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ABSTRACT 

Providing effective information regarding flood control for responding climate change is essential to 
future flood risk management for cities. This study simulated and assessed the impacts of flooding for 
future climate change scenarios in Taipei city, Taiwan. We modelled rainfall events, generated by 
general circulation models, with different return periods. The flood extents and damage in the Central 
Taipei Area for the A1B climate change scenarios were compared to the ones, caused by the rainfall 
events with same return periods, without climate change (baseline scenario). The proposed approach 
provides potential flooding maps and flood damage assessment for climate change scenarios as 
useful information for flood risk management in urban areas. 
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1. INTRODUCTION 

Flooding often causes both tangible and intangible damage. Many countries have endeavoured to 
improve their understanding of flooding such that decision makers can adopt adequate measures to 
reduce flood damage (James & Hall,1986). The effectiveness of these alternatives is usually 
evaluated  through  the reduction of risk after implementing the measures.  

The spatial and temporal distributions of risk are typically non-homogenous. To investigate risk in a 
large area, we need to understand how the hazard and damage can vary temporally and spatially. 
Field survey or remote sensing, during or after an event, or computer modelling are often applied to 
assess flood damage. White (1945) was among the first researchers to develop and apply depth-
damage curves (DDCs) to represent flood damage. White (1964) developed to synthetic DDCs 
through a hypothetical analysis. Some studies combined the loss estimation model with flood 
inundation model to estimate the flood damage (Dutta et al. 2003; Smith, 1994). McBean et al. (1988) 
argued that flood damage functions should include other flood damage influencing factors, such as the  
existence of effective, timely flood early warning, duration of flooding,  and flood velocity, and 
suggested correcting the flood damage based on weighted DDCs; in contrast, Grigg (1996) thought 
DDCs should be applied to estimate damage without any correction for these additional factors. 

In Taiwan, the National Science and Technology Center for Disaster Reduction (NCDR) has 
established the national flood potential database (Chen et al., 2006), which was aimed to help the 
government developing flood disaster mitigation strategies. Nevertheless, the flood potential 
information only indicates possible locations of flood hazard under certain scenarios. A further 
investigation is required to convert hazard information into risk, by taking the effect of climate change 
into account, such that the decision makers can easily determine and prioritize the strategies to 
prevent hazards and mitigate the impacts. 

2. CASE STUDY AREA 

Taipei City is located at the downstream floodplain of the Danshuei River Basin. The Digital Elevation 
Model (DEM) of Taipei City shown in Figure 1 displays that the northeast region is mountainous with 
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elevation above 400m, the southeast and south areas have few hills, and the northwest part is alluvial 
floodplain with elevation below 5m. The Danshuei River and its tributary, the Sindian River, flow along 
the west boundary of Taipei City. Another tributary, the Keelung River, passes through Taipei City 
from east to west and converges into the Danshuei River. 

 

Figure 1  Digital Elevation Model, river system, and administrative districts in Taipei City 

Taipei City developed quickly between 1968 and 1991, which consequently attracted more investment 
and residents. The population rose fast and reached the peak 2.72 million in 1991. Table 1 lists the 
land zoning for urban development planning of Taipei City. Only 134 km

2
 is flat land suitable for urban 

development. The remaining areas are covered by hills, slope land and low-lying land, which were not 
adequate for urbanisation. 

Table 1 Land zoning of the Taipei City based on urban development plan 

Land Zoning Area (ha) Total area (ha) 

For urban development 

Residential zone 3,837 

13,394 

Industrial zone 452 

Commercial zone 919 

Public facilities zone 7,123 

Others* 1,063 

Not for urban development 

Agricultural and scenic zones 804 

13,786 Conservation zone 11,351 

Water covering zone 1,631 

* Including Administrative zone, cultural and education zone, zone for specific purposes, airport, recreation zone 

and others 

 

High raised levees were built along the banks of rivers in order to protect the Central Taipei Area 
(CTA) from the 200-year flood. The high density of houses alongside the banks of the Danshuei River 
prevented the broadening plan. Therefore, utilizing flood diversion, the Erchong Floodway was 
constructed to mitigate the floods of Sindian River and Dahan River. 

The storm sewer system, shown in Figure 2, is composed of 26 main drainage networks which were 
designed for a rainfall of 5-year return period. During storm events, the water stages in rivers are 
typically higher than the stages of storm sewer and overland flows. Draining the surface runoff by 
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gravity is not possible such that pumping stations were constructed at the outlets of drainage 
networks. The total capacity of the pumping stations is around 840 m

3
/s. Although the CTA is 

protected against the river flooding as large as 200-year return period, surcharging from storm sewers 
may cause serious inundation if the precipitation is more than 5-year return period. Based on earlier 
studies (Hsu,1992), Manning’s roughness coefficient had been calibrated by land use. The grid size of 
the inundation model is 40 m x 40 m. 

