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Abstract: In this paper, a sensor fault detection and isolation scheme for nonlinear systems is considered.

A nonlinear diffeomorphism is introduced to explore the system structure and a simple filter is presented to

‘transform’ the sensor fault into a pseudo-actuator fault scenario. A sliding mode observer is designed to

reconstruct the sensor fault precisely if the system does not experience any uncertainty, and to estimate the

sensor fault when uncertainty exists. The reconstruction and estimation signals are based only on available

information and thus can be implemented on-line. Finally a mass-spring system is used to illustrate the

approach.

1 Introduction

Faults are classified, according to their physical locations, into system faults, actuator faults and
sensor faults. In the past few decades, the study of fault detection and isolation (FDI) has made
many significant advances [8, 5, 23, 4, 15]. Compared with actuators, sensors are passive elements
in the sense that they only provide operational information about the system, and do not affect the
system behaviour directly, and thus have been less studied when compared with the study of actuator
FDI. With the development of modern technology, however, more and more automation systems have
been employed in industrial processes and daily life. Obviously, autonomous systems, where the
human operator is frequently removed from the loop, are more dependent on the increasing numbers
of sensors to acquire system information. This, in turn, makes systems more vulnerable to faults in
sensors. The potential for faults in the sensors becomes even more critical when they are applied to
the automatic control of a system, where the effects of malfunctions may be devastating [7].

There have been many approaches developed for FDI. Among them, observer-based schemes are
particularly effective and have been widely studied. Some control approaches – for instance, sliding
mode techniques [4], modern differential geometric approaches [14] and adaptive control [23] have
been successfully incorporated within an observer-based FDI framework. Systems with parametric
uncertainty [23] or unknown inputs [19] have also been considered. Usually adaptive schemes are only
powerful for overcoming linear parametric uncertainty whilst modern geometric approaches require
the system to satisfy strong geometric conditions with strong limitations on the structure of the
uncertainty. Sliding mode techniques however have good robustness and are completely insensitive to
so-called matched uncertainty [3, 18]. Furthermore, it has been shown that sliding mode techniques
can be used to deal with structural uncertainty [21]. The features of the sliding mode technique make
it possible to reconstruct the faults precisely in certain situations [4, 20]. Therefore the application of
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sliding mode ideas to dynamic systems offers good potential in the field of FDI. In most of the work
mentioned above, the focus is on actuator FDI. This paper will consider sensor fault FDI.

Sensor faults are incorrect readings due to malfunctions in the sensor components or transducers,
such as broken wires, resulting in the loss of effectiveness, or more subtly, unknown biases at the sensor
outputs as a result of poor calibration or even unexpected changes in the dynamic characteristics
of the transducers. Since the signals from sensors often carry the most important information in
automated/feedback control systems, the state of health of the sensors is therefore very important for
the reliable operation of the entire system. This has motivated the study of sensor FDI. Sensor
redundancy [1] is an obvious solution, where multiple sensors are installed to measure the same
quantity. The main problem of this approach is the extra equipment and maintenance costs and
the additional space required to accommodate the equipment. In [22], an isolation scheme for sensor
faults is proposed using an adaptive estimator. A sensor fault FDI strategy for a linear discrete
time system was discussed in [11] using a structural vector-based approach. By using sliding mode
techniques, continuous time systems were considered in [4, 16, 17] where it is required that the systems
are linear. However, most real systems are more accurately modelled by nonlinear equations. It is well
known that one approach for dealing with nonlinear systems is to linearize around some operating
point by using approximation techniques [12, 2]. However, the linear system obtained in this way is
valid only in a neighbourhood of the operating point and tends to suffer from poor detection or high
false alarm rates due to the error of approximation. Furthermore, when a large region of the state
space is required to be considered, the linearization method may not be sufficient. Therefore it is
necessary to study nonlinear systems.

In this paper, sensor FDI is studied for a class of nonlinear systems with uncertainty. The sensor
fault considered in this paper is modelled as an additive fault. A diffeomorphism is first used to explore
the system structure and no approximation is employed. By designing an appropriate filter, the sensor
fault can be modelled as a pseudo-actuator fault. Then, using the transformed system structure and
the characteristics of the designed filter, a sliding mode observer is presented to reconstruct the sensor
fault precisely if no uncertainty exists in the system. A sensor fault estimation scheme is also proposed
when the system is affected by uncertainty, in which case the estimation error depends on the bound
on the uncertainty. The reconstruction/estimation schemes which are proposed can be implemented
online. It is not required that the system is linear/linearizable, and the minimum phase limitation
required in [4, 20] is removed. Therefore, this work is applicable to a wide-class of systems. Finally a
simulation example is introduced to show the effectiveness of the approach.

