: Qiantang, Ou, Lin, Tiaoxi, Yong,
Feiyun, and Ao river basins and the well-known Beijing-Hangzhou canal.

2.2. Data

The data used in this study are collected from 35 meteorological stations operated by Zhejiang Meteorological
Administration (see Table 1). The majority of the stations have a complete record of several climatic variables
from 1955 to 2008. Themain climatic variables includemaximum andminimum air temperatures at 2m height,
wind speed at 10m height, precipitation, relative humidity, and sunshine duration at a daily time step.

According to Zhejiang Provincial Hydrology Bureau [2005], the whole province is divided into seven water
resource areas, i.e., Boyanghu river systems, Taihu river systems, Qiantang river systems, Eastern Zhejiang
river systems, Southern Zhejiang river systems, Mingjiang river systems, and East Ming river systems (see
Figure 1). The PET will be analyzed based on this division but only concern four water resource areas since the
other three water resource areas are very small and no meteorological data are obtained. Table 2 shows the
seven water resource areas and their representative stations which will be used later for sensitivity analysis.
The representative stations are chosen based on their geographical locations and meteorological conditions.

2.3. Methodology
2.3.1. Regional Climate Model
The regional climate model PRECIS (Providing Regional Climates for Impacts Studies, http://www.metoffice.
gov.uk/precis/) is used to downscale meteorological data from global climate models. This regional climate
model was developed by the MetOffice Hadley Centre, UK, and can be used to generate detailed climate
change projections in any area of the globe [Jones et al., 2004]. Zhang et al. [2006] applied the PRECIS model
to simulate the distribution of extreme climate events in China in both the baseline period (1961–1990) and a
future period (2071–2100) under the B2 scenario. The results show that PRECIS simulated the spatial distribution

Table 1. Meteorological Stations Used in This Study

No. Station Name Period No. Station Name Period

1 Huzhou 1961–2012 19 Quzhou 1956–2008
2 Shengsi 1959–2008 20 Wuyi 1962–2011
3 Pinghu 1955–2008 21 Yongkang 1962–2011
4 Tianmushan 1956–1998 22 Xianju 1961–2012
5 Hangzhou 1954–2011 23 Kuocangshan 1956–1993
6 Cixi 1954–2008 24 Jiangshan 1961–2012
7 Yinxian 1954–2008 25 Hongjia 1955–2008
8 Dinghai 1955–2008 26 Suichang 1961–2012
9 Zhuji 1970–2012 27 Lishui 1955–2008
10 Chunan 1971–2004 28 Dachendao 1959–2008
11 Shengxian 1957–2008 29 Qingtian 1971–2012
12 Jiande 1971–2004 30 Yongjia 1971–2012
13 Yiwu 1962–2011 31 Longquan 1954–2008
14 Dongyang 1962–2011 32 Wenzhou 1952–2000
15 Ninghai 1961–2012 33 Yuhuan 1957–2008
16 Shipu 1956–2008 34 Taishun 1961–2012
17 Kaihua 1961–2012 35 Pingyang 1961–2012
18 Jinhua 1954–2008

Table 2. Water Resource Areas and Their Representative Stations

Divisions Seven Water Resource Areas Representative Meteorological Stations Areas (km2)

I Boyanghu river systems None 511.1
II Taihu river systems Hangzhou 12,273.5
III Qiantang river systems Cunan (upstream), Tianmushan (downstream) 42,266.6
IV Eastern Zhejiang river systems Dinghai 12,872.2
V Southern Zhejiang river systems Lishui (inland), Dachendao (islands) 33,495.2
VI Mingjiang river systems None 1,129.8
VII East Ming river systems None 1,237
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of extreme climate events very well in the baseline period compared with observations. Therefore, this regional
climate model is chosen in this study.

Mainly limited by the data provided by MetOffice Hadley Centre, UK, only outputs from two global climate
models are used as boundary data for the regional climate model. Although such choice is rather limited, it
can still fulfill the purpose of this study. One global climate model used in this study is ECHAM5, which is the
fifth-generation atmospheric general circulation model developed at the Max Planck Institute for
Meteorology [Simmons et al., 1989]. The ECHAM5 core is composed of a dynamical part, formulated in
spherical harmonics and evaluated at a set of almost regularly distributed grid points (the Gaussian grid).
The atmospheric model resolution is about 2.8 × 2.8° latitude-longitude [Roeckner et al., 2003]. The second
climate model used in this study is HadCM3, standing for the Hadley Centre Coupled Model version 3. This
model is one of the main models used in the Intergovernmental Panel on Climate Change Third and Fourth
Assessments and is a coupled atmosphere-ocean general circulation model (GCM) developed at the
Hadley Centre [Gordon et al., 2000; Reichler and Kim, 2008]. Its atmospheric component has 19 levels with a
horizontal resolution of 2.5° latitude by 3.75° longitude, which produces a global grid of 96 × 73 grid cells.
This model has the capability of capturing the time-dependent fingerprint of historical climate change in
response to natural and anthropogenic forcing [Stott et al., 2000].

