
Theoretical motion functions for video analysis,
with a passive navigation example

Jacqueline Christmas
Computer Science Department, University of Exeter, Exeter, EX4 4QF, UK

Email: J.T.Christmas@exeter.ac.uk

Abstract—We introduce a method for estimating the motion of
an image field between two images, in which the displacement of
pixels between the images is specified by some theoretical motion
function of the spatial coordinates based on a small number of
parameters. The form of the function is selected to represent
the expected features of the class of problem and the values
of the parameters are estimated by considering the images as
a whole. The probability distributions of the parameters are
estimated through a Bayesian model that makes use of variational
approximation and importance sampling.

The method is demonstrated on a passive navigation problem,
with the theoretical motion based on the Focus of Expansion
model. The example video is taken from a car driving down a
country lane, so there are few, if any, distinctive features that
can be tracked. We show that even theoretical motion functions
that are gross simplifications of the true underlying motion are
able to give useful results.

I. INTRODUCTION

A collaborator recently posed an interesting question: can
we determine the path taken by a vehicle based only on video
footage taken by a single, monocular camera through the front
windscreen of that vehicle? It was not envisaged that the
location of the vehicle would be recognised, just the shape
of its track.

This is a passive navigation problem (see, for example, [1])
and is a specific example of the more general problem of
estimating the motion of, or in, an image field between two
images, perhaps between two adjacent frames of a video.

We describe a method inspired by the generalised cross-
correlation technique introduced by [2] (in the context of
Particle Image Velocimetry) where the displacement of pixels
between two images is specified by some theoretical motion
function of the spatial coordinates (or a set of such functions)
and a small number of parameters. The form of the function
is selected to represent the expected features of the class of
problem and the values of the parameters are estimated by
considering the images as a whole.

We choose to use a Bayesian model that learns from
the whole images. The form of the model is based on our
assumptions as to what type of flow we are expecting, and
smoothness in the way the variables change over time (i.e.
over the period of a video) is enforced by priors.

Particle Image Velocimetry is a widely-used method for
estimating the flows in fluids (and gases) by taking images
of tracer particles that have been distributed within the fluid
and analysing pairs of images to determine the motion of the
particles (e.g. [3,4]; see [5] for a comprehensive review).

Where the density of particles is low, individual particles
may be tracked between images, but then spatial information
about the flow is lost due to the gaps between particles. With a
higher density of particles less spatial information is lost, but
so is the ability to track individual particles and so statistical
methods must be used. The basis of the standard correlation-
based method [6] is that each of a pair of images is split into a
number of smaller, usually overlapping, interrogation windows
and spatial cross-correlation performed between windows in
the same location in each of the images for a range of offsets
in the horizontal and vertical directions. The offset that results
in the highest cross-correlation value is selected to represent
the mean flow for the window.

Clearly this method requires a trade-off between the size
of the interrogation windows and the magnitude of the dis-
placements between images. If a window is too small, then
there may be too few particles within it to estimate the flow,
or the particles may have moved out of the window during
the time interval between the images. If the window is too big
then only the average movement of the whole area is captured
and there is a loss of granularity in the flow estimation. To
mitigate this, gross flow is often calculated with relatively
large windows and then progressively smaller windows used
to refine the movements [7].

Apart from the interrogation window size selection and
trade-off, there are two further issues with the standard cross-
correlation technique. The first is that the type of transforma-
tion between windows is limited to a rigid translation; other
types of motion, such as rotation, must be inferred from the
range of translations over adjacent interrogation windows. The
second is that noise and localised feature sparsity may result
in adjacent windows being assigned significantly different
directions of flow where the true flow is actually smooth.

Optical flow [8,9] is a method that emerged from the
machine vision community. It determines the velocity field
between two images by conserving the brightness of all the
pixels and constraining the velocity field to be smooth through
a regularisation term.

Most often the motion estimation problem is split into two
stages. In the first stage, vectors that represent the motion of
different regions of the field of view are calculated, either
by point or feature pattern matching [10] or using optical
flow techniques [8]. In the second stage these collections of
two-dimensional vectors form the basis of the calculation of
the three-dimensional motion of the camera (e.g. [11,12]).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/43098084?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Often this motion is limited to translations and rotations (e.g.
[1]), but Lucas and Kanade [13] explicitly model affine trans-
formations, learning the transformation parameters through a
localised search based on minimising an error measure over
regions of interest. This work is extended by Bouguet [14]
who uses a hierarchy of region sizes to progressively hone the
parameter estimates.

