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The nuclear receptor gene family in the Pacific
oyster, Crassostrea gigas, contains a novel
subfamily group
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Abstract

Background: Nuclear receptors are a superfamily of transcription factors important in key biological, developmental
and reproductive processes. Several of these receptors are ligand- activated and through their ability to bind
endogenous and exogenous ligands, are potentially vulnerable to xenobiotics. Molluscs are key ecological
species in defining aquatic and terrestrial habitats and are sensitive to xenobiotic compounds in the environment.
However, the understanding of nuclear receptor presence, function and xenobiotic disruption in the phylum Mollusca
is limited.

Results: Here, forty-three nuclear receptor sequences were mined from the genome of the Pacific oyster, Crassostrea
gigas. They include members of NR0-NR5 subfamilies, notably lacking any NR6 members. Phylogenetic analyses of the
oyster nuclear receptors have been conducted showing the presence of a large novel subfamily group not previously
reported, which is named NR1P. Homologues to all previous identified nuclear receptors in other mollusc species have
also been determined including the putative heterodimer partner retinoid X receptor, estrogen receptor and estrogen
related receptor.

Conclusion: C. gigas contains a highly diverse set of nuclear receptors including a novel NR1 group, which provides
important information on presence and evolution of this transcription factor superfamily in invertebrates. The Pacific
oyster possesses two members of NR3, the sex steroid hormone receptor analogues, of which there are 9 in humans.
This provides increasing evidence that steroid ligand specific expansion of this family is deuterostome specific. This
new knowledge on divergence and emergence of nuclear receptors in C. gigas provides essential information for
studying regulation of molluscan gene expression and the potential effects of xenobiotics.
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Background
Nuclear receptors
Nuclear receptors (NRs) are transcription factors, which
regulate the expression of specific genes involved in em-
bryonic development, homeostasis and physiologically reg-
ulated processes. They are of particular interest as this
regulation often requires interaction with endogenous or
exogenous ligands. Nuclear receptors bind to a response
element in target gene promoters and activate gene tran-
scription in cooperation with bound co-factors [1]. Al-
though activation of nuclear receptors often requires

interaction with ligands, there are many proteins which
can be ‘constitutively activated’ and perform their bio-
logical response without a ligand. Nuclear receptors
are usually found in protein complexes as monomers,
homodimers, or heterodimers [2], with one member of
the NR2 family, the retinoid X receptor (RXR) operating as
the predominant heterodimer partner in vertebrates [3].
Structures of nuclear receptors are well characterized and
usually contain six common structural features (Figure 1).
The A/B region and the final F region are highly variable
and account for most of the difference observed between
genes. The A/B region contains the activation function
AF-1, which is able to synergize with AF-2 in region E to
produce a more stable up-regulation of gene expression.
Region C, the central specific DNA binding domain (DBD),
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is a highly conserved domain including two C4 zinc-fingers
(alpha helices): (1) a five amino acid sequence (P-box)
determining the specificity of DNA binding, and (2) the
D-box, which mediates receptor dimerization. Region D
is a flexible “hinge” domain and connects the DBD with
region E, the ligand binding domain (LBD). The LBD is
highly conserved in structure, and moderately conserved
in sequence. It is often able to bind specific hormonal (e.g.
thyroids, steroids) or non-hormonal (morphogens, dietary
components) hydrophobic ligands and it can induce or in-
hibit the expression of a gene by a conformational change
of the receptor [1].
Nuclear receptors are exclusive to multicellular meta-

zoans. Their numbers in animals range from a few recep-
tors in sponges and Trichoplax [4-7], to approximately 21
NRs in Drosophila melanogaster [8] and 48 NRs in
humans. The nematode Caenorhabditis elegans possesses
the highest number of NRs identified in a species with
over 270 NRs [9]. Two nuclear receptors have been found
in the demosponge Amphimedon queenslandica, suggest-
ing that nuclear receptors originated from a single nuclear
receptor in the ancestral metazoans [7]. This theory is
supported by the deep conservation of the DBD and the
LBD sequences between different animal phyla and sug-
gests the divergence of nuclear receptors is most likely
driven by gene duplication and gene loss [7,10-12].
Nuclear receptors are divided into six subfamilies

based on phylogenetic reconstructions of the DBD and
LBD [13]. Abnormally structured NRs, which do not con-
tain one of the two conserved regions (DBD or LBD), are
grouped in a separate subfamily (NR0) irrespective of their
phylogenetic relationship. A novel group of NRs has been
identified in Platyhelminthes Schistosoma mansoni, con-
taining tandem DBDs and a single LBD, which do not
belong to the miscellaneous NR0 subfamily and are
categorised as 2DBDNR group [14,15].

Nuclear receptors in the Mollusca
Mollusca (gastropods, bivalves, cephalopods and relatives)
diverged rapidly during the Cambrian period resulting in a
large range of morphology and life histories, becoming the
second most species-rich phylum among the invertebrates
[16]. Molluscs sit within the Lophotrochozoa, one of the

two major groups among the protostomes. Marine mollusc
species are common inhabitants of rocky, intertidal and
estuary flats world-wide. They occupy important eco-
logical niches as filter feeders and decomposers, and serve
as a protein source for animals, including humans, linking
them directly with human health. Molluscs are recom-
mended as ideal sentinel species in a number of marine
monitoring programmes including those supported by
international bodies such as ICES and OSPAR [17]. Their
large differences in anatomy and life cycle, their wide glo-
bal distribution, bioaccumulation of chemicals by filtration
and relatively straightforward capacity to be cultured and
handled in the laboratory make molluscs an ideal species
for studying biological processes. They are also often con-
sidered as surrogates for vertebrate models in laboratory
based chemical risk assessment studies [18]. However, the
information on similarities and differences between verte-
brate and mollusc endocrine system and gene regulation
is limited and a deeper insight as to how molluscs are af-
fected by chemicals will therefore directly aid the develop-
ment of ecological and chemical risk assessment and
enhance protection of the marine environment.
Several NR sequences, including the conserved do-

mains, have previously been isolated and characterized in
molluscs. The estrogen receptor ER (NR3A) in the
gastropod Aplysia californica [19] was the first NR identi-
fied in a mollusc species. Since then single ER homologs
have been identified in more than eleven species among
three main classes of the phylum Mollusca: gastropods
(6), bivalve (4) and cephalopods (1) (Additional file 1). A
second member of the NR3 subfamily, the estrogen re-
lated receptor, ERR, has been cloned in the gastropod
snail Marisa cornuarietis [20] and a single RXR (NR2B)
representative has been identified in at least six species
among the molluscs (Additional file 1). Additionally, a ret-
inoid acid receptor RAR (NR1B) has been cloned from
the central nervous system of the pond snail Lymnaea
stagnalis [21]. Finally, three molluscan receptors have
been reported in the bivalve Mytilus galloprovincialis,
which possesses one homolog to the NR1D group, one
nuclear receptor closely related to the NR1D, NR1E and
NR1F groups, and one receptor related to the nematode
and trematode receptors SEX-1 (NR1G) [22].