 

Figure 2 The storm drainage system in the Central Taipei City 

3. METHODOLOGY 

3.1 Modelling tools 

This study is part of the Collaborative Research of Flood Resilience in Urban Areas (CORFU) and we 
adopted the modelling framework developed within CORFU for flood impact assessment. The DHI’s 
MIKE FLOOD model was applied to hydraulic modelling in this study. The MIKE FLOOD contains 
various modules for solving different hydrodynamic problems, including rainfall-runoff, pipe flow, 
overland flow, pollution transport, etc. The 1D flow dynamic in sewer networks is solved by the MIKE 
URBAN while as the 2D overland flow is simulated by the MIKE 21. The 1D sewer and the 2D 
overland flows are coupled to simulate the complex flow movements between the drainage system 
and the ground surface in urban environment. The modelling results from the MIKE FLOOD can be 
directly fed in to the tool developed by Hsu et al. (2012) to estimate the damage of corresponding 
flood events.  

3.2 Model verification 

On 16 and 17 September 2001, Typhoon Nari swept through Taiwan with a historical-high rainfall 
record in northern Taiwan. The torrential rainfall caused the most serious flood damage in Taipei for 
decades. The flash flood of the Keelung River flowed from a levee gap near the pumping station No. 
19 and flooded the downtown Taipei. Many pumping stations were submerged by flooding water, and 
were paralysed. Figure 3 shows the flooded areas, which are more than 30 cm in water depth marked 
with dark colour, released by the Taipei City Government (2001).The lowlands along the Keelung 
River were almost entirely inundated. Thousands of building basements and the two subway systems, 
the Taipei Rail Transit System and the Mass Rapid Transit System, were filled by the deluge. The total 
amount of damage was estimated to be 45.34 million USD (Chang, 2004). The hourly rainfall records 
of the gauges nearby the CTA were used in numerical simulation. The simulated flooded area shown 
in Figure 4 is close to the surveyed area.  
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Figure 3 Investigated flooded areas of typhoon Nari in CTA 

 

Figure 4 Simulated flooded areas of typhoon Nari in downtown Taipei 

3.3 Precipitation frequency analysis 

According to the government report (WRA, 2011, we chose the design rainfall of the Taipei station 
with return periods of 10, 25, 100 and 200-year, as shown in Table 2, as the rainfall input of urban 
flood model. Based upon the report, GCM model was adopted to simulate CO2 emission under 
difference scenarios. The adjustment factors of hourly rainfall for future climate change scenarios to 
baseline in the period of 2020-2039 are shown in Table 3. The rainfall depth and the adjustment 
factors are applied to of design rainfall to generate the new hyetographs that represent the rainfall 
patterns under the future climate change scenarios. 
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Table 2 Rainfall depth (mm) for different durations and different return periods at Taipei Station 

Duration 

(hr) 

Return Period (year) 

1.1 2 5 10 20 25 50 100 200 500 

24 105.2 167.2 247.8 305.7 362.2 380.2 435.7 490.7 545.3 616.9 

48 135.6 199.3 295.7 368.3 440.7 464.1 536.4 608.8 681.0 776.6 

72 153.1 219.2 321.7 399.4 477.3 502.4 580.4 658.4 736.4 839.6 

Table 3 Climate Change factors for hourly rainfall under different return periods 

Scenario 
Return Period (year) 

2 5 10 20 25 50 100 200 

A2 1.21 1.18 1.17 1.17 1.17 1.17 1.18 1.20 

A1B 1.14 1.12 1.12 1.12 1.12 1.13 1.13 1.14 

B1 1.05 1.03 1.03 1.03 1.03 1.03 1.03 1.04 

4. MODEL APPLICATION 

4.1 Flood hazard assessment 

We simulated the design rainfall events with return periods of 10, 25, 100 and 200-year for both 
baseline and A1B scenarios, assuming no urban growth. The water depth 0.3m was used to illustrate 
the flooded area. The flood extents, as shown in Table 4, of 10 year event for the baseline and the 
A1B scenarios were 101 and 135 ha, respectively. The flooding area for the A1B climate change 
scenario was 33% more than the baseline scenario, due to the 12% increase of total rainfall for the 10 
year return period event. The maximum change of flooding extents, which was 42%, between the 
baseline and A1B scenarios occurred for the 100 year event, caused by 13% increase of total rainfall. 
For the 200 year event, although the total rainfall was 14% more for the A1B scenario, the increased 
flood extent was only 39%. It was due to the total rainfall of baseline scenario had exceeded the 
design standard and resulted in extensive flooding area. Although the A1B scenario had 13% more of 
total rainfall and caused 205 ha increase in flooding area, the relative change of flood area was less 
than the 100 year event, because the baseline scenario had a larger flood area. 

