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Robust fault reconstruction In uncertain linear
systems using multiple sliding mode observers in
cascade

Chee Pin TanMember, IEEE, and Christopher Edward$jember, |IEEE

Abstract—In observer-based fault reconstruction, one of the disturbances to form a new ‘fault’ vector and used a linear
necessary conditions is that the first Markov parameter from ynknown input observer to reconstruct the new ‘fault’ vecto
the fault to the output must be full rank. This paper seeks to A necessary condition in [8], [25], [22] is that the first Mak
relax that requirement by using multiple sliding mode observers ’ o
in cascade. Signals from an observer are used as the output of aparameter of the sy;tem f:onnectmg the fault to the oultput
fictitious system whose input is the fault. Another observer is then Must be full rank. This limits the class of systems to which
designed and implemented for the fictitious system. This process the schemes in [8], [25], [22] are applicable.
is repeated until the first Markov parameter of the fictitious Recently, there have been developments in fault reconstruc
system with respect to the fault is full rank. The result is that tion for systems whose first Markov parameter is not full

robust fault reconstruction can be carried out for a wider class .
of systems compared to other works that also seek to relax the rank. Floguet & Barbot [10], [9] transformed the system into

requirement of a full rank first Markov parameter. In addition, ~ @n ‘output information’ form such that existing techniques
this paper has also investigated and presented the necessarycan be implemented to reconstruct the faults. Higher order

and sufficient conditions as easily testable conditions and also sliding mode schemes have also been suggested [3], [7], [13]
the_ precise numb_er of observers required. A simulation example The work in [13] uses the concept of ‘strong observability’
verifies the effectiveness of the scheme. . . L
together with higher order sliding mode observers. Strong
~ Index Terms—sliding mode observer, robust fault reconstruc- observability has also been exploited in [3] using a hidnarc
tion of observers. Chen & Saif [7] used a bank of high-order
sliding-mode differentiators to differentiate the outpand
. INTRODUCTION estimate the faults from the output derivatives [7]. Flaque

AULT reconstruction is an important area of researc @ [11], [12] suggest the use of exact differentiators to
- X P enerate derivatives of the measurements to ‘create’iaddlt
activity. A fault is deemed to occur when the syste

. ; X . . utputs to circumvent relative degree assumptions. Howeve
being monitored is subject to an abnormal condition, suc] b g P

as a malfunction [6]. The purpose of a fault reconstructio ! the work in [10], 9], [7], [12], [3], [13] does not consid

. . . . disturbances or uncertainty — unless the faults and distaods
scheme is to estimate the fault so that its shape and magnlt%gse augmented and treated as ‘unknown inputs’ in which case

can be understood and precise corrective action can be.taﬁﬁn

However, most fault reconstruction schemes are design 8 number of disturbances plus faults must not exceed the
' IN§Gmber of outputs. This results in stronger constraintscivhi

e et Tl Sl e e s s o
; . ich the resul r licable. [2 xten h
into the framework of the model. These dynamics are usuall ch the results are applicable. Ng al [20] extended the

. .. work of Tan & Edwards [25] to relax the requirement of a
represented as a class of (unknown) disturbances within § rank first Markov parameter by exploiting two sliding

model. The disturbances corrupt the reconstruction s narfr']I . . .
P . SN 5de observers in cascade; signals from the first observer we
and could produce nonzero reconstructions when there are o

I nsidered as outputs of a ‘fictitious’ second system wha h
fauilts, or worse, .mask the effect of a fault. Ther.efor.e, a first Markov parameter of full rank; then using the results
need to be designed so that the reconstruction is robust.

disturbances. Edwarda al.[8] used a sliding mode observeru%o[25]’ a second sliding mode observer is designed based on

: . . . the fictitious system to reconstruct the fault.
to reconstruct faults, with no explicit consideration okth y

. . . This paper builds on the work of [20] i.e. using multiple
disturbances or uncertainty. Tan & Edwards [25] built on th(?ascadtl—:‘od IOobservers in cascade h(gwgver the gbserve?r that
work in [8] and presented a design algorithm for the observ '

% used in this paper exploits a supertwisting structurg [19
using Linear Matrix Inequalities (LMIs) [4], such that the hich will ai hioh f for the faul
Lo gain from the disturbances to the fault reconstructiovr\{ ich will give a higher degree of accuracy for the fault

: A . stimation. The use of sliding mode observers in cascade for
is minimized. Saif & Guan [22] aggregated the faults anﬁnknown input estimation is not new: see for example [23],
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perspective of fault detection, it is less important to dlirees- Assume without loss of generality thatank(M!) =
timate the disturbances/uncertainty. In this paper thitfand ¢, rank(C') = p andrank(C*M?') = #! < ¢, which implies
disturbances are treated differently. Using similar téghes that#' < min {p,q}. Sincerank(C') = p, thenC"' can be
as in [20], signals from an observer are used as outputs oWvatten without loss of generality in the for@! = [ 0 I, ]
fictitious system; the next observer is designed for theificts The signal¢! is assumed to be smooth and an upper bound
system and the signals from this observer are used as outputsts bandwidth is assumed known.
of another fictitious system. The process is repeated until aRemark 1: The assumption that a bound on the frequency
fictitious system whose (first) Markov parameter is full rankontent of the disturbances is known, is common in the
is obtained. The technique in [25] is then used on the (finadpplications literature. This sort of information has besed
fictitious system to robustly reconstruct the fault. Thisules in the development of models of practical engineering syste
in a robust fault reconstruction applicable to a wider clas such as satellites [5] and ships [16] and for process cofit&pl
systems than in [20]. The final fictitious system is found tfor example (where typically the disturbances are assumed t
be in the same framework as [25] which minimizes the be low frequency in character). Insight from the underlying
gain from the disturbances to the fault reconstructiont@it physics is usually employed to decide on the meaningful
reconstructing the disturbances); this enables the &fgorio frequency range of the disturbance. i
be applicable for systems which has less outputs less thafrrom the bandwidth assumption it is possible to write
the sum of faults and disturbance channels (which cannot 1 &
be achieved in [10], [9], [7]). Also, it is found that the & =00s)¢ @
design of previous observers do not affect the sliding nmotiguhere((s) represents a known filter with low-pass character-
of the final observer, which implies that th&, gain from stics of appropriate bandwidth ard is a bounded unknown
the disturbances to the fault reconstruction is affectely orsignal. As in other frequency domain based paradigms such
by the design of the final observer. Furthermore, necessa®/{., and p-synthesis)(s) can be viewed as a ‘weighting
and sufficient conditions are investigated and presented firhction’ [28]. The frequency information about the distur
terms of the original system matrices so that the designgince associated witf(s) will then be incorporated into the
can determine at the outset whether the method is applicablsserver design. Furthermore it is assumed EHat[ogether
or not. The results in this paper also indicate precisely thgth an appropriate number of its derivatives are bounded.
required number of cascaded observers. This identificaﬁonspecific details pertaining to the weighting functi@is) will
the class of systems for which the approach is applicable,bg given in the next section. Also the first derivativefdfis
lacking in [10], [9], [7]. assumed to be bounded by a known constant. This assumption
This paper is organized as follows; section Il describés not restrictive as it only implies that' cannot be an abrupt
the fault reconstruction algorithm, section Ill investggmand step which is easy to detect; slow incipient faults are much
presents the necessary and sufficient conditions, section rhore difficult to detect [6]The objective is to reconstruct f!
shows a simulation example to validate the theory in thispapwhilst minimizing the effects of £ on the fault reconstruction.
and finally section V draws some conclusions. Throughout tifer! = ¢ then the single-observer method in [25] can be used.
paper, a superscript will be used to represent the reculsieh However, ifF' < ¢, then an alternative approach is required. In
in the cascade; for examplé’ indicates thafX is a parameter this situation, this paper proposes the cascade obsetvemsc
for observeri. To raise a variable to a power, it will be placedhown in Figure 1. The next subsection describes the fault
in brackets first; for exampléX )" means that the variabl& reconstruction algorithm and a systematic way of designing