In many applications, affine transformations are sufficient,
but our model allows for any form of motion, including,
for example, vortices or different regions of the image ex-
hibiting different forms of motion, and parameter estimation
is calculated in a single stage (though iteratively) based on
all pixels in the images, avoiding the problem of window
sizing. The model is Bayesian, providing us with a measure
of the certainty asociated with the parameter estimates. It is
demonstrated on a specific passive navigation problem, but it
generalises to a much wider set of problems and is not intended
to compete with, for example, simultaneous localisation and
mapping (SLAM) methods (e.g. [15]).

We introduce the general form of the new model in section
II and then, in section III provide a specific example of
determining the track of a car from a video recorded through
its front windscreen as it travels forwards down a country
lane. This is a challenging video as, while it is rich in texture,
it contains few, if any, uniquely identifiable features, showing
mostly natural objects like trees, bushes and grass. Conclusions
are drawn in section IV.

II. MODEL

Let us define the matrix Yn to be the nth image (of N in
total) in a video sequence, and yn to be the L-dimensional
vector obtained by stacking the columns of Yn.

The first step in defining the model is to decide a priori the
form of the theoretical motion function, F(·), that describes
the motion we anticipate seeing between two images. This
is a function of the spatial coordinates of each pixel, their
intensity, and a small number of coefficients that we collect
together into a single state variable, xn. If the data exactly fit
the model then, for each n > 1

Yn = F(Yn−1,xn) (1)

The aim of the model is to learn the state.
For example, if we anticipate that the motion between two

images, say Yn−1 and Yn, is a simple translation, then
the state, which we denote as xn, contains the translation
components in the horizontal and vertical directions, and the
function F(·) is constructed accordingly. If we anticipate a
rotation, then F(·) will be different and the state might contain
the angle and the coordinates of the centre of rotation.

Note that this function applies to the whole images, so
there is no concept of windowing and the function itself
determines the smoothness of the change in motion over space.
It is possible for the function to incorporate discontinuities
or different forms of motion in different areas of the image,
provided the number of coefficients (i.e. the size of the state
xn) remains small compared with the number of pixels.

In the perfect case the exact result in (1) will be true, but in
reality the presence of noise in the images and the likely over-
simplification in the form of F(·) will lead to a discrepancy
between Yn and F(Yn−1,xn). For convenience (unless we
know otherwise) we assume that this error is Gaussian, with
precision κn, so we define the likelihood as

p(yn |yn−1,xn,κn) = N (yn | f(yn−1,xn), κ−1
n I) (2)

where f(·) is the vector equivalent of the theoretical motion
function F(·).

A. Prior distributions
The form of the precision matrix (κ−1

n I) encodes our belief
that the noise distribution is the same across the whole image.
We define the prior for the precision variable κn to be the
conjugate Gamma distribution1:

p(κn) = G(κn |α, β) (3)

We do not know what the state is for the first image in a
sequence, but we expect it to change smoothly over the course
of a video. We encode this as Gaussian prior for the first state:

p(x1) = N (x1 | x̄, Λ̄
−1

) (4)

and a Gaussian transition prior for the remaining states, where
n > 1:

p(xn) = N (xn |xn−1,Λ
−1
n) (5)

The precision matrices for the states are assigned conjugate
Wishart priors (n > 1):

p(Λn) =W(Λn |W, ν) (6)

The values of the parameters α, β, x̄, Λ̄, W and ν may be
problem-specific and are discussed in the results section.

The object of the model is to learn the posterior distribution
of the state variables, i.e. p(xn |Y1:n) for each n > 1.

Note that this system has the form of a Kalman Filter [16],
but the facts that the likelihood is not a linear function of the
state and that the integrals required for Bayesian inference
are intractable lead us to use a combination of variational
approximation (for tutorials see [17,18] and [19, chapter 10])
and importance sampling (see, for example, [20]) to estimate
the forms and hyper-parameters of the posterior distributions
we are looking for. For clarity we assume a full factorisation
of the approximate posteriors.

