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Abstract

Background: In plants and animals there are many classes of short RNAs that carry out a wide range of functions within the
cell; short silencing RNAs (ssRNAs) of 21–25 nucleotides in length are produced from double-stranded RNA precursors by
the protein Dicer and guide nucleases and other proteins to their RNA targets through base pairing interactions. The
consequence of this process is degradation of the targeted RNA, suppression of its translation or initiation of secondary
ssRNA production. The secondary ssRNAs in turn could then initiate further layers of ssRNA production to form extensive
cascades and networks of interacting RNA [1]. Previous empirical analysis in plants established the existence of small
secondary ssRNA cascade [2], in which a single instance of this event occurred but it was not known whether there are other
more extensive networks of secondary sRNA production.

Methodology/Principal Findings: We generated a network by predicting targets of ssRNA populations obtained from high-
throughput sequencing experiments. The topology of the network shows it to have power law connectivity distribution, to
be dissortative, highly clustered and composed of multiple components. We also identify protein families, PPR and ULP1,
that act as hubs within the network. Comparison of the repetition of genomic sub-sequences of ssRNA length between
Arabidopsis and E.coli suggest that the network structure is made possible by the underlying repetitiveness in the genome
sequence.

Conclusions/Significance: Together our results provide good evidence for the existence of a large, robust ssRNA interaction
network with distinct regulatory function. Such a network could have a massive effect on the regulation of gene expression
via mediation of transcript levels.
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Introduction

Plants and animals have many classes of short RNA with function

in regulation of gene expression, including sense-antisense small

interfering RNAs (siRNAs) [3], microRNAs (miRNAs), heterochro-

matic siRNAs (hc-siRNAs), Piwi-interacting RNAs (piRNAs) [4] and

trans-acting siRNAs (ta siRNAs) [5]. These molecules, which we

group loosely with the catch-all term short silencing RNAs (ssRNAs)

are generally of 21–25 nucleotides in length and are created from

double-stranded precursors by processing with the protein Dicer.

The ssRNAs can then act as a guide for AGO nucleases that cleave

target RNA in a sequence-specific manner as part of the RISC

complex. Cleaved RNAs are then either degraded or are template

for RNA-dependent RNA polymerases which can generate another

double-stranded RNA [1]. Short silencing RNAs have been called

‘the dark matter of genetics’ [1] because they are abundant

molecules with a potentially large effect on the mRNA profile of a

cell. There is growing evidence that ssRNAs in plants operate in

cascades [2,6–8]. A single short cascade of secondary ta-siRNAs has

been predicted and verified in Arabidopsis [2], this secondary cascade

is initiated by the presence of the micro RNA (miRNA) mir173 and

propagates to the pentatricopeptide (PPR) locus, AT1G62930, via

the trans-acting small interfering RNA (ta-siRNA) TAS2 and locus

AT1G63130. TAS loci have been shown to target groups of PPR

genes [5] involved in RNA processing [9]. The TAS3 locus,

regulated by mir390 generates ta-siRNAs that regulate auxin

response factors and help modulate the change from juvenile to

adult plant and affect leaf morphology [10,11]. Such cascades could

be of considerable importance in the regulation of many processes.

Given the abundance of ssRNAs in cells it seems that the potential

for cascades or larger networks to exist is huge. These networks

could take the form of multiple instances of these cascades in serial

arrangements or in interlinking networks and have the potential to

form regulatory circuits and switches in a manner similar to that of

the gene expression network, if these networks do exist they could

comprise a huge layer of genetic control and information processing.
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The study of real world networks as mathematical entities has

received a great deal of attention over the last few years. The

mathematical entity that describes a network is called a graph. The

interactors in a graph are called nodes and the links between them

are called edges. Edges in which the interaction can be thought of

as moving in only one direction e.g., a transcription factor that

binds DNA, may be described as ‘directed’, if the interaction may

logically follow either direction e.g., in protein-protein interactions

the edge may be described as ‘undirected’. The number of edges

that come into or out of a node is termed the degree of the node

and the distribution of the number of edges at each node is a

fundamental characteristic of the graph.

Many diverse real world networks, including the internet, food

webs, social interaction networks and protein-protein interaction

networks show what is called a power-law scale free distribution of

degree [12,13]. The existence of ‘hubs’, rare nodes with very high

degree, which are distinct from the majority of nodes that have low

degree, characterize a power law degree distribution. Complex

real-world networks also have path lengths (distance from one

node to another) that are peaked around small values [14] typically

around 6, paths in random networks tend to be larger. The real-

world networks also show greater clustering (the tendency of nodes

to share neighbours) than random networks [15]. Nodes in real-

world networks often have a tendency to associate with nodes of

similar or distinctly not similar degree, a phenomenon termed the

assortativity [16] or dissortativity of the network. Biological

networks tend to show a dissortative pattern in which nodes of

high degree link to nodes of low degree [16].

Random graphs have very different characteristics from real

world networks. In random graphs with a given number of nodes

and edges, edge source and target is chosen at random and the

resulting graphs have a poisson degree distribution in which very

low numbers of nodes have very low or very high degree and most

have similar degree of around the average of the distribution.

