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Abstract: 

This paper describes the development of an android-based smartphone application aimed at 

capturing automatically triggered aerial photographs for grass-roots mapping applications. 

The aim of the project was to exploit the plethora of on-board sensors within modern 

smartphones (accelerometer, GPS, compass, camera) to generate ready-to-use spatial data 

from lightweight aerial platforms such as drones or kites. A visual coding ‘scheme blocks’ 

framework was used to build the application (‘app’), so that users could customise their own 

data capture tools in the field. The paper reports on the coding framework, then shows the 

results of test flights from kites and lightweight drones and finally shows how open-source 

geospatial toolkits were used to generate geographical information system (GIS)-ready 

GeoTIFF images from the metadata stored by the app. Two Android smartphones were used 

in testing – a high specification OnePlus One handset and a lower cost Acer Liquid Z3 

handset, to test the operational limits of the app on phones with different sensor sets. We 

demonstrate that best results were obtained when the phone was attached to a stable single 

line kite or to a gliding drone. Results show that engine or motor vibrations from powered 

aircraft required dampening to ensure capture of high quality images. We demonstrate how 

the products generated from the open-source processing workflow are easily used in GIS. 

The app can be downloaded freely from the Google store by searching for ‘UAV toolkit’ (UAV 

toolkit 2016), and used wherever an Android smartphone and aerial platform are available to 

deliver rapid spatial data (e.g. in supporting decision-making in humanitarian disaster-relief 

zones, in teaching or for grassroots remote sensing and democratic mapping). 
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Introduction 

Smartphones are powerful research tools for collecting scientific data because they are 

equipped with a broad suite of sensors (e.g. cameras, microphones, light sensors, 

accelerometer, compass, gyroscope, and GPS) and on-board microcomputers and are 

globally ubiquitous. ‘Mobile phone sensing’ (Lane et al., 2010) is emerging as a new field of 

research and a growing number of scientists are developing ways of exploiting the 

technological capabilities of smartphones. Examples include social science investigations 

(Raento et al., 2009), human population mapping for epidemiology (Deville et al., 2014, 

Aanensen et al., 2009), ecological data capture (Teacher et al., 2013), atmospheric 

monitoring (Cao and Thompson, 2014) and clinical studies (Burdette et al., 2008, Kirwan et 

al., 2012). Smartphones are typically equipped with a broad suite of sensors, designed to 

service the information requirements of users and multinational developers alike – they are 

location-aware, and applications downloaded by users can transmit information back to 

providers. This is a capability that can be exploited through the programmable nature of 

smartphones - sensors developed for providing location-based services can now be hacked 

using readily available computing resources that offer a “low barrier of entry for third-party 

programmers” (Lane et al., 2010).  

A somewhat untapped opportunity lies in converting the smartphone into an all-inclusive or 

self-contained remote sensing device that not only captures images, but also records the 

metadata from various phone sensors coincidently (e.g. GPS, and sensor attitude data). 

Remote sensing is the science of acquiring spatial, spectral or temporal information about 

objects without making physical contact with the object. Typically remote sensing data 

comprise images acquired from sensors on platforms such as piloted aircraft or satellites but 

a new self-service, and to some extent, ‘grassroots’ (participatory and distributed) remote 

sensing revolution is underway making use of drones and kites as platforms for proximal 

observations of environmental phenomena (Anderson and Gaston, 2013, Bryson et al., 

2013, Murray et al., 2013, Marzolff and Poesen, 2009). These platforms cannot carry the 

heavy payloads used on satellites or aircraft, but they offer a more flexible means of for 

timely and responsive survey, and their low flying capability means that high spatial 

resolution data can be captured easily. For example in the aftermath of a humanitarian 

disaster the ability to rapidly and cheaply survey damage and search for survivors is more 

readily achieved from a lightweight and portable platform like a drone or a kite (Tuna et al., 

2014) than from a piloted aircraft or satellite. The resolution of data from more proximal 

platforms such as drones and kites means that the data are more useful and easily 

interpreted in such settings. Additionally smartphones provide a means for participatory map 

making in places where global datasets (e.g. Google Earth) lack spatial fidelity, and where 

community tools (e.g. OpenStreetMap) provide platforms for sharing open source spatial 



information amongst individuals (Goodchild, 2007, Haklay and Weber, 2008). Indeed, 

movements such as Humanitarian Street Map (https://hotosm.org/) could benefit greatly from 

the low-cost digital mapping opportunity offered a kite or lightweight drone equipped with a 

ready-to-use smartphone for capturing aerial data. 

The status quo for drone- and kite-based aerial mapping is to use either camera systems 

with wired triggers (e.g. where a camera is triggered to take a photograph by an on-board 

autopilot), cameras fitted with intervalometers, or cameras hacked to give improved 

autonomous functionality (e.g. using tools such as the Canon Hack Development Kit). A key 

challenge is enabling the camera to capture images without the need for human intervention 

once airborne. Data processing then uses complex software (e.g. ‘structure-from-motion’ 

software) to convert the resulting aerial photography data into ready-to-use orthorectified 

maps and three-dimensional point clouds, where required (Dandois and Ellis, 2010, James 

and Robson, 2014, Dandois and Ellis, 2013, Zahawi et al., 2015). Whilst these approaches 

generate high quality scientific products, for many basic mapping applications the workflow 

(e.g. wiring the camera to an autopilot trigger is non-trivial, and the post-processing stage 

requires high performance software and computing) is too complex and the detail in the 

products exceeds what is really needed. For many applications basic aerial photography 

data are sufficient to enable identification of landscape features and to map environmental 

patterns (Gottschalk et al., 2011). This paper is concerned with developing an ‘appropriate 

technology’ (Appropedia, 2015) toolkit for basic autonomous image capture using a mobile 

phone.  We asked: can a basic smartphone, with its plethora of on-board sensors 

(accelerometer, GPS, compass, camera) be used to generate ready-to-use spatial data from 

lightweight aerial platforms such as drones or kites? Smartphones contain everything 

necessary to allow geo-tagged images to be delivered, being equipped with high resolution 

digital cameras, on-board computer processors, GPS receivers, and typically 

accelerometers and a compass. There are a variety of useful opportunities in combining data 

from these various sensors and we sought to develop an application that converted a 

smartphone into an autonomously triggered drone- or kite-ready map making device.   