Figure 1 Nuclear receptors gene structure. The six regions (A-F) of nuclear receptors. The A/B region contains the AF-1 activation function.
The highly conserved central DNA-binding-domain DBD (C region) comprises two zinc fingers, including the P-box and D-box. The ligand-binding-domain
LBD (E region) contains the AF-2 activation function helix. Situated between the DBD and the LBD is the variable “hinge” region (D region). The
C-terminal region F is located at the end of the NR and varies in length among different nuclear receptors.
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Nuclear receptors and xenobiotics
Due to their ligand binding abilities, some nuclear recep-
tors are inherently vulnerable to xenobiotics, which can
modulate normal gene expression by mimicking a ligand
or blocking the LBD of nuclear receptors [23]. This can
lead to abnormal gene expression and hence, to disrup-
tion of development and/or endocrinology of an organ-
ism. Various xenobiotics, which have a mode of action
mediated through NRs, have thus been characterized as
“endocrine disrupting chemicals” (EDCs). Published re-
ports have interpreted EDCs as having caused serious ef-
fects of chemicals to the health conditions of human
and wildlife [24,25]. Mass mortalities and population de-
clines in approximately 200 gastropod species worldwide
[25-29] have been associated with exposure to tributyltin
(TBT). This biocide was employed in antifouling paint
on ships and fishing nets from the early 60s until 2005,
when its use was legally restricted. In gastropods, expos-
ure to TBT causes irreversible superimposition of male
genital on females, a condition termed imposex, whilst
in bivalve species, exposure to TBT causes growth re-
duction [30-32], and shell thickening [33-36]. The mech-
anism by which TBT affects mollusc species remains
unclear, although hypotheses have been raised related to
binding to and disruption of a putative molluscan RXR
or RXR/peroxisome proliferator-activated receptor (PPAR)
heterodimer [29,37-47].
In this study, we took advantage of the recently re-

leased complete genome of the Pacific oyster Crassostrea
gigas [48] to analyse the nuclear receptor gene family
using a combination of bioinformatics and phyloge-
netics. Here we report the phylogenetic relationship of
43 NRs, confirm expression and discuss their homology
to Homo sapiens, D. melanogaster, C. elegans and previ-
ously cloned molluscan NRs. The data are assessed from
the perspective of putative function, evolution and the
potential for the binding of xenobiotics, based on previ-
ous functional studies on nuclear receptor homologs in
other species.

Results
Nuclear receptor genes
Forty-three putative NR genes were identified in the C.
gigas genome. Transcription of all nuclear receptor
genes was successfully confirmed by sequencing. Puta-
tive nuclear receptor affiliation was verified based upon
the conserved domains, DBD and LBD, using a PFAM
analysis and a conserved domain search resulting in 38
NRs showing the classical structures of the NR super-
family. One of the NR identified putatively appeared to
suggest a sequencing error in the genome project, with a
single LBD and a lack of DBD. Therefore, the full gene
was re-sequenced as the NR homolog, CgNR1D, show-
ing a single DBD and a single LBD. Five putative oyster

NRs have abnormal structures including two NRs con-
taining two DBDs and a single LBD, one NR lacking the
DBD but containing a single LBD, and two NRs with
only a single DBD and lack of a LBD. A full list of anno-
tated protein sequences of C. gigas NRs including acces-
sion numbers is provided in the Additional file 1.

Phylogenetic analysis
Phylogenetic analyses were performed using the amino
acid sequences of the 43 C. gigas nuclear receptors. Sev-
eral trees were constructed using different phylogenetic
analyses: the DBD tree, based on just DNA binding do-
mains (Maximum Likelihood (ML) and Bayesian Infer-
ence analyses, 38 classically and 4 abnormally structured
C. gigas NRs); LBD tree, based on a portion of the LBD
(ML and Bayesian Inference analyses, 38 classically and
3 abnormally structured C. gigas NRs); and DBD plus
LBD trees, based on a composition of DBD and a por-
tion of LBD (ML, Bayesian Inference and neighbor-
joining (NJ) analyses, 38 classically structured C. gigas
NRs). The ML and Bayesian Inference phylogenetic ana-
lyses of the DBD plus LBD alignment showed similar
patterns and both segregated in a monophyletic group
NR1 and a second major clade containing the subfam-
ilies NR2-NR6 (Figure 2). The second major group fur-
ther subdivided in five sub-clades NR2, NR4, NR3, NR5
and NR6. Nodes for NR1, NR3-NR6 were supported by
high ML bootstrap scores (BS =81-100) and high poster-
ior probabilities (PP = 0.99-1). The NR2 clade was more
moderately supported (BS = 76), but highly supported by
posterior probabilities (PP = 1). The NJ analysis of the
DBD plus LBD segregated in three major clades: two in-
cluding NR1 subfamily members and the third subdi-
vided in the other NR2-NR6 subfamilies, which
displayed different positioning of the NR3, NR5 and
NR6 subfamilies compared to the ML and Bayesian In-
ference analyses. In general, the neighbor-joining ana-
lysis provided the lowest resolution of the DBD plus
LBD trees and therefore, was only used as additional
support for individual receptor placements. The individ-
ual ML and Bayesian Inference analyses of the separate
DBD and LBD sequences resulted in less supported
nodes for the six receptor subfamilies and were also not
able to assign some of the receptor subfamilies to the
existing monophyletic subfamilies (Additional files 2 and
3). Therefore, the phylogenetic relationship of the puta-
tive C. gigas nuclear receptors were deduced from the
DBD plus LBD ML analysis supported by the Bayesian
Inference analysis and NJ bootstraps values (Figure 2).
C. gigas possesses nuclear receptors belonging to six of

the seven NR subfamilies. Twenty-three out of 38 classic-
ally structured oyster nuclear receptors are members of
the NR1 subfamily (Figure 2). A novel NR1 group, NR1P,
has been formed including eleven C. gigas receptors and
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Figure 2 (See legend on next page.)

