
1

Completely Pinpointing the Missing RFID Tags
in A Time-efficient Way

Xiulong Liu, Keqiu Li*, Geyong Min, Yanming Shen, Alex X. Liu, Wenyu Qu

Abstract—Radio Frequency Identification (RFID) technology has been widely used in the inventory management in many
scenarios, e.g., warehouses, retail stores, hospitals, etc. This paper investigates a challenging problem of complete identification
of missing tags in large-scale RFID systems. Although this problem has attracted extensive attention from academy and
industry, the existing work can hardly satisfy the stringent real-time requirements. In this paper, a Slot Filter-based Missing
Tag Identification (SFMTI) protocol is proposed to reconcile some expected collision slots into singleton slots and filter out the
expected empty slots as well as the unreconcilable collision slots, thereby achieving the better time-efficiency. We also present
the theoretical analysis of the system parameters to minimize the execution time of the proposed SFMTI. We then propose
a cost-effective method to extend SFMTI to the multi-reader scenarios. The extensive simulation results demonstrate that the
proposed SFMTI protocol outperforms the most promising Iterative ID-free Protocol (IIP) by reducing nearly 45% of the required
execution time, and is just within a factor of 1.18 from the lower bound of the minimum execution time.

Index Terms—RFID systems, Missing Tag, Complete Pinpointing, Time Efficiency, Optimization.

F

1 INTRODUCTION

COMPARED to the traditional barcode technology,
the newly emerging Radio Frequency Identifica-

tion (RFID) technology possesses many attractive ad-
vantages, e.g., (1) line of sight is not required for read-
ing; (2) multiple items can be read with a single scan;
(3) tags can be read from a relatively long distance.
As a result, RFID systems are being increasingly used
in various applications such as localization [1], [2],
[3], supply chain management [4], [5], [6], warehouse
management [7], [8], [9], etc. An RFID system usually
consists of RFID readers and a large number of tags.
RFID tags are labeled in designated objects where
each tag has a small size of memory to store its unique
ID and some other information (e.g., product price,
expiry date, personal information, etc). There are two
types of tags [10]: (1) passive tags that are powered up
by harvesting the radio frequency energy from readers
and have communication range often less than 20
feet; (2) active tags that have their own power sources
and have relatively longer communication ranges. A
reader has a dedicated power source with significant
computing power. It transmits a query to a set of tags,
and the tags respond over a shared wireless medium.

∙ X. Liu, K. Li and Y. Shen are with the School of Computer Science and
Technology, Dalian University of Technology, No 2, Linggong Road,
Dalian 116023, China. E-mail: keqiu@dlut.edu.cn.

∙ G. Min is with the Department of Computing, University of Bradford,
Bradford, BD7 1DP, United Kingdom. E-mail: G.Min@brad.ac.uk.

∙ Alex X. Liu is with the Department of Computer Science and Engi-
neering, Michigan State University, East Lansing, MI, U.S.A.. E-mail:
alexliu@cse.msu.edu.

∙ W. Qu is with the School of Information and Technology, Dalian Mar-
itime University, Dalian 116026, China. E-mail: eunice.qu@gmail.com.

This study investigates the challenging problem
of complete identification of missing tags in large-
scale RFID systems. For example, imagine a large
warehouse with tens of thousands of items (e.g., re-
frigerators, televisions, bicycles, etc.). One of the most
fundamental tasks is to monitor whether some items
are missing (due to management fault, theft, etc.). A
traditional method is to manually check them one by
one, which suffers two significant drawbacks. (1) Poor
accuracy: some items may be blocked behind others.
If a thief deliberately stolen some blocked items and
replaced back the items that were in front to conceal
this theft, the warehouse manager can hardly discover
that these items are missing. (2) Long checking interval:
obviously this manual checking process is seriously
laborious and thus cannot be conducted frequently
(the manager needs to have a rest after one checking).
The interval between any two checking processes is
usually long enough for the thief to escape. The thief
has already fled, even if the manager could find this
theft event. As an emerging technology, RFID could
be used in the above monitoring application (if an
RFID tag is missing, the corresponding bound item is
also treated as missing) to tackle these drawbacks of
the manual checking method. (1) RFID is a wireless
communication technology, it does not require the line
of sight. The presence of the tagged items can be
accurately checked even if they are blocked behind
other items. (2) This RFID-based monitoring processes
can be performed frequently, and the the interval of
any two consecutive checking processes can be as
short as possible. As a result, the theft event can be
discovered in time. Similar applications also exist in
other scenarios, e.g., retail stores, hospitals, prisons,
etc.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/43097888?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

Although this problem has attracted extensive at-
tention from academy and industry, the existing work
still can hardly satisfy the stringent real-time require-
ments. To the best of our knowledge, the most promis-
ing missing tag identification is the Iterative ID-free
Protocol (IIP) proposed in [8]. IIP is a variant of
Framed Slotted Aloha protocol. All the tags use their
IDs and a hash function to pseudo-randomly pick a
slot in the time frame to respond for announcing its
presence. Because the reader knows all the tag IDs as
well as the used hash function, it is able to predict
the empty slot that is expected to contain no tag
response; the singleton slot that is expected to contain
one and only one tag response; the collision slot that
is expected to contain two or more tag responses. In
fact, some of the tags may be missing, which makes it
possible that the actual status of a slot different from
its expected status. By comparing the observed slot
statuses with the expected statuses, the reader is able
to identify the missing tags. Specifically, if an expected
singleton slot turns out to be an empty one, the
reader asserts that the tag corresponding to this slot
is missing. However, the expected empty slots and
the expected collision slots are not used and wasted,
which decreases the efficiency of IIP. Although the
authors investigated a method [8] to turn some of
the expected collision slots into the expected singleton
slots in order to improve the efficiency of IIP, the effect
of collision reconcilement is limited (only a small
fraction of expected collision slots could be reconciled
into the singleton ones). Moreover, the deficiency due
to the expected empty slots are not noticed and still
wasted directly. According to the theoretical analysis
in [8], we find that the expected empty slots and
expected collision slots still account for nearly 48%.
That is, IIP is of low time-efficiency, and has a large
room to be improved.

To approach a real-time missing tag identification,
this paper proposes a Slot Filter-based Missing Tag
Identification (SFMTI) protocol, which possesses two
significant advantages over IIP. (1) a more effective
collision reconcilement method is investigated, which
can turn more collision slots into the expected sin-
gleton ones; (2) the expected empty slots and the
unreconcilable collision slots are filtered out and not
executed for time-efficiency. In the proposed SFMTI
protocol, all the executed slots are expected to be
singleton, and thus each of them is useful for the
missing tag identification. The above two advantages
precisely relieve the drawbacks of IIP. This paper
theoretically analyze the parameter settings to min-
imize the execution time of the proposed SFMTI. The
extensive simulation results demonstrate that this new
SFMTI protocol outperforms the most promising IIP
scheme by reducing 45% of the required execution
time.

The major contributions of this paper are summa-
rized as follows:

1) A new SFMTI protocol is proposed to efficiently
identify the missing tags, by reconciling collision
slots into the expected singleton slots; and filter-
ing out the expected empty slots as well as the
unreconcilable collision slots.

2) This paper theoretically analyzes the perfor-
mance of the proposed protocol, and optimizes
the parameter settings to achieve the best time-
efficiency.

3) A cost-effective method is proposed to extend
the SFMTI protocol to the multi-reader scenar-
ios, where the readers could perform the missing
tag identification in a parallel mode.