 

This paper describes the development, testing and evaluation of a bespoke smartphone app 

for automatically collecting and generating geotagged aerial images, and suitable for 

deployment on any lightweight drone or kite aerial photography (KAP) rig.  The manuscript 

details the technical approach, the results of field tests on kites and lightweight drones and 

discusses the challenges with deployment and data processing. The code and app 

developed are open-source and freely available for use. 

 

https://hotosm.org/


Methods and materials 

The app was designed to be implemented on an Android smartphone handset. Android 

provides the most flexible platform, allowing the app to be developed as an open-source 

toolkit. At the time of development, the global distribution of Android smartphones greatly 

exceeded that of other operating systems (in the first quarter of 2015 the global market 

share of Android was reported to be 78% by the International Data Corporation (IDC 2016)), 

therefore offering the most ubiquitous platform for global uptake. 

A limited number of similar smartphone apps for remote sensing exist. Those that do exist 

are primarily for citizen science applications where ground-based validation data are needed 

to help improve the quality and validity of products such as global land cover maps. Two 

such apps are ‘Field Photo’ (Field Photo 2016) and ‘GeoWiki Pictures’ (GeoWiki Pictures 

2016). Both offer a route for users to capture geo-tagged images of landscape features, 

allowing the organisations who administer the apps to use these data for broader purposes. 

In both cases, the user is required to trigger the camera on the handset, and the app then 

records various metadata describing the conditions and location of the photograph. In ‘Field 

Photo’ the app simply logs the GPS location whilst ‘GeoWiki Pictures’ also captures 

metadata describing the compass angle and direction of tilt. Neither app allows the user to 

programme the conditions under which the camera is triggered or to allow the device to 

trigger automatically. Equally, both of these apps are static, and developments and changes 

can only be implemented by the developers. It was these two functions that were critical to 

our application:  

(a) the need for a user to press a button to trigger data capture is not feasible when the 

device is airborne, so it was essential that our app would allow the camera and sensors on 

the smartphone to function autonomously after set-up  

(b) a ‘fixed’ app that prevents the user from making changes to the way images are captured 

can be restrictive in operational settings, so we wanted to make this flexible and 

programmable in an accessible way.  

 

Critical design steps 

In designing the app it was first necessary to identify the critical steps to turn a standard 

Android smartphone handset into a remote sensing device. A key focus of the design was to 

trigger the camera to capture photographs automatically, whilst simultaneously recording 

metadata describing other conditions (position, direction, angle of acquisition, time). Several 

steps were followed in the design of the app for this purpose. The technical specification of 

the app dictated that it had to be able to: 



1. Identify and capture information about the full suite of sensors on the smartphone 

(which varies between handset models). 

2. Capture information from the smartphone describing the camera model (field of view, 

pixel resolution, shutter speed). 

3. Control the camera so that it could be triggered to acquire images given a set of pre-

defined capture parameters (e.g. a timed trigger or a positional trigger). 

4. Simultaneously record data from the phone’s GPS to geolocate and timestamp each 

image, and use the accelerometer and compass to record the attitude (pitch, roll and 

heading) of the phone such as would be achieved in a typical ‘aircraft attitude’ data 

stream on board a remote sensing survey aircraft, or by a drone autopilot.  

5. Store metadata as linked records to each individual photographic image. 

A second phase of development focused on developing a user-configurable app. This was 

considered essential because a fixed format application that could only generate time-

triggered image capture, or GPS-triggered image capture would not necessarily suit all 

potential users. An intention of this project was to work more closely on a flexible app design 

that allowed users to change the conditions under which the camera trigger was activated – 

allowing, for example, attitude-based quality control (e.g. only capture an image if the 

camera is level and pointing downwards). To enable this flexible functionality, a visual coding 

methodology was followed. 

A third phase of development was to experiment with an open-source approach for post-

processing the captured images into Geographical Information Systems (GIS)-ready geo-

tiffs, after the images had been downloaded from the smartphone. This approach required 

new code to convert the image jpeg into GIS format data. 

Visual coding methodology 

The conventional app design process assumes that the purpose of the system being 

designed is fixed, and a programmer's job is to provide features that solve existing problems 

for a client. In the case of experimental research, and in this project, these relationships are 

not so clearly defined and this led us to pursue a more flexible approach to the app design, 

specifically drawing on research in visual and live coding. Visual coding is a way of enabling 

simple programming by manipulating program elements graphically rather than by through 

text definition. Visual coding allows for end-user development (EUD; a more flexible 

approach to software production by people with expertise in other domains, and those 

working towards goals supported by computation (Paterno, 2013)) of apps through live 

coding (where coding is designed and implemented on the fly). Live coding is widely used 

within the arts, for example, in music performance (Collins et al., 2003, Magnusson, 2011) 

and is increasingly used as a tool for teaching introductory programming (Rubin, 2013). As a 



programming tool itself, live coding can result in many new, flexible approaches to 

programming. Live coding was trialled here to allow for EUD within the app. We developed 

an approach that allowed users to program the app using the phone’s touch screen, using a 

system based on ‘Scheme Bricks’ (Maclean et al., 2010) which utilises drag and drop 

positioning of logical blocks to construct expressions which are evaluated in flight by a 

tinyscheme (Tinyscheme 2016) interpreter. Blocks are picked using Android's ‘long press’ 

function, and haptic feedback was provided by vibration to indicate successful selection.  

