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Abstract

Soil organic carbon (SOC) plays a major role in the global carbon budget.

It can act as a source or a sink of atmospheric carbon, thereby possibly in-

fluencing the course of climate change. Improving the tools that model the

spatial distributions of SOC stocks at national scales is a priority, both for

monitoring changes in SOC and as an input for global carbon cycles studies.

In this paper, we compare and evaluate two recent and promising modelling

approaches. First, we considered several increasingly complex boosted re-

gression trees (BRT), a convenient and efficient multiple regression model

from the statistical learning field. Further, we considered a robust geostatis-

tical approach coupled to the BRT models. Testing the different approaches

was performed on the dataset from the French Soil Monitoring Network,

with a consistent cross-validation procedure. We showed that when a lim-

ited number of predictors were included in the BRT model, the standalone

BRT predictions were significantly improved by robust geostatistical mod-

elling of the residuals. However, when data for several SOC drivers were

included, the standalone BRT model predictions were not significantly im-

proved by geostatistical modelling. Therefore, in this latter situation, the

BRT predictions might be considered adequate without the need for geo-
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statistical modelling, provided that i) care is exercised in model fitting and

validating, and ii) the dataset does not allow for modelling of local spa-

tial autocorrelations, as is the case for many national systematic sampling

schemes.

1. Introduction

Soils are the second biggest carbon pool of the planet, containing about

1500 PgC (Batjes, 1996; Eswaran et al., 1993; Post et al., 1982). As such,

their behaviour as a greenhouse gas source and sink needs to be quanti-

fied, when facing climate change induced by increasing atmospheric green-

house gases concentrations (Batjes, 1996; Lal, 2004). Quantifying temporal

changes of this pool requires estimating its spatial distribution at different

dates and at various scales, with the national scale being of particular im-

portance for international negotiations. The reliability of such estimates

depends upon suitable data in terms of organic carbon content and soil bulk

density and on the methods used to upscale point data to comprehensive

spatial estimates. These estimates may also be used for defining the base-

line state for soil organic carbon (SOC) change simulations (van Wesemael

et al., 2010), or setting some of the parameters for models of SOC dynamics

(Tornquist et al., 2009).

Interestingly, there is quite a diversity regarding the nature of the mod-

els used for upscaling SOC point measurements to the national level. The

validity of each method depends on the datasets and on the scale (defined

by its grain or precision and extent, Turner et al., 1989). The mapping

approaches range from simple statistics or pedotransfer rules, relating SOC

contents or stocks to soil type (Yu et al., 2007) or soil type and land use

(Tomlinson and Milne, 2006; Arrouays et al., 2001), to multivariate regres-

sion models (Meersmans et al., 2008, with multiple linear models and Yang

et al., 2008, with generalized linear models or Suuster et al., 2012, with
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mixed models). Recent studies have used techniques adapted from the data

mining and machine learning literature, with piecewise linear tree models

(Bui et al., 2009) or multiple regression trees for regional studies (Grimm

et al., 2008; Lo Seen et al., 2010; Suuster et al., 2012). Among the studies

considering small extent (<50 km2), many have considered the use of geo-

statistics, some including SOC predictors via cokriging (CK) or regression

kriging (RK) (Mabit and Bernard, 2010; Don et al., 2007; Rossi et al., 2009;

Yun-Qiang et al., 2009; Spielvogel et al., 2009). As the extent increases, the

use of geostatistics becomes less common and despite the spatial dimension

of such studies, few geostatistical approaches for SOC mapping have been

proposed for use at the national scale (but see Chaplot et al., 2009; Kerry

et al., 2012; Rawlins et al., 2009).

SOC mapping for France has been performed, during the last decade, by

using class specific SOC means (Arrouays et al., 2001) or regression models

(Martin et al., 2011; Meersmans et al., 2012). The most recently proposed

models are still not able to fully satisfactorily predict SOC stocks or con-

tents on independent locations : R2 reached 0.50 and 0.49 and root mean

squared prediction errors (RMSPE) 2.27 kg/m2 and 1.45%, for Martin et al.

(2011) on SOC stocks and for Meersmans et al. (2012) on SOC contents,

respectively. Martin et al. (2011) obtained unbiased predictions (the bias

was estimated to be -0.002 kg/m2 by cross-validation), which might ensure

unbiased mapping of the stock at the national level. Nevertheless, these

R2 and RMSPE results showed that there is potentially room for improve-

ment, especially if one is willing to use such models for regional assessments.

Adding spatial autocorrelation terms in these models might be a way to

improve their performance.

Recently, new approaches have been proposed for coupling regression

models, relating environmental factors to the studied property, with geosta-
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tistical models, representing the spatial autocorrelation among the obser-

vations (see for example Marchant et al., 2010). Such methods were also

designed to handle local anomalies (i.e. outliers). Nevertheless, these meth-

ods do not currently include some features that other statistical models,

such as boosted regression trees (BRT) used by Martin et al. (2011), have

(i.e. handling nonlinear relationships between qualitative and quantitative

predictors and the independent variable, nonlinear interactions between the

predictors, in an automated manner). Both approaches share the robustness

to the presence of outliers in the dataset. As they are tackling different prob-

lems, the spatial autocorrelation for the geostatistical approaches, and the

modelling of the complex interactions between SOC stocks and their drivers

for the regression methods, both might be considered as complementary.

The aim of this paper is to combine these recent robust geostatistical

approaches with the BRT models currently applied to map SOC stocks at

the national scale for France. We apply the methods to a dataset of 2166

paired observations of SOC and bulk densities from the French soil qual-

ity monitoring network (RMQS). We use this study to assess the modelling

methods to determine i) how useful it is to combine BRT and geostatisti-

cal modelling, and ii) if any advantages are dependent on the number of

ancillary variables included as predictors in the BRT models. The aim is

not specifically to study the relative importance of SOC stocks drivers for

France (which has been done recently Martin et al., 2011; Meersmans et al.,

2012), nor to produce a new map of SOC stocks in France.

