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Abstract

This communique proposes a multivariable super-twisting sliding mode structure which represents an extension of the well-
known single input case. A Lyapunov approach is used to show finite time stability for the system in the presence of a class
of uncertainty. This structure is used to create a sliding mode observer to detect and isolate faults for a satellite system.
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1 Introduction

Sliding mode control has been an active area of research
for many decades due its (at least theoretical) invari-
ance to a class of uncertainty known as matched uncer-
tainty [2]. More recently these ideas have been exploited
extensively for the development of robust observers and
have found applications in the area of fault detection
and fault tolerant control [15,1]. However one of the dis-
advantages of traditional sliding mode control (1st or-
der sliding modes) is the ‘chattering’ due to the discon-
tinuous control action [2]. Higher order sliding modes
(HOSM) remove the chattering effect while retaining the
robustness of first order sliding modes and improving on
their accuracy [3,4]. A disadvantage of imposing an r-th
order sliding mode is the necessity of having s, ṡ..sr−1

available (where s(t) is the switching surface). However
in one special case of second order sliding modes, the
derivative information is not required. This is the so-
called ‘super-twisting’ approach [11]. Until very recently
stability, robustness and convergence rates in higher or-
der sliding mode methods have been analyzed in terms
of homogeneity or geometric arguments [5]. However in
a succession of papers [6,16,14], Lyapunov methods were
employed successfully for the first time to analyze the
properties of the super-twisting algorithm for uncertain
systems. This has opened the door for the integration
of these ideas with other nonlinear tools including gain
adaptation [13,10,7]. However in all these developments
a single input control structure has essentially been con-
sidered. In many situations it is possible by control input
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scaling to transform a multi-input control problem with
m control inputs into a decoupled problem involving m
single input control structures and so the approaches
in [13,10,7] work satisfactorily. Instead, in this commu-
nique, a multi-variable super-twisting structure is pro-
posed, which is then analyzed using an extension of the
Lyapunov ideas from [14]. An example involving a fault
detection problem in a satellite system is used to demon-
strate a situation in which the proposed multi-input
super-twisting structure is useful. The notation used in
the paper is quite standard – in particular, throughout
the paper, ‖ · ‖ is used to represent the Euclidean norm.

2 Problem Statement and System Description

In multivariable sliding mode control and observation,
the objective is to force to zero in finite time a constraint
(or switching) function given by σ(x), where x ∈ R

n is
the state of the dynamical system and σ : Rn 7→ R

m [17].
In calculating the total time derivative of σ, for the case
of conventional (first order) sliding modes, an expression

σ̇(t) = a(t, x) + b(t, x)v + γ(t, σ) (1)

is established where v is the manipulated variable (the
control signal or the output error injection in the case
of observer problems), a(t, x) ∈ R

m and b(t, x) ∈ R
m×m

are assumed to be known, and γ(·) represents unknown
(but usually bounded) uncertainty. If det(b(t, x)) 6= 0
then using the expression v = b(t, x)−1(v̄−a(t, x)) where
the components of v̄ are

v̄i = −k1sign(σi)|σi|1/2 − k2σi + zi (2)

żi = −k3sign(σi)− k4σi (3)
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and k1, . . . , k4 are scalar gains, the system

σ̇i = −k1sign(σi)|σi|1/2 − k2σi + zi + γi(t, σ) (4)

żi = −k3sign(σi)− k4σi (5)

for i = 1 . . .m is obtained. Suppose |γi(t, σ)| ≤ di|σi|
for some scalars di, then if the gains k1 . . . k4 are chosen
properly, it can be proved that σi = σ̇i = 0 in finite time:
see for example [14]. Alternatively if |γ̇i(t, σ)| ≤ d̄i for
some finite gains d̄i, then for appropriate gains k1 . . . k4,
it can be proved that σi = σ̇i = 0 in finite time: see
[3,14]. In the literature such a controller is usually known
as a super-twisting controller [3,11,4].

Suppose instead of (2)-(3) a non-decoupled injection
term

v̄ = −k1
σ

||σ||1/2 + z − k2σ (6)

ż = −k3
σ

||σ|| − k4σ (7)

is used where k1, . . . , k4 are scalars. Then the result is a
set of coupled equations rather than the decoupled struc-
ture in (4)-(5), and the work in [14] cannot be employed
directly. (Note however, if m = 1 then the scalar control
structure in (6)-(7) reverts to (2)-(3). Also in this situ-
ation k2 = k4 = 0 is usually selected.) Substituting (6)
into (1) yields a special case of the system

σ̇ = −k1
σ

||σ||1/2 + z − k2σ + γ(t, σ) (8)

ż = −k3
σ

||σ|| − k4σ + φ(t) (9)

when φ(t) ≡ 0. The term φ(t) in (9) is included here to
maintain compatibility with the more generic formula-
tion in [14], and will be exploited in the example in Sec-
tion 3. The terms γ(t, σ) and φ(t) are assumed to satisfy

||γ(t, σ)|| ≤ δ1||σ|| (10)

||φ(t)|| ≤ δ2 (11)

for known scalar bounds δ1, δ2 > 0.