Vogeler et al. BMC Genomics 2014, 15:369 Page 4 of 15
http://www.biomedcentral.com/1471-2164/15/369



the M. galloprovincialis nuclear receptor MgNR1G. Sub-
family NR2 is represented by eight oyster NRs. There are
also two NR3 members, one NR4 member and two NR5
members. No homologs to the NR6 receptor subfamily
were identified in the C. gigas genome. The abnormally
structured C. gigas receptor CgNR0B showed homologies
to the miscellaneous subfamily NR0B (Additional file 3).
CgNHR40 and CgNHR41, the two single DBD sequences,
assigned to the CgNR1Ja receptor and outside the NR4
group, respectively (Additional file 2). The two nuclear re-
ceptors containing double DBDs and a single LBD display
phylogenetic relationship to the 2DBD nuclear receptor
group previously identified in S. mansoni (Additional files 2
and 3). Cg2DBDγ showed structural and amino acid
identities to the Sm2DBDγ, with two DBDs and the
LBD sequence identities of 55%, 60% and 25% respect-
ively. Cg2DBDδ, however, does not display such a
high relationship and its second DBD clusters outside
the 2DBD receptor group close to CgNR1CDEFα and
MgNR1DEF (ML analysis DBD). In addition, its LBD
was weakly supported in the ML analysis and not sup-
ported by the Bayesian Inference analysis.
The large majority of C. gigas nuclear receptor assign-

ments to subfamily groups were supported by high ML
bootstrap scores (BS = 89-100) and Bayesian posterior
probabilities (PP = 1). Exceptions include CgNR1C and
the entire NR2E group containing four C. gigas NRs,
which were highly supported by the Bayesian Inference
analysis (both PP = 1) but only moderately supported by
ML (BS = 78 and 73, respectively). Further positions
within the groups among phylogenetic trees were fixed
apart from the following exceptions. Two classically
structured nuclear receptors (CgNHR42 and CgNHR43)
could not be assigned to one of the receptor subfamilies.
CgNHR42 was located as an outgroup to NR2/3/5/6
clade in the DBD plus LBD analyses and the LBD ana-
lyses, while the DBD analyses nested it inside the NR1
subfamily. BLASTp search against the non-redundant
Metazoan database search of conserved domains and the
full length sequence showed homologies to RXRs, RARs
and ERRs of various species, further suggesting this is an
outlier. CgNHR43 DBD grouped with the NR6 subfamily
for the ML analysis, but with relatively weak support,
and with NR1 for the Bayesian analysis. This was the

only C. gigas NR that displayed any homology to the
NR6 subfamily for either the separate or combined con-
served domains sequence. However, the LBD and the
DBD plus LBD analyses nested CgNHR43 deeper in the
NR1 subfamily. Although CgNH42 and CgNH43 have a
classical NR structure and are expressed in oyster tissue
there is potential that they are unitary pseudogenes.
However, as it is difficult to resolve the nearest common
ancestor to these genes, this theory has not been tested
and will require future functional assessment.
CgNR1CDEFα and CgNR1CDEFβ associated with the

MgNR1DEF and nested with the NR1C, NR1D, NR1E and
NR1F groups. The individual conserved domain analyses
assigned CgNR1CDEFβ either to the NR1F group (DBD
analyses) or NR1E group (ML LBD analysis) than to
CgNR1CDEFα or MgNR1DEF. Results of BLASTp search
against metazoan protein database found homologies to
MgNR1DEF and NR1C-NR1F members of various species
for the DBD, LBD and full length sequences.
There were few differences within receptor groups

among the phylogenetic trees. The novel receptor group
NR1P was highly supported in the DBD plus LBD and
the individual LBD phylogenetic analyses (BS = 97-100,
PP = 1) and weakly supported in the DBD analysis (BS =
41, PP = 0.81), but the MgNR1G always associated with
this group. However, the arrangement of the C. gigas re-
ceptors within the NR1P group varied marginally between
trees. Similar small differences were identified for the four
C. gigas homologs of the NR2E group. The relationship
between all members of this group changed depending on
which receptor unit and analysis were used. The DBD
analyses showed a few dissimilarities. CgNR1H was placed
closer to the human farnesoid X receptor (FXR) compared
to the other trees, and revealed higher homologies to the
D. melanogaster ecdysone receptor EcR; the Hepatocyte
Factor 4 (HNF4) homolog CgNR2A is more closely related
to the human members of NR2A than to the Drosophila
homolog; and the molluscan orthologs of NR2B assigned
closer to the Drosophila ultraspiracle protein USP than to
the human RXR homologs.

Discussion
In this study, 43 nuclear receptors were identified in the
bivalve C. gigas, representing six of the seven common

(See figure on previous page.)
Figure 2 Phylogenetic relationship of nuclear receptors in Crassostrea gigas, Homo sapiens, Drosophila melanogaster, Caenorhabditis
elegans and mollusc species. The alignment was constructed using the DBD plus portion of LBD and phylogenetic relationship was conducted
by a Maximum likelihood (ML), Bayesian Inference and neighbour-joining (NJ) analyses. ML bootstrap support values (percentage of 1000 BS),
Bayesian posterior probabilities (PPs) and NJ bootstrap support values (percentage of 1000 BS) are provided above the nodes separated by slash.
Star indicates the node obtained from the Bayesian Inference and NJ analyses, which were different from that obtained by ML method.
Highlighted clades display the six NR subfamilies, olive: NR1, pink: NR2, green: NR3, orange: NR4, dark blue: NR5, light blue: NR6. C. gigas NRs
highlighted in red. Ac: Aplysia californica, Bg: Biomphalaria glabrata, Ce: C. elegans, Cg: C. gigas, Dm: D. melanogaster, Hs: H. sapiens, Lym: Lymnaea
stagnalis, Mc: Marisa cornuarietis, Me: Mytilus edulis, Mg: Mytilus galloprovincialis, Nl: Nucella lapillus, Ov: Octopus vulgaris, Tc: Thais clavigera.
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NR subfamilies. This large set of C. gigas NRs provides
an overview of nuclear receptor presence in the class
Bivalvia and it can enhance the understanding of nuclear
receptor evolution in invertebrates and the biological
processes in which nuclear receptors are involved. Fur-
thermore, it presents information on possible xenobiotic
targets in mollusc species, which occupy an important
position in terms of the evolution of the protostomes
and as key ecological species in aquatic habitats.