4) We conduct extensive simulation experiments to
evaluate the performance of the proposed proto-
col. The simulation results match well with the
analytical results, and demonstrate the proposed
protocol performs much better in terms of exe-
cution time than the currently most promising
protocol.

The rest of this paper is organized as follows. Sec-
tion 2 surveys the related work. Section 3 presents the
system model and problem description. The detailed
SFMTI protocol is presented in Section 4. Section 5
evaluates the performance of the SFMTI protocol.
Finally, Section 6 concludes this paper.

2 RELATED WORK

In the infancy stage of the RFID technology, the tag
collection problem attracted extensive attention, which
is to collect the IDs from a large number of tags
as quickly as possible. The solutions to tag collection
problem are generally classified into two categories:
Aloha-based protocols [11], [12], [13] and Tree-based
protocols [14], [15], [16].

The former works as follows. The reader first tells
the frame size 𝑓 and a random number 𝑅 to the tags in
its vicinity. Each tag then uses the received parameters
𝑓 , 𝑅 and its ID to select a slot in the frame by calculat-
ing a hash function ℎ(𝐼𝐷,𝑅) mod 𝑓 whose result is in
[0, 𝑓 − 1] following a uniform distribution. Then each
tag responds its ID in the selected slot. In any slot, if
one and only one tag responds, the reader ia able to
successfully get the ID information of that tag. This
type of slot is referred to as a singleton slot. An RFID
tag that is successfully collected in a singleton slot
will keep silent for the rest of the collection process.
If multiple tags simultaneously transmit their IDs in a
common collision slot, the responses are garbled due
to collision and thus retransmission is required. The
collection process does not terminate until all the tags
are collected.

On the other hand, a Tree-based protocol [14], [15],
[16], [17] organizes all IDs in a binary tree where the
height of this tree is equal to the length of a tag ID.
Each left branch of the tree is marked by ‘0’ and each
right branch by ‘1’. A reader first queries ‘0’ and all



3

the tags whose IDs start with ‘0’ respond. If result
of the query is a successful read (i.e., exactly one tag
responds) or an empty read (i.e., no tag responds), the
reader queries ‘1’ and all the tags whose IDs start with
‘1’ respond. If the result of the query is a collision, the
reader generates two new query strings by appending
a ‘0’ and a ‘1’ to the previous query string and queries
the tags with these new query strings. All the tags
whose IDs start with the new query string respond.
This process continues until all the tags have been
identified.

In recent years, RFID technology is widely used
in many monitoring applications, where the missing
tag problem is yet under-investigated by the research
community. The missing tag problem can be gen-
erally classified into two categories: (1) the missing
tag detection focuses on detecting whether any RFID
tags are missing instead of exactly identifying which
ones are missing. (2) the missing tag identification
concentrates on identifying the exact missing tags.

Obviously, the solutions to tag collection problem
can solve the missing tag problem by collecting all the
tag IDs and then comparing the collected IDs with
the ID information stored in the database. However,
these methods are seriously time-consuming because
of recollecting a large number of reductant IDs.

In order to efficiently address the problem of miss-
ing tag detection, Tan et al. proposed the Trust Reader
Protocol (TRP) to detect the missing-tag event with
a predefined probability 𝛼 when the number of the
missing tags exceeds 𝑚 (a tolerance threshold) [18]. To
improve the time-efficiency and energy-efficiency of
TRP, Luo et al. introduced the sampling idea, and thus
proposed the Efficient Missing-tag Detection (EMD)
protocol, where they used the detection result on
the sampled tags to probabilistically reflect the whole
intactness of RFID systems [19]. Based on their prior
work, Luo et al. proposed a multi-hash approach to
further improve the performance of the missing tag
detection protocol in [20]. The above schemes can only
detect the missing tag event but cannot exactly find
out which tags are missing and thus fails to provide
the details of the missing tags.

The problem of missing tag is also of great prac-
tical importance, and many efforts have been made
to address this problem. Unfortunately, the existing
solutions can hardly satisfy the stringent real-time
requirements. The most promising missing tag identi-
fication protocol is the Iterative ID-free Protocol (IIP)
proposed in [8]. Its basic principle has been described
in Section I, and its deficiency is also analyzed. In [21],
Zhang et al. investigated the problem of missing tag
identification in the multi-reader scenarios, where all
the readers perform synchronized and parallel scans.
The authors claimed that their best protocol (i.e.,
Protocol 3) reduces the time for identifying all the
missing tags by up to 75% in comparison to IIP. In fact,
the superiority of their protocol over IIP benefits from

the cooperation of the readers. In the single reader
scenarios (or in the scenarios where the number of
readers is small), IIP still runs faster than the Proto-
col 3 in [21].

3 SYSTEM MODEL AND PROBLEM DE-
SCRIPTION

3.1 System Model

We consider a large RFID system with a single reader
and 𝑁 tags where all the tags are within the inter-
rogating range of this reader. Please note that, for
the purpose of clarity, we first present the SFMTI
protocol in the case of a single reader and then extend
the use of this protocol in large-scale RFID systems
with multiple readers. The tag set is denoted as 𝑆𝑎𝑙𝑙,
i.e., 𝑆𝑎𝑙𝑙 = {𝑡1, 𝑡2, . . . , 𝑡𝑖, . . . , 𝑡𝑁}. Each tag, say 𝑡𝑖,
has a unique 𝐼𝐷𝑖 and is equipped with the same
uniform Hash generator 𝐻(⋅). The reader has access to
a database that stores the IDs of all tags. The reader
communicates with the central computer through a
high-speed network link.

3.2 Communication Overview

The reader continuously sends synchronization sig-
nals to create a slotted time frame. The interactive
communications are in the Reader Talks First (RTF)
mode [22], i.e., the reader queries the tags first, and a
tag picks a slot to respond according to the reader’s
commands. Li et al. classified the slots into three cat-
egories: tag slots, long-response slots and short-response
slots, based on their length [8]. The length of a tag
slot is denoted as 𝑡𝑡𝑎𝑔 , which allows the transmission
of a tag ID (96 bits), either from the reader to the
tags or from a tag to the reader. The length of a long-
response slot is denoted as 𝑡𝑙𝑜𝑛𝑔 , which can afford
transmitting a long response carrying 10 bits informa-
tion. The length of a short-response slot is denoted
as 𝑡𝑠ℎ𝑜𝑟𝑡, which allows the transmission of a short-
response carrying only one bit information. Based on
the specification of the Philips I-Code system [23], the
length 𝑡𝑡𝑎𝑔 of tag slot is set to 2.4 ms (including the
wait time between any two consecutive transmissions)
for transmission of a tag ID (96 bits) from a tag to a
reader or vice versa; the length 𝑡𝑙𝑜𝑛𝑔 and 𝑡𝑠ℎ𝑜𝑟𝑡 are set
to 0.8 ms and 0.4 ms, respectively [8].

3.3 Problem Statement

Some tags may be missing due to theft, management
fault, etc. We do not know which tags are missing or
even the number of the missing ones. The problem
addressed by this paper is to quickly identify all
the missing tags. Obviously, the execution time is
the most important performance metric for a missing
tag identification protocol. The used notations are
summarized in Table 1.



4

TABLE 1
Notations used in this paper.

