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Abstract

Predation risk is often associated with group formation in prey, but recent advances in methods for analysing the social
structure of animal societies make it possible to quantify the effects of risk on the complex dynamics of spatial and temporal
organisation. In this paper we use social network analysis to investigate the impact of variation in predation risk on the
social structure of guppy shoals and the frequency and duration of shoal splitting (fission) and merging (fusion) events. Our
analyses revealed that variation in the level of predation risk was associated with divergent social dynamics, with fish in
high-risk populations displaying a greater number of associations with overall greater strength and connectedness than
those from low-risk sites. Temporal patterns of organisation also differed according to predation risk, with fission events
more likely to occur over two short time periods (5 minutes and 20 minutes) in low-predation fish and over longer time
scales (.1.5 hours) in high-predation fish. Our findings suggest that predation risk influences the fine-scale social structure
of prey populations and that the temporal aspects of organisation play a key role in defining social systems.
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Introduction

Linking individual-level behaviours with large-scale social

structure is fundamental to ecology and evolution because it

allows us to understand patterns of gene, information or disease

transfer through populations, predict the impact of invasive

species, and reveal the factors that underlie the evolution of

sociality [1]. Researchers have often examined the ecological

correlates of animal social structure, linking variation in social

organisation with factors such as habitat type, kin structure, food

availability, sexual dimorphism, body size, technological innova-

tion (in human societies) and predation risk [2,3,4,5,6,7,8]. In

particular, predation risk is thought to be a key ecological factor

driving the evolution of group formation [9]. Nevertheless, despite

a long history of studies demonstrating that predation risk is

typically associated with larger prey group sizes [8,10,11,12], little

is known about how risk shapes the overall social organisation and

dynamics of animal populations.

Fission-fusion societies, which describe populations that are

characterised by frequent exchange of individuals among groups

[13,14,15,16,17], provide an ideal system in which to examine the

ecological correlates of sociality because these systems show rapid

responses to changing environmental conditions [18]. While

grouping can confer advantages such as increased hunting

efficiency, transmission of cultural information and reduced risk

of predation, it can also incur potential costs such as increased

competition and aggression among group members and greater

risk of parasitism [19]. Ecological variability is predicted to drive

changes in the relative costs/benefits of group membership,

leading to dynamic patterns of fission-fusion [20]. Thus studying

the organisational properties of fission-fusion societies not only

reveals the factors that influence an individual’s grouping

decisions, but can also provide insights into how interactions

among individuals drive social relationships and ultimately

influence population processes [21,22].

Studies linking the social structure of fission-fusion societies with

ecological variability have tended to focus on the distribution,

abundance or quality of food resources [17,23,24,25,26,27] and its

associated effects on competition among individuals within the

group [28]. Those studies that have documented a link between

predation risk and prey group size have been conducted on

populations in the wild [29,30,31], where the role of other

interacting factors (e.g. food availability) is difficult to determine.

For example, divergent social structures observed in communities

of Hawaiian dolphins (fission-fusion societies versus stable

associations) could partly be attributed to variation in predation

risk, but the availability of prey and suitable habitats was also

important [32].

Temporal patterns of social organisation, such as the frequency

of fission-fusion events, are an important but often overlooked

aspect of sociality [33], and these processes form the basis of large

scale effects such as rates of gene flow and speciation. A study with

bison at risk of predation from wolves found that the probability of

fission-fusion events depended on the habitat, season and the time
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of day at which the bison were observed [34], but studies relating

risk to temporal organisation are generally lacking. Despite recent

advances in the analytical techniques used to quantify animal

social organisation [33,35], no study has yet adopted an

experimental approach for examining the dynamic effects of

predation risk on the spatial and temporal organisation of prey

populations.

In this paper we use social network analyses to investigate how

variation in predation risk affects an individual’s grouping

decisions and how this contributes to the overall patterns of

social organisation. A social network is a graphical representation

of the social associations or interactions occurring among

individuals within the population(s) [35]. While these analyses

originated as a branch of mathematical theory that were applied

to fields as diverse as physics [36], systems pharmacology [37],

epidemiology [38] and conservation biogeography [39], they

have recently attracted the attention of behavioural ecologists

[22,35,40,41,42] because calculation of their mathematical

parameters can reveal global properties of the population, such

as resilience to the removal of particular individuals [43] and the

rate at which disease or learned information might be transmitted

[44].