is raised to the power of the components in Figure 1.
Il. THE ROBUST FAULT RECONSTRUCTION SCHEME A. Design algorithm
Consider a system represented in state-space as follows Firstly partition the matrices from (1) as
Al AL M} O 1 1ni-
. 1 _ 1 2 1 _ 1 1 _ 1 p
3:1:A1z1+M1f1+Q1§1,y1:Clx1 (1) A_[A% A}l:|7]\/[_|:M21:|7Q_|:Q% o

wherez! € R"' are the stategy’ € R? are the outputs and where Al is square. Since by assumptigtt = [ 0 I, |
f' € RY are unknown faults — for example actuator faultsindmnk(clMl) = 7, then it follows thatrank(Mj) = 7.

The signals¢' € R" are disturbances present in the systeny the representation abow@! has no particular structure. Set
such as nonlinearities, unmodelled dynamics or unceisint the index variable = 1 and enter the following algorithm:

1st SMO and filter structure 2nd SMO and filter structure k-th SMO

Y Lismo 1 Y L{smo 2

SMO k

Fig. 1. The proposed scheme formed from a cascaded obsetgesfiucture
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1)

2)

Check algorithm termination

Consider the generic uncertain faulty system
and definer® := rank(C*M?). If rank(C'M?) <
rank(M?) andi = n!, then the method in this paper
cannot be used to reconstruct the faults (the justification
of this will be given in Theorem 1 in the sequel) and
terminate the algorithm.

Transform the system to achieve special structures

in the fault and output matrices

For the case when = 1, define MY, := M}, MY, :
M, m!t = p, 0 =0, 21(1)3 = Aé,fl?l = Al /_1?2
a® = MY, = ¢ where¢ is the empty matrix.

Let r* := rank(Mj;"') and define two orthogonal
matricesTi € R4~ )x(@="" pi ¢ Rm'xm’ gnd
T} = diag {1 _p—(i—1yn, (D) "'} such that

TN Miy My tni-p—(Gi-1)h
TZD |:M%;1:|(T21) = 0 O Imt—r? 4)
0 M§2 Iri

where M, € R™*"" is invertible. Then defing? :=
Ti, T, whereT{, := diag {I,i_p,, (D")~', I,_,,: } and

- Ini—p T1i22
17, -—{ 0 le'24 )
0 } 0 ‘ 0 0
4 0 —Miy(Mz)~' 0 0
T{22 | T 0 0 0 [pmi-rt
T17,24 - 0 0 I 0 Ip—?iil—mi
0 I 0 0 (1o
0 0 0 I |[17°1
Define
. . . Ai -
o= oy = e
32 | Ir
All = AHI—Mll2(M52)71A§2 (7)
T} = diag{T3,Iri-1} 8)

Perform the transformations’ — Tiz?, fi— fitl .=
T;f" then A, M*, C* will be transformed into

1GE-1)h
In'—p—(i-1)h
Imi—Ti

©)

. Ai %
Al 4]
[ 3 A}

Ip—m’—Fi=1

17

1(i—1)h
In’—p—(i—1)h

Imi —T‘i

Mj

M { Iy (10)

Tp—mi—Fi—1
9 |17

0 Ci] (11)

3

4)

where
I 0 0 0 | tmit
Ci - D? 0 0 0 I O Ip—7~1—m?
27 0 Ip,mi 0 I 0 0|71
0 0 0 I |t

and M3, = diag {M3,,o'~'Mj;"'}. It can be seen
from the definition ofr? in step 1,M* and M3, in (10),
andC? in (11) that

=1

7 =i—1

= (12)

In this coordinate syster®’ has no specific structure.
If rank(C'M*) = rank(M?*) then go to step 7 and
terminate the algorithm. Otherwise, go to the next step.

) Augment the system with the dynamics of the weight

associated with the disturbance
Assume thatt? is smooth resulting from the following
stable system

€ = Apg' + Bog™ (13)
where ¢+l € RM and A, BY, are matrices to be
chosen by the designer. In addition, assume giat
is bounded. (The motivation and implication of this
assumption, and a way to choogé, and B, will be

discussed in Remark 2). Augment (13) with (3) to obtain
the following system of orden’ := n’ + h

= Az M fHL L Qi i — OiF (14)
wherez® := col(¢, %) and
1h
LG—1)h
Mi In'—p—(i—1)h
Imi—ri
Ip—mi 71
7
[ni—p—(i—1)h
Tp—mi—7i1
- Al 0
where A, = Q@ 7
Q AQ 1

Transform the augmented system to achieve a special
structure in the system matrix

Definem’*! := rank(Aj,). LetU; andU} be invertible
matrices of dimensions:’ — 7* andn’ — p — (i — 1)h
respectively such that

i Ji i\ — 0 I,
U1A31(U2) t= { 0 O+1 } (15)
i A Qb1 ] Imitt
U = | x: o
1Q21 |: 1212 Iml_rl_m1+1

whereQi,,, Q%,, are general matrices with no particular
structure. Also partition

4, 4’32}
Ay Ay,

In'—p—(i—1)h—mi*!
i+1

(16)

Im

U;‘Aaw@l—[
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5)

Introduce a transformation’ — Tz where T% :=
3T} with T} = diag {I;s, U3, Ui, Iy i _mi } @nd

