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Robust fault reconstruction in uncertain linear
systems using multiple sliding mode observers in

cascade
Chee Pin Tan,Member, IEEE, and Christopher Edwards,Member, IEEE

Abstract—In observer-based fault reconstruction, one of the
necessary conditions is that the first Markov parameter from
the fault to the output must be full rank. This paper seeks to
relax that requirement by using multiple sliding mode observers
in cascade. Signals from an observer are used as the output of a
fictitious system whose input is the fault. Another observer is then
designed and implemented for the fictitious system. This process
is repeated until the first Markov parameter of the fictitious
system with respect to the fault is full rank. The result is that
robust fault reconstruction can be carried out for a wider class
of systems compared to other works that also seek to relax the
requirement of a full rank first Markov parameter. In addition,
this paper has also investigated and presented the necessary
and sufficient conditions as easily testable conditions and also
the precise number of observers required. A simulation example
verifies the effectiveness of the scheme.

Index Terms—sliding mode observer, robust fault reconstruc-
tion

I. I NTRODUCTION

FAULT reconstruction is an important area of research
activity. A fault is deemed to occur when the system

being monitored is subject to an abnormal condition, such
as a malfunction [6]. The purpose of a fault reconstruction
scheme is to estimate the fault so that its shape and magnitude
can be understood and precise corrective action can be taken.
However, most fault reconstruction schemes are designed
about a model which does not perfectly represent the system –
since some dynamics are either unknown or do not fit exactly
into the framework of the model. These dynamics are usually
represented as a class of (unknown) disturbances within the
model. The disturbances corrupt the reconstruction signals,
and could produce nonzero reconstructions when there are no
faults, or worse, mask the effect of a fault. Therefore, schemes
need to be designed so that the reconstruction is robust to
disturbances. Edwardset al.[8] used a sliding mode observer
to reconstruct faults, with no explicit consideration of the
disturbances or uncertainty. Tan & Edwards [25] built on the
work in [8] and presented a design algorithm for the observer,
using Linear Matrix Inequalities (LMIs) [4], such that the
L2 gain from the disturbances to the fault reconstruction
is minimized. Saif & Guan [22] aggregated the faults and
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disturbances to form a new ‘fault’ vector and used a linear
unknown input observer to reconstruct the new ‘fault’ vector.
A necessary condition in [8], [25], [22] is that the first Markov
parameter of the system connecting the fault to the output
must be full rank. This limits the class of systems to which
the schemes in [8], [25], [22] are applicable.

Recently, there have been developments in fault reconstruc-
tion for systems whose first Markov parameter is not full
rank. Floquet & Barbot [10], [9] transformed the system into
an ‘output information’ form such that existing techniques
can be implemented to reconstruct the faults. Higher order
sliding mode schemes have also been suggested [3], [7], [13].
The work in [13] uses the concept of ‘strong observability’
together with higher order sliding mode observers. Strong
observability has also been exploited in [3] using a hierarchy
of observers. Chen & Saif [7] used a bank of high-order
sliding-mode differentiators to differentiate the outputs and
estimate the faults from the output derivatives [7]. Floquet
et.al [11], [12] suggest the use of exact differentiators to
generate derivatives of the measurements to ‘create’ additional
outputs to circumvent relative degree assumptions. However
all the work in [10], [9], [7], [12], [3], [13] does not consider
disturbances or uncertainty – unless the faults and disturbances
are augmented and treated as ‘unknown inputs’ in which case
the number of disturbances plus faults must not exceed the
number of outputs. This results in stronger constraints which
must be satisfied, and hence a smaller class of systems for
which the results are applicable. Nget al.[20] extended the
work of Tan & Edwards [25] to relax the requirement of a
full rank first Markov parameter by exploiting two sliding
mode observers in cascade; signals from the first observer were
considered as outputs of a ‘fictitious’ second system which has
a first Markov parameter of full rank; then using the results
in [25], a second sliding mode observer is designed based on
the fictitious system to reconstruct the fault.

This paper builds on the work of [20] i.e. using multiple
cascaded observers in cascade, however the observer that
is used in this paper exploits a supertwisting structure [19]
which will give a higher degree of accuracy for the fault
estimation. The use of sliding mode observers in cascade for
unknown input estimation is not new: see for example [23],
[26], [15], [2]. However the work in [15] assumes full state
measurement, whilst [2], [26] do not consider any external
disturbances. Although [23] considers faults and uncertainties,
they are aggregated and are both treated as unknown inputs
– this introduces considerable conservatism since from the
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perspective of fault detection, it is less important to directly es-
timate the disturbances/uncertainty. In this paper the faults and
disturbances are treated differently. Using similar techniques
as in [20], signals from an observer are used as outputs of a
fictitious system; the next observer is designed for the fictitious
system and the signals from this observer are used as outputs
of another fictitious system. The process is repeated until a
fictitious system whose (first) Markov parameter is full rank
is obtained. The technique in [25] is then used on the (final)
fictitious system to robustly reconstruct the fault. This results
in a robust fault reconstruction applicable to a wider classof
systems than in [20]. The final fictitious system is found to
be in the same framework as [25] which minimizes theL2

gain from the disturbances to the fault reconstruction (without
reconstructing the disturbances); this enables the algorithm to
be applicable for systems which has less outputs less than
the sum of faults and disturbance channels (which cannot
be achieved in [10], [9], [7]). Also, it is found that the
design of previous observers do not affect the sliding motion
of the final observer, which implies that theL2 gain from
the disturbances to the fault reconstruction is affected only
by the design of the final observer. Furthermore, necessary
and sufficient conditions are investigated and presented in
terms of the original system matrices so that the designer
can determine at the outset whether the method is applicable
or not. The results in this paper also indicate precisely the
required number of cascaded observers. This identificationof
the class of systems for which the approach is applicable, is
lacking in [10], [9], [7].

This paper is organized as follows; section II describes
the fault reconstruction algorithm, section III investigates and
presents the necessary and sufficient conditions, section IV
shows a simulation example to validate the theory in this paper,
and finally section V draws some conclusions. Throughout the
paper, a superscript will be used to represent the recursionlevel
in the cascade; for exampleXi indicates thatX is a parameter
for observeri. To raise a variable to a power, it will be placed
in brackets first; for example(X)i means that the variableX
is raised to the power ofi.

