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ABSTRACT  
 
Monitoring programs on four very different highway bridges originating from a range of require-

ments related to calibration of numerical models, assessment of load capacity and long term track-

ing of performance are summarized in order to draw out lessons relevant to the future development 

of structural health monitoring ‘systems’. These lessons concern validation of structural models, 

appropriate methods for instrumentation, communication, data management and system identifica-

tion. The paper presents experience obtained by collaboration in a form intended to educate, by ex-

ample, bridge operators about potential and limitations of SHM systems. 
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1 INTRODUCTION 

 

Structural health monitoring (SHM) of highway bridges is now a major interdisciplinary research 

growth area, with collaborations including civil, mechanical, electrical and computer engineering. 

Definitions of SHM take many forms, including an overlap with non-destructive evaluation (NDE) 

involving examination of the structure at a localized level. However civil engineers usually view 

SHM as a global identification process in which the performance of a structure as a whole is con-

sidered by considering all forms of available performance indicators. Because of the perceived link 

between different levels of damage and performance, and because of the history of vibration based 

damage detection, there has been a bias toward the use of dynamic response data for bridge SHM 

and in this sense many bridge SHM exercises have (had) a rather narrow focus. While vibration 

data remain valuable, they need to be integrated with quasi-static response data and conventional 

observations within an inspection-based maintenance program. Even with a representative spectrum 

of load and response data, the challenges for civil SHM, with bridges representing a major growth 

area, are being identified as data management and storage, including local embedded systems for 

data reduction, wireless data transmission, data mining, evaluating performance against structural 

models, and presentation of minimal and reliable information to bridge managers for decision mak-

ing. 

 

2 BRIEF REVIEW OF BRIDGE SHM DEVELOPMENTS IN 20TH CENTURY 

 

Bridge monitoring programs have historically been implemented for the purpose of understanding 

and eventually calibrating models of the load-structure-response chain [1-9]. One of the earliest 

documented systematic bridge monitoring exercises, by Carder [10], was conducted on the Golden 

Gate and Bay Bridges in San Francisco to learn about the dynamic behaviour and possible conse-

quences of an earthquake.  
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 In the 1990s, permanent bridge monitoring programs evolved into SHM systems which have 

been implemented in major bridge projects in Japan, Hong Kong and latterly North America. Long-

span bridge monitoring systems also provide ideal opportunities to implement and study SHM sys-

tems, for example the Wind and Structural Health Monitoring System (WASHMS) [6] implemented 

on the Lantau Fixed Crossing has stimulated SHM research in Hong Kong not only concerning the 

performance of the bridges themselves but also of SHM methodologies.  

 Less glamorous but possibly ultimately more beneficial developments of SHM have been in op-

timal monitoring approaches for conventional short span bridges, yet there is a long history of re-

search in full-scale testing for assessing such bridges e.g. [11, 12]. For these smaller bridges global 

response is more sensitive to defects, visual inspection is less frequent and SHM systems can and 

do [13] make a real contribution. Studies in Australia have focused on the typical very short span 

highway and railway bridges, in one case leading to a commercial product the ‘Bridge Health 

Monitor’ or HMX [14] which is programmed to record selected waveforms of vehicle-induced re-

sponse while logging statistics of strains due to such events. 

 Four bridge monitoring exercises are reported here that span the range of monitoring applica-

tions and explore applications of SHM technology. 

 

3 HUMBER BRIDGE MONITORING FOR SIMULATION VALIDATION 

 

Several full-scale measurement exercises have been conducted on the Humber Suspension Bridge 

[3, 15, 16] which from 1984 to 1998 held the world record for largest span, at 1410m.  