Remark 1: Note that the uncertainty classes discussed
earlier are a subset of the uncertainty in (10). Also note
the matrix b(t, x) must be known to achieve the struc-
tures in (8)-(9) (and also the decoupled one in (2)-(3)).

Remark 2: Also note that the differential equations in
(4)-(5) and (8)-(9) have discontinuous right hand sides.
The solutions to such equations must therefore be un-
derstood in the Filippov sense [8].

Remark 3: Equations such as (8)-(9) can also appear in
the context of observer problems as will be demonstrated
in Section 3.

Proposition 1 For the system in (8)-(9), there exist
a range of values for the gains k1 . . . k4, such that the
variables σ and σ̇ are forced to zero in finite time and
remain zero for all subsequent time.

Proof: For the system (8)-(9), consider as a Lyapunov-
function 1 candidate

V (σ, z) = 2k3||σ||+ k4σ
Tσ +

1

2
zT z + ζT ζ (12)

where ζ := k1
σ

||σ||1/2
+ k2σ − z. Define the subspace

S = {(σ, z) ∈ R
2m : σ = 0} (13)

then V (σ, z) in (12) is everywhere continuous, and dif-
ferentiable everywhere except on the subspace S. Fur-
thermore it is easy to verify that V (·) is positive definite
and radially unbounded.

Differentiating the expression in (12) yields

V̇ (σ, z) = (2k3 +
k21
2
)
σT σ̇

||σ|| + 2(
k22
2

+ k4)σ
T σ̇ + 2zT ż

+
3

2
k1k2

σT σ̇

||σ||1/2 − k2(σ̇
T z + σT ż)

− k1

(

−1

2

(σT σ̇)(zTσ)

||σ||5/2 +
(żTσ + zT σ̇)

||σ||1/2
)

(14)

then substituting for (8)-(9) it follows from (14) using
straightforward algebra that

V̇ (σ, z) = −(k1k3 +
k31
2
)
||σ||2
||σ||3/2 +

3

2
k1k2

σT γ

||σ||1/2

− (k2k4 + k32)||σ||2 − (k4k1 +
5

2
k1k

2
2)

||σ||2
||σ||1/2

+ k21
σT z

||σ|| + 2k22σ
T z + 3k1k2

σT z

||σ||1/2

− k2||z||2 +
k1
2

(σT z)(zTσ)

||σ||5/2 − k1
zT z

||σ||1/2

+ (2k3 +
k21
2
)
σT γ

||σ|| + (2k4 + k22)σ
T γ

− (k3k2 + 2k21k2)
||σ||2
||σ||

− k2γ
T z +

k1
2

σT γzTσ

||σ||5/2 − k1
zTγ

||σ||1/2

+ 2zTφ− k2σ
Tφ− k1

φTσ

||σ||1/2 (15)

1 Note that in the special case when m = 1, the Lyapunov
function in (12) becomes the one originally proposed in [14].
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for all (σ, z) /∈ S. Then from simple bounding arguments

V̇ (σ, z) ≤ −(k1k3 +
k31
2
)||σ||1/2 − (k3k2 + 2k21k2)||σ||

− (k2k4 + k32)||σ||2 − (k4k1 +
5

2
k1k

2
2)||σ||3/2

+ k21
|σT z|
||σ|| + 2k22 |σT z|+ 3k1k2

|σT z|
||σ||1/2

− k2||z||2 +
k1
2

|σT z|2
||σ||5/2 + (2k3 +

k21
2
)
|σT γ|
||σ||

+ (2k4 + k22)|σT γ|+ 3

2
k1k2

|σT γ|
||σ||1/2

+ k2|γT z|+ k1
2

|σT γ||zTσ|
||σ||5/2 + k1

|zTγ|
||σ||1/2

+ 2zTφ+ k2|σTφ|+ k1
|φTσ|
||σ||1/2 (16)

Using the Cauchy-Schwartz inequality on the inner prod-
uct terms, together with the bounds on the terms ||γ||
and ||φ|| from equation (10)-(11):