L 0 0] .
Ty = |Q Inip—1n | 0],Q" = |:z ] 17
0 0 ‘Ip 211

Then A*, M*, @', C* will respectively become
AL, 0 0 *

Ai Az * %711 /}112 *
{ﬁ A} s Ay Ay |« | (8)
s : 0 0 Imi+1 *
* 0 0 *
[0 0 | 1in
My 0 | ini—p-mit'—(i-1)h
M{ - M{é 0 Imi+l
|:M§:| 0 0 Tmitl (19)
0 _O, Ip mitl_7Ft
L 0 Mg, |1
QT
0 | L0 G (20)
wheredet(C%) # 0. Partition A} = Ay ] ami
e 2 . 3 = A§2 Ip_mi+1

which from (18) results ind}; = [ 0 I, |
Implement observer i for the augmented system
A sliding mode observer building on second order
supertwisting ideas [17], [19] for (14) is

= AF -G+ G, @ =0 -yt (21)
where the matrice&’;, G, € R™ *? are to be designed.
In particular, choosé&", as

Gi=| 7 |en -]

Ip
where i, € R(™~»)xm""" s chosen such thafl} +
L A%, is stable. Partition component-wise the output
estimation error as’ = col {ey 1r-- ,j/p} As in [19]
the termz’ := col {ul,. vt} is defined by

I 0] (2

o P
‘; —w;-Sign( )Iewl +Z§-7 J=1..,p(23)
Z] - _ﬁ; Sigr‘(ey,j) ’VJ y}ja ]: 1,---,]7 (24)

where !, 3: and~} are scalars to be selected by the
designer. Defing’ := &' — z' and combine (14) and
(21) to obtain

¢ = (A - GiChHe + Gt — Qg (25)

Apply another change of coordinates associated With
to the triple (18) - (20) and’, in (22) where

i . Iﬁi_p .Ei
=75 G
then A, M, C* from (18) - (20) andGt, from (22) are
respectively transformed to be
Al Ap] [ M AN
Ao Aby| 7 |C5MS)| 7 PIol L,

_ Mifi-l—l

(26)

6)

where A, = Aj + L, A%, Ab, = C5 A5 The matrix
Q' retains the structure in (20) after the transformation.

Define
gi ' —p
g5 | 1n

and chooseG! so thatGi = Al,, Gi = Ab, + Al
where AL := diag {)\},...,\;} and the scalars\ >

ﬂéf[i},HQ—w 27)
ey

0,7 =1, ..., p. Partitioning (25) according to (26) - (27)
results in

& = Anel + Mt Qi (28)

B = Ayl + G - Al + 7 (29)
where M}, M} and Q) are defined in (19) - (20).
Equation (29) can be written as

& = (- Alel + 1 (30)
) N fi+1

where(" = G(s) {fiﬂ ] and
A ~i v i iN“Yraor A
G(s) == — [C2M2 0]_A21 (SI - A11) [Ml Ql]
It is obvious¢’ and ¢’ are bounded sincel}, is stable

and fi+1, fit1 and¢+! are bounded by assumption.
Let ¢! = col {¢},....¢}} and definez! = =i + (..
Substitute (23) into (30) and combine W|th (24) to obtaln

'_;-,J = 7W Slgr(ey J)|ey1|2 >‘Z ;J + %  (31)
éj = 7&; Slgr(ey,j) rY] y j + C (32)

where j = 1,...,p. Define constantsl} > |C';?| and
choose the gains from (23) and (24) as

P> 2
(N9 (i) +

di, Ny > 0,05 > df

1)+ 308 — )
V(BT — di)
Then, it can be proved from Theorem 5 in [19] that if

(33) - (34) are satisfied a sliding motion will take place
and forceé; . e =0 in finite time.

(33)

7 > (34)

Process the observer signals to obtain the output of

a system for next observeri + 1

Assume that a sliding motion has taken place, then (23)
and (30) yieldsz = —(* wherez’ := col {z},...,2 }.
Note thatz’ is an available continuous signal since it is
generated fronay ; according to (24). Define’ := —¢f

and partition (25) using (26) - (27) to obtain

W' = (ALt LA’ + B 1 Qe (35)

2 = CLALw' + CLMGfirt (36)
Define zi := (C§)~1zt = | o ™ Substitut-
zy | Ip— m’

ing for the partitions ofA} from step 4 andMg from
(19) into (36) results in

Z(ZJ = [ 0 Ipin ] w' (37)
i A i 0 0 i
z = Apu'+ { 0 i, }f“ (38)
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7

Filter 2} in real-time to obtainz} as follows: Remark 2: The purpose of the assumption that the (un-
y i P known) signal? is obtained as the output of the low pass filter
Zp = oalzptaly, o €Ry in equation (13), and the subsequent filtering of the (known)

0o 0 } Fi+1(39) signal z; in (39), is to achieve the recursive formulation in
0 a'Mi, (40) - (41) where the faults and disturbances appear in the
L . . ‘state’ equation. It should be noted that there is no ‘phalsic
The purpose 9f filteringz;, will be dlscusseq in Re- filtration of the disturbances: the filter in (13) only imi¢hat
mark 2. Combine (35), (39) and (37) to obtain ¢% is smooth and can be considered to be the output of a low-
Gl = ALl g il il gitleitlgg)  pass filterGY(s) i= (s — Ag) ! By, driven by an unknown
yitl = itlgitl (41) S|gnalgl_+1. The ch_mce of_Ag2 and 35 is not unique. In this
paper, first order linear filter realizations have been chose
wherezi*+! ¢ R*" with nit! := 72¢ — mi+! and although higher order linear filters could equally well have
i i been selected. The crucial decision is the choice of the filte
= [wl] Ly = {Z‘;} , C""'=[0 I,] (42) bandwidth and not the particular choice of filter itself. The
1 ) relationship between the filter paifd,, BE) and the original
By substituting (18) and (19) into (35) and (39)i+! weighting function in (2) i€)(s) = Co(sI — Aa) ™' B where

= —o/z} =+ OéiAéQlUi + {

and M*! can be expanded to be Co=1[1In Opxr—2)n | and
Ay 0 % 0 0 Ab Bgl2 O2 0 0
_ x Al |x 0 0 0 A Bg ... 0 0
A= AL T 0 0 (43)  Aq:= T T B =
* 0 | % —%ZI 0 . Ipfmi“ffi 0 ... 0 A?{Q Bé_Q 0
—ao' 7t — k—1
L atllt 0 ... 0 0 A& BE
0 0 ik Modeling the characteristics of the exogenous disturbance
, M, 0 Int—p—(i—1)h—m 1 using filters is the basis of all th&{,, and p-synthesis
M=\ M7, 0 Imitt (44) paradigms which are based on frequency domain assumptions
0 0 Ip—mitl—5t on the uncertainty. There are also some parallels with the
0 oM, |17 work of [24] in the sense that the uncertainty belongs to a

restricted class of signals. In terms of fault estimatidnisi
%e low frequency components that are important; for exampl
slow incipient faults are the most difficult to identify [6].
To decouple these low frequency faults from low frequency
disturbances is very important (and non-trivial). To cle®os
reasonable values ¢fA,, BY,), let the assumed bandwidth of
¢ bew!, and choosed}, = —kIy, By = kI), wherex € R

