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A new way of thinking about
environmental building standards:
Developing and demonstrating
a client-led zero-energy standard

Anna Parkin1, Andrew Mitchell2 and David Coley1

Abstract

There are over 70 low energy and carbon standards in use around the world. None of these standards

have been designed by the clients who pay for and occupy the buildings in question. In this work, the client

was asked to define the building code for the construction of a new 2800 m2 building via a structured

survey. The resulting zero-energy standard simply required the building to incur no energy utility bill. One

year of monitoring of the completed building was used to see if the standard had been met. The result of

this work is a new way of thinking about environmental building standards that solves many of the issues of

obtaining and maintaining buy-in from the client.

Practical application: This is the first time that the client has played a key role in the definition of a

low-energy building standard. Measured energy consumption and renewable energy generation data are

presented and demonstrate that the zero-energy criteria were successfully met. This work is important as

it shows that the client can have a meaningful input into the design of an environmental standard.

The paper should be of interest to architects, engineers, building energy researchers and those interested

in methods that can be used to reduce the energy demand of buildings.
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Introduction

There are many low- and zero-energy and
carbon building standards in use around the
world. They all have the common aim of redu-
cing the environmental impact of buildings,
particularly from the perspective of energy con-
sumption in use. Most of these standards have
developed over time with the input of construc-
tion industry professionals and experts, and
while some are optional, others form part of
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national legislation which governments use to
set minimum standards. There are subtle differ-
ences between these standards, for example what
elements should be included in the determin-
ation of a building’s energy demand and
whether or not off-site renewable energy produc-
tion can be used to offset this demand. The
design of a building aiming to comply with one
particular standard may be quite different to
that pursuing an alternative standard, although
both may be described as zero-energy or zero-
carbon. Where a client wishes to commission a
low- or zero-energy/carbon building, and has
the freedom to choose between standards, it
may be difficult for them to comprehend the
implications of the differences between such
standards and the resulting impact on the
design of the building. There is strong potential
for a client to end up with a building that does
not perform as they expect it to, even though it
is deemed to comply with a low-/zero-energy/
carbon standard. Given the levels of detail
involved, this is particularly likely to be the
case where an expert-devised standard is used
to provide a building for a non-expert client.
An alternative approach which could help
align the building’s performance with the client’s
expectations may be to allow the client them-
selves to have some input into the definition of
the low-/zero-energy/carbon building standard
with which their building should comply. This
will not only allow them a sense of ownership
over the building standard, but will also encour-
age them to understand how the building is
designed to work in order to comply with the
standard.

This paper examines how a team faced with
the challenge of building a zero-energy/carbon
building might proceed in a logical way. It
starts with a discussion about the various low-
and zero-energy/carbon standards currently
promoted across the world, and uses this to
highlight the complexity any client might face
when trying to commission a low- or zero-
energy/carbon building. It then presents a new
way of developing such a standard, and the
approach is applied to the construction of a

building. Finally, results from a year’s monitor-
ing of the building are presented.

A brief review of low- and
zero-energy standards

The world of low-/zero-energy/carbon standards
is a confusing and complex one full of surprises
and pitfalls through which a design team or
client must navigate. Often key terms lack trans-
parency, or the methodology can lead to
unforeseen consequences when applied within a
design environment. For example, the European
Energy Performance of Buildings Directive
(EPBD) requires that any new building built
after 2020 should be ‘nearly zero-energy’. This
is defined as a building that has a ‘very high’
energy performance, and where the ‘nearly
zero’ or ‘very low’ amount of energy required
should be covered to ‘a very significant extent’
by energy from renewable sources which may be
on-site or ‘nearby’.1 To facilitate transition to
nearly zero-energy buildings (ZEBs), during
the period leading up to 2021, the EPBD speci-
fies the identification by Member States of a cost
optimal level of building performance for use as
national benchmarks. The methodology used to
calculate this level, for different categories of
building, is based on the economic lifecycle
trade-off between energy-related investment
costs (including maintenance and operation)
and the resultant energy savings and earnings
from renewable energy production. In order to
demonstrate either achievement of nearly zero-
energy status or compliance with cost optimal
performance levels, it will be necessary to be
able to predict and possibly measure the
energy performance of the building as well as
any relevant renewable energy generation.
However, finding a transparent means to do
this is far from straightforward. Indeed, the
method with which a building is assessed has
major implications for the form of building
that is delivered. For example, in the UK
where CO2 emissions is the metric, a building
that uses electric heating and is connected to
the grid will look like it performs less well than
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a building which has the same heating load but
relies on gas. This is because, in the UK, the
requirement is that electricity use is converted
to carbon using the standard UK emission
factor of 0.519 kg CO2 per kWh even if the
building is equipped with enough photovoltaics
(PV) to meet its annual demand. By comparison,
the emission factor for mains gas is 0.216 kg CO2

per kWh.2 Rather than the final metric describ-
ing the efficiency with which a building uses
energy, the differentiation between the buildings
is based to a large extent on the existence of the
grid connection.