B. Posterior distributions
With q(·) denoting an approximate posterior probability, and
〈·〉 a posterior expectation, the factorised variational approxi-
mation technique [21] results in the following expression for
the state:

log(q(xn)) = −1

2

(
xT〈Λn〉xn − 2xT

n〈Λn〉〈xn−1〉 (7)

+ 〈κn〉 f(yn−1,xn)T f(yn−1,xn)

− 2〈κn〉yT
n f(yn−1,xn)

)
+ constant

1defined as G(x | a, b) = ba

Γ(a)
xa−1 exp(−bx)

For the case where n = 1, 〈Λn〉 is replaced by Λ̄ and 〈xn−1〉
by x̄. This expression is a result of assuming that processing
is being performed online, i.e. it represents a forward sweep
through the video. If we wish to include a backward sweep
then (7) must also include a contribution from p(xn+1) =
N (xn+1 |xn,Λ

−1
n+1). The nature of f(yn−1,xn) is such that

we can calculate it computationally, but not analytically, so
(7) does not lead to a standard distribution in xn and so we
resort to importance sampling to estimate 〈xn〉 and 〈xnxT

n〉.
For the noise precision we get the following Gamma pos-

terior:

q(κn) = G(κn | a, bn) (8)

where

a = α+ L/2 (9)

bn = β +
1

2

(
yn − f(yn−1,xn)

)T(
yn − f(yn−1,xn)

)
(10)

and for the state precision we get the following Wishart
posterior:

q(Λn) =W(Λn |Ωn, ν + 1) (11)

where

Ωn =

(
〈xnxT

n〉+ 〈xn−1x
T
n−1〉 − 2〈xn〉〈xn−1〉T + W−1

)−1

(12)

Since each posterior distribution is dependent on the pos-
terior expectation of one or more of the other variables, the
hyper-parameters for each posterior are evaluated iteratively,
in the order shown above, until convergence.

III. DEMONSTRATION: PASSIVE TRACKING

From our own observations we know that if we travel
forwards in a straight line then perspective causes all the
elements in our forward field of view to appear to be moving
radially out from a single point, called the focus of expansion
(FoE). The radial velocity increases and decreases with the
vehicle’s velocity. Determining the location of the FoE has
again tended to be a two-step process of finding the flow
vectors and then estimating the location [22]–[24].

As the path taken by the vehicle bends to the left or right, the
FoE moves laterally, and as the vehicle follows the curving rise
and fall of a hill (or, if it has suspension, brakes or accelerates
sharply) the FoE moves vertically.

In this paper we use this simple premise to estimate the
vehicle’s track by locating the FoE and calculating the radial
velocity between each adjacent pair of images in a video
recorded through the front windscreen of a car that was driving
forwards down a lane. Figure 1 shows a selection of frames
taken from the video used in the experiments described in
this paper. Given what we know about how cars move (for
example, they have to turn corners, they cannot just shift
sideways) we expect the position of the FoE and the radial

Figure 1: Example frames (evenly spaced between, and in-
cluding, the first and last of the 1498 frames) from the video
used in the experiments described in section III.

velocity to change smoothly over time, and for the FoE to lie
within the field of view.

If the FoE has coordinates cn at time n, then a pixel at
position p is at a distance of

rn =
√

(p1 − cn,1)2 + (p2 − cn,2)2 (13)

from the FoE. In this example we model the distance that
the pixel “moves” between the two images as a simple linear
function of r:

dn = µnrn (14)

For this model the state is the vector

xn = (cn,1, cn,2, µn)T (15)

and the theoretical motion function F(·) results in a new image
where the pixel intensities in the original image have been
“moved” spatially away from the FoE according to the rules
given above.

This makes the gross simplification that a pixel’s apparent
motion is defined only by its distance from the FoE. A more
accurate model would need to take into account the distance
from the camera of the object that the pixel is representing.
But we will show that even this very simple model is able to
discover useful information.

Having defined our theoretical motion model, f(·), and the
structure of the state variable at the nth time interval, xn, we
next need to define the hyper-parameters of the priors.