2. Materials and methods

2.1. Data

Soil Organic Carbon Stocks were computed for 2166 sites from the French

soil quality monitoring network (RMQS) (Fig. 1). The network is based on

a 16 km× 16 km square grid. The sampling sites are located at the center
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of each grid cell, except when settling a homogeneous 20 m× 20 m sampling

area is not possible at this specific location (because of the soils being sealed

or strongly disturbed by anthropogenic activities, for instance). In that case,

another site is selected within 1 km from the center of the cell depending

on soil availability for sampling (for more information, see Arrouays et al.,

2002). Some of the 2166 sites of our dataset were actually replicates of the

regular cells sites : some cells had two sites located in them, one close to

the center of the cell as described above, and another one located at another

position within the cell.

At each site, 25 individual core samples were taken from the (0–30 cm)

and the subsoil (30–50 cm) using a hand auger according to an unaligned

sampling design within a 20 m× 20 m area. Individual samples were mixed

to obtain a composite sample for each soil layer. In addition to the compos-

ite sampling, a soil pit was dug 5 m from the south border of the 20 m× 20 m

area, from which 6 bulk density measurements were done, as described pre-

viously (Martin et al., 2009). From these data, SOC stocks (kg/m2) were

computed for the 0–30 cm soil layer :

SOCstocks30 cm =
n∑

i=1

piBDiSOCi(1− rf i) (1)

where n is the number of soil horizon present in the 0–30 cm layer, BDi, rf i

and SOCi the bulk density, percentage of rock fragments (relative to the

mass of soil) and the SOC concentration (percent) in these horizons, and pi

the fraction of the horizons to take into account to reach the 30 cm. The

horizons considered for such an analysis did not include the organic horizons

(such as OH or OL).

The SOC stocks, the dependent variable, is the only variable which was

observed at site level. All other variables, the covariates (or ancillary vari-

ables) were depicted using available maps covering the French territory. This

allowed us to consider models for mapping SOC distributions at the na-
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tional scale, which relies on the exhaustiveness of the ancillary information.

These ancillary maps were thus sampled at RMQS sites locations in order

to estimate climatic, pedological, land use and management related, and

biological variables. The map of pH was derived from two sources. For the

forest soils, the forest soils surface pH map (lerfoB and Ifn, 2008) was used.

For the other soils, the median pH per district from the national soil testing

database was used (BDAT, Lemercier et al., 2006). Land use was estimated

from from Corine Land Cover 2006 database and further reclassed into an

adapted IPCC land use classification (various crops, permanent grasslands,

woodlands, orchards and shrubby perennial crops, wetlands, others and vine-

yards) (ue soeS, 2006). Clay content was estimated from the 1:1 000 000

scale European Soil Geographical Database (King, 1995). As each polygon

(or soil unit) from the 1:1 000 000 scale European Soil Geographical map is

linked to possibly several soil types (hence clay levels), we used in the mod-

els the clay levels of the 3 most important (in terms of surface) soil types

within each soil unit associated to each RMQS site, namely clay1, clay2

and clay3, ranked according to the percentage of their occurrence. Surface

percentages of these soil types were also included as predictors within the

models (pc1, pc2 and pc3). For instance, let us consider a given RMQS site

i belonging to soil unit j of the soil map. The soil unit j may have two soil

types associated to it (st1 and st2) with the occurring probabilities of 70%

and 30% and clay levels of 45% and 35% . For this site i, the values of the

clay1, clay2 and clay3 variables would be 45%, 35% and NA (not available)

respectively and for pc1, pc2 and pc3, 70% and 30% and NA respectively.

Organic matter additions (oma), such as slurry and farmyard manure were

estimated. We used manure application and animal excrement production

departmental statistics (ADEME, 2007). These statistics were combined

with dry matter C concentration values, (Meersmans et al., 2012, 37.7 % for

farm yard manure and 36.6 % for slurry,).
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Climatic data were monthly precipitation (mm month−2), potential evap-

otranspiration (PET, mm month−2), and temperature (◦C) at each node of

a 8× 8 km2 grid, averaged for the 1992–2004 period. This climatic map

was obtained by interpolating observational data using the SAFRAN model

(Quintana-Segui et al., 2008). Again, for the modelling study presented

here, climatic variables were estimated at each RMQS site by performing a

spatial join between the RMQS grid and the climatic map.

Agro-pedo-climatic variables were also derived from the primary soil,

climate and land use data estimated at each RMQS site: we used the (a)

temperature and (b) soil moisture mineralization modifiers, as modelled in

the RothC model (Coleman et al., 1997; Martin et al., 2011). The b variable

was calculated by combining, for each RMQS site, rainfall and PET data

obtained from the climatic grid, with site observation of land use and clay

content. Since three possible clay contents were estimated for each site, the

three corresponding estimates of the b variables were also included, when

relevant, in our BRT models. Lastly, the Moderate Resolution Imaging

Spectroradiometer Net Primary Productivity (MODIS NPP, gC m2 yr) was

used to get NPP estimates at each of the RMQS sites, as in (Martin et al.,

2011).

The GIS processing was carried out using the GRASS GIS (GRASS De-

velopment Team, 2012) and further mapping was carried out using Generic

Mapping Tools software (Wessel and Smith, 1991).