In addition, with the intended decarbonisa-
tion of the electricity grid in the UK,3 the rela-
tive performance of these two buildings, as
calculated in future, will change dramatically.
This begs the question, should today’s emission
factor, or predictions of that of the future,
be used when calculating whole-life carbon
emissions?

The use of CO2 emissions factors is only one
example where the methodology lying behind a
zero-carbon/energy standard has a substantial
impact on the final building. Equally important
are questions such as: How to define the energy
demand and calculate it? What energy balance
period is seen as appropriate? How to calculate
offsets in the energy balance calculation?
Whether embodied energy (EE) is to be con-
sidered or not?

Defining energy demand

As part of a report for the European
Commission,4 a review of international litera-
ture on the subject identifies 75 different defin-
itions for nearly ZEBs, and demonstrates the
lack of consistency with which these definitions
approach calculating the total energy demand
(see Figure 1). While the charging of electric
vehicles is not currently common practice and
may be reasonably ignored in the general assess-
ment of a building’s energy consumption, EE for
example does play a significant role5 and over-
looking its contribution may be less easily
justified.

Complexity is further introduced because the
energy demand of a building may be measured
in terms of the energy delivered to the site or the
primary energy consumed to provide the deliv-
ered energy. In a separate review of different
zero-energy calculation methodologies, Marszal
et al.6 provide an interesting discussion of the
merits of different energy measurement
approaches. Although primary energy measure-
ments will, like carbon emissions, be subject to
the changing characteristics of a country’s
energy infrastructure, Marszal et al.6 show
that primary energy, which more closely reflects
the true environmental cost of energy consump-
tion, is the most used metric in the calculation
methodologies covered. However, a look at a
number of European low-energy (as opposed
to zero-energy) building standards shows less
clear preference for the measurement of primary
over delivered energy (see Table 1). This is per-
haps because, as Marszal et al.6 note, delivered
energy is much more easily understood and mea-
sured, and the building owner or occupier will
receive a bill in units of delivered energy. There
are, however, a number of consistencies appar-
ent in Table 1: Most standards focus on the
building’s energy in use (estimated by calcula-
tion), ignoring the issues of CO2 emissions and
EE, and most calculate the building’s energy
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Figure 1. The number of nearly zero-energy building

calculation methodologies that include certain forms of

energy demand. Data from Hermelink et al.4
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balance on an annual basis. Some, for example
the Living Building Challenge standard,7 use a
year of measured energy consumption, and Voss
and Musall8 suggest that the definition of a net
Zero Energy Building (net ZEB) should be based
on a monthly measured balance of energy gen-
eration and consumption.

The energy balance period

The design of a building may allow it to produce
energy equivalent to, or even exceeding, its
demand. However, it is usually the case that
demand and production do not match all the
time, and the building will import or export
energy at certain times of the day or year.
A net ZEB is defined as

an energy-efficient building that, within its

annual balance sum, covers its entire annual

primary energy demand in connection to the

electrical grid and further grids if required,

based on a monthly balance via primary

energy credits for surplus energy feed-in.8

In this case, it is the balance of energy demand
against energy production that is important. It is
not enough for the building to produce as much
energy as it uses over the course of a year, but it is
when the energy is produced and used (known as
the ‘load-match’) that is scrutinised. Themonthly
load matching factor (f) is calculated by
dividing the energy generated by the energy that
is consumed in each month, as in equation (1)

f ¼ min 1,
generation

consumption

� �
� 100% ð1Þ

The 12 monthly factors are then averaged
over the year. Under the net ZEB rules the

Table 1. Metrics used in the definition of a sub-set of European low-energy building standards.