We investigated the effect of predation risk on social

organisation by comparing the social structure of populations of

freshwater fish (guppies) collected from habitats with high and

low predation risk and observed in the lab under standard

conditions (no risk). Guppies have proved a tractable system for

network studies [14,45,46,47,48] and provide a compelling

example of the effect of predation risk on a variety of phenotypic

and behavioural traits [49,50]. Specifically, classic early work

with this species [51] revealed schooling as an evolutionary

response to predation, yet we do not know how this group

structuring contributes to the overall patterns of social organisa-

tion at the population level. For example, different patterns of

social organisation may be observed in populations characterised

by similar group sizes; between sampling intervals shoal

membership may remain stable (low rates of exchange) or be

highly dynamic with individuals frequently switching among

shoals. These temporal processes are of key importance because

they determine how individual movements affect population

dynamics [52], such as rates of gene flow, the spread of

information or pathogens and the opportunity for social

recognition (e.g. familiarity) to develop among individuals.

We anticipated that the larger shoal sizes typically found in

high predation guppy populations would produce social networks

with higher levels of association among group members than

those in low predation habitats. However, we expected temporal

patterns of organisation to also play an important part: low rates

of fission-fusion are expected to lead to stable, highly associated

groups but low connectivity among groups, while high rates will

lead to greater movement of individuals among shoals and

greater overall connectedness at the level of the community. If

movement of individuals (or small groups) among shoals is risky

in habitats with high predation risk [53], then within-shoal

associations may be high but among-shoal connectedness may be

low. In guppies from habitats with low predation risk, within-

shoal associations may be low but among-shoal social connect-

edness may be high if fission/fusion events are frequent. Stable

associations can lead to the development of social familiarity

among individuals, which can confer foraging and antipredator

benefits in fishes [54]. In guppies familiarity takes around 12 days

to develop [55]; we therefore used this time frame to determine

whether the development of preferred companionships affected

the properties of the networks.

Materials and Methods

Ethics statement
This work was approved and performed in accordance with

guidelines issued by the Animal Care and Ethics Committee

(ACEC) for the University of New South Wales, Australia, under

research project approval number 05/34A (issued to J.L.K.). Fish

were transported from field sites to the laboratory in Trinidad in

sealed plastic bags containing river water, plant material collected

from the river (to provide cover/refuge) and Aqua Master Armour

CoatTM (for skin protection). Fish were acclimatised in the

laboratory in their social groups overnight before being individ-

ually tagged (see below for details) the following day. These

individual marks were necessary to ensure that each female was

individually recognisable (wild female guppies do not have

distinguishing colour patterns). We ensured that females were

anesthetised briefly (in MS222) for the procedure and allowed to

recover in aerated and conditioned water (containing Armour

CoatTM). Fish were allowed to recover for a further 24 hours

before experiments commenced, during which the health and

behaviour of all fish was carefully monitored. We did not observe

any ill effects or changes in behaviour as a result of the tagging

procedure. At the end of our experiments, the fish were released

into large artificial pools at the research station.

Fish collection
Guppies in the Northern Range Mountains of Trinidad, West

Indies, inhabit a series of streams that can readily be characterised

by predation risk because barrier waterfalls have prevented the

upstream migration of most predators. Guppies living in the upper

reaches of streams occur with only one fish predator, Hart’s

Killifish (Rivulus hartii), which predominantly feeds on juvenile

guppies and invertebrates [56], while guppies inhabiting the lower

regions of streams coexist with a variety of fish predators including

the pike cichlid (Crenicichla frenata) the blue acara (Aequidens pulcher)

the wolf fish (Hoplias malabaricus) and Hart’s killifish (Rivulus hartii)

[57].

We collected guppies from twelve localities in Trinidad

comprising habitats with high (n = 7) and low (n = 5) predation

risk. Ten of these sites were upstream (low predation risk) and

downstream (high predation risk) populations for the same river

(Arima, Aripo, Guanapo, Tacarigua and Turure Rivers). We also

collected guppies from a river (the Oropuche) in which upstream

and downstream sites are both known to be high predation.

Inclusion of these populations allowed us to consider whether any

differences observed between upstream/downstream populations

might be attributed to ecological parameters other than predation

risk. Predator assemblages at all our sample sites have been

determined previously and fit the typical upstream (low risk) and

downstream (high risk) pattern (see Table S1 for details of

collection sites and the predator assemblages).

