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Abstract: The paper presents an innovative numerical approach to simulate progressive caving 

of strata above a longwall coal mining panel. A proposed Trigon logic is incorporated within 

UDEC to successfully capture the progressive caving of strata which is characterized by fracture 

generation and subsequent propagation. A new damage index, D, is proposed that can quantify 

regions of both compressive shear and tensile failure within the modelled longwall. Many 

features of progressive caving are reproduced in the model and found to fit reasonably well with 

field observations taken from a case study in the Ruhr coalfield. The modelling study reveals 

that compressive shear failure, rather than tensile failure, is the dominant failure mechanism in 

the caved strata above the mined-out area. The immediate roof beds act like beams and can 

collapse in beam bending when vertical stress is dominant or in beam shear fracture when 

horizontal stress is dominant. The proposed numerical approach can be used to guide the 

design of longwall panel layout and rock support mechanisms. 
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1 Introduction 

Longwall mining is a widely used underground mining method for the extraction of 

relatively thick, sub-horizontal and uniform coal seams. After mining of the coal seam, the panel 

roof strata above the mined-out area or goaf will be destressed. With continued face advance, 

the immediate roof will collapse and cave into the goaf area, and the disturbed roof strata 

gradually extends upwards. Three zones of disturbance may be identified above the goaf, as 

illustrated in Fig. 1; a caved zone, a fractured zone and a continuous deformation zone, in 

ascending order from the roofline [1]. The extent of each zone depends on the geological and 

geotechnical conditions of the overburden strata including the mechanical properties of the rock, 

in situ stress, the thickness of the coal seam and immediate strata, and the type and nature of 

the strata [2]. Understanding the failure mechanism associated with the progressive caving of 
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strata is very important for predicting ground subsidence, roadway, face support and mine 

layout design.  
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Fig. 1 Disturbed zones due to excavation of a panel in longwall mining (after [1]). 

Common approaches for studying the progressive caving of strata include empirical, 

physical modelling, and numerical modelling methods. Empirical methods suffer from a number 

of simplifications and are limited when dealing with complex geological mining conditions. 

Physical models can provide a realistic simulation of the caving process but can be very 

expensive and time-consuming [3,4].  

Numerical modelling is a promising and effective tool for the simulation of progressive 

caving of strata caused by extraction of a longwall panel. Numerical methods can be classified 

into continuum methods including BEM (Boundary Element Method), FEM (Finite Element 

Method), FDM (Finite Difference Method), and discontinuum methods including DEM (Distinct 

Element Method), DDA (Discontinuous Deformation Analysis) and  hybrid FEM/DEM and 

FDM/DEM. Continuum methods have been widely used for simulating longwall mining [4–12]. 

There are two major limitations in longwall modelling simulation associated with continuous 

methods. The first is that the generation and propagation of fractures cannot be explicitly 

captured and thus the caved zone and fractured zone are unable to be identified directly, but 

must be determined through assumptions based on displacement, plastic shear strain. The 

second is that it is difficult to directly incorporate pre-existing discontinuities including bedding 

planes and cross joints in a continuum model. Discontinuum methods may therefore be 

considered more appropriate for simulating progressive caving of strata caused by longwall 



mining. Coulthard [13], for example, applied the Universal Distinct Element Code (UDEC) [14] to 

investigate longwall coal mining induced subsidence. In his models, the horizontal bedding 

planes were given appropriate properties and allowed to open or slip according to the stresses 

developed. The sub-vertical joints were initially given intact rock shear and tensile strength but 

due to the stresses induced could mimic the cracks generated and propagating through the 

strata. Coulthard suggested that UDEC models provide a closer approximation to the real 

mechanics of the system than a continuum model [13]. UDEC has also been used to simulate 

the longwall top coal caving method [15–18]. A limitation in these models was that fractures 

could only develop along pre-existing discontinuities including persistent bedding planes and 

cross joints.   