V̇ (σ, z) ≤ −(k1k3 +
k31
2
)||σ||1/2 − (k2k3 + 2k21k2)||σ||

− (k1k4 +
5

2
k1k

2
2)||σ||3/2 + k21 ||z|| − (k2k4

+ k32)||σ||2 + 2k22 ||σ||||z||+ 3k1k2||σ||1/2||z||

− k2||z||2 +
k1
2

||z||2
||σ||1/2 + (2k3 +

k21
2
)δ1||σ||

+ (2k4 + k22)δ1||σ||2 +
3

2
k1k2||σ||3/2δ1

+ k2δ1||σ||||z||+
3

2
k1||σ||1/2||z||δ1

+ 2δ2||z||+ k2δ2||σ||+ k1δ2||σ||1/2 (17)

Define x = col(||σ||1/2, ||σ||, ||z||) then from (17)

V̇ ≤ − 1

||σ||1/2x
TΩx− xTΨx (18)

where

Ω =









Ω11 0 Ω13

0 Ω22 Ω23

Ω31 Ω32 Ω33









(19)

with elements

Ω11 := 1
2k

3
1 + k1k3 − δ2k1

Ω13 := − 1
2k

2
1 − δ2

Ω22 := k4k1 +
5
2k

2
2k1 − 3

2k1k2δ1

Ω23 := − 3
2k1k2

Ω31 := Ω13,Ω32 := Ω23

Ω33 := 1
2k1

and

Ψ =









Ψ11 0 Ψ13

0 Ψ22 Ψ23

Ψ31 Ψ32 Ψ33









(20)

with elements

Ψ11 := k2k3 + 2k21k2 − k2δ2 − (2k3 +
1
2k

2
1)δ1

Ψ13 := − 3
4k1δ1

Ψ22 := k4k2 + k32 − (k22 + 2k4)δ1

Ψ23 := −k22 − 1
2k2δ1

Ψ31 := Ψ13,Ψ32 := Ψ23

Ψ33 := k2

It is easy to verify the symmetric matrix Ω > 0 if the
inequalities k1 >

√
2δ2, k2 > 0, k3 > kΩ3 and k4 > kΩ4

are satisfied where

kΩ3 := 3δ2 +
2δ22
k21

(21)

kΩ4 :=
β1

β2
+ 2k22 +

3
2k2δ1 (22)

with the positive scalar β1 = (32k
2
1k2 + 3δ2k2)

2 and the

scalar β2 = k3k
2
1 − 2δ22 − 3δ2k

2
1 .

Likewise the remaining symmetric matrix Ψ > 0 if the
inequalities k1 > 0, k2 > 2δ1, k3 > kΨ3 and k4 > kΨ4 are
satisfied where

kΨ3 :=
9
16 (k1δ1)

2

k2(k2 − 2δ1)
+

1
2k

2
1δ1 − 2k21k2 + k2δ2

(k2 − 2δ1)
(23)

kΨ4 :=
α1

α2(k2 − 2δ1)
+

2k22δ1 +
1
4k2δ

2
1

(k2 − 2δ1)
(24)

in which the scalars α1 := 9
16 (k1δ1)

2(k2+
1
2δ1)

2/k22 and

α2 := k2(k3 +2k21 − δ2)− (2k3+
1
2k

2
1)δ1 − 9

16 (k1δ1)
2/k2.

In order to satisfy both Ω > 0 and Ψ > 0, the ki’s are
chosen as

k1 >
√
2δ2

k2 > 2δ1

k3 > max(kΩ3 , k
Ψ
3 )

k4 > max(kΩ4 , k
Ψ
4 )



























(25)

and hence from (18)

V̇ ≤ − 1

||σ||1/2x
TΩx ≤ − 1

||σ||1/2 λmin(Ω)||x||2 (26)

usingRayleigh’s inequality. DefineX := col( σ
||σ||1/2

, σ, z)

and note that ||X || = ||x|| for all values of the states σ
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and z. Therefore (26) can be written as

V̇ ≤ − 1

||σ||1/2 λmin(Ω)||X ||2 (27)

Using similar arguments to [6], the Lyapunov function
in (12) can be written as V = XTPX for an appropri-
ate symmetric positive definite matrix P ∈ R

3m×3m and
V ≤ λmax(P )‖X‖2 from Rayleigh’s inequality. There-
fore from (27)

V̇ ≤ − 1

||σ||1/2
λmin(Ω)

λmax(P )
V (28)