Symbols Descriptions
𝑁 The number of tags in the system

𝑆𝑎𝑙𝑙 The set of all tags in the system
𝑆𝑚𝑖𝑠𝑠 The set of the missing tags
𝐼𝐷i The ID of Tag 𝑡i
𝑁∗ The number of the tags participating in the current round
𝑓 The length of the filter vector
𝜌 A variable given by 𝑁∗/𝑓
𝑅 The random number that is fresh in each round

𝐻(⋅) The Hash generator with a uniform random distribution
𝑒 The natural constant which is approximately equal to

2.71828
𝐶 The expected execution round count

4 THE PROPOSED SLOT FILTER-BASED
MISSING TAG IDENTIFICATION PROTOCOL

This section will first analyze the deficiency of two
typical solutions for identifying the missing tags,
which inspires the motivation and ideas of the pro-
posed SFMTI protocol. We will then present the
SFMTI protocol in detail and investigate how to op-
timize its parameter settings. After that we propose a
cost-effective method to extend the proposed SFMTI
protocol to the multi-reader scenarios.

4.1 Motivation
4.1.1 An Ideal Lower Bound
A widely accepted lower bound on the minimum
execution time for the problem of missing tag iden-
tification was given in [8], which is redescribed as
follows. All 𝑁 tags relay 1-bit short-responses one
after another to declare their presence. If the reader
does not receive a response as expected, the corre-
sponding tag must be missing. Clearly, one scanning
is adequate to verify the presence of all 𝑁 tags. If the
transmission of control information is not considered,
the execution time is 𝑁×𝑡𝑠ℎ𝑜𝑟𝑡, where 𝑡𝑠ℎ𝑜𝑟𝑡 is the time
for transmitting a 1-bit response. Although this lower
bound is unlikely to be achieved because the reader
has to transmit control information to coordinate the
protocol execution, it offers a guidance and also a
target for any missing tag identification protocols to
approach.

4.1.2 A Straightforward Polling Protocol
The most straightforward way for identifying the
missing RFID tags is a polling method [8]. As the
reader gets full knowledge of all the tag IDs stored
in a database, it could request the IDs one by one.
A tag responds a short-response if it finds that the
current request contains its ID information. Clearly,
if the reader receives a response as expected, the
requested tag must be present; otherwise, this tag is
missing. The execution time of this polling method is
𝑁 × (𝑡𝑡𝑎𝑔 + 𝑡𝑠ℎ𝑜𝑟𝑡), where 𝑡𝑡𝑎𝑔 is the time for transmit-
ting a tag ID. This polling method is far from the the

lower bound, and the key reason is that transmission
of IDs is extremely time-consuming.

4.1.3 The Most Promising Protocol
The most promising missing tag identification proto-
col is the Iterative ID-free Protocol (IIP) [8] which is a
variant of the classical Framed Slotted Aloha protocol.
IIP avoids the transmissions of IDs, which uses the
expected singleton slots to verify the presence of the
corresponding tags. Specially, if an expected singleton
slot turns out to be empty, the corresponding tag must
be missing.

However, according to the theoretical analysis
in [8], we find that the expected empty slots and the
expected collision slots in IIP account for nearly 48%,
which degrades its efficiency. Clearly, IIP still has a
large room to be improved. Comparing IIP with the
ideal lower bound, the gap between them is that IIP
contains a large proportion of expected empty slots
and collision slots. Hence, the key to approaching the
ideal lower bound is how to reduce (or eliminate) the
expected empty slots and collision slots, which is a
challenging issue.

4.2 Protocol Design
The proposed Slot Filter-based Missing Tag Identi-
fication (SFMTI) protocol possesses two main inno-
vation points: (1) reconciling some expected collision
slots into the expected singleton slots; (2) avoiding
the execution of the expected empty slots and the
unreconcilable collision slots, which precisely relieves
the drawbacks of IIP. The proposed SFMTI includes
multiple rounds, each of them consists of three stages:
(1) Collision Slot Reconciling stage, in which the reader
reconciles the expected collision slots and turns some
of them into the expected singleton ones; (2) Slot Fil-
tering stage, in which the reader creates a filter vector
to filter out the expected empty slots and the unrec-
oncilable collision slots. (3) Presence Verifying stage, in
which the tags that pick the expected singleton slots
respond shot-responses to announce their presence.
In a round, the presence of some tags are able to be
verified. SFMTI repeats for multiple rounds until all
the tags are verified. In what follows, we present this
protocol in detail.

4.2.1 Collision Slot Reconciling Stage
As aforementioned, the reader gets full knowledge of
the tag IDs. Then, it uses a uniform hashing function
𝐻(⋅) and a random number 𝑅1 to map all the IDs to a
filter vector, which contains 𝑓 elements, each element
corresponds to a slot. For example, a tag 𝑡𝑖 is mapped
to the 𝑠𝑡ℎ𝑖 element of the filter, where 𝑠𝑖 = 𝐻(𝐼𝐷𝑖, 𝑅1)
mod 𝑓 . As a result, there are generally three types
of slots: the expected empty slot, to which no tag is
mapped; the expected singleton slot, to which one and
only one tag is mapped; the expected collision slot, to



5

0 31 0 00 2 0 2

(a)

0 31 0 00 0 0 2

(b)

filter vector

filter vector appended vector

11 1

t1t t t t t t t2 3 4 5 6 7 8

t1t t t t t t t2 3 4 5 6 7 8

Fig. 1. An example of reconcilement of 𝑘-collision slots
(𝑘 = 2 or 3). (a) Mapping all the tags to a filter vector
with 𝑓 elements; (b) Relocating the tags confined in the
reconcilable collision slots.

which two or more tags are mapped. To mark these
3 types of slots, the length ℓ of each element in the
filter is at least 2 bits. For the clarity of description,
we assume ℓ = 2, i.e., each element in the filter vector
has 2 bits. Then the elements corresponding to the
expected empty slots are set to ‘0s’; the elements corre-
sponding to the expected singleton slots are set to ‘1s’.
Let 𝑘−collision slot denote the slot to which 𝑘 tags are
mapped at the same time. The elements correspond-
ing to the 2-collision slots and 3-collision slots are
set to ‘2s’, and ‘3s’, respectively. Intuitively, the larger
the 𝑘 is, the harder the collision reconcilement is. In
this paper, we do not try to reconcile the 𝑘−collision
slots (𝑘 ≥ 4), and the elements corresponding to these
collision slots are directly set to ‘0s’. The above process
is exemplified in Fig. 1 (a).

The reader generates another random number 𝑅2

to reconcile the 2-collision slots and 3-collision slots.
What is the collision reconcilement? For a certain 𝑘-
collision slot (𝑘 = 2 or 3), the reader uses the new
random number 𝑅2 to calculate 𝐻(𝐼𝐷,𝑅2) mod 𝑘 for
each tag confined in this slot, the hashing result is
within [0, 𝑘 − 1]. If each of the 𝑘 tags is hashed to a
unique number 𝑏 ∈ [0, 𝑘 − 1], we say this 𝑘-collision
slot is successfully reconciled; otherwise, this slot is
unreconcilable. This collision reconciling process is
exemplified in Fig. 1 (b). For example, tags 𝑡2, 𝑡3 and
𝑡5 are mapped to a 3-collision slot in Fig. 1 (a). By
performing 𝐻(𝐼𝐷,𝑅2) mod 3, 𝑡2 is hashed to 1; 𝑡3
is hashed to 0; 𝑡5 is hashed to 2; they are hashed to
different 𝑏 ∈ [0, 2]—this 3-collision slot is successfully
reconciled. Another example: tags 𝑡4 and 𝑡6 confined
in a 2-collision slot are hashed to the same number
𝑏 ∈ [0, 1] by performing 𝐻(𝐼𝐷,𝑅2) mod 2—this 2-
collision slot is unreconcilable. The elements corre-
sponding to the unreconcilable collision slots are re-set
to ‘0s’.