The level to which nodes in a graph share neighbours, strictly

speaking the average ratio of the proportion of edges between

neighbouring nodes and the possible number of edges between

them is termed the clustering coefficient, which occupies values

from 0 to 1. Random networks, which typically have clustering

coefficients of 0.05 are largely unclustered, whereas real world

networks show clustering and have higher coefficients of ,0.3,

which suggests a functional modularity [15].

We hypothesised that ssRNA in Arabidopsis thaliana could be

interacting in large scale networks so in order to test for the

existence of a large scale ssRNA network in Arabidopsis thaliana, we

used a computational approach to construct and analyse a network

of predicted ssRNA and transcript or long RNA (lRNA)

interactions and tested its properties relative to real world and

randomly constructed networks.

We expected that a proportion of the networks would be an

artefact of the prediction. Current computational approaches are

quite limited in their ability to resolve the true connections

between the ssRNA and the target/source genes in a sensitive or

specific way. In fact it is difficult to computationally or

experimentally resolve individual ssRNA sources and targets in a

high-throughput way and we are limited by the weakness of the

existing methods, as a result our networks are bound to contain

edges that do not exist in planta. Also the methods we used were

developed with specific classes of sRNA in mind and the

predictions they make may be sub-optimal for other classes. As

in all such studies where initial lines of evidence are being sought

then we can move forward only by being appropriately

circumspect which in this case means making careful comparisons

with the proper carefully constructed control networks. We believe

that by proceeding carefully then we can start to reveal some of the

properties of these networks.

The ta-siRNA that are produced by the targeting of TAS loci by

mirRNA [6,17] cluster along their targets in a 21nt spaced pattern

that is called phasing. The start point or register for the phasing

pattern is set by the targeted cleavage by miRNA and thus allows

for a single transcript to generate different sets of small RNAs

dependent on the position of the original targeting miRNA. Such a

mechanism allows for a particular level of control within the cell.

To model phasing accurately would require the computational

identification of TAS loci and ssRNAs that are in-phase with the

targeting input. For simplification of the network at this early stage

we have not included phasing in our targeting predictions.

Results

Creation of ssRNA networks
Ideally a search for networks would be done with ssRNAs

extracted from a single cell type, indeed from a single cell, as this

would reduce the likelihood of edges being created between

ssRNAs that cannot physically interact because of their presence in

different tissues or cells. Also such a search requires that no

particular ssRNA class, such as miRNA is preferentially enriched

in the sequence set. Although we have extensively searched public

repositories such as GEO and the literature we were not able to

find a sequence set showing all the most desirable properties. We

used a publicly available non-redundant set of sRNAs extracted

from rosette leaves of 6-weeks-old Arabidopsis thaliana plants [18]

(GEO accession GSM118373). The rosette leaf tissue was chosen

because arguably it comprises the single least complex tissue of the

plant ssRNA libraries available. The properties of the sequence set

have been described previously [18]. Prior to network construction

we created a non-redundant sequence set and removed any

ssRNA sequences not matching the TAIR7 version of the

Arabidopsis genome with 100 percent identity.

To model the target and source RNAs, we used the TAIR 7

gene model primary transcript sequences containing introns and

UTRs, which we refer to as long RNA (lRNA) sequences. Any

lRNA either coding or non-coding, with an identical match to an

ssRNA sequence on the positive strand was considered to be a

source for ssRNA. Correspondingly, any lRNA that was

complementary on the positive strand to an ssRNA, with

mismatches tolerated according to microRNA targeting rules,

was considered to represent a lRNA target. Source and target

edges were created between ssRNAs and lRNAs on this basis.

Topology of ssRNA networks is scale-free and like those
of other biological networks

The predicted target and source interactions between ssRNAs

and lRNAs were represented as a graph with lRNA and ssRNA

nodes and two classes of edge corresponding to either source or

target interactions. The resultant network is naturally directed and

contains 39994 ssRNA nodes, 18054 lRNA nodes, 38149 source

edges and 140035 target edges. Statistical analysis revealed three

features of these networks. First, linear modelling shows a

significant relationship between in or out degree of a node and

the occurrence of nodes of given degree (r2.0.93, p,4.18610–9)

(Figure 1, Table 1). The majority of nodes have very low degree,

either in or out, showing a distribution with heavy skew following

the power-law structure found in many real-world networks [12].