Standard Description

Energy type

considered

Other

criteria
Balance

periodPrimary Delivered CO2 EE

Passivhaus Internationally

recognised low-energy

building standard

Total

<120 kWh/m2a

Heat

<15 kWh/m2a

No No Year

Norwegian proposal

for a passive house

Inspired by the

Passivhaus standard

Heat

<15 kWh/m2a

No No Year

Swedish passive

house standard

Inspired by the

Passivhaus standard

Total

<34–60 kWh/m2a

No No Year

Swiss Minergie-P Extension of the

Swiss Minergie

low-energy

building standard

Total

<30 kWh/m2a

No No Year

Danish Lavenergiklasse

1 (low-energy class)

Best energy class

for buildings in

the Danish code

Total kWh/m2a No No Year

French

BBC-effinergie� label

French low-energy

building standard

Total

kWh/m2a

No No Year

UK zero-carbon British low-energy

building standard

Total kWh/a Primary

kgCO2/a

No Year

Net ZEB Zero-energy

building concept

Total

kWh/m2a

No No Month

Note: Based on material in Dequaire9 and Voss and Musall.8
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load-match factor can never be greater than one
(100%), and any surplus energy is considered
separately.8 The aim is to encourage the design
of buildings and renewable energy technologies
where energy demand and production corres-
pond temporally, at least when measured on a
monthly cycle. This is in contrast to the situation
where a large amount of energy is exported to
the grid at a time when the building does
not require much energy and production is
high (for example from roof-mounted PV in
summer) which is offset by an equal amount of
energy drawn from the grid at a different time
(for example in winter). Assessing the load-
match on a monthly basis is advocated as it
allows the demand on grid storage, with its con-
sequent CO2 emissions usually hidden in annual
demand/generation calculations, to be better
appreciated. This mechanism still does not
determine with any accuracy the true level of
demand from the grid, as total monthly gener-
ation and consumption are being compared, but
it helps to demonstrate the seasonal variation in
dependency of the building on the grid. Where
demand can be better covered by self-generation
when and where required, grid effects will be less
significant than where the grid is effectively used
as a storage facility. This is because any excess
energy ‘stored’ in the grid and ‘retrieved’ when
needed incurs the normal environmental costs
such as transmission losses and primary energy
factors. Unless a building is truly self-sufficient,
it will always rely on being able to draw some
energy from the grid at times when demand for
energy exceeds the renewable energy supply.

The importance of the temporal relationship
between energy demand and supply has been
identified.10 A finer load-match resolution, for
example on a daily, hourly or even minute-
by-minute basis, would provide an even more
accurate representation of the building’s reliance
on grid storage. However, the challenge of esti-
mating the energy demand to such levels of detail
would be significant. As mentioned above, the
Living Building Challenge standard7 overcomes
this problem by usingmeasured energy consump-
tion data in its determination of compliance.

Offsetting demand in the energy balance

As well as identifying what should be included in
the calculation of the energy demand of a build-
ing, it is also necessary to determine how
this energy can be offset in calculations. This
computational adjustment is necessary as most
buildings are connected to some form of energy
grid, and are rarely entirely self-sufficient. The
simple way, and the way most frequently used in
the various standards, is to balance the annual
energy demand of a building against its annual
renewable energy production. However, aside
from the balance period complication addressed
in The energy balance period, this raises the
question of what should count as new and rele-
vant renewable energy production. Energy pro-
duced by a technology attached to the building,
can clearly be attributed to the building, but it
may be the case that the energy for offsetting is
produced by local renewable energy infrastruc-
ture that the building is connected to. There is
also the need to consider what is meant by local.
For example is a PV panel sited on a bike shed
adjacent to the building truly part of the build-
ing, and is a wind turbine on a university
campus any different than one several hundreds
of miles away if both are owned by the same
university? Torcellini et al.11 describe four dif-
ferent ways this is tackled in ZEB standards: site
energy balance; source (primary) energy bal-
ance; energy cost balance; and related energy
emissions balance. These different definitions
lead to the design of different buildings. The
range stretches from ‘aggressive energy effi-
ciency’ for a site energy ZEB, to the need for
no energy demand savings for an off-site ZEB
where the goal can be reached by simply pur-
chasing off-site renewable energy. A similar
approach is taken in the UK definition of a
zero-carbon building, where some of the
carbon cost of the building can be offset with
‘allowable solutions’ which may include invest-
ment in offsite renewable energy infrastructure,
or payment of a carbon fee.12 Here the building
doesn’t even necessarily need to be receiving the
additional renewable energy to be classed as
zero carbon.
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Global development of zero-energy standards