 In the 1980s research was being conducted to establish the performance of long span suspension 

bridges in seismic areas subject to different ground vibration at the widely separated towers and an-

chorages. The Bosporus (Istanbul) and Humber (UK) bridges have a common design theme and 

feature aerodynamic closed steel box decks and inclined hangers. Due to the similar design, faith 

was put in finite element simulations of the Bosporus Bridge [17] via validation of a similar model 
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of the more accessible Humber Bridge by ambient vibration survey [18]. Humber was subsequently 

used for validating modeling procedures for simulating wind induced response of the performance 

of proposed 3300m span Stretto di Messina suspension bridge [19]. To this end, an instrumentation 

project was sponsored by Stretto di Messina Spa, organised by Politechnico di Milano and assisted 

by University of Bristol, ISMES Bergamo and Humber Bridge Board [3]. 

 Safe (high) flutter speeds achieved through design of the deck girder shape depends on good un-

derstanding of the wind-structure interaction; even with reasonably accurate modeling of the struc-

ture there is still great uncertainty in the loading mechanisms. In the Humber monitoring exercise, 

wind, displacement and acceleration and other specialized signals were recorded for a range of 

wind conditions, allowing for system identification of the aero-elastic components of the stiffness 

and damping, for comparison with values estimated from wind tunnel studies [20]. Figure 1 shows 

how  modal frequency and damping of the first torsional mode vary with wind speed (negative wind 

approaches perpendicular to the span from the west). The damping increase is reassuring but the 

drop in modal frequency, coupled with more gentle rise in first mode frequency indicates a trend 

towards single-mode flutter at a rather high wind speed. The total exercise validated the procedure 

for predicting response based on knowledge of the structure, wind conditions and structural and 

aerodynamic system so that it could be applied to the much larger Messina bridge.  

 More immediately, the monitoring exercise provided data to establish relationships between 

various loading effects and static responses, identifying correlations of loading effects such as wind 

speed and ambient temperature with structural responses such as lateral and vertical deflection and 

axial rotation, and these are summarized in Figure 2. One surprise was that slowly varying deck de-

flections due to temperature changes were greater than static deflections due to wind. 

 Numerical simulations showed that observation of global response e.g. deck accelerations is 

highly unlikely to indicate structural damage or deterioration to the major components of the super-

structure i.e. deck, cables and towers. The components that do need occasional attention or even re-

placement are hangers (suspenders) and bearings and these make good cases for applying SHM sys-
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tems and technology. Hanger monitoring is an ideal application for low cost autonomous wireless 

vibration sensors [21] as there are many cases of excessive oscillation and corrosion or failure of 

anchorages, while the performance of deck bearings has been shown in Humber and the two sus-

pension bridges over the Bosporus to have strong effect on the character of fundamental vertical vi-

bration modes.  

 

4 TUAS SECOND LINK: LONG TERM PERFORMANCE MONITORING 

 

A monitoring program to study performance of glued segmental box-girder bridges was conducted 

in the UK in the 1980s [2] with the primary aim of establishing the structural effects of temperature 

variation along with the long term strain history using embedded vibrating wire strain gauges. 

Based on the UK program, a similar instrumentation scheme was installed in the Second Link 

bridge between Singapore and Malaysia, shown in Figure 3, to validate the design and performance 

[22]. The bridge was completed in 1997 and opened to traffic in the same year, has a total length of 

1.9km,  comprises 27 spans and has only two expansion joints, at each end. The Singapore side is 

only 170m long and the main span of this section is 92m long. The bridge was cast in-situ as a post-

tensioned continuous box girder using the balanced cantilever method.  

The instrumentation installed to monitor its short- and long-term performance under environ-

mental and traffic consists of four data loggers, twelve vibrating wire strain gauges, forty four ther-

mocouples and one tri-axial accelerometer, distributed in three segments of the main span. The ar-

rangement of installed instruments is shown in Figure 4; all the data loggers were connected to a 

host computer resident in the bridge and accessed via a modem. 