A seine net was used to collect 8–10 shoals of adult guppies per

population along approximately 50 m stretch of each river. The

shoals were placed in a single bucket so that fish from each

population were derived from mixed shoals and were unlikely to

be familiar with one another. We then removed 12 similar-sized

females before returning all remaining fish to the river. As the size

distribution of females covaries with predation risk [58], we

collected females that had a body size that lay between the means

for high and low predation risk environments (mean total length of

fish used in this study = 26.960.30 mm). Females were returned

to the laboratory at William Beebe Tropical Research Station

(Simla) in Trinidad, where each population was released into a

separate circular observation arena (diameter = 120 cm, water

Predation Risk and Social Networks
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depth = 5 cm) containing rainwater and left to acclimate

overnight.

Quantifying social associations
We constructed a total of twelve social networks, each

comprising 12 females collected from the same population (seven

high predation and five low predation sites, n = 144 individuals).

We chose to use only females in this study to avoid confounding

general association (shoaling) behaviour with sexual behaviour.

Furthermore, previous work on guppy social networks has

revealed persistent pairwise associations and cooperative interac-

tions predominantly among females [14,45]. Groups of 12 fish

were chosen for each population because of the difficulty of

observing the behaviour of a large number of individuals. In

addition, laboratory-based network studies utilising small numbers

of individuals are a good predictor of association patterns

occurring in larger networks constructed in the wild [45]. Small

guppy shoals are common in the wild [59] and a sample size of 12

individuals allows for evaluation of associations among several

social groups.

As the construction of social networks requires that each

individual is recognisable, we anesthetised each female in MS222

and gave her a unique identification tag by injecting VIE (Visible

Implant Elastomer, Northwest Marine Technology, Inc.) dye

under the surface of the dorsal epidermis [59]. The total length

(TL) of each fish was then measured (to the nearest millimetre)

using a pair of callipers and all fish were left to acclimate overnight

in their respective pools. The following day we observed

associations among individuals once per minute over a 30-minute

period; previous work has shown that this period is sufficient for

revealing non-random social structure in guppies [14]. Females

were considered to be associating if they were found within the

same shoal, i.e. within four body lengths of one another, a

standard method of evaluating shoaling behaviour [60]. Individ-

uals were considered part of the same shoal provided they were

within 4 body lengths of another group member (thus a shoal of 3

fish could be 8 body lengths wide). Wild guppy shoals are highly

dynamic with shoals exhibiting fission or fusion events (i.e. at least

one individual joining or leaving a shoal) on average every 14 s in

a population with high predation risk [59]. We chose a

considerably longer sampling interval (1 minute) so that sampling

periods for high and low predation populations were likely to be

independent, as required by social association models [61].

Observations were repeated every 3 days over a 12-day period

( = total of 4 observations per population), the time scale over

which familiarity has been shown to develop in the laboratory in

this species [55]. A total of 41 social networks were therefore

constructed and modelled (7 networks were not sampled at the

allotted time due to time constraints).

Testing for non-random patterns of social organisation
The social analysis program Socprog 2.3 [33] was used to

calculate several measures of association describing different

aspects of social structure: association index (AI), gregariousness

and population social differentiation (see Suporting Information

S1, for further details). AIs provide an estimate of the proportion

of time two individuals spend together (0 = not associated,

1 = always associated) [22]. We also calculated gregariousness,

which is the mean size of group that an individual experiences [6].

Social differentiation was used as a measure of the variation in

associations in our populations: low values (,0.3) suggest little

variation and represent homogenous societies while higher values

indicate communities that are well differentiated (.0.5) or

extremely differentiated (.2.0) [33]. Power analyses were

performed to provide the level of confidence at which the true

social system has been detected.

We examined whether patterns of social association observed in

each of our guppy populations were significantly different from

random using the permutation tests in Socprog 2.3. The

randomisations were performed for each population because these

methods rearrange the empirical data (e.g. row and column sums

in the matrices remain the same) so that the overall structure of the

data is conserved (in this case, the number of groups each fish is

observed in – which may vary among populations). The methods

used by Socprog 2.3 have been modified to account for problems

that were identified with earlier randomisation techniques [33,62]

Non-random social organisation is expected when the coefficient

of variation (CV) of association indices is significantly higher or

lower in the real data set than in the random data. Permutation

tests were also used to examine population differences in

gregariousness with the null hypothesis being that all individuals

prefer groups of similar size (standard deviations of typical group

size for real and random data are similar). These permutations can

also be used by Socprog to identify pairs of individuals whose

association index is greater than 97.5% or less than 2.5% of their

random association indices indicating dyads with significant

preferences and avoidances respectively. We performed 5000

permutations for each population (at which point P-values

stabilised to within 0.01) with 1000 trials per permutation.