How to relocate the tags in the reconcilable 𝑘-collision

slot? Obviously, the reader is able to know which 𝑘-
collision slots (𝑘 = 2 or 3) are reconcilable. For an
arbitrary reconcilable 𝑘-collision slot, let 𝜆2 denote the
number of reconcilable 2-collision slots preceding it;
similarly, let 𝜆3 denote the number of reconcilable 3-
collision slots preceding it. Clearly, the 𝑘 tags con-
fined in this reconcilable 𝑘-collision slot are hashed
to different 𝑏 ∈ [0, 𝑘 − 1]. The tag that is hashed to
0 still stays in this slot; and the tag that is hashed to
𝑏 ∈ [1, 𝑘 − 1] is relocated to the [(𝜆2 × 1 + 𝜆3 × 2) + 𝑏]𝑡ℎ

slot in the appended vector—the appended vector is a
vector with dynamic length appended to the tail of the
filter vector. As exemplified in Fig. 1 (b), for the first
reconcilable 3-collision slot, 𝑡3 is hashed to 0 when
reconciling, so it still stays in this slot; 𝑡2 is hashed to
1, then it is relocated to the 1𝑠𝑡 slot in the appended
vector; 𝑡5 is hashed to 2, then it is relocated to the
2𝑛𝑑 slot in the appended vector. Another example is
given in the following. For the second reconcilable
collision slot (a 2-collision slot), 𝑡8 is hashed to 0 when
reconciling, then it still stays in the original slot; 𝑡7 is
hashed to 1, and because there is one reconcilable 3-
collision slot preceding this slot, then it is relocated to
the (1×2+1)𝑡ℎ slot (i.e., the 3𝑟𝑑 slot) in the appended
vector.

4.2.2 Slot Filtering Stage
Recall that the elements in the filter vector corre-
sponding to the unreconcilable collision slots are re-
set to ‘0s’. As a result, each of the non-zero elements
in the filter vector represents either an expected sin-
gleton slot or a reconcilable 𝑘-collision slot (𝑘 = 2
or 3). Let 𝜒 denote the number of all non-zero ele-
ments in the filter vector. In the next stage, only the
slots corresponding to non-zero elements in the filter
vector and in the appended vector are executed. The
expected empty slots, the 𝑘-collision slots (𝑘 ≥ 4)
and the unreconcilable 𝑘-collision slots (𝑘 = 2 or 3)
that correspond to ‘0s’ in the filter vector are directly
skipped, namely, filtered out.

4.2.3 Presence Verifying Stage
The reader broadcasts the parameters 𝑅1, 𝑅2, 𝑓 , 𝜒 ,
and the filter vector to the tags. Each tag, say 𝑡𝑖, first
uses the received parameters and its ID to calculate
𝑠
′𝑡ℎ
𝑖 = 𝐻(𝐼𝐷𝑖, 𝑅1) mod 𝑓 . When receiving the filter

vector broadcasted by the reader, tag 𝑡𝑖 records the
number of ‘1s’, ‘2s’, and ‘3s’ preceding the 𝑠

′𝑡ℎ
𝑖 ele-

ment in the filter vector, denoted as 𝜒𝑖1, 𝜒𝑖2 and 𝜒𝑖3,
respectively. After receiving the 𝑠

′𝑡ℎ
𝑖 element, it checks

the 𝑠
′𝑡ℎ
𝑖 element. Then, it picks a slot to respond based

on the following rules:
1) If the 𝑠

′𝑡ℎ
𝑖 element is ‘1’, which means that 𝑡𝑖

selects an expected singleton slot, it will respond
in the (𝜒𝑖1 + 𝜒𝑖2 + 𝜒𝑖3 + 1)𝑡ℎ slot.

2) If the 𝑠
′𝑡ℎ
𝑖 element is ‘2’, which means that

𝑡𝑖 selects a reconcilable 2-collision slot, then it



6

calculates 𝐻(𝐼𝐷𝑖, 𝑅2) mod 2. (i) If the hashing
result of 𝐻(𝐼𝐷𝑖, 𝑅2) mod 2 is 0, it will respond
in the (𝜒𝑖1 + 𝜒𝑖2 + 𝜒𝑖3 + 1)𝑡ℎ; (ii) if the hashing
result of 𝐻(𝐼𝐷𝑖, 𝑅2) mod 2 is 1, it will respond
in the (𝜒+ 𝜒𝑖2 + 𝜒𝑖3 × 2 + 1)𝑡ℎ slot.

3) If the 𝑠
′𝑡ℎ
𝑖 element is ‘3’, which means that

𝑡𝑖 selects a reconcilable 3-collision slot, then it
calculates 𝐻(𝐼𝐷𝑖, 𝑅2) mod 3. (i) If the hashing
result of 𝐻(𝐼𝐷𝑖, 𝑅2) mod 3 is 0, it will respond
in the (𝜒𝑖1+𝜒𝑖2+𝜒𝑖3+1)𝑡ℎ slot; (ii) if the hashing
result of 𝐻(𝐼𝐷𝑖, 𝑅2) mod 3 is 1, it will respond
in the (𝜒 + 𝜒𝑖2 + 𝜒𝑖3 × 2 + 1)𝑡ℎ slot; (iii) if the
hashing result of 𝐻(𝐼𝐷𝑖, 𝑅2) mod 3 is 2, it will
respond in the (𝜒+ 𝜒𝑖2 + 𝜒𝑖3 × 2 + 2)𝑡ℎ slot.

4) If the 𝑠
′𝑡ℎ
𝑖 element is ‘0’, which means that (i) 𝑡𝑖

selects an unreconcilable 𝑘-collision slot (𝑘 = 2
or 3); or (ii) 𝑡𝑖 selects a 𝑘-collision slot (𝑘 ≥ 4),
which is hard to reconcile and is directly aban-
doned in this paper. As a result, tag 𝑡𝑖 will not
respond in this round.

Because all the used parameters and the hashing
function 𝐻(⋅) are shared by the reader and all the
tags, the reader is able to predict all the decisions of
tags. Clearly, all the executed slots are expected to be
the singleton slots. If the reader does not receive a
response in a slot as expected, the tag corresponding
to this slot must be missing.

In this round, the presence of the tags that pick
the expected singleton slots or reconcilable collision
slots can be verified, and they will not participate
the following rounds. As illustrated in Fig. 1 (b), all
tags excluding 𝑡4 and 𝑡6 can be verified. However,
tags 𝑡4 and 𝑡6 can not be verified because they pick
an unreconcilable collision slots. As aforementioned,
SFMTI repeats for multiple rounds until the presence
of all tags are verified.

Note that the filter vector broadcasted in the third
stage may be too long to be transmitted in one tag
slot (i.e., 𝑡𝑡𝑎𝑔). To address this problem, the long filter
vector is divided into multiple segments of 96-bits to
be sequentially transmitted in multiple tag slots [8].

4.3 Determining the Optimal Filter Vector Length

In what follows, we present how to choose the opti-
mal filter vector length 𝑓 in order to achieve the best
time-efficiency. In an arbitrary round of executing the
SFMTI protocol, let 𝑁∗ denote the number of tags that
are not verified and will participate in this round.