Novel group NR1P
The phylogenetic analyses of C. gigas NRs revealed a
novel monophyletic group among the NR1 subfamily in-
cluding eleven oyster NRs. In addition this group in-
cludes one previously characterised M. galloprovincialis
receptor, MgNR1G. The novel group was supported by
high bootstrap values and therefore named as NR1P.
The results indicate that the MgNR1G receptor, which
was previously assigned to the C. elegans Sex-1 NR [22],
is not a real homolog to the NR1G group, but a member
of the novel NR1P group. Putative functions of these
NRs cannot be deduced based on the phylogeny as no
close homolog could be identified. However, many
members of the NR1 subfamily are involved in growth
and development in humans or in moulting and meta-
morphosis processes in Drosophila. A BLASTp search
of the conserved domains of NR1P1-NR1P9 against the
non-redundant Metazoan database showed weak homolo-
gies to NR1C-NR1F invertebrate and vertebrate members,
but also relationships to other NR1 groups. CgNR1P10
and CgNR1P11 domains displayed homologies to the
NR2E group. These differences in homology are reflected
in the different sup-grouping of the NR1P group. How-
ever, disagreement in CgNR1P8 and CgNR1P9 positioning
among the phylogenetic trees does not allow a separation
of NR1P in two separate groups.
The phylogenetic analysis suggests that NR1P segre-

gated from a common ancestor of the NR1C, NR1D,
NR1E and NR1F groups. The molluscan phylum separated
early among the Protostomia [49] and could have evolved
a unique group of NRs. However, it is not clear if this
novel group is mollusc specific or also present in other
lophotrochozoans. Interestingly, C. gigas possesses homo-
logs of NR1C, NR1D, NR1E and NR1F groups, which are
also present in Ecdysozoa, the sister clade of the Lopho-
trochozoa. Therefore, it is possible that some ecdysozoans
contain NR1P homologs. However, no NR1P homologs
have been identified for D. melanogaster (Arthropoda) or
C. elegans (Nematoda). The nuclear receptor set identified
in Daphnia pulex (Crustacea) revealed a novel group
among the NR1 subfamily, but this group showed high
sequence similarities to the invertebrate NR1J group
[50]. It is also possible that the ecdysozoans have lost

this particular receptor group as has been reported for
other NRs [7,12].
The existence of another novel receptor group in C.

gigas is implied by the presence of CgNR1CDEFα and
CgNR1CDEFβ, which associated with the MgNR1DEF as
an outgroup to NR1C-NR1F. However, CgNR1CDEFα
and CgNR1CDEFβ were not consistent in their positions
for all phylogenetic analyses and therefore, unambiguous
assignments are difficult. This inconsistency could be a
consequence of rapid evolutionary divergence [22]. It is
presumed that the members of the NR1C-NR1F groups
originate from a common ancestor, but separated very
early in invertebrate evolution [12,19]. Alternatively, the
changing position of CgNR1CDEFβ in the phylogenetic
analyses could be a result of sequence similarities. This
would be supported by vertebrate RAR-related orphan
receptors RORα-γ (NR1F1-3) and REV-ERB receptors,
which compete for the same response elements with
their DBDs [51]. Additional NR sets of more closely re-
lated protostome species are required to confirm the final
relationship of these two NRs.

C. gigas receptors with functionally characterised
homologs
Analysis of the C. gigas genome identified a homolog,
CgNR1A, to the human thyroid receptors, THRα and
THRβ. Vertebrate THRs bind thyroid hormones and play
important roles in growth, development and metabolism,
and bind either as monomers, homodimers or form het-
erodimers with RXRs [52]. Though the function of THRs
in invertebrates is still unknown, the previously identified
flatworm (S. mansoni) THRs are able to bind to DNA ei-
ther as monomers or homodimers and can function as a
heterodimer with SmRXR [14,15].
CgNR1B is a homolog to human RARα-γ paralogs and

shows high homology to the freshwater snail L. stagnalis
RAR [21], with the DBDs and LBDs of these having an
amino acid identity of 90% and 73%, respectively. Expo-
sures to all-trans retinoid acids (RA) and 9-cis RA, known
agonistic ligands to vertebrate RAR [53], and to a human
RARβ-selective antagonist caused significant deformations
to the eyes and shell in L. stagnalis embryos [21,54]. In
vertebrates, RARs regulate the expression of genes in-
volved in morphogenesis and especially embryonic devel-
opment [55].
CgNR1C grouped with the human paralogs of NR1C

(PPARα-γ), which bind endogenous ligands, including
eicosanoids, fatty acids and fatty acid derivatives. PPARα
controls the uptake of fatty acids and their esterification
into triglycerides. PPARγ is the main regulator of adipo-
genesis, fat storage and glucose homeostasis. PPARγ, to-
gether with its heterodimer partner RXR, is a potent
inducer of adipogenesis in vertebrates when exposed to
organotin compounds [56]. PPARβ/δ is involved in fatty