Notation: For a square symmetric matrix A, λmin(A) (λmax(A)) denotes the minimum (maximum)

eigenvalue, and A > 0 represents a symmetric positive definite matrix. For a matrix A > 0, A
1
2 denotes

a symmetric positive definite matrix such that A
1
2A

1
2 = A. In represents an nth order unit matrix.

R+ represents the set of nonnegative real numbers. For a smooth vector field f(x, u) : Rn×Rm 7→ Rn

and a mapping h(x) : Rn 7→ Rp, the symbol Lfh denotes the Lie derivative of h(·) along the vector
field f defined by Lf(x,u)h(x) :=

∂h
∂xf(x, u). More generally Lr

fh denotes the rth order Lie derivative.
Finally, ∥ · ∥ denotes the Euclidean norm or its induced norm.

2 System Description and Analysis

Consider a nonlinear system described by

ẋ(t) = F (x(t), u(t)) + ∆F (x(t)) (1)

y(t) = h(x(t)) +Dfs(t), x0 = x(0) (2)
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where x ∈ Ω ⊂ Rn (and Ω is a neighbourhood of x0), u = col(u1, u2, . . . , um) ∈ U ∈ Rm, and
y = col(y1, y2, . . . , yp) ∈ Rp are the state variables, inputs and outputs respectively where U is an
admissible control set. F (x, u) is a known smooth vector field in Ω × U and the known function
h : Ω 7→ Rp is smooth; D ∈ Rp×q (q ≤ p) is a known sensor fault distribution matrix which is full
column rank; the unknown vector function ∆F (x(t)) models all the uncertainties and disturbances
affecting the system and fs(t) ∈ Rq is a sensor fault satisfying

∥fs(t)∥ ≤ ρ(t) (3)

where ρ(t) is a known continuous function. It is assumed that fs is unknown and fs(t) = 0 when there
is no fault. Therefore the function fs(·) is defined in t ∈ R+.

In this work, the fact that U is an admissible control set means that for any u(t) ∈ U , the
corresponding closed-loop system (1) has an unique solution lying in Ω.

Definition 1. Consider system (1)–(2). The differential and algebraic equations

ẋ(t) = F (x(t), u(t)) (4)

y(t) = h(x(t)), x0 = x(0) (5)

are called the nominal system associated with (1)–(2).

For convenience, the nominal system (4)–(5) is also denoted by a pair (F (x, u), h(x)).

Definition 2. ([6]) System (4)–(5) is said to be observable at (x0, u0) ∈ Ω × U if there exists a
neighbourhood N of (x0, u0) in Ω × U and a set of nonnegative integer numbers {r1, r2, · · · , rp} with∑p

i=1 ri = n such that

1) for all (x, u) ∈ N
∂

∂uj
Lk
F (x,u)hi(x) = 0 (6)

for indices i = 1, 2, . . . , p, k = 0, 1, 2, . . . , ri − 1 and j = 1, 2, . . . ,m;

2) the p×m matrix M(x, u) := { ∂
∂uj

Lri
F (x,u)hi(x)} has rank p in (x0, u0)

Then, {r1, r2, · · · , rp} is called the observability index of system (4)–(5) at (x0, u0). Further, system
(4)–(5) is said to be uniformly observable in Ω×U if for any (x0, u0) ∈ Ω×U , the system is observable
and the observability indices are fixed.

This paper considers the problem of reconstructing (or estimating) the sensor faults fs(t) for system
(1)–(2). A sliding mode observer will be established and then, based on the observer, a signal f̂ , which
only depends on available information, will be given such that

i) f̂s is a precise reconstruction of the sensor fault fs(t), i.e. limt→∞ ∥f̂s(t)− fs(t)∥ = 0 if there is
no uncertainty;

ii) ∥f̂s(t) − fs(t)∥ ≤ ξ(t) if the system experiences some uncertainty, where ξ(t) is the estimation
error which usually depends on the bound on the uncertainty.

Assumption 1. The pair (F (x, u), h(x)) has an uniform observability index {r1, r2, · · · , rp} with∑p
i=1 ri = n in the domain Ω× U .

3



Construct a nonlinear transformation T : x 7→ z as follows:

zi1 = hi(x) (7)

zi2 = LF (x,u)hi(x) (8)

...

ziri = Lri−1
F (x,u)hi(x) (9)

where zi := col(zi1, zi2, · · · , ziri) for i = 1, 2, . . . , p and z := col(z1, z2, · · · , zp).