For a certain element in the filter vector, the corre-
sponding slot can be used only if (1) it is an expected
singleton slot; or (2) it is a reconcilable 2-collision
slot; or (3) it is a reconcilable 3-collision slot. Let
𝑃1, 𝑃2, 𝑃3 denote the probability that this slot is an
expected singleton slot, is a reconcilable 2-collision
slot, is a reconcilable 3-collision slot, respectively. They
are given as follows:

𝑃1 =

(
𝑁∗

1

)
× 1

𝑓
× (1− 1

𝑓
)𝑁

∗−1

≈ 𝑁∗

𝑓
× 𝑒

−𝑁∗−1
𝑓

≈ 𝜌𝑒−𝜌,

(1)

where 𝑁∗
𝑓 is denoted as 𝜌 for the clarity. Note that,

because the length 𝑓 of the filter vector is usually
very large, (1 − 1

𝑓 )
𝑁∗−1 is approximated to 𝑒−

𝑁∗−1
𝑓

in Eq. (1).
If this slot is a 𝑘-collision slot (𝑘 = 2 or 3), the

probability that it can be successfully reconciled is 𝑘!
𝑘𝑘 .

Then, we have:

𝑃2 = [

(
𝑁∗

2

)
× (

1

𝑓
)2 × (1− 1

𝑓
)𝑁

∗−2]× 2!

22

≈ 𝑁∗(𝑁∗ − 1)

4𝑓2
× 𝑒

−𝑁∗−2
𝑓

≈ 1

4
𝜌2𝑒−𝜌,

(2)

𝑃3 = [

(
𝑁∗

3

)
× (

1

𝑓
)3 × (1− 1

𝑓
)𝑁

∗−3]× 3!

33

≈ 𝑁∗(𝑁∗ − 1)(𝑁∗ − 2)

27𝑓3
× 𝑒

−𝑁∗−3
𝑓

≈ 1

27
𝜌3𝑒−𝜌,

(3)

There are 𝑓 elements (i.e., slots) in the filter vector,
each having the probability 𝑃1 to be an expected
singleton slot; having the probability 𝑃2 to be a rec-
oncilable 2-collision slot; having the probability 𝑃3 to
be a reconcilable 3-collision slot. Let ℵ1, ℵ2, ℵ3 denote
the expected number of singleton slots, reconcilable 2-
collision slot, reconcilable 3-collision slot, respectively.
We have:

ℵ1 = 𝑓 × 𝑃1 ≈ 𝑓 × 𝜌𝑒−𝜌

ℵ2 = 𝑓 × 𝑃2 ≈ 𝑓 × 1

4
𝜌2𝑒−𝜌

ℵ3 = 𝑓 × 𝑃3 ≈ 𝑓 × 1

27
𝜌3𝑒−𝜌

(4)

Note that, each reconcilable 𝑘-collision slot (𝑘 = 2
or 3) is reconciled into 𝑘 singleton slots finally. As
a result, ℵ1 + 2ℵ2 + 3ℵ3 expected singleton slots are
achieved. We use 𝑇 to denote the execution time of
this round, which includes the time for transmitting
the filter vector (2𝑓 bits) and the ℵ1+2ℵ2+3ℵ3 short-
response slots. Hence, 𝑇 is given as follows:

𝑇 = ⌈2𝑓
96

⌉ × 𝑡𝑡𝑎𝑔 + (ℵ1 + 2ℵ2 + 3ℵ3)× 𝑡𝑠ℎ𝑜𝑟𝑡 (5)

Since each of the ℵ1 +2ℵ2 +3ℵ3 singleton slots can
be used to verify the presence of a tag, the number of
tags that can be verified in this round, denoted as ℜ,
can be given as follows:

ℜ = ℵ1 + 2ℵ2 + 3ℵ3 (6)



7

0.5 1 1.5 2 2.5 3 3.5 4

0.46

0.48

0.5

0.52

0.54

0.56
A

ve
ra

ge
 ti

m
e 

in
 m

ill
ise

co
nd

s

ρ

Fig. 2. The average execution time for verifying a tag
with respect to 𝜌.

According to Eqs. (5) and (6), the average time for
verifying the presence of one tag is given as follows:

𝑇

ℜ =
⌈ 2𝑓
96
⌉ × 𝑡𝑡𝑎𝑔 + (ℵ1 + 2ℵ2 + 3ℵ3)× 𝑡𝑠ℎ𝑜𝑟𝑡

ℵ1 + 2ℵ2 + 3ℵ3

=
⌈ 2𝑓
96
⌉ × 𝑡𝑡𝑎𝑔 + (𝑓𝜌𝑒−𝜌 + 1

2
𝑓𝜌2𝑒−𝜌 + 1

9
𝑓𝜌3𝑒−𝜌)× 𝑡𝑠ℎ𝑜𝑟𝑡

𝑓𝜌𝑒−𝜌 + 1
2
𝑓𝜌2𝑒−𝜌 + 1

9
𝑓𝜌3𝑒−𝜌

≈
𝑡𝑡𝑎𝑔

48
+ (𝜌𝑒−𝜌 + 1

2
𝜌2𝑒−𝜌 + 1

9
𝜌3𝑒−𝜌)× 𝑡𝑠ℎ𝑜𝑟𝑡

𝜌𝑒−𝜌 + 1
2
𝜌2𝑒−𝜌 + 1

9
𝜌3𝑒−𝜌

,

(7)
where 𝑡𝑡𝑎𝑔 = 2.4𝑚𝑠 and 𝑡𝑠ℎ𝑜𝑟𝑡 = 0.4𝑚𝑠. As illustrated

in Fig. 2, the average time spent per tag, 𝑇
ℜ , is a

function of 𝜌. To achieve the best time-efficiency, we
need to minimize 𝑇

ℜ in Eq. (7). Hence, we get its
derivative as follows:

(
𝑇

ℜ )′ =
− 𝑡𝑡𝑎𝑔

48
× 𝑒−𝜌 × (1− 1

6
𝜌2 − 1

9
𝜌3)

(𝜌𝑒−𝜌 + 1
2
𝜌2𝑒−𝜌 + 1

9
𝜌3𝑒−𝜌)2

(8)

It is easy to get a 𝜌0 to satisfy the (𝑇ℜ )
′ = 0 in

Eq. (8). Clearly, (𝑇ℜ )
′ is larger than 0 when 𝜌 > 𝜌0;

and (𝑇ℜ )
′ is smaller than 0 when 𝜌 < 𝜌0. That is, 𝑇

ℜ
is minimized when 𝜌 = 𝜌0, where 𝜌0 ≈ 1.68 and the
average execution time per tag, 𝑇

ℜ , is approximately
equal to 0.474𝑚𝑠 . Clearly, 𝑇

ℜ only depends on 𝜌 (i.e.,
the ratio 𝑁∗

𝑓 ) instead of 𝑁∗. Hence, if we set 𝜌 = 1.68

(i.e., 𝑓 = 𝑁∗
1.68 ) for all rounds, the average execution

time spent to verify a tag becomes a constant 0.474𝑚𝑠
across all the rounds of SFMTI. As a result, the
execution time of the proposed SFMTI is 0.474𝑁𝑚𝑠,
where 𝑁 is the number of all tags that need to be
monitored.