Vogeler et al. BMC Genomics 2014, 15:369 Page 6 of 15
http://www.biomedcentral.com/1471-2164/15/369



acid oxidation, as well as energy consumption and thermo-
genesis. PPARs are also a target of the fibrate and thia-
zolidinedione drugs. These are classified as PPARα and
PPARγ activators and are used in hyperlipidemia and
hyperglycemia treatments [57].
CgNR1D and MgNR1Dv1 group together with the NR1D

group human and Drosophila homologs. The insect E75
receptor (NR1D3) is induced by ecdysteroids and is in-
volved in moulting and metamorphosis [8,58]. The hu-
man counterparts, REV-ERBα (NR1D1) and REV-ERBβ
(NR1D2), display some similar functions to PPARs,
playing important roles in lipid and glucose metabolism,
gas-response, inflammation and circadian rhythm [59].
The oyster genome also possesses a homolog, CgNR1E,

to the Drosophila E78 receptor. E78 is directly related to
ecdysone signalling and it is another important receptor
during metamorphosis [60].
CgNR1F is an ortholog to the D. melanogaster DHR3

and C. elegans NHR23 receptors. DHR3 is inhibited by
E75 and regulates metamorphosis by repressing genes
[61]. Expression of the E75 gene is regulated by an-
other nuclear receptor, ftz-transcription-factor-1, FTZ-
F1 (NR5A3) [62]. The human members of the NR1F
group, RORα-γ, play a role in circadian rhythm, im-
mune response and other important physiological pro-
cesses [63].
The oyster genome contains a nuclear receptor (CgNR1H),

which is a homolog to the D. melanogaster EcR of NR1H
group. EcR has also been found in crustaceans [50,64],
in the genome of the mollusc Lottia gigantea, leeches
and Polychaeta [65]. EcR is involved in moulting, devel-
opmental and reproductive processes in insects [8] and
crustaceans [64]. In addition, EcR agonists and antago-
nists are commonly used as insecticides [66]. The verte-
brate homologs are liver X receptors (LXRs) and FXR,
which regulate lipid and cholesterol metabolism, bile
salt synthesis and control expression of certain cyto-
chrome P450s (CYP) [67].
C. gigas possesses three NRs of the NR1J group, of

which CgNR1Jα and CgNR1Jβ grouped together and
CgNR1Jδ assigned on the fringe of the NR1J group. A
fourth homolog might be present in the genome as well,
indicated by the putative incomplete CgNHR40 NR
(Additional file 2), the sequence of which could not be
fully resolved. This group appears to be unique to inver-
tebrates, including ecdysozoans [8,9], crustaceans [50]
and platyhelminthes [14]. All C. gigas NR1J representa-
tives contained the group-unique residues ESCKAFFR in
their DBD sequence [68]. Characterised NR1J receptors
include DHR96, which is believed to play a role in xeno-
biotic stress response [69] and is able to bind cholesterol
to regulate cholesterol homeostasis [70]. Xenobiotic de-
fence in C. elegans is thought to be managed by the
NHR-8 [71]. DAF-12, also a C. elegans NR1J, is involved

in dauer formation, in which larval development is
diverted under adverse environmental conditions to a
form of stasis termed the dauer stage [68]. The NR1I
subgroup is the vertebrate group homologous to NR1J
and shares common receptor ancestors prior to the di-
vergence of deuterostomes and protostomes [12]. Its
three representatives, pregnane X receptor (PXR), consti-
tutive androstane receptor (CAR) and vitamin D receptor
(VDR), have all been implicated in the vertebrate response
to xenobiotic stress [72].
A single member, CgNR2A, of the NR2A (HNF4) group

has been identified in the C. gigas genome. The NR2A
group contains the most ancient NRs found in animals
and have been discovered in simple metazoans [4,5,7,73].
Only a single ortholog is encoded in D. melanogaster. It is
involved in the development of the digestive tract [74],
lipid metabolism and mobilization [75]. In humans, HNF4
receptors play a significant role in diseases like diabetes
[76] and colon cancer [77].
The C. gigas RXR ortholog (CgNR2B) clustered together

with other identified molluscan RXRs and the conserved
regions had identities of over 93% to the retinoid X re-
ceptors’ DBDs and LBDs of Biomphalaria glabrata and
L. stagnalis. The B. glabrata RXR is able to act as a het-
erodimer partner to human NRs and is also able to form
homodimers [78]. Retinoid acid (9-cis RA) and docosa-
hexaenoic acid (DHA), natural ligands of vertebrate RXRs
[79], have been identified as putative gastropod agonistic
ligands [78], while vertebrate RXR pan-antagonists suc-
cessfully inhibited growth cone turning in adult gastropod
CNS and produced eye and shell deformation in embryos
during the gastrulation stage [80].
The C. gigas receptor CgNR2CD could not be unam-

biguously assigned to either the NR2C or NR2D group.
In humans the NR2C proteins, TR2 and TR4, act as
transcriptional repressors in cooperation with co-factors
[81]. The Drosophila NR2D ortholog DHR78 uses a simi-
lar repression mechanism (binding-site competition) and
inhibits ecdysone signalling [82]. The C. elegans homolog
NHR41 is also involved in moulting processes and mor-
phogenesis [83].
CgNR2E1, CgNR2E2, CgN2E3 and CgNR2E5 represent

four putative nuclear receptors from the NR2E group.
CgNR2E1 and CgNR2E2 have most identity to the Dros-
ophila homologs tailless (DmTLL), dissatisfaction (DmDSF)
and human TLX receptors. They are all involved in
anterior-posterior axis formation and have important
roles in vision and forebrain development [8], as well as
in emotional behaviour [84]. Furthermore, TLX regu-
lates adult vertebrate neural stem cell proliferation [85].
CgNR2E3 shows homology to vertebrate photoreceptor
cell-specific nuclear receptor (PNR), C. elegans Fax-1
and Drosophila DHR51. PNR is required for controlling
neural differentiation and retina development [86,87]
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and neuron identity in C. elegans is regulated by FAX-1
[88]. CgNR2E5 shows homologies to DHR83, a Dros-
ophila function-unknown receptor [8].
The C. gigas genome possesses one homolog (CgNR2F)

to the NR2F group, which has a close phylogenetic rela-
tionship to the D. melanogaster seven-up receptor, DmSVP.
Similar to other members of NR2E the DmSVP and
HsCOUP-TF1/2 receptors are responsible for neural de-
velopment and photoreceptor cells [89-92].
Two NR3 homologs were identified in the C. gigas gen-