The proposed UDEC Trigon approach is used in this paper to create a longwall model in 

which the roof is simulated as an assembly of triangular blocks bonded via contacts. Pre-

existing fractures, including bedding planes and cross joints, have been incorporated in the 

model. Using this approach, the suggested limitations mentioned above are overcome. The 

modelling results have been compared against field observations. The effects of a soft 

immediate roof, bedding plane thickness and high horizontal stress on the progressive caving of 

the strata are investigated. 

2 Discrete element modelling of a longwall 

2.1 Geology 

The current UDEC Trigon modelling study is based on a published longwall panel case 

study at the German Ruhr mining district [19]. The longwall panel is located at a depth of 

approximately 1100 m. The mined coal seam has a height of 2-2.5 m. The width of the longwall 

is 300 m and its length 2000 m. The immediate roof comprises a massive coarse sandstone 

with an average thickness of 19 m and an intact compressive strength of 112 MPa. It is overlain 

by a 2 m strong fine-grained sandstone/siltstone layer with an intact compressive strength of 

125 MPa. Above that is a 2 m weak siltstone layer of 20 MPa compressive strength. Fig. 2 

shows the lithology of the longwall as well as some important geotechnical parameters.  



 

Fig. 2  Lithology and geotechnical parameters (after [19]). 

The in situ stresses were extrapolated from nearby stress measurements and are 

assumed to be as follows: vertical stress v 27-29 MPa, major horizontal stress H 28-39 

MPa, and minor horizontal stress h  15-19 MPa [19].  

2.2 Rock properties 

The intact rock and rock mass properties of the Coal Measure rocks including RMR, mi 

and ci  were obtained directly from [19]. The rock mass properties were evaluated using the 

modified approach of [20].  

The GSI, ci , and mi were then input into RocLab to calculate rock mass properties [21]. 

The application option was selected as 'tunnels' with a depth of 1100 m. The intact rock 

properties and the calculated rock mass properties are illustrated in Table 1. 



Table 1 Mechanical parameters of Coal Measures rocks (After Alber et al., 2009). 

Bed-No. Lithology 
Thickness 

 (m) 

E 
(GPa) 

GSI ci  

(MPa) 
mi 

Em 

(GPa) 

m  

(MPa) 

c 
(MPa) 

Phi 
(o) 

t  

(MPa) 

H6 Sst, m 18 23 69 128 2.2 16.42 22.8 6.2 28.7 2.1 

H5 Slt 18 22 45 108 34.7 4.9 31.2 4.2 46.3 2.1 

H4 Sst, f 6 20 63 108 7.0 11.8 21.9 4.1 37.7 1.7 

H3 Slt 2 10 70 20 5.5 7.3 4.6 1.9 25 0.6 

H2 Sst, f/Slt 2 26 86 125 16.4 24.2 67.6 9.8 51.4 5.6 

H1 Sst, c 19 22 47 112 17.0 5.6 23.7 3.6 41.2 1.6 

Seam A Coal 2.5 5 32 15 4.5 0.5 1.2 0.75 30 0.3 

L1 Sst, f 1 20 43 50 16.0 3.9 9.4 2.4 33.1 0.9 

L2 Sst/Sltst. 5 27 70 125 17.0 19.8 43.5 5.8 48.3 3.0 

L3 Sst, f 3 23 65 95 17.0 14.5 29.4 4.6 45 2.2 

L4 Sst/Sltst 24 25 60 110 9.0 13 22.9 3.9 39.3 1.6 

Sst = sandstone, Slt = siltstone, f = fine grained, m = medium grained, c = coarse grained, E = 

Young's modulus, ci  = intact compressive strength, m = rock mass compressive strength, EM 

= rock mass modulus, c = cohesion, Phi = internal frictional angle, t = rock mass tensile 

strength.  