2.2. Statistical modelling

2.2.1. Boosted Regression Trees (BRT) modelling

Boosted regression trees belong to the Gradient Boosting Modelling

(GBM) family. The objective is to estimate the function F that maps the

values of a set of predictor variables x = {x1, .., xp} onto the values of the

output variable y, by minimizing a specified loss function L. This L function
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is applied at each iteration in order to fit so-called base learners. The final

prediction of the BRT model is a linear combination of each base learner pre-

diction. The constant weight associated with these base learner predictions

is called the learning rate and is one of the important parameters of this

boosting algorithm (Freund and Schapire, 1996). This kind of algorithm

is also referred to as a forward “stagewise” procedure. The base learners

of BRT are classification and regression trees (Breiman et al., 1984). Fur-

thermore, BRT uses a specialized form (for regression trees) of Stochastic

Gradient Boosting (Friedman, 2001). The stochastic characteristic of the

algorithm relies on the fact that only a subset of the dataset is used for

fitting the base learner on a given iteration. The subset is produced in each

iteration using a uniform random draw without replacement. Besides the

learning rate, other parameters are important when applying this kind of

model. Two of them determines the characteristics of each base learner :

the tree size (which gives the size of individual regression trees) and the

minimum number of observations in the terminal leaves of the trees. Several

options are available for deciding when to stop adding base leaners to the

model. One of them, based on an internal cross-validation, was shown to

be the most efficient one (Ridgeway, 2006) for avoiding overfitting and was

used for the present study. BRT was shown to have improved accuracy com-

pared with simple regression trees, thanks to its stochastic gradient boosting

procedure aimed at minimizing the risk of overfitting and improving its pre-

dictive power (Lawrence et al., 2004). It can handle non-linear interactions

among predictors and the dependent variable, quantitative and qualitative

predictors and missing data. Lastly, several tools are available for interpret-

ing the behavior and characteristic of the resulting BRT models, such as

the variable importance index for assessing the contribution of the predic-

tors and the partial dependence plots for assessing the relationships between

predictors and the predicted variable (Martin et al., 2011). A thorough de-
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scription of the method is given in Friedman (2001) and a practical guide

for using it in Elith et al. (2008). The BRT models were fitted and used

for prediction using the “gbm” R (R Core Team, 2013) package (Ridgeway,

2006).

2.2.2. Three BRT Models for SOC stocks

Three models for predicting SOC stocks in the 0–30 cm layer were tested.

The models, which we refer to as the LU, L and F models, have increasing

levels of complexity (see below for their full description of these models).

These three models were chosen as they represent cases where either very

little or a lot of information on ancillary variables is known on sites where

SOC stocks are to be predicted. Additionally, the first model (LU), with

two covariates (landuse and clay content) commonly used for predicting

SOC within the geostatistical framework. The second one (L, see below

the full description) is indeed the Extra model presented in Martin et al.

(2011). The use of the most complex model (F) enabled us to include all

the ancillary data available for France at the national level at the time of

the present study.

The predictors used for each model were:

� LU : lu ipcc (land use classification adapted from the IPCC guidelines,

2006), clay1.

� L: lu ipcc, clay1, clay2 and clay3, pc1, pc2 and pc3, the clay and

corresponding probability of occurrences at each RMQS site, (pet,

mm month−2), monthly precipitation (rain, mm month−2), tempera-

ture (temp, ◦C), the two RothC mineralization modifiers, a and b1, b2

and b3 and the net primary productivity npp (gC m−2 yr−1).

� F : same predictors as the model L with the addition of pH, oma (i.e.

organic matter addition, slurry and farmyard manure) and pm, the

parent material.
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The “gbm” R package requires the specification of several important pa-

rameters : the tree size, the learning rate, the minimum number of observa-

tions in the terminal leaves of the trees and the bag fraction. For our three

models, the values for these parameters were set to (12, 0.01, 3, 0.7). These

values were chosen according to recommendations found in the literature

(Elith et al., 2008; Ridgeway, 2006).

2.2.3. Geostatistical models

We further investigated whether a robust geostatistical method, similar

to the one presented by Saby et al. (2011), could be used to represent errors

and improve predictions from each of the BRT models. In their work, Saby

et al (2011) divided the spatial variation of a soil property into fixed and

random effects. The fixed effects were a different constant mean soil property

for each of 12 parent material classes and the random effects described the

spatially correlated residual soil property variation. In the present work,

each of the three BRT models was used alone as presented in the previous

section and as a fixed effect within a robust geostatistical method. This

combination of a BRT and geostatistical model can be summarised as:

Z = H(X) + u (2)

where Z = ln(Y) with Y being a length n vector of observations of

the SOC stocks, X the matrix (n x q) containing values of the covariates

(or predictors) at each observation site and the H function representing the

boosted regression tree model (fitted to the log-transformed data). We

note that the log-transform was necessary for the geostatistical approach

due to skewness of the observed SOC stocks distribution. Thus the vector

u of length n contains the residuals of the BRT model predictions of the

log-transformed data, compared to the log transformed response variable.

In the conventional geostatistical approach, these residuals are assumed to
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be a realization of a second order stationary random process (Webster and

Oliver, 2007). We applied a robust geostatistical approach, in which the

spatial correlation of residuals was modelled using a Matèrn equation based

on the Dowd robust estimator of the experimental variogram (Dowd, 1984).

Moreover, outlying observations were identified and Winsorized using the al-

gorithm proposed by Hawkins and Cressie (1984). Winsorizing is a method

by which extreme values in the statistical data are limited to reduce the

effect of possibly spurious outliers. Note that Winsorizing is not equivalent

to simply excluding data. Rather, in a Winsorized procedure, the extreme

values are replaced by a certain value predicted by a statistical model. This

algorithm provided for each observed residual ui an interval [U−
i , U

+
i ]. ui

is then identified as being an outlier when ui /∈ [U−
i , U

+
i ] and its value is

replaced by the closest limit of the interval. As in Lacarce et al. (2012),

observations were confirmed as being outliers, and transformed, condition-

ally on a measurement error of SOC stocks of εY , with ε = 0.112, recently

estimated for the RMQS dataset (unpublished data) :

u∗i =


u−i if ln(Yi(1 + ε))−H(Xi) < U−

i

u+i if ln(Yi(1− ε))−H(Xi) > U+
i

ui otherwise

(3)

where ui* represents the resulting Winsorized data. One should note

that the geostatistical modelling is performed on the log scale, but the mea-

surement error is valid on the original scale, hence the terms on the left-hand

side of the inequalities in equation 3. These inequalities mean that the ob-

served residuals may exceed the [U−
i , U

+
i ] interval limits, but not by more

than the possible measurement error on the observed values. If they do,

they are Winsorized to U−
i or U+

i depending on the case. The U−
i and U+

i

values are defined so that the validity of the spatial term u in equation 2 is

verified, which, without Winsorizing, was rarely the case in previous studies
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(Marchant et al., 2010; Lacarce et al., 2012). This check is performed using

a leave-one-out cross validation (LOOCV). When the covariance model is

a valid representation of the spatial variation of the property (in our case

the residuals), the distribution of the squared standardized prediction errors

(noted θ) derived from the cross validation will be a χ2 with mean θ = 1

and median θ̆ = 0.455 (Marchant et al., 2010) for which confidence inter-

vals may be determined. This LOOCV procedure aims solely at checking

the validity of the geostatistical model and should not be mistaken with the

global validation framework presented in the next section, aimed at estimat-

ing the predictive performance of the models (BRT models and their spatial

counterparts).