Since the vehicle in question was a relatively slow-moving
VW Lupo and not, for example, a fighter jet, we expect the
FoE to be near the centre of the field of view, so we define x̄ to
represent the FoE at the coordinates of the centre of the image

Algorithm 1 Algorithm for estimating the state xn from
vectorised images yn and yn−1.

initialise prior parameters using (16)–(21)
initialise kn and Λn to their prior expectations
for i = 1 to maxIterations do

do importance sampling to estimate 〈xn〉 and 〈xnxT
n〉

calculate f(yn−1, 〈xn)〉
estimate posterior for κn using (8)-(10)
estimate posterior for Λn using (11)-(12)

end for

(which contains D1 pixels horizontally and D2 vertically), and
for the movement coefficient (µn) to be zero. Hence

x̄ = (
D1

2
,
D2

2
, 0)T (16)

The precision associated with this, Λ̄, is tight enough to keep
the FoE near the centre of the field of view, but loose enough
that it may not be exactly in the centre (if, as is the case in
the example video, the vehicle is already moving in the first
frame):

Λ̄ =

50−2 0 0
0 50−2 0
0 0 0.1−2

 (17)

For the noise precisions (the κn) we specify priors that
promote similarity between Yn and F(Yn−1,xn):

α = 1 (18)
β = 1 (19)

Finally, for the state transition precisions (the Λn, where n >
1)

W =

0.1 0 0
0 0.1 0
0 0 10

 (20)

ν = 3 (21)

Given a particular estimate of the state, xn, we may
calculate f(yn−1,xn) by (i) calculating the new coordinates of
each pixel in the Yn−1 image, and (ii) using two-dimensional
linear interpolation based on the new coordinates to calculate
the image intensities at the original coordinates.

Algorithm 1 shows the procedure for estimating the pos-
terior distributions of the model variables. In general the
iteration is performed until convergence; in these tests a fixed
number of 20 iterations was used. For the first iteration for
the first image pair in the sequence, 1000 samples are used in
the importance sampling; for each subsequent estimation only
50 are used.

Figure 2 shows a bleached version of the first image in the
sequence, overlaid with a plot showing how the FoE moves
over the course of the 1498 frames of the video. The mean
location horizontally is not at the centre of the image; this is
probably because although the camera was (by eye) aiming

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

Figure 2: A bleached version of the first image in the sequence,
overlaid (in black) with a plot showing an example of how
the FoE is tracked over the course of the video. The axes are
marked in pixels.

Google Maps

Figure 3: The estimated vehicle track (in white) plotted over
a map of the road travelled, with the true path shown as a
black dashed line, as calculated from the FoE motion shown
in figure 2.

forwards, it was located in front of the passenger seat on the
left-hand side of the vehicle.

We estimate the track of the vehicle from the set of states,
xn, by selecting a point at the bottom centre of the image,
with coordinates p = (D1

2 , D2)T, and using the distance of
this point from the FoE (rn) and the bearing of the FoE from
this point (θn),

rn =
√

(〈xn,1〉 − p1)2 + (〈xn,2〉 − p2)2 (22)

θn = atan2(〈xn,2〉 − p2, 〈xn,1〉 − p1) (23)

to calculate a value related to the vehicle’s speed (see (14)–
(15)):

δrn = −rn〈xn,3〉 (24)

The minus sign is because rn〈xn,3〉 is the radial velocity of
the scene away from the FoE, which means that the vehicle
is moving towards it.

−8000 −7000 −6000 −5000 −4000 −3000 −2000 −1000 0
−200

0

200

400

600

800

1000

1200

m
n

x

m
ny

Figure 4: Tracks estimated by multiple runs of the algorithm
against the same video. The black line is the same as that
shown in figure 3, for comparison. All the tracks have been
rotated by 270◦ (for comparison with the map) and start at
origin of the plot, but no scaling has been performed.

Using δrn and θn we may then estimate the vehicle’s track
in coordinates that are proportional to those of the map:

mx
n = δrn cos(θn) +

n−1∑
i=1

mx
i (25)

my
n = δrn sin(θn) +

n−1∑
i=1

my
i (26)

Figure 3 shows, in white, the track resulting from the FoE
movement shown in figure 2 (i.e. a plot of mx

n against my
n),

plotted over a map of the road along which the car travelled.
The black dashed line marks the road. The vehicle’s track has
been rotated by 270◦ and scaled linearly so that the start and
end points of the track coincide approximately with those of
the road segment. While the estimated track is by no means
a perfect fit to the truth, we can see that the essential features
have been identified: the bend near the left-hand end, the
longer smooth segment in the centre that curves slightly, and
then the hump at the right-hand end. Figure 4 compares the
tracks produced by five different runs of the program, showing
that, in general, the same track features are identified in each
case.