II. T HE ROBUST FAULT RECONSTRUCTION SCHEME

Consider a system represented in state-space as follows

ẋ1 = A1x1 +M1f1 +Q1ξ1, y1 = C1x1 (1)

wherex1 ∈ R
n1

are the states,y1 ∈ R
p are the outputs and

f1 ∈ R
q are unknown faults – for example actuator faults.

The signalsξ1 ∈ R
h are disturbances present in the system,

such as nonlinearities, unmodelled dynamics or uncertainties.
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Fig. 1. The proposed scheme formed from a cascaded observer/filter structure

Assume without loss of generality thatrank(M1) =
q, rank(C1) = p andrank(C1M1) = r̄1 ≤ q, which implies
that r̄1 ≤ min {p, q}. Sincerank(C1) = p, thenC1 can be
written without loss of generality in the formC1 =

[
0 Ip

]
.

The signalξ1 is assumed to be smooth and an upper bound
on its bandwidth is assumed known.

Remark 1: The assumption that a bound on the frequency
content of the disturbances is known, is common in the
applications literature. This sort of information has beenused
in the development of models of practical engineering systems
such as satellites [5] and ships [16] and for process control[18]
for example (where typically the disturbances are assumed to
be low frequency in character). Insight from the underlying
physics is usually employed to decide on the meaningful
frequency range of the disturbance. ♯

From the bandwidth assumption it is possible to write

ξ1 = Ω(s)ξk (2)

whereΩ(s) represents a known filter with low-pass character-
istics of appropriate bandwidth andξk is a bounded unknown
signal. As in other frequency domain based paradigms such
asH∞ andµ-synthesis,Ω(s) can be viewed as a ‘weighting
function’ [28]. The frequency information about the distur-
bance associated withΩ(s) will then be incorporated into the
observer design. Furthermore it is assumed thatξ1, together
with an appropriate number of its derivatives are bounded.
Specific details pertaining to the weighting functionΩ(s) will
be given in the next section. Also the first derivative off1 is
assumed to be bounded by a known constant. This assumption
is not restrictive as it only implies thatf1 cannot be an abrupt
step which is easy to detect; slow incipient faults are much
more difficult to detect [6].The objective is to reconstruct f1

whilst minimizing the effects of ξ1 on the fault reconstruction.
If r̄1 = q then the single-observer method in [25] can be used.
However, ifr̄1 < q, then an alternative approach is required. In
this situation, this paper proposes the cascade observer scheme
shown in Figure 1. The next subsection describes the fault
reconstruction algorithm and a systematic way of designing
the components in Figure 1.

A. Design algorithm

Firstly partition the matrices from (1) as

A1 =

[
A1

1 A1
2

A1
3 A1

4

]

, M1 =

[
M1

1

M1
2

]

, Q1 =

[
Q1

1

Q1
2

]
ln1−p

lp

whereA1
1 is square. Since by assumptionC1 =

[
0 Ip

]

andrank(C1M1) = r̄1, then it follows thatrank(M1
2 ) = r̄1.

In the representation above,Q1 has no particular structure. Set
the index variablei = 1 and enter the following algorithm:
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1) Check algorithm termination
Consider the generic uncertain faulty system

ẋi = Aixi +M if i +Qiξi, yi = Cixi (3)

and define r̄i := rank(CiM i). If rank(CiM i) <
rank(M i) and i = n1, then the method in this paper
cannot be used to reconstruct the faults (the justification
of this will be given in Theorem 1 in the sequel) and
terminate the algorithm.

2) Transform the system to achieve special structures
in the fault and output matrices
For the case wheni = 1, defineM̄0

11 := M1
1 , M̄

0
12 :=

M1
2 ,m

1 := p, r̄0 := 0, Ã0
13 := A1

3, Ã
0
11 := A1

1, Ā
0
Ω =

α0 = M̄0
22 = φ whereφ is the empty matrix.

Let ri := rank(M̄ i−1
12 ) and define two orthogonal

matricesT i
2 ∈ R

(q−r̄i−1)×(q−r̄i−1), Di ∈ R
mi×mi

and
T i

D := diag
{
Ini−p−(i−1)h, (D

i)−1
}

such that

T i
D

[
M̄ i−1

11

M̄ i−1
12

]

(T i
2)

−1=





M i
11 M i

12

0 0
0 M i

22





lni−p−(i−1)h

lmi−ri

lri

(4)

whereM i
22 ∈ R

ri×ri

is invertible. Then defineT i
1 :=

T i
12T

i
11 whereT i

11 := diag
{
Ini−p, (D

i)−1, Ip−mi

}
and

T i
12 :=

[
Ini−p T i

122

0 T i
124

]

(5)

[
T i

122

T i
124

]

=











0 0 0 0
0 −M i

12(M
i
22)

−1 0 0
I 0 0 0
0 0 I 0
0 I 0 0
0 0 0 I











lmi−ri

lp−r̄i−1−mi

lri

lr̄i−1

Define

Ãi
3 := (Di)−1Ãi−1

13 =

[
Ãi

31

Ãi
32

]
lmi−ri

lri
(6)

Ãi
1 := Ãi−1

11 −M i
12(M

i
22)

−1Ãi
32 (7)

T i
f := diag

{
T i

2, Ir̄i−1

}
(8)

Perform the transformationsxi 7→ T i
1x

i, f i 7→ f i+1 :=
T i

ff
i thenAi,M i, Ci will be transformed into

Ai 7→
[
Ai

1 Ai
2

Ai
3 Ai

4

]

=









Āi−1
Ω 0 ⋆

⋆ Ãi
1 ⋆

⋆ Ãi
31 ⋆

⋆ 0 ⋆
⋆ ⋆ ⋆









l(i−1)h

lni−p−(i−1)h

lmi−ri

lp−mi−r̄i−1

lr̄i

(9)

M i 7→
[
M i

1

M i
2

]

=









0 0
M i

11 0
0 0
0 0
0 M̄ i

22









l(i−1)h

lni−p−(i−1)h

lmi−ri

lp−mi−r̄i−1

lr̄i

(10)

Ci 7→
[

0 Ci
2

]
(11)

where

Ci
2 =

[
Di 0
0 Ip−mi

]







I 0 0 0
0 0 I 0
0 I 0 0
0 0 0 I







lmi−ri

lp−r̄i−1−mi

lri

lr̄i−1

and M̄ i
22 := diag

{
M i

22, α
i−1M̄ i−1

22

}
. It can be seen

from the definition of̄ri in step 1,M i andM̄ i
22 in (10),

andCi in (11) that

r̄i := r̄i−1 + ri (12)

In this coordinate systemQi has no specific structure.
If rank(CiM i) = rank(M i) then go to step 7 and
terminate the algorithm. Otherwise, go to the next step.