Xu et al. [2007] compared the statistic features of 20year mean simulation and observation in East Asia during
1980–1999 and found out that HadCM3performs better than ECHAM5 in simulating temperature and precipitation
in East Asia. Heo et al. [2013] also found that ECHAM5 projects higher temperature than HadCM3 in East Asia.

The simulation domain in this study is the whole East China, mainly including Zhejiang Province (see Figure 1).
This simulation is different from all the other PRECIS-related studies in China [Xu et al., 2005;Wang et al., 2012; Tian
et al., 2013], which have used future PRECIS outputs run by the Institute of Environment and Sustainable
Development in Agriculture, Chinese Academy of Agricultural Sciences, using the whole of China as the domain
with a spatial resolution of 50 km. The central point of the simulation in this study is located at 116°E and 33.5°N.
The resolution of PRECIS outputs is 25 km. The emission scenario used in this study is A1B, which describes a
future world of very rapid economic growth, a global population that peaks inmidcentury and declines thereafter,
and rapid introduction of new and more efficient technologies but with balanced energy sources. The PRECIS
grids covering the study area are shown in Figure 1.
2.3.2. Penman-Monteith Method and Delta Change Method
The Penman-Monteith method is believed to be able to estimate potential evapotranspiration (PET) more
realistically than other methods [Donohue et al., 2010]. Therefore, in this study, the Food and Agriculture
Organization of the United Nations (FAO) Penman-Monteith method (PM) method [Allen et al., 1994] is used
to estimate the PET in Zhejiang Province. The formula for the FAO-PM method is

ET ¼
0:408Δ Rn � Gð Þ þ γ 900

Taþ273 u2 es � eað Þ
Δþ γ 1þ 0:34u2ð Þ (1)

where ET is potential evapotranspiration (mmd�1); Rn is net radiation at the crop surface (MJm�2 d�1); G is
soil heat flux density at the soil surface (MJm�2d�1); T is mean daily air temperature at 2m height (°C); u2 is wind
speed at 2m height (m/s); es is saturation vapor pressure at 2m height (kPa); ea is actual vapor pressure at 2m
height (kPa); Δ is slope of the vapor pressure-temperature curve (kPa/°C); and γ is psychometric constant (kPa/°C).

A Delta change method is used to obtain future potential evapotranspiration projections by adding changes
in the PET in the future period (2011–2040) to the PET in the baseline period. It is a direct and simple way of
avoiding the possible effects of bias in the climatic variables derived from the regional climate model on PET
projections. The formulas are as follows:

PETfuture ¼ PETchanges þ PETobervation (2)

PETchanges ¼ PETPRECIS-future � PETPRECIS-baseline (3)

where PETobservation is potential evapotranspiration calculated based on observed climatic variables (mm);
PETPRECIS-future is potential evapotranspiration calculated based on PRECIS simulations with two GCMs as
boundary data in the future period (mm); and PETPRECIS-baseline is potential evapotranspiration calculated
based on PRECIS simulations in the baseline period (mm).

Journal of Geophysical Research: Atmospheres 10.1002/2013JD021245

XU ET AL. ©2014. American Geophysical Union. All Rights Reserved. 2177



2.3.3. Sobol’s Sensitivity Analysis Method
Sobol’s sensitivity analysis method [Sobol, 1993; Saltelli et al., 2000], a variance-based method, is chosen here
for global sensitivity analysis since this method is superior to traditional sensitivity analysis methods when
considering nonlinearity and is robust [Saltelli and Annoni, 2010; Yang, 2011; Zhang et al., 2013]. It has the
capability of describing how individual variables and their interactions impact model performance.
Interactions occur when the perturbation of two or more variables simultaneously causes variation in the
output greater than that of varying each of the variables alone. Such interactions are present in any model
that is nonadditive but will be neglected by local sensitivity analysis methods. In Sobol’s method, the variance
of the model outputs is decomposed into different components that result from individual variables and
interactions among variables.