 Strain, stress and temperature data have been recorded at hourly intervals from 1997 to 2004 

(but not continuously). As well as providing information long term creep and short term linear 

stress-strain relationships, the data have been used [23,24] for developing procedures for detecting 

performance anomalies. In particular, the recording during the construction process provided valu-
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able information on early-life strain development and reference characteristics for events such as 

post-tensioning and concrete pouring. These events may have analogs in post-construction activity, 

and the lessons learnt from the construction monitoring can be used for understanding subsequent 

bridge behavior, including damage detection. 

 One fundamental problem in SHM is that of data normalization and interpretation under a range 

of environmental or ambient loads or noise sources that affect the measured signals [25-27]. It is of-

ten the signal non-stationarity or deviation from the established pattern of response that may indi-

cate an altered structural state or damage. However, such changes in the monitored signal are quite 

often obscured by ambient inputs or noise, and it is necessary to compensate for or filter out these 

effects. For example, Figure 5 shows strain signals of one segment during construction. It can be 

seen that some abnormal abrupt events, notably segment casting, can easily be identified by visual 

inspection of strains recorded by some sensors, in this case those placed near the bottom of the 

girder. However, identification of different events, such as tensioning and formwork shifting, or 

even identification of casting events from the data from other sensors by simple visual examination 

of the time series is very difficult. Ambient noise could be partially filtered given some physical or 

structural model relating loads to their effects, but for Second Link, no such model is available and 

‘output-only’ type models were used to detect anomalous events without any knowledge of the 

structure. 

 Two different analytical procedures are used for detecting anomalous behavior. The first one 

[28] employs wavelet transform. Raw strain data are filtered into high and low frequency compo-

nents using the Daubechies discrete wavelet transform [29]. The highest frequency component, or 

wavelet details, is retained as a series of time varying coefficients and conveniently indicates dis-

continuities in the original time series, as shown in Figure 6. It can clearly be seen that the previ-

ously hidden events now stand out from the bulk of data. For automatic detection of unusual values 

of wavelet coefficients their time series can be further processed by forming a vector autoregressive 

moving average (ARMA) model of multiple channels. A best fit ARMA model is obtained and the 
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various outliers to this model can be detected and examined. As the data are multi-channel, it is 

possible to highlight outliers consistent among the channels and differentiate effects on different 

parts of the structure. Having identified anomalies, intervention analysis [24] uses the Box-Jenkins 

models on original strain time series in the region of the identified anomaly to qualify and quantify 

the change in the strain signal. Figure 7 shows an example of intervention analysis of one of the ca-

ble tensioning events. Based on this examination the impact of the event on strain values was sepa-

rated from other strain variations and classified as permanent of a value of 12µε (Fig. 7b). 

 The second analytical procedure operates directly on the strain time series and does not involve 

wavelet transform [30]. It was inspired by the studies of Sohn et al. [31, 32], who modeled dynamic 

signals using autoregressive (AR) time series models, and through examination of the changes in 

AR model parameters were able to detect damage. In the case of continuous monitoring of Second 

Link, a vector seasonal autoregressive integrated moving average (ARIMA) model was established 

for the recorded strains. Through its seasonal part the model accounts for strain variations due to 

ambient temperature cycles. The parameters of the ARIMA model are allowed to vary with time 

and are identified on-line using a Kalman filter. By observing various changes in the model parame-

ters, unusual events as well as structural changes can be revealed. Figure 8 shows an example of 

changes in an ARIMA coefficient due to cable tensioning events during construction. These 

changes are either step-like jumps and drops in the coefficient value which then seem to stabilize 

for some time at the new levels, or spiky transient oscillations without any apparent level shifts. 