Remark 1. Under Assumption 1, it follows from Definition 2 thatM(x, u) has rank p in Ω×U , imply-
ing all the zi are independent of the control u, which combined with the restriction

∑p
i=1 ri = n means

the corresponding Jacobian matrix of T (x) is nonsingular. Therefore, (7)–(9) is a diffeomorphism in
the domain Ω, and z = col(z1, z2, . . . , zp) forms a new coordinate system which can be obtained by
direct computation from (7)–(9).

Since Lj
F (x,u)hi(x) is independent of u for all i = 1, 2, . . . , p and j = 1, 2, . . . , ri − 1, it follows by

direct computation that for i = 1, 2, . . . , p

żi1 = ∂hi
∂x F (x, u) = LF (x,u)hi(x) = zi2

żi2 =
∂(LF (x,u)hi(x))

∂x F (x, u) = L2
F (x,u)hi(x) = zi3

...

żiri−1 = Lri−1
F (x,u)hi(x) = ziri

żiri = Lri
F (x,u)hi(x)

Therefore, in the new coordinates z defined by (7)–(9), the system (1)–(2) has the following form

ż = Az +BΦ(z, u) + Ψ(z) (10)

y = Cz +Dfs(t) (11)

where A = diag{A1, . . . , Ap}, B = diag{B1, . . . , Bp} and C = diag{C1, . . . , Cp} where Ai ∈ Rri×ri ,
Bi ∈ Rri×1 and Ci ∈ R1×ri for i = 1, 2, . . . , p are defined by

Ai =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
0 0 0 · · · 0

 , Bi =


0
0
...
0
1

 , Ci = [ 1 0 · · · 0 ] (12)

and

Φ(z, u) :=


ϕ1(z, u)
ϕ2(z, u)

...
ϕp(z, u)

 :=


Lr1
F (x,u)h1(x)

Lr2
F (x,u)h2(x)

...
L
rp
F (x,u)hp(x)


x=T−1(z)

(13)

Ψ(z) :=


ψ1(z)
ψ2(z)

...
ψp(z)

 :=

[
∂T (x)

∂x
∆F (x)

]
x=T−1(z)

(14)

where ϕi : T (Ω)× U 7→ R and ψi : T (Ω)× U 7→ Rri for i = 1, 2, . . . , p.
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Remark 2. It should be noted that system (10)–(11) is still a nonlinear system but possesses a
structure which is convenient for the later analysis. In this paper it is not required that the system
(1)–(2) is linearizable. It is also not required that the nonlinear function Φ(z, u) can be expressed
as a function of u and y (in comparison with the work in [13]). Also there is no approximation
employed above and this makes the transformations valid in the whole domain Ω instead of just a
small neighbourhood of x0 as in [2, 12].

Choose the constants αi1, αi2, . . . , αiri such that all the roots of the polynomial algebraic equations

λri + αi(ri−1)λ
ri−1 + · · ·+ αi1λ+ αi0 = 0 (15)

lie in the left-half plane for i = 1, 2, . . . , p. Then, from (12), it follows that (A−BΛ) is stable where

Λ = diag{Λ1,Λ2, · · · ,Λp} (16)

with Λi ∈ R1×ri defined by
Λi = [αi0 αi1 · · · αi(ri−1)] (17)

which satisfy (15) for i = 1, 2, . . . , p.

Assumption 2. The nonlinear function Φ(·) in (13) can be expressed as

Φ(z, u) = −Λz + Γ(z, u) (18)

where for any z, ẑ ∈ T (Ω) and u ∈ U

∥Γ(z, u)− Γ(ẑ, u)∥ ≤ L(u)∥z − ẑ∥ (19)

where L(·) is a continuous function defined on U .

Remark 3. Assumption 2 is a limitation on the nonlinear term Φ(·). If the Jacobian matrix of
F (x, u) in (1), evaluated at (x0, u0) (u0 ∈ U) is stable, then Assumption 2 is likely to be satisfied in a
neighbourhood of (x0, u0).

3 Main Results

In this section, the main results will be presented. The special case when ∆F (x, u) = 0 is considered
first, and the study of the uncertain system (1)–(2) when ∆F (x, u) ̸= 0 follows.