The main idea behind Sobol’s method is to decompose the function f(x) into summands of
increasing dimensionality

f x1;…; xkð Þ ¼ f 0 þ ∑
k

i¼1
f i xið Þ þ ∑

1≤i< j≤ k

f ij xi; xj
� �þ…þ f 1;2;…;k x1;…; xkð Þ (4)

For this equation to hold, f0 must be a constant and the integrals of every summand over any of its own
variables must be zero. With this, it is known that all the summands in equation (4) are orthogonal. This
means that if (i1,…,is)≠ ( j1,…, jl), then

∫
1

0
f i1;…;is xi1 ;…; xisð Þdxik ¼ 0 if 1≤ k ≤ s (5)

The total variance D of f(x) is defined as

D ¼ ∫
Ωk
f 2 xð Þdx � f 20 (6)

While partial variances can be computed from equation (4)

Di1;…;is ¼ ∫
1

0
…∫

1

0
f 2i1;…;is xi1 ;…; xisð Þdxi1…dxis (7)

where 1≤ i1<…< is≤ k and s=1,…,k. Squaring and integrating equations (4) and (5), the total varianceDbecomes

D ¼ ∑
k

i¼1
Di þ ∑

1≤i<j≤k
Dij þ…þ D1;2;…;k (8)

The sensitivity measures are given by

Si1;…is ¼
Di1 ;…is

D
for 1≤ i1 < … < is ≤ k (9)

Therefore, the sensitivity indices of different orders are as follows

First-order effect index Si ¼ Di

D
(10)

Second-order effect index Sij ¼ Dij

D
(11)

Total effect index TS ið Þ ¼ 1�―Dei
D

(12)

where the first-order effect index Si denotes the sensitivity resulting from the main effect of individual
parameter θi; the second-order effect index Sij indicates the sensitivity resulting from the interaction of two
parameters θi and θj; the total effect sensitivity index represents the main effect of θi as well as its
interactions up to kth order of analysis; and D~i indicates the variance resulting from all of the parameters
except for θi.

The variances shown in the above equations can be evaluated by approximateMonte Carlo numerical integrations.
The convergence of Monte Carlo integrations is heavily affected by the sampling scheme. Here the quasi-random
sequence sampling is used since it samples points more uniformly along the Cartesian grids than uncorrelated
random sampling [Tang et al., 2007]. The details of Monte Carlo approximations can be found in Tang et al.
[2007] and Fu et al. [2012].
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In this study, the FAO-PMmethod requires daily minimum and maximum air temperatures, relative humidity,
solar radiation, and wind speed as inputs. Since daily maximum and minimum air temperatures are often
correlated, average air temperature and daily amplitudes are calculated before obtaining the two random
data sets required for Sobol’s sensitivity analysis method (see equations (13) and (14)).

Tmean ¼ T max þ T min

2
(13)

ΔT ¼ T max � T min (14)

where Tmean is daily average air temperature (°C); Tmax is daily maximum air temperature (°C); Tmin is daily
minimum air temperature (°C); and ΔT is daily air temperature amplitude (°C).

The results of sensitivity analysis will be used further to explain the possible causes of changes in PET in the
period 2011–2040 through assuming that the sensitivities of PET to various climatic variables are the same
in the baseline period (based on observations) and the future period. Such assumption is made mainly based
on the fact that the future climate projections from global climate models or regional climate models are
quite uncertain [Kay et al., 2009; Woldemeskel et al., 2012], and therefore it is regarded that the sensitivity
of PET to climatic variables based on the future climate model projection is unreliable.
2.3.4. Spatial Interpolation
The spatial interpolation is implemented in ArcGIS software based on the digital elevation data downloaded from
the Shuttle Radar Topography Mission (SRTM) website (http://srtm.csi.cgiar.org/) with a resolution of 90m by
90m. Figure 2 shows the digital elevation model of the study area. Considering the possible impact of terrain on
the interpolation, the ordinary cokriging approach is used to interpolate the annual, seasonal, andmonthly PET in
both baseline and future periods. This approach can use elevation as secondary information in interpolation
[Goovaerts, 2000]. All 35 meteorological stations are used to obtain spatial information of PET in the study area.

3. Results and Analysis
3.1. Sensitivity Analysis Results

Only sensitivity analysis results from six representative stations shown in Table 2 are illustrated in this section.
The sensitivity analysis is made based on decades of historical observations (1955–2008) for 12 different
months. The contribution of different climatic variables to PET output uncertainty is then analyzed on a daily
scale for each month at each station.