If xis chosen to be much larger thas, then¢? ~ ¢+1 and

! - - A ultimately ¢¥ ~ ¢, In step 7 of the algorithm, the effect of
AR = AF, M* - Mkk’ Ckk: Ck,QF = Q_k’mkﬂ = ¢! on f¥ is formally minimized. i
P Also define Qy, @5 tokbe re;peglflvely the 10p * Rermark 3: The approach which has been proposed is simi-
n” —p and bottormp rows of @*. DesignL,, as foII;)ws: lar to the so-called ‘step-by-step’ methods [1], [27], [PI5].
minimize  with respect to the variableBi1 = Ri; >  ag the number of cascade operations increases, in practice,

while Q! has no specific structure. The structure
C*™*1in (42) is due to the structure of} in (18). Then
increment the counterby 1 and return to step 1.
Reconstruct the fault robustly if the Markov param-
eter is full rank

Setk = i. Sincerank(C*M*) = rank(M*), M}, in
(4) and (10) does not exist sing& = ¢. As a result,
chooseT} = I, -1 = fFF1 = f* (see step 2). Set

0, Ri2, W1,y subject to: the accuracy of the estimation which is achieved degrades
Ri1AF + Rip Ak + () (%) (%) [14]. However, as argued in [2], the use of the supertwisting
(R11Q% + R12QH)T  —yI, 0 <0 (45) structure gives optimal performance at each step at least,

(W AE)T 0 —1, and obviates the need to approximate the equivalent injecti

_ _ signals via sigmoidal approximations or low pass filteriig o
where (x) are terms that make the inequality (45}iscontinuous injection signals.

_ _ i
symmetric, W := [W, ch2/€2)—1} (C5)~" Ri2 == Sincen’ = ni +h (step 3) anchi*! = 71t — mi+! (step 6),
[ Riai 0 ],Rizr € RV -Px(@=9) Then calculate it can be shown that
L% = (R11) "' R121. When sliding motion has occurred i1 . 1 , , ,

o 2 “ L ) I ot T (5 _ 3 J 1
reconstruct the fault using® := Wz, From [25], f¢ 7 =70 th=m™ = n'=(i-1h=Xj_ym’+n" (47)
will reconstruct f* and a function of”; the design of  Theorem 1: If rank(C" M™) < rank(M™) then the
L% and W) in this step minimizes the; gain fromé&*  fault can never be fully reconstructed. i
to f*. The reconstruction of! can be obtained from Proof: From (9), it can be seen thjfi hasn’—(i—1)h—p

Sl ph—In—1  2\—1 el —1 Fk rows and therefore’ — (i — 1)h — p > 0. Substituting forn’

Fr= )T T (46) from (47) results in

whereT} is defined in (8). nl =S _ymi —p >0 (48)
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Sincem™! = rank(A%,) and knowing thatd}, hasm’—r? process needs to be reversed and applied times toT}, T3
rows (see step 4), it is obvious that*t! < m‘ hence resulting and 7.
in0<m’<m~! <..<m?><m!=p. It follows from FromT} remove (fromI}, andTy, in step 2) the sub-blocks
(48) thatm® = 0 wheni > n'. From (4), it is clear that associated with the last' —m’ states (i.e. the lash' — m’
rt < m® and thereforer’ = 0 wheni > n!. Then from columns together with the relevant rows to make and T},
(12),# =" wheni > n! which results inrank(C*M") = square and invertible). Then add® states to the bottom of
rank(C™ M™ ) wheni > n!. This means that if observer the state space, by augmenting the truncaféd 77, with
cannot reconstrucf?, then subsequent observers will not bé,,., and then remove the firgt rows and columns. Repeat
able to either, and the scheme in this paper is not feasile.this process — 1 times. Define the first transformation to be
Remark 4. Notice from the structure oft**! in (43), the applied to the state of the original system&s:= T , T
matrix L’ appears only in t_he lagt columns ofA’. From the whereT | := diag {fnl_z?: . (Di)717]'2i:lmj} and
structure ofC**! in (42), it is clear that.! affects only thep =t =1

output states of**+1, and hencel! will not affect the sliding ‘ A _ M My (Miy)~1 0
motion of observeri + 1 and also all subsequent observersy, ,.=| ™ ~ .7':(1)’” - I 7]\4%{ 12 022 0}
Also, it is obvious thaty; does not affect subsequent observers Sioymd 4

as it vanishes during sliding motior&@( = 0). As the fault
reconstruction in step 7 is performed during sliding motio
of observerk, it can therefore be concluded that the gains Q
previous observersL{,, A and subsequentlg;, G) can be
arbitrarily designed as they will not affect the quality bkt
fault reconstruction, and only observeneeds to be designed
as described in step 7. i

Notice that for systems to i, the number of potential faults
main as;. Therefore, the transformation for the fault applied
the original system is identical tﬁ} defined in step 2.

From T% in (17), remove the first: rows and columns
(because it is applied to the augmented system) and re-
peat the process that was applied T¢. The second state
transformation be applied to the original system7is =

J . . . .
The method proposed in Section Il is feasible if and Om?,tep of thek-th iteration, it is clear that the coordinate
if the following are satisfied ransformation in step 2 is performédtimes, whereas the

transformation in step 4 is performed onty— 1 times. For
kasrky — k 1
2; Xﬁféger]\\/i ri E;;/aeng(é\é\ b)l'eleri;ﬁr;ﬁoﬁoig . convenience of analysis in this section, the transformatiG

. - ) ) . andT, (steps 2 and 4 of the algorithm) are also performed on
It is of interest to find existence conditions for the methogq 1.t system.

proposed in this paper in terms of the original matrices
Al M C!, so that it can be easily ascertained from the
beginning whether the method proposed in this paper is-appli T,: = TETE T 2. T2T (49)
cable or not. To conveniently analyze the existence canditi T,. — mpkpk=1 p3p2p1 50
A, M*, C* will be transformed into a special structure. fe Ut A A (50)