The nature and quantity of sensors in mobile devices are changing rapidly and the suite of 

sensors available varies from one handset to another. For this reason, we did not wish to 

stipulate that a specific sensor set should be required to allow the app to work, but the 

minimum requirement was GPS and a camera. The addition of numerous combinations of 

other sensors was anticipated to enhance the remote sensing approach, so flexibility in 

calling on a variety of sensors was an advantage that was only possible through use of an 

EUD approach. In many survey settings, it is also helpful to be able to change the behaviour 

of the software to perform specialist functions. Such flexibility in the app design is particularly 

important in a research context where researchers might also have experience of scripting 

and programming and wish to make their own changes. Finally, with airborne mapping there 

are sometimes local conditions (e.g. variable wind, changing light conditions) that require 

different camera triggers or imaging behaviour. The ability to make adjustments to the 

program behaviour in the field without requiring a full development toolchain (e.g. laptops 

and cables) was therefore highly attractive. 

The app was designed with a completely open EUD capability whilst also offering three 

example programs for the most commonly used modes of image capture: a simple timer to 

trigger photo capture every three seconds whilst simultaneously recording sensor data 

describing the orientation and GPS position of the images; and two further programs that 

calculated the overlap of photos using different methods, driven by the on-board GPS to 

mitigate against the app collecting too many photographs. For EUD four kinds of 

programming block were available: 

 Triggers: these are time or space based blocks that go on the top level of a program 

to trigger subsequent actions. They trigger based on a simple timer (when-timer), 

distance covered using GPS (when-moved-metres) or distance from all previous 

trigger locations (when-in-new-location). 

 Actions: used to display data for debugging, for feedback – sound/vibrate, or to 

record data to the database. 

 Sensors: the app lists all types of sensors on-board the smartphone, as exposed by 

Android's OS (for example, these may include sensors such as: accelerometer, 



temperature, gravity, gyroscope, light, linear acceleration, magnetic field, orientation, 

pressure, proximity, relative humidity, rotation vector, significant motion, camera, and 

GPS coordinates).  

 Mathematical expressions: are provided for calculations to be carried out in flight, 

for example the coverage of a photograph based on the camera angle and altitude.  

Tests on android smartphone platforms 

Two smartphones were used to test the app – a low-cost Android handset (Acer Liquid Z3) 

and a more advanced Android handset (OnePlus One A0001). Both were chosen because 

they offered the necessary basic sensors for aerial photographic survey – a GPS and a 

camera. The two smartphones were also chosen because they offered different capabilities 

in terms of other on-board sensors, with the OnePlus One A0001 model offering a richer set 

of on-board sensors for metadata collection.  Details are provided in Table 1 showing the 

basic specifications of each smartphone. 

Functionality Acer Liquid Z3 OnePlus One A0001 

Dimensions (w,h,d) 109.9 x 60.0 x 10.4 mm 152.9 x 75.9 x 8.9 mm 

Weight 120 g 162 g 

Main camera, matrix 3 megapixels 13 megapixels 

Main camera, resolution 2048x1536 pixels 4128x3096 pixels 

Video capability? Yes Yes 

Internal and RAM memory 4 Gb; 512 Mb 16 Gb; 3Gb 

Operating system Android 4.2 jellybean Android 4.4 kitkat 

Battery Li-Ion 1500 mAh LiPo 3100 mAh 

GPS Yes, basic A-GPS only Yes, A-GPS with additional 
capability for GLONASS and 
Beidou constellations, plus 
Near Field Communication 
(NFC) 

Processor MediaTek MT6572M 
Processor clock: 1,00 GHz 
Number of cores: 2 

GPU: ARM Mali-400 MP1 
@500 MHz 

 

Qualcomm Snapdragon 801 
8974AC 
Processor clock: 2,50 GHz 
Number of cores: 4 

GPU: Adreno 330 @578 
MHz 

 

Table 1: Specifications of the two test smartphones used in this study. All information 

taken from http://www.gsmchoice.co.uk/ [accessed 4 August 2015] 

 

http://www.gsmchoice.co.uk/


Automatic image capture is considered a privacy problem in normal smartphone use and 

thus is contrary to usual Android design guidelines. A camera timer mode had to be coded to 

over-ride this restriction. In addition we needed to take steps to prevent accidental button 

presses or screen activity during flight or attachment to the vehicle in use. The app therefore 

included a 'camera lock' feature that made the app full screen to prevent operating system 

(OS) navigation buttons being pressed whilst in use. The app could then be stopped by 

using a long-press on the power button to cease data capture. Both the key-guard screen 

and rotation layout changing was disabled by the app, because this was found to interfere 

with the camera functionality in some cases. The behaviour of these actions varies from 

phone to phone based on the specific version and manufacturer but these steps  worked 

well with the test phones we used (Table 1) and ensured robust and continual functioning of 

the app in demanding field situations.  

Flight tests and platforms 

We tested deployment on a range of lightweight (sub-7kg take-off-weight) drones and two 

different kites - details of the systems used are provided in table 1. It is important to note that 

we were focused on testing the app’s performance in very basic settings, acknowledging that 

the idea behind the research was to make and test the utility of the procedure for grassroots 

spatial mapping. For this reason, we tried to avoid using bespoke holders or specialised 

mounts to attach the smartphone to the airborne platform, instead focusing on using 

attachments or fittings already on the drones, or easily made for kites. This allowed us to test 

the performance of the technology in settings that were most realistic given the intended 

audience.  