As a result the variation of the soil property is decomposed in a threefold

model described by Marchant et al. (2010): 1) variation modelled by the

BRT models, 2) spatially correlated variation represented by the random

effect of the residuals of the BRT models and estimated by variograms using

Dowd’s estimator to which Matèrn equations were fitted, 3) variation due

to circumscribed anomalies. Once the BRT and geostatistical models were

fitted, the property was predicted at each unsampled (i.e not used for fitting

the models) location of the dataset by lognormal ordinary kriging. This

method consists of predicting the residual for the log-transformed variable

by ordinary kriging based on Winsorized data u∗ (equation 3), and back-

transforming the predicted value to the original SOC stocks scale through:

Ŷ (xi) = exp(H(Xi) + ûi + var[ûi]/2− ψ(xi)) (4)

where ûi is the ordinary kriging prediction of u at a given prediction

location xi, var[ûi] is the associated kriging variance and ψ the Lagrange

multiplier; both the kriging variance and Lagrange multiplier are needed to

yield unbiased estimates in case of lognormal ordinary kriging (Webster and

Oliver, 2007).
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2.2.4. Validation procedure

We thus considered six models: three models without a spatial term (the

LU, L and F BRT models) and what is hereafter referred to as their spatial

counterparts (the LUg, Lg and Fg models), i.e. the same three models with

an additional spatial term (Eq. 2). These six models were validated using

cross-validation. This validation procedure involves validation against inde-

pendent data and enables estimation the predictive power of the proposed

models.

Comparison between observed and predicted values of SOC stocks was

carried out on the original scale using several complementary indices, as

is commonly suggested (Schnebelen et al., 2004): the mean prediction error

(MPE, kg/m2), the root mean square prediction error (RMSPE, kg/m2) and

the coefficient of determination (R2) measuring the strength of the linear

relationship between predicted and observed values. Additionally, the ratio

of performance to inter-quartile distance, RPIQ (Bellon-Maurel et al., 2010)

was estimated as

RPIQ =
IQy

RMSPE
(5)

where IQy is the inter-quartile distance, calculated on observed SOC values

from the whole dataset. RPIQ index accounts much better for the spread of

the population than indexes such as RPD (Bellon-Maurel et al., 2010) and

was used for comparing the prediction accuracy between the six different

models. Median prediction error and root of median of squared prediction

errors were also calculated (hereafter named MedPE and RMedSPE respec-

tively). These additions to MPE and RMSPE respectively, provide a more

complete picture of the errors in case of a skewed error distribution.

The validation procedure was done using a Monte Carlo 10-fold cross-

validation (Xu and Liang, 2001), enabling us to perform what will be referred

to in the following as external validation. It was preferred to simple data-
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splitting because the estimate of a model’s performance then does not rely

on the choice of a single sub-sample. We preferred a k-fold procedure instead

of a leave-one-out cross-validation as leave-one-out cross-validation results

in a high variance of the estimate of the prediction error (Hastie et al., 2001).

Each step of the cross-validation procedure can be summarized as shown in

algorithm 1 and was repeated 200 times for each model.

Steps 4 to 9 are performed as detailed in section 2.2.3. More specifi-

Algorithm 1 cross-validation repetition:

1: Split the dataset into Learning (X,Y)L and Validation (X,Y)V

2: Compute ZL = ln(YL)

3: Fit the H BRT model and estimate ẐL = H(XL)

4: Fit a variogram on uL = ZL − ẐL

5: if θ and θ̆ are not valid then

6: Winsorize the dataset until valid θ and θ̆ are obtained

7: end if

8: Estimate ûV by ordinary kriging at ZV locations using the fitted vari-

ogram and the Winsorized residuals u∗
L

9: Calculate the lognormal kriging estimate, Ŷg
V using equ.4

10: Calculate ŶV = exp(H(XV ))

11: Compute PERF on (YV , ŶV )

12: Compute PERF on (YV , Ŷ
g
V )

cally, the spatial component of the spatial models is validated at step 6 as

presented in section 2.2.3 in order to make sure that these were valid repre-

sentations of the residuals of the BRT models. This check was performed for

each geostatistical model fitted during each repetition of the cross-validation

procedure.

Ŷ represents the prediction provided by one given BRT model and Ŷg

the prediction provided by its spatial counterpart model (the BRT and the

geostatistical model). PERF indicates the computation of the performance
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metrics (R2, RMSPE, RPIQ, MPE, MedPE, RMedSPE). We should note

that the last step of the algorithm represents a true external validation of

the spatial model because the model fitting is performed while masking the

observations YV used for validation, both during the variogram fitting (step

4) and the kriging procedure (step 8). A similar procedure has recently

been used and advocated by Goovaerts and Kerry (2010), using leave-one-

out cross-validation. It should be distinguished from other approaches where

cross-validation embeds only the kriging, and not the fitting of variograms

parameters (e.g. Chunfaand et al., 2009; Mabit and Bernard, 2010; Xie et al.,

2011). In these cases, observations used for validation have already been used

for fitting the variogram and the resulting model is not independent from

these observations. We tested for differences between the performances of

the six models in terms of each performance metric. The distributions of a

performance metric were compared using a t-test with a Bonferroni adjust-

ment. In the following, we use the terms MPE, RPIQ, RMSPE, R2, MedPE

and RMedSPE names to refer to their mean value over the 200 repetitions

of the cross-validation. The algorithm procedure was programmed with R

software using functionalities of geoR and sp packages (Ribeiro and Diggle,

2001; Bivand et al., 2008).