3) Augment the system with the dynamics of the weight
associated with the disturbance
Assume thatξi is smooth resulting from the following
stable system

ξ̇i = Ai
Ωξ

i +Bi
Ωξ

i+1 (13)

where ξi+1 ∈ R
h and Ai

Ω, B
i
Ω are matrices to be

chosen by the designer. In addition, assume thatξi+1

is bounded. (The motivation and implication of this
assumption, and a way to chooseAi

Ω andBi
Ω will be

discussed in Remark 2). Augment (13) with (3) to obtain
the following system of order̄ni := ni + h

˙̄x
i
= Āix̄i + M̄ if i+1 + Q̄iξi+1, yi = C̄ix̄i (14)

wherex̄i := col(ξi, xi) and

M̄ i =











0 0
0 0

M i
11 0
0 0
0 0
0 M̄ i

22











, Q̄i =











Bi
Ω

0
0
0
0
0











lh

l(i−1)h

lni−p−(i−1)h

lmi−ri

lp−mi−r̄i−1

lr̄i

Āi =









Āi
Ω 0 0

⋆ Ãi
1 ⋆

Q̄i
21 Ãi

31 ⋆
⋆ 0 ⋆
⋆ ⋆ ⋆









lih

lni−p−(i−1)h

lmi−ri

lp−mi−r̄i−1

lr̄i

whereĀi
Ω :=

[
Ai

Ω 0

⋆ Āi−1
Ω

]

.

4) Transform the augmented system to achieve a special
structure in the system matrix
Definemi+1 := rank(Ãi

31). LetU i
1 andU i

2 be invertible
matrices of dimensionsmi − ri andni − p − (i − 1)h
respectively such that

U i
1Ã

i
31(U

i
2)

−1 =

[
0 Imi+1

0 0

]

(15)

U i
1Q̄

i
21 =

[
Q̄i

211

Q̄i
212

]
lmi+1

lmi−ri−mi+1

whereQ̄i
211, Q̄

i
212 are general matrices with no particular

structure. Also partition

U i
2Ã

i
1(U

i
2)

−1=

[
Ãi

11 Ãi
12

Ãi
13 Ãi

14

]
lni−p−(i−1)h−mi+1

lmi+1
(16)
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Introduce a transformation̄xi 7→ T̄ ix̄i where T̄ i :=
T̄ i

2T̄
i
1 with T̄ i

1 := diag
{
Iih, U

i
2, U

i
1, Ip+ri−mi

}
and

T̄ i
2 :=





Iih 0 0

Q̃i Ini−p−(i−1)h 0
0 0 Ip



 , Q̃i :=

[
0

Q̄i
211

]

(17)

Then Āi, M̄ i, Q̄i, C̄i will respectively become

[
Āi

1 Āi
2

Āi
3 Āi

4

]

=









Āi
Ω 0 0 ⋆

⋆ Ãi
11 Ãi

12 ⋆

⋆ Ãi
13 Ãi

14 ⋆
0 0 Imi+1 ⋆
⋆ 0 0 ⋆









(18)

[
M̄ i

1

M̄ i
2

]

=











0 0
M̄ i

11 0
M̄ i

12 0
0 0
0 0
0 M̄ i

22











lih

lni−p−mi+1−(i−1)h

lmi+1

lmi+1

lp−mi+1−r̄i

lr̄i

(19)

[
Q̄i

1

0

]
lni−p+h

lp
,
[

0 C̄i
2

]
(20)

wheredet(C̄i
2) 6= 0. Partition Āi

3 =

[
Āi

31

Āi
32

]
lmi+1

lp−mi+1

which from (18) results inĀi
31 =

[
0 Imi+1

]
.

5) Implement observer i for the augmented system
A sliding mode observer building on second order
supertwisting ideas [17], [19] for (14) is

˙̂
x̄

i
= Āi ˆ̄x

i − Ḡi
l ē

i
y + Ḡi

nν̄
i, ēi

y := C̄i ˆ̄x
i − yi (21)

where the matrices̄Gi
l, Ḡ

i
n ∈ R

n̄i×p are to be designed.
In particular, choosēGi

n as

Ḡi
n =

[
−L̄i

Ip

]

(C̄i
2)

−1, L̄i =
[
L̄i

o 0
]

(22)

where L̄i
o ∈ R

(n̄i−p)×mi+1

is chosen such that̄Ai
1 +

L̄i
oĀ

i
31 is stable. Partition component-wise the output

estimation error as̄ei
y = col

{
ēi
y,1, ..., ē

i
y,p

}
. As in [19]

the termν̄i := col
{
ν̄i
1, ..., ν̄

i
p

}
is defined by

ν̄i
j = −ψi

jsign(ēi
y,j)|ēi

y,j |
1
2 + zi

j , j = 1, ..., p (23)

żi
j = −βi

j sign(ēi
y,j) − γi

j ē
i
y,j , j = 1, ..., p (24)

whereψi
j , βi

j and γi
j are scalars to be selected by the

designer. Definēei := ˆ̄x
i − x̄i and combine (14) and

(21) to obtain

˙̄e
i
= (Āi − Ḡi

lC̄
i)ēi + Ḡi

nν̄
i − M̄ if i+1 − Q̄iξi+1 (25)

Apply another change of coordinates associated withT i
L

to the triple (18) - (20) and̄Gi
n in (22) where

T i
L :=

[
In̄i−p L̄i

0 C̄i
2

]

thenĀi, M̄ i, C̄i from (18) - (20) andḠi
n from (22) are

respectively transformed to be
[
Ai

11 Ai
12

A21 Ai
22

]

,

[
M̄ i

1

C̄i
2M̄

i
2

]

,
[
0 Ip

]
,

[
0
Ip

]

(26)

whereAi
11 := Āi

1 + L̄i
oĀ

i
31,Ai

21 := C̄i
2Ā

i
3. The matrix

Q̄i retains the structure in (20) after the transformation.
Define

T i
Lē

i =:

[
ēi
1

ēi
y

]

, T i
LḠ

i
l =:

[
Gi

1

Gi
2

]
ln̄i−p

lp
(27)

and chooseḠi
l so thatGi

1 = Ai
12, Gi

2 = Ai
22 + Ai

s

whereAi
s := diag

{
λi

1, ..., λ
i
p

}
and the scalarsλi

j >
0, j = 1, ..., p. Partitioning (25) according to (26) - (27)
results in

˙̄e
i

1 = Ai
11ē

i
1 + M̄ i

1f
i+1 + Q̄i

1ξ
i+1 (28)

˙̄e
i

y = Ai
21ē

i
1 + C̄i

2M̄
i
2f

i+1 −Ai
sē

i
y + ν̄i (29)

where M̄ i
1, M̄ i

2 and Q̄i
1 are defined in (19) - (20).