It is assumed Assumption 1 is true. Then, from the analysis in Section 2, it follows that in the new
coordinates z defined by the diffeomorphism (7)–(9), system (1)–(2) can be described by (10)–(11).
For system (10)–(11), the following linear filter is introduced

ża = Aaza +Bay (20)

where za ∈ Rp is the filter state, Aa ∈ Rp×p and Ba ∈ Rp×p are constant matrices which are design
parameters to be defined later; y is the output of system (10)–(11). The matrix Aa must be Hurwitz,
but for simplicity in the subsequent analysis it will be assumed that Aa is symmetric negative definite.
This is not a stringent assumption since Aa is a design parameter. Then, under Assumption 2, the
following augmented system can be obtained

ż = (A−BΛ)z +BΓ(z, u) + Ψ(z) (21)

ża = BaCz +Aaza +BaDfs(t) (22)

ya = Caza (23)
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where z ∈ T (Ω) ⊂ Rn, Ca ∈ Rp×p is orthogonal (where one simple choice is to let Ca = Ip), Γ(·) is
determined by (18) and finally Ψ(·) is defined in (14) and involves the uncertainty.

It is observed that the sensor fault in system (1)–(2) has been transformed into a pseudo-actuator
fault in system (21)–(23). Now, consider the following dynamical system

˙̂z = (A−BΛ)ẑ +BΓ(ẑ, u) (24)

˙̂za = BaCẑ +Aaẑa + ν(t, ya, ŷa) (25)

ŷa = Caẑa (26)

where

ν := k(t)CT
a

ya − ŷa
∥ya − ŷa∥

(27)

and the scalar gain k(t) is to be designed later.

Let e(t) := z(t)− ẑ(t) and ea(t) := za(t)− ẑa(t). It follows from (21)–(23) and (24)–(26) that the
error dynamics can be described by

ė=(A−BΛ)e+B (Γ(z, u)− Γ(ẑ, u)) + Ψ(z) (28)

ėa=BaCe+Aaea +BaDfs(t)− ν(t, ya, ŷa) (29)

where Γ(·) is determined by (18), Ψ(·) is the uncertain term which is defined by (14) and ν(·) is given
by (27).

3.1 The nominal case

In this section, the special case ∆F ≡ 0 is considered, which implies that the system under consid-
eration does not experience any uncertainty. In this case, the corresponding augmented system is
the same as (21)–(23) except Ψ(·) ≡ 0 in (21), and thus the corresponding dynamical error system
(28)–(29) is described by

ė = (A−BΛ)e+B (Γ(z, u)− Γ(ẑ, u)) (30)

ėa = BaCe+Aaea +BaDfs(t)− ν(t, ya, ŷa) (31)

The objective now is to develop a condition under which (24)–(26) is a sliding mode observer of the
system (21)–(23) with Ψ(·) ≡ 0 in (21), and can be employed to reconstruct the fault signal fs(t).

From the analysis above, the following conclusion is ready to be presented:

Proposition 1 Suppose Assumption 2 holds. Then, system (30) is stable if there exists a matrix
P > 0 such that

(A−BΛ)TP + P (A−BΛ) + ε1PBB
TP +

1

ε1
(L(u))2In < 0 (32)

for all u ∈ U where ε1 is a positive constant, Λ is defined by (16) and L(u) satisfies (19).

Proof: For system (30), consider a Lyapunov function candidate V = eT (t)Pe(t) where P > 0 is a
solution for the matrix inequality (32). The time derivative of V along the trajectories of system (30)
is given by

V̇ |(30)≤ eT (t)
(
(A−BΛ)TP + P (A−BΛ)

)
e(t) + 2e(t)TPB (Γ(z, u)− Γ(ẑ, u)) (33)
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From the fact 2XTY ≤ ε1X
TX + 1

ε1
Y TY , it follows that

V̇ |(30) ≤ eT (t)
(
(A−BΛ)TP + P (A−BΛ)

)
e(t) + ε1(B

TPe(t))TBTPe(t)

+
1

ε1
(Γ(z, u)− Γ(ẑ, u))T (Γ(z, u)− Γ(ẑ, u))

≤ eT (t)
(
(A−BΛ)TP + P (A−BΛ)

)
e(t) + ε1e

T (t)PBBTPe(t) +
1

ε1
(L(u))2∥z − ẑ∥2

= eT
(
(A−BΛ)TP + P (A−BΛ) + ε1PBB

TP +
1

ε1
(L(u))2In

)
e

where (19) is used to establish the 2nd inequality. Hence the conclusion follows from (32). △

It should be noted that:

• Proposition 1 implies that e(t) is bounded, and thus

sup
0≤t<∞

{∥e(t)∥} ≤ b (34)

for some finite positive scalar b;

• because of the scalar ε1 in (32) which provides additional design freedom, without loss of
generality it can be assumed that P > In rather than just being positive definite.

