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Abstract

Triply periodic minimal surface (TPMS) structures have already been shown to be a
versatile source of biomorphic scaffold designs. Therefore, in this work, Ti-6Al-4V
Gyroid and Diamond TPMS lattices having an interconnected high porosity of 80-95%
and pore sizes in the range of 560-1600 pm and 480-1450 pum respectively were
manufactured by selective laser melting (SLM) for bone implants. The
manufacturability, microstructure and mechanical properties of the Ti-6Al-4V TPMS
lattices were evaluated. Comparison between 3D micro-CT reconstructed models and
original CAD models of the Ti-6Al-4V TPMS lattices shows excellent reproduction
of the designs. The as-built Ti-6Al-4V struts exhibit the microstructure of columnar
grains filled with very fine and orthogonally oriented o’ martensitic laths with the
width of 100~300 nm and have the microhardness of 4.01+£0.34 GPa. After heat
treatment at 680°C for 4 h, the o’ martensite was converted to a mixture of a and B, in
which the a phase being the dominant fraction is present as fine laths with the width
of 500-800 nm and separated by a small amount of narrow, interphase regions of dark
B phase. Also, the microhardness is decreased to 3.71+0.35 GPa due to the coarsening

of the microstructure. The 80-95% porosity TPMS lattices exhibit a comparable



porosity with trabecular bone, and the modulus is in the range of 0.12-1.25 GPa and
thus can be adjusted to the modulus of trabecular bone. At the same range of porosity
of 5-10%, the moduli of cortical bone and of the Ti-6Al-4V TPMS lattices are in a
similar range. Therefore, the modulus and porosity of Ti-6Al-4V TPMS lattices can
be tailored to the levels of human bones and thus reduce or avoid “stress shielding”
and increase longevity of implants. Due to the biomorphic designs, and high
interconnected porosity and stiffness comparable to human bones, SLM-made Ti-6Al-

4V TPMS lattices can be a promising material for load bearing bone implants.

Keywords: Additive manufacturing; selective laser melting; Titanium alloys; Triply

periodic minimal surface; porous materials

* Corresponding authors. Tel: +44(0)1392723665; E-mail address:

Lhao@exeter.ac.uk (L. Hao), c.yan@exeter.ac.uk (C. Yan)

1 Introduction

Pure titanium and some of its alloys have been widely used for long-term and
load-bearing bone implants in the orthopaedic and dental fields, due to their good
biocompatibility, high strength-to-weight ratio and fatigue resistance, superior
corrosion resistance and lower modulus when compared with other metal biomaterials,
such as cobalt alloy and stainless steel (Heinl et al., 2008; Fujibayashi et al., 2004).
However, solid titanium materials still show much higher moduli than natural bones.
For instance, dense Ti6-Al4-V has a Young’s modulus of around 110 GPa,
considerably greater than those of the natural bones (that of cortical and trabecular
bone ranging from 0.5 GPa to a maximum 20 GPa) (Parthasarathy et al., 2010). The

huge mismatch of modulus between an implant and the surrounding bones generally



induces uneven stress distribution at the bone-implant interface, leading to bone
resorption around metallic implants, increased fracture risks in the weakened bone
and loosening of the implants. This phenomenon is referred to as “stress shielding”,
which normally reduces the longevity of the implants (Huiskes et al., 1992). Thus, it
is very desirable to develop metallic biomaterials for implants with the modulus

comparable to those of natural bones.

Natural bones belong to porous materials with interconnected voids, and are
comprised of the outer cortical bone and inner trabecular bone. The cortical bone is
relatively dense and strong with a porosity ranging from 5% to 10%, whereas
trabecular bone is more porous and weaker with a higher porosity of 50-90%
(Sikavitsas et al., 2001). Therefore, porous titanium materials possessing similar
interconnected pores and porosity with natural bones are of particular interest for
orthopaedic and dental implant applications. More importantly, incorporating
interconnected pores in titanium implants present a promising method to reduce the
moduli to the level of natural bones and thus reduce or avoid “stress shielding” and
increase longevity of implants. Moreover, the presence of interconnected pores with
an appropriate pore size can provide biological anchorage for the surrounding bony
tissue via the ingrowth of mineralized tissue into the pore space (van Blitterswijk et

al., 1986).