3. Results

3.1. Variogram fitting on BRT residuals

The degree of spatial correlation of residuals from BRT models depended

on the complexity of BRT models (Fig.2) : the residuals resulting from the

LUg model were spatially structured with a spatial dependence (defined as

partial sill/(nugget + partial sill), Lark and Cullis, 2004) of 0.34. Contrary

to the residuals of the LUg model, the residuals of the more complex BRT

models exhibited very limited spatial structure (Fig.2). For the Fg model,
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the residuals had a spatial dependence of 0.057 and for the Lg model of 0.1.

Fig.2 indicated that from the simplest model (LUg) to the most complex one

(Fg), the part of the spatial variability not accounted for by the deterministic

spatial trend decreased.

For the three models, Winsorizing was needed in order to produce valid

models regarding the assumption on the modelled variable. The θw and

θ̆w values obtained after Winsorizing belonged to the confidence interval

estimated for each model. The percentage of outliers ranged from 1.9% to

2.8%. These sites present extremely low or high SOC stocks that cannot be

modelled by the spatial term and the BRT models only. The number of such

locations was halved between the LUg and the Fg models (Table 1) as this

latter model, the most complex one, was more able to model these extreme

values. For this model, outliers appeared to be evenly distributed over the

studied area (Fig.3h).

3.2. Cross-validation analysis & performance of the proposed models

Cross-validation yielded valid spatial models for 100% of the cross-validation

repetitions. Fig. 4 shows that the F and L models and their spatial coun-

terparts performed globally similarly to other and differently from the LU

and LUg model. Average prediction performance of the models, expressed

by the RPIQ index, ranged for our six models between 1.27 and 1.42. In-

creasing the complexity of BRT models resulted in improving the prediction

performance and the best R2 value was obtained for the Fg model with a

value of 0.36.

Predictions with the LUg model exhibited, on average, limited bias

(Fig.4c). Important differences appeared when comparing mean prediction

errors or mean root squared errors to median prediction errors or median

squared errors (Fig. 4c-f). This indicated a skewed distribution of errors.

When assessed by the median of the error distribution (Fig. 4e), the geo-
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statistical predictions are shown to have a positive median-bias, whereas

the standalone BRT predictions have median-bias close to zero. Similarly,

the skewness of the distribution resulted in considerably larger root mean

squared errors (Fig. 4d), with a lowest value of 2.83 kg/m2 compared to

root median squared errors (Fig. 4f) with a lowest value of 1.43 kg/m2.

3.3. Performance comparisons of BRT models with or without spatial com-

ponent

For our French dataset, adding a spatial term to the models resulted in

improvements in terms of R2, RPIQ and the mean measures of prediction,

RMSPE and MPE. These improvements were not significant for the L/Lg

and F/Fg model comparisons, for the R2, RPIQ and RMSPE. However, in

terms of the median measures, RMedSPE and MedPE, the standalone BRT

predictions generally gave the better results.

The improvement resulting from the addition of the spatial component

was a decreasing function of the complexity of the BRT model. This is

shown clearly on Fig.4a, b, d and f. The R2 for the LU model was im-

proved from 0.17 to 0.28 when adding a spatial term. The map of errors

(Fig.3a) reveals regions where the LU model exhibited a strong negative

bias, such as south west Brittany (area 1; for reference of area numbers, see

Fig. 1), and mountainous areas such as the Massif Central (area 5), Alps

(area 4), and Vosges on the eastern part of the French territory (area 3).

In other regions, it exhibited a positive bias, such as some of the parts of

the south-west of France. The map of improvement between the LU and

LUg models (map of differences, for each RMQS site, between the abso-

lute errors of prediction with one BRT model and the absolute error with

its spatial counterpart, Fig.3c for the LU/LUg models) shows areas with a

dramatic improvement of predictions, and more specifically where the BRT

predictions were strongly biased. It should be noted that the strongly bi-
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ased predictions almost disappeared with the most complex model (model

F, Fig.4g). Some under-estimations remained, although much smaller than

for the LU model, in western coastal areas.

Measured using the R2 index, the improvement yielded by adding a

spatial component to the F model was not significant, with R2 values going

from 0.35 to 0.36. Noticeably, the root of the median squared prediction

errors exhibited a limited but significant degradation (from 1.35 to 1.43

for the F and the Fg models, respectively). The spatial distribution of

improvements (Fig.3i) for this model was clear for the south west Britanny

region. In many other areas the improvement was even more limited with

some sites where prediction was improved and others where prediction was

degraded (Fig.3i). These were areas with high absolute errors (e.g. the

Massif Central Fig.3g). Interestingly, there was no significant difference in

the performance of the for Fg and Lg models. This result indicated that

adding a spatial component to the intermediate BRT model yielded similar

results to adding a spatial component to the most complex model.

4. Discussion

4.1. Spatial dependence of SOC stocks

The spatial dependence of the BRT residuals decreased as the complex-

ity of the BRT models was increased. The variogram parameters provide

some information about SOC controlling factors not included in the BRT

model. For instance, when land use and clay content is included (in the LU

model), the correlation range of model residuals lies between 300 and 400

km (Fig.2). This gives an indication of the correlation range of the most im-

portant SOC controlling factors missing from the LU model. Hence, when

attempting to improve the LU model of SOC stocks spatial dependence,

one should look for controlling factors whose correlation range is less than

300 to 400 km. The L model included other controlling factors, such as
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clay content, which decreased both the total variance of residuals and their

correlation range, to around 100 to 200 km. Lastly, the F model handled

most of the spatial dependence by including three more drivers, the pH, the

parent material and the regional statistics regarding organic matter addi-

tions. However, the high nugget in the variograms from the residuals of each

BRT model, including the F model, indicated that other controlling factors

greatly influence SOC spatial distributions at ranges below the resolution of

our dataset, i.e. 16 km. This is consistent with the results of many other

studies. For instance, in Ungar et al. (2010), the residuals of a model of

SOC (%) taking into account administrative zonation and soil functional

types were analysed by variography. They also found that most of the spa-

tially structured variance was accounted for by a short range component (in

their case 1500-2000 m). Another possible explanation for the high nugget

could be that the uncertainty attached to most of the covariates (drivers)

maps is high, especially for the covariates derived from the 1:1000 000 soil

map.