Equation (29) can be written as

˙̄e
i

y = ζi −Ai
sē

i
y + ν̄i (30)

whereζi = Ĝ(s)

[
f i+1

ξi+1

]

and

Ĝ(s) := −
[
C̄i

2M̄
i
2 0

]
−Ai

21

(
sI −Ai

11

)−1[
M̄ i

1 Q̄i
1

]

It is obviousζi and ζ̇i are bounded sinceAi
11 is stable

andf i+1, ḟ i+1 andξi+1 are bounded by assumption.
Let ζi = col

{
ζi
1, ..., ζ

i
p

}
and defineẑi

j := zi
j + ζi

j .
Substitute (23) into (30) and combine with (24) to obtain

˙̄e
i

y,j = −ψi
j sign(ēi

y,j)|ēi
y,j |

1
2 − λi

j ē
i
y,j + ẑi

j (31)

˙̂z
i

j = −βi
j sign(ēi

y,j) − γi
j ē

i
y,j + ζ̇i

j (32)

where j = 1, ..., p. Define constantsdi
j > |ζ̇i

j | and
choose the gains from (23) and (24) as

ψi
j > 2

√

di
j , λ

i
j > 0, βi

j > di
j (33)

γi
j >

(λi
j)

2
(
(ψi

j)
3 + 5

4 (ψi
j)

2 + 5
2 (βi

j − di
j)

)

ψi
j(β

i
j − di

j)
(34)

Then, it can be proved from Theorem 5 in [19] that if
(33) - (34) are satisfied, a sliding motion will take place
and forceēi

y,j = ˙̄e
i

y,j = 0 in finite time.

6) Process the observer signals to obtain the output of
a system for next observeri+ 1
Assume that a sliding motion has taken place, then (23)
and (30) yieldszi = −ζi wherezi := col

{
zi
1, ..., z

i
p

}
.

Note thatzi is an available continuous signal since it is
generated from̄ei

y,j according to (24). Definewi := −ei
1

and partition (25) using (26) - (27) to obtain

ẇi = (Āi
1 + L̄i

oĀ
i
31)w

i + M̄ i
1f

i+1 + Q̄i
1ξ

i+1 (35)

zi = C̄i
2Ā

i
3w

i + C̄i
2M̄

i
2f

i+1 (36)

Define z̄i := (C̄i
2)

−1zi :=

[
zi
a

zi
b

]
lmi+1

lp−mi+1
. Substitut-

ing for the partitions ofĀi
3 from step 4 andM̄ i

2 from
(19) into (36) results in

zi
a =

[
0 Imi+1

]
wi (37)

zi
b = Āi

32w
i +

[
0 0
0 M̄ i

22

]

f i+1 (38)
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Filter zi
b in real-time to obtainzi

f as follows:

żi
f := −αizi

f + αizi
b, α

i ∈ R+

= −αizi
f + αiĀi

32w
i +

[
0 0
0 αiM̄ i

22

]

f i+1(39)

The purpose of filteringzi
b will be discussed in Re-

mark 2. Combine (35), (39) and (37) to obtain

ẋi+1 = Ai+1xi+1 +M i+1f i+1 +Qi+1ξi+1(40)

yi+1 = Ci+1xi+1 (41)

wherexi+1 ∈ R
ni+1

with ni+1 := n̄i −mi+1 and

xi+1 :=

[
wi

zi
f

]

, yi+1 :=

[
zi
a

zi
f

]

, Ci+1 :=
[
0 Ip

]
(42)

By substituting (18) and (19) into (35) and (39),Ai+1

andM i+1 can be expanded to be

Ai+1=









Āi
Ω 0 ⋆ 0 0

⋆ Ãi
11 ⋆ 0 0

⋆ Ãi
13 ⋆ 0 0

⋆ 0 ⋆ −αiI 0
⋆ ⋆ ⋆ 0 −αiI







lp−mi+1−r̄i

lr̄i

(43)

M i+1=









0 0
M̄ i

11 0
M̄ i

12 0
0 0
0 αiM̄ i

22









lih

lni−p−(i−1)h−mi+1

lmi+1

lp−mi+1−r̄i

lr̄i

(44)

while Qi+1 has no specific structure. The structure of
Ci+1 in (42) is due to the structure of̄Ai

3 in (18). Then
increment the counteri by 1 and return to step 1.

7) Reconstruct the fault robustly if the Markov param-
eter is full rank
Set k = i. Sincerank(CkMk) = rank(Mk), Mk

11 in
(4) and (10) does not exist sincērk = q. As a result,
chooseT k

2 = Iq−r̄k−1 ⇒ fk+1 = fk (see step 2). Set
Āk = Ak, M̄k = Mk, C̄k = Ck, Q̄k = Qk,mk+1 =
p − q. Also defineQk

1 , Q
k
2 to be respectively the top

nk −p and bottomp rows ofQk. DesignL̄k
o as follows:

minimize γ with respect to the variablesR11 = RT
11 >

0, R12,W1, γ subject to:




R11A
k
1 +R12A

k
3 + (⋆) (⋆) (⋆)

(R11Q
k
1 +R12Q

k
2)T −γIh 0

(WAk
3)T 0 −γIq



 < 0 (45)

where (⋆) are terms that make the inequality (45)
symmetric,W :=

[
W1 (M̄k

22)
−1

]
(Ck

2 )−1, R12 :=
[
R121 0

]
, R121 ∈ R

(nk−p)×(p−q). Then calculate
L̄k

o = (R11)
−1R121. When sliding motion has occurred,

reconstruct the fault usinĝfk := Wzk. From [25], f̂k

will reconstructfk and a function ofξk; the design of
L̄k

o andW1 in this step minimizes theL2 gain fromξk

to f̂k. The reconstruction off1 can be obtained from

f̂1 := (T k−1
f )−1...(T 2

f )−1(T 1
f )−1f̂k (46)

whereT i
f is defined in (8).