Nowadays, conventional techniques available for the fabrication of open-cell
porous titanium structures mainly include controlled powder sintering (Oh et al.,
2003), polymeric sponge relication (Li et al., 2005), molding and sintering of short
metal fibres (Galante et al., 1973) and solid-state foaming by expansion of argon-
filled pores (Davis et al., 2001). But, these conventional manufacturing techniques do

not allow realization of well-defined internal structures with pore interconnectivity



and highly controllable volume fraction, pore geometry, pore size and distribution,
and complex external shapes. Selective laser melting (SLM), also termed as direct
metal laser sintering (DMLS), and electron beam melting (EBM) are the powder bed
fusion (PBF) processes of additive manufacturing (AM) technologies, and capable of
fabricating near-fully dense metal components with complex freeform geometries
directly from computer-aided design (CAD) models (Koike et al., 2011), therefore
showing great potential to fabricate metallic cellular lattice structures beyond the
current limitations of the conventional manufacturing techniques. Recently, many
attempts have been made to fabricate porous titanium scaffolds or orthopaedic
implants with precisely controlled internal structures and complex external shapes
through SLM or EBM (Mullen et al., 2009; Bertol et al., 2010; Gorny et al., 2011;
Murr et al., 2010; Heinl et al., 2008; Parthasarathy et al., 2010; Sallica-Leva et al.,
2013). For example, Mullen et al. (2009) built cellular titanium structures based on an
octahedral unit cell through SLM for orthopaedic applications, and the produced
structures possessed the porosity of 10-95% and compressive strength of 0.5-350MPa
comparable to the typical naturally occurring range of natural bones. Parthasarathy et
al., (2010) fabricated porous titanium structures with fully interconnected porosities
varying from 49.75%-70.32% by EBM. However, majority of existing titanium
scaffolds made by SLM and EBM are based on cubic lattices with straight edges and
sharp turns or those derived from Boolean intersections of geometric primitives such
as spheres and cylinders. Neither of these partitions provides a biomorphic
environment suitable for cell attachment, migration and proliferation (Rajagopalan et
al., 2006, Spalazzi et al., 2003), because the aggregates of cells in foam/extracellular
matrix naturally have cells separated by curved partitions (Yousaf, et al., 2001).

Moreover, these cellular with sharp turning and straight edged pores and struts would



not exhibit good manufacturability in SLM and EBM in large unit cell sizes and low
volume fractions as resultant long overhangs will lead to thermal deformation (Yan et

al., 2011).

The biomorphic geometry that best mimics the secundam-naturam substrate
would be surfaces that are continuous through space and divided into two not-
necessarily-equal sub-spaces by a nonintersecting two-sided surface (Rajagopalan et
al., 2006). Triply periodic minimal surface (TPMS) structures are smooth infinite
surfaces that partition the space into two labyrinths in the absence of self-intersections,
and are periodic in three independent directions (Kapfer et al., 2011). TPMS
structures are ideal to describe the above-mentioned biomorphic space. Due to the
high structural complexity of TPMS, currently only AM technologies realize the
fabrication of mathematically defined TPMS engineering scaffold architectures using
polymers. Rajagopalan et al. (2006) physically realized the Schwarz Primitive TPMS
through a combined process of AM and injection molding mainly including the AM
manufacturing of a wax mold and then injection of poly(propylene fumarate). They
justified the natural affinity of the TPMS structures in biological forms and biological
sciences, and provided sufficient evidence for their suitability as viable tissue
analogues. Melchels et al. (2010a) fabricated the scaffold architectures based on
Diamond and Gyroid TPMS for tissue engineering by the Stereolithography (SLA)
AM technology using the materials of poly(D, L-lactide) and poly(D, L-lactide-co-&-
caprolactone). Melchels et al. (2010b) investigated the effect of scaffold pore
architecture on cell seeding and static culturing, by comparing a Gyroid TPMS
architecture fabricated by SLA with a random pore architecture. Although both
scaffold types showed comparable porosity and pore size values, the gyroid TPMS

type showed a more than 10-fold higher permeability due to the absence of size-



limiting pore interconnections. In the previous literature, the modulation of porosity,
pose size and mechanical properties, the viability of cells on TMPS cellular structures,
and TMPS-philicity of biological systems have presented compelling evidence to
propose TMPS-based scaffolds as viable orthopaedic tissue analogues (Rajagopalan et

al., 2006).

Although TPMS have already been shown to be a more versatile source of
biomorphic scaffold designs than currently reported in the tissue engineering literature
(Kapfer et al., 2011), to the best of our knowledge, no published work has been
carried out to investigate the manufacturability and properties of titanium alloy TPMS
structures for tissue engineering or orthopaedic implants fabricated by SLM.
Therefore, in this work, Ti-6Al-4V Gyroid and Diamond TPMS lattices having an
interconnected high porosity ranging of 80-95% and pore sizes in the range of 560-
1600 pm and 480-1450 pm respectively were manufactured by SLM for bone
implants. The manufacturability, microstructure and mechanical properties of the Ti-

6Al1-4V TPMS lattices were investigated.

2 Experimental

2.1. Materials

Figure 1 SEM images of the Ti-6Al-4V powder with different magnifications



The Ti-6Al-4V powder was bought from Electro Optical System (EOS)
GmbH, Germany. Fig. 1 shows the SEM images of the as-received alloy powder at
different magnifications. The powder particles exhibit a nearly spherical shape and
smooth surfaces, indicating a good flowability. The powder shows a particle size

distribution of 3-50 um and average particle size of about 20 um.