The distance travelled between each frame, and hence the
car’s speed, is related to the δrn. Figure 5 shows a plot of the
mean δrn over time for the same five runs of the program (the
black line), with the darker grey shading showing the range of
values. The vertical lighter grey bar marks the frames when a
rabbit runs in front of the car and is visible in the video. This
is immediately followed by an apparent sharp acceleration of
the vehicle. The driver did not react until the rabbit was very
close, at which point they braked sharply. This caused the car’s
nose to drop, and hence the FoE to rise, increasing the value

of rn. So the apparent sharp acceleration is most probably a
deceleration.

A. Different theoretical models

In all, four different FoE-based theoretical motion models
have been tested against this video:

1: δrn = µn,1rn (the original model) (27)
2: δrn = µn,1rn + µn,2 (28)
3: δrn = µn,1 (29)

4: δrn = µn,1 + µn,2rn + µn,2r
2
n (30)

Appropriate changes to the definitions xn and F(·) and the
corresponding diagonal elements of the prior for the Λn were
made. Figure 6 shows the tracks estimated by a single run for
each model, all rotated by 270◦ as before, but unscaled. Not
surprisingly, model 3 performs very badly, but the other three
models are capturing the essential features of the true track.

One way to determine which is the best model to use, of
a range of given models, is to look at the likelihood (2). The
probability p(Yn | F(Yn−1, 〈xn〉), 〈κn〉) was calculated for
each frame of the video and for each of the four potential
models shown in (27)-(30). Histograms of the resulting values
are plotted in figure 7, where the distributions show that model
3 gives the worst estimates, while model 2 gives the best.
Logically we might expect model 4 to perform at least as
well as model 3; because of the squared term in rn, very
small differences in the r2n coefficient will result in significant
differences in the calculation of δrn and it seems likely that
more samples would be required in the importance sampling
than have been used in these tests.

IV. CONCLUSIONS

The estimates of the state variables in the xn provide one
level of useful information, for example the vehicle’s track in
the previous section. Another level is obtained by removing
the motion predicted by the trained theoretical motion model
and inspecting the residuals. Figure 8 shows the residual flow
for one of the frames of the video, obtained by calculating
F(Yn−1, 〈xn〉) using the original theoretical motion model
described in section III, and then using PIVlab [25,26] (see
appendix) to determine the flow vectors. The vectors have been
scaled by a factor of 20 to make their directions more visible.
Now we can see that (i) the residual flow is in a generally
downward direction, implying perhaps that there has been a
translation of the whole image, (ii) the residual flow at the
top of the frame is towards the FoE, while that at the bottom
is away from it, and (iii) objects that are very close to the
vehicle have a greater radial velocity than is captured by the
theoretical model.

One way to build flexibility into this method is to specify a
theoretical motion model that captures a range of different
types of motion, for example including the possibility of
translation into the FoE model. For certain videos, one or more
of the variables included in the state might be unwarranted.
One way to suppress them would be to assign them automatic

0 500 1000 1500
0

2

4

6

8

10

12

14

16

18

frame number

δ
 r

n

Figure 5: The black line is the mean value for δrn for each frame across the five runs of the algorithm. The darker grey
shading represents the range of values for the five runs. The vertical, lighter grey band marks those frames where a rabbit runs
into the path of the car and is visible in the images. This is immediately followed by what appears to be a sharp acceleration;
see text for explanation.