Figure 5 shows that, for the 200 year event, the flooding areas in Zhongshan, Songshan and Xinyi 
districts increased more significantly than other districts for the A1B scenario. The areas, shown in 
Table 5, increased by 79 % In the Zhongshan district, 59% in the Songshan district, and 16% in the 
Xinyi district.  

Table 4 Flood area and percentage with different return periods in CTA 

Return period 

( year) 

Flooded Area  (ha) Relative increase of  

flooded area Baseline A1B scenario 

10 101 135 33% 

25 191 266 39% 

100 385 548 42% 

200 526 731 39% 
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baseline 

 

climate change 

Figure 5  Flood map of 200-year return period under baseline and climate change conditions 

Table 5 Flood area  with different Districts  in CTA 

Districts  
Flooded Area  (ha) 

Baseline A1B scenario 

Wanhua 2.24 6.08 

ZhongZheng 22.72 35.84 

Daan 26.24 37.92 

Wenshan 45.76 57.92 

Xinyi 159.04 184.32 

Nangang 52.80 68.00 

Songshan 103.36 164.16 

Zhongshan 65.12 116.80 

Datong 45.44 55.36 

Shilin 3.20 4.48 

Total 525.92 730.88 

 

4.2 Tangible damage assessment 

We considered that human activities, which are related to the types of land use, are the major factor 
that affects the level of loss once a flooding is occurring. Wang (2003) collected the data of a field 
survey from the flooded areas in Taipei city, and of flood loss claims for tax relief from the government 
revenue office after a major typhoon event in 2001. Wang associated the damage information with the 
land use types, which were classified into residential, commercial (retailer, service), industrial 
(manufacturing, wholesaler) and cultural zones, and developed the DDCs shown in Figure 6.  

We evaluated the flood damage for both climate scenarios and different return periods using the 
DDCs and the flood maps as mentioned in the previous section. Figure 7 shows the flood damage 
map for 200 year event of the baseline. There is obvious flooding damage in the Datong, Zhongshan, 
Songshan and Xinyi districts because these districts have more flooding areas than others. The Xinyi 
district has large business and commercial zones such that the flood damage is the worst. 
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 To evaluate the increase of flood impact due to climate change, we compared the hydraulic modelling 
and damage assessment results. The simulated flood area are summarised in five depth groups, and 
Table 6 shows that flood areas for the 200 year event of the A1B scenario in all groups are higher than 
the areas for same return period event of the baseline scenario. Table 7 shows the total direct flood 
damage of different return period events in the CTA for both the baseline and the A1B scenarios. The 
climate change could increase the direct flood damage by 8%, 19%, 24% and 25% for 10, 25, 100, 
200 year events, respectively. 

0

200

400

600

800

1000

1200

0 1 2 3 4
Flood depth(m)

D
am

ag
es

 (
 $

U
S 

/m
2 )

Residential Zone 

Industrial Zone 

Cultural, School

Retail Business

Wholesale Business

Commerce

 

Figure 6 Depth-damage curves for residential, commercial, industrial and cultural zones in Taipei City 

(Wang, 2003) 
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Figure 7 Flood damage map with 200-year return period  
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Table 6 Flood area with different depth of 200 year event in CTA 

Flood depth 

(m) 

Flooded area  (ha) Relative increase 

of flooded area  Baseline A1B scenario 

0.3-0.5 284.00 366.24 29% 

0.5-1.0 207.52 304.96 47% 

1.0-2.0 30.08 52.80 76% 

2.0-3.0 2.24 4.16 86% 

3.0+ 2.08 2.72 31% 

Total 525.92 730.88 39% 

Table 7 The Total direct flood damage with different return periods in CTA 

Return period 

( year) 

Total direct damage (million USD) Relative increase  

of damage Baseline A1B scenario 

10 32.5 44.7 38% 

25 63.4 92.7 46% 

100 135.7 198.1 46% 

200 194.6 279.4 44% 

5. CONCLUSIONS 

In the study, we compared the pluvial flooding extents and damage of the CTA under the baseline and 
the A1B climate scenarios. The hydraulic modelling was carried out by using the DHI MIKE FLOOD 
model, which integrates the 1D sewer network and the 2D overland flow models. The flood damage 
was evaluated using the hydraulic modelling results and the CORFU flood damage assessment tool. 
Rainfall events with different return periods for both the baseline and the A1B scenarios were adopted 
for modelling. The results show that the flooded area could be up by 40% and the damage would be 
37.5 – 45% more due to the increased rainfall due to the climate change. This methodology can be 
combined with envisaged changes in urbanisation and with any resilience measures, to analyse 
possible future impacts more comprehensively. 
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