Note that the rock mass properties cannot be directly assigned to the model. In the 

UDEC Trigon model, the micro properties of the contacts and blocks control the mechanical 

behaviour of the material and must be calibrated to the material properties.  For each rock 

mass, the micro properties of the triangular blocks and contacts were calibrated to its rock mass 

properties. The calibrated properties are given in Table 2. 



 

Table 2 Calculated mechanical properties used in the UDEC Trigon model. 

Lithology 

Matrix properties Contact properties 

Density 

(kg·m-3) 

E* 

(GPa) 
nk

* 
(GPa/m) 

sk
* 

(GPa/m) 

Cohesion 

(MPa) 

Friction 

(°) 

Tensile 
strength 

(MPa) 

H6 2600 16.4 78.8 27.6 7.8 15.5 6.4 

H5 2600 4.9 23.5 8.2 5.3 25.0 3.2 

H4 2600 11.8 56.6 19.8 5.1 20.4 2.6 

H3 2600 7.3 35.0 12.3 2.4 13.5 0.9 

H2 2600 24.2 116.2 40.7 12.3 30.0 8.5 

H1 2500 5.6 26.9 9.4 4.5 22.3 2.4 

Seam A 1400 2.0 9.6 3.4 16.2 0.9 0.5 

L1 2600 3.9 18.7 6.6 3.0 17.9 1.4 

L2 2600 19.8 95.0 33.3 7.3 26.1 4.5 

L3 2600 14.5 69.6 24.4 5.8 24.3 3.3 

L4 2600 13.0 62.4 21.8 4.9 21.2 2.4 

2.3 UDEC Trigon 

A two dimensional discrete element model has been developed to simulate progressive caving 

of strata due to longwall mining. A rock is represented as an assembly of triangular blocks 

bonded together through the contacts between them. Each block is made elastic by dividing it 

into triangular finite difference zone and hence does not fail. Failure can only occur along the 

contacts through shear or tension, depending on the stress state and the properties of the 

contact surface. In the normal direction of a contact, the stress-displacement relation is 

assumed to be linear and governed by the stiffness 
nk  such that [14] 

n n nk u                            (1) 



Where 
n  is the effective normal stress increment and 

nu is normal displacement increment. 

There is a limiting tensile strength, T , for the contact. If the tensile strength is exceeded, then 

0n  . 

In the shear direction, the response is governed by a constant shear stiffness. The shear stress, 

s , is determined by a combination of contact micro properties, cohesive (C ) and frictional ( ). 

Thus, if 

maxtans nC          (2) 

then 

e

s s sk u       (3) 

or else, if 

maxs     (4) 

then 

max( )e

s ssign u     (5) 

where e

su  is the elastic component of the incremental shear displacement and 
su is the total 

incremental shear displacement. The sign here is a mathematical symbol indicating that 

maxs  if 
e

su is positive and maxs   if 
e

su is negative. 

This modelling approach is proposed as ‘Trigon logic’ and has been implemented using UDEC 

Voronoi.  With this logic, fracturing can be realistically simulated. 

2.4 Model construction 

app:ds:mathematical
app:ds:symbol


A longwall model has been created using the above UDEC Trigon logic, Fig. 3. The 

model is 400 m long and 280.5 m high and simulates the longitudinal section through the initial 

stage of panel extraction. To improve computational efficiency, only the roof where caving 

occurs is discretized into triangular blocks. The block size is 2.0 m which is considered to be 

sufficiently small to simulate roof caving. The coal seam and the floor are discretized into coarse 

rectangular blocks. The bedding planes between layers have been simulated by horizontal 

persistent joints. In addition, pre-existing discontinuities including bedding planes and cross 

joints have been incorporated within the roof (Fig. 3). In this preliminary modelling study the 

cohesion and tensile strength of these pre-existing discontinuities are assumed to be zero and 

the friction angle assumed to be 30 degree.  