2.2. Design and SLM manufacturing process of TPMS structures

ABOOOOOOO B
LB B BE B 3 N B N BN
* 9 9 20 000
[ 3K 3K 3K 3 3K BN OF B )
® % & & & 0 & 0 0
S B 38 BN BN 8 S 08 N
® & & & & 0 &0 0
9 & & &% % & 9 0

LR

L 2
L IR

L 3N 2
> & 0 00

L 2
® 0 00
> ® o 0 0 0
® & &0 & 00
® O 0000
® e o 000
U R R R R R

CAD model of Diamond unit cell CAD model of Diamond TMPS Built Ti-6Al-4V Diamond TMPS

Figure 2 CAD models of the unit cells and TMPS cellular structures, and optical
micrographs of SLM-made Ti-6Al-4V TMPS cellular structures

The Diamond minimal surface discovered by Schwarz (1885) and Gyroid
minimal surface discovered by Schoen (1970) both belong to TMPS. The Gyroid and
Diamond unit cells are mathematically defined by a computational method that allows
precise control of volume fraction and unit cell size, which is reported in our previous
work (Hao et al., 2011). The Gyroid and Diamond TMPS cellular structures were
constructed by repeating the gyroid and Diamond unit cells, respectively. The CAD

models of Gyroid and Diamond unit cells and their TMPS cellular structures were



generated using the "CAD software developed by Simpleware Ltd. UK, as shown in
Fig. 2.

The TPMS cellular samples with the volume fractions of 5%, 7.5%, 10%,
12.5%, 15% and 20% were fabricated by 3T RPD Ltd. UK using DMLS EOSINT-
M?270 machine supplied by EOS GmbH, Munich, Germany. For each volume fraction,
the TMPS cellular structures with the unit cell sizes of 3mm, 3.5mm, 4mm, 4.5mm,
Smm, 5.5mm, 6mm, 6.5mm and 7mm were manufactured. The used processing
parameters that have been optimized for the Ti-6Al-4V powder are: the laser power of
170 W, the scanning speed of 1250 mm/s, the spot size of 100 um, the < 0.1 %
oxygen content, the layer thickness of 30um and the hatch spacing of 60 pum. The
scanning strategy was associated to an alternating hatch pattern, where the direction
of scanning was rotated of 67° between consecutive layers. The as-built samples were
subjected to a post processing including a thermal stress-relieving heat treatment
cycle (heat treated at 680 °C for 4 h and then cooled down in the furnace to RT) in an
argon atmosphere, followed by ceramic bead blasting. Finally, the Ti-6Al-4V TMPS
cellular structures were obtained by the removal from the base plate via wire
Electrical Discharge Machining (wire-EDM). The optical micrographs of the Ti-6Al-
4V TMPS cellular structures were also shown in Fig. 2.

2.4. Measurements and characterisations

Uni-axial compression tests were carried out at a loading rate of 0.4 mm/min
using an EZ20 Universal Material Testing Machine, Lloyd Instruments Ltd., UK. For
each data point, four samples were tested and the average value was taken. For
microstructure analysis, the struts of the cellular structures were cross-sectioned, and
then polished down to colloidal silica suspension and etched with using Kroll’s

reagent (containing 100 mL water, 2.5 mL hydrogen fluoride and 5.0 mL nitric acid)



for 30 s. The microstructure was observed by an optical microscopy (4XCE, Caikon),
scanning electron microscopy (SEM, JEOL JSM-6390LV) and transmission electron
microscopy (TEM, JEOL 1400, operated at 200 kV). For TEM sample preparation,
3mm diameter samples were punched from thin sheets with 0.3mm thickness and
ground to approximately 0.04mm thickness. A Model 1020 Argon Ion Milling was
used to produce thin foils. The struts of the lattice structures mounted in resin were
polished down to 1 um colloidal silica suspension for the Vickers micro-hardness
measurements by using Future-Tech Microhardness Tester FM with the 500gf load
for a 10s dwell time, where the indenter was placed within a single strut at least 3
imprint diameters away from its edges. Six measurements were done to calculate a
mean hardness value. X-ray diffraction (XRD) measurement was conducted with a
Bruker D8 Advanced X-ray diffractometer, with CuKa radiation (wavelength A=0.154
nm), a step size of 0.02°, and a time step of two seconds for normal scan, over a 20
range of 20-80°. A micro-computer tomography (CT) scanner (Benchtop CT 160Xi,
X-Tek) with a 27um resolution was used to scan the lattice structures at 120KV
voltage and 182 A current, and two-dimensional (2D) slice image data were collected.
VGstudio MAX2.1 software reconstructed the 3D models of the fabricated cellular
lattice structures through the 2D slice images data obtained from micro-CT scans. The
strut density of the lattice structures was measured by comparing the weight in water
and air, according to the Archimedes’ principle. The relative densities were expressed

in % by the ratio of the strut density to Ti-6Al-4V theoretical bulk density, 4.43 g/cm3.