Remark 2: The purpose of the assumption that the (un-
known) signalξi is obtained as the output of the low pass filter
in equation (13), and the subsequent filtering of the (known)
signal zi

b in (39), is to achieve the recursive formulation in
(40) - (41) where the faults and disturbances appear in the
‘state’ equation. It should be noted that there is no ‘physical’
filtration of the disturbances: the filter in (13) only implies that
ξi is smooth and can be considered to be the output of a low-
pass filterGi(s) := (sI − Ai

Ω)−1Bi
Ω driven by an unknown

signal ξi+1. The choice ofAi
Ω andBi

Ω is not unique. In this
paper, first order linear filter realizations have been chosen,
although higher order linear filters could equally well have
been selected. The crucial decision is the choice of the filter
bandwidth and not the particular choice of filter itself. The
relationship between the filter pairs(Ai

Ω, B
i
Ω) and the original

weighting function in (2) isΩ(s) = CΩ(sI−AΩ)−1BΩ where
CΩ = [ Ih 0h×(k−2)h ] and

AΩ :=










A1
Ω B1

Ω 0 . . . 0
0 A2

Ω B2
Ω . . . 0

...
. . .

. . .
. . .

...
0 . . . 0 Ak−2

Ω Bk−2
Ω

0 . . . 0 0 Ak−1
Ω










, BΩ :=










0
0
...
0

Bk−1
Ω










Modeling the characteristics of the exogenous disturbances
using filters is the basis of all theH∞ and µ-synthesis
paradigms which are based on frequency domain assumptions
on the uncertainty. There are also some parallels with the
work of [24] in the sense that the uncertainty belongs to a
restricted class of signals. In terms of fault estimation, it is
the low frequency components that are important; for example
slow incipient faults are the most difficult to identify [6].
To decouple these low frequency faults from low frequency
disturbances is very important (and non-trivial). To choose
reasonable values of(Ai

Ω, B
i
Ω), let the assumed bandwidth of

ξi beωi
c, and chooseAi

Ω = −κIh, Bi
Ω = κIh whereκ ∈ R+.

If κ is chosen to be much larger thanωi
c, thenξi ≈ ξi+1 and

ultimately ξk ≈ ξ1. In step 7 of the algorithm, the effect of
ξ1 on f̂k is formally minimized. ♯

Remark 3: The approach which has been proposed is simi-
lar to the so-called ‘step-by-step’ methods [1], [27], [2],[15].
As the number of cascade operations increases, in practice,
the accuracy of the estimation which is achieved degrades
[14]. However, as argued in [2], the use of the supertwisting
structure gives optimal performance at each step at least,
and obviates the need to approximate the equivalent injection
signals via sigmoidal approximations or low pass filtering of
discontinuous injection signals. ♯

Sincen̄i = ni + h (step 3) andni+1 = n̄i −mi+1 (step 6),
it can be shown that

ni+1 = ni +h−mi+1 ⇒ ni = (i−1)h−Σi
j=2m

j +n1 (47)

Theorem 1: If rank(Cn1

Mn1

) < rank(Mn1

) then the
fault can never be fully reconstructed. ♯

Proof: From (9), it can be seen that̃Ai
1 hasni−(i−1)h−p

rows and thereforeni − (i− 1)h− p ≥ 0. Substituting forni

from (47) results in

n1 − Σi
j=2m

j − p ≥ 0 (48)
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Sincemi+1 = rank(Ãi
31) and knowing that̃Ai

31 hasmi−ri

rows (see step 4), it is obvious thatmi+1 ≤ mi hence resulting
in 0 ≤ mi ≤ mi−1 ≤ ... ≤ m2 ≤ m1 = p. It follows from
(48) thatmi = 0 when i > n1. From (4), it is clear that
ri ≤ mi and thereforeri = 0 when i > n1. Then from
(12), r̄i = r̄n1

when i > n1 which results inrank(CiM i) =
rank(Cn1

Mn1

) wheni > n1. This means that if observern1

cannot reconstructf1, then subsequent observers will not be
able to either, and the scheme in this paper is not feasible.

Remark 4: Notice from the structure ofAi+1 in (43), the
matrix L̄i

o appears only in the lastp columns ofAi. From the
structure ofCi+1 in (42), it is clear that̄Li

o affects only thep
output states ofxi+1, and hencēLi

o will not affect the sliding
motion of observeri + 1 and also all subsequent observers.
Also, it is obvious that̄Gi

l does not affect subsequent observers
as it vanishes during sliding motion (ēi

y = 0). As the fault
reconstruction in step 7 is performed during sliding motion
of observerk, it can therefore be concluded that the gains of
previous observers (̄Li

o,Ai
s and subsequentlȳGi

l, Ḡ
i
n) can be

arbitrarily designed as they will not affect the quality of the
fault reconstruction, and only observerk needs to be designed
as described in step 7. ♯

III. E XISTENCE CONDITIONS

The method proposed in Section II is feasible if and only
if the following are satisfied
A1. rank(CkMk) = rank(Mk), for some1 ≤ k ≤ n1.
A2. All observers have a stable sliding motion.

It is of interest to find existence conditions for the method
proposed in this paper in terms of the original matrices
A1,M1, C1, so that it can be easily ascertained from the
beginning whether the method proposed in this paper is appli-
cable or not. To conveniently analyze the existence conditions,
A1,M1, C1 will be transformed into a special structure.

A. Overall coordinate transformation

In the following analysis,i is an integer1 ≤ i ≤ k unless
otherwise specified. To achieve a convenient representation of
A1,M1, C1, parts of the transformationsT i

1, T
i
2 andT̄ i (from

steps 2 and 4 in the algorithm in Section II-A) will be used.
However, some modifications need to be made toT i

1, T
i
2, T̄

i as
the structure that will be aimed for will be of different order
from the original system. Notice that for each observer, the
system undergoes two transformations; the first one involves
T i