Network analyses
We used five network measures which are particularly useful for

the analysis of networks based on association indices [22]: strength

(or degree), eigenvector centrality, reach, the clustering coefficient

and affinity. Such measures have previously been used to describe

social organisation in small experimental populations of animals

[63]. The strength of the network (referred to as ‘degree’ in binary

networks) is the sum of association indices with all other

individuals minus one and is equivalent to gregariousness [64].

Eigenvector centrality [65] is a measure of how well an individual

is associated with others (in terms of the number and strength of

connections), and also how well its neighbours are themselves

associated. Eigenvector centrality therefore provides a measure of

connectedness of individuals within a network. Reach describes

how well an individual is indirectly connected to others in the

population and reveals the overall strength of an individual’s

neighbours. The clustering coefficient describes how well an

individual’s neighbours are connected to one another. Values of

zero suggest that none of an individual’s neighbours are associated

whereas a value of one indicates that all neighbours are linked

[22]. Affinity is the weighted mean strength of an individual’s

neighbours and is weighted by the association index between

them. Mean network measures were calculated for each

population in Socprog 2.3 and their associated standard errors

were calculated using the bootstrap method with 1000 replicates.

MANOVA Models
Prior to testing for an effect of predation risk and time (day) on

the association measures and network statistics, we used Principal

Component Analysis to look for correlations in our data and

reduce the number of variables in our model. We entered

population means (averaged over the 12 individuals per popula-

tion) for association index, gregariousness, social differentiation,

strength, eigenvector centrality, reach, clustering coefficient and

affinity as factors. Two independent principal components (PC1 &

PC2) were extracted from the remaining variables (eigenval-

ues.1.0), which explained 68.5% and 20.9% of the variance in

our data respectively. The first Principal Component (PC1) was

Predation Risk and Social Networks
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loaded by the means of association index, gregariousness, strength,

eigenvector centrality, reach, clustering coefficient and affinity

(loadings: 0.51–0.99). The second principal component (PC2) was

predominantly loaded by mean social differentiation (loading:

0.90); we therefore used the raw data for this response variable.

We used MANOVA with the dependent variable as a repeated

measures response (4-levels: days) to examine between-subject

(predation risk) and within-subject (day) effects on PC1 and mean

population social differentiation. The dependent variables were

checked for assumptions of normality, homogeneity of variance

and sphericity prior to conducting the statistical tests, which were

performed in JMP version 9. We confirmed that mean body size of

individuals within each group (population) had no effect on our

dependent variables by entering it as a covariate in a MANCOVA

(PC1: F1, 6 = 0.410, P = 0.546; mean population social differenti-

ation: F1, 6 = 1.103, P = 0.334). This term was therefore excluded

from subsequent statistical tests.

Temporal patterns of association
Temporal patterns of association were examined using lagged

association rates, which describe the probability that two

individuals will associate t time units after a previous association

[33,66]. Lagged association rates were plotted continuously (using

moving averages) against time lag in Socprog 2.3. We considered

changes in lagged and null association rates over two different time

scales: time lag in minutes during the 30-minute observation

period and time lag in days over the 13-day study period. The

precision of lagged association rates was estimated by jacknifing

across sampling periods, using a 5-minute sampling period for

‘observation’ (7 jackknife groups) and a 1-day sampling period for

‘day’ (4 jacknife groups).

The lagged association graphs were fitted to several mathemat-

ical models in order to describe the temporal pattern of

organisation in our populations and estimate the parameters of

the models. To reduce the number of mathematical models fitted

to the data we first inspected the lagged association rate curves to

determine the descriptors that were most appropriate. For

sampling periods in minutes, we chose four exponential models

(Table 1) that included rapid periods of disassociation (breaking up

of groups), as these would be expected in fission-fusion societies

[22]. We selected the model of best fit for each population

according to the quasilikelihood variant of the Akaike Information

Criterion (QAIC) where the QAIC value provides an indicator of

the level of support for the model (lower values providing the

highest level of support) [67]. For time periods of days, inspection

of the lagged association rates revealed linear relationships; we

therefore fitted a custom model (g(t)~etzf ) describing a

constant rate of change in association probability over time

(Table 1).