Horizontal displacement has been restrained on the left and right model boundaries and 

both vertical and horizontal displacement fixed in the base. An in situ stress state with v 27 

MPa, H 39 MP and h  18 MPa was imposed in the model. h  is parallel to the longwall 

advance direction and H  is perpendicular to the longwall advance direction. A vertical stress 

of 27 MPa has been applied on the top boundary equal to the overburden weight. 
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Fig. 3  Configuration of longwall model using UDEC Trigon logic.  

2.5 Monitoring approach 

To obtain a thorough understanding of the caving process, the mechanical behaviour of 

the modelled roof has been monitored in detail with longwall face advance. Firstly, the roof is 

divided into several monitoring regions according to the stratigraphy, Fig. 4. Additional 

monitoring regions are setup with more in the immediate roof and less in the upper layers. For 

each region, the shear and tension cracks generated with longwall face advance have been 

monitored through a custom-developed FISH function. Horizontal and vertical stresses in the 

central zone element of each monitoring region have also been monitored.  

The advance of the longwall, from the left side to the right side of the model, is simulated 

using a stepwise excavation; each stage involving a 12 m advance and reflecting three days of 

longwall mining [19]. For each stage, sufficient time steps (15 000*n where n is the stage 

number) have been run to relieve stress and to allow the roof to cave.  
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Fig. 4  Monitoring regions in longwall model. 

3 Numerical simulation results 

3.1 Progressive caving caused by longwall mining 

Fig. 5 shows the simulated plots of progressive roof failure. At the first stage, due to the 

extraction of coal seam, the immediate roof above the mined panel is unsupported and hence is 

allowed to deform and fail. Few fractures are generated in the immediate roof, Fig. 5 (a). The 

immediate roof is highly competent so no collapse and caving are observed and the roof 

remains stable in this stage of the modelled excavation. As the face advances, however, more 

fractures are generated and extend deeper (approximately 10 m) into the roof (Fig. 5(b)). The 

immediate roof behaves like a beam and starts to bend downward at the third stage of 

excavation, at a face advance of 36 m. Bed separation initiates at this stage. Shear fractures 

form in the H3 layer, while no fracturing occurs in the H2 layer due to its higher strength. As the 

face continues to advance, fractures extend deeper into the roof, with bed separation reaching a 

height of approximately 19 m (Fig. 5(c)). When the face has advanced 48 m, fractures extend 

within the H3 layer (Fig. 5(d)).  With a modelled face advance of  60 m, the first layer of the 

immediate roof collapses and caves into the goaf area (Fig. 5 (e)), followed by the second layer 

(Fig. 5 (f)). Fractures extend approximately 40 m into the roof. A zoomed-in plot of the fracture 

pattern at this stage is shown in Fig. 6. Three distinct zones, the caved zone, the fractured zone 

and a continuous zone are realistically captured within the model. As the face continues to 

advance the immediate roof further caves and bed separation and fractures extend toward the 



top of the model. Generally, the model exhibits a beam bending failure pattern in the immediate 

roof, in agreement with the field observations and 2D finite element modeling results [19]. 



(a) Stage 1 (12 m) (b) Stage 2 (24 m)

(c) Stage 3 (36 m) (d) Stage 4 (48 m)

(e) Stage 5 (60 m) (f) Stage 6 (72 m)

(g) Stage 7 (84 m) (h) Stage 8 (96 m)

(i) Stage 9 (108 m) (j) Stage 10 (120 m)
 

Fig. 5  Simulated progressive caving of the strata due to the extraction of a longwall coal 
panel. 
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Fig. 6  Simulated caved zone, fractured zone and continuous zone due to extraction of a 
panel in longwall mining. 