1 andT i
2 which transforms the state and fault respectively so

that the structures ofM i andCi in (10) - (11) are achieved;
the second transformation involves̄T i, implemented on the
augmented system to obtain the structure ofĀi in (18). It
can be seen from the process described in Section II-A that
to get to the system for the next observer design, there is an
augmentation ofh states (step 3), followed by the removal of
the bottomm1 (or p) states due to the sliding motion, and
finally the addition ofm1 − mi states to the bottom of the
state vector to obtain the next intermediate system (step 6). To
obtain the system for thei-th observer, this process is repeated
i − 1 times on the original system (of ordern1). In order to
obtain the transformation matrices for the original system, the

process needs to be reversed and appliedi−1 times toT i
1, T

i
2

and T̄ i.
FromT i

1 remove (fromT i
11 andT i

12 in step 2) the sub-blocks
associated with the lastm1 −mi states (i.e. the lastm1 −mi

columns together with the relevant rows to makeT i
11 andT12

square and invertible). Then addm1 states to the bottom of
the state space, by augmenting the truncatedT i

11, T
i
12 with

Im1 , and then remove the firsth rows and columns. Repeat
this processi− 1 times. Define the first transformation to be
applied to the state of the original system asT i

a := T i
a,2T

i
a,1

whereT i
a,1 := diag

{

In1−Σi
j=1

mj , (Di)−1, IΣi−1

j=1
mj

}

and

T i
a,2:=

[

In1−Σi−1

j=1
mj−ri −M̃ i

0 IΣi−1

j=1
mj+ri

]

, M̃ i=

[
M i

12(M
i
22)

−1 0
0 0

]

Notice that for systems1 to i, the number of potential faults
remain asq. Therefore, the transformation for the fault applied
to the original system is identical toT i

f defined in step 2.
From T̄ i in (17), remove the firsth rows and columns

(because it is applied to the augmented system) and re-
peat the process that was applied toT i

1. The second state
transformation be applied to the original system isT i

b =

diag
{

U i
2, U

i
1, IΣi−1

j=1
mj+ri

}

. As the algorithm is exited at
step 2 of thek-th iteration, it is clear that the coordinate
transformation in step 2 is performedk times, whereas the
transformation in step 4 is performed onlyk − 1 times. For
convenience of analysis in this section, the transformationsTb

andTa (steps 2 and 4 of the algorithm) are also performed on
the k-th system.

DefineT i
ba := T i

bT
i
a and also the following matrices

Tx : = T k
baT

k−1
ba T k−2

ba ...T 2
baT

1
ba (49)

Tf : = T k
f T

k−1
f ...T 3

f T
2
f T

1
f (50)

Then perform the change of coordinates such thatx1 7→
Txx

1, f1 7→ fk := Tff
1. By using the relationship in (4)

and (6) - (7) when applying the transformationT i
a, and (15)

and (16) when applying the transformationT i
b , the following

structure forA1 7→ TxA
1(Tx)−1 is obtained:


























Uk
2 Ã

k
1(Uk

2 )−1 ⋆ ... ⋆ ⋆ ⋆

Uk
1 Ã

k
31(U

k
2 )−1 ⋆ ... ⋆ ⋆ ⋆

Ãk
32 ⋆ ... ⋆ ⋆ ⋆
0 Jk ... ⋆ ⋆ ⋆
0 0 ... ⋆ ⋆ ⋆
⋆ ⋆ ... ⋆ ⋆ ⋆
...

...
. . .

...
...

...
0 0 ... J3 ⋆ ⋆
0 0 ... 0 ⋆ ⋆
⋆ ⋆ ... ⋆ ⋆ ⋆
0 0 ... 0 J2 ⋆
0 0 ... 0 0 ⋆
⋆ ⋆ ... ⋆ ⋆ ⋆


























ln1−Σk
j=1mj

lmk−rk

lrk

lmk

lmk−1−mk−rk−1

lrk−1

...
lm3

lm2−m3−r2

lr2

lm2

lm1−m2−r1

lr1

(51)

whereJ i := Didiag
{
(U i

1)
−1, Iri

}
. Then by using (4),M1

is transformed toTxM
1T−1

f with the structure
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


















Uk
2M

k
11 0 ... 0 0 0

0 0 ... 0 0 0
0 Mk

22 ... 0 0 0
...

...
. . .

...
...

...
0 0 ... 0 0 0
0 0 ... M3

22 0 0
0 0 ... 0 0 0
0 0 ... 0 M2

22 0
0 0 ... 0 0 0
0 0 ... 0 0 M1

22




















ln1−Σk
j=1mj

lmk−rk

lrk

...
lm3−r3

lr3

lm2−r2

lr2

lm1−r1

lr1

(52)

whererank(Mk
11) = q − Σk

j=1r
j . Note thatJ i,M i

22 and Ãk
1

are square (which determine the column widths in (51) and
(52)), andÃk

1 , Ã
k
31, Ã

k
32 have no particular structure. Also

C1 7→ C1T−1
x =

[
0 D1

]
, det(D1) 6= 0 (53)

For ease of analysis, it is convenient to first perform a
change of coordinates using the following:

Proposition 1: There exists a change of coordinates such
thatA1 in (51) can be written as


























Uk
2 Ã

k
1(Uk

2 )−1 ⋆ ... ⋆ ⋆ ⋆

Uk
1 Ã

k
31(U

k
2 )−1 ⋆ ... ⋆ ⋆ ⋆

Ãk
32 ⋆ ... ⋆ ⋆ ⋆
0 Jk ... 0 0 ⋆
0 0 ... 0 0 ⋆
⋆ ⋆ ... ⋆ ⋆ ⋆
...

...
. . .

...
...

...
0 0 ... J3 0 ⋆
0 0 ... 0 0 ⋆
⋆ ⋆ ... ⋆ ⋆ ⋆
0 0 ... 0 J2 ⋆
0 0 ... 0 0 ⋆
⋆ ⋆ ... ⋆ ⋆ ⋆


























ln1−Σk
j=1mj

lmk−rk

lrk

lmk

lmk−1−mk−rk−1

lrk−1

...
lm3

lm2−m3−r2

lr2

lm2

lm1−m2−r1

lr1

(54)

In this coordinate system, the structures ofM1 in (52) and
C1 from (53) remain unchanged.

Proof: Define a transformation matrixHi (0 ≤ i < k)
with the structure








I
n1−Σk−1

j=1
mj 0 0 0

0 IΣk−1

j=k−i+1
mj Ēi 0

0 0 Imk−i 0
0 0 0 IΣk−i−1

j=1
mj








(55)

whereĒi is














−E1
1(i−1)(J

k−i+1)−1 0

−E2
1(i−1)(J

k−i+1)−1 0

0 0
...