This indicates the presence of hub nodes, a small number of nodes

that have high degree. Hub nodes have two functions, providing

the network with robustness to random attacks and reducing the

distance (in number of network steps) that must be travelled from

sRNA Network in Arabidopsis
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Figure 1. Degree distribution and assortativity in various networks. The top row shows the degree distribution for the Arabidopsis rosette
leaf network and the psRNA network in the left and right panels respectively. Degree is represented by K and p(K) is the number of nodes with
degree K divided by total nodes. Black = lRNA in, red = lRNA out, green = ssRNA in, blue = ssRNA out. Knn is the average degree of the nearest

sRNA Network in Arabidopsis
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one point in the network to another, which has implications for

information transfer, keeping the distance a signal must travel to a

minimum. We also found a pattern in the extent to which ssRNA

nodes tend to associate with others of similar or dissimilar degree,

ssRNAs show a pattern of dissortativity (observable as a generally

decreasing correlation in Figure 1) in which high degree nodes

connect preferentially with low degree nodes. Dissortativity occurs

in numerous other biological networks [16]. Dissortativity in a

network can provide it with protection against propagation of

failure once a failure has occurred by keeping the most important

high degree hubs apart from each other. A third network feature

was its high level of clustering. The clustering coefficient in the

ssRNA network was 0.32, which is significantly higher than that in

random networks, which typically have clustering coefficients of

0.05 [15].

The ssRNA network has 3360 separate components (isolated

node ‘islands’ whose nodes share links but have no connections

outside of the ‘island’) and 84.24% of the nodes are in one large

component. The median path length in the ssRNA network (in the

large connected component) is 16, with diameter (longest path) of

28. For comparison we constructed 100 random networks of

equivalent number of nodes and edges and assigned source and

target nodes to each edge at random. In these networks 99.6%

(60.01) of the nodes were in the largest component. This may

indicate distinct modularity in the network, although we cannot

rule out that the initial sequence set did not comprehensively

sample the ssRNA population and missing links have resulted in

fragmentation.

The observation of these network properties is some indication

that the reconstructed ssRNA network represents a real biological

entity and not a network composed of randomly assigned edges.

Clustering in our network is different to that in random networks

and could reflect biological function. Gene expression networks

(GEN) and protein protein interaction networks (PPI) show

clusters comprised of functionally related components, e.g genes

in an operon or a protein complex, thus the clustering of a network

can be an indication of its functional modularity and the clustering

we observe in the ssRNA network could represent such a

functional organisation. We take this as strong evidence that our

ssRNA network is very different from a random network and likely

to represent a real biological object.

Topology in pseudo-sRNA networks generated from
randomly selected 21-mers differs from the ssRNA
network

The frequency with which short (6–10 nt) subsequences occurs

in genomes has been shown to follow a power law [19], some

sequences occur very frequently, much more than others and this

could influence our network predictions. Furthermore, computa-

tional approaches such as ssRNA target prediction have very high

false positive rates. To help rule out that the observed network

structure was caused by random edges influenced by the

underlying structure of the genome we created a network of

identical number of ssRNA nodes as the ssRNA network using

ssRNA sequence selected at random from within A.thaliana lRNA

and carried out network reconstruction as before. The new pseudo

ssRNA (psRNA) network was similar to that produced with

ssRNA, more similar, in fact to the ssRNA network than the

previously generated random network. The degree distributions of

the networks (Figure 1) fit the power law with r2.0.74, p,5.2e-12

(Table 1), indicating that the power law structure in the network

could be a result of the genome repetition structure. However both

the psRNAs and lRNA in this pseudo network are unlike their

equivalent in the sRNA network in that they show an assortative

pattern. An assortative network [16] would be predicted from a

simple model of network construction based on the presence of

repeated sequences in the genome: ssRNA nodes derived from

repeated sequence would connect to other instances of the same

sequence. The difference in patterns indicates a selection for

particular connections in the ssRNA network. Assortative patterns

in a network mean that important hubs are connected to other

important hubs. If hubs are functionally linked, failure of one hub

could have a knock-on effect to another resulting in the failure of

more than one function of the network because of a single hub.

neighbour for nodes with degree K. The middle and bottom row show the assortativity for lRNA edges and ssRNA edges respectively, left panels
show asssortativity for the rosette leaf ssRNA network and right panels show assortativity for the psRNA networks.
doi:10.1371/journal.pone.0009901.g001

Table 1. Networks degree distribution.

Network Degree Slope Intercept (r2) P

ssRNA lRNA In 21.46 21.64 0.93 2.2e-16

lRNA Out 21.4 23.41 0.94 2.2e-16

ssRNA In 23.2 21.01 0.97 4.180e-09

ssRNA Out 22.32 0.35 0.97 2.2e-16

Randomly selected Arabidopsis sequences lRNA in 22.79 0.28 0.9 2e-16

lRNA out 22.27 20.65 0.74 5.3e-12

ssRNA in 21.55 23.21 0.75 2e-16

ssRNA out 23.32 0.65 0.95 2e-16

AGO1 lRNA in 21.22 23.19 0.74 2e-16

lRNA out 21.4 24.22 0.78 2e-16

ssRNA in 22.75 24.55 0.88 1.5e-8

ssRNA out 23.83 1.27 0.97 2.2e-16

Results from linear modelling of degree distributions (K) versus p(K) of different networks.
doi:10.1371/journal.pone.0009901.t001
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Isolated hubs in a dissortative network results in a more robust

network in which failure does not propagate from hub to hub.