For the KAP platform (see table 1), we developed a customised part to hold the OnePlus 

One handset. A plate was designed and printed using a 3D printer to provide a bespoke 

holder for the OnePlus One phone. A hole was left for the rear camera and four holes were 

made in each corner for hanging the rig from the kite using alpine butterfly knots. Figure 1 

shows the detail of this 3D printed part. For the other platforms, rudimentary fixings were 

used to ensure safe fitting of the handset to the drone or kite, whilst also relying on minimal 

specialist equipment. Figure 2 shows three examples of how the OnePlus One phone 

handset was fixed to various platforms. 

 



Platform Make / model / 
type 

Platform cost Fixing  Field testing 
sites  

Multirotor 
battery-
powered 
drone  

3D Robotics Y6 
hexacopter 

£600 Attached to the 
under-carriage 
beneath the LiPO 
battery, using 
velcro straps. 

Mixed coastal 
grassland site 
adjacent to a 
steep cliff. 

Multirotor 
battery-
powered 
drone 

Quanum nova 
quadcopter 

£300 Attached under the 
body of the aircraft 
using hardware 
tape and cable/zip 
ties. 

Mixed grassland 
with sparse 
woodland.  

Fixed wing 
radio 
controlled, 
glo-fuel 
powered 
aircraft  

Flair Cub aircraft 
(balsa wood 
frame) 

£300 Secured with tape 
on the underside of 
the aircraft’s nose. 
Two flight modes – 
powered and in a 
controlled glide 
descent. 

Mixed coastal 
grassland site 
adjacent to a 
steep cliff. 

 

Fixed wing 
battery-
powered 
glider aircraft 

X-UAV SKUA 
(polystyrene 
frame) 

£250 Secured to the end 
of the wing using 
hardware tape.  

Mixed coastal 
grassland site 
adjacent to a 
steep cliff. 

Stunt kite Flexifoil  £100 A handmade rig 
consisting of a 
wooden strip hung 
between the two 
kite lines. The 
phone was secured 
to the wooden strip 
using hardware 
tape. 

Beach with rocky 
outcrops and 
tidal pools. 

KAP single 
line kite 

HQ KAP foil 
1.6m 

£80 3D printed holder 
with four corner 
attachments, 
looped onto the 
single line using 
alpine butterfly 
knots. The phone 
was attached to the 
holder using 
hardware tape and 
cable/zip ties. 

1. Disused quarry 
area with small 
ponds, aggregate 
piles and sand-
dune vegetation 

2. Beach with 
rocky outcrops 
and tidal pools. 

 

Table 2: Airborne platforms used for testing the app and the various site typologies 

where flights were performed. 



 

Figure 1: a 3D printed holder for the OnePlus One handset for suspension from a 

single line KAP kite. (a) the bare 3D printed holder (b) with the smartphone positioned 

(c) with superglued earplug dampeners to allow compression to fix the phone in place 

(d) with a stone taped to the jig to test the kite’s fly-ability with a payload, and fixed 

using alpine butterfly knots to the kite’s line prior to first deployment of the phone 

and (e) with the phone fixed using cable/zip ties prior to the first KAP test flight on a 

beach showing D. Griffiths and L. Reinhardt preparing to launch the kite.  

 

 

 

Figure 2: examples of basic fitting methods to hold the mobile phone handset in place 

on airborne platforms. Shown are (a) a wooden bar suspended from two strings on 

the flexifoil stunt kite with the OnePlus One phone attached using hardware tape (b) 

the Acer Liquid Z3 taped to the underside of the balsawood Flair Cub aircraft with 

hardware tape and (c) the OnePlus One phone attached using hardware tape to the 

underside of the Quanum Nova lightweight quadcopter with a sponge to reduce image 

blurring caused by airframe vibration. 

 

 

 

 

 



Development of a post-processing methodology for GeoTIFFs 

The final stage in the process was convert the images captured by the phone into GIS-ready 

GeoTIFFs. This part of the process sought to determine the extent to which the metadata 

from the phone’s other sensors could be used to rotate and then fit the photographs to a 

gridded map projection and is a completely novel and bespoke approach for which existing 

software is not available. This process was developed and tested using a simple python 

script alongside freely available and open-source tools from the Geospatial Data Abstraction 

Library (GDAL, 2015). Three steps were followed: 

1. The sensor metadata captured simultaneously by the app and stored in the on-phone 

database were extracted and stored as a SQLite database. The database was used 

to match metadata records to specific photographs. 

2. The metadata in the SQLite database were then assimilated into GDAL and 

converted using gdal_translate (GDAL, 2015) to generate a set of ground control 

points describing the geographic location of each corner of each image. We 

experimented with various sensor combinations to determine which produced the 

best results. 

3. The result of 2 was then fed into the ‘gdalwarp’ utility tool (GDAL, 2015), once to 

process the pixel data and a second pass to convert the coordinates to EPSG:3857 

(a geographic projection commonly used for web-mapping applications) so that the 

orientation and position of the images could be checked against Google Earth or 

Bing maps.  

2.6 Open source reporting and development changes 

In the spirit of grassroots and open-source movements, the app is free for any Android user 

to download. The process of source control and a full commit log for the entire process 

describing the development of the app is available and freely accessible through a Github 

repository and is updated each time changes are made to the app (Griffiths, 2015).  

 

Results 

Visual coding results 

Figure 3 shows screenshots from version 0.6 of the app. Figure 3(a) shows the opening 

screen of the app whilst Figure 3(b) shows the coding blocks for a 3 second camera trigger 

where various other sensors are also triggered and a ‘ping’ noise is activated per acquisition. 

Figure 3(c) shows an example of live coding where the orientation sensor has been ‘picked’ 

by the user to move it around within the coding framework. The buttons shown in Figure 3(c) 

at the bottom of the app screenshot show the ‘flight lock’ button which can be activated once 



the program is running (bottom right button) – this was designed to deactivate all other 

activity on the phone so that the app could run without being interfered by other processes. 