Figure 3 shows both the first-order and second-order effect sensitivity indices for six representative stations
in Zhejiang Province. From this figure, it can be observed that the sensitivity of PET to different climatic variables

Figure 2. Digital elevation map of the study area.
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Figure 3
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varies substantially as represented by the first-order effect sensitivity index. In spring, except at Dachendao,
Lishui, and Tianmushan, the PET is most sensitive to solar radiation, followed by relative humidity, minimum air
temperature, wind speed, andmaximum air temperature. In summer, the solar radiation is clearly the dominating
climatic variable at all stations. In autumn, the order of sensitivity is similar to that in summer. In winter, however,
relative humidity becomes the main source of variation in PET values at all stations except Lishui.

Figure 3 also shows that the PETsensitivity is different at various stations. At Dachendao and Tianmushan, except in
summer, relative humidity is the most sensitive variable. Dachendao is located on an island, where its climatic
condition is very humid, while Tianmushan is located in the northwest of the provincewhere the elevation is rather
high. At Lishui, solar radiation is the dominating climatic factor all through the year except in winter. Different from
all the other stations, the daily minimum temperature becomes the second important climatic variable.

The second-order effect sensitivity index shown in Figure 3 reveals the impact of the interactions between
climatic variables on the PET variances. For Sobol’s sensitivity analysis method, variables or inputs are classified
as highly sensitive if they contribute more than 10% variance to the overall PET variance and are classified as
sensitive parameters if they contribute more than 1% to the overall PET variance [Tang et al., 2007]. At stations
Hangzhou, Cunan, and Lishui, the second-order effect sensitivity index Sij in winter is up to or more than 0.12
(12%), indicating that PET is highly sensitive to the interactions between wind speed and relative humidity. At
Dinghai, PET in winter is also highly sensitive to the interactions betweenwind speed and relative humidity (Sij is
up to or more than 10%). At stations Tianmushan and Dachendao, PET is sensitive to the interactions between
relative humidity and wind speed all the year round. Therefore, considering the interactions, the contribution of
wind speed to the variance of PET becomes larger. At Tianmushan, PET is also sensitive to the interactions
between relative humidity and daily minimum temperature, ranking the second after the interactions between
wind speed and relative humidity. Other interactions cannot be neglected as well since in some months the
values of second-order effect sensitivity index are more than 1%. One such example is the interactions between
wind speed and daily minimum temperature in March at Hangzhou Station. The second-order sensitivity index

Figure 3. (left column) First-order and (right column) second-order effect sensitivity indices calculated at (a) Hangzhou, (b)
Cunan, (c) Tianmushan, (d) Dinghai, (e) Lishui, and (f) Dachendao. tmax indicates maximum air temperature; tmin represents
minimum air temperature; hum represents relative humidity; wind represents wind speed; Rs is solar radiation; and asterisk
indicates second-order effect.

Figure 4. Spatial variability of differences of PRECIS-simulated annual mean values of climatic variables and observations.
tmax indicates maximum air temperature; tmin represents minimum air temperature; hum represents relative humidity; wind
represents wind speed; and Rs is solar radiation.
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is more than 3%. This indicates that the variances
caused by the interactions betweenwind speed and
daily minimum temperature in March contribute
more than 3% to the total variances in PET.

Considering the second-order or even higher-order
interactions, the contributions of some climatic
variables to the overall PET variance become larger.
For example, at Dachendao, wind speed is less
important than daily minimum temperature in
most months in terms of its individual effect on
PET. When its interactions with other variables are
considered, however, wind speed becomes more
important than daily minimum temperature in
most months. At Lishui, wind speed becomes the
most important climatic variable in winter.

3.2. Evaluation of PRECIS in the Study Area

In this section, the performance of PRECIS is briefly
evaluated based on the climatic variables used to
calculate PET.

Figure 4 shows the spatial variability of differences of PRECIS-simulated annual mean values of five climatic
variables and observations in Zhejiang Province. The differences are calculated for individual stations and
then interpolated using the cokriging method. It can be figured out that the differences between simulated
and observed variables are the smallest for relative humidity, followed by daily maximum temperature, solar
radiation, and daily minimum temperature. The wind speed has the largest error. Except wind speed, all other
climatic variables are reasonably simulated by the regional climate model in terms of annual mean values.