To compare temporal patterns of social organisation among

high and low predation risk populations, the overall best-fitting

model was applied to all populations and the final model’s

parameters calculated. We then compared the parameters from

these best-fit models (using t-tests) to evaluate the effect of

predation risk on patterns of temporal organisation. In order to

compare the temporal structure of our populations we had to find

the overall model of best-fit; our aim of this part of the study was

therefore not to construct accurate mathematical models, but to

look for differences in overall patterns of temporal organisation in

populations from high and low risk environments.

Results

Testing for non-random patterns of social organisation
Females from both high and low predation risk populations

exhibited non-random patterns of social organisation with some

individuals preferentially associating with or avoiding others

(coefficients of variation for the real association indices were

significantly different from those for the random indices; high risk

real CV = 0.52, random CV = 0.37, P = 0.01; low risk real

CV = 0.77, random CV = 0.56, P = 0.01). Inspection of the dyadic

levels of significance revealed that overall, paired associations were

characterised by patterns of avoidance (indicated by P,0.025)

rather than preference (P.0.975). Patterns of gregariousness did

not differ from those expected from random models (i.e. there was

no preference by individuals for large or small group sizes);

standard deviations of typical group size for real and random data

sets were similar for both high (sd real data = 0.70, sd

random = 0.52, P = 0.70) and low predation populations (sd real

data = 0.77, sd random = 0.55, P = 0.85).

Effect of predation risk on social networks and their
development

We found a significant effect of predation risk on PC1 and mean

population social differentiation. The variables loaded by PC1 –

population means for association index, gregariousness, strength,

eigenvector centrality, reach, clustering coefficient and affinity -

had higher mean values in high predation populations than low

Table 1. Description of models fitted to lagged association rates (g) in Socprog 2.3. For time lags (t) of minutes, we chose four
models (parameters: a, b, c, d) that incorporated rapid periods of disassociation and selected the model of best fit according to the
quasiliklihood Akaike Information criterion (QAIC).

Name Model Description

RD + CC Rapid disassociation +
constant companions

g~a Some associations decay within 1 sampling period then
g is stable. Short-lived, non-random associations

RD + CA Rapid disassociation +
casual acquaintances

g~ae({bt) Some associations decay within one sampling period
then g falls to zero.

RD+CC+CA Rapid disassociation + constant
companions + casual acquaintances

g~azce({bt) Rapid disassociation within one sampling period
and an association rate that falls before levelling off.

RD+2CA Rapid disassociation + 2 levels of
casual acquaintances

g~ae({bt)zce({dt) Rapid disassociation within one sampling period and
levels of disassociation at time intervals of 1=b and 1=d.

Custom Gradual change in association/
avoidance over time

g~ez({f t) Linear change in probability that two individuals
remain associated following time lag.

For time lags of days we fitted a custom model describing a linear change in association probability over time.
doi:10.1371/journal.pone.0024280.t001
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predation ones (Fig 1a, Tables 2 & 3). Overall our populations

showed some level of social differentiation (values .0.3) and this

effect was stronger for low risk populations than high risk ones

(Tables 2 & 3; Fig. 1b). There was no effect of day or the

(predation risk x day) interaction term on PC1 or mean population

social differentiation in our social association networks (Table 2).

Thus overall, the social networks for females from low predation

risk environments (Fig. 2a) had fewer connections with lower

overall strength than those for fish from high predation risk

habitats (Fig. 2b). We accounted for sampling upstream and

downstream locations of the same stream by entering both river (6-

levels) and day as random effects in a General Linear Mixed

Model with predation risk as the fixed factor (it was not possible to

have random effects in the MANOVAs). The random effect

was non-significant for both PC1 and social differentiation

(F5, 31 = 2.04, P = 0.10 and F5, 31 = 0.86, P = 0.52 respectively);

the effect of predation risk in this model remained significant for

PC1 (F1, 31 = 8.50, P = 0.007) but not social differentiation

(F1, 31 = 0.25, P = 0.62).

Temporal patterns of association
Lagged association rates plotted for both high and low

predation risk populations were best described by an exponential

model of rapid disassociation with two levels of casual acquain-

tances (RD+2CA); QAIC values were lowest for this model in

7 of our 12 populations (the RD + CA model best-fit all the

remaining populations except one). In this model (g(t)~ae({bt)z

ce({dt))parameters a and c are the proportion of associations that

break up within a sampling period and 1=b and 1=d represent the

time scale of these two periods of disassociation. Thus the first

term in the model (ae({bt))represents fission events over short time

scales while the latter term (ce({dt)) describes longer term changes

in social organisation [22]. This type of model may represent

fission of short term associations and the slow decay of more

permanent relationships or might arise where some individuals

form stable groups that move in and out of other groups [22]. The

observed association rates were higher than the null rates in each

of our populations, confirming that females displayed preferences/

avoidances for particular individuals over both time scales (the 30-

minute observation period and the 13-day duration of the study).