The rubbish bin icon/block at the bottom of Figure 3(b) and 3(c) is where unwanted blocks 

can be placed during live coding. Figure 4 shows the different block types available for live 

coding the app. Figure 5 shows the metadata recorded by the app for a single test 

acquisition, displayed when the ‘view data’ (See Figure 3(a)) button was pressed within the 

app. This gives the user of the app an immediate in situ view of the data collected 

simultaneously with the camera trigger during a timer-based acquisition. 

 

 

Figure 3: screenshots from the app showing (a) the opening screen (b) the coding 

scheme bricks and (c) an example of live coding where a scheme brick is in the 

process of being moved within the program. 

 



 

Figure 4: Examples of the coding blocks that could be chosen on the OnePlus One 

handset where (a) is the triggers, (b) shows actions that the phone can perform when 

a trigger is set (c) demonstrates sensor selection and (d) shows mathematical 

operators. 

 



 

Figure 5: example metadata shown on the screen of the OnePlus One phone. 

 

 



Results from flight tests 

Powered drones 

Flight tests from powered lightweight drone platforms generated a range of results which 

were used to evaluate the performance of the app. The main issue with deployment on 

powered drones (both multi-rotor and fixed wing aircraft) was vibration in flight. Due to the 

fact that we used simple, non-vibration dampened fixings for the phones there was always 

some in-flight vibration which transferred to the devices. This gave rise to a range of image 

quality issues, as shown in figure 6. In Figure 6(a) we show an annotated image of a 

grassland test site collected using the Acer Liquid Z3 handset attached to the 3D Robotics 

Y6 airframe. The arrows indicate where image blurring occurred in stripes and caused subtle 

distortions in the image. These distortion lines were present in most of the data collected 

from powered drones to a greater or lesser extent, and were always aligned with the camera 

pixels rather than orientated in the direction of platform motion. Figure 6(b) was collected 

from the OnePlus One phone from the fixed wing SKUA aircraft. It shows a road adjacent to 

some agricultural fields, where similar image blurring is obvious relative to the linear feature 

of the road. The blurring and geometric distortion was oriented across the image from left to 

right as is indicated by the road junction where the left hand road is less severely distorted 

than the road running from top-to-bottom of the image. Figure 6(c) was collected by the 

OnePlus One phone taped to the underside of the Flair Cub aircraft as it flew over some 

coastal cliffs. The black area to the bottom right of the image was the tape (used for fixing 

the phone to the aircraft) – and it is clear that the straight edge of the tape has been 

captured as being non-straight due to vibration, causing image distortion. Similarly, the 

geometric properties of the cliffs below are poorly captured due to vibrations from the petrol 

motor. Figure 6(d) was captured by the Acer Liquid Z3 from the same Flair Cub platform 

over agricultural fields and the same geometric distortion is clearly visible.  

Initially, the app was designed to vibrate at the point of image collection as a haptic indicator 

that the app was triggering. The early results (Figure 6(a)) which showed blurring in the 

images led us to change the coding of the app so that a ‘ping’ sound alert indicated 

successful image capture instead of a haptic vibration cue. In subsequent flights, with this 

‘ping’ modification running, we found that this change in functionality had no noticeable effect 

on image quality (Figure 6(b) to (d)), indicating that the vibration of the platform was a more 

significant issue. We suggest that these image distortions were due to the interlaced 

sampling of the camera sensor imaging array (in both cases, these were Complementary 

Metal Oxide Semiconductor (CMOS) sensors (Zhang and Bermak, 2010)). Furthermore 

these distortions could also have been an artefact of the CMOS image stabilization algorithm 

not being capable of overcoming high levels of vibration from powered drones. The results 



suggest that vibration dampening would be an important feature governing successful 

deployment of the app in operational situations.  

 

Figure 6: Vibration issues caused image blurring when the phone handset was not 

vibration dampened. (a) grassland image captured by the Acer Liquid Z3 handset 

flown on 3D Robotics Y6 airframe (b) a road and fields captured from the OnePlus 

One handset on SKUA airframe; (c) coastal cliffs from the OnePlus One handset on a 

petrol powered Flair Cub airframe; (d) agricultural area captured from the Acer Liquid 

Z3 on the Flair Cub airframe. 

To test the hypothesis that the blurring and image quality issues were caused by engine 

vibrations we used the Flair Cub platform to capture some test images during a flight over a 

coastal grassland site with some nearby cliffs (the same site shown in Figure 6(c)), both with 

the engine running and then in a controlled glide. A time series of four images captured 

during that test flight are shown in Figure 7, beginning top left (a) with the engine running, 

showing the effect of engine vibration and then, through (b) where the engine had just been 

cut, through (c) and (d) when the aircraft had just turned and was beginning a controlled 

glide to descend for landing. Figure 7 evidently shows much higher image quality captured 

after the engine was cut ((c) and (d)). The linear features of the road and the detail in the cliff 

structures are much more clearly discernible and the images have greater geometric clarity 



without the distortions to linear features previously evident in Figure 6(b), for example. Using 

the straight edge of the piece of black tape that partially covered the lower right hand part of 

the lens as a secondary guide it is possible to see from Figure 7 that the photographs 

captured whilst gliding (7(c) and (d)) suffered less distortion than those captured when the 

engine was running (7(a)). Figure 8 provides two photographs (with zoom areas shown 

beneath) collected by the OnePlus One phone when flown on the Quanum nova quadcopter. 