Define T}, := T;T! and also the following matrices

Then perform the change of coordinates such that—
A. Overall coordinate transformation T.xt, f'w— fk .= T;fl. By using the relationship in (4)
In the following analysis; is an integerl < i < k unless and (6) - (7) when applying the transformati@p), and (15)
otherwise specified. To achieve a convenient representafio @nd (16) when applying the transformati@y), the following
A, M1, C", parts of the transformatior, T3 andT* (from  structure forA! i T, AY(T;,) ! is obtained:
steps 2 and 4 in the algorithm in Section II-A) will be used.
However, some modifications need to be mad&itdls, T* as FUBARUE) x| 1

1 k j
the structure that will be aimed for will be of different orde | /i i (U1 « : : : ? ,:_Ziflm]
from the original system. Notice that for each observer, the | ' 311@ 2 o
system undergoes two transformations; the first one ingolve 6”2 ;k : : : gnk
T} andT3 which transfc_)rms the state and fault respectively so 0 0 I A A S
that the structures ab/* and C” in (71‘0) - (11) are achieved,; N N S I O pr

the second transformation involves', implemented on the _
augmented system to obtain the structurefin (18). It : S N N N (51)

can be seen from the process described in Section II-A that 0 ol 13 % % |1m®
to get to the system for the next observer design, there is an 0 0l...1 0] % |x [Im2—m3—r?
augmentation of, states (step 3), followed by the removal of * ol % | % | |1r?
the bottomm!® (or p) states due to the sliding motion, and 0 0l 1T0172% [1m?
finally the addition ofm! — m’ states to the bottom of the 0 ol 1olols]|tm'—m2=—r
state vector to obtain the next intermediate system (stepo6) * * % | % 1% [1rt

obtain the system for theth observer, this process is repeated 4 , .
i — 1 times on the original system (of ordet). In order to Where J* := Didiag {(U})~*, .. }. Then by using (4)M*
obtain the transformation matrices for the original systére is transformed tdl, M 1TJ7 ! with the structure
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where the element& will be formally defined below. Define
Hi .= H'H~'..H?H'. It can be seen thall' = I,,.. Then

[USME| 0 0| o0 T tnlesk_ md T
U20 o ol o 8 i kiz-fl ’ define A* which has the structure
0 |Mk 00| 0 [+
; N ; : [ Us AR (US)TT * * * * ||
0 | o0 00 0 |imier (52) UrAL (U5)~" * x| % * | *
0 0 ML 0| 0 |1 0 JE 0 | Ej * %
0 0 0 0 0 Im2—r2 0 0 0 Ei * | %
0 0 0 |Mz3| 0 |12 * * * * * [*
0 0 0[]0 0 [im-=r : 2 KN : S
L 0 0 0 0 ]\/[212_ I’/‘l 0 0 ] Jk—i+1 Ezlz * |
. o . 0 0 0 E2
whererank(Mf;) = q — $¥_,r7. Note thatJ*, M3, and A} N N Y N : : (56)
are square (which determine the column widths in (51) and 0 0 0 (= s
Ak Ak Ak i
(52)), and A7, A3, A3, have no particular structure. Also 0 0 0 0 s
C'—C'T;'=[0 D'], det(D')#0  (53) * * * * * |*
For ease of analysis, it is convenient to first perform a 0 0 0 0 - J:2 :
change of coordinates using the following: 0 0 0 0 ' 0 *
Proposition 1: There exists a change of coordinates such N N *
that A! in (51) can be written as L * * il

UsAbs)-

First, perform the transformatiof/* A'(H')~! to obtain

v

Al = A'in (51) (becausdd! = I,:), from which E{,, EZ,

Lok * | [*Trnlest  mi
Uk Ak (UH) . %mk_,fl can be obtained. Ther/* (and H?) can be calculated, and
Ak, oo x| | |1t it can be shown that7?A'(H?)~!' = A®. The matrices
0 T 1010 % |1m* Ely, EYy, Eqy, B3, can then be obtained from?, and H*
0 0 010 [ |gm*t—mb i1 (andH?) can be calculated to géf*A' (H?)~" = A% Repeat
N ol 5 |5 [ {4 the process untid*~! .= H*~1A!(H*~!)~! is obtained. It
: T T (54 2" be shown that*~! is identical toA! in (54). [ ]
: AR REE From this canonical form, the following subsections seek
0 0f...[J%] 0 [x [1m? to recast Conditions Al and A2 in terms of the original
0 0]..]0]0 % [Im?=—m?=r? system matricesA!, M, C'. The main results in the paper
* x| | k| x| are summarized in the following theorems.
0 0f..]0[J?]x [Im? Theorem 2: Condition A1l is satisfied if and only if
0 0[...[ 0|0 |% [Im'—m?=r
L * * * | x % ]I rank(ZF) — rank(Z*1) = rank(M") (57)
In this coordinate system, the structuresMdf in (52) and whereZ! € R?*% (0 < i < k) is defined by
C"' from (53) remain unchanged. o
Proof: Define a transformation matrigl* (0 < i < k) H1 00 - 0
with the structure =i _ II II - 0 (58)
L 0 0 0 izfl i:72 ) :0
T e B0 me o m
J=k—it1 (55) . .
0 0 I ki 0 wherell’ := C1(A)iM!. i
0 0 0 Igricig, Theorem 3: Condition A2 is satisfied if and only if the
N ” triple (A, Mt C') is minimum phase. i
where E* is The following subsections present constructive proofs fu-T
_Ei(iq (Jk—i+1)—1 07 pm* orems 2 and 3.
_E%(ifl)(‘]k_l-i_l)_l 0 In,:;k—llimkirk—l
0 0|1 B. Proof of Theorem 2
: Condition A1 is satisfied if and only if* = ¢ which implies
Bl ey (TFF)7E 0 | e that M¥, = ¢ (the empty matrix).
_E(zi—l)(i—l)(‘] T TL 0 | kit ki ki Let K! be the lastn' columns of A' in (54) and define
0 0 | prk—it A, = Al — K'(C3)~1C*. Therefore4, is identical toA! in
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(54) except that the last' columns of A, are zero. It can
then be shown thaf' A; ! can be expanded to be Proof: By straightforward induction. [ ]
Corollary 1: The matricess? from (58) and¥’ from (61)

nlo2t  pd i i—
Pl O iglin have equal rank.
0 0 0 0 0] tp—m'—r""  (59) Proof: Definell} := —C*'K*(C3)~! and the following
0 I, O 0 0| m’ matrix which by construction is square and invertible
ok 0] L, 0 0 .. 0
where F is invertible, defined byF? := D'D2?..Di~1Di O I, 0 .. 0
with Dj = diag {Ip_nlj_,;j—l, Jj,IFj—l} @i = H%( H}( Ip 0