ome. CgNR3A, previously identified as CgER, grouped
well with other molluscan ERs and has been shown to be
unresponsive to estrogen [93]. The second, CgNR3B is a
member of the NR3B group, representing the ‘constitu-
tively activated’ ERRs, and shows a high degree of similar-
ity to the previously identified M. cornuarietis molluscan
ERR (DBD= 94.6% and LBD= 65.6%, respectively). McERR
has been tested for modulation by vertebrate estrogens
and other putative ligands in vitro and in vivo. However,
no significant evidence for modulation could be identified
and it is assumed that McERR is ‘constitutively activated’
[20,94]. CgNR3B can be assumed to work in a similar way
of action regarding ligand binding and activation, particu-
larly as ligand-activated-requirement for a NR3B repre-
sentative has not been identified either in invertebrates or
vertebrates. No further NR3 subfamily receptor were iden-
tified by the genome analysis of C. gigas, which is consist-
ent with the theory of the NR3 subfamily evolution
[12,50,95-97] that the expansion of steroid receptors in-
cluding the deuterostome specific NR3C group occurred
after the divergence of protostomes and deuterostomes.
However, we cannot rule out that additional steroid re-
ceptors exist in protostomes, or even in other mollusc
species, and have then been lost during gene deletion
events [98].
The CgNR4A receptor is the sole C. gigas member of

the NR4 subfamily. There might be another homolog,
CgNHR41, but this NR contains only a single DBD; an
LBD could not be identified (Additional file 2). The hu-
man NR4 subfamily includes nerve growth factor I-B
(NGFI-B), nuclear receptor related 1 protein (NURR1),
neuron derived orphan receptor 1 (NOR1), and is in-
volved in a broad array of cellular metabolic processes;
vascular remodelling and cancer [99,100]. In Drosophila
species the NR4 gene DHR38 mediates an ecdysteroid
signalling pathway [101] and the C. elegans homolog
NHR-6 is involved in ovulation processes [83]. The LBDs
of NR4 genes found in humans, D. melanogaster and S.
mansoni contain phenylalanines, which fill the entire vol-
ume of the ligand binding pockets and NR4 subfamily
members are therefore suggested to be “true orphans” re-
quiring no ligand [101-104]. CgNR4A contains phenyl-
alanine at the same positions in its LBD, suggesting it too
is a “true orphan” receptor.

The NR5 group is represented by two nuclear receptor
homologs in C. gigas, designated CgNR5A and CgNR5B.
The CgNR5A DBD contains a highly conserved sequence
(FTZ-F1 box), which is characteristic of the NR5A group.
This sequence is located at the boundary between the
DBD and the hinge region and is essential for the high-
affinity interaction with the DNA [105]. The D. melanoga-
ster FTZ-F1 receptor is part of the ecdysteroid regulated
nuclear receptor group including members of different
NRs subfamilies. Expression profiles of various fly NRs
showed the close relationship between EcR, E75, E78,
DHR3, DHR4, FTZ-F1 and DHR39 [8,106] and as a part
of this regulatory cascade FTZ-F1 has a crucial role during
embryonic development and metamorphosis [8,106].
The C. elegans NHR25 receptor is also associated with
reproduction, embryogenesis and moulting processes in
Nematodes [68]. The human NR5A genes include liver
receptor homolog-1 (LRH1), which regulates bile acid
and cholesterol metabolism [107], and the steroidogenic
factor 1 (SF1), which is involved in reproductive develop-
ment and endocrine function [108]. CgNR5B is a member
of the NR5B group represented by the D. melanogaster
DHR39 receptor. Besides its role in embryonic develop-
ment and metamorphism DHR39 is also involved in fe-
male reproductive tract development [109]. Homologs of
this group are also identified in crustaceans [50] and the
invertebrate flatworm S. mansoni [110]. D. melanogaster
DHR39 and FTZ-F1 receptors also provide a good ex-
ample that nuclear receptors are able to compete for the
same DNA binding site as a putative target-gene regulated
mechanism [111,8].
It is worth noting that C. gigas does not contain a NR6

subfamily homolog. Homologs have been identified both
in protostomes (ecdysozoans e.g. D. melanogaster DHR4
[106], C. elegans NHR91 [9] and Crustacea [50]) and
deuterostomes (germ cell nuclear factor (GCNF) in H.
sapiens). Thus, it is likely that the NR6 subfamily homo-
log in the Pacific oyster could have been lost due to a
gene loss event either during the separation of ecdyzoans
and lophotrochozoans or during one of the evolutionary
differentiations to the Pacific oyster.
CgNR0B is a predicted member of the miscellaneous

NR-subfamily NR0B, lacking the DNA binding domain.
The first human member of NR0B, DAX-1, plays major
roles in steroidogenesis and reproductive development
[112] and acts as a dominant-negative regulator of other
NR transcription, e.g. SF1 and ER [113]. SHP, the second
human NR0B representative, is involved in maintaining
cholesterol and glucose homeostasis [112].
Two nuclear receptors, Cg2DBDγ and Cg2DBDδ, as-

sociate with the 2DBDNR group found in S. mansoni
[14]. Cg2DBDγ and the S. mansoni receptors each con-
tain the same unique P-box sequences, CEACKK, in the
first DBD sequence [14,15]. The two DBDs and the LBD
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sequence show amino acid identities of 52% and 25% re-
spectively, to the Sm2DBDγ. Cg2DBDδ, which also pos-
sesses two DBDs, does not assign as closely to Sm2DBD
receptors as Cg2DBDγ for its second DBD and LBD. In
addition, it does not contain the unique P-box sequence
in its first DBD. However, it contains another unique
P-box sequence, CLPCKS, which has not been identified
in any other nuclear receptor’s DBD. It seems that this
2DBD receptor may be unique to molluscs. Further phylo-
genetic analyses of NRs in other species and functional
studies of Cg2DBDδ will reveal if this is a functional mol-
luscan specific 2DBD receptor.