4.2. Assessing the performance of one single model

It is difficult to draw conclusions regarding the performance of the present

models compared to those of other studies dealing with SOC prediction and

mapping. Some deal with SOC contents when other deal with SOC densities

or stocks. When working on SOC stocks, the bulk densities are required,

and if these are estimated (rather than measured), then the methodology

for estimating bulk density might have great consequences (Liebens and

VanMolle, 2003). Many studies use pedotransfer functions (PTFs) for esti-

mating bulk density without accounting for the associated errors (Schrumpf

et al., 2011). Ungar et al. (2010) estimated through a Monte Carlo approach

that uncertainty resulting from their PTF ranged between 0.55 and 7.72 T

ha−2 depending on the SOC content. Schrumpf et al. (2011) showed that

the use of PTFs for estimating bulk densities can lead to wrong or biased

19



estimates of SOC stocks. However it is currently not entirely clear to what

extent measuring bulk densities is worth, considering the cost. This cost

could alternatively be used to collect further SOC concentration data and

thus improve calibration and validation datasets. Comparison between the

studies is also made more complex by the differences between validation

procedures (validation with an independent dataset, k-fold cross-validation,

leave-one-out cross-validation). Furthermore, as quoted by Minasny et al.

(2013) and Grunwald (2009), it is quite common that validation of SOC

model predictions is missing entirely from a study. The best models pre-

sented in our study (the F and Fg models, see Fig.4) performed comparably

to those of Lo Seen et al. (2010), fitted on soil data from the Western Ghats

biodiversity hotspot (India). The models yielded, using a cross-validation

scheme similar to the one applied here, RMSPE of 2.6 kg m−2 and R2 of

0.45, to be compared to the RMSPE of 2.83 kg m−2 and R2 of 0.36 ob-

tained here for the Fg model, along with a MPE value of -0.19 kg m−2.

Considering national SOC prediction, Phachomphon et al. (2010) produced

0-100 cm estimates using inverse distance weighting with 12 neighbours and

ordinary cokriging, yielding MPEs of -0.2 and -0.1 kg m−2 and a RMSPE of

2.2 and 2.1 kg m−2, respectively. Mishra et al. (2009) produced estimates,

for the Indiana state (USA) with a MPE of -0.59 kg m−2 and RMSPE of

2.89 kg m−2. This study involved the fitting of SOC depth distributions, as

recently proposed by Kempen et al. (2011). This last study, is among the

most successful, with a rigorous validation scheme and an moderate extent

(125 km2), giving an R2 of 0.75 for prediction on independent locations.

Other studies on areas of the same order of magnitude as the area of the

French territory (i.e. >50 000 km2) are referenced in the comprehensive re-

view of Minasny et al. (2013). The R2 values of our models are towards

the lower end of R2 values in studies mentioned in this review. Their per-

formance is also remarkably lower compared to similar models presented in
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Martin et al. (2011) and Meersmans et al. (2012). This drop in model perfor-

mance is likely a result of the uncertainty of the clay content estimated from

the 1:1000 000 soil map (as compared to the measured clay contents used

in the previous studies). This is indicated by the importance (quantified

using the BRT variable importance index) of clay related variables in the L

and F models of the present study. These variables ranked at best 7th and

7th in the L and F models, respectively. This is to be compared to the first

rank obtained by the clay variable in the Extra model presented in Martin

et al. (2011), fitted and validated with measured clay contents. Thus, for

the two previous studies for the French territory, the model performance

for mapping might have been overestimated because some variables used for

validation were observed at site level. In the present study, models are vali-

dated using data estimated from ancillary maps, providing a more realistic

assessment of model performance for mapping. Such small differences in the

model validation schemes are difficult to trace and might further complicate

comparison between different studies.

4.3. Distribution of predictions errors

Another issue worth commenting on here is the distribution of SOC

stocks predictions errors. BRT modelling of log transformed SOC stocks

gave residuals that were close to normal, with outliers. These residuals were

modelled using a robust geostatistical approach, and a back transformation

proposed for log-normal ordinary kriging was applied. The final predictions

exhibited a limited bias (MPE=-0.19 kg m−2 for the Fg model, Table 2),

a problem that can arise in lognormal kriging due to the sensitivity of the

back-transform to the variogram parameters and to the assumption of a

lognormal distribution (Webster and Oliver, 2007). Although we currently

have no ready solution for providing unbiased predictions, especially for

the Lg and Fg models, we note that the MPE is small in comparison to
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the RMSPE (less than 5 % of the RMSPE), which compares favourably

with results of other studies reported above. Without the spatial compo-

nent, the BRT predictions (back-transformed with a simple exponential, see

Algorithm 1), showed negative mean-bias (i.e. under-prediction on aver-

age). This is logical because the BRT method ensures unbiased predictions

on its predicted variable, here the log transformed SOC stocks; therefore,

back-transformation of the BRT predictions through the exponential func-

tion results in a negative mean-bias for SOC stocks on the original scale.

Further insight is provided by examining the behaviour of other perfor-

mance indices, such as the median prediction error or the median squared

prediction error. The lognormal kriging back-transformation aims to pro-

vide mean-unbiased predictions on the original scale, hence the reasonably

small MPE. However, with a skewed distribution of errors, the predictions

cannot also be made to be median-unbiased, hence the MedPE of the geo-

statistical predictions is positive. Without the geostatistical component, the

back-transform of the BRT predictions (through the exponential function)

preserves the median-unbiased property, giving low values of MedPE, but

introduces mean-bias. Comparisons between the results of our BRT pre-

dictions and their spatial counterparts should be made with this in mind;

the differences could be at least partly due to the different objectives of the

back-transformed predictors. Since SOC distributions are most commonly

as log-normal, prediction error distributions are also skewed, and perhaps

these further measures (MedPE and RMedPE, which are robust to extreme

prediction errors at a small number of locations) can add useful information

about model performance.