Fitting the RD +2CA model (g(t)~ae({bt)zce({dt))to each of

our populations and calculating mean values of the model’s

parameters gave the following estimates of lagged association rates

Figure 1. Effect of time (day) and predation risk on guppy
social network measures. Figure a represents the marginal means
(6 SE) for PC1 while figure b shows the mean population social
differentiation. Solid lines represent high predation populations; dashed
lines are low risk sites.
doi:10.1371/journal.pone.0024280.g001

Table 2. MANOVA models testing the effects of predation
risk, day and their interaction on PC1 and mean population
social differentiation (both entered as repeated measures
responses).

Response
variable Dependent variable df F P

PC1 Predation risk 1, 7 5.77 0.047

Day 3, 21 0.26 0.857

Predation risk *day 3, 21 1.41 0.269

Social
differentiation

Predation risk 1, 7 11.39 0.012

Day 3, 21 1.15 0.353

Predation risk*day 3, 21 0.37 0.779

Significant effects at P,0.05 are shown in bold.
doi:10.1371/journal.pone.0024280.t002

Table 3. Network association measures averaged over
sampling periods (days) and populations to give overall
means and standard errors for high (n = 7) and low risk (n = 5)
networks.

Measure High predation Low predation

Association index (AI) 0.26560.03 0.17760.03

Gregariousness 0.84760.08 0.68060.07

Social differentiation 0.39560.03 0.41460.06

Strength 2.91160.27 1.9560.29

Eigenvector centrality 0.27660.001 0.27160.003

Reach 10.9561.82 5.6961.54

Clustering coefficient 0.5360.03 0.4560.03

Affinity 3.1660.29 2.14 60.29

Data were obtained from Socprog 2.3.
doi:10.1371/journal.pone.0024280.t003
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for high and low risk populations (Fig. 3a):

High predation: g(t)~0:01e{1:03tz0:69e{0:01t

Lower predatio: g(t)~0:32e{0:20tz0:21e0:05t

Comparison of the estimated parameters of our lagged

association models revealed that predation risk contributed to

varying patterns of temporal social organisation. For the first term

in the model (ae({bt))representing changes in short term

associations, parameters a and b differed significantly between

populations with high and low predation risk. At short time lags,

associations between pairs of low predation females were more

likely to break up than those between high predation fish

(parameter a, mean 6 s.e.: high risk = 0.0160.05, low

risk = 0.3260.10; t10 = 2.23, P = 0.014). The time scale over which

these short-term fission events occurred (given by 1=b) was also

influenced by predation risk; in other words, associations among

fish from high predation populations tended to break up over

periods of less than one minute while those among fish in low

predation populations broke up over periods of around 5 minutes

(parameter b, mean 6 s.e.: high risk = 1.0360.09, low risk =

0.2060.15, t10 = 2.23, P,0.001).

For the second period of disassociation (ce({dt)) the above

patterns were reversed. Affiliations between pairs of high predation

females were more likely to break up than those between low

predation fish (parameter c, mean 6 s.e.: high risk = 0.6960.05,

low risk = 0.2160.10, t11 = 2.20, P = 0.001). Indeed, the model for

fish from low predation habitats suggests an increase in the

probability of association over longer time periods (e.g. .40 mins;

Fig 3a). Here, the models suggest that associations among fish from

high predation habitats broke up over periods of 100 minutes

while fish from low predation habitats disassociated over a period

of about 20 minutes. However, the error around these estimates

was high and the differences not significant (parameter d, mean 6

s.e.: high risk = 0.0160.00, low risk = -0.0560.04, t11 = 2.20,

P = 0.10). The effect of predation risk on parameters a, b, c

remained significant following correction for multiple comparisons

Figure 2. Example of social networks for female guppies
collected from habitats differing in predation risk. Fish were
from a low predation (a) and high predation (b) population of the
Tacarigua River, Trinidad. Associations are represented by lines (edges)
between individuals, which are weighted so that stronger associations
are shown with darker lines. Drawn in Netdraw [91].
doi:10.1371/journal.pone.0024280.g002