Path lengths in the randomly selected sequence network are

larger than those in the ssRNA network with median of 28 and

diameter of 93, which suggests the ssRNA network has selected for

shorter path lengths. Shorter paths help ensure fidelity of signal

transfer from one point to another in a network, the more

connections a signal must pass down, the more likely a signal will

fail to reach its target. The psRNA network also has a larger

number of components and a smaller percentage of nodes in the

biggest component than the ssRNA network (Table 2), which

indicates that the structure of the ssRNA network may have evolved

into fewer components, than would occur simply from the repetitive

structure of the genome. Taken together the differences between

the ssRNA and psRNA network make it seem most likely that the

connections in the real ssRNA network are more than an accident

of genome structure and that they have functional significance.

The mutation of a single node in the network may have
an effect that occurs multiple edges downstream

We predicted that the loss of an ssRNA would have a negative

affect on the accumulation of ssRNAs downstream in the network.

To test this idea we carried out Illumina deep sequencing of

ssRNAs from the rosette leaves of 4-week old wild-type Arabidopsis

and the attex1 mutant of Arabidopsis (Elina et al, in preparation), in

which ssRNA production from the TAS1 and TAS2 ta-siRNA

loci, stimulated by mir173, is blocked. The frequency of ssRNA

sequences from just two independent extractions from wild type

Arabidopsis and attex1 mutants were normalised as described in

Materials and methods. Sequences were then mapped to the

Arabidopsis TAIR7 lRNA sequences and ratios of hit frequency in

wild type relative to attex1 were calculated (Text S1). The

distribution of ratios of ssRNA accumulation at lRNAs is

approximately normal and centered around 1, (Figure 2) with

two small peaks at the tails of the distribution caused by use of a

pseudo-count for lRNAs with ssRNAs in one condition but not

another. The variability of the data in the two replicates was too

high to be able to detect with acceptable statistical likelihood

whether individual lRNAs had differential accumulation in WT or

attex1 plants. Power analysis of the data indicated that the

variability inherent in the data sets was such that we would

require eight independent replicates of equivalent size to those

already done in each condition to detect a significant difference at

the 95% level. At this time such sequencing expense is beyond our

means so we could not complete the experiment. Nonetheless in

the data that we had gathered, we were able to detect hints that

there were effects downstream of the mutation that were

accumulating as would be predicted if ssRNAs were acting in a

network. If the differences in ssRNA accumulation we observed

were due purely to stochastic differences in the physical sampling

and sequencing of DNA we would expect that the apparent

differences as manifest in statistically non-significant differences in

ssRNA accumulation above a threshold would be distributed

randomly throughout the set of lRNAs. To test whether the effect

of the genetic perturbation might propagate via multiple network

nodes down network paths, we looked for paths of the ssRNA

network beginning from any lRNA for which abundance of ssRNA

in the mutant was lower than that in wild-type by a log2 ratio of

less than -1 and moving down to another lRNA only if the

abundance of ssRNA in the mutant was lower than that in wild-

type by a log2 ratio of less than -1. We identified 27 separate

subnetworks, containing 125 genes in total. The largest subnetwork

was made from 38 genes and contained TAS2 and PPRs genes

(Figure 2). These form 32.9 percent of the total number of genes

with reduced loci (38/125). This indicates a bias for reduction in

ssRNA accumulation from lRNAs that are close to the mutated

point in the network and provides some preliminary evidence that

some parts of the ssRNA network exists in vivo. Such a complex

network of ssRNAs could interact to control the expression of

genes and other ssRNAs making up a huge layer of control and

information processing that could contribute to complexity and

regulation at an order similar to transcriptional and post-

transcriptional control of gene expression.

The ssRNA network has numerous network motifs
A further feature of functional networks is the existence of over-

represented patterns of nodes and edges, called network motifs.

Gene expression networks (GEN), the networks created by creating

edges between transcription factor genes and the targets that they

regulate, contain many different kinds of motif that have varied

functions and can confer complex behaviours and signal integra-

tions. A network with processing capabilities would be expected to

contain such motifs. Previous examinations of network motifs have

used networks with only one class of node, [20–22]. In

examinations of GEN the intricate mechanisms of gene expression

are simplified, mRNA and proteins are ignored and represented by

the genes that encode them so that there exist only gene nodes in

the network. To facilitate comparisons with other networks we

simplified our networks so that the only node type was the lRNA,

removing ssRNA nodes and creating edges between lRNAs if a

ssRNA was produced by a lRNA and targeted a second. We

identified network motifs in the simplified network as described in

[20], which generates random networks in tandem and counts the

number of motifs in the random network to make assessments of

the likelihood of the observed number of motifs. The network was

scanned for all possible 3 node subgraphs and the number of each

recorded. The simplified network was compared against rando-

mised networks with the same number of nodes and edges and the

subgraphs that occurred significantly more often than in the

random network were considered important. We found that 7 of 13

possible 3 node subgraphs were present more than in random

networks and we call these motifs. Three of these motifs

corresponded to feed-forward loops and four motifs corresponded

to strongly connected subgraphs (Figure S1). Feed-forward loops

are common in the E.coli and Saccharomyces cerevisiae GEN, the

Caenorhabiditis elegans neuron network and electronic circuits [20]

which all carry out roles in information processing. The appearance

of these motifs may represent an information processing role, such

as wide-scale regulation of gene expression for the ssRNA network.