Correlation coefficients of observed variables and PRECIS-simulated variables on a monthly scale are
calculated and compared. The simulated maximum and minimum temperatures show good consistency with
the observations. The correlation coefficients ofmaximum temperatures vary from0.94 in thewest to 0.96 in the
coast. The correlation coefficients ofminimum temperatures vary from 0.94 in the southwest to 0.97 in the north
and coast. Most of the calculated correlation coefficients for solar radiation are above 0.71, with the highest
correlation coefficient reaching 0.82. Among all climatic variables, the relative humidity and wind speed,
however, have much smaller values of correlation coefficients, indicating that the regional climate model is less
capable of simulating these two variables. The highest correlation coefficient of relative humidity is 0.71
(ranging from 0.01 to 0.71), and that of wind speed is 0.73 (ranging from 0.01 to 0.73).

The evaluation results indicate that daily temperature can be modeled by the regional climate model quite
well. Solar radiation can be reasonably simulated. However, the other climatic variables including relative
humidity and wind speed are less well simulated by the regional climate model, although relative humidity
on the annual scale is reasonably simulated. A simple and commonly used approach, Delta changemethod, is
therefore used to obtain future potential evapotranspiration projections by adding changes in the PET in the

Figure 5. Spatial distribution of annual mean PET calculated
based on observed climatic variables in the baseline period (mm).

Figure 6. Spatial distribution of seasonal PET calculated based on observed climatic variables in the baseline period (mm).
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future period (2011–2040) to the PET in the
baseline period. By using such method, the
effects of bias in all climatic variables from
the regional climate model can be avoided
on future PET projections.

3.3. Potential Evapotranspiration in the
Baseline Period 1961–1990

Figure 5 shows the spatial distribution of
annual mean PET calculated based on
observed climatic variables in Zhejiang
Province in 1961–1990. It can be found that
the highest PET is located in the center of

the province. There are two troughs where the annual PET is about 800mm. One is located in the east of the
province (coastal areas), and the other is located in the north of the province.

Figure 6 shows the spatial distribution of seasonal PET calculated based on observed climatic variables in
Zhejiang Province in 1961–1990. In spring, the absolute value of PET is relatively small. The value of PET
reaches a peak in the center of the province and then reduces to the surroundings. Coastal areas have the
lowest PET values. In the northwestern part of the province, low PETcan be found as well. In summer, the spatial
distribution of PET is rather similar to that in spring. However, due to high solar radiation, the absolute value of
PET is the highest in four seasons. In autumn, a rather different pattern from those in spring and summer can be
observed. The northern part of the province has the lowest PET, while the coastal area has the highest PET. In
winter, most parts of the province have low values of PET. The coastal area again has the highest PET. In winter,
the PET has the lowest values in the whole year.

3.4. Potential Evapotranspiration in the Future Period 2011–2040

Figure 7 shows the changes in annual mean PET in the future period for two GCMs. Both GCMs show
increases in PET in the whole province. The spatial patterns of both changes for two GCMs are similar,
with a decreasing trend of changes from the west to the east. The largest change is around 65mm
occurring in the east of the province for ECHAM5, and the smallest increase is around 3mm, occurring near
the coast.

Figure 8 shows the spatial distribution of annual mean PET values for two GCMs and their differences
(ECHAM5 minus HadCM3) in the future period. The figure shows that the spatial distribution of future
annual mean PET is similar to that in the baseline period. However, for both GCMs, annual mean PET
increases in the whole province, although the change percentage is not very large (<10%). It can be
observed that ECHAM5 projects larger PET in the north of the province but smaller PET in the coast,
although the differences are relatively small.

Figure 9 shows the changes in seasonal PET in the future period for ECHAM5. Except in summer, all the other
seasons experience positive changes of PET. In spring, summer, and winter, the positive changes decrease

Figure 7. Changes of annual mean PET in the future period for two
GCMs (mm).

Figure 8. Spatial distribution of annual mean PET in the future period for two GCMs and their differences (ECHAM5 minus
HadCM3) (mm).
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from the west to the east. The changes in the PET are the smallest at the coastal regions. In summer, coastal
areas experience decrease in PET. In autumn, the northern part of the province experiences the smallest
positive changes.

Figure 10 shows the changes in seasonal PET in the future period for HadCM3. The change patterns in the
four seasons are very different from those for ECHAM5. In spring and summer, decreases in seasonal PET
can be found. In spring, such negative changes increase from the south to north. In summer, the trend is
contrary. In autumn and winter, positive changes can be found in the whole province. Such changes
decrease from the west to the eastern coastal areas in autumn, while in winter such changes decrease
from the southwest to the northeast. The largest increase occurs in autumn, and the largest decrease
occurs in spring.