Figure 3. Models of temporal social structure in guppy
populations. Lagged association rates are plotted against time lag
in minutes (a) and days (b) for networks from high (black lines) and low
(grey lines) predation populations. Solid lines indicate mean parameter
values; dotted lines indicate the upper and lower boundaries for the
standard error of the mean parameter values. The x-axis extends
beyond the 30-minute sampling period (in fig. a) to illustrate the longer,
2nd period of fission predicted by the models.
doi:10.1371/journal.pone.0024280.g003
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[False Discovery Rate for dependent comparisons, 68; adjusted

critical significance value = 0.024]. When we considered patterns

of association over the 13-day familiarity period, predation risk did

not influence rates of change in association with time (Fig. 3b;

parameter e, high risk = 0.0160.00, low risk = -0.0160.01,

t8 = 2.31, P = 0.19).

Discussion

Our results reveal that predation risk can influence the fine-

scale social structure of fission-fusion societies. While a long

history of studies has examined the relationship between

predation risk and prey group size [5,6,69,70], our findings

suggest that more complex elements of social dynamics can be

influenced by risk. Specifically, we found that individuals from

high predation risk populations were more closely affiliated, and

also their neighbours better socially connected, than those from

low risk populations that had weaker social ties. Our results also

provide one of the first demonstrations of the link between

predation risk and temporal patterns of social organisation.

Associations among fish from low predation habitats broke up

over periods of 5 and 20 minutes, while fish from high predation

habitats were more likely to remain associated during these time

frames. Thus the strong associations recorded among fish from

high predation rivers during our 30-minute observation period

likely contributed to the higher levels of overall social connect-

edness in high predation networks versus low predation ones.

Interestingly, the lagged association models suggested that the

reverse pattern occurred over longer time periods with associa-

tions among fish from low predation rivers more likely to persist.

We therefore suggest that the stability of affiliations among

females crucially depends on the time frame over which these

social preferences are observed.

The dynamic nature of fission-fusion societies provides an ideal

framework for testing socioecological theory - the identification of

ecological factors that drive variation in social behaviour - because

these can provide key insights into large scale evolutionary

processes [70,71]. Previous applications of social analysis tech-

niques to wild animal populations have revealed the importance of

ecological factors in influencing social organisation; for example,

seasonal changes in resource availability can influence the social

structure of baboon, bat and elephant societies [17,24,72]. While

several studies have considered the role of predation risk in

contributing to the observed community social structure

[32,34,73], our study provides the first experimental approach to

examining the effects of evolutionary/ontogenetic exposure to

predation risk on animal sociality.

We predicted that due to the high risk of predation associated

with the movement of individuals among groups, shoals collected

from high predation environments would exhibit higher stability

with reduced frequency of fission-fusion events compared with

fish in low predation habitats. Thus we expected that high levels

of association would be observed within shoals but lower levels of

overall social connectivity would occur among these groups. Our

findings do not appear to match these predictions because we

found greater overall social connectivity in fish from high

predation risk habitats (in our 30-minute observation period).

One explanation for this is that our sample populations

represented associations among a small number of shoals

(n = 12 individuals; median natural shoal size = 5 fish) in a

contained area, thus individuals are likely to be more associated

than fish in the wild that have greater opportunity for movement

among different social groups. Another possible explanation that

requires further investigation is that fission/fusion events may

involve movements of different sized groups. In fish collected

from high predation habitats, small groups of fish may move

among larger shoals to reduce the risks associated with travelling

among groups. This would likely contribute to high overall levels

of social connectivity at the community level. In fish from less

risky habitats, individuals may be more likely to move in and out

of groups. More research into the temporal dynamics of shoaling

behaviour would shed light into mechanisms of movement within

and among shoals.

We acknowledge that a limitation of our study (and a common

problem in many other social network studies) is the lack of within-

population replication. In order to generalise our findings and

confidently describe the social structure of a particular population,

we would need to construct multiple, independent networks for

each sample site. However, this was not the purpose of our study

(our networks were constructed in small artificial pools in the

laboratory); rather, we aimed to look for overall effects of risk on

social behaviour at the level of the population. Whilst we are

confident that the divergent patterns of social structure observed in

this study correspond to variation in predation risk, we suggest that

within-population variation in social organisation is an important

area for future research.