 The Second Link monitoring has closed but the data are still useful for research in the developed 

analytical procedures. For example, one of the topics on the agenda is the comparison of the effi-

ciency of the two above methods. Also, the two methods, while reasonably successful, are not flaw-

less as they may yield some spurious observations caused by non-Gaussian distribution of the strain 

data, which was discussed in detail elsewhere [30]. Overcoming successfully the methods’ limita-

tions is critical for making them potentially useful to the bridge operators. 
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5 PIONEER BRIDGE: SHORT TERM MONITORING FOR SHORT SPAN BRIDGE RETRO-

FIT 

 

All but a handful of highway bridges in Singapore are reinforced or post-tensioned concrete and 

from around 2000 the Land Transport Authority of Singapore (LTA) operated a major program of 

upgrades on existing bridges to sustain higher axle loads. LTA now includes a provision for struc-

tural monitoring in the upgrade tender specifications, making the upgrade contractor responsible for 

producing evidence of satisfactory improvement in performance. The specifications for instrumen-

tation and proof of structural improvement are slowly evolving, and research [33] has been con-

ducted to identify a rational procedure for assessing the success of the upgrade, based on Heywood 

et al. [14] 

 The proposed approach has been demonstrated on Pioneer Bridge (Figure 9), an 18m span 

bridge comprising parallel pre-stressed inverted T-beams tied together by tendons and deck slab 

and supported on nominally pinned bearings. The major structural change in the bridge upgrade 

program involved fixing the deck end bearings via massive reinforcement resulting in an integral 

bridge. 

 A multi-stage approach was used to assess the upgrade. First, a bridge health monitor [14] (Fig-

ure 10) comprising four demountable strain gauges, four accelerometers and a battery powered data 

acquisition box was installed to log traffic-induced vertical accelerations and longitudinal strains on 

the soffit of selected T-beams. The sensors were mounted at the mid-span of selected girders and 

left in place for one month before and after strengthening works. Recording of strains and accelera-

tions was triggered by the passage of heavy vehicles at selected levels of strain. For each record the 

health monitor captured the strain waveform, peak strain and acceleration with a date and time 

stamp assigned to each event such as for the typical strain waveform shown in Figure 11. Peak 

strains were used to develop a statistical model of live loading which was assumed to be Type 1 Ex-

treme value distribution. Two forms of the extreme type 1 distributions were used to estimate live 
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load strains for a 200,000 year return period or 0.06% chance in 120 years. The first was the stan-

dard Gumbel distribution which is generally accepted as the appropriate distribution for bridge live 

loading [34, 35].  

 The Gumbel procedure selects only one peak value per sampling period, e.g. one peak value per 

day and as a result some high peak values may be left out resulting in inaccurate estimates of live 

load strains. To avoid this problem a modified Gumbel approach was also implemented [36-38]. 

While the modified Gumbel distribution, also known as the Method of Independent Storms, (MIS) 

captures most of the peak strains the distribution fit indicates a more complex distribution. In both 

cases however the peak strains changed by approximately 20% before and after bridge strengthen-

ing (Figure 12).  

 Second, modal surveys of the bridge were conducted and used with core samples to establish a 

validated finite element model of the bridge before and after upgrading. Figure 13 shows the fre-

quency response functions (FRF) before and after the upgrade, indicating a considerable increase in 

stiffness and damping capacity due to the upgrade. This is evident from the increase of the first 

natural frequency from about 6Hz to approximately 8Hz. Identification of the modes is possible via 

correspondence of the mode shapes, which also show evidence of the stiffened supports. 

 The validated finite element models were used to estimate the dead load strains in the concrete. 

The sum of factored dead and live strains was compared before and after upgrading to show a drop 

in about 20% and a improvement in the proportion of ultimate capacity for the same return period. 

The study showed that even before upgrading, the capacity was already adequate, hence such a pro-

cedure could be used to check the need for an upgrade. 