The second class of motifs, the strongly connected subgraph motifs,

are prevalent in the World-Wide web structure [20] and are

indicative of reciprocal links between pages. In the ssRNA network

this may indicate a high prevalence of sequences that are sources of

ssRNA that can regulate each other reciprocally, such as ssRNAs

from gene families or repeat sequences like transposons.

Table 2. Components in ssRNA networks and random
network.

No. Components (SD) % in Biggest Component (SD)

ssRNA 3360 84.24

Random 14.06 (3.55) 99.6 (0.01)

psRNA 6330 65

AGO1 3968 61

doi:10.1371/journal.pone.0009901.t002
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PPR proteins as hubs and in a network motif
To ascertain whether the ssRNA network was constructed from

particular types of hubs we looked at the identity of the 100 lRNA

nodes in the ssRNA network with highest out-degree. Ten of these

lRNAs encoded PPR proteins [23] and 11 encoded ULP1-

protease family proteins (which may be misannotated transposons)

containing a ULP gene fragment [24]. No other single lRNA

category was as well represented in the top 100. These hubs were

atypical in that the ratio of in-degree to out-degree (2.88 and 2.04

for PPR and ULP, respectively) was much lower than that for the

average of the top 100 nodes (10.58) (Text S2), indicating that they

represent both targets and sources of ssRNAs. This dual role could

indicate that these hubs correspond to points that are concentra-

tions of information flow through the networks. Both PPRs and

ULP proteases are encoded by muligene families so it is possible

that the hubs are attributable to ssRNAs targeting multiple

members of the family. A.thaliana contains 448 PPR genes [25],

which are RNA-binding proteins with roles in RNA editing, RNA

splicing, RNA cleavage and translation within mitochondria and

chloroplasts, [25]. PPRs have also been identified as targets for

ssRNAs in many previous studies in numerous plant species [25],

which may be as a consequence of their importance to the network

as a whole. Further evidence for the notion that PPRs are

important comes from our examination of the previously identified

mir173 cascade [2] in the ssRNA network. One of the largest hubs

in the network involving miRNAs and ta-siRNAs corresponds to

the previously characterised ssRNA cascade. The cascade is

initiated by miRNA mir173 and propagates to the pentatricopep-

tide (PPR) loci, AT1G62930 and AT1G63130 via the ta-siRNA

TAS2 (Figure 3). Our ssRNA network suggests that the cascade of

ssRNA downstream of mir173 is much larger and more complex

than had been previously recognised. The sub-network down-

stream of mir173 has 263 lRNAs and 366 ssRNAs with 1640 edges

(partial network seen in Figure 3, full network in supplemental file

Cytoscape S1). The first layer of ta-siRNA targets contained 38

PPR lRNAs of which 27 were sources of multiple ssRNA. The

subnetwork fully contained the previously identified cascade [2]

including the PPR loci At1g62930 and At1g63130.

As well as being much larger than previously known, the mir173

subnetwork has interesting systematic properties. The cascade

appears to radiate out from three primary co-dependent loci. The

mir173 ssRNA generates secondary ta-siRNA from just 3 loci,

all ta-siRNA loci, AT2G39681 (TAS2), AT2G39675 (TAS1C )

and AT2G27400 (TAS1A). Three secondary ssRNAs (one from

each locus) are capable of targeting the other ta-siRNA loci.

TAS1C produces TTTTGCATATCCTAGAATATA, which

targets both TAS2 and TAS1A. TAS2 produces TATTCGAG-

TATATGCAAAAGA, which targets just TAS1A. TAS1A

Figure 2. Illumina deep sequencing and network analysis of attex1 mutant and wild-type Arabidopsis. a) Distribution of average log2

ratio of ssRNA accumulation at lRNAs in leaves of wild-type Arabidopsis relative to attex1 mutants of Arabidopsis from Illumina sequences collected
from just two biological replicates. B) Network fragment around TAS2 (red node) locus with lRNAs that connect to other lRNAs in which abundance of
ssRNA in the attex1 mutant was lower than that in wild-type by a log2 ratio of less than -1
doi:10.1371/journal.pone.0009901.g002
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produces TTTTGCATATCCTGGAATATG, which targets both

TAS1C and TAS2 (Figure 3). If any one of the secondary ta-

siRNAs is expressed then ssRNA production could be maintained

from the counterpart loci, providing the necessary inputs to

maintain production of ssRNA. This network structure is

functionally similar to a bistable circuit with mir173 as a switch.

The functioning of this potential switch would be reliant on the

ssRNAs being in correct ‘phase’ with each other. Phasing describes

the pattern of start sites in alignments of ssRNAs to a reference

sites and for the switch structure to be active we would expect that

the co-targeting ssRNAs align to their target sequences in such a

way as to properly initiate the generation of the next ssRNA.

The high degree of the PPR genes and the existence of a

complex network structure involving the important miRNA

mir173 supports the notion that the PPRs are important players

in information processing in the network.