Here, we sought a low-cost option to dampen vibrations, placing a kitchen sponge (Figure 

2(c)) between the phone and the aircraft underside to absorb vibrations. Whilst some image 

quality issues remained (blur is evident in the zoomed area in (b)), the overall mapping 

capability of the phone on this low cost platform appeared good and certainly typical results 

were improved (e.g. zoomed area in (a)) over the blurry examples shown in Figures 6 and 7.  

 



 

 

Figure 7: Results of an in-flight experiment to test the impact of engine vibration on 

image quality using the OnePlus One phone and the Flair Cub platform when (a) the 

engine was running, (b) the engine had just been turned off and (c), (d) when the 

aircraft was gliding and vibration distortions were minimised. The black ‘edge’ shown 

bottom right was a piece of tape used to fix the phone in place on the aircraft, and 

was also used as a constant visual guide for the level of image distortion encountered 

in the different scenarios. The edge gets sharper as the engine is turned off and the 

aircraft is switched to gliding mode.  

 



 

Figure 8: Example images over a mixed grassland/woodland site collected by the 

OnePlus One phone fixed to the Quanum Nova quadcopter where vibration 

dampening was achieved using a kitchen sponge between the phone handset and the 

aircraft (see Figure 2(c)). (a) is an area of grass bordered by trees and (b) shows the 

flight crew on the ground. Below (a) and (b) are two areas of focus, showing (a) good 

quality data with minimal blurring over a patch of trees and (b) evidence of some 

blurring in an image collected over the flight team (all co-authors of this paper).  

 

 

 

 

 

 



Kite platforms 

Results from tests on kite platforms were also informative and helped to define the 

operational limits of the app. For all kite tests, the OnePlus One handset was used. Figure 9 

shows early results from the Flexifoil stunt kite (fixing shown in Figure 2(a)). In Figure 9(a) an 

image collected over a sandy beach (with the sea on the left of the image and the beach on 

the right). Here, the impact of kite vibrations was very clear – the conditions on the day of 

this flight were windy, with gusts up to 20 miles per hour, and coupled with the wooden jig 

which restricted pilot control over the kite, we found that the platform was not ideal for aerial 

photography, and that the app was unable to cope well with the highly variable conditions. 

Despite this, some useable images were captured from the Flexifoil platform – Figure 9(b) 

shows an off-nadir image with a cross-hair target carved into the sand where the image 

geometry and basic features of this coastal setting were well photographed. It is important to 

state that the image in Figure 9(b) was the exception, rather than the norm of this particular 

survey.   

 

Figure 9 – results from a Flexifoil kite where the OnePlus One phone was attached to 

the wooden jig shown in Figure 2(a). (a) Shows the impact of high winds and vibration 

over a sand and sea scene, and (b) shows a clearer image captured from an off-nadir 

geometry of one of the authors and a cross-hair target carved into the sand.  

Improved results were captured from a single line KAP kite – example images are shown in 

Figure 10 from a coastal, unused quarry area with small ponds, aggregate piles and sand-

dune vegetation. Here, the phone was suspended using the 3D printed mount (Figure 1) 

from the single line kite, and the kite flown in approximately 20 mph onshore winds at an 

estimated height of 30 m. Weather conditions on this date were optimal for photography with 

clean blue skies, and images were captured close to midday when the sun was at peak 

zenith. The images shown in Figures 10(a) to (c) show no evidence of the geometric or 

vibrational distortions found with other platforms. Figure 10(a) shows a small stream 



(approximately 3 m wide at the bridge) passing through a sand-dune area; Figure 10(b) 

shows a pond within the quarry site with birds obvious on the island at centre left and a 

pathway running along the right hand edge of the image; and Figure 10(c) shows a small 

shallow pond with neighbouring sand dune vegetation. In all three cases, the images 

captured were sharp and of a very high quality geometrically. The image shown in Figure 

10(d) was an off-nadir image captured when the kite was caught in a short-lived gust of 

wind, which caused the holder to spin around – it is geometrically poor but offers a useful 

overview of the site’s locality. During two kite flights of this area over a 2 hour period, we 

collected 585 photographs of the site. Of those, 124 were deemed unusable due to the 

presence of kite string within the images (figure 11 provides an example) caused by the 

phone becoming inverted during strong gusts of wind. On subsequent flights, we painted a 

black cross on the underside of the phone holder so that it was obvious to a ground observer 

if the holder had become inverted. Action could then more easily be taken to try to flick the 

holder back the right way, or bring the kite down so that a re-launch could be achieved with 

the phone in the right geometry.   

 

Figure 10: successful images captured by the app during deployment at a disused 

quarry area with small ponds, aggregate piles and sand-dune vegetation. (a) to (c) 

show good quality nadir-images captured by the app whilst (d) shows an off-nadir 

image of the site captured when the phone holder was moved in a gust of wind. 



 

 

Figure 11 – example ‘kite line’ image captured with the OnePlus One phone from the 

KAP rig when the phone holder became inverted during a gust of wind. 

 

Finally a series of test flights with the same KAP rig over a rocky coastal outcrop were 

undertaken, resulting in the data shown in Figure 12. A total of 19 crisp images were 

captured over the main rocky outcrop shown in the top left image in Figure 12 (example KAP 

photograph captured by the app) in gusty winds up to 25 mph from an approximate height of 

30 m. These images were fed into Pix4D (commercial software  designed to optimise image 

stitching and to produce ‘structure from motion’ (SfM) products describing the three 

dimensional structure of objects imaged from different positions (Lucieer et al., 2014, Tonkin 

et al., 2014, Westoby et al., 2012). The resultant model produced from this (taking less than 

20 minutes processing time on a standard windows 64bit desktop PC) is shown visually on 

the right of Figure 12. Areas labelled (a) and (b) are shown as photographed from the 

ground, (a) is a tidal swimming pool with a concrete wall and (b) is a natural crack in the rock 

platform with a distinctive structure. Whilst we have not quantitatively evaluated the quality of 

the SfM product, it is clear from visual assessment of the constructed model that these 

features are reasonably well represented in the resultant model. This is the first time that 



SfM has been demonstrated to work with images captured from a mobile phone suspended 

from a KAP on an autonomously triggered app.  