4.4 Estimating The Expected Execution Round
Count 𝐶

In the previous subsection, we have investigated the
optimal length 𝑓 of the filter vector in each round. The
filter vector length 𝑓 is optimized to 𝑁∗

1.68 (i.e., 𝜌 = 1.68)

in an arbitrary round, where 𝑁∗ is the number of tags
that participate in this round. Under this condition,
we estimate how many rounds the SFMTI protocol
needs to execute to verify the presence of all RFID
tags.

Let 𝜃 denote the ratio of the tags that can be verified
in an arbitrary round. According to Eqs. (4) and (6),
𝜃 is given as follows:

𝜃 =
ℜ
𝑁∗ =

ℵ1 + 2ℵ2 + 3ℵ3

𝑁∗

= 𝑒−𝜌(1 +
1

2
𝜌+

1

9
𝜌2),

(9)

where 𝜌 = 1.68. That is, the ratio 𝜃 of the tags that can
be verified in this round is a constant. The other 1− 𝜃
of the 𝑁∗ tags cannot be verified and will participate
in the next round. It is easy to know that the number
of tags that participate in the 𝐶𝑡ℎ round is 𝑁 × (1 −
𝜃)𝐶−1 (expectation value). Using the knowledge that
this value is a positive integer, we get the following
inequality:

𝑁 × (1− 𝜃)𝐶−1 ≥ 1 (10)

By solving Eq. (10), we get 𝐶 ≤ 𝑙𝑜𝑔(1−𝜃)(
1
𝑁 )+1, where

𝜃 is a constant given in Eq. (9). That is, the execution
round count of SFMTI is bounded by 𝑙𝑜𝑔(1−𝜃)(

1
𝑁 )+1.

4.5 Extension: Considering Multiple Readers
In this subsection, we propose an effective method to
extend SFMTI for the use in the multi-reader scenar-
ios. Considering 𝜂 readers are deployed in a large-
scale area, and they are denoted as 𝑟𝑖∣𝑖 ∈ [1, 𝜂]. We
assume all the tags are uniformly placed and covered
by at least one reader, the tag set covered by reader
𝑟𝑖 is denoted as 𝛾𝑖. obviously 𝛾1

∪
𝛾2

∪
, ⋅ ⋅ ⋅,∪ 𝛾𝜂 =

𝑆𝑎𝑙𝑙 − 𝑆𝑚𝑖𝑠𝑠; and 𝑆𝑚𝑖𝑠𝑠 = ∅ when no tag is missing.
Note that, if the adjacent readers simultaneously inter-
rogate the overlapped tags, reader-collision will occur.
In [24], Yang et al. investigated a protocol stack named
Season to solve this reader-collision problem. Briefly,
an identification procedure is splitted into two phases.
In Phase-I, the system identifies all non-contentious
tags. This phase is called Shelving Interference. In
Phase-II, neighboring readers jointly and collabora-
tively identify contentious tags. This phase is called
Joint Identification. Due to the limitation of space, we
do not discuss this issue in detail.

In the multi-reader scenarios, how to let a reader
know which tags are confined in its interrogating
range is a challenging issue. Fortunately, this can
be achieved using the well-known Bloom filter [25],
[26] technique. A Bloom Filter is a data structure
that probabilistically represents a set of 𝑛 elements
𝑌 = {𝑦1, 𝑦2, ⋅ ⋅ ⋅, 𝑦𝑛}, which can be used to test set
membership. Specially, each of the 𝑛 elements in this
set is compressed into a Bloom filter vector with 𝑤 bits
using 𝑘 hashing functions ℎ1, ℎ2, ⋅ ⋅ ⋅, ℎ𝑘. A bit in the
vector is set to ‘1’ if at least one element is hashed to
that index in the vector. If we want to check whether
a given element 𝑦 belongs to the set 𝑌 , we compute



8

ℎ1(𝑦), ℎ2(𝑦), ⋅ ⋅ ⋅, ℎ𝑘(𝑦) and assert 𝑦 ∈ 𝑆 if and only if
all these 𝑘 bits are ‘1s’ in the vector; otherwise, 𝑦 ∕∈ 𝑌 .
Yue et al. leveraged the synchronized physical layer
transmissions to distributively construct the desired
Bloom filter, which represents the tag set in the vicin-
ity of a reader [27]. Using the constructed Bloom filter
to test the membership of all the IDs in the database,
an arbitrary reader, say 𝑟𝑖, is expected to learn that
∣𝛾𝑖∣+𝑝×(𝑁−∣𝛾𝑖∣) tags are within interrogating range,
where 𝑝 is the false positive probability. We denote
this tag set as 𝛾𝑖, and it is available to the reader
𝑟𝑖. It then executes the SFMTI protocol using 𝛾𝑖 as
the input, and returns the missing tag set 𝑆𝑖. In other
words, 𝛾𝑖 − 𝑆𝑖 is the actual tag set within the range
of reader 𝑟𝑖. It is easy to known that

∪𝜂
𝑖=1(𝛾𝑖 − 𝑆𝑖)

is the set of all present tags in the system. Thus,
𝑆𝑎𝑙𝑙 −

∪𝜂
𝑖=1(𝛾𝑖 − 𝑆𝑖) is the final set of missing tags.

The execution time of the this parallelizing method
consists of two parts: (1) the time for constructing the
Bloom filter distributively; (2) the time for executing
the SFMTI protocol in a parallel mode. For an arbi-
trary reader 𝑟𝑖, its execution time for constructing the
Bloom filter is − ∣𝛾𝑖∣×𝑙𝑛𝑝

(𝑙𝑛2)2 × 𝑡𝑏𝑖𝑡 ms, where 𝑡𝑏𝑖𝑡 is the
time (in milliseconds) for transmitting a bit, according
to [27]. And the execution time of SFMTI is about
0.474 × (∣𝛾𝑖∣ + 𝑝 × (𝑁 − ∣𝛾𝑖∣)) ms. The total execution
time for 𝑟𝑖 is 𝑇𝑟𝑖 = − ∣𝛾𝑖∣×𝑙𝑛𝑝

(𝑙𝑛2)2 × 𝑡𝑏𝑖𝑡+0.474(∣𝛾𝑖∣ + 𝑝 ×
(𝑁 − ∣𝛾𝑖∣)) ms. We need to optimize the false positive
𝑝 to minimize this execution time. By setting its
derivative (𝑇𝑟𝑖)

′ = 0, we get 𝑝 = ∣𝛾𝑖∣×𝑡𝑏𝑖𝑡
0.474×(𝑙𝑛2)2(𝑁−∣𝛾𝑖∣) .

Moreover, when 𝑝 > ∣𝛾𝑖∣×𝑡𝑏𝑖𝑡
0.474×(𝑙𝑛2)2(𝑁−∣𝛾𝑖∣) , (𝑇𝑟𝑖)

′ > 0;
when 𝑝 < ∣𝛾𝑖∣×𝑡𝑏𝑖𝑡

0.474×(𝑙𝑛2)2(𝑁−∣𝛾𝑖∣) , (𝑇𝑟𝑖)
′ < 0. Hence, the

execution time 𝑇𝑟𝑖 is minimized when 𝑝 is configured
to ∣𝛾𝑖∣×𝑡𝑏𝑖𝑡

0.474×(𝑙𝑛2)2(𝑁−∣𝛾𝑖∣) . And the global execution time
is the largest execution time of all readers. Note
that, there is a problem that the actual set 𝛾𝑖 of
tags that are covered by reader 𝑟𝑖 is not available in
prior. Fortunately, we do not need to know exactly
which tags are within 𝑟𝑖; we only need its num-
ber ∣𝛾𝑖∣, which could be roughly approximated by
𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑐𝑟𝑒𝑎𝑔𝑒 𝑜𝑓 𝑟𝑖 × 𝑇𝑎𝑔 𝐷𝑒𝑛𝑠𝑖𝑡𝑦.