3 Results and discussion

3.1 Analysis of built structures

Figure 3 shows the SEM morphologies of strut surface of the as-built Ti-6Al-
4V TMPS cellular structure without post processing. It can be observed that there are
many small spherical particles visible on the surface. The size and morphology of the
particles are very similar to those of the Ti-6Al-4V powder as shown in Fig. 2. The
bonded metal particles on surfaces of the lattice struts may be explained by the
following reasons: (1) The curved struts with varying inclined angles were partially
built on the loose powder, and thus some metal particles below each layer were totally
or partially melted and then bonded on the bottom of the layer . (2) Thermal diffusion
occured between loose powder and solidified material due to big temperature
difference, leading to powder particles sticking to the strut surface (Van Bael et al.,
2011). (3) Some metal particles on the boundary are partially melted by the contour
laser track, and then bonded to the boundary of each layer (Yan et al., 2011). These
bonded partilces can be deleterious to the mechanical properties, especially fatigue
strength (Hrabe et al., 2011). Moreover, they are partially bonded to the strut surfaces,
and may, therefore, be released to the biological systems, resulting in inflammation

(Sallica-Leva et al., 2013).
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Figure 3 SEM images of strut surface of the as-built Ti-6Al-4V TMPS cellular

structures without post processing

In order to remove the bonded metal particals and improve the surface quality
of the struts, the as-built cellular structures were subjected to a post processing of heat
treatment followed by sand blasting. Fig. 4 shows the SEM images of the strut
surfaces of the Ti-6Al-4V TMPS cellular structures after the post processing. It can be
seen that nearly all the bonded particles are removed, and the strut surfaces become
smoother compared to the original surfaces before the post processing as shown in Fig.
3 although there still exit the corrugations. The heat treatment may make partially
melted metal particles fused and bonded with the laser melted core parts of the struts.
The sand blasting can blow away the slightly bonded metal particles on the surfaces.
The existing corrugations can be attributed to the stair stepping effect when building
the curved or inclined struts by a layer-by-layer manufacruing mode in SLM, and will
be diminished by decreasing the layer thickness, but this increases the time required to

complete the fabrication.



ACCEPTED MANUSCRIPT

Tmm ! r 200pm

Figure 4 SEM images of strut surface of the Ti-6Al-4V TMPS cellular structures after
the post processing

The SLM-built Gyroid TPMS cellular structures were compared to their
designed CAD models to evaluate the manufacturing accuracy. The 3D micro-CT
reconstructed models of the SLM-built Gyroid TPMS structures were superimposed
on their 3D CAD models for both visual and quantifiable comparisons, as shown in
Fig. 3. Fig. 3 (a) shows the Gyroid TPMS structure with 4mm cell size and 7.5%
volume fraction. The gradient shows that the designed and built architectures nearly
coincide at an average deviation of +0.1702/-0.1491 mm, indicating a very high
accuracy of the SLM-built TPMS cellular structure. Similarly it can be seen in Fig. 3
(b) that the Gyroid structure with 7mm cell size and 7.5% volume fraction is very well
reproduced in comparison to the original design CAD model with an average
deviation of +0.1588/-0.1655 mm. The deviations may be attributed to the

corrugations and roughness of the strut surfaces as shown in Fig. 4.
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Figure 5 Comparisons of the 3D micro-CT reconstructed and 3D CAD models of the
Gyroid TPMS cellular structures with a fixed volume fraction of 7.5% and the unit

cell sizes of (a) 4mm and (b) 7mm

3.2 Microstructure of struts

Fig. 6 shows the microstructure of the struts of as-built Ti-6Al-4V TPMS
structures with the optical, SEM and TEM micrographs. The optical micrograph in
Fig. 6(a) reveals that the microstructure of the as-built struts exhibits the columnar
grains filled with very fine and orthogonally oriented martensitic laths originating
from the columnar grain boundaries. The fine martensitic laths can be interpreted as
metastable hexagonal o’ martensite (Yadroitsev et al. 2014; Sallica-Leva et al., 2013),
and the columnar gain boundaries represent the prior B grains created upon
solidification (Rafi et al. 2013). Microstructure evolution is primarily a function of
cooling rate. Typically, upon a low cooling rate in the processing of Ti-6Al-4V, B
phase transforms to a phase at a temperature of about 875 °C. But, it has been found
that Ti-6Al-4V samples have entirely martensitic o’ phase when exposed to cooling
rates higher than 525 K/s (Ahmed and Rack, 1998). In the SLM process, the materials
processed undergo a very high cooling rate with the order of 10° K/s (Thijs et al.
2010). Owing to such a high cooling rate experienced in SLM, B phase is completely
transformed to fine o’ martensite rather than o phase. The SEM micrograph in Fig.
6(b) demonstrates the near fully dense struts of the as-built Ti-6Al-4V TPMS
structures. The TEM bright field image in Figure 6(c) reveals that the o’ martensite
appears long and narrow laths with the width ranging of 100~300 nm, which are
aligned to one another. The inset of corresponding selected area electron diffraction
(SAED) pattern in Figure 6(c) confirms that the o’ martensitic laths possess the