 

Figure 12: Result of stitching 19 images collected by the OnePlus One phone attached 

to the KAP rig using Pix4D software into a basic SfM product. Features (a) and (b) are 

labelled in one of the original photographs (top left), in the resulting SfM model (top 

right) and shown in field photographs (bottom of figure) for comparison. 

 



 

Results of GeoTIFF generation 

Example metadata as stored in the SQLite database and collected by each of the two test 

handsets are shown in Table 3 for two separate acquisitions. Note that the sensor set 

available for the Acer handset was much reduced compared to the higher specification 

OnePlus One handset.  

Metadata label OnePlus One Acer Liquid Z3 

time  2015-04-08 20:45:25  2015-03-30 14:07:00 

name  camera-timer2  camera-timer 

orientation-0 318.4345093 82.65625 

orientation-1 -5.552710533 -1.453125 

orientation-2 -1.676241875 -0.84375 

gyroscope-0 0.088394165 no data 

gyroscope-1 1.642929077 no data 

gyroscope-2 1.160018921 no data 

gravity-0 -0.286861807 no data 

gravity-1 0.94849962 no data 

gravity-2 9.756456375 no data 

accelerometer-0 1.02947998 -0.149160877 

accelerometer-1 4.882263184 0.257641524 

accelerometer-2 10.92797852 10.11581993 

magnetic-field-0 18.34564209 -37.9375 

magnetic-field-1 -0.410461426 4.125 

magnetic-field-2 -44.0032959 -57.5625 

gps-0 50.22962952 50.2387632 

gps-1 -5.389703751 -5.39141121 

photo 
 files/photo-1428497125-
753761.jpg 

 files/photo-1427720820-
588114.jpg 

 

Table 3: typical metadata records from the two smartphone handsets tested in the 

study 

 

The process of converting the photographs into GeoTIFFs was not straightforward and 

required several iterations before an acceptable translation was achieved. We evaluated 

which of the phone’s sensors were most useful for performing the conversion. Initial tests 

focused on using magnetic field direction sensors but reliance on these alone produced very 



poor results. Further testing revealed that the phone’s orientation data provided a higher 

level measurement and generated more useable results because it was the result of ‘sensor 

fusion’ and combined data from several sensors (typically in a high-end smartphone this 

would likely include the magnetometer, accelerometer, gyroscope, and compass, but the 

combination used will vary from model to model). Orientation data were subsequently used 

to drive the GEOTIFF generation.  We tested this approach using the dataset shown in 

Figure 10, collected from the KAP rig. The highly heterogeneous site (an unused quarry with 

small ponds, aggregate piles and sand-dune vegetation) contained obvious geographical 

and landscape features which enabled a visualisation of the quality of the GeoTIFF 

generation when the geolocated images were displayed in GIS.  

An example visualisation of some of the results is shown in Figure 13. Here, a Google Earth 

image has been used in Figure 13(a) to show the general area of the KAP survey. A pond 

(size 70 m long and 46 m wide) has been highlighted. Figure 13(b) shows one of the 

GeoTIFF images of a freshwater pond (shown in greyscale) overlaid on the GoogleEarth 

layer (colour) in QGIS (version 2.10.1 Pisa). Whilst the positioning of the image in Figure 

13(b) is not perfect, the image is shown to appear in approximately the right location, and in 

the correct orientation. The scaling of the pond feature in the GeoTIFF was similar to that 

measured in the Google Earth dataset but there was a spatial offset of around 32 m where 

the top of the pond was displaced too far south in the GeoTIFF. Four further GeoTIFFs have 

been overlaid on the Google Earth layer in Figure 13(c) – these show the best quality 

GeoTIFFs generated by our method when the camera was oriented at nadir. The three 

overlaid images towards the south of the area of interest co-locate very well with each other 

and appear to show similar patterns in the vegetation cover to the Google Earth layer. The 

GeoTIFF that is positioned towards the East of the pond is also correctly oriented, positioned 

and scaled.  

The results shown in Figure 13 suggest that the GeoTIFF conversion process holds promise 

for a seamless integration with GIS. Some issues were encountered with the process – for 

example, where images were collected off-nadir, the correction was poor because the 

process could not account for the complex geometry of the platform coupled with the 

topography of the ground surface. Secondly, the conversion process used here is a first 

order correction and could be improved by using other sensors to quality filter images or flag 

potentially erroneous parts of the time-series. For example, where the phone’s sensor set 

indicates high speeds of movement, or lots of change in attitude over short time scales, 

there could be an automatic image flag or removal. There is therefore potential for future 

development and experimentation. Three further limitations of the current method, and 

probably the causal factor in the positional uncertainty shown in Figure 13(b) are: (a) the 

poor quality of the GPS position given consumer grade GPS accuracy (c.f. +/-10 m); (b) our 



need to assume a constant flight height because the elevation records collected by 

consumer grade GPS receivers have poorer accuracy in z than in x,y; and (c) the impact of 

unknown angular distortions (caused by the camera lens (barrel distortion) and projection 

onto the fine scale topography) with the phone images that our algorithm cannot correct. 

With regards to (b) If the drone or kite’s position is changed by local wind conditions, this will 

result in biases in both the scaling of the GeoTIFFs and in the positioning of the photograph 

corners. Perhaps temporal averaging of the GPS metadata records and hovering over 

survey points for longer periods of time, would improve the process and sizing of the extent 

of the images.  