AGO 1 and selected ssRNAs form scale-free networks
To rule out the possibility of non-RNAi related molecules in our

data set making up the network structure and to examine whether

different classes of ssRNAs have different network structures we

examined networks constructed from ssRNA sequences immuno-

precipitated with AGO 1 protein. AGO proteins are the ssRNA

selective component of the RISC complex, which executes target

RNA degradation. Sequences were obtained by Illumina deep

sequencing of ssRNAs immunoprecipitated with protein extracted

from mixed floral tissue of 4 week old plants and then combined

into networks as with the ssRNA network previously (see Figure S2

for a summary of sequencing). The resultant AGO1 network

contained 13549 lRNA nodes and 17565 ssRNA nodes respec-

tively and 50666 edges. The network showed strong power law

degree distributions (r2.0.7, p,2.2e-16, Table 1, Figure 4), a large

number of components, substantially more than the random

networks (Table 2), and had assortativity similar to the whole

ssRNA sequence network. The AGO1 network is made from

ssRNA populations from multiple tissues combined, so any two

individual predicted links may not coexist within the same cell type

but the persistence of the biological network-style properties

indicates that the network structure in AGO1 network and the

ssRNA network is a property of RNAi related molecules.

Repetition of ssRNA length sub-genomic sequences in
the genome could be a pre-requisite for ssRNA networks

We hypothesised that the structure of the network may be a

consequence of the size and repetitiveness of the genome.

Repetition of around 21nt sequences is required for a fragment

Figure 3. mir173 sub-network. Network structure downstream from mir173 for 2 edges showing redundant pattern of ssRNAs targeting other loci
in the subnetwork. Three secondary ta-siRNAs (one from each TAS locus) are capable of targeting the other TAS loci. TAS1C produces
TTTTGCATATCCTAGAATATA, which targets both TAS2 and TAS1A. TAS2 produces TATTCGAGTATATGCAAAAGA, which targets just TAS1A. TAS1A
produces TTTTGCATATCCTGGAATATG, which targets both TAS1C and TAS2 [20,21]. The full cascade in Chen et al and discussed in the text contains a
further 2 steps but these are ommitted here for clarity, the full graph can be seen in Cytoscape S1, a Cytoscape file [25]. Yellow squares = lRNAs, red
circles = ssRNAs. Blue edges = ssRNA to lRNA target, green edge = lRNA to ssRNA source. Large red circle = mir173.
doi:10.1371/journal.pone.0009901.g003
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of ssRNA to have any target. We examined this idea by looking at

the 21 mer repetitiveness in Arabidopsis, an organism with extensive

RNAi systems and Escherichia coli an organism without. Frequency

distributions of all overlapping 21 mers selected from within E.coli

K12 and Arabidopsis lRNA sequences both show power laws

(Figure 4), but in E.coli only 0.06% of 21 mers occur more than

once, which if spread randomly through the 4126 proteins in the

E.coli strain would affect only 24. In Arabidopsis 16.9% of 21 mers

occur more than once; meaning 5624 would bear 21 mer identity

with at least one other. We checked the connectivity distributions

of a network generated from ssRNA sequences selected at random

from within the E.coli lRNA sequence. The E.coli network shows a

degree distribution very unlike the power-law distribution of

Arabidopsis ssRNA networks (Figure 3). These calculations show

that a genome arranged like E.coli’s could not support a ssRNA

system of 21 nt ssRNAs and indicate that a large and repetitive

genome is required for a ssRNA network.

Discussion

We hypothesised the existence of large-scale networks of

ssRNAs in Arabidopsis thaliana and have gathered several lines of

Figure 4. Degree distribution and assortativity in networks made from ssRNA co-immunoprecipitated with AGO proteins. ssRNA and
21-mer frequency distributions in Arabidopsis and E.coli a) Degree distribution and assortativity in ssRNA networks constructed from sequences co-
immunoprecipitated with AGO proteins. b) Frequency distributions of all 21-mers in the Arabidopsis and E.coli K12 gene sequences and degree
distribution of a psRNA network constructed from randomly selected E.coli 21-mers.
doi:10.1371/journal.pone.0009901.g004
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evidence in support of our hypothesis using computational

approaches.

The network we assembled from publicly available ssRNA

sequence showed many structural features that indicate it is more

similar to a real network than a randomly created one. The power

law degree distribution, the dissortativity and relatively short path

length are common features of biological networks and these

properties could confer robustness to random failure on the

network. Random failure in an ssRNA network context would

describe any situation that could alter a node and thus the

structure and function of the network. An alteration could include

something like a sequence mutation in a gene that changes a target

or source sequence and thus the targets a ssRNA has. If mutations

occur at random in a sequence, a network with power law degree

distribution is safest. The relatively few important hubs are not

likely to be damaged and the network as a whole will not suffer

much damage under most random failures. In a random network

most nodes have similar importance and the chance of loss of a

valuable node is greater, rendering it weaker overall [12].

Dissortative networks are arranged so that the nodes with high

degree do not connect to similar nodes. Such an arrangement

contributes to network robustness by separating the important

nodes and in the eventuality that one should be affected then the

functioning of the others are not adversely affected directly. Short

path lengths within a network help ensure signal fidelity. To

explain this concept we can consider a communications network.