hexagonal close-packed crystal structure, and there is no o’’’ martensitic phase, which



has orthorhombic lattice structure (Simonelli 2014), in the examined area. The TEM
micrograph with high magnification in Figure 6(d) shows a high dislocation density
and many crystallographic defects (either stacking or twin faults) inside the o’
martensitic grains, indicating that strain relaxation during the = o’ transformation is
primarily accomplished by dislocation formation (Ahmed and Rack 1998). The
previous literature revealed that the microhardness of as-built SLM Ti-6Al-4V varies
with the processing parameters (Thijs et al. 2010), and is normally in the range of
3.43-4.90 GPa (Yadroitsev et al. 2014). The microhardness of the struts of as-made
Ti-6A1-4V TPMS structures was measured to be 4.01+0.34 GPa, thus consistent with
the hardness values reported in the other investigations (Thijs et al. 2010; Yadroitsev

et al. 2014).

Fig. 6 Microstructure of the struts in as-built Ti-6Al-4V TPMS structures: (a) optical

and (b) SEM micrographs, (c) TEM bright field image with the inset of corresponding



selected area diffraction pattern and (d) high magnification TEM micrograph
showing dislocations and crystallographic defects (either stacking or twin faults) in

the o’ martensite grains

According to the requirement for implants materials specified in ISO 20160, a
homogeneous microstructure of high-density biomaterials is necessary to provide
material integrity and stability (Yadroitsev et al. 2014). Proper heat treatments are the
normal way to control microstructure and mechanical properties of the Ti-6Al-4V
alloy. In this work, the as-built samples were heat treated at 680 °C for 4 h and then
cooled down in the furnace to RT in an argon atmosphere for thermal stress-relieving
and microstructure homogenization. Fig. 7 depicts the microstructure of the heat-
treated Ti-6Al-4V TPMS structures. From the optical and SEM micrographs in Figure
7(a) and (b) respectively, it can be observed that the heat treatment did not alter the
morphologies of the prior B grains, which still remain visible, because the heat
treatment temperature of 680 °C is much lower than the B-transus temperature of Ti-
6Al1-4V, about 1010°C (Seshacharyulu et al. 2000). However, the heat treatment
followed by slow furnace cooling have a significantly influence on the phase
composition and morphologies. The TEM bright field image in Figure 7(c) shows that
the fine o’ martensitic structure has been transformed to a mixture of o and B, in
which the o phase being the dominant fraction is present as fine laths and separated by
narrow, interphase regions of dark § phase. The width of the a grains was measured to
be in the range of 500-800 nm, obviously bigger than that of the o’ martensitic laths
retained in the as-built samples as shown in Figure 6. It is possible that the heat
treatment temperature of 680°C, which is above the martensite start temperature (M)
for Ti-6Al-4V alloy at around 650 °C (Elmer et al. 2004), and slow furnace cooling

enable the phase transformation of o’ o + B. The high magnification TEM



micrograph in Figure 7(d) demonstrates that the o phase in the heat-treated Ti-6Al-4V
possesses a lower dislocation density and less crystallographic defects compared to
the o’ martensite in the as-built Ti-6Al-4V. Selected area diffraction analysis further
confirmed that the o phase has a hexagonal crystal structure, identical to that of the
acicular o’ martensite observed in the as-built samples. The microhardness of the
struts of the heat-treated Ti-6Al-4V TPMS structures is 3.71+0.35 GPa, lower than
that of the as-built TPMS structures. The decrease in microhardness after heat
treatment is expected due to the coarsening of the microstructure compared to the
original finer o’ martensites. The previous works also observed the decrease in the
yield stress, ultimate tensile strength and microhardness of SLM-produced Ti-6Al-4V

after heat treatment (Vranchen et al., 2012; Yadroitsev et al. 2014).

Fig. 7 Microstructure of the struts in heat-treated Ti-6Al-4V TPMS structures: (a)

optical and (b) SEM micrographs, (c) TEM bright field image with the inset of



corresponding selected area diffraction pattern and (d) high magnification TEM

micrograph showing dislocations

Fig. 8(a) and (b) depict the XRD patterns of the struts in the Ti-6Al-4V TPMS
cellular structures before and after the heat treatment, respectively. In the both XRD
patterns, only peaks corresponding to the hexagonal close-packed titanium (hcp-Ti)
are observed, indicating that o and o’ have the same crystal structure. But, the
diffraction peaks of the as-built sample in Fig. 8(a) are broad owing to the high crystal
distortion of o’ phase, while the diffraction peaks after the heat treatment in Fig. 8(b)
become much narrower and sharper, indicating the presence of o phase, which is an
equilibrium phase and has a lower crystal distortion compared to the o’ phase
(Sallica-Leva et al., 2013). Additionally, the peak intensities in the as-built condition
are significantly lower than those of the heat-treated sample, indicating finer
microstructure in this case. The absence of peaks corresponding to the  phase in the
heat treated sample may be due to the very small  phase fraction caused by the heat
treatment temperature of 680°C, which is much lower compared to the B-transus
temperature of Ti-6Al-4V, as the § phase fraction is increasing with increasing heat