5 PERFORMANCE EVALUATION

This section will evaluate the performance of the
proposed SFMTI protocol. For fair comparison with
the most compromising protocol, we adopt the same
settings of simulation parameters as IIP [8]. We con-
sider a error-free communication channel and simulate
a single reader in the experiments unless otherwise
specified. In the Presence Verifying Stage stage, trans-
mission of each segment (96 bits) of the filter vector
takes a tag slot (i.e., 𝑡𝑡𝑎𝑔 = 2.4 𝑚𝑠). And it takes each
tag a short-response slot (i.e., 𝑡𝑠ℎ𝑜𝑟𝑡 = 0.4 𝑚𝑠) to relay
a 1-bit response to the reader for declaring itself. We
run each simulation 1000 times and gather the average
experimental results.

5.1 Validate the Optimal Length 𝑓 of the Filter
Vector

In this set of simulations, we validate the optimal
length 𝑓 of the filter vector, which is the most im-
portant parameter setting in the proposed SFMTI
protocol. In Section 4.3, we have proven that the filter
length 𝑓 should be set to 𝑁∗

1.68 in each round (i.e.,
𝜌 = 𝑁∗

𝑓 = 1.68). In our simulations, we vary the pa-
rameter 𝜌 from 0.5 to 4, and record the corresponding
average execution time per tag. Fig. 3 shows that the
simulation results well match the analytical results.

0.5 1 1.5 2 2.5 3 3.5 4

0.46

0.48

0. 5

0.52

0.54

0.56

 

 

Theoretical line

Simulation results

A
ve

ra
ge

 ti
m

e 
in

 m
ill

ise
co

nd
s

ρ

Fig. 3. Fix the number 𝑁 of all the RFID tags to 10,000,
and vary the parameter 𝜌 = 𝑁∗

𝑓 from 0.5 to 4, where
𝑁∗ indicates the number of tags that participate in
an arbitrary round, and 𝑓 indicates the length of filter
vector in the corresponding round.

5.2 Validate the Execution Round Count 𝐶

In Section 4.4, we have theoretically analyzed the
expected execution round count 𝐶 SFMTI needs to
execute so as to verify all RFID tags. Theoretically, the
execution round count 𝐶 is bounded by 𝑙𝑜𝑔(1−𝜃)(

1
𝑁 )+

1, where 𝑁 is the number of tags and 𝜃 can be got
according to Eq. (9). In this set of simulations, we
validate the expected round count of SFMTI, where
we fix the parameter 𝜌 to 1.68 (i.e., the optimal value)
and vary the number 𝑁 of tags from 10, 000 to 50, 000.
The simulation results in Table 2 demonstrate that
the execution round count (average) of the proposed
SFMTI protocol is well bounded by 𝑙𝑜𝑔(1−𝜃)(

1
𝑁 ) + 1.

TABLE 2
Validate the execution round count 𝐶, with the number

𝑁 of tags varying from 10,000 to 50,000.

𝑁 10,000 20,000 30,000 40,000 50,000
Theoretical Round Count 18.9 20.3 21.1 21.7 22.1
Simulation Round Count 16.5 17.9 18.6 19.2 19.7



9

TABLE 3
The execution time with respect to the number 𝑁 of tags.

N Execution time (s)
BTP EDFSA IIP SFMTI Lower Bound

5000 40.02 38.68 4.37 2.36 2.00
10000 80.87 77.15 8.68 4.73 4.00
20000 162.04 157.23 17.29 9.47 8.00
30000 242.93 231.94 25.97 14.21 12.00
40000 324.21 311.41 34.58 18.95 16.00
50000 404.46 387.80 43.21 23.69 20.00

5.3 Execution Time

The most important performance criterion for the
problem of missing tag identification is the required
execution time. We mainly compare the proposed
SFMTI protocol with the currently most promising IIP
protocol [8]. As the solutions to tag-collection prob-
lem can also be used to identify the missing tags,
we compare the SFMTI with the well-known tag-
collection protocols, including the Enhanced Dynamic
Framed Slotted ALOHA (EDFSA) [13] and the Bi-
nary Tree Protocol (BTP) [14]. The number of tags,
𝑁 , increases from 5, 000 to 50, 000. Table 3 lists the
execution time required by these protocols, respec-
tively. The simulation results reveal that the proposed
SFMTI protocol performs much better than BTP and
EDFSA. For example, when 𝑁 = 50, 000, the execution
time of the BTP and EDFSA is 404.46 and 387.80
seconds, respectively. However, the execution time of
the SFMTI protocol is just 23.69 seconds, representing
94.1% and 93.9% reduction when compared with the
BTP and EDFSA. In comparison with IIP, the SFMTI
protocol reduces the execution time by about 45%. For
example, When 𝑁 is 50, 000, the execution time of the
SFMTI protocol is 45.2% less than the time required by
the IIP protocol. Moreover, the execution time of the
proposed SFMTI protocol is very close to the lower
bound of the minimum execution time. For example,
when 𝑁 = 50, 000, the execution time of the SFMTI
protocol is 23.69 seconds which is just 1.18 times the
lower bound.

5.4 The Impact of Missing Tag Number

In this set of simulations, we investigate the impact of
the number of missing tags. Besides the total execution
time for identifying all the missing tags, the time
required for identifying the first missing tag is also
an important performance criterion. For example, a
thief steals multiple items from a warehouse. Clearly,
the faster the protocol identifies the first missing tags,
the sooner the alarm is given. We set 𝑁 = 10, 000
and vary the number of missing tags, 𝑀 , from 10
to 100. The proposed SFMTI protocol has to verify
the presence of all RFID tags so as to completely
identify all the missing tags. As illustrated in Fig. 4,
with 𝑀 (the number of missing tags) increasing, the

total execution time for identifying all the missing tags
keeps unchanged. Whereas, the time for detecting the
first missing RFID tag decreases with 𝑀 increasing,
because of an intuitive reason—the more RFID tags
are missing, the more easier to detect one of them.

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

The number of missing tags

T
h
e 

re
q

u
ir

ed
 t

im
e 

in
 s

ec
o

n
d
s

 

 
Time for identifying all the missing tags

Time for identifying the first missing tags

Fig. 4. Fix the number 𝑁 of the total tags to 10,000,
and vary the number 𝑀 of the missing tags from 10 to
100.

5.5 Evaluate the Performance of SFMTI in the
Multi-reader Scenarios

To fully evaluate the performance of the proposed
SFMTI protocol, we conducted simulation experi-
ments contain multiple readers in this subsection. As
aforementioned, Protocol 3 in [21] performs better
than IIP in the multi-reader scenarios. Hence, in this
set of simulations, we mainly compare the proposed
SFMTI protocol with the Protocol 3 in [21]. Following
the simulation settings in [21], we simulated a region
consisting of square zones, where we use 𝐿 to denote
the number of the readers. The tags are uniformly
distributed and 𝐷 is used to denote the tag density in
each zone, for example, 𝐷 = 1000 𝑡𝑎𝑔𝑠/𝑧𝑜𝑛𝑒 means
that there are 1000 tags in each zone on average.
The simulation results in Fig. 5 demonstrate that the
proposed SFMTI protocol still performs much better
than both IIP and Protocol 3, where the number 𝐿
of the readers is fixed to 50 and the tag density 𝐷



10

varies from 400 tags/zone to 2000 tags/zone. For
example, when 𝐷 = 2000 𝑡𝑎𝑔𝑠/𝑧𝑜𝑛𝑒, 𝐿 = 50 (meaning
2000×50=100, 000 tags), the execution time of IIP and
Protocol 3 is 86.07𝑠 and 18.69𝑠, respectively. And the
execution time of SFMTI is just 6.71𝑠, representing
92.2% and 64.1% reduction compared with IIP [8] and
Protocol 3 [21].