By multiplying C*A~! with M* in (52) it can be shown

1 gi—1 01 — i ngi i - EPXq - : : : T
that C* A, 'M' = F*N'" where N* € RP*? is defined by ) B

=Sy rit r? rt -, I P ;
T = o = e From Proposition 4, it is clear thak*'¥’ = =* and hence
0 0 0 0 0 1p—7 (60) rank(¥') = rank(=') since®’ is square and invertible. m
0 M, O 0 o0 Ir From Corollary 1 and Proposition 3, it is clear that
* * * .. % 0 1t rank(2') = Xi_, (i +1— j)ri. Then it follows:
Proposition 2: For all positive integers > i the following rank(Z%) — rank(ZF 1)

matrix identity holds:F*N* = F*N*
Proof: It can be shown that

SE (k41— jyrd = Sho (k- jyrd
=P+ Sk + 1= ) = S (k- )
= Ek 17'j = fk (64)

Fi
L _. _ ) . _ .
F'N'=D'D?..D"1D! D D'N' = Fi D'l D' N*
Notice that the LHS of (64) is given in terms of the original

system matricest!, M, C'. Hence, Condition Al can be re-
cast in terms of the original system matrices as

From the definition ofD?, it can be seen that pre-multiplying
any matrix with D* affects only the topp — 7~ rows of
the matrix. In addition, by knowing that'*! > 7 (since
7+l =: 7 4 rit1) and that the top — 7 rows of N are rank(Z®) — rank(E*1) = rank(M") (65)
zero (see (60)), it can be concluded titt!... DVN? = N°.
Hence the proof is complete.

DefineIl! := C'(Al)'M! and

From the algorithm in section II-A, note that for each
iteration, one observer is needed. Furthermore, the #tgori
is exited at thek-th iteration, which therefore implies thét
IT) 0 0 observers are necessary and suffici
o y and sufficient to reconstruct tiite fa
; Ik m .. o Hence, the results in this section also indicate precidedy t
U= : : - : (61) nhumber of observers that are required. Using the results of
Theorem 1, the scheme in this paper can never reconstruct the

m-t m2 ... 10 1 1l .
© © © faults whenrank(Z" ) — rank(E" ~1) < rank(M?*) which
then the following result can _be established: . results ink < n!. Hence Theorem 2 is proven. O
Proposition 3: The matrix¥* has rank:;_, (i +1 — j)r’ The results of this section now enable the designer to
Proof: It can be easily shown that systematically investigate the success of this scheme. The
FLN? 0 0 designer can construg and increment systematically from
F2N2  FINY 1 until rank (=) — rank(Z-1) = rank(M?) is satisfied, and
Ul = ) ) (62) that value ofi is set to bek. In addition, the user can also
. : . know the number of observers required, as well as when the
FIN' FFINTL L FINY scheme in this paper will fail.
By using Proposition 2 in (62) is equivalent to¥¢ =
diag {F',F,...,F',F'} N where C. Condition A2
N0 0 Assume that Al is already satisfied, i}, = ¢ (the empty
N2 N'' 0 matrix). Then from [25], observer will have a stable sliding
N:=| . _ _ motion if and only if (A%, M* C*) is minimum phase.
1 : e Proposition 5: (A%, M* C*) is minimum phase if and only
Nt NP N if (A', M* C') is minimum phase.

. . . i ; k k k i
By expandingN‘ from (60), it follows thatrank(N') = Proof: The invariant zeros ofA*, M"*, C*) are given by

4201 362 4y (i — 1) 4 ir). SinceF" is square the values of that make the following matrix pencil lose rank
and invertible, the proof is complete. | P [ sr—4AF MF
Proposition 4: DefineR' := —K'(C3)~'. For any positive 1(s) = Cck 0

integeri the following identity holds where P;1(s) is commonly known as the Rosenbrock matrix

CHAYY =CctAl —xi _ cYA)IRICTAM (63)  of (AR, M*,CF). Substitute for A*, M*, C*) from (9) - (11)
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and M}, = ¢. SinceC%, Mk, are square and invertible, thento be the bottom-*! rows of (D**1)~1. From (6) - (7), it

P11(s) loses rank if and onlyP;5(s) loses rank, where can be shown that
sI— AT I =M (M) D ] [ sl = Afy
* sI — Ak 0 D! —Ajg
Pra(s) = W i+l
* — Az, s — Aitl sl *~A11
* 0 = { _AiJrll } = —{1?; (66)

However, Af~" is stable, and hence the only possible

unstable zeros ofA*, M* C*) are the unobservable modessincedet(Di+!) 5 0, any unobservable modes o, , At,)

of (A%, Ak)). (or equivalently, the unobservable modes(afi, A3, )) will
Let P, (s) be the Rosenbrock matrix ofA', M',C"). be a subset of the unobservable modegAjf, Ai1'). m

Then substitute fofA', M*, C*) from (51) - (53) intoPy; (s). If (A*, M, C") is not minimum phase, then a stable sliding

BecauseJ’, My, are nonsingular, and assuming that Al igotion for observek does not exist [25]. But, ifAL, M*, C1)
already satisfiedN/f; = ¢), then it can be shown tha®;(s) is minimum phase, then a stable sliding motion exists for
loses rank if and only if the following matrix pencil losesika observer, and(A¥, A) is detectable. Then from Proposition
~ - 7, (A%, AL)) is also detectable foi < k, which implies that
k Ak(rrky—1 k k 154731
sl _15]2;41(({221 }: [U2 Ok} FI i:ll}([]zk)—l stable sliding motions exist for all previous observerfer
—Ur Az (Uy) 0 Ur] | -4z sition 6). Hence, A2 is satisfied if and only (fl, M*, C?)

Since Uf and U} are invertible, using the Popov-Hautus-IS minimum phase and Theorem 3 is proven. -

Rosenbrock (PHR) rank test [21], the invariant zeros of
(AY, Mt C') are the unobservable modes Ei¥, A%)). It IV. DESIGN EXAMPLE

follows that (A%, M* C*) and (A, M',C') have the same o )
unstable zer(os. ) ( ) The method proposed in this paper will now be demon-

From (35), the reduced order sliding motion matrix fo§trated using a model of a 2-cart system shown in Figure 2.

the i-th observer(i < k) is Aj 4+ L} A%,. In order for the = _
sliding motion matrix to be stable, it requires thati, A%, ) position and velocity of both carts

be detectable. }—* }—*

Proposition 6: The undetectable modes (if any) for ob-
serveri are given by the undetectable modes(df;, A%, ).