Molluscan nuclear receptors as xenobiotic targets
The variety of NRs in C. gigas and the known propensity
for NRs to bind ligands prolifically provides the oppor-
tunity for xenobiotic disruption and chemically induced
biological effects. Exposure to TBT can cause multiple
developmental problems in C. gigas, including shell thick-
ening [33-36]. TBT, a ligand for vertebrate RXR/PPAR
heterodimers [114,115], and thought to interact with mol-
luscan RXRs [29,37-47] may also target the C. gigas RXR
homolog. Consequently, disruption of RXR function,
the putative exclusive heterodimer partner of NRs, could
cause alteration of gene regulation and the reported mal-
formations. Additionally, CgNR1C, the homolog to the
human PPARs, could be affected by TBT. Gastropods ex-
posed to rosiglitazone, a known vertebrate PPAR ligand,
exhibited similar effects (imposex) to TBT exposed ani-
mals [47]. A PPAR homolog in gastropods has not yet
been identified, but it is likely that gastropod species also
contain a PPAR homolog due to the high conservation of
similar nuclear receptor complements between related
species [12].
Furthermore, the C. gigas PPAR homolog could be af-

fected by environmental xenobiotics in addition to TBT.
Peroxisome proliferation in bivalve species is actually used
as a biomarker for monitoring the health of aquatic envi-
ronments [116]. Organic xenobiotics such as polycyclic
aromatic hydrocarbons (PAHs), phthalates and bisphenol-
A, increase the number and volume of peroxisomes and
induce peroxisomal β-oxidation enzyme acyl coenzyme A
(acyl-CoA) oxidase in Mytilus edulis and M. galloprovin-
cialis [117-119]. Vertebrate peroxisome proliferation and
acyl-CoA are regulated by PPARs [120,121] and disturb-
ance of PPAR regulated genes has been observed after ex-
posure to the aforementioned xenobiotics [122-124].
The effect of xenobiotic vertebrate sex steroids is also

a widely debated topic and has been investigated in a large
range of mollusc species. Several studies have reported
effects on reproductive output and morphology in differ-
ent molluscan classes when exposed to vertebrate estro-
gen E2, synthetic estrogens and estrogen mimics [125],
but their response remains ambiguous and characterised

largely through hypothesis and homology. It was assumed
that estrogen and other sex steroids (androgens, proges-
tins, and corticoids) are used as reproductive hormones,
operating through steroid receptors of the NR3 subfamily
[126-129] and possessing a vertebrate-like sex steroid bio-
synthetic pathway [130,131]. However, functional studies
have shown that neither molluscan ERs nor ERR bind to
estrogens or other sex steroids [19,20,93,94,132-134] and
ER and ERR gene transcription was not affected by ex-
ogenous estrogens [94,135]. This present study identified
two NR3 members, including an ER homolog, that does
not bind estrogen [93] and an ERR homolog, which is un-
likely to bind estrogen. Additional NR3 members, which
could interact with vertebrate sex steroids, could not be
identified. This supports the hypothesis that any mechan-
ism of sex steroid actions in molluscs does not operate in
a similar way to those in vertebrates and is not mediated
via the NR3 group of nuclear receptors [125,136]. How-
ever, our findings do not provide any new information for
the debate on the ligand state of the putative ancestral
steroid receptor before the deuterostomes and proto-
stomes have separated, which hypothesizes either a
ligand-regulation, a sensory function or a constitutive
action [96,97].
Nevertheless, estrogens and sex steroids still might

have xenobiotic effects on mollusc species possibly me-
diated via alternative NRs. For example, C. gigas pos-
sesses three NR1J homologs, which are known to
respond to estrogens in D. pulex (DHR96) [137]. Similar
results exist for vertebrate NR1I members, PXR and
CAR [138,139].

Conclusion
This study verified the presence of 43 NRs in the Pacific
oyster, C. gigas. Phylogenetic analyses demonstrate that
the majority of C. gigas NRs are homologs to D. melano-
gaster and human NRs supporting the theory that these
receptor groups emerged prior to the divergence of the
Bilateria [7,12]. A novel group, NR1P, was discovered in
C. gigas, which could not be identified in ecdysozoans or
humans. Further studies of NRs in closely related mol-
lusc species and in non-molluscan lophotrochozoans will
discover if this novel group is mollusc specific or also
present in other lophotrochozoan phyla. The C. gigas
NR family does not contain any additional homolog to
NR3 groups beside the ER and ERR and therefore, supports
the theory that steroid ligand expansion of sex steroid NR3
subfamily is deuterostome specific.
C. gigas is a key ecological species and an important

food source for humans, but due to its filter feeding life-
style, it is susceptible to environmental pollution. This
set of NRs provides important information on putative
xenobiotic targets and the discovery of PPAR and RXR
homologs in C. gigas encourages the theory of an RXR/
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PPAR heterodimer involvement in effects caused by TBT
contamination. Additionally, we found further evidence
that exogenous estrogens do not operate through a NR3
subfamily member, simply by the absence of an adequate
NR3 candidate for estrogen binding.
The C. gigas NRs provide a valuable illustration of the

presence and importance of this superfamily of ligand-
regulated transcription factors, leaving the way open for
future studies to analyse their functional significance.

Methods
Identification of nuclear receptors in C. gigas genome
Putative C. gigas NR sequences were identified through
a local combination of tBLASTn and BLASTp searches
of genome, CDS and protein databases using the pub-
lished Pacific oyster genome [48]. The protein sequences
(full length sequences, isolated DBD regions and isolated
LBD regions) of the 48H. sapiens and 21 D. melanogaster
NRs were downloaded from GenBank and were used as
templates for interrogating the C. gigas databases. The
DBD (zf-C4) and LBD (hormone_rec) of identified puta-
tive oyster NRs were verified by using Pfam (Pfam 26.0)
[140] and in addition annotated by using the Conserved
Domain Database at NCBI [141]. A BLASTp search using
the conserved domains and the full length sequences
against the non-redundant (nr) Metazoan protein data-
base at NCBI was used for a first characterization of the
putative nuclear receptors.
Nomenclature of the putative C. gigas nuclear receptors

was based on phylogenetic analyses using conserved do-
mains and sequence similarities of full length sequences to
the NRs from H. sapiens and D. melanogaster. Genes were
classified to nuclear receptor subfamily groups based on
the nomenclature guidelines [13], if a single representative
was identified. For groups, which include several represen-
tatives, the nomenclature name of the closest orthologs
were given or listed with the Greek suffix α-δ. Nuclear
receptors, which showed similarities to two or more NR
subfamily groups, were named after all group names.
Nuclear receptors, which could not be assigned to a NR
subfamily group or for which sequence could not be re-
solved, were labelled as CgNHRs.