3.2 Stress changes 

The extraction of the coal seam and caving of the roof causes stress redistribution 

around the opening. Knowledge of the stress change is very important in understanding the 

caving process, and in designing both face and roadway support. The vertical stress distribution 

around the longwall panel at different mining stages is shown in Fig. 7. The extraction of coal 

results in stress concentration in the un-mined coal and in the roof adjacent to the opening. The 

vertical stress in the immediate roof and floor is relieved. The area of both the stress 

concentration and stress relief zones increases with face advance. When the face has 

advanced far enough (72 m at stage 6), the immediate roof collapses and caves, resulting in 

closure of the mined void. It should be noted that the rear and front abutment stress  continues 

to increases after the immediate roof collapses. The front and rear abutment stresses continue 



to increases as the face advance.  Stress redistribution at face-ends and more complex three-

dimensional effects of strata behaviour and caving characteristics are not simulated due the 

two-dimensioanl nature of the model geometry. 

The modelled stress changes are analyzed in detail by plotting the vertical stress at 

selected monitoring points with face advance. The monitored vertical stress at 12 points in the 

immediate roof is shown in Fig. 8. These 12 points can be considered as representing three 

different types of behaviour according to the observed patterns in stress change. The first type 

involves P1 and P12, which are located in the immediate roof above the un-mined coal. At P1, 

the simulated vertical stress increases gradually as the face advances away and reaches a 

peak stress of 60.0 MPa when the distance to the face exceeds 84 m. Beyond this, no obvious 

stress change is observed with further face advance, indicating an eventual stress equilibrium 

condition at P1. At P12, the vertical stress starts to increase when the face is approximately 84 

m away from the monitoring point. These stress change patterns, at P1 and P12, indicate that 

mining-induced stress changes can be observed up to 80-90 m ahead of the modelled longwall 

panel. The second type of behaviour involves P5 and P8 which are located in the central part of 

the immediate roof. At these two points, the vertical stress change is characterized by three 

distinct stages: a significant stress increase as the face approaches, a sharp stress drop to zero 

as the face passes, and a gradual increase as the roof caves and compacts. The third type of 

observed behaviour involves P2 to P4, P6, P7 and P9 to P11. At these points, the vertical stress 

initially increases as the face approaches and then sharply drops to zero after the face passes. 

At P11, the vertical stress starts to increase when the face is approximately 84 m away, 

confirming that the influence of the mining-induced stress changes can reach up to 80-90 m in 

front of the face. It should be noted that the monitored peak vertical stress increases from 35.5 

MPa at P3 to 61.6 MPa at P11, indicating that the front abutment stress increases as the face 

advances.  
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Fig. 7  Simulated vertical stress distribution with longwall face advance. 

It should also be noted that the maximum values of the monitored vertical stress at all 

the 12 points is approximately 61.6 MPa, corresponding to 2.3 times the overburden stress. 

Traditional models have suggested that the peak vertical stress is in the order of four to six 

times the overburden stress [1,22]. The significant difference between the present results and 

previous models may be due to shear failure in the intact rock and along bedding planes which 



reduces the load carrying capacity of the rock in the roof above the goaf. This effectively 

transfers the abutment peak stress away from the longwall and reduces its magnitude.  

Fig. 9 shows the horizontal stress distribution around the longwall panel for the different 

mining stages. The extraction of coal causes horizontal stress relief in the immediate roof and 

floor and stress concentration in the un-mined coal. As the face advances, the extent and 

degree of both stress relief and stress concentration increases. The horizontal stress relief 

exhibits a pear-shaped region around the mined-out area, Fig. 9 (j).  
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Fig. 8  Simulated vertical stress changes in the immediate roof above the goaf.  
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Fig. 9  Simulated distribution of horizontal stress as longwall face advances. 

3.3 Damage 



A new approach is proposed to quantify the progressive failure of the longwall panel 

roof. Using the developed FISH function, the total length of shear and tensile cracks in different 

monitoring regions has been evaluated with face advance. A damage parameter D is proposed 

as: 

100%s t

c

L L
D

L


     (7.8) 

In which, sL is the total length of shear cracks, tL is the total length of tensile cracks, and 

cL is the total contact length.  