treatment temperature (Leuders et al. 2013).
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Fig. 8 XRD patterns of the struts in SLM-produced Ti-6Al-4V TPMS structures (a)

before and (b) after heat treatment

3.3 Densities of the struts

The densities of the struts have an important effect on the properties,
especially mechanical properties of porous materials. Achievement of near fully dense
struts is normally expected in the SLM process in order to obtain strong and high-
performance lattice structures. Table 1 lists the relative densities of the struts of the
Gyroid and Diamond TPMS lattices with different porosities manufactured in this
work. It can be found that high relative densities (above 99%) of the struts can be
achieved for the Gyroid and Diamond Ti-6Al-4V TPMS lattices with the porosities
ranging of 80-95%. These TPMS lattices were built using the optimized processing
parameters, which were proposed by the SLM machine provider for the Ti-6Al-4V
powder. It seems that the porosity of Ti-6Al-4V TPMS lattices has little effect on the
strut densities. It is noted that the processing parameters and scan strategy in the SLM
process play a crucial role in making high density parts (Kruth et al., 1999), and
therefore it is worth carefully investigating the effects of the SLM processing

parameters and scan strategy on the strut density of TPMS lattices in the future works.
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Fig. 9 Optical micrographs of the strut cross sections of Ti-6Al-4V Diamond TMPS
lattices with the same unit cell size of Smm and different porosities

Fig. 9 shows the optical micrographs of the strut cross sections of the Ti-6Al-
4V Diamond TMPS lattices with different porosities. The SEM and optical
micrographs in Fig. 6, 7 and 9 all demonstrates the near fully dense struts of the as-
built Ti;6Al-4V TPMS structures, which is consistent with the density measurements.
But a very small amount of spherical or irregular pores and micro cracks with the
small dimensions ranging of 1-20 um is still observable. This small amount of defects
like micro pores and cracks may be attributed to the high residual stress, gas
entrapment and keyhole effect caused by metal evaporation in the laser scanning

(Gong 2013; Attar et al., 2014).
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Fig. 10 SEM micrographs of the typical fractured surface of Ti-6Al-4V TMPS lattice
struts after the compression testing at increasing magnifications

Fig. 10 shows the SEM micrographs of the typical fractured surface of Ti-6Al-

4V TMPS lattice struts after the compression testing. From the SEM micrographs in

Fig. 10, solid material with only a few small pores and cracks on the strut fractured

surfaces can be observed, which further confirms that Ti-6Al-4V TPMS lattices with

near fully dense struts can be built in the SLM process.

3.4 Mechanical properties
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Fig.11 Variation of (a) the relative modulus and (b) relative strength of the Ti-6Al-4V

TPMS lattices with relative density

= Gyroid TPMS lattice e
1000 e Diamond TPMS lattice -/

£-30.92(c,, )%
,R®=0.999

Modulus (MPa)

100

T
10 100
Compression strength (MPa)

Fig.12 Elastic modulus as a function of the ultimate compression strength for the Ti-

6Al-4V TPMS lattices

Generally, the mechanical properties of cellular structures are governed by the
relative density, the cell architecture and cell anisotropy (Heinl et al. 2008). Gibson
and Ashby provide simple relations between the elastic modulus and relative density,
and yield strength and relative density for open-celled structures with randomly

distributed porosity and perfectly smooth surfaces (Gibson and Ashby, 2007):



5= ()

Jis= 0.3 x (£)1-5 )

Where E;, p,; and g, are the elastic modulus, density and yield strength of fully dense
solid materials, and E, p and ¢ are the apparent modulus, density and yield strength of
open-cell cellular structures. E; was assumed to be 110GPa for fully dense Ti-6Al-4V
(Harrysson et al., 2008). oy, for many metals and alloys is roughly a third of the
Vickers microhardness (Murr et al., 2010). In this work, the Vickers microhardness of

the struts is 3.71+0.35 GPa, and thus oy ; was taken as 1.24 GPa.