Sliding mode design is typically composed of two stages: The first step is the establishment of the
sliding surface such that the system under consideration has the desired performance when constrained
to move on the sliding surface. The second is the development of a sliding mode controller/observer
gain such that the system can be driven to the sliding surface and a sliding motion maintained
thereafter. The subsequent study follows this procedure.

Consider a sliding surface

S = {col(e, ea) | ea = 0} (35)

Proposition 1 implies that the sliding mode dynamics of the error system (30)–(31) associated with
the sliding surface (35) is stable. According to sliding mode theory, in order to guarantee the stability
of the observer it is only required to prove that the error system can be driven to the sliding surface
in finite time by choosing an appropriate gain k(t) in (27). In view of this, the following conclusion is
presented:

Proposition 2. If inequality (34) holds, then the error system (30)–(31) is driven to the sliding
surface (35) if k(·) in (27) is chosen to satisfy

k(t) ≥ ∥BaC∥b+ ∥BaD∥ρ(t) + η (36)

where η is a positive constant.

Proof: From equation (31), it follows that

eTa ėa = eTaBaCe+ eTaAaea + eTaBaDfs(t)− eTa ν(t, ya, ŷa)

Since Aa < 0 it follows that eTaAaea ≤ 0. Since Ca is orthogonal,

∥ya − ŷa∥ =
√

(Caea)TCaea = ∥ea∥ (37)
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Then, from (34), (27) and (3)

eTa ėa ≤ eTaBaCe+ eTaBaDfs(t)− k(t)eTaC
T
a

ya − ŷa
∥ya − ŷa∥

≤ ∥ea∥ ∥BaC∥b+ ∥ea∥ ∥BaD∥ρ(t)− k(t)(Caea)
T Caea
∥ea∥

= (∥BaC∥b+ ∥BaD∥ρ(t)− k(t)) ∥ea∥ (38)

where (37) is used to obtain the 2nd inequality. Then, it follows from (38) and (36) that

eTa ėa ≤ −η∥ea∥

This means that the reachability condition is satisfied [18], and a sliding motion on S is attained in
finite time. △

Remark 4. It should be stressed that the dynamics of the error system e(t) in (28), which represents
the reduced order sliding motion associated with the sliding surface (35), must be stable so that the
term BaCe in equation (29) vanishes with time. This is very important and makes it possible to
reconstruct/estimate the sensor fault.

Remark 5. It is tempting from (36) to select Ba = 0. However, this is not possible since if Ba = 0, it
follows from (22) that the sensor fault term will also disappear and thus it cannot be reconstructed.

From sliding mode theory, Propositions 1 and 2 have shown that (24)–(26) is an observer of system
(21)–(23) when Ψ(·) ≡ 0 in (21). The objective is now to establish a reconstruction signal for the
sensor fault fs(t) based on the sliding mode observer (24)–(26).

Since the fault distribution matrix D is assumed to be full column rank, there exists a nonsingular
matrix N ∈ Rp×p such that

ND =

[
0(p−q)×q

D1

]
(39)

where D1 ∈ Rq×q is nonsingular. The matrix N can be obtained from QR decomposition. Then, from
the analysis above, it follows that a sliding motion takes place in finite time and during the sliding
motion

ea = 0 and ėa = 0

and thus from (31)
BaCe+BaDfs(t)− νeq = 0 (40)

where νeq is the equivalent output error injection which plays the same role as the equivalent control in
sliding mode control [3, 18]. The equivalent output injection signal represents the average behaviour
of the discontinuous function ν defined by (27), which is necessary to maintain an ideal sliding motion.

In order to reconstruct the sensor fault, the design parameter Ba in filter (20) is chosen as Ba = N
where N is given by (39). It follows that

BaD =

[
0(p−q)×q

D1

]
(41)

where D1 is nonsingular. From (40) and (41)

[ 0q×(p−q) Iq ]BaCe+D1fs(t)− [ 0q×(p−q) Iq ] νeq = 0

and since D1 is nonsingular, it follows that

fs(t) = − [ 0q×(p−q) D−1
1 ] (BaCe− νeq)

= −
[
0q×(p−q) D

−1
1

]
BaCe+

[
0q×(p−q) D

−1
1

]
νeq (42)
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Now, it is required to recover the equivalent output error injection νeq. Considering the structure of
ν(·) in (27), it follows from [4] that by choosing an appropriate positive constant scalar σ, νeq can be
approximated to any accuracy by