 

 

6 PASIR PANJANG SEMI-EXPRESSWAY (PPSE): RECENT DEVELOPMENTS IN SHM 
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Based on the Second Link experience a program was developed for a major elevated expressway in 

Southern Singapore to incorporate structural modeling and improvements in communications, using 

wireless modems. PPSE is an extended viaduct of twin box decks supported on single central py-

lons above an existing main road and intended to carry heavy good vehicle traffic between two ma-

jor container terminals. The viaduct is arranged in ‘bridges’ of five 20m-46m spans between expan-

sion joints and constructed using the balanced cantilever method with pre-cast segments delivered 

from a casting yard in Western Singapore (via Pioneer Bridge). At the time of writing, and due to 

construction delays, PPSE is still under construction with only the piers in place at the western end, 

while span sections are already joined to form continuous bridges at the eastern end. The aim of the 

monitoring program has been to develop a system that will track the performance of a complete sec-

tion of the expressway comprising five bridges. In each bridge one span is instrumented at two 

segments together with the adjacent pier. 

 Ten segments have been instrumented in this way. Instrument cables from two segments and a 

pier are routed to a logger equipped with GSM or GPRS wireless communication system. At pre-

sent, three spans are online and stress and strain data, recorded every half hour are sent by e-mail as 

a daily summary from an e-monitoring server operated by the contractor. The patterns of the data 

are so far similar to those observed at Tuas, with diurnal variations and (modest) jump shifts during 

stitching/post-tensioning.  

 In order to interpret the variations of signals during and after construction, one bridge is being 

fully modeled, and as a calibration of the FE modeling, free-standing balanced cantilever sections 

centred on each of the instrumented piers have been tested dynamically to obtain free vibration 

properties. For this bridge, it is possible to excite lower frequency vibration modes by timed jump-

ing or instrumented hammer. Figure 14 shows prompted jumping in action, which can either induce 

a broad band transient (a single jump) or specific modes (by a short sequence of timed jumps). This 

worked very well for the typical balanced cantilever portion shown, while ambient response due to 

wind and construction activity was used on a complete and relatively massive bridge.  
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 The approach adopted for FE modeling was to build a relatively simple model of a balanced 

cantilever arrangement of a pier and four semi-spans and to progress to more detail and a complete 

multi-span bridge. Table 1 shows comparison of experimental mode frequencies with FE modes us-

ing a coarse model and one including parapets and necessarily smaller (and more) elements. Figure 

15 shows the detailed FE mesh and the fundamental vibration mode, while the correspondence be-

tween experiment and analysis is illustrated in Figure 16 for two higher vibration mode shapes 

based on vertical response at a few points. The good agreement suggests that assumptions about 

material parameters and boundary conditions i.e. rigid foundation are valid as would be extrapola-

tion, by a process of extrusion, to a model of a whole bridge. For the balanced cantilever there was 

no justification for FE model updating.  

 The exercise of detailed finite element modeling and dynamic testing of a sub-structure during 

the construction phase and subsequent correlation/updating is a useful technique to validate as-

sumptions and provide confidence in modeling the whole bridge, forming a baseline for investigat-

ing any long term variations within a SHM program. Figure 17 shows one mode from the extruded 

full bridge model, and an experimental exercise using ambient vibration response indicated accept-

able correlation between test and analysis even though due to computation limits it was only possi-

ble to use the  less detailed mesh. 

 In the this final and effectively validated structural model, effects of differential temperature 

loading, settlement, loss of post-tensioning and other ambient (but not dynamic) effects will be 

simulated to aid pattern recognition in the collected data and this integration of static stress and 

strain response with the validated dynamic finite element model is the significant next step in the 

process. 

While quasi-static response data are manageable directly and arrays of accelerometers are not 

necessary since modal properties have been determined already, tracking dynamic performance is 

useful for checking live loads through spatially discrete measurements, and there is always the pos-

sibility that variations in modal frequency and damping can indicate certain forms of structural 
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change. As SHM research is moving toward wider applications of fibre optic systems, PPSE is be-

ing used to test field operation of fibre Bragg grating (FBG) strain sensors. In this instance two ar-

rays of 11 FBG sensors have been attached to the inside box soffit and local processor communicat-

ing via USB will identify the peaks in the reflected light spectrum to track strain changes 

dynamically. 