...
−E1

(i−1)(i−1)(J
k−i+1)−1 0

−E2
(i−1)(i−1)(J

k−i+1)−1 0

0 0















lmk

lmk−1−mk−rk−1

lrk−1

lmk−i+2

lmk−i+1−mk−i+2−rk−i+1

lrk−i+1

where the elementsE will be formally defined below. Define
H̄i := HiHi−1...H2H1. It can be seen thatH1 = In1 . Then
defineĂi which has the structure


































Uk
2 Ã

k
1(Uk

2 )−1 ⋆ ... ⋆ ⋆ ... ⋆ ⋆

Uk
1 Ã

k
31(U

k
2 )−1 ⋆ ... ⋆ ⋆ ... ⋆ ⋆

0 Jk ... 0 E1
1i ... ⋆ ⋆

0 0 ... 0 E2
1i ... ⋆ ⋆

⋆ ⋆ ... ⋆ ⋆ ... ⋆ ⋆
...

...
. ..

...
...

. ..
...

...
0 0 ... Jk−i+1 E1

ii ... ⋆ ⋆
0 0 ... 0 E2

ii ... ⋆ ⋆
⋆ ⋆ ... ⋆ ⋆ ... ⋆ ⋆
0 0 ... 0 Jk−i ... ⋆ ⋆
0 0 ... 0 0 ... ⋆ ⋆
⋆ ⋆ ... ⋆ ⋆ ... ⋆ ⋆
...

...
. ..

...
...

. ..
...

...
0 0 ... 0 0 ... J2 ⋆
0 0 ... 0 0 ... 0 ⋆
⋆ ⋆ ... ⋆ ⋆ ... ⋆ ⋆


































(56)

First, perform the transformation̄H1A1(H̄1)−1 to obtain
Ă1 = A1 in (51) (becauseH1 = In1), from whichE1

11, E
2
11

can be obtained. Then,H2 (and H̄2) can be calculated, and
it can be shown thatH̄2A1(H̄2)−1 = Ă2. The matrices
E1

12, E
2
12, E

1
22, E

2
22 can then be obtained from̆A2, andH3

(andH̄3) can be calculated to get̄H3A1(H̄3)−1 = Ă3. Repeat
the process untilĂk−1 := H̄k−1A1(H̄k−1)−1 is obtained. It
can be shown that̆Ak−1 is identical toA1 in (54).

From this canonical form, the following subsections seek
to recast Conditions A1 and A2 in terms of the original
system matricesA1,M1, C1. The main results in the paper
are summarized in the following theorems.

Theorem 2: Condition A1 is satisfied if and only if

rank(Ξk) − rank(Ξk−1) = rank(M1) (57)

whereΞi ∈ R
ip×iq (0 ≤ i ≤ k) is defined by

Ξi =








Π0 0 ... 0
Π1 Π0 ... 0
...

...
. . .

...
Πi−1 Πi−2 ... Π0








(58)

whereΠi := C1(A1)iM1. ♯

Theorem 3: Condition A2 is satisfied if and only if the
triple (A1,M1, C1) is minimum phase. ♯

The following subsections present constructive proofs of The-
orems 2 and 3.

B. Proof of Theorem 2

Condition A1 is satisfied if and only if̄rk = q which implies
thatMk

11 = φ (the empty matrix).
Let K1 be the lastm1 columns ofA1 in (54) and define

Ao := A1 −K1(C1
2 )−1C1. ThereforeAo is identical toA1 in
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(54) except that the lastm1 columns ofAo are zero. It can
then be shown thatC1A−1

o can be expanded to be

n1−Σi
j=1mj

↔ mi

↔ mi−1

↔ m2

↔ m1

↔




0
0
⋆

0
Imi

⋆

0
0
⋆

...

...

...

0
0
⋆

0
0
0





lp−mi−r̄i−1

lmi

lr̄i−1

(59)

where F i is invertible, defined byF i := D̄1D̄2...D̄i−1D̄i

with D̄j := diag
{
Ip−mj−r̄j−1 , Jj , Ir̄j−1

}

By multiplying C1Ai−1
o with M1 in (52) it can be shown

thatC1Ai−1
o M1 = F iN i whereN i ∈ R

p×q is defined by

q−Σi
j=1rj

↔ ri

↔ ri−1

↔ r2

↔ r1

↔




0
0
⋆

0
M i

22

⋆

0
0
⋆

...

...

...

0
0
⋆

0
0
0





lp−r̄i

lri

lr̄i−1

(60)

Proposition 2: For all positive integersv > i the following
matrix identity holds:F iN i = F vN i

Proof: It can be shown that

F vN i =

F i

︷ ︸︸ ︷

D̄1D̄2...D̄i−1D̄i D̄i+1...D̄vN i = F iD̄i+1...D̄vN i

From the definition ofD̄i, it can be seen that pre-multiplying
any matrix with D̄i affects only the topp − r̄i−1 rows of
the matrix. In addition, by knowing that̄ri+1 ≥ r̄i (since
r̄i+1 =: r̄i + ri+1) and that the topp − r̄i rows of N i are
zero (see (60)), it can be concluded thatD̄i+1...D̄vN i = N i.
Hence the proof is complete.

DefineΠi
o := C1(A1

o)
iM1 and

Ψi :=








Π0
o 0 ... 0

Π1
o Π0

o ... 0
...

...
. ..

...
Πi−1

o Πi−2
o ... Π0

o








(61)

then the following result can be established:
Proposition 3: The matrixΨi has rankΣi

j=1(i+ 1− j)rj

Proof: It can be easily shown that

Ψi =








F 1N1 0 ... 0
F 2N2 F 1N1 ... 0

...
...

. . .
...

F iN i F i−1N i−1 ... F 1N1








(62)

By using Proposition 2,Ψi in (62) is equivalent toΨi =
diag

{
F i, F i, ..., F i, F i

}
N where

N :=








N1 0 ... 0
N2 N1 ... 0
...

...
.. .

...
N i N i−1 ... N1








By expandingN i from (60), it follows thatrank(N i) =
ri + 2ri−1 + 3ri−2 + ...+ (i− 1)r2 + ir1. SinceF i is square
and invertible, the proof is complete.

Proposition 4: DefineR1 := −K1(C1
2 )−1. For any positive

integeri the following identity holds

C1(A1)i = C1Ai
o − Σi

h=1C
1(A)h−1R1C1Ai−h

o (63)

Proof: By straightforward induction.
Corollary 1: The matricesΞi from (58) andΨi from (61)

have equal rank.
Proof: DefineΠi

K := −C1Ki(C1
2 )−1 and the following

matrix which by construction is square and invertible

Φi :=










Ip 0 0 ... 0
Π1

K Ip 0 ... 0
Π2

K Π1
K Ip ... 0

...
...