νσ = k(t)CT
a

(ya − ŷa)

∥ya − ŷa∥+ σ
(43)

where k(·) satisfies (36). Let
f̂s(t) := [ 0q×(p−q) D−1

1 ] νσ (44)

where νσ is defined by (43) and D1 is given by (39). Then from (42) and (44),

fs(t)− f̂s(t) = − [ 0q×(p−q) D−1
1 ]BaCe+ [ 0q×(p−q) D−1

1 ] (νeq − νσ)

where limt→∞ e(t) = 0. Therefore, f̂s defined by (44) is a reconstruction for the sensor fault fs(t)
since ∥νeq − νσ∥ can be made arbitrarily small by choice of σ.

Remark 6. From (43) and (44), it is clear that the reconstruction signal f̂s given by (44) is only
dependent on ya and ŷa which can be obtained on-line. Therefore, the fault reconstruction scheme is
convenient for real implementation.

Remark 7. The main task of this paper is to reconstruct/estimate the sensor fault fs. From the
structure of the system (21)–(23) it follows that the relative degree from fs to the output ya is one.
Therefore, it is unnecessary to construct a high order sliding mode observer. However, a super-twisting
structure ([10]) could be used componentwise in place of the unit vector injection signal.

3.2 Systems with uncertainty

Here, it is assumed ∆F (x(t)) ̸= 0. This means that the system under consideration is affected by
uncertainties or disturbances. In this case, the corresponding dynamical error equation is given by
(28)–(29).

Assumption 3. The uncertain function Ψ(z) defined by (14) satisfies√
Ψ(z)TPΨ(z) ≤ 1

2
d, ∀z ∈ T (Ω)

where the s.p.d. matrix P satisfies (32) with P > In and d is a known constant.

Remark 8 Assumption 3 is a limitation on the magnitude of the uncertainty Ψ(·). It can be written

as ∥P
1
2Ψ(z)∥ ≤ 1

2d which is just a special weighted norm for Ψ(·). Assumption 3 can therefore be
interpreted as a requirement that the uncertainty Ψ(·) is bounded (in the special norm) and its bound
is known. It is clear that Assumption 3 holds if Ψ(·) is bounded in the domain T (Ω).

Define

Q := (A−BΛ)TP + P (A−BΛ) + ε1PBB
TP + 1

ε1
(L(u))2In (45)

where ε1 is the positive constant associated with (32).

Proposition 3. Assume that the matrix inequality (32) is solvable for P > 0. Then under
Assumptions 2 and 3, for any scalar ε2 > 0 there exists a time T1 such that for t ≥ T1, e(t) will
enter the set

B =
{
e | eTPe ≤

(
d+ε2
α

)2 }
(46)

and remains there for all subsequent time, where the positive constant α := −λmax(P
−1Q).
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Proof: Consider V = e(t)TPe(t) as a potential Lyapunov function for system (28). Since (32) is
solvable, the matrix Q defined by (45) is symmetric negative definite and so α := −λmax(P

−1Q) is
a positive quantity. By the same reasoning as in the proof of Proposition 1, it follows from (45) and
Assumptions 2 and 3 that

V̇ |(28) ≤ eT (t)Qe(t) + 2e(t)TPΨ(z)

= eT (t)P 1/2P−1/2QP−1/2P 1/2e(t) + 2e(t)TP 1/2P 1/2Ψ(z)

≤ λmax(P
−1/2QP−1/2)V +

√
V d (47)

since V = eTP 1/2P 1/2e = ∥P 1/2e∥2. Also since λmax(P
−1/2QP−1/2) = λmax(P

−1Q) from the standard
properties of eigenvalues, inequality (47) can be written as

V̇ |(28) ≤
(
d− α

√
V
)√

V

It follows that for any ε2 > 0, if e(t) ̸∈ B, d− α
√
V < −ε2 and so

V̇ |(28)≤ −ε2
√
V (48)

This implies that system (28) is uniformly ultimate bounded with respect to B: i.e. e(t) will enter the
ball B defined in (46) after a finite time T1 and remain in it thereafter. Hence the conclusion follows.