For each mining stage, the D value is calculated at each monitoring region, and contour 

maps of damage at each mining stage drawn, Fig. 10. The extraction of the coal seam causes 

roof damage to start at the immediate roof and then propagate deeper above the main roof. In 

the first two stages, distinct damage (D>7%) is only observed in the immediate roof directly 

above the goaf. When the simulated face advances 36 m, distinct damage occurs at the H3 

layer which comprises weak sandstone, even though distinct damage has not occurred across 

the entire 19-m thick immediate roof. Cracks can be observed approximately 50 m ahead of the 

face within the H3 layer. At mining stage 4, distinct damage occurs across the entire thick 

immediate roof. With continued face advance both the area of the damage regions and the 

damage parameter D increase. At the final modelled stage, the maximum D value occurs in the 

middle region of H3 layer when the D value is 88% (indicating that 88% of the contacts in the 

region have failed through either shear or tension).  

A further evaluation of the roof damage is carried out by plotting the D value in the 

immediate roof against face advance, Fig. 11. In each monitoring region with the exception of 

Region 1, distinct damage initiates when the face is 12 m ahead and significantly deteriorates 

as the face passes. Limited further damage is observed with subsequent face advance. In the 

immediate roof, the maximum D value (65%) occurs in Region 25, which is located in the middle 

of the roof span. The D value decreases as the distance between the monitoring region and the 

middle Region 25 increases. The D values in all the monitoring regions except Region 1 are 

between 30% - 50%. In Region 1, the D value gradually increases as the face advances away 

from the region. Damage still develops when the face is over 84 m away.  
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Fig. 10 Distribution of the damage parameter D in the longwall roof with face advance. The 
damage parameter D is defined in Eq (7.8). 
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Fig. 11 Damage development in the immediate roof as the face advances. 

3.4 Failure mechanism 

As discussed previously, the immediate roof fails in a beam bending failure mechanism, 

which is in agreement with field observations [19]. A field study using seismic moment tensor 

analysis by [6] showed that compressive shear, rather than tensile fracture, is the dominant 

failure mechanism in the roof. Their observations are confirmed by the present study which 

shows that shear cracking dominates tensile cracks in all model monitoring regions. Fig. 12 

shows a contour plan of the ratio of shear cracking to tensile cracking in the roof. In all regions, 

the shear/tensile cracking ratio is greater than 5, indicating a predominant shear cracking mode. 

In layers H2 and H6 which are competent, the shear/tensile cracking ratio is greater than 36 

with negligible simulated tensile cracking.  
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Fig. 12 Contour plan of the shear to tensile cracking ratio in the roof above the goaf. 

3.5 Mechanism of Immediate roof collapse 

The goaf can be categorized into four zones according to its collapse mechanism: i) 

cantilever zone in the back of the goaf, ii) compacted zone, iii) collapsed zone and iv) cantilever 

zone in the front of the goaf, as shown in Fig. 13. These zones can be identified according to 

the fracture mechanism. The cantilever zone in the back of the goaf comprises suspended 

beams with one end in the un-mined coal and the other in the compacted zone. It is 

characterized by a relatively lower damage (D<35%) (Fig. 10). The compacted zone forms 

when the immediate roof bends downward, caves and then is compacted. The collapsed zone 

forms when the immediate roof bends downward and caves, but is not compacted. As the face 

advances, the collapsed zone will subsequently be compacted. The cantilever zone in the front 

of the goaf is similar to the cantilever zone in the back of the goaf. The difference is that the 

cantilever zone in the front of the goaf will collapse and compact as the face advances whereas 

the cantilever zone in the back of the goaf is consolidated.  
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Fig. 13 Simulated immediate roof collapse pattern due to extraction of a panel in longwall 
coal mining. 

4 Effect of geological conditions on progressive longwall caving  

4.1 Effect of bedding planes 

Bedding planes have a significant influence on the fracture mechanism in the longwall 

roof. Fig. 14 presents the fracture patterns simulated in models with different bedding spacing. 