Fig. 11(a) shows log-log plots of the relative modulus versus relative density
values. The Gyroid and Diamond TPMS lattice data points were well fitted to the
straight lines with the coefficients of determination (R*) of 0.997 and 0.993,
respectively. Fig. 11(b) shows log-log plots of the relative strength versus relative
density values. Also, there exist straight-line fits for the relative strength-relative
density data points of Gyroid and Diamond TPMS lattices with the R’ of 0.997 and
0.994, respectively. Therefore, the mechanical properties of the Ti-6Al-4V TPMS
lattices correlate well with the relative density (R*>0.99), and the equations indicating
the explicit correlations between the modulus and compression strength of the SLM-
made Ti-6Al-4V TPMS lattices and relative density like the Gibson-Ashby model are
derived as shown in Fig. 11. Owing to the exactly established correlations between
the mechanical properties and relative density, it is possible to precisely predict and
even design the mechanical properties of the Ti-6Al-4V TPMS lattices by adjusting
the volume fraction. The correlations between the modulus and compression strength
fitted in Fig. 12 indicate that the modulus and strength vary dependently for a given

structural design.



As shown in Fig. 11, the determined exponents and scaling factors for the correlations
of the characteristic value with the relative density differ from the exponents and
scaling factors predicted by the Gibson-Ashby model. These differences might be
explained by the following three reasons. The first explanation relates to the inherent
residual stress, which induces early strut failure by plastic yielding, and then results in
lower mechanical properties (Van Bael et al., 2011). The second explanation is that
the irregular struts with the existing corrugations as shown in Fig. 4 differ from the
assumptions of straight beams and perfectly smooth surfaces in the Gibson-Ashby
model. The last explanation is that the TPMS lattice structures in this work belong to
non-stochastic periodic structures, which are different from the open-celled structures

with randomly distributed porosity in the Gibson-Ashy model.

Table 2 shows a comparison in the mechanical properties and porosities of the
Ti-6A1-4V TPMS lattice structures and human bone. In Table 2, the mechanical
properties of the 80-95% porosity TPMS lattices were experimentally measured,
whereas those of the 5-10 porosity lattices were predicted through the fitted
correlations shown in Fig. 11. It should be noted that the mechanical properties of
human bone vary depending on anatomical site, age, loading direction and sex.
Consequently, the listed values of trabecular and cortical bone in Table 2 should only
represent the dimensions of bone’s properties. The 80-95% porosity TPMS lattices
exhibit a comparable porosity with trabecular bone, and the modulus can be adjusted
to the modulus of trabecular bone. At the same range of porosity of 5-10%, the
moduli of cortical bone and of the Ti-6Al-4V TPMS lattices are in a similar range.
Therefore, the moduli and porosities of the Ti-6Al-4V TPMS lattices can be

simultaneously tailored to the levels of human bones and thus reduce or avoid “stress



shielding” and increase longevity of implants. This is a very important result with
respect to the application of the Ti-6Al-4V TPMS lattice structures built by SLM as
biomaterials for bone replacement. Furthermore, the compression strength of the
TPMS lattice structures is superior to the compression strength of human bone at

equal values of modulus.

Moreover, both the SLM-manufactured Gyroid and Diamond TPMS lattices
have an interconnected high porosity of 80-95% and the pore sizes ranging of 560-
1600 um and 480-1450 um, respectively. Otsuki et al. (2006) revealed that the pores
of porous bioactive titanium implants should be interconnected in order to ensure the
bone ingrowth. They evaluated porous implants with two levels of porosity (50% and
70%) and two ranges of pore sizes (250 - 500 pm and 500 — 1500 pm) and concluded
that the pore size ranging from 500 to 1500 um for both levels of porosity obtain a
tissue of good quality. Therefore, the high interconnected porosity with appropriate
pore sizes in the SLM-made Ti-6Al-4V TPMS lattices can provide biological
anchorage via the ingrowth of mineralized tissue into the pore space, resulting in a

good and permanent fixation of the implant in the surrounding bone tissue.

Conclusions

In this work, Ti-6Al-4V Gyroid and Diamond triply periodic minimal surface
(TPMS) lattice structures were manufactured by selective laser melting (SLM) for
bone implants. The manufacturability, microstructure and mechanical properties of

SLM-made Ti-6Al1-4V TPMS lattices were evaluated.



(1) Plenty of raw metal particles are bonded on the strut surfaces of the as-built Ti-
6Al1-4V TMPS lattices, but nearly all of them can be removed by a post processing of

heat treatment followed by sand blasting.

(2) Visual and quantifiable comparisons by superimposing 3D micro-CT
reconstructed models of the Ti-6Al-4V TPMS lattices on their 3D CAD models shows

excellent reproduction of the designs.

(3) The as-built Ti-6Al-4V struts exhibit the microstructure of columnar grains filled
with very fine and orthogonally oriented o’ martensitic laths with the width of
100~300 nm and have the microhardness of 4.01+0.34 GPa. After heat treatment at
680 °C for 4 h, the o’ martensite was converted to a mixture of o and B, in which the o
phase being the dominant fraction is present as fine laths with the width of 500-800
nm and separated by a small amount of narrow, interphase regions of dark  phase.
Also, the microhardness is decreased to 3.71+0.35 GPa owing to the coarsening of the

microstructure.