400 800 1200 1600 2000
0

20

40

60

80

100

Tag Density D (tags/zone)

E
x
ec

u
ti
on

ti
m

e 
in

 s
ec

on
d
s

 

 

IIP

Protocol 3 in [21]

SFMTI

Fig. 5. The number 𝐿 of the readers is fixed to 50 and
the tag density 𝐷 varies from 400 tags/zone to 2000
tags/zone.

6 CONCLUSION
This study has addressed the important problem of
complete identification of missing tags in large-scale
RFID systems. The solutions to this problem are de-
sirable in many valuable monitoring applications in
warehouses, hospitals, prisons, etc. This paper has
proposed a Slot Filter-based Missing Tag Identification
(SFMTI) protocol to identify the missing tags in a
time-efficient way. We have also presented how to
choose the optimal parameters of the SFMTI protocol.
To accommodate multiple readers deployed in some
large area scenarios, we have proposed a cost-effective
extension method, in which all the readers work in
a parallel mode. Furthermore, extensive simulation
experiments have been conducted to evaluate the
performance of the SFMTI protocol. The simulation
results show that the proposed SFMTI protocol out-
performs the currently most promising protocol by
reducing 45% of the required execution time. More-
over, the execution time of the SFMTI protocol is just
within a factor of 1.18 from the lower bound of the
minimum execution time.

ACKNOWLEDGMENTS
This work was supported by NSFC (grant nos
61173162, 61173160, 61103234, 61272417,61173161,and
61173165), and the National Science Foundation for
Distinguished Young Scholars of China (grant no
61225010).

REFERENCES
[1] C. Wang, H. Wu, and N.-F. Tzeng, “RFID-Based 3-D Position-

ing Schemes,” Proc. of IEEE INFOCOM, 2007.
[2] L. M. Ni, Y. Liu, Y. C. Lau, and A. P. Patil, “Landmarc: In-

door Location Sensing Using Active RFID,” Wireless Networks,
vol. 10, no. 6, pp. 701–710, 2004.

[3] A. Nemmaluri, M. D. Corner, and P. Shenoy, “Sherlock:
Automatically Locating Objects for Humans,” Proc. of ACM
MobiSys, 2008.

[4] B. Sheng, C. C. Tan, Q. Li, and W. Mao, “Finding Popular
Categories for RFID Tags,” Proc. of ACM MobiHoc, 2008.

[5] C. Qian, H. Ngan, Y. Liu, and L. M. Ni, “Cardinality Estimation
for Large-Scale RFID Systems,” IEEE Transactions on Parallel
and Distributed Systems, vol. 22, no. 9, pp. 1441–1454, 2011.

[6] C. Lee and C. Chung, “Efficient Storage Scheme and Query
Processing for Supply Chain Management using RFID,” Proc.
of ACM SIGMOD, 2008.

[7] M. Kodialam, T. Nandagopal, and W. C. Lau, “Anonymous
Tracking using RFID tags,” Proc. of IEEE INFOCOM, 2007.

[8] T. Li, S. Chen, and Y. Ling, “Identifying the Missing Tags in a
Large RFID System,” Proc. of ACM MobiHoc, 2010.

[9] Y. Zheng and M. Li, “Fast Tag Searching Protocol for Large-
Scale RFID Systems,” Proc. of IEEE ICNP, 2011.

[10] M. Shahzad and A. X. Liu, “Every Bit Counts-Fast and Scalable
RFID Estimation,” Proc. of ACM MobiCom, 2012.

[11] F. C. Schoute, “Dynamic Frame Length ALOHA,” IEEE Trans-
actions on Communications, vol. 31, no. 4, pp. 565 – 568, 1983.

[12] L. G. Roberts, “Aloha Packet System with and without Slots
and capture,” ACM SIGCOMM Computer Communication Re-
view, vol. 5, no. 2, pp. 28–42, 1975.

[13] S. Lee, S. Joo, and C. Lee, “An Enhanced Dynamic Framed
Slotted ALOHA Algorithm for RFID Tag Identification,” Proc.
of IEEE MobiQuitous, 2005.

[14] J. Myung and W. Lee, “Adaptive Splitting Protocols for RFID
Tag Collision Arbitration,” Proc. of ACM MobiHoc, 2006.

[15] N. Bhandari, A. Sahoo, and S. Iyer, “Intelligent Query Tree
(IQT) Protocol to Improve RFID Tag Read Efficiency,” Proc. of
IEEE ICIT, 2006.

[16] V. Namboodiri and L. Gao, “Energy-Aware Tag Anticollision
Protocols for RFID Systems,” IEEE Transactions on Mobile Com-
puting, vol. 9, no. 1, pp. 44–59, 2010.

[17] M. Shahzad and A. X. Liu, “Probabilistic Optimal Tree Hop-
ping for RFID Identification,” Proc. of ACM SIGMETRICS,
2013.

[18] C. C. Tan, B. Sheng, and Q. Li, “Efficient Techniques for
Monitoring Missing RFID Tags,” IEEE Transactions on Wireless
Communications, vol. 9, no. 6, pp. 1882–1889, 2010.

[19] W. Luo, S. Chen, T. Li, and S. Chen, “Efficient Missing Tag
Detection in RFID Systems,” Proc. of IEEE INFOCOM, 2011.

[20] W. Luo, S. Chen, T. Li, and Y. Qian, “Probabilistic Missing-
tag Detection and Energy-Time Tradeoff in Large-scale RFID
systems,” Proc. of ACM MobiHoc, 2012.

[21] R. Zhang, Y. Liu, Y. Zhang, and J. Sun, “Fast Identification
of the Missing Tags in a Large RFID System,” Proc. of IEEE
SECON, 2011.

[22] H. Han, B. Sheng, C. C. Tan, Q. Li, W. Mao, and S. Lu,
“Counting RFID Tags Efficiently and Anonymously,” Proc. of
IEEE INFOCOM, 2010.

[23] P. Semiconductors, “I-CODE Smart Label RFID Tags,”
http://www.nxp.com/acrobat download/other/identification/
SL092030.pdf, Jan 2004.

[24] L. Yang, J. Han, C. Wang, T. Gu, and Y. Liu, “Season: Shelv-
ing Interference and Joint Identification in Large-scale RFID
Systems,” Proc. of IEEE INFOCOM, 2011.

[25] B. Bloom, “Space/time tradeoffs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426.

[26] H. Fang, K. Murali, and L. TV, “Building high accuracy bloom
filters using partitioned hashing,” vol. 35, no. 1, pp. 277–288,
2007.

[27] H. Yue, C. Zhang, M. Pan, Y. Fang, and S. Chen, “A Time-
efficient Information Collection Protocol for Large-scale RFID
Systems,” Proc. of IEEE INFOCOM, 2012.