The developed world, particularly the EU and
the US, already has well established energy poli-
cies13,14 that have filtered down into building
energy standards. National energy policies,
such as building standards, play an important
role in the control of energy consumption, and
where strong policies are absent, growth in
energy consumption and carbon emissions is evi-
dent.15 Developing countries tend not to have
comprehensive building energy policies, but
there is evidence that climate change related
legislation in many such countries is growing
rapidly.13 For example, China, India and
South Korea are all actively pursuing pilot
schemes or legislation focussed on pricing and
trading carbon emissions. In the case of South
Korea the government has set a target of 2025
by which time all new buildings will be zero-
energy.15

While building energy policies contribute to
reduced energy consumption, many argue that
these need to work in conjunction with end-user
engagement in order to be as effective as antici-
pated.14 In addition to consideration of the ther-
mal envelope and passive heating and cooling
strategies, human factors were also accounted
for in the design of a net ZEB in China.16

Facilities for composting and greywater treat-
ment were incorporated to encourage the occu-
pants to engage in environmentally conscious
behaviour and reduce energy consumption and
carbon emissions. As zero-energy/carbon build-
ing standards develop, more emphasis may need
to be placed on factors such as occupant behav-
iour and wider government policies aimed at the
evolution of energy infrastructure.

A new way of creating
a zero-energy standard

Given the plethora of possible standards and
proto-standards, a design team has great flexi-
bility in choosing a low-energy standard, but
because of the inherent complexities summarised
above, there is also the possibility that they will
be left swimming in a sea of confusion.

Additionally, there may be the need to consider
the client’s perspective about what is meant by a
low- or zero-energy building. Most standards are
in terms of intent, whereas the public think in
terms of reality. To the public, a low-energy
building is probably one that uses little energy
in practice, not one that is designed to use little
energy. Such is the scale of the performance gap
that the reality is that many buildings designed to
low-energy standards use no less energy than
buildings constructed against normal building
codes thirty or more years ago.17,18 The
Passivhaus (PH) standard has an advantage in
this area due to the number of buildings that
have been built (>50,000) with a close match
between intent and results as shown in numerous
field trials, see Figure 2.19 However, for a client
that wishes to create a zero-energy rather than a
low-energy building, PH creates a problem in
that it does not yet include a way to account
for renewables or EE. It is also a design not a
performance standard.

The PH standard was excluded from consid-
eration in Hermelink’s report4 (discussed in
Defining energy demand), as it was not deemed
to comply with the nearly zero-energy concept.
It was, however, acknowledged that heat
demand is drastically reduced where the PH
strategy is followed.4 In contrast to the nearly
zero-energy concept, with its focus on the energy
demand/generation balance, the PH building
standard concentrates on energy efficiency and
sets specific maximum energy demand targets.
The two PH energy limits (15 kWh/m2a heat
demand, 120 kWh/m2a total primary energy
demand) are deliberately set to encourage the
design of buildings that use energy efficiently,20

rather than buildings that can produce lots of
energy. In response to the EPBD’s requirement
for renewable energy generation, the Passive
House Institute recently discussed two add-
itional categories in the PH standard.21 The def-
inition of these new PH levels is based on the
amount of energy generated in relation to the
building’s footprint (e.g. kWh/m2

grounda).
Given the issues and complexity identified,

one logical way for a design team to select a
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zero-energy/carbon standard might be to simply
ask the clients what their view of the term zero-
energy is. For example: Is it an environmentally-
driven design intent? Or do they expect to simply
never receive a utility bill? Are they interested in
including EE? Do they consider emissions
related to the transport of those using the build-
ing over its lifetime to be relevant? Ultimately
the use of standards that lead to the construction
of buildings that genuinely reflect the views of
clients and occupants are likely to help in ensur-
ing the zero-energy concept gains traction and
leads to mass construction of such buildings.
This fits in well with the findings in Kershaw
and Simm22 where they state that: ‘It is suggested
that most barriers [to low-energy design] could be
overcome by improving communication between
the design team, client and end users’.

Method

To discover if the creation of a client-led zero-
energy standard was possible, practical and
might ultimately lead to a successful building,
a client group was identified that was about to
commission a low-/zero-energy/carbon building.