Verification C. gigas nuclear receptor expression
Six C. gigas individuals were sampled from the coastline
close to Starcross, Devon, UK (50.6167° N, 3.4500° W).
Shucked whole animals were frozen in liquid nitrogen
and ground to a fine powder. Total RNA was extracted
from this homogenate using TRI Reagent RNA Isolation
Reagent (Sigma-Aldrich) following the manufacturer’s
protocol [142] and DNA removed with RQ1 RNase-Free
DNase (Promega). RNA was cleaned using the RNeasy
Mini Kit (QIAGEN) and pooled. Cleaned total RNA was
converted to cDNA with the ThermoScript RT/PCR

System (Invitrogen) using oligo(dT) primers. Forward and
reverse primers for 42 putative NRs were designed with
Primer-Blast at National Centre for Biotechnology Infor-
mation (NCBI) [143] to amplify either parts of the hinge
domain plus LBD, or parts of LBD or whole DBDs with
predicted amplicons of 177-984 bp (Additional file 4).
Primers for CgNR1D were also designed to obtain the NR
sequence. One microlitre of undiluted cDNA was used for
PCR amplification with the GoTaq system (Promega)
under the following conditions: 95°C 5 min, thirty-five cy-
cles of 95°C for 15 s, 57°C for 30 s, 72°C for 1.5 min, and a
final extension at 72°C for 5 min. Amplified PCR products
were visualized on a 1.5% agarose gel and amplicons
purified with the QIAquick PCR Purification Kit, or
with QIAquick Gel Extraction Kit (Qiagen, UK) and se-
quence verification conducted by Eurofins MWG Operon
(Ebersberg, Germany).

Phylogenetic analysis
Thirty-eight classically and five abnormally structured
putative NRs from C. gigas were compared to 48H. sapi-
ens, 21 D. melanogaster, 12 C. elegans, 3 S. mansoni and 16
previously cloned nuclear receptor amino acid sequences
from different mollusc species (A. californica, B. glabrata,
C. gigas, L. stagnalis, M. cornuarietis, M. edulis, M. gallo-
provincialis, Nucella lapillus, Octopus vulgaris, Thais clavi-
gera). The lineage-specific expansion of C. elegans in the
NR2A subfamily was disregarded as preliminary data of C.
gigas NRs did not suggest a similar NR2A expansion. For
a better readability of the phylogenetic trees only two NRs,
representatives of the C. elegans NR2A subfamily, have
been used. The amino acid sequence GenBank accession
numbers of all nuclear receptor used in the phylogenetic
analysis is available in Additional file 1. The DBD and LBD
amino acid sequences were aligned using default parame-
ters in MUSCLE v3.8.31 [144] and edited manually in case
of errors. LBD domains were trimmed to allow efficient
alignment of conserved sequences. Three separate max-
imum likelihood (ML) analyses were conducted, the first
using only the DBD, the second with a portion of the LBD,
and the third with the DBD plus a portion of the LBD.
Trees were constructed using PhyML v3.0 [145] with a LG
+ I +G matrix (model determined by AIC criteria with
ProtTest v2.4) [146]. Nodes were supported by ML analyses
assessed with 1,000 bootstraps. The same three data sets
were also tested by Bayesian Inference, carried out under
a proportion of invariable sites and gamma-distributed
rate heterogeneity among sites with a mixed amino acid
replacement model using MrBAYES v3.2.2 [147]. The
trees started randomly with four simultaneous Markov
chains running for 5 million generations with chains sam-
pled every 100 generations and with a burnin of 5000
trees. The JTT model [148] was selected as the best fitting
substitution model. The Bayesian posterior probabilities
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(PPs) were calculated using a Markov chain Monte
Carlo (MCMC) sampling approach implemented in
MrBAYES v3.2.2. Additional phylogenetic support was
conducted by a distance neighbor-joining (NJ) analysis of
the DBD plus the portion of LBD using Seaview v4.0
[149]. Default characteristics were used and the branch
support was measured by bootstrap analysis with 1,000
replicates. Phylogenetic trees were visualized and illus-
trated with FigTree v1.4.0 (http://tree.bio.ed.ac.uk/soft-
ware/figtree/). Phylogenetic data has been uploaded to
TreeBASE where it is available for public access via the
website and study ID 15636 (http://purl.org/phylo/
treebase/phylows/study/TB2:S15636).

Additional files

Additional file 1: Nuclear receptor amino acid sequence GenBank
accession numbers for Crassostrea gigas, Homo sapiens, Drosophila
melanogaster, Caenorhabditis elegans and mollusc species
[19-22,37,39,44,78,80,93,132,135,150-153].

Additional file 2: Phylogenetic tree using only DBD of NR alignment
conducted by a Maximum likelihood (ML) and Bayesian Inference
analyses. ML bootstrap support values (percentage of 1000 BS) and
Bayesian posterior probabilities (PPs) are provided above the nodes
separated by slash. Star indicates the node obtained from the Bayesian
Inference analysis, which was different from that obtained by ML method.
Crassostrea gigas NRs highlighted in red. Ac: Aplysia californica, Bg:
Biomphalaria glabrata, Ce: Caenorhabditis elegans, Cg: C. gigas, Dm:
Drosophila melanogaster, Hs: Homo sapiens, Lym: Lymnea stagnalis, Mc:
Marisa cornuarietis, Me: Mytilus edulis, Mg: Mytilus galloprovincialis, Nl: Nucella
lapillus, Ov: Octopus vulgaris, Sm: Schistosoma mansoni, Tc: Thais clavigera.

Additional file 3: Phylogenetic tree using only a portion of LBD of
NR alignment conducted by a Maximum likelihood (ML) and
Bayesian Inference analyses. ML bootstrap support values (percentage
of 1000 BS) and Bayesian posterior probabilities (PPs) are provided above
the nodes separated by slash. Star indicates the node obtained from the
Bayesian Inference analysis, which was different from that obtained by
ML method. Crassostrea gigas NRs highlighted in red. Ac: Aplysia
californica, Bg: Biomphalaria glabrata, Ce: Caenorhabditis elegans, Cg:
C. gigas, Dm: Drosophila melanogaster, Hs: Homo sapiens, Lym: Lymnea
stagnalis, Mc: Marisa cornuarietis, Me: Mytilus edulis, Mg: Mytilus
galloprovincialis, Nl: Nucella lapillus, Ov: Octopus vulgaris, Sm: Schistosoma
mansoni, Tc: Thais clavigera.

Additional file 4: Table of primer sequences including amplicon
length (bp) and parts of nuclear receptor domains sequenced:
A/B = N-terminal domain, C = DNA binding domain, D = hinge
domain, E = ligand binding domain, F = C-terminal domain.
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