−12000 −10000 −8000 −6000 −4000 −2000 0
−200

0

200

400

600

800

1000

1200

m
n

x

m
ny

δ r
n
 = µ

n,1
 r

n

δ r
n
 = µ

n,1
 r

n
 + µ

n,2

δ r
n
 = µ

n,1

δ r
n
 = µ

n,1
 + µ

n,2
 r

n
 + µ

n,3
 r

n

2

Figure 6: Tracks estimated by the four different theoretical
motion models in (27)-(30). The black line is the same as that
shown in figure 3, for comparison. All the tracks have been
rotated by 270◦ (for comparison with the map) and start at
origin of the plot, but no scaling has been performed.

relevance determination (ARD) priors [28,29] (see, for exam-
ple, [30]), which tends to try and constrain their values to
be close to zero (or some other value). In model 4 (29), for
example, using an ARD prior might constrain the coefficient
for the r2n term to be close to zero, and hence this model
might achieve the same results as model 2 (28) which does
not contain that term.

The iterative nature of this method, and its dependence on
calculating image transformations, means that it is unlikely
to be able to be run in real time. However, it is not limited
to the case of video/image analysis. The same method might
also, for example, be applied to the problem of matching the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−3

0

20

40

60

80

100

120

140

160

180

probability

c
o
u
n
t

δ r

n
 = µ

n,1
 r

n

δ r
n
 = µ

n,1
 r

n
 + µ

n,2

δ r
n
 = µ

n,1

δ r
n
 = µ

n,1
 + µ

n,2
 r

n
 + µ

n,3
 r

n

2

Figure 7: Histograms of p(Yn | F(Yn−1, 〈xn〉), 〈κn〉) for
each video frame for each of the models in (27)-(30), showing
that model 3 performs the least well and model 2 the best.

estimated vehicle track with true road segments. This raises
the possibility of post-processing a video to obtain a location
without identifying any actual features in the images; this is
particularly useful when unique features are absent, as in the
natural environment shown in the video used in this paper.

APPENDIX

PIVlab [25,26] is a Matlab application, with GUI, that uses
the cross-correlation method described in the introduction to
calculate the flow between two images; no programming is re-
quired. Version 1.32 of the software, with its standard settings,
was used for the analysis in this paper, which means that three
progressively smaller window sizes were used: 64 pixels, then
32, then 16, with step sizes of half the window sizes. The

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

Figure 8: A bleached version of the video frame, overlaid with vectors showing the residual flow obtained by removing the
gross motion estimated using the first theoretical motion model described in section III, and then using PIVlab [25,26] (see
text), to determine the flow vectors. The vectors have been scaled by a factor of 20 to make their directions more visible. The
ellipse represents the 90%confidence interval for the location of the centre of the FoE for this frame [27].

software is available from http://pivlab.blogspot.co.uk/ (last
accessed 15th January 2016).

REFERENCES

[1] C. Fermüller, “Passive navigation as a pattern recognition problem,”
International Journal of Computer Vision, vol. 14, pp. 147–158, 1995.

[2] M. Belmont and S. Jardon, “Generalised cross-correlation functions for
engineering applications. application to experimental data,” Experiments
in Fluids, vol. 29, pp. 461–467, 2000.

[3] R. Adrian, “Twenty years of particle image velocimetry,” Experiments
in Fluids, vol. 39, pp. 159–169, 2005.

[4] R. Adrian and J. Westerweel, Particle Image Velocimetry. Cambridge
University Press, Cambridge, UK, 2010.

[5] R. Adrian, “Multi-point optical measurements of simultaneous vectors
in unsteady flow - a review,” International Journal of Heat and Flow,
vol. 7, no. 2, pp. 127–145, 1986.

[6] C. Willert and M. Gharib, “Digital particle image velocimetry,” Exper-
iments in Fluids, vol. 10, pp. 181–193, 1991.

[7] J. Soria, “An investigation of the near wake of a circular cylinder
using a video-based digital cross-correlation particle image velocimetry
technique,” Experimental Thermal and Fluid Science, vol. 12, pp. 221–
233, 1996.

[8] B. Horn and B. Schunck, “Determining optical flow,” Artificial Intelli-
gence, vol. 17, no. 1, pp. 185–203, 1981.

[9] ——, “”determining optical flow”: a retrospective,” Artificial Intelli-
gence, vol. 59, pp. 81–87, 1993.

[10] J. Christmas, R. Everson, J. Bell, and C. Winlove, “Inexact Bayesian
point pattern matching for linear transformations,” Pattern Recognition,
vol. 47, no. 10, pp. 3265–3275, 2014.

[11] K. Daniilidis and M. Spetsakis, Visual Navigation. Lawrence Erlbaum
Associates, Hillsdale, NJ, 1996, ch. Understanding noise sensitivity in
structure from motion, pp. 61–88.