The proposed building was a 450 pupil school.
The client group where defined as the head
teacher, 16 members of teaching staff, three
members of non-teaching staff, five parents
and six representatives of the local authority
(who were paying for the construction of the
building). The architect, engineers and the con-
struction company used on the project were not
considered part of the client group. As the client
group were non-expert in the field of ZEBs they
were given a lecture (approximately 30min) on
climate change and UK energy policy, and a
lecture (also approximately 30min) on zero
and low-energy building standards from
around the world with terms such as EE and
emission factor being explained. The purpose
of the lectures was to inform the group about
the concepts and language surrounding energy,
CO2 emissions and building standards, and the
different methods that can be used to achieve a
ZEB. It is possible that the lectures may have
influenced the client group’s view on the overall
value of ZEBs, however it was necessary to pro-
vide them with relevant information in order
that they could meaningfully consider what a
ZEB meant to them. They were then asked to
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Figure 2. Measured space heating consumption of various Passivhaus buildings in a series of locations. Dotted lines

indicate mean consumption for each location. Data from CEPHEUS.19
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anonymously complete a questionnaire designed
to determine what they thought should and
should not be used as criteria for the zero-
energy/carbon standard used for the new build-
ing. Nineteen possible endings to the statement
‘the criteria for the definition of a zero-carbon
building should . . .’ were presented along with a
scale allowing the respondent to indicate how
strongly they agreed with the criteria. The five-
point scale ranged from minus 2 (strongly
disagree) to plus 2 (strongly agree) with 0
expressing neutrality. The final question asked
the respondent to indicate what they thought
was an appropriate balance period. In order to
maintain the anonymity of the respondents the
completed questionnaires were analysed collect-
ively without identifying individuals and their
particular responses. Figures 3 and 4 show the
results. All members of the client group com-
pleted all the questions.

Given the results shown in Figure 3, the key
lessons learnt from this exercise were that, for

this client group, a zero-energy/carbon standard:
is a performance not a design standard; should
lead to no energy bills; and should be based on
efficiency not generation. It was evident that
issues like EE and transport were much less
important to the client group.

Be based on measured performance

Include lighting

Include space cooling

Include space heating

Have no energy related utility bill

Include hot water use

Include cooking loads

Include plug loads

Include energy used in pumps and fans

Treat efficiency and renewable generation equally

Allow the off-set of one form of fuel against another

Consider carbon in the standard

Include embodied energy/carbon

Require the building to be off-grid

Be a designed-only standard

Include electric vehicle charging

Include user transport to and from the building

Allow offsite renewable generation to off-set building energy use

Concentrate on efficiency not renewable generation

–2.0

–1.4
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–0.5

–0.5
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Figure 3. Client agreement with zero-energy criteria. Mean response values shown. Interquartile range indicated by

box lengths. Where outside the interquartile range, the maximum and minimum response values are indicated by

horizontal line lengths.
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Figure 4. The number of client responses for the

question about different potential balance periods.
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After analysis of the survey results, the
following definition of a zero-energy/carbon
standard was presented to the client group:

The building will be zero-energy in-use as

defined by having no energy utility bill, and

this will be a performance not a design standard.

Using the same feedback process with other
client groups and sites might produce different
results.

Implications

The standard created by the client group is a
very simple succinct standard, especially when
compared to the standards discussed above,
but it left many questions about delivery unan-
swered. Most worrying for the design team and
the builder was that it is a performance not a
design standard, and, because it is related to the
utility bill, left little room to manoeuver if the
standard was found to not have been met once
the building was constructed.

The Passivhaus concept was chosen for the
basic design philosophy because of the success
that Passivhaus has had in matching intent to
reality (Figure 2). The standard takes an holistic
approach to both the design and the construction
process, and makes very specific demands such
as: compulsory qualification of designers
(Certified Passive House Designer/Consultant
Examination); use of a single software environ-
ment (PHPP) that has been proven against post
construction data; minimising the size of heat sys-
tems, so poor occupant behaviour is less likely to
lead to excessive energy use; policing of the
design and build (in country); and policing of
the policers (back in Germany). Adopting
Passivhaus can be viewed as a way of minimising
risk if the client’s expectation is for a ZEB with
compliance judged from measured energy
consumption.

After deciding upon Passivhaus as the heat-
ing/cooling energy standard, it was necessary to
choose a method for the inclusion of renewables
into the calculation. The survey results indicated

that the clients seemed to appreciate the ration-
ale of offsetting imports and exports of the same
fuel over the property boundary when balanced
over a time period that is common and visceral.
The survey showed a preference for balancing
over a year, see Figure 4, so the design team
chose a 365 day cycle for balancing. In addition,
it would be easier to meet the zero-energy target
when balancing over this period (data is pre-
sented later to show this). The implication of
this was that a utility cost might result over
the winter period, but this would be offset by a
negative bill over the summer.