In such a network each node, (for example an exchange in a

telephone system) is responsible for relaying the signal that it

receives to the next exchange towards a final destination. Each

exchange the signal must travel through is a potential point at

which error can be incorporated, the fewer exchanges, the less the

chance for error. In a ssRNA network the signal would be the

accurate cleavage of lRNAs and production of ssRNAs to the final

target lRNA, and the exchanges the molecules that carry this out.

The ssRNA network we constructed was broken into many

more components than would have been expected at random. A

modular organization like this is biologically attractive as it

suggests that some functions of the ssRNA network have evolved

to be independent from others and do not rely on interactions in

the main node island. However, we cannot conclusively state

that this is the full picture. It is not possible at present to

sequence the ssRNA population to saturation even with deep

sequencing methods, so we cannot yet rule out that such an

organisation is an experimental artefact caused by incomplete

sampling of the ssRNA population. Aside from these structural

indications that the ssRNA network is real, we attempted to

gather experimental evidence that the network exists in planta.

We were not able to answer this question satisfactorily because

of limits on the amount of data we could collect, but there are

tantalising hints in the data we obtained. The indication of

enrichment of lRNAs with affected ssRNA accumulation at

nodes multiple edges downstream of the attex1 mutation relative

to those elsewhere in the ssRNA network is a good indication

that the network functions in planta. Again there is a sampling

concern. It may be that the edges affected are in fact all directly

downstream of the mutation but we were not able to detect the

relevant ssRNA intermediatess in the sample.

In questioning the existence of a ssRNA network we also

questioned what the function of such a network may be. An

obvious function is the wide scale regulation of gene expression by

the targeted degradation of transcript levels. Many large real-

world networks also have the capacity to carry out functions in

information processing, integrating multiple inputs and evaluating

them to create outputs based on input state. One closely related

large-scale network that carries out this function is the transcrip-

tional regulatory network. The complexity of signal processing is

manifest in the ‘wiring’ of such transcriptional circuits, these

wiring patterns have been called network motifs and each can

confer distinct behavours. The network motifs in the ssRNA

network are of the class that are overrepresented and functional in

information processing in GEN [20,21]. One of the motifs, named

an incoherent type 2 feed-forward loop has the capacity to rapidly

activate genetic circuits [22] and may be functioning to rapidly

activate ssRNAs to down regulate target lRNAs. Such a circuit

could very quickly affect gene expression in a cell. Instead of

waiting for a reduction in production of a transcription factor and

degradation of the protein to prevent active transcription of a

target gene and also waiting for the degradation of the mRNA

population already present, a cell can take a different route.

Information processing at the ssRNA level allows widescale

changes in gene expression at source by using the important

molecules, the RNAs, to make and to effect decisions. Nonetheless,

the existence of motifs of themselves, whatever they are doing, is

further evidence that the reconstructed ssRNA network is non-

random, and may be a real biological entity.

Many scale free networks are thought to have evolved through

a preferential attachment mechanism, or ‘‘rich-get-richer’’

mechanism [12] in which nodes with many edges tend to gain

edges at a rate higher than other nodes in the network. Some

hubs in the ssRNA network may be created by a preferential

attachment-like mechanism in which an existing ssRNA gains

new targets by duplication of a target sequence within the

genome. The initially identical copies can both be targeted by the

ssRNA but are free to mutate within certain limits so that over

evolutionary time the sequences may diverge. Subsequent

duplication of the diverged target sequence allows more targets

to be generated as long as the relatively short recognition site is

conserved. Conversely if one of the small ssRNA source

sequences degenerates even slightly the ability to generate the

original ssRNA is lost, creating another related ssRNA with a

different range of targets to the original.

The evolution of a scale free ssRNA network may depend to

some extent on repetitive sequence elements in the lRNAs, our

comparison of the Arabidopsis and E.coli lRNAs suggests that

sufficient repetition is required as initial raw material for a

network. However the differences in path length and assortativity

of networks created from pseudo or actual ssRNA sequences

indicate that genomic sequence repetition does not explain some

significant characteristics of ssRNA networks and that selection of

edges toward a robust network has occurred. The dissortative

nature of the ssRNA networks, for example, implies that many of

the connections created as parts of the genome duplicate are

removed, possibly by mutations in the ssRNA sequence, thereby

‘fine tuning’ its ability to target a lRNA. The shorter path length

implies that the edges are selected for maximal signal transduction

integrity.

Recent discussions regarding ssRNA networks have emphasised

that this is a research area best studied computationally. This is not

strictly true, the major barrier to fully characterising these

networks, indeed characterising whether they truly exist or not is

an experimental one. Mathematical and computational assess-

ments of topology and modelling of network behaviours cannot be

carried out until we can absolutely sample the population of

ssRNAs in a single cell and with certainty identify their source

and target lRNAs. Such problems are to be solved by

experimentalists and only then can the question of ssRNA ‘dark

matter’ be tackled by what some experimentalists see as the ‘dark

arts’ of computational approaches.
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Materials and Methods

High-throughput sequencing of small RNAs
Sequencing was carried out by Illumina sequencing-by-synthesis

[26] using the manufacturer’s provided small RNA sequencing

protocol.