For the model where bedding planes are not taken into consideration, bed sliding along bedding 

plane and bending downward are ignored. The immediate roof does not act like beam and 

exhibits a massive collapse when the face advance is 108 m. It is suggested that bedding 

planes must be taken into consideration to achieve a realistic numerical simulation of 

progressive caving caused by longwall mining. Modelled bedding spacing has a considerable 

effect on the caving process. For example, for the model with a bedding spacing of 2.0 m, the 

immediate roof starts to cave as the face advances 48 m, when compared with an advance of 

60 m for the model with a bedding spacing of 3.0 m.   
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Fig. 14 Simulated fracture patterns in model (a) without bedding plane, (b) bedding 
spacing = 3.0 m, (c) bedding spacing = 2.0 m. The face advance is 60 m for all 
models shown.  

4.2 Effect of immediate roof strength 

In the longwall panel in this study, the immediate roof is a 19-m thick massive sandstone 

with an intact compressive strength of 112 MPa. The numerical model shows that this strong 

roof does not cave until the face advances 60 m. The model was re-run with a softer immediate 



roof by reducing the cohesion, tensile strength, normal and shear stiffness of contacts and 

Young's modulus of blocks by half and keeping all other parameters constant. The softer 

immediate roof, as expected, caves more readily when the face advance is 48 m (Fig. 15), in 

contrast to 60 m with the stronger roof. In addition, the soft immediate roof is more likely to be 

fractured and tends to relieve stress concentration caused by the extraction of the coal seam, 

Fig. 16. In the mined out area, increased vertical stress concentrations are more likely in the 

model with the soft immediate roof.  

4.3 Effect of high horizontal stress 

As mentioned previously, the longwall panel is subjected to a high horizontal stress, 

H 39 MPa and h  18 MPa and h  is parallel to the face advance direction. As the H is in 

the out-of-plane model direction of the 2D model its effect on the panel is not captured. When 

the model is repeated with the H parallel to the face advance direction it is found that the high 

horizontal stress has a significant effect on both the fracture pattern in the immediate roof and 

the stress distribution around the panel. Under the high horizontal stress, a bearing beam is 

formed in the strong roof layer H3, Fig. 17 (a). This bearing beam complements the "stress-

shell" developed in the roof above the un-mined coal, forming an entire bearing arch around the 

goaf. This bearing arch bears and transfers the loads of overlying strata to the unmined area, 

forming a stress-released zone below it. The most significant influence of this high horizontal 

stress is that it changes the fracture mechanism in the immediate roof from bed bending failure 

to bed shear fracture, Fig. 17 (b). The bed shear fracture may  lead to a massive collapse of the 

thick strong immediate roof. 
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Fig. 15 Simulated fracture patterns in model with (a) strong roof which starts to cave as 
the face advances 60 m, (b) soft roof which starts to cave as the face advances 48 
m. 
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Fig. 16 Simulated vertical stress distribution along a horizontal line (dotted) in the 
longwall panel. 
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Fig. 17 Effect of high horizontal stress on stress distribution around the panel (a) and 
fracture mechanism in the immediate roof (b). The face advance is 60 m for models 
shown. 

5 Discussion  



Extraction of a longwall panel induces stress changes and caving of the rock mass 

above the mined-out area through slipping along and opening of bedding planes, in addition to 

shear and tensile fracturing in the rock mass surrounding the panel. Many of these features are 

reproduced in the current numerical simulations using the new UDEC Trigon approach.  