Based on the survey results, it was decided
that the building could not be connected to the
gas main. This was because gas flows cannot be
directly offset on a like-for-like basis, unless a
building is fitted with the technology to produce
hydrogen or methane for injection into the gas
main. This was not to be the case here, and in
essence meant the creation of an all-electric
building, or the use of biomass. Given the
intent to use the Passivhaus standard for the
project, the space heating load would be very
low and the design would not include radiators
or underfloor heating. In addition, in order to
comply with the Passivhaus requirement for pri-
mary energy (demand limit of 120 kWh/m2a),
solar thermal would be used for much of the
domestic hot water (DHW) demand. This and
the very low space heat demand led the engin-
eers to consider that biomass would not be
economic.

This left the choice between PV and wind for
the generation of power. Small-scale wind has a
poor record in the urban environment (the site is
situated in the middle of a town) with generation
often being far lower than suggested at design
stage.23 Hence many see it as a risky strategy at
such locations. PV on the other hand has the
opposite reputation, with annual generation
often being equal to or exceeding that suggested
at design.24,25 To match with the client group’s
view of not offsetting across the boundary of the
building it was deemed likely that they would
only see the building as zero-energy if the PV
was mounted on the building. This conclusion
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had a strong influence on the shape of the build-
ing (see Primary energy consumption and renew-
able energy generation).

In summary, in order to produce a cost effect-
ive building, with an acceptable level of risk, that
matched with the environmental standard this
particular client group created, and would there-
fore be accepted by them as zero-energy/carbon,
there was a logic in choosing to build an all-elec-
tric Passivhaus with roof-mounted PV gener-
ation, where the annual cycle is used for
balancing demand against production, and
which ignores the questions of EE and transport
etc. It is perhaps not surprising that a client
should want their ZEB to incur no energy bill.
However, most ZEB standards focus on design,
rather than performance, and there is often a gap
between design intent and reality. There is there-
fore potential for the current top-down govern-
ment- or industry-imposed definitions of the term
‘zero-energy’ to have limited meaning in practice
from the client’s perspective, despite a building’s
compliance with the zero-energy definition used.
The client-led approach to defining the building
standard described here means that compliance
must be demonstrable through performance in a
way that is clearly understandable by the client.

Application

In a design environment where teams are used to
only meeting unambitious national building codes
and where the energy aspects of these are only
design standards, not in-use requirements, the
need to design a building that would survive the
pressures and vagaries of the construction process,
be within budget and whose success would be
measured in terms of the first year’s energy bills
was a considerable risk. This led to the selection of
products and methods for the construction that
had been applied before by the team, were not
novel and where the measured performance was
most likely to closely match prediction.

Fabric and heat demand solutions

The chosen solution was the off-site construction
of insulated concrete panels. This was

potentially unfortunate as it ensured the EE
and embodied carbon of the school would be
high, but this was felt justified if the approach
meant it would be easier to meet the zero-energy
in-use target, and because EE had not been con-
sidered an issue by the clients.

With the building designed to Passivhaus
standards, it was felt that the very small
amount of heat required did not justify a separ-
ate heating system or the use of hot water based
heater batteries, so simple electric heating elem-
ents were placed in the air supply ducts to each
classroom.

There is a natural synergy between heat gains
provided by school pupils, Passivhaus design
and thermal mass. The heat output of a person
is around 100 W,26 and a high mass approach
that maximises the retention of the pulse of heat
provided by the pupils has merit; especially if
this pulse is greater than the typical overnight
winter losses. In a typical school occupancy
density can be very high in some areas (>0.6
people per m2), but very low in other areas
when averaged over the school day. The differ-
ence in occupancy densities between spaces sug-
gests that the natural approach would be to
supply fresh air to each classroom and let this
air flow through corridors and rooms with low
occupancy, thereby heating these low occupancy
density areas. This is only likely to be successful
if the thermal mass is high, allowing the moder-
ation of internal temperatures, and a mechanical
ventilation with heat recovery (MVHR) unit is
included in the ventilation system.

There is an extensive literature on problems
with building management systems (BMS) caus-
ing buildings to be run in an incorrect and pos-
sibly inefficient way, often due to poor
commissioning or maintenance of the BMS.17

In schools this has led to the heating system
operating when windows have been left open
or during the holiday periods. Hence it was
decided to control the duct heaters via a simple
teacher-operated switch in each classroom that
gives 15min of heat. The design team were
aware that electrically driven windows under
BMS control also had a reputation for being
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expensive and poorly controlled, so manually
opening windows were used for the majority of
the building. The idea being that given the heat-
ing system could not make up for the losses from
inappropriate use (because of the 10W/m2

Passivhaus limit), staff would not leave them
open in winter unnecessarily, or overnight, as
they would be cold the next day if they did.
This matched well with the presence of the
MVHR system, as it allowed the school to
ensure that classrooms would have good air
quality with the windows closed, and hence
could simply inform the staff which months
they should keep the windows closed.