Immunoprecipitation of AGO1 protein
Peptides were designed based on amino acid sequences

deposited in GenBank (AGO1, NM_103737; ). The peptide used

was AGO1N (N-VRKRRTDAPSEGGEGC-C). The peptides

were produced, conjugated to KLH, used to raise rabbit

polyclonal antibodies and the antibodies purified (all done by

Eurogentec, Seraing, Belgium). In a standard immunoprecipita-

tion the starting material was 1g of mixed stages floral tissue of

four week-old plants, grown under long day conditions. The tissue

was ground in liquid nitrogen and proteins were extracted in

3 ml g21 powdered tissue of extraction buffer (20 mM Tris-HCl,

pH7.5; 300 mM NaCl; 2 mM MgCl2; 5 mM DTT; 2% PVPP;

EDTA-free protease inhibitor cocktail (Roche)). Insoluble material

was centrifuged 15 mins at 16,0006g at 4uC and the supernatant

was filtered through a 0.45 mM syringe filter to remove debris.

The extract was precleared for 1 h at 4uC with 25 ml packed

protein A agarose beads (Upstate Ltd., Millipore UK, Ltd.) The

precleared extract was incubated with 10 ug antibody coupled to

25 ml packed protein A agarose beads for 1.5 hrs at 4uC.

Immunoprecipitates were transferred into Poly-prep column

(Bio-Rad) and washed with 10 ml wash buffer (extraction buffer

-DTT, -PVPP, - protease inhibitor, +0.5% Nonidet P-40). Small

RNAs were extracted with TriReagent (Sigma) directly from the

immunoprecipitation beads or from tissue ground in liquid

nitrogen.

Prediction of networks
After removal of adapter sequences and removal of all

sequences fully matching rRNA or tRNAs networks were

predicted using ssRNA sequences as input and using targeting

rules [25] to identify targets from within the TAIR7 lRNA models

(TAIR7_seq_20070320 from http://www.arabidopsis.org). A

ssRNA was predicted to target a lRNA if an alignment could be

made that satisfied the following criteria.

No more than 4 mismatches (counting G-U as half a mismatch)

No more than 2 adjacent mismatches

No more than one bulge in the target

No bulges in the RNA

No adjacent mismatches in positions 2-12 of RNA

No mismatch in position 10 and 11

No more than 2.5 mismatches in position 1-12

Minimum free energy ratio . = 0.7

Searches were carried out using Fasta34 [27] and alignments with

Clustal W 1.83 [28]. Minimum free energy of RNA secondary

structure was calculated with RNAFold [29] and targeting rules

applied to output and parsed using custom Perl scripts.

Statistical analysis and visualisation of networks
Network analyses were carried out using Perl scripts and the

Perl interface to the Boost Graph libraries which implement fast

and peer-reviewed algorithms for graph analyses [30]. Generated

data were analysed using the R statistical computing package [31].

Clustering coefficients of the networks were calculated as described

in [15] for directed graphs. Analyses were run on IBM LS21 blade

cluster with AMD Opteron processor and 16 or 32 Gb of RAM

running Debian 4.0 r3 (Etch). Network visualisation was done with

Cytoscape 1.5.2 [32].

Random network generation
Random networks were generated for comparisons by main-

taining the number of source and target nodes and the degree for

each and randomly reassigning edges between source and target.

Randomly selected sequence networks (psRNA networks) were

created by selecting at random unique ssRNA sized fragments of

equal size distribution to the sequences in the publicly available

ssRNA sequences of [18] and carrying out targeting predictions

with these sequences as before.

Supporting Information

Figure S1 Network motifs in the simplified sRNA network.

Found at: doi:10.1371/journal.pone.0009901.s001 (0.07 MB

PNG)

Figure S2 Size profiles and frequency distribution of AGO

protein co-immunoprecipated ssRNAs sequenced with Illumina

sequencing by synthesis methods. Y-axis shows the size class of

ssRNAs and x-axis the frequency in that size class for the

redundant (green bars) and non-redundant (red bars).

Found at: doi:10.1371/journal.pone.0009901.s002 (0.02 MB

PNG)

Text S1 Table of counts of sRNAs sequenced from Col 0 and

ATTEX1 mutant of Arabidopsis aligining to TAIR7 lRNA.

Found at: doi:10.1371/journal.pone.0009901.s003 (0.03 MB

TXT)

Text S2 HTML file of table of degrees for nodes of high degree

in the ssRNA network, can be viewed with any web-browser.

Found at: doi:10.1371/journal.pone.0009901.s004 (0.04 MB

HTML)

Cytoscape S1 Cytoscape File of mir173 network and extensions

described in Figure 2 and text. Can be viewed with Cytoscape

http://www.cytoscape.org. Node and edge colouring in the

network are as per Figure 3.

Found at: doi:10.1371/journal.pone.0009901.s005 (0.55 MB ZIP)
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