(4) Mechanical properties of the TPMS lattices correlate well with their relative
density, and the equations indicating the explicit correlations between the modulus
and compression strength, and relative density were derived. Therefore, it is possible
to precisely predict and even design the mechanical properties of the SLM-made Ti-

6Al1-4V TPMS lattices.

(5) The 80-95% porosity TPMS lattices exhibit a comparable porosity with trabecular
bone, and the modulus is in the range of 0.12-1.25 GPa and thus can be adjusted to the
modulus of trabecular bone. At the same range of porosity of 5-10%, the moduli of
cortical bone and of the Ti-6Al-4V TPMS lattices are in a similar range. Therefore,

the modulus and porosity of the Ti-6Al-4V TPMS lattices can be tailored to the levels



of human bones and thus reduce or avoid “stress shielding” and increase longevity of

implants.

In conclusion, due to the biomorphic designs, and high interconnected porosity
with appropriate pore sizes and stiffness comparable to human bones, the Ti-6Al-4V
TPMS lattices made by SLM can be a promising material for load bearing bone

implants.
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Figure captions

Figure 1 SEM images of the Ti-6Al-4V powder with different magnifications

Figure 2 CAD models of the unit cells and TMPS cellular structures, and optical
micrographs of as-built Ti-6Al-4V TMPS cellular structures

Figure 3 SEM images of strut surface of the as-built Ti-6A1-4V TMPS cellular
structures without post processing

Figure 4 SEM images of strut surface of the Ti-6Al-4V TMPS cellular structures after
the post processing

Figure 5 Comparisons of the 3D micro-CT reconstructed and 3D CAD models of the
Gyroid TPMS cellular structures with a fixed volume fraction of 7.5% and the unit
cell sizes of (a) 4mm and (b) 7mm

Fig. 6 Microstructure of the struts in as-built Ti-6Al-4V TPMS structures: (a) optical
and (b) SEM micrographs, (c) TEM bright field image with the inset of corresponding
selected area diffraction pattern and (d) high magnification TEM micrograph showing
dislocations and crystallographic defects (either stacking or twin faults) in the o’

martensite grains

Fig. 7 Microstructure of the struts in heat-treated Ti-6Al-4V TPMS structures: (a)
optical and (b) SEM micrographs, (c) TEM bright field image with the inset of
corresponding selected area diffraction pattern and (d) high magnification TEM

micrograph showing dislocations

Fig. 8 XRD patterns of the struts in SLM-produced Ti-6Al-4V TPMS structures (a)

before and (b) after heat treatment

Fig. 9 Optical micrographs of the strut cross sections of Ti-6Al-4V Diamond TMPS

lattices with the same unit cell size of Smm and different porosities



Fig. 10 SEM micrographs of the fractured surface of Ti-6Al-4V TMPS lattice struts

after the compression testing at increasing magnifications

Fig.11 Variation of (a) the relative modulus and (b) relative strength of the Ti-6Al-4V

TPMS lattices with relative density

Fig.12 Elastic modulus as a function of the ultimate compression strength for the Ti-

6Al1-4V TPMS lattices



Table 1 Relative densities of the struts of the Gyroid and Diamond TPMS lattices with

the same unit cell size of Smm and different porosities

Relative density

Porosity (%)

(%) Gyroid TPMS Diamond TPMS
95 99.2+0.3 99.4+0.4
92.5 99.4+0.2 99.2+0.3

90 99.3+0.3 99.2+0.2
87.5 99.5+0.3 99.5+0.2

85 99.5+0.2 99.6+0.3

80 99.4+0.3 99.3+0.3

Table 2 Comparison in mechanical properties and porosity between the Ti-6Al-4V

TPMS lattice structures and human bone

Materials Porosity (1-volume Pore size Elastic modulus Compression strength
fraction, %) (um) (GPa) (MPa)

. 0.13+0.02~ 6.50+1.62~
Gyrgtctli;[;Ms 80-95 560-1600 1.2540.04 81.3042.60

5-10 - 17.45~19.14* 1342~1481°

. 0.12+0.03~ 4.66£2.13~
Dlanll;)gﬁ:;PMs 80-95 480-1450 1.2540.07 69.2144.22

5-10 - 15.73~17.19* 1403~1559 *
Trabecular bone 50-90° - 1.08+8.0 ¢ 25.0+8.1°¢
Cortical bone 5-10° - 18.2+0.85 ¢ 205£12.6 ¢

* Predicted by the equations shown in Fig. 9
® Ref. (Sikavitsas et al., 2001)
¢ Ref. (Sevilla et al., 2007)

4 Ref. (Heinl et al., 2008)

1. Ti-6Al-4V triply periodic minimal surface lattices are made by selective laser melting.

2. Characterisation of the lattices shows excellent reproduction of the designs.

3. Modulus and porosity of the lattices can be tailored to the levels of human bones.