Primary energy consumption
and renewable energy generation

The PH standard places an overall limit on the
total primary energy consumption (120 kWh/
m2a). One potential problem with the school
that was known from conception was its loca-
tion in a neighbourhood of low average income.
This meant the proportion of pupils having free
school meals would be high, meaning the kit-
chens would have a higher than typical energy
requirement. In addition, given the growing use
of IT in schools, it was clear that electricity use
needed to be minimised aggressively.

Kitchen energy demand was reduced in three
ways: induction hobs, solar hot water and a
DHW heat pump. The induction hobs and
heat pump arising as a natural implication of
the building being all-electric. One, non-energy,
benefit of the induction hobs being that even
young pupils could safely use the kitchen for
cookery lessons. IT energy use was reduced in
two ways: replacing all PCs with laptops and the
use of charging trollies. At the end of each day,
all the laptops are plugged into these trollies and
wheeled into secure cupboards. The cupboards
are then supplied with electricity for 2 h. This
means computers cannot be left on charge over
holiday periods, and are secure against theft.

The need to find a cost effective solution
which had enough space on its roof for the
amount of PV needed to support the various

activities of a school suggested the basic form
and orientation of the building, this choice was
aided by the requirement of Passivhaus of a low
ratio of surface to floor area. The resulting
design was a single building (rather than a
series of detached blocks), rectangular in plan,
and wedge shaped, with the slope (roof) of
the wedge facing south and covered in PV
(see Figures 5 to 7). This left the main, double
storey, facade of the building facing North, and
a single storey facing South. This is an ideal
situation for a school, as the classroom accom-
modation needed is of approximately twice the
floor area of the sum of the areas needed by
other forms of accommodation, and ideally
needs to face North to ensure solar gains are
not an issue in densely occupied spaces and
that the sun cannot make the use of white
boards difficult. A side effect of the wedge
shape was that it left a large attic space ideal
for housing the large MVHR units, PV inver-
ters, solar hot water storage vessels and air
source heat pump. The heat pump is used to
provide DHW when the solar hot water system
cannot meet the demand.

The 120 kWh/m2 Passivhaus annual limit on
primary energy, together with the need for all
generation to fit on the available roof area,
were found to be surprisingly well matched.
The result was a 2786m2 school for 450 pupils
which opened in October 2011.

Monitoring results

The building is being monitored using both the
data from the BMS, the main utility meters and
a variety of other sensors. Of particular interest
here is the data relating to energy use and PV
electricity generation, although data on various
other environmental performance indicators,
such as carbon dioxide levels, internal tempera-
tures and acoustics were also assessed. The main
reason for the monitoring is to provide evidence
to the client group that their definition had been
met without other environmental expectations
being compromised. For example, while the
Passivhaus standard aims to reduce heat
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demand, the requirement for an air-tight build-
ing envelope to minimise heat loss through infil-
tration has the potential to result in poor
internal air quality if the MVHR unit is not
used successfully by the occupants. Also, the
use of an MVHR system which uses the corri-
dors as the return air path necessitates the free
flow of air within the building which could pre-
sent acoustic problems.

Electricity

Half-hourly readings from the inverter control
panels were used to determine the amount of
electricity generated by the PV panels. Over
the course of a school day it can be seen that
there are periods when electricity is imported
from the grid (in particular overnight), and per-
iods when the PV production is such that little
or no import is needed (see Figure 8). PV pro-
duction and the consequent electricity import
required varies with the available levels of sun-
light. The monthly profiles show, as expected, a
decline in output during the autumn and a rise in
spring (see Figure 9), with the ratio between
maximum and minimum monthly generation
being approximately 4. This suggests that if a

strict monthly balance had been demanded as
part of the zero-energy standard, a 554 kWpeak

array would have been required (instead of the
168 kWpeak one fitted). Aside from the fact that
this would have added greatly to the cost of the
building, there is not sufficient roof space to
accommodate such an array.

This observation clearly indicates that care
will be need if a zero-carbon standard is defined
in terms of a measured monthly balance of
import and export. This is because the variation
in generation between the same month in differ-
ent years is far greater than the difference in
total annual production between years. For the
UK variation in hours of sunshine for a month
compared to the long-term average for that
month can be in excess of 40%, whereas the
annual variation is likely to around 5%. This
could easily lead to the building failing to meet
a measured monthly energy balance.