[12] A. Moemeni and E. Tatham, “Inertial-visual pose tracking using optical
flow-aided particle filtering,” in IEEE Symposium on Computational
Intelligence for Multimedia, Signal and Vision Processing (CIMSIVP),
2014, 2014.

[13] B. Lucas and T. Kanade, “An iterative image registration technique with
an application to stereo vision,” in Proceedings of the 7th International
Joint Conference On Artificial Intelligence (IJCAI), vol. 81, 1981, pp.
674–679.

[14] J.-Y. Bouguet, “Pyramidal implementation of the affine lucas kanade
feature tracker description of the algorithm,” Intel Corporation, Micro-
processor Research Labs, Tech. Rep., 1999.

[15] J. Civera, A. Davison, and J. Martı́nez Montiel, “Inverse depth
parametrization for monocular SLAM,” IEEE Transactions on Robotics,
vol. 24, no. 5, pp. 932–945, 2008.

[16] R. Kalman and R. Bucy, “New results in linear filter and prediction
theory,” Journal of Basic Engineering, vol. 83, pp. 95–108, 1961.

[17] M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul, “An introduction to
variational methods for graphical models,” Machine Learning, vol. 37,
no. 2, p. 183, 1999.

[18] H. Lappalainen and J. Miskin, Advances in Independent Component
Analysis. Berlin: Springer-Verlag, 2000, ch. Ensemble Learning, pp.
75–92.

[19] C. Bishop, Pattern Recognition and Machine Learning. New York:
Springer, 2006.

[20] J. Christmas, R. Everson, R. Rodriguez-Munoz, and T. Tregenza,
“Variational Bayesian tracking: whole track convergence for large scale
ecological video monitoring,” in Proceedings of the IEEE International
Joint Conference on Neural Networks (IJCNN), Dallas, TX, USA,
August 2013.

[21] H. Attias, “A variational Bayesian framework for graphical models,”
Advances in Neural Information Processing Systems, vol. 12, pp. 209–
215, 2000.

[22] S. Wang, S. Luo, Y. Huang, J. Zheng, P. Dai, and Q. Han, “Railroad

online: acquiring and visualizing route panoramas of rail scenes,” The
Visual Computer, vol. 30, no. 9, pp. 1045–1057, 2014.

[23] N. van der Stap, R. Reilink, S. Misra, I. Broeders, and F. van der
Heijden, “The use of the focus of expansion for automated steering
of flexible endoscopes,” in Proceddings of the Fourth IEEE RAS/EMBS
International Conference on Biomedical Robotics and Biomechatronics,
2012.

[24] A. Branca, E. Stella, and A. Distante, “Passive navigation using focus
of expansion,” in Proceedings 3rd IEEE Workshop on Applications of
Computer Vision, 1996 (WACV’96), 1996.

[25] W. Thielicke, “The flapping flight of birds - analysis and application,”
Ph.D. dissertation, Rijksuniversiteit Groningen, 2014.

[26] W. Thielicke and E. Stamhuis, “PIVlab - Time-Resolved Digital
Particle Image Velocimetry Tool for MATLAB, version 1.32,”
http://pivlab.blogspot.co.uk/, 2014, website last accessed 1st June 2014.
[Online]. Available: http://pivlab.blogspot.co.uk/

[27] V. Spruyt, “How to draw a covariance error ellipse?” April 2014, last
accessed 7 January 2016. [Online]. Available: http://www.visiondummy.
com/2014/04/draw-error-ellipse-representing-covariance-matrix/

[28] D. Mackay, “Bayesian non-linear modelling for the prediction competi-
tion,” ASHRAE Transactions, vol. 100, no. 2, pp. 1053–1062, 1994.

[29] R. Neal, “Bayesian learning for neural networks,” Ph.D. dissertation,
University of Toronto, Canada, 1995. [Online]. Available: http:
//www.cs.toronto.edu/∼radford/ftp/thesis.ps

[30] J. Christmas and R. Everson, “Robust autoregression: Student-t innova-
tions using variational Bayes,” IEEE Transactions on Signal Processing,
vol. 59, no. 1, pp. 48–57, Jan 2011.