We note here that the BRT approach could be applied to model the

SOC stocks directly, without the need for any transformation (as shown by

Martin et al., 2011). We would expect the resulting predictions to have

low MPE, but a positive MedPE (a similar pattern to the results of the
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geostatistical approach). We tested this direct BRT modelling approach

with the F BRT model; mean prediction errors were improved from -0.48

to 0.01 kg m−2, whilst median prediction errors were increased from 0.07 to

0.45 kg m−2. In terms of squared errors, the RMSPE improved slightly from

2.89 to 2.82 kg m−2, whilst the RMedSPE increased from 1.35 to 1.5 kg m−2.

In this work, we applied BRT modelling to the log-transformed data so

that residuals would be approximately normal, thus allowing the robust

geostatistical approach to be applied. However, if all that was required was

predictions of the SOC stock through a BRT approach, then it may be better

to model the raw SOC stock data directly.

4.4. Relevance of the models for SOC mapping

Models comparisons enable one to come up with recommendations re-

garding the best models for assessing a specific question. Of course, the

quality of the models should be assessed using several criteria as the ques-

tion of interest is asked within a specific context (data availability, nature

of the considered systems, available statistical and modelling knowledge,

computing cost). Several comparison criteria may be defined : the Several

comparison criteria may be defined : the technical knowledge (Know-Q)

and the pedological knowledge (Know-P) needed for fitting, validating and

applying models (Grunwald, 2009). We may add a criterion related to the

nature of the required datasets, again, for fitting, validating and applying

models, and another one related to the performance of the models, assessed

through validation procedures. Although other criteria might be defined,

those might be considered as the main ones for predictive models. The best

models would be those which, given the available Know-Q, Know-P and the

datasets, yield the best performance.

Several studies of SOC mapping include model comparison in order

to provide the best performing model and advices regarding which model

should be used in a specific context. Comparing the results of these differ-
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ent studies is not straightforward since the pedological contexts change from

one study to another. In studies based on the application of geostatistics,

model comparison is usually carried out by comparing simple geostatistical

models with more advanced approaches designed to incorporate covariate

data (e.g. cokriging, McBratney and Webster, 1983, linear mixed models

Lark and Cullis, 2004, or more generally scorpan-kriging models McBratney

et al., 2003). The conclusion is consistently that including variables repre-

senting SOC drivers in geostatistical models improves model performance

(for instance see Kempen et al., 2011; Vasques et al., 2010; Ungar et al.,

2010). The cost of such an improvement is that it leads to an increase of the

Know-P and the Know-Q. On one hand, such models might involve a great

amount of technicality. On the other hand, the availability at observational

sites of information regarding the included drivers is then also required for

the fit, the validation and later on the prediction.

Fewer studies considered the question the other way around by includ-

ing geostatistics in regression-based scorpan models, such as the BRT mod-

els considered here or by comparing regression models to regression-kriging

models. On a 187,693 km2 area, Zhao and Shi (2010) showed that simple

regression trees (RT) exhibited the best performance when compared to re-

gression kriging and artificial neural network-kriging, among other methods.

They concluded that their predictive models mostly rely on their ability to

integrate secondary information into spatial prediction. In our case, the

conclusions are contrasted. The LUg model applied a robust geostatistical

approach to the residuals of the simplest BRT model (the LU model, which

included land use and clay content as the only fixed effects, among the most

important SOC drivers at the national scale of France, Martin et al., 2011).

This approach exhibited comparable but lower performance, in terms of R2,

RPIQ, and RMSPE compared to the more complex regression models (L and
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F) processing all the available ancillary data. Therefore, we conclude that

adding a spatial component to a simple regression model can give similar

improvements to adding more predictors to the model.

Unbiased predictions might be achieved either by BRT modelling on the

original scale (as shown by Martin et al., 2011) or by BRT modelling of the

log-transformed response and applying a geostatistical treatment. When it

comes to mapping, one may wonder if preserving the mean of SOC stock

distributions is more important than preserving the median. The mean

might be more imporant in order to report total SOC stocks at the national

scale, but preserving the median might result in more realistic maps. It is

essentially a modelling choice, as to whether mean-unbiasedness or median-

unbiasedness is required.

4.5. Further recommendations for SOC mapping at the national scale

Our best model (the Fg model) only explained 36% of the SOC varia-

tion. It is possible that local kriging methods, rather than the global kriging

applied here, could lead to improved predictions in some areas, although the

choice of appropriate local neighbourhood sizes then provides an additional

issue. Other regression models could be tested, such as support vector ma-

chines (SVM), random forests (Hastie et al., 2001) or the Cubist modelling

approach (e.g. Bui et al., 2009). These models could result in different resid-

ual distributions but in our opinion, the consequences on the performance

of their spatial couterpart are likely to be limited. Some of them, such as

SVM require more technical knowledge, thus increasing the Know-Q factor,

compared to the BRT models proposed here, for which efficient working

guides have been proposed (Elith et al., 2008). Grunwald (2009) stated that

the future improvements in the prediction of soil properties does not rely

on more sophisticated quantitative methods, but rather on gathering more

useful and higher quality data. Choosing between gathering more data or

improving the modelling is indeed the choice modellers are facing when at-
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tempting to improve SOC maps. We show here that the choice might not

be as straightforward as stated by Grunwald (2009) : at the national scale,

even a simple model based solely on landuse and clay, when complemented

by geostatistics, performed comparably to a model where all the available

ancillary data was included (for France, at the time of the study, these were

land use, soil, climate and npp maps). Therefore, for a country where only

landuse and clay maps were available, the most efficient way to improve

predictions in the short term would certainly be to consider geostatistical

modelling of residuals (i.e. improving the modelling, rather than gather-

ing new ancillary data). Furthermore, other datasets, on the same extent

(i.e. national extent) but with different resolution might be more suited

to geostatistics. Here, the 16x16km2 does not allow for modelling spatial

autocorrelations occurring at small scales. Many studies have demonstrated

such an autocorrelation when more ”local” neighbourhoods can be studied

(Mabit and Bernard, 2010; Don et al., 2007; Rossi et al., 2009; Yun-Qiang

et al., 2009; Spielvogel et al., 2009 with an extent <50km2 and Mishra et al.,

2009 at coarser extents and using a non-systematic sampling scheme).