Measurements running from 23 September
2013 to 8 September 2014, show a net export
of 20,870 kWh (13.1% of the school energy
demand during this period). Energy consump-
tion during this period was 159,199 kWh. This
is 59 kWh/m2a (assuming a floor area of
2786m2).

Figure 5. Section of the school.
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Applying a primary energy factor of 2.6
(as is used in PHPP) and factoring up for the
monitoring period being slightly less than a
year gives 153.4 kWh/m2a. Applying the UK pri-
mary energy factor of 3.072 results in a value
greater than the Passivhaus primary energy

design limit. However, as Figure 10 shows,
the school’s energy demand is much lower
than UK good practice for primary schools,27

and falls within the lowest 10% of consump-
tion for primary schools in England and
Wales.28
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Internal temperatures

Temperature dataloggers were placed in the
locations shown in Table 2 to monitor both
occupied and unoccupied periods.

No internal temperatures exceeded 28�C
during occupied periods, indicating that over-
heating appears to not be a problem, and average

temperatures are comfortable. Minimum tem-
peratures whilst cool are above 15�C.

Internal carbon dioxide concentrations
and acoustics

CO2 concentrations are indicative of the
adequacy of ventilation. Building Bulletin
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Figure 10. Measured school energy demand compared with CIBSE typical and good practice benchmarks.27

Measured school PV generation also shown.

Table 2. Temperature statistics from dataloggers.

Room

All data Occupied periods

Min, �C Ave, �C Max, �C Min, �C Ave, �C Max, �C Hours> 28 �C

Main hall 15.6 20.9 25.7 15.6 20.8 25.7 0

Classroom 1 17.2 19.0 21.7 17.7 19.8 21.7 0

Classroom 8 16.6 21.1 25.6 16.6 21.2 25.6 0

Classroom 10 16.1 20.8 25.1 17.1 20.9 25.1 0

First floor resources 17.2 21.9 26.7 17.2 21.6 26.2 0

FSU 16.5 18.3 21.0 17.0 19.3 21.0 0

Entrance outer lobby 11.6 20.6 25.6 13.1 20.2 25.6 0

Entrance reception 17.1 21.2 28.6 17.1 21.0 24.6 0

External �1.9 9.2 32.6 �0.9 10.8 27.1 0
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10129 recommends that ventilation provision in
teaching and learning spaces should be sufficient
to ensure that the average CO2 concentration at
seated head height should not exceed 1500 ppm
averaged across the school day, and that the
maximum CO2 concentration should not
exceed 5000 ppm.

The average CO2 concentration was calcu-
lated from the half-hourly readings for each
school day (between 09:00 and 15:30), and was
determined to be 938 ppm. The occupied CO2

concentration never rose above 5000 ppm, and
only two days during the first year of operation
had an occupied average exceeding 1500 ppm.
Figure 11 shows an example daily profile of
indoor CO2 concentration.

The acoustics of the school in terms of rever-
beration, ingress, room-to-room transmittance
and background noise from services were all
found to be compliant against national stand-
ards, as given in Building Bulletin 93.30

Conclusion

This is the first time that a client-based method
for defining an energy standard has been derived
from a systematic survey and implemented in a
building project. The work demonstrates that a

client group is capable of engaging with the
zero-energy concept and contributing towards
relevant design criteria. It is also evident that
such criteria can successfully be incorporated
into a building that fulfils both the needs of
the building users and the demands of the
client-based zero-energy standard.

A survey of the client group’s view of zero-
energy crystallized into a standard that required
the school building to be zero-energy in use, i.e.
incurring no annual energy utility bill. This had
deep implications for the overall design of the
building, as it was necessary to accommodate
enough PV on the roof for the generation of
sufficient electricity to offset annual consump-
tion. The resulting shape and layout of the
school worked well to satisfy the needs of the
building users, and also provided a natural
space to accommodate the MVHR, and other,
services required in the design.

The Passivhaus design philosophy followed
has resulted in a building that maintains an
acceptable internal environment, from the per-
spective of temperature, CO2 levels and acous-
tics, while keeping the primary energy demand
very low at approximately 153.4 kWh/m2a and
the heating energy use to almost zero. This is
even despite the fact that the school has to
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Figure 11. Measured indoor CO2 concentration levels in a classroom over a Monday in January 2013.
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provide an above average number of hot meals.
With a PV array capable of generating more
energy than the annual demand, the building
has been successful in meeting the design cri-
teria, in particular the client group’s view of
what a ZEB is.
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