Because V 1/2 >
√

λmin(P )||σ||1/2, it follows that

V̇ ≤ −αV 1/2, where α =
λmin(Ω)

√
λmin(P )

λmax(P ) (29)

for all (σ(t), z(t)) /∈ S. Note the absolutely continu-
ous trajectories of the Filippov solution to (8)-(9) can-
not stay on the set S \ {0} (i.e the set S from (13) ex-
cluding the origin when both σ = z = 0). This follows
since if (σ(t0), z(t0)) ∈ S \ {0} at the time instant t0,
σ(t0) = 0 and from equation (8), σ̇(t)|t=t0 = z(t0) 6= 0
since (σ(t0), z(t0)) ∈ S \{0}. As a consequence, at least
one component σi(t) passes monotonically through zero
during some (possibly small) time interval T0 ⊂ R con-
taining t0 from the absolute continuity of zi(t) and the
fact that zi(t0) 6= 0. Therefore along the Filippov solution
to (8)-(9), inequality (29) holds almost everywhere, and
thus V (t) is a continuously decreasing function of time.
Then using the ‘Lyapunov Theorem’ for differential in-
clusions in Proposition 14.1 [12], it can be concluded that
the equilibrium point at the origin (σ, z) = 0 is reached
in finite time 2 . Finally substituting for σ = z = 0 in
the right hand side of (8) implies σ̇ = 0 (since γ(0) = 0)
and therefore σ = σ̇ = 0 in finite time as claimed. �

Remark 4: Note the proof given above is constructive and
in particular if the gains are chosen to satisfy (25) where
the scalars δ1 and δ2 are given (10)-(11) and the scalars
kΩ3 , k

Ψ
3 , k

Ω
4 , k

Ψ
4 , which depend on δ1 and δ2, are given in

(21)-(22) and (23)-(24), then from Proposition 1, the
solution to (8)-(9) satisfies σ = σ̇ = 0 in finite time.

Remark 5: These conditions are not identical to the ones
in [6], perhaps because of the different approximations
used to obtain the expressions in (17).

3 Example

The nonlinear rigid body equations of motion of a satel-
lite, with thrusters providing the required torque, can

2 The ‘generalised’ Lyapunov theorem in Proposition 14.1
[12] only requires continuity and not differentiability of V (t)
along the solution trajectories. This property is key to the
proof above, which follows closely the arguments in [13].

be represented in the following form [9]:

ẇ = J−1(T − wxJw) (30)

where T ∈ R
3 are the torques from the thrusters,w ∈ R

3

denotes the inertial angular velocities, J ∈ R
3×3 is a

positive definite inertia matrix, and wx denotes

wx :=









0 −w3 w2

w3 0 −w1

−w2 w1 0









(31)

where w = col(w1, w2, w3) are the rate components in
the three axes. In the event of faults associated with the
thrusters the system in (30) can be re-modelled as

ẇ = J−1(T + f − wxJw) (32)

where f ∈ R
3 represents the unknown torque arising

from the fault. Assuming the inertia matrix J is known
the objective is to create a fault detection scheme for
such a system.One approach is to estimate f fromknowl-
edge of w and T only. For this purpose consider an ob-
server of the form

˙̂w = J−1(T − ŵxJŵ) + ν (33)

where the output error injection signal

ν = k1
σ

||σ||1/2 − ξ + k2σ (34)

ξ̇ =−k3
σ

||σ|| − k4σ (35)

and σ = w − ŵ. Define z = ξ + J−1f then it follows
the time varying vectors σ, z satisfy (8)-(9) where by
definition

γ(σ) = J−1(ŵxJŵ − (σ + ŵ)xJ(σ + ŵ)) (36)

and φ(t) = J−1ḟ(t).

Remark 6: Because of the fact that discontinuities in the
unit vector expression in (9) will only occur when all the
components of σi = 0, the proposed structure is likely
to have improved chattering reduction properties.

During the sliding motion σ = σ̇ = 0 and from (8) this
implies z = 0 since from (36), γ(0) = 0. Consequently,
since z = 0 during the sliding motion, by definition z =