Figure 11 shows the differences of seasonal PET between two GCMs (ECHAM5 minus HadCM3) in the future
period. It is found that in spring and summer, ECAHM5 projects larger PET than HadCM3, while in autumn
and winter ECAHM5 projects smaller PET. In spring and autumn, the differences between two GCMs are
substantial, reaching 72mm and�86mm, respectively. This indicates that larger uncertainties exist in future PET
projections using different GCMs.

Figure 12 shows the relative changes in monthly PET in the future period at Hangzhou, Dachendao, and
Tianmushan, representing the most important water resource areas in the province, i.e., Taihu river systems,
Southern Zhejiang river systems, and Qiantang river systems (downstream), respectively. This figure shows
that the change patterns at these three stations are rather similar. From February to July, decreases in PET can
be observed, while in other months, increases in PET can be found. However, the variations at Tianmushan are
the largest, followed by those in Hangzhou and finally those in Dachendao. The change percentages at
Hangzhou, Dachendao, and Tianmushan Stations for ECHAM5 range 0.2%~13%,�4%~5%, and�0.8%~15%,
respectively. The change percentages for HadCM3 range�26%~59%,�17%~37%, and�25%~67%, respectively.
ECHAM5 projects evenmonthly changes but consistently increased PET, while HadCM3 projects decreases from
February until July and increases from August until January. Compared to ECHAM5, HadCM3 projects more
variations in monthly PET.

3.5. Causes of Future Changes in Potential Evapotranspiration

To analyze the causes of PET changes in the future period or link changes in climate variables to PET in the
future, Figures 13–15 show the monthly changes of different climatic variables for both GCMs at three
representative stations, namely, Hangzhou, Dachendao, and Tianmushan. As stated in section 2.3.3, it is

Figure 9. Changes in seasonal PET in the future period for ECHAM5 (mm).

Figure 10. Changes in seasonal PET in the future period for HadCM3 (mm).
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assumed in the following analysis that the sensitivity of PET to different climatic variables in the future period
is the same as that in the observation period (shown in Figure 3).

Since the changes for ECHAM5 are insignificant compared to those for HadCM3, the causes of PET changes
are mainly analyzed for HadCM3. Figure 12 shows that the decreases for HadCM3 at Hangzhou occur from

February to July, in particular April where a
relative change reaches �26%. According
to the sensitivity analysis results shown in
Figure 3a, PET in these months at
Hangzhou is most sensitive to solar
radiation, followed by relative humidity,
daily minimum temperature, and wind
speed. The role of daily maximum
temperature is insignificant. The
importance of wind speed is indicated by
its interactions with relative humidity. The
contributions of wind speed and relative
humidity interactions to the total PET
variance range from 2% to 7% during this
period. Combined with changes shown in
Figure 13, it can be figured out that
although the role of relative humidity
during this period is unclear (see
Figure 13b), the decreases in solar
radiation and daily minimum temperature
are the two main driving forces of PET
changes. Take April as an example. The
decreases in PET for HadCM3 are the
results of combined effects of decrease in
solar radiation (�28%) and decrease in
daily minimum temperature (�27%). The
roles of relative humidity (�1%) and wind
speed (�0.3%) are less important.

More importantly, from the sensitivity
analysis results, the contributions of climatic
variables to PET changes at different
stations and months can be revealed and
quantified. Take November as an example.
The largest increase, 59%, at Hangzhou
Station occurs in this month. It is shown in
Figure 13 that although relative humidity
shows slightly decreasing trend (�1.9%),
the changes in other climatic factors are all
substantial. The changes in solar radiation,

Figure 11. Differences of seasonal PET in the future period between two GCMs (ECHAM5 minus HadCM3, mm).

Figure 12. Relative changes in monthly PET in the future period at (a)
Hangzhou Station, (b) Dachendao Station, and (c) Tianmushan Station.
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daily minimum temperature, and wind speed reach +55.5%, +60.0%, and +5.0%, respectively. From the
sensitivity analysis results (Figure 3), the relative humidity (29.6%), daily minimum temperature (18.7%),
solar radiation (19%), and wind speed (16%) contribute the most to the overall variance of PET according to
the first-order effect sensitivity index. PET is also highly sensitive to the interactions between wind speed
and relative humidity, whose contribution to the overall PET variance reaches 12%. Such interactions
increase the total contribution of wind speed from 16% to 28%. The contribution of relative humidity also
increases from 29.6% to 42.9%. It is therefore concluded that in November (winter) the changes in PET are
mainly due to the changes in relative humidity, daily minimum temperature, solar radiation, and wind
speed (TS = 100%). These four climatic variables all have positive impacts on PETchanges, leading to a large
increase in PET in November at Hangzhou Station.