△

It should be noted that (31) is exactly the same as (29). Therefore, by the same reasoning as in
Section 3.1, system (28)–(29) will be driven to the sliding surface (35) in finite time, and a sliding
motion maintained on it, if the function ν is designed as in (27) and k(·) satisfies (36). The main
difference is that in this case when uncertainty exists, the sliding motion is ultimately bounded instead
of asymptotically stable. By combining Proposition 3, it follows that (24)–(26) is an approximate
observer of system (21)–(23) when uncertainty is considered. Similar to the analysis in Section 3.1, it
follows that (42) is true when a sliding motion takes place. It follows that

f̂s(t) =
[
0q×(p−q) D−1

1

]
νσ (49)

is an estimation of the sensor fault fs where νσ is given by (43) and D1 is defined by (39). From (42)
and (49),

∥fs − f̂s∥ ≤
∥∥D−1

1

∥∥(∥Ba∥ ∥C∥ ∥e(t)∥+ ∥νeq − νσ∥
)

Since νeq can be approximated by νσ to any accuracy by choosing an appropriate σ, it follows that
for any ϵ > 0 there exists a time T2 such that for T > T2

∥νeq − νσ∥ < 1
∥D−1

1 ∥ϵ (50)

From the fact that C from (12) has the property ∥C∥ = 1 and P > In it follows that V = eTPe ≥ ∥e∥2
and

B ⊂
{
e | ∥e∥ < (d+ε2)

α

}
(51)

Hence by combining with Proposition 3, the sensor fault estimation error

∥fs(t)− f̂s(t)∥ ≤
∥∥D−1

1

∥∥ ∥Ba∥d+ε2
α + ϵ (52)

for all t > T := max{T1, T2}, where the scalars ε2 and ϵ are arbitrary small positive constants. Clearly,
from (52), the estimation error is closely connected with the uncertain bound d.
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Remark 9. Sensor fault estimation has been considered in [4, 16, 17]. Slowly varying sensor faults are
considered in [4] but more general ones are considered in [16, 17]. However, in these papers, only linear
systems are considered. In [20], actuator fault reconstruction was developed but a minimum phase
condition was required for the system. In this paper, the corresponding minimum phase limitation
has been removed which makes the work applicable to a wider class of systems.

Remark 10. The sensor faults considered in this paper are modelled as an additive disturbance.
Fault detection is concerned with identifying that some thing is wrong in the monitored system while
fault isolation is the determination of which component is faulty. If the system is not affected by any
uncertainty/disturbance, then a ‘precise’ reconstruction signal has been proposed in this paper, i.e.
after some time the reconstruction signal can duplicate the fault precisely. In this situation it is clear
to see which channel has the fault through the reconstruction signal. This implies that the solution of
the isolation problem is inherent in the approach. If the system is subject to uncertainty, the results
developed in this paper only represent an estimation of the fault. In this case, an appropriate threshold
is required to be established for fault isolation. Its accuracy will be limited by the size of the bound
on the uncertainty compared to the size of the fault signals to be detected.

In the following, an approach based on LMI techniques is presented to determine the design
parameters. Suppose β ∈ R is such that L(u) ≤ β for all u ∈ U . Also suppose Λ has been chosen
so that (A − BΛ) is stable (clearly this is a necessary condition for (32) to have a positive definite
solution for P ). Consider the matrix inequality

(A−BΛ)TP + P (A−BΛ) + PBBTP + β2In +
1

γ
P < 0 (53)

where γ ∈ R is a positive scalar. If (53) is satisfied for some matrix P > 0, then from the definition
of Q in (45) where ε1 is chosen as 1, it follows that

P−1/2QP−1/2 +
1

γ
In < 0

which implies λmax(P
−1Q) < − 1

γ and so γ > −1/λmax(P
−1Q) = 1

α . Consequently minimizing γ,
subject to solving (53) for P , decreases the radius of the ultimate boundedness set B from (51). A
plausible convex optimization problem is to minimize γ with respect to P and X subject to[

(A−BΛ)TP + P (A−BΛ) + ε1β
2In +X PB

BTP −ε1Ip

]
< 0 (54)

In < P (55)

P < γX (56)

where X ∈ Rn×n is a s.p.d ‘slack’ variable. This is a well posed convex optimization problem and can
be solved using LMI techniques. From the Schur complement, if (54) is satisfied then

(A−BΛ)TP + P (A−BΛ) + PBBTP + β2In < −X

and since from (56) −X < − 1
γP , it follows that (53) is satisfied.