Investigation of the seismic events recorded in the field by previous researchers for the 

case study modelled have shown that the seismogenic zone can extend up to 100 m around the 

face [19]. In our numerical model, simulated cracks initiate 60 m in front of the face and cracking 

still occurs in the roof above the goaf when the face is 84 m away. The simulated results are in 

general agreement with the field observations, even though they underestimate the range of 

cracking around the face. This might be attributed to the fact that pore pressure was not taken 

into consideration in the current model. Water content and pore pressure have an influence on 

rock failure mechanism. A numerical study by [6] showed that a  model incorporating fluid flow 

predicted shear failure extending to 40 m in advance of the face, compared with 10-15 from a 

model not considering fluid flow.  

The simulated mining-induced stress changes reach up to approximately 80-90 m ahead 

the face. There is no stress change data available for the modelled case study so the current 

numerical results cannot be calibrated. However, Abdul-Wahed et al. found that the zone of 

stress changes in a coal mine at a similar depth reached approximately 50 m ahead of the 

actual face [23]. It should be noted that the range in mining-induced stress changes is related to 

numerous factors including geological and geotechnical conditions. Guo et al. carried out a field 

monitoring program at a deep (640-760 m) in a Chinese coal mine and suggested that the 

abutment stresses extend 300 m ahead of mining face, mining-induced fracturing occurs within 

170 m behind the longwall face and extends up to 145 m above the goaf [24]. For the 

Gordonstone Mine in Australia, micro-seismic event locations showed that rock fracture or shear 

generally occurred within 30-50m but as much as 80 m, ahead of the face, and 100 m above or 

below the face [6]. 

The formation of the cantilever zone (Fig. 13) is due to the thick strong sandstone which 

is too competent to rupture. This is also the reason why the roof stays relatively intact (less 

damage than above strata, Fig. 12) as it caves into the opening. A model with weak immediate 

roof (1 MPa cohesion, 0.4 MPa tensile strength of the contact) shows that the roof ruptures or 

caves when the face advances 24 m, Fig. 18. 



  

Fig. 18 Simulated fracture pattern in model with weak immediate roof. The roof ruptures 
when the face advances 24 m. 

6 Conclusions 

In the present study, a new numerical approach has been used to simulate progressive 

caving caused by extraction of a longwall mining panel. The UDEC method with a proposed 

Trigon logic simulates the modelled roof as an assembly of triangular blocks bonded via 

contacts. Pre-existing fractures including bedding planes and cross joints have been 

incorporated within the model. Cracks formed through either shear or tension were monitored in 

different regions of the roof using a developed FISH function. Using this approach, a damage 

parameter D is introduced which makes it possible to quantitatively evaluate the roof failure 

mechanisms. The key results of this study are summarized as follows: 

(1) The progressive caving caused by extraction of a longwall coal panel, including 

slipping along and opening of bedding planes and shear and tensile fracturing in the rock mass 

surrounding the panel, have been successfully reproduced in the present numerical simulation 

using the UDEC Trigon approach. The importance of pre-existing fractures including bedding 

planes and cross joints on modelled cave behavior is shown. 



(2) The simulated cracks initiate 60 m in front of the face and 84 m behind the face. The 

simulated mining-induced stress changes can reach up to approximately 80-90 m ahead of the 

face. The numerical results are found to be in accordance with field observations. 

(3) At the global scale, the thick immediate roof fails in a beam bending mechanism 

which is in agreement with field observation. At the local scale, compressive shear, rather than 

tensile fracture, is the dominate failure mechanism in the roof. 

(4) High horizontal stress plays an important role in the progressive caving process. 

When the horizontal stress is the dominant stress over the vertical stress, the immediate roof 

fails in a beam shear fracture mechanism.  

(5) The thick immediate roof caved in the goaf can be categorized into four zones 

according to the collapse mechanism. These are a cantilever zone in the back of the goaf, a 

compacted zone, a collapsed zone and a cantilever zone in the front of the goaf, Fig. 13.  

It should be noted that the results are only part of 2D analyses which is a simple two-

dimensional approximation of the actual three-dimensional longwall span and 3D complex 

stress field. Future work is needed to incorporate the proposed logic within 3D.  
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