Pas(s)=

o b (Ns/m) ¢ (N/m)
ek o (bg) 1o (kg) —» v (V)

Proof: The unobservable modes of obserieare the
unobservable modes 6fli, A%,), which (from the PHR rank
test) are given by the values of that make the following Fig- 2. The schematic diagram of the 2-cart system.
matrix pencil lose rank

- The first cart is connected to a rigid wall via a damper, and
Pi(s) = [ sI in ] is connected to a second cart by a spring. An external force
3 — Ay is then applied to the second cart via an actuator. Assume

o , ; o ; both carts have a nominal masswof 1 kg, the damper has
Substituting from (18) intaPs, (s), it is clear thatPs;(s) 4 nominal constant ob, = 2 Ns/m and the spring has a

loses rank if and only if;,(s) loses rank, where nominal constant of, = 1 N/m. Assume that the positions
sl — Ai 0 of both carts are measurable and the control input is theforc
pi @ Ti command. Assume that the force on the second cart is achieved
32(8) 1= * sl — Ay, . i
N Ji from the force command via an actuator modelled as a first
—4113

order lag with a time constant = 0.2. If the states are the
force, velocity of the first cart, velocity of the second cart
position of the first cart and position of second cart, antéf t
actuator is faulty, then in the notation of (1), the matritiest
describe the system are as follows! = [ 0 I, | and

However, A, is stable, hence values efe C, at which
Pi, (s) lose rank are the undetectable modeg4f,, A%,).

By carrying out the PHR rank test ofd:, A%,) and
substituting from (15) and (16), it is clear that the unolable

modes of( A}, A,) are the unobservable modes(df:, , A%.). 1 90 0 0 o0 1
Therefore the undetectable modes of obseivare the unde- OT _b g _c ¢ 6
tectable modes ofA4?, A%;). o | Al = 1 o o < M= 0

Proposition 7: The unobservable modes ¢fl, A3,) are 0 1 0 0 0 ’ 0
a subset of the unobservable modes(df ™, A5Ht) when O 0o 1 0 0 0

1 < k.
_ Proof: From the proof of Proposition 4%, AL,) and Further suppose that the spring and damper constants are
(A%, Ai;) have the same unobservable modes. Defijé!  imprecisely known; their actual values can deviate respsigt
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by +£2% and+10% of their nominal known values. Thereforethe filter bandwidth and not the particular choice of filtseit.

the state equation of the system becomes Here choosing first order filter representations minimize th
. ordern!. With this choice of( A}, BY) an augmented system
i = (A + oAz + M S (67) of dimensionn! = n'+h = 7( istro%ILced (as in (14)). It can

where AA! is the discrepancy between the known matfix be shown thain? = 2. Then, to obtain the structures in (18)

and its actual value. Notice that the 1st, 4th and 5th rows 0f20), a suitable transformatigh® is 7' = I.

the matrixA! do not contain any uncertainty due to the nature For the first observerL! was chosen so thak(A} +

of the state equations. Hence, any parametric uncertaiity w1 A},) = {-1, -2, -3, -4, —5}. Then Al = diag {3, —4}

appear in the second and third and fourth rowsl&f Equation was chosen yielding the following:

(67) can be placed in the framework of (1) by writing

015 —370.848  —32.160 52.978  5.360
Al = | L, 0 Ab 0 =Ac Ac | 1 gg ~77.886 —349.233 11126 58.205
0 0 0 Ac —Ac ~0.359  —0.068 0.179  0.068

O2x2 Gi = 45.291 4.903 | ,GL=| —6.686 —0.728

o E 7.754  35.883 ~1.397 —5.313

~3.686  —0.728 1.000 0

From (68), the disturbancg' = Ex' will be generated by -1.397  —1.313 0  1.000

the stateg:!, which is in turn generated by the faufit. Notice

that the method in [10] cannot be used on this system as ther&incep —m? = 0, thena! does not exist. It follows that the

is no consideration of the disturban¢é. If the signalsf* parameters for the system associated with the second @bserv
and¢t are augmented to form a new ‘fault’ vector, as in [22)with ordern? = @' — m2? = 5 and the number of outputs
this results in the new ‘fault’ vector having 3 components = 2) are A2, M2, Q? respectively being

The number of outputs in this system is only 2, resulting in a

‘more faults than outputs’ scenario, and hence the method in —10 0 0 —53601 —52.9784 0
[10], [23] is still not applicable. In addition, it can be viéed 0 —10 0 -58.2056 —11.1267| 0} ./
T 0 0 -5 —0.0680 —0.1798], |5 2
that C'M"' = CTATM?' = 051, CH (AN M ' =] 0 5. B : : ’ " | 032

0 1 -1 53134 1.3975| |0

0

Hencerank(Z?) — rank(Z') < rank(M?'), and the method

in [20] will also not be applicable. However, it can be shown
=3\ _ =2\ _ 1 _

thatrank (=) —rank(=") = mnk(M ) (hencek = 3.)’ hepce It is clear thatC?M? = 0, and hence? = 0 which results

the fault can be reconstructed using the method in this paper -

- . : fi'r2 = 0. Then to obtain the structures of (9) - (11), suitable
Z?ef'gcznz g’ ;)b_selrv; r_s ;n;aicgde. It can be established t oordinate transformatioris?, 75 areT? =I5, Ty = 1.

Here the matrices1?, B3 that describet? are chosen as
_ A% = —kly, B3 = kl. The augmented system (14) can
A. Design of observers then be formed. It can be shown thaf = 1. To obtain the
Performing the transformation foA!, M! Ct, Q' given structure (18) - (20) as in step 4, a suitable transformation
in step 2 in the algorithm, where appropriate values faonatrix 72 is
T, Ty are T} = I5, T) = 1. It can be shown that
ME=[5 0 0]", M} =031, Ml =a, C} = I.
From (67) - (68), the disturbance is generatedéis=
E(sI — (A' + AAY))~tM! f1. Since the bounds oAb and
Ac are known, bounds on the crossover frequencies for the
transfer functionGe(s) := E(sI — (A + AAY)~1M! can
be found from Bode diagrams. It was found that 5 rad/s . ) )
comfortably upper bounds the crossover frequencyefs) IEzcan be seen thanl_|s sgable..Hence, a convenlen_t choice
and as a result of the high roll-off rate, at 10 rad/s, an apprdS Lo = 0. Then choosingd{ = diag {3, —4} results in
imate attenuation level of -80 dBs is attained for all pogsib