Figure 15 shows the changes in solar radiation, relative humidity, dailyminimum temperature, and wind speed in
the future period at Tianmushan Station for both GCMs. Take September as an example. The PET at Tianmushan
Station increases by 45% in this month. Figure 3 shows that in September the increase in solar radiation (20%),

Figure 13. Monthly changes in (a) solar radiation, (b) relative humidity, (c) daily minimum temperature, and (d) wind speed
in the future period at Hangzhou Station for (left) ECHAM5 and (right) HadCM3.
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decrease in relative humidity (�3%), and increase in daily minimum temperature (33%) are the major
contributions (TS=93%) to PET changes, and other climatic variables have less important impact (TS< 10%).

The above analysis also applies for Dachendao, although the changes in future PETare less obvious than in the other
two stations. The largest increase for HadCM3 occurs in November (winter). Changes in relative humidity, solar
radiation, daily minimum temperature, and wind speed in this month are 2.6%, 31%, 21%, and 5.79%, respectively.
According to Figure 3, the contributions of relative humidity, solar radiation, daily minimum temperature, and wind
speed to the total variance of PET are 78%, 4.2%, 11%, and 14%, respectively. Although the change in relative
humidity in the future period is relatively small, the contribution of this climatic variable to PET changes is still
substantial due to its high sensitivity to PET in winter. Meanwhile, the role of wind speed cannot be ignored.

The above monthly analysis also indicates the causes of PET changes on an annual or seasonal scale. For
example, as stated in section 3.4, the annual mean PET increases for both GCMs in the whole province. It can be
figured out that at all three stations, the positive changes in solar radiation and daily minimum temperature
contribute substantially to the increases in annual mean PET, while the changes in relative humidity are as
important as changes in solar radiation and daily minimum temperature at Dachendao. On a seasonal scale, the
role of wind speed cannot be ignored, particularly in winter.

Figure 14. Monthly changes in (a) solar radiation, (b) relative humidity, (c) daily minimum temperature, and (d) wind speed
in the future period at Dachendao Station for (left) ECHAM5 and (right) HadCM3.
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As mentioned in section 3.4, it can be observed from Figure 12 that HadCM3 projects more substantial
monthly changes of PET than ECHAM5 at three stations. This can be explained by larger variations in different
monthly climatic variables projected by HadCM3, which are shown in Figures 13–15. In particular, the
changes in solar radiation and daily minimum temperatures are substantial.

4. Discussion

It is important to understand why PET has changed in the province and what the main causes are for
hydrological modeling and agricultural water management. This study therefore used a global sensitivity
analysis method, Sobol’s method, to determine the sensitivity of PET to different climatic variables. This
method can apportion the output uncertainty to the uncertainty in the input factors and meanwhile take the
interactions among variables into account. The results in this paper highlighted the great sensitivity of PET in
the study area to solar radiation during the summer period, when PET reaches its highest values. Relative
humidity has a much larger impact on PET estimation than other climatic variables in the winter period when
PET reaches its lowest values. This confirms the finding from a previous study by Gong et al. [2006] that PET is

Figure 15. Monthly changes in (a) solar radiation, (b) relative humidity, (c) daily minimum temperature, and (d) wind speed
in the future period at Tianmushan Station for (left) ECHAM5 and (right) HadCM3.
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very sensitive to relative humidity or
shortwave radiation in the Yangtze River
basin using the sensitivity coefficient
method. Thomas [2000] also concluded
that relative humidity is the most
important factor at 11 stations in east
China by contributing 17% to the variance
based on a linear stepwise multivariate
regression. Meanwhile, other studies have
investigated the sensitivity of pan
evaporation, potential evapotranspiration,
and actual evapotranspiration to climatic
variables as well [Goyal, 2004; Xu et al.,
2006; Yang and Yang, 2012]. However, in
these studies, the sensitivity has been
explored either qualitatively or by first-
order approach. Sensitivity analysis results
in this study are, in general, consistent with
these studies but reveal more detailed
information on the spatial-temporal
variations in the PET sensitivity and on the
interactions between climatic variables.
Particularly, the interactions between
relative humidity and wind speed, relative
humidity, and daily minimum temperature
cannot be ignored. As stated in section 3.5,
considering the interactions, the total
contribution of wind speed to the total PET
variance in November increased from 16%
to 28% at Hangzhou Station. The
contribution of relative humidity increased
from 29.6% to 42.9%. This study shows that
Sobol’s method did provide useful
information to help understand the
changes and causes of PET changes in the
future and is an appropriate global
sensitivity analysis in climate change
impact analysis.