It is possible that factors other than predation risk varied

between upstream and downstream sites (e.g. population density,

sex ratio, water quality, canopy cover) and contributed to our

observed differences in social structure. However, we attempted

to control for any of these immediate effects by observing same-

sex networks comprising similar-sized individuals in the labora-

tory under identical conditions. Inspection of the association

indices for females from upstream and downstream populations

of the Oropuche River, which are both high predation

environments [74], reveals that they are similar (e.g. mean AI

6 se: upstream = 0.1860.04, downstream = 0.1960.03), giving

us some confidence that differences among populations are a

result of predation risk, rather than any other ecological variables.

Predation risk is known to influence not only group size and

shoaling tendency in guppies, but also a number of other social

behaviours such as cooperation, microhabitat use and courtship

[50]. Thus the relationship between social organisation and

predation risk reflects the combination of the direct and indirect

social implications of risk. Like previous work describing the

effects of predation risk on guppy shoaling behaviour [11], our

observations were also conducted in the absence of predator-

related cues, suggesting a fundamental basis to the observed

variation in sociality. While our findings are a necessary first step

in evaluating the effects of prior predation risk on spatial and

temporal social structure, it would be very interesting to

investigate the effects of immediate risk (e.g. predator presence)

on social structure in fish populations from high and low risk

habitats [75].

Relating the structure of social networks to their large-scale

properties [76] allows us to make a number of predictions

regarding the effect of predation risk on large-scale population

processes. Studies linking social organisation with disease

transmission have revealed that individuals that play a central

role in the network are more likely to become naturally infected

with pathogens than those that are less associated [77].

Furthermore, experimental infection of highly socially connected

individuals can cause higher rates of disease transmission than if

randomly selected individuals are infected [78]. Translating these

findings to the present study, we might predict that the transfer of

disease or information would be more rapid in high predation

populations where individuals are better connected and likely to

remain associated, at least over short time periods. Guppies can
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learn novel foraging tasks, escape routes and antipredator

responses through associating with or following other individuals

[79,80] and learn more effectively from familiar fish than

unfamiliar fish [81]. Specifically, guppies behave differently in

the presence of trained/experienced fish and the novel behaviour

is retained once they (the trained fish) are removed. Thus, novel

information is expected to spread through a population

depending on the movements of the knowledgeable/experienced

individual(s) and their social connections within the community

[82].

The flow of information/disease is likely to be non-random and

directed through particular individuals or sub-groups within the

community [83]. Previous studies have shown that age [84,85],

kinship [73] and behavioural phenotype [48,86] can bias

individual-level interactions and affect the centrality of the

network [87]. Identifying the role that these genetic and

phenotypic factors play in structuring both high and low predation

risk networks is an interesting avenue for further research. The

level of sub-structuring or ‘cliquishness’ within the community is

important because information or disease may be transmitted

rapidly through highly connected sub-groups but less rapidly

through the population as a whole [76]. The level of sub-

structuring observed in this study (given by the clustering

coefficient; population range: 0.4 to 0.74) is higher than that

reported for dolphins and sperm whales [88,89] and similar to that

reported for bats and other freshwater fishes [47,90]; high levels

may act to facilitate the flow of information among members of

cliques while increasing their susceptibility to disease. Cliquish

networks are also predicted to be less robust as the removal of key

individuals or their associations may cause the community sub-

structure to fragment [42].

We found no evidence that increasing familiarity among

females, which occurs over the course of 12 days in guppies

[55], influenced the development of the social networks. This is in

contrast to previous work showing that familiarity can develop in

small networks comprised of randomly selected females [46]. In

this previous study [46], the development of social recognition was

examined by testing the preference of females for shoal partners

originating from the same social network over females from

different networks. One suggestion for the discrepancy in results

between our study and that of Darden et al. [46] is that the effects

of increasing familiarity among females are not evidenced by

changes in association towards one another but rather by their

response upon encountering unfamiliar individuals. Thus social

recognition among small groups of individuals may develop in the

absence of any observed changes in overall network structure over

time.

Understanding the impacts of ecological variability on

animal social organisation is essential because it allows us to

identify factors that may have facilitated the evolution of

sociality. The recent advancement of social analysis techniques

allows us to go beyond describing the effects of predation risk

on prey group size and composition to reveal increasingly

complex patterns of spatial and temporal organisation. Our

findings suggest that the social structure of a population

depends on the temporal scale at which patterns of association

are observed. Consideration of the temporal aspects of social

organisation is therefore essential, particularly in the case of

fission-fusion societies where group splitting/joining events can

occur on multiple time scales.
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