ξ + J−1f = 0. If the fault estimate f̂ is chosen as

f̂(t) := −Jξ(t) (37)

then during sliding f̂ = f . Note that ξ(t) is available in

realtime as the solution to (35) and so f̂(t) from (37) is
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a realtime estimate of thruster faults.
In the simulations, the initial conditions in the satellite

model are w(0) = [−0.0021 −0.0067 0.0253 ] and

J = 1.0e003 ×









1.2757 −0.0040 −0.0230

−0.0040 0.6597 0.0063

−0.0230 0.0063 0.8750









The super-twisting observer gains are chosen as follows;
δ1 = 10, δ2 = 0.5, k1 = 2, k2 = 40, k3 = 5.5625, k4 = 60
which satisfy the conditions of Proposition 1. Figure 1
shows that the state estimation error σ becomes zero in
finite time as does the fault estimation error ef = f̂ − f .
Figure 2 shows that σ = σ̇ = 0 simultaneously at ap-
proximately 0.11 seconds. Figure 3 shows the fault esti-
mates of two simultaneous unknown inputs comprising
two different sinusoids in channels 1 and 3 beginning at
t = 0. Visually perfect replication takes place.
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Fig. 1. States estimation and fault reconstruction errors

4 Conclusion

This communique has presented a novel Lyapunov based
super twisting sliding mode structure for multivariable
situations. This represents a generalization of the well-
known single output case. A situation is presented in
which this multivariable generalization provides a more
elegant solution than trying to employ a decoupled col-
lection of single variable structures.

References

[1] H. Alwi, C. Edwards and C.P. Tan. Fault detection and fault
tolerant control using sliding modes. Springer Verlag, 2011.

[2] V. I. Utkin. Sliding Modes in Control and Optimization,
Springer-Verlag, 1992.

[3] A. Levant.Sliding order and sliding accuracy in sliding mode
control. Int. Journal of Control, 58, pp. 1247-1263, 1993.

0 0.1 0.2 0.3 0.4 0.5
−0.04

−0.03

−0.02

−0.01

0

0.01

Time, sec

σ

0 0.1 0.2 0.3 0.4 0.5
−0.5

0

0.5

1

1.5

2

D
er

iv
at

iv
e 

of
 σ

Time, sec

Fig. 2. Plots of σ and σ̇

0 50 100 150 200 250
−0.02

−0.01

0

0.01

0.02

Time, sec

fh
at

Fig. 3. Fault reconstruction errors

[4] L. Fridman and A. Levant. ”Higher order sliding modes as
a natural phenomenon in control theory” in Robust Control
via Variable Structure and Lyapunov Techniques, F. Garofalo
and L. Glielmo (Eds), LNCIS, 217, 107-133, 1996.

[5] A. Levant. Homogeneity approach to higher-order sliding
mode design. Automatica, 41, pp. 823-830, 2005.

[6] J. A. Moreno and M. Osorio. A Lyapunov approach to
second-order sliding mode controllers and observers. Proc of

the IEEE CDC, Mexico pp. 2856-2861, 2008.

[7] H. Alwi and C. Edwards. Oscillatory failure case detection for
aircraft using an adaptive sliding mode differentiator scheme
Proc of the ACC, San Francisco, pp. 1384-1389, 2011.

[8] A.F. Filippov, Differential Equations with Discontinuous
Righthand Side. Dordrecht, The Netherlands: Kluwer, vol
304, 1998.

[9] M. J. Sidi Spacecraft dynamics and control: a practical
engineering approach. Cambridge University Press, 1997.

[10] Y. B. Shtessel, J. A. Moreno, F. Plestan, L. M. Fridman,
and A. S. Poznyak. Super-twisting Adaptive Sliding Mode
Control: A Lyapunov Design. In Proc of the IEEE CDC,

Atlanta, pp. 5109–5113, 2010.

[11] A. Levant. Robust exact differentiation via sliding mode

5



technique. Automatica, 34, pp. 379–84, 1998.

[12] K. Deimling. Multivalued Differential Equations, Walter De
Gruyer, Berlin, Germany, 1992.

[13] T. Gonzalez, J Moreno and L. Fridman. Variable gain
super-twisting sliding mode control. IEEE Transactions on

Automatic Control, 57, pp. 2100 - 2105, 2012.

[14] J. A. Moreno and M. Osorio. Strict Lyapunov functions
for the super-twisting algorithm. IEEE Transactions on

Automatic Control, 57, pp. 1035-1040, 2012.

[15] L. Fridman, J. Davila and A. Levant. Higher order
observeration of linear systems with unknown inputs. Proc
of the IFAC World Congres Seoul, pp. 4779–4790, 2008.

[16] A. Polyakov, A. Poznyak. Reaching Time Estimation
for Super-Twisting Second Order Sliding Mode Controller
via Lyapunov Function Designing . IEEE Transactions on

Automatic Control, 54, pp. 1951 - 1955, 2009.

[17] Y. Shtessel, C. Edwards, L. Fridman and A. Levant, Sliding
Mode Control and Observation, Birkhauser, 2013.

6