 

 

Figure 13: the results of generating GeoTIFF images using the camera photographs 

coupled with metadata captured simultaneously by the app. (a) Google Earth image of 

an unused quarry study site where a KAP platform was flown with the OnePlus One 

phone; (b) a close-up of a pond showing the GeoTIFF image overlay (in greyscale); (c) 

further examples of the GeoTIFF positioning. 

 

 



Discussion and conclusions 

This paper has reported on the results of a project that has successfully developed a user-

friendly and customisable application to allow Android handsets to be converted into a tool 

for grassroots remote sensing. We have demonstrated typical results that can be delivered 

by the app from a range of near-range, low cost airborne platforms including fixed wing and 

multi-rotor drones, stunt and KAP kites. The results show that basic aerial photographs can 

be captured from all of these platforms but that the highest quality mapping products are 

achieved when the transference of platform vibrations to the handset are limited.  

At this juncture, it is important to return to the intended audience and user base for the app. 

The app was built to facilitate rapid capture of straightforward remote sensing images from 

basic platforms, assuming minimal need for specialist engineering. It is important to bear in 

mind that most scientific users wanting high quality radiometric or spatial data from kite or 

drone platforms would be unlikely to use a mobile phone as their main imaging device. The 

target audience for the app is much broader than this – it is intended for use in teaching, or 

in community led mapping, or in settings where a quick ‘start-up’ for a remote sensing study 

is needed. For example in humanitarian crisis situations where basic survey data are 

required to inform emergency relief efforts, it is not necessary to have high quality 

radiometric data – instead, simple images that inform rescuers or aid workers of the location 

of stranded people, damaged property or flooded land would be perfectly adequate. Equally, 

in the aftermath of an earthquake or flood, the app would be very capable of delivering aerial 

imaging products that would allow the identification of damaged features or impacted areas.  

When thinking about the app’s potential uses in these situations, it is important to reflect on 

the field of ‘appropriate technology’ (Appropedia, 2015) – anyone with an Android handset 

and a platform to allow that phone handset to get airborne can now use this app to collect 

geotagged aerial images for basic spatial data capture and mapping. The work presented in 

this paper provides evidence that the app provides a freely available tool for open source 

spatial data capture. 

Looking at the quality of results generated by the app, we found that the best results were 

gathered from a KAP rig costing less than £100, where the OnePlus One phone was 

suspended using a 3D printed plate suspended from the single line of the kite. On motorised 

platforms the main data quality issue was caused by systematic distortions in the images 

caused by interference between the imaging sensor and the vibrations of the motor. Both of 

the mobile phone models tested used the popular CMOS image sensor due to their 

lightweight, small size and low power consumption (Zhang and Bermak, 2010, Litwiller, 

2001). One drawback of CMOS sensors is their use of a rolling shutter, whereby a line 

scanning approach is used to capture an image, meaning that every pixel is not imaged at 



exactly the same time, increasing the chances of blur due to motion (Ait-Aider et al., 2006). 

This risk of blurring is apparent in many of the photographs collected when the platform 

velocity was high or when high frequency vibrations were present. The results indicate that 

there is a requirement to provide adequate vibration dampening, flight planning or change in 

vehicle control to mitigate for this. We have shown that it is possible to successfully dampen 

the vibrations caused by drone motors during flight using very basic equipment (here, we 

used a kitchen sponge between the phone and the Quanum Nova multirotor aircraft), but this 

did not remove all vibrational effects. On a single line kite platform the vibrational effects 

were not visible in most of the photographs captured, indicating that this offered a more 

stable platform for image capture with CMOS-camera equipped mobile phones. For high 

quality mapping from a drone platform, we suggest that the phone would need a more 

sophisticated vibration-dampened mounting plate. Other grassroots approaches point to a 

solution where the phone could be hung from the underside of an aircraft or kite using a 

wooden plate suspended by piano wires for vibration absorption – but doing this requires 

access to appropriate engineering capabilities and materials, which in some of the situations 

where this app is intended for use, may not be available. This technique was used by 

George R. Lawrence for his early aerial photography work from kites (Baker, 1991) but has 

also been explored in drones as a low cost way of suspending cameras and reducing 

vibration effects (Neuro, 2013, FPV Oscar, 2014). There are changes on the horizon with 

smartphone manufacturers starting to use different camera sensors within their handsets. 

For example, Sony have just released a stacked CMOS image sensor with built-in hybrid 

autofocus and 3-axis electronic image stabilization which may reduce the impacts of platform 

vibration effects in the future (Sony 2016).  

Critically to its flexible use, the visual coding ‘scheme bricks’ approach used to design and 

live-code the app will allow end-users to customise their own data acquisition and to a 

certain extent, to control image quality (e.g. by limiting the conditions under which the 

camera is triggered to capture a photograph). The live coding capability provides great 

flexibility for successful deployment on a wide range of Android handsets. We have 

demonstrated the use of open-source GDAL tools to convert the high quality jpeg images 

captured by the phone camera into GeoTIFF images for direct use in GIS software, and 

shown the limitations of the approach as it relies on uncertain GPS positional information 

and height data.   

The recent global expansion of the lightweight consumer drone market, the globally 

ubiquitous availability of kites and mobile phones, and a growing social appetite for open-

source, free to use mapping data means that there is now a great opportunity for this app to 

be put to great use in democratic and participatory mapping exercises. Anyone in the world 

with an android handset and access to a vertical space (from a kite, drone or even from a 



rooftop or terrace looking down) where nadir Earth-focused imaging can be captured can 

now use this app to generate new fine-grained mapping products. The app can be 

downloaded freely from the Google store by searching for ‘UAV-toolkit’ (UAV toolkit 2016), 

and all code is open source and available from (Griffiths, 2015). We appreciate any feedback 

that users provide. 
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