7 RECOMMENDATIONS AND DIRECTIONS FOR BRIDGE SHM 

 

From experience of four bridge SHM systems, together with observations on other major instru-

mentation programs, recommendations can be made for future bridge SHM projects. 

 

7.1 Clarity of purpose 

There are likely to be major differences between the relatively basic requirements of bridge manag-

ers and the ambitions of systems designers, the latter usually originally from academia. Bridge man-

agers first of all wish to know if the structure is safe for continued operation, e.g. due to high wind 

conditions and second to know about unusual loading patterns. They continue to rely on visual in-

spection and welcome and reliable procedures for assisting bridge management.  

 For bridges, the possibility of a SHM system being able to detect damage that is not visually ob-

vious is apparently still some way into the future. It would be encouraging to think that designers 

may wish to know if the structure as built performs as per design, but the loop is rarely closed, 

partly because designers may prefer not to know about the degree of conservatism, even if there 

could be economic gains. An exception is where proof of improved performance due to upgrade or 

retrofit is required. 

  Academics are so far probably the greatest beneficiaries of SHM due to the rare and precious 

opportunities to gain insight into and report on performance of exotic structures, bridges being ob-

vious and accessible choices due to being in the public domain and relatively free of legislative 
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constraints. Such research has definite future benefits from opportunities to try out new hardware 

and procedures that may eventually find practical use. 

 The three examples of long term monitoring reported here were largely academic exercises but 

of course with strong user involvement, the first providing calibration of analytical tools for use 

elsewhere, the second making use of an opportunity to develop anomaly detection procedures and 

the third aiming to integrate minimal instrumentation for dynamic and static response with novel 

sensors, embedded systems, wireless communication and anomaly diagnosis based on a calibrated 

analytical model. In fact the PPSE exercise has been designed as a prototype SHM system for this 

class of bridge. The exercise with Pioneer demonstrated the effectiveness of combining monitoring 

with an experimentally validated structural model for rating a bridge. 

 

7.2 Novel sensors and embedded systems 

The list of sensors intended for SHM applications is growing with Fibre optics having a growing 

range of applications. MEMS sensors e.g. accelerometers also have potential due to low power con-

sumption and cost.  

 Along with the sensor development comes local processing (embedded systems) which seeks to 

condense data, at source, to information to reduce data transmission overheads and aid data man-

agement and power consumption. Simple examples are peak values of strains due to passing vehi-

cles; in-band RMS and centre frequency for modal response due to wind, earthquakes and vehicles; 

mean and gust values of wind data and time series model coefficients from vibration signals.  

 In many research communities significant investment is put into sensor development looking for 

a practical application yet it is relatively rare to find such sensors working ‘in anger’ and showing 

proven advantages over conventional systems. This should not deter development but multidiscipli-

nary approaches involving field trials should be preferred to narrowly focused research. 
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7.3 Communications 

A revolution is beginning in this area as GPRS and then 3G begin to find their way into SHM ap-

plications and help to make cabling redundant thereby removing probably the greatest headache in 

instrumentation. A pilot project in Singapore [39] uses a server communicating in real time with 

data loggers on bridges and in tunnels, and relaying to users as by e-mail or SMS. Use of LANs to 

connect loggers is more common yet there remain issues with synchronization for fast acquisition 

rates, as well as with the slowly growing catalog of wireless sensors for which there is a growing 

demand. 

 

7.4 Performance diagnosis 

This is a rapidly developing area with major challenges and opportunities for researchers. In paral-

lel with sensors and to a lesser extent communications, it is believed that research efforts in this 

area will have the greatest impact not in the research community but in real-world applications with 

demanding infrastructure owners.  