1 0 0 0.7283 4.6866

cococod
cCorR RO
co~ oo
—ooc oo
oc~ocoo

variations of Ab and Ac. Consequently all the frequency r 0 0 [0 07
content of¢! will be below 10rad/s. In some situations where 0 0 0 0
the disturbance! represents a physical quantity, engineering _52.9784  —5.3601 0 0
judgement and practical experience can be used to define G2 — | _11.1267 —58.2056 G2 =10 o
. . l . . ’ n
suitable bounds on the frequency content of the disturts&ance 10.9469 —58.1377 0 0
see for example [5], [16], [18]. Hence the filter matricesttha 1.3975 9.3134 10
appropriately describe the characteristicst bfare chosen as 7. 6366 0.7283 0 1

Al = —kly, By = kI3, wherex = 10 >> 5. Note the choice
of (A4, BS) is not unique. In this example, first order filterThe filter scalara® was chosen ad0. It follows that the
linear realizations have been chosen although higher ordgstem for observer 3 will be of order®> = 72 — m? = 6
linear filters could equally well have been chosen resuliing and the number of outputs js= 2. The matricesd?, M3, Q3
a different(A¢,, BY) pair. The crucial decision is the choice ofrespectively are
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—10 0 0 0 0 0 0
0 -10 0 0 0 0 0
10 0 -10 0 0 0 0 101,
0 10 0 —10 0 0|0 ’[om}
0 10 0 -5 -5 0 5
0 0 10 0 0 -10 0 e ‘ -
It is obvious thatrank(C3M?3) = rank(M?3), which Fig. 3. The simulation wheré\b = Ac = 0. The left subfigure is the fault

confirms the initial check that three observers are necgssapplied to the actuator. The right subfigure is its recowsin.
and sufficient to reconstruct the fauit'. Finally, a sliding
mode observer can be designed basedAni3, C3, Q3
using step 7 of the algorithm. It is clear that a choice of

D3 = ? 0 placesA3, M3 in the structure of (9) - (10).

ChoosingA? = diag {—3,—4} and minimizing~y subject to
(45) yielded~ = 1.2097, W; = 0 and

o B 10 1s 20 o s E) s 20

0 —17.4555 0 2.9093 _ o _
0 0 0 0 Fig. 4. The left subfigure is the fault reconstruction fyb = 0.2, Ac =
0.02. The right subfigure is the reconstruction with sensor whiiese.
a3 — 0 19.4717 a3 — 0 1.6035
I — O O ) n O 0 a0 Lo
-2 0 1 0 =t 1
0  10.0346 0 1 o |-
B. Smulation results Al ] |
For observer 1, the gains were chosenygds = ) = o o
2+/50, ﬂ} = ﬁ% = 50, 7% = 197.5, *y% = 351.1. For

observers 2 and 3, the same gains were chosen. Firstly, the
nominal uncertainty-free situation will be considered,enéh Fig. 5. The left subfigure shows the componentsg bf The right subfigure
Ab=0,Ac=0= AA! =0 = ¢! = 0. The left subfigure Shows the fictitious signaf.

of Figure 3 shows the applied fault, and the right subfigure
shows the reconstruction. It is clear that the reconstnds

a visually perfect replica of the fault, which shows that a:g]
degradation in accuracy due to the cascade observer sche et

not significant. The remaining simulations are associatiga w

the presence of uncertainty: specifically whah — 0.2 and where the values ok have been varied to investigate the
Ac — 0.02. The left subfigur.e of Figure 5 shows tHe distur?ﬁeCt of bandwidth choices on the performance of the faailt r

bancest! that arise from the applied fault. The left subfigur(gonstrUCtlon scheme. Figure 6 shows the fault reconstmeti

— —4 -3 -2
of Figure 4 shows the fault reconstruction. The right subﬁguvﬂhenf 1_0_19 10’_1:9 10’_19 0 ’10'1’"1 and_zo. Fg)lr thesc?l valtl;es
of Figure 5 showg?® which is a fictitious signal obtained from 20“ t_ b7 ,'f' d t’h : 3(?‘ CotnS' erad y smafier t.an
¢! by performing the operatiog? = L¢! 1 ¢!,¢% = 1¢2 4 ¢2 ), it can be verified thag® is not a good approximation

1 L
(which is the reverse of the fictitious filtering &t to obtaing! of &, and the fau_lt re_constructmn is worse compared to the
using Al = A2 = —xly, BY = B2 = xl,) wherex = 10. It case wherx = 10 in Figure 4. It can be noted however, that

can be seen in Figure 5 thet is almost identical ¢! which the fault reconstruction improves as progressively moves

implies the weighting function for the disturbance using thtowards 10. For the cases \{vhfen:. 29’ 50.and70, the quality
values of AL — A2 — —xl,. BY — B2 — xl, is valid for of the fault reconstruction is indistinguishable fram= 10.
Q — Q [ 9 Q —

this example. Although there is a slight degradation due 'tl'(yese simulation results confirm the claims in Remark 2.

Ab, Ac # 0, the reconstruction is not severely affected @y

(which is significant — being more tha0% of the magnitude V. CONCLUSION

of the fault) because the fault reconstruction scheme hasThis paper has presented a new scheme for robust fault
been designed to minimize the upper bound of fhegain reconstruction, using multiple observers in cascade. d&sgn
from &3 to f! (where €3 ~ ¢U). Then, white noise of from one observer are used as outputs of a fictitious system,
standard deviation0~3 has been added to the sensors and tlaad the next observer is designed based on the fictitious
simulation repeated. The right subfigure of Figure 4 shows tBystem. The novelty of this scheme is that it can reconstruct
fault reconstruction performance. It can be seen that adtho faults in a wider class of systems, compared to previous imeth
the fault reconstruction is noisy, the ‘underlying signial’a ods. In addition, the scheme is formulated into a framework
good approximation to the fault itself. This demonstratest t which enables the minimization of disturbances on the fault

e fault reconstruction scheme can also cope with thetsffec
ﬁensor noise, and is practical.
dditional designs and simulations have been performed,
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Fig.

K =0.001, 0.01

/KL:

6. The left subfigure is the fault applied to the actuatbe right

subfigure is its reconstruction for various values<of

reconstruction. This is particularly useful in cases whiea t
number of outputs is less than the number of disturbances amd

faults, a scenario that will render many other multiple obse
methods inapplicable. Necessary and sufficient conditioms [24]
terms of original system matrices, have been investigdteid.
enables the designer to immediately know if the scheme jg;
applicable, something which is absent in some other maltipl

observer methods. In addition, the results in this papey al
indicate precisely the number of observers in cascade t

(17]

(18]
(19]
[20]

[21]
(22]

al

are required and sufficient. A simulation example verifies th
effectiveness of the scheme.

(1]

(2]

(3]

(4]
(5]

(6]
(7]

(8]
(9]

(20]

[11]

[12]

(23]

[14]

[15]

[16]
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