An important assumption used in this study is that the sensitivities of PET to different climate variables are the
same in the observation period and the future period. Such assumption wasmade due to the consideration that
the regional climate model may not be able to simulate the sensitivity properly. Figures 16a–16c show the
sensitivity of PET (first-order effect sensitivity index) to different climatic variables based on observation data,
PRECIS-simulated data in the baseline period, and PRECIS-simulated data in the future period at Cunan Station.
Figure 16b indicates that the sensitivity of PET based on PRECIS-simulated data in the baseline period is very
different from that based on observations, indicating that the regional climate model did fail to preserve the
sensitivity of PET in the baseline period. The sensitivity in the future period is, however, similar to that in the
baseline period. Therefore, the assumption of same sensitivity in the baseline period and future period remains
valid when the regional climate model fails to preserve the sensitivity of PET to different climatic variables.

In this study, a Delta changemethod was used to project the PET in the future period 2011–2040. This is a direct
and simpleway of avoiding the bias in climatic variables derived from the regional climatemodel. Although bias
correction on precipitation and temperature is often done in the literature [Themeβl et al., 2012; Tian et al., 2013],
bias correction on other climatic variables is rarely implemented. It would be better to correct the bias in all
variables before they are used to compute PETas long as sophisticated bias correction approaches and enough

Figure 16. First-order effect sensitivity index based on data from (a) the
observation, (b) PRECIS-simulated baseline data, and (c) PRECIS-simulated
future data at Cunan.
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observations are available. Haddeland et al. [2012] made an investigation on the role of bias correcting climate
model radiation, humidity, and wind and found better simulated evapotranspiration and runoff using bias-
corrected climate forcing.

Previous studies show that large uncertainty exists in climate change impact analysis, which comes from GCMs,
downscaling approaches, emission scenarios, and impact analysis model (here FAO-PMmethod) [Wilby and Harris,
2006; Kay et al., 2009; Chiew et al., 2010; Xu et al., 2013]. In this study, only one regional climate model with two
GCMs and a medium greenhouse gas emission scenario were used to generate future climate change scenarios.
Changes inmonthly PET for twoGCMs already showed substantial differences, indicating large uncertainty in PET
projections. Therefore, using limited GCMs and emission scenario will underestimate the uncertainty in future
potential evapotranspiration and changes. Although the results in this study are quite helpful to understand
future potential evapotranspiration changes, a systematic analysis of uncertainty in future PET projections is
proposed to promote the applications of climate change impact analysis in regional water management.

5. Conclusions

In this study, the sensitivity of potential evapotranspiration to different climatic variables in Zhejiang Province,
East China, was first quantified using a global sensitivity analysis method, Sobol’s method. Then future changes
of potential evapotranspiration in 2011–2040 were obtained via a regional climate model. The sensitivity
analysis results were finally used to analyze the contributions of climatic variable changes to future potential
evapotranspiration changes in the province. The key findings of this study are summarized below:

1. Sensitivity analysis results reveal substantial spatial-temporal variations in the sensitivity of PET to climatic
variables and unignorable interactions. PET is most sensitive to solar radiations in majority parts of
the province, followed by relative humidity, daily minimum temperature, wind speed, and daily maximum
temperature. At islands like Dachendao, however, the relative humidity is the most sensitive climatic
variable, although in summer solar radiation becomes the dominant variable.

2. In the future period (2011–2040), ECHAM5 projected similar spatial distribution of PET with that in
the baseline period (1961–1990), while PET for HadCM3 showed different spatial distribution. For both
GCMs, annual mean PET increases in the whole province, although such change might not be significant
(<10%). Seasonal or monthly changes are, however, very different. ECHAM5 projected increases in
spring, autumn, and winter. Slight decreases are found near the coast in summer. HadCM3 projected
decreases in spring and summer, while increases in PET in autumn and winter can be found.

3. On the basis of sensitivity analysis results, the contributions of different climatic variables to PET changes
at different months and stations can be revealed. In general, solar radiation, relative humidity, and
daily minimum temperature are the three major contributors to PET changes in the future period
2011–2040. However, causes of future PET changes are varied at different stations and months.
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