4 Procedure for sensor fault reconstruction/estimation

Based on the analysis above, a design procedure is summarized as follows:

1. Check system (1)–(2) has uniform observability indices {r1, r2, . . . , rp} with
∑p

i=1 ri = n in Ω×U ;
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2. Find the diffeomorphism T defined by (7)–(9). Then compute the transformed system (10)–(11);

3. Choose constants αij for i = 1, 2, . . . , p and j = 1, 2, . . . , ri such that all the roots of the
polynomials (15) lie in the left-half plane;

4. Check Assumption 2 and compute the functions Γ(z, u) satisfying (18) and L(u) satisfying (19);

5. Choose Aa < 0, Ba = N satisfying (39) and Ca orthogonal. Then, establish the filter (20) and
the observer (24)–(26);

6. Using an LMI package, find the solution P of the matrix inequalities (54)–(56), then Q can be
obtained from (45);

7. Choose the gain k(·) to satisfy (36) and establish the observer (24)–(26);

8. According to (44) compute the reconstruction/estimation signal f̂s. (The estimation error can
be obtained from (52)).

If the system under consideration satisfies the conditions proposed in this paper, then the procedure
described above can be employed to reconstruct/estimate the sensor fault signal.

5 Simulation example

Consider a mass-spring system with a hardening spring, linear viscous friction and an external force
described by

Mẍ+ cẋ+ µx+ µa2x3 = u (57)

where x denotes displacement from a reference position, M is the mass of the object sliding on a
horizontal surface, µ is the spring constant, a represents a coefficient which is associated with the
hardening properties of the spring and u is the control signal which represents an external force
applied to the system (see, [9], pages 8-9). Let z = col(z1, z2) = (x, ẋ). The system output is assumed
to be y = z1. The parameters are chosen as in ([9], pages 172-173). Then, the system is described in
the form of (10)–(11) as follows:

ż =

[
0 1
0 0

]
︸ ︷︷ ︸

A

z +

[
0
1

]
︸︷︷︸
B

(−z1 − z2 − z31 + u)︸ ︷︷ ︸
Φ(x,u)

+Ψ(z) (58)

y = [ 1 0 ]︸ ︷︷ ︸
C

z +Dfs(t) (59)

where D = 1 and the term Dfs(z) is the sensor fault added to illustrate the results developed in this
paper. It is assumed that Ψ(·) includes all uncertainties present in the system and in this case is
assumed to satisfy |Ψ(z)| ≤ 0.1 sin2 y. This function has been added to this paper to demonstrate the
results which have been developed and is not a feature of [9]. The domain considered in this example
is

Ω = {(z1, z2) | |z1| < 0.44, z2 ∈ R}

Let Λ = [−1 − 1]. It follows that Assumption 2 holds with Γ(z, u) = −z31 + u which satisfies (19) in
Ω with L(u) = 0.5808. Choose ε1 = γ = 1. It follows that the LMIs (54)–(56) have a solution

P =

[
1.2047 0.2428
0.2428 1.2881

]
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and β = 0.6 > L(u). Therefore, the conditions of Proposition 1 are satisfied in the domain Ω.

Choose Aa = −1. Obviously D1 can be chosen as D1 = D = 1 and Ba = 1. Then the filter is
described by

ẋa = −xa + y
ya = xa

If k(t) is chosen to satisfy (36), it follows that f̂s = νσ is a reconstruction for fs(t) if Ψ(·) = 0 and
an estimation of the fault fs(t) if Ψ(·) ̸= 0. The simulation in Figure 2 shows that the approach
is effective. The middle figure shows that the reconstruction signal reproduces the fault faithfully
if no uncertainty is present in the system and thus the sensor fault can be detected easily from the
reconstruction. The lower figure considers the case when Ψ = [0.6 0.6]T sin2 y. It shows that the
estimation signal still reproduces the fault to a reasonable extent when uncertainty Ψ(·) is present. In
the presence of uncertainty, it follows that for any ε > 0, there exists a time T1 such that

∥fs(t)− f̂(t)∥ ≤ 0.0444 + ε

0.0554
+ ε, t > T1

In this case, an appropriate threshold is required to be established for fault detection. The error bound
given above is conservative and the performance which is achieved by the scheme is considerably better.
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Figure 1: Sensor fault reconstruction/estimation for Mass-Spring system (58)–(59) (Upper: fault signal; Middle:
reconstruction signal; Bottom: Estimation signal where the dashed line is the estimation signal and the solid
line is the fault signal)

6 Conclusion

In this paper, a sliding mode observer has been considered for FDI in a class of nonlinear systems.
First, the nonlinear system is transformed and an augmented system is established by designing a
simple filter to process the outputs. A sliding mode observer is proposed for the augmented system
to estimate the system states. Based on the observer, FDI schemes are presented for the system

13



with/without uncertainty. The simulation example also shows how to use the reconstruction signal to
detect the sensor fault.
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