On the other hand, adding spatial terms to the most complex models only

increased know-Q to our data-analysis scheme. More generally, the higher

the uncertainty in maps of ancillary variables, the more likely it is that

models based solely on SOC spatial dependency or including only few good

quality (in terms of data uncertainty) predictors will outperform complex

models using many ancillary variables.

For France, other SOC predictors could be included in our regression

models, and result in significant improvements. There are different possibil-

ities (Martin et al., 2011), but of course, these improvements depend on the

increase in Know-P and data-collection one is willing to consider. Having a

better soil map is obviously a very good candidate. This is exemplified here

by the drop in the F model performance between the present study and the
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work by Martin et al. (2011).

It is also worth noting that an advantage of using multiple regression

tools, such as the BRT models, comes from studying the fitted relationships

between the response and the predictors, which may in turn bring additional

knowledge. For instance, BRT was used in Martin et al. (2011) to rank the

effects of the SOC stocks driving factors.

5. Conclusion

Based on the results of the present study, and others found in the litera-

ture, we formulate the following recommendations. These recommendations

apply for France but the French diversity in terms of pedoclimatic conditions

might make these recommendations valid for other countries as well. If the

information contained in the relationships between the ancillary variables

and the SOC stocks are strong enough, then standalone robust regression

models such as BRT - which enable one to take into account in a flexible

way non-linearities and interactions exhibited by the datasets - could prove

sufficient for SOC mapping at the national scale. This conclusion is valid

provided that i) care is exercised in model fitting (Elith et al., 2008) and

validating, ii) the dataset does not allow for modelling local spatial autocor-

relations, as it is the case for many national systematic sampling schemes,

and iii) the ancillary data are of suitable quality. However, the results in

this paper demonstrate that it should also be prudent to use geostatisti-

cal methods to check for spatial autocorrelation in the BRT residuals. If

found, which was the case for the simpler of our BRT models (which failed

to capture all the important SOC drivers at a national scale), then a kriging

approach applied to the BRT residuals can provide a more accurate map

of SOC stocks. Furthermore, even if the spatial correlation fails to signifi-

cantly improve SOC predictions globally, it is possible that by mapping the
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BRT model residuals we can highlight regional errors in the BRT model,

and thereby provide information to guide research into further SOC model

development.
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Table 1: Fitted variogram parameters in transformed units and cross-validation statistics.

Matèrn parameters: C0 is the nugget variance, C1 is the partial sill variance, ϕ is a spatial

parameter expressed in km and κ is a smoothness parameter. θ and θ̆ are the validation

statistics before Winsorizing and θw and θ̆w after Winsorizing (for the three models within

the 95% confidence interval). N is the number of plots Winsorized and c is the Winsorizing

constant.

C0 C1 ϕ κ θ θ̆ N c θw θ̆w

LUg 0.112 0.059 95.99 0.40 1.18 0.46 61 2.18 1.000 0.445

Lg 0.086 0.010 11.99 10.00 1.15 0.46 46 2.28 1.000 0.452

Fg 0.082 0.005 16.18 10.00 1.12 0.44 42 2.31 1.000 0.433
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LU LUg L Lg F Fg

RPIQ 1.27 1.38 1.42 1.46 1.42 1.45

R2 0.17 0.28 0.33 0.35 0.34 0.35

RMSPE 3.25 2.97 2.90 2.81 2.89 2.83

RMedSPE 1.61 1.59 1.40 1.45 1.35 1.43

MPE -0.60 -0.02 -0.49 -0.16 -0.48 -0.19

MedPE 0.09 0.51 0.06 0.36 0.07 0.34

Table 2: Performance of the six different models assessed using the 6 performance indices.

Values given are the mean index values over the 200 repetitions of the cross-validation

procedure. All values but for the R2 and RPIQ indices are given in kg/m2.
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Figure 1: SOC stocks (0-30cm) values on the French monitoring network, which were used

in the present study. Areas from 1 to 7 represent various different areas that are mentioned

later in the text. 1: south-west Brittany. 2: part of Basse Normandie. 3: Alsace and part

of Lorraine. 4: part of French Alps. 5: Massif Central. 6: French Pyrenean mountain

range. 7: part of Aquitaine.
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Figure 2: Dowd variograms of the residuals of the LU, L and F models to estimate random

effects of the LUg, Lg and Fg models. Residuals where calculated as the difference between

the log transformed response variable and the BRT model predictions. The variograms

were obtained by fitting the Matèrn models on the full dataset.
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Figure 3: Average prediction error (predicted minus observed values) on each RMQS site

over cross-validation repetitions where it was considered as independent data, with the

LU, LUg, L, Lg, F and Fg models on maps a, b, d, e, g and h respectively. Positive values

indicate a positive bias and vice versa. Improvements from LU to LUg, L to Lg and F

to Fg models are given on maps c, f, and i respectively. For instance, map c gives the

absolute error of the LU model minus the absolute error of the LUg model. Positive values

indicate that adding a spatial component improved predictions at this location. Size of

the dots is an increasing function of absolute errors (or absolute improvement for maps c,

f and i). Crosses are outliers of spatial models fitted on the whole dataset.
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Figure 4: Performance of the six different models assessed using the 6 performance indices.

On each diagram, the values on the x-axis correspond to the aspatial models (BRT only):

the LU, L and F models. Values on the y-axis correspond to the LU, L and F models plus

a spatial term, i.e. the LUg, Lg and Fg models. Horizontal and vertical bars represent

the 95% confidence intervals around mean values over the cross validation repetitions, for

the BRT models only and the BRT with a spatial term models, respectively. The dotted

lines correspond to the y = x function and for the c and e diagrams the y = 0 and the

x = 0 lines were added.
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