 The first step in such a diagnostic approach before progression to stages of location, quantifica-

tion and prediction is to identify, reliably, that an anomalous event has in fact occurred. An analyti-

cal model validated by test data and/or sophisticated system identification tools are then required to 

provide the diagnosis, and this requires a deep understanding of the structural mechanisms that we 

belief can best be provided by modal testing and finite element updating. 

 

8 CONCLUSION 

 

Rapid developments in the diverse area of Structural Health Monitoring (SHM) research show great 

promise, with extensive developments within the last decade. Even so, approaches to SHM are not 

standardized, academic goals are often very different from needs of the infrastructure owners and 

SHM is frequently mistaken for damage detection, a role rarely fulfilled by operational SHM sys-
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tems. While working towards the ideal of not only detecting but also locating and quantifying dam-

age, SHM systems have already shown great capability in providing detailed understanding of the 

structural mechanisms and loadings at work in a structure.  To this end we advocate an integrated 

approach where a structural model is validated by dynamic testing prior to long or short term 

health/performance monitoring.  
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Table 1  Experimental and Finite Element Frequencies for balanced cantilever 
 

 
 

Frequencies (Hz) 
 
 
 
Mode Se-
rial Num-
ber 

Modal Test-
ing 

Approximate Fi-
nite Element 
Analysis 

Detailed Finite 
Element Analysis 

1 2.49 3.235 2.531 

2 3.96 4.692 4.06 

3 6.32 7.659 6.556 

4 7.00 9.566 7.205 
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Figure 1 Humber Bridge torsional mode parameter variation with wind vector 
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Figure 2 Correlations of external influences and structural responses 
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Figure 3 Second Link bridge: a) under construction, b) completed structure. 

a) b)
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Figure 5  Strain variation in segment 31 during construction. 
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Figure 6  Wavelet decomposition of strain data (Abbreviations: C – concreting, T – cable ten-
sioning, F – shifting of concreting form, e.g. T26 – tensioning of cables in segment 26). 
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Figure 7 Intervention analysis of a cable tensioning event: a) strain time series, b) impact of 
tensioning on strain time series. 
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Figure 8  Identified values of an ARIMA model coefficient showing changes due to cable tension-
ing (Abbreviations: e.g. T26 – tensioning of cables in segment 26, TC – tensioning of closure strip). 
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Figure 9 Pioneer Bridge 
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Figure 10: Bridge monitoring system 

  

(b) Demountable strain gauge     (b) Data acquisition system 
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Figure 11: Typical strain record 
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Figure 12: Extreme value statistics for a selected location using method of independent storms  
(MIS) 
           
(a) 120 year strains before bridge upgrading. (b) 120 year strains after bridge upgrading 
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Figure 13 Pioneer Bridge FRF and mode shapes before and after upgrade showing increase in stiff-
ness and damping capacity. Sequences of mode shapes correspond before and after upgrade

Changes in frequency response 
functions: 

before 
after 

5 10 15 20 25
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
M: ch5 vs ch1

F/Hz

5 10 15 20 25
0

0.01

0.02

0.03

0.04

0.05

0.06
M: ch16 vs ch1

F/Hz

 mode: 1 f=5.547Hz  mode: 2 f=6.26Hz

 mode: 3 f=7.534Hz  mode: 4 f=10.3Hz

 mode: 5 f=14.76Hz

 mode: 1 f=8.31Hz  mode: 2 f=9.34Hz

 mode: 3 f=10.71Hz  mode: 4 f=12.95Hz

 mode: 5 f=17.15Hz  mode: 8 f=27.91Hz

 
          Before upgrade
 
Frequency response function            Mode shapes 
     
          After upgrade



Brownjohn 34 

Figure 14 Jumping to excite vibration of balanced cantilever 
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Figure 15 Fundamental vibration mode for cantilever 
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Figure 16  Correlation of experimental (dotted) and analytical vibration modes for balanced cantile-
ver
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Figure 17  Extrusion of FE model to complete ‘bridge’ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