...
.. .

...
Πi−2

K Πi−3
K Πi−4

K ... Ip










From Proposition 4, it is clear thatΦiΨi = Ξi and hence
rank(Ψi) = rank(Ξi) sinceΦi is square and invertible.

From Corollary 1 and Proposition 3, it is clear that
rank(Ξi) = Σi

j=1(i+ 1 − j)rj . Then it follows:

rank(Ξk) − rank(Ξk−1)

= Σk
j=1(k + 1 − j)rj − Σk−1

j=1 (k − j)rj

= rk + Σk−1
j=1 (k + 1 − j)rj − Σk−1

j=1 (k − j)rj

= Σk
j=1r

j = r̄k (64)

Notice that the LHS of (64) is given in terms of the original
system matricesA1,M1, C1. Hence, Condition A1 can be re-
cast in terms of the original system matrices as

rank(Ξk) − rank(Ξk−1) = rank(M1) (65)

From the algorithm in section II-A, note that for each
iteration, one observer is needed. Furthermore, the algorithm
is exited at thek-th iteration, which therefore implies thatk
observers are necessary and sufficient to reconstruct the fault.
Hence, the results in this section also indicate precisely the
number of observers that are required. Using the results of
Theorem 1, the scheme in this paper can never reconstruct the
faults whenrank(Ξn1

) − rank(Ξn1−1) < rank(M1) which
results ink ≤ n1. Hence Theorem 2 is proven. �

The results of this section now enable the designer to
systematically investigate the success of this scheme. The
designer can constructΞi and incrementi systematically from
1 until rank(Ξi)−rank(Ξi−1) = rank(M1) is satisfied, and
that value ofi is set to bek. In addition, the user can also
know the number of observers required, as well as when the
scheme in this paper will fail.

C. Condition A2

Assume that A1 is already satisfied, i.e.Mk
11 = φ (the empty

matrix). Then from [25], observerk will have a stable sliding
motion if and only if (Ak,Mk, Ck) is minimum phase.

Proposition 5: (Ak,Mk, Ck) is minimum phase if and only
if (A1,M1, C1) is minimum phase.

Proof: The invariant zeros of(Ak,Mk, Ck) are given by
the values ofs that make the following matrix pencil lose rank

P11(s) :=

[
sI −Ak Mk

Ck 0

]

whereP11(s) is commonly known as the Rosenbrock matrix
of (Ak,Mk, Ck). Substitute for(Ak,Mk, Ck) from (9) - (11)
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andMk
11 = φ. SinceCk

2 , M̄
k
22 are square and invertible, then

P11(s) loses rank if and onlyP12(s) loses rank, where

P12(s) :=







sI − Āk−1
Ω 0

⋆ sI − Ãk
1

⋆ −Ãk
31

⋆ 0







However, Āk−1
Ω is stable, and hence the only possible

unstable zeros of(Ak,Mk, Ck) are the unobservable modes
of (Ãk

1 , Ã
k
31).

Let P21(s) be the Rosenbrock matrix of(A1,M1, C1).
Then substitute for(A1,M1, C1) from (51) - (53) intoP21(s).
BecauseJ i,M i

22 are nonsingular, and assuming that A1 is
already satisfied (Mk

11 = φ), then it can be shown thatP21(s)
loses rank if and only if the following matrix pencil loses rank

P22(s)=

[
sI − Uk

2 Ã
k
1(Uk

2 )−1

−Uk
1 Ã

k
31(U

k
2 )−1

]

=

[
Uk

2 0
0 Uk

1

] [
sI − Ãk

1

−Ãk
31

]

(Uk
2 )−1

Since Uk
1 and Uk

2 are invertible, using the Popov-Hautus-
Rosenbrock (PHR) rank test [21], the invariant zeros of
(A1,M1, C1) are the unobservable modes of(Ãk

1 , Ã
k
31). It

follows that (Ak,Mk, Ck) and (A1,M1, C1) have the same
unstable zeros.

From (35), the reduced order sliding motion matrix for
the i-th observer(i < k) is Āi

1 + Li
oĀ

i
31. In order for the

sliding motion matrix to be stable, it requires that(Āi
1, Ā

i
31)

be detectable.
Proposition 6: The undetectable modes (if any) for ob-

server i are given by the undetectable modes of(Ãi
1, Ã

i
31).

Proof: The unobservable modes of observeri are the
unobservable modes of(Āi

1, Ā
i
31), which (from the PHR rank

test) are given by the values ofs that make the following
matrix pencil lose rank

P i
31(s) =

[
sI − Āi

1

−Āi
31

]

Substituting from (18) intoP i
31(s), it is clear thatP i

31(s)
loses rank if and only ifP i

32(s) loses rank, where

P i
32(s) :=





sI − Āi
Ω 0

⋆ sI − Ãi
11

⋆ −Ãi
13





However,Āi
Ω is stable, hence values ofs ∈ C+ at which

P i
31(s) lose rank are the undetectable modes of(Ãi

11, Ã
i
13).

By carrying out the PHR rank test on(Ãi
1, Ã

i
31) and

substituting from (15) and (16), it is clear that the unobservable
modes of(Ãi

1, Ã
i
31) are the unobservable modes of(Ãi

11, Ã
i
13).

Therefore the undetectable modes of observeri are the unde-
tectable modes of(Ãi

1, Ã
i
31).

Proposition 7: The unobservable modes of(Ãi
1, Ã

i
31) are

a subset of the unobservable modes of(Ãi+1
1 , Ãi+1

31 ) when
i < k.

Proof: From the proof of Proposition 6,(Ãi
1, Ã

i
31) and

(Ãi
11, Ã

i
13) have the same unobservable modes. DefineDi+1

x

to be the bottomri+1 rows of (Di+1)−1. From (6) - (7), it
can be shown that

[
I −M i+1

12 (M i+1
22 )−1Di+1

x

0 Di+1

] [
sI − Ãi

11

−Ãi
13

]

=

[
sI − Ãi+1

1

−Ãi+1
3

]

=





sI − Ãi+1
1

−Ãi+1
31

−Ãi+1
32



 (66)

Sincedet(Di+1) 6= 0, any unobservable modes of(Ãi
11, Ã

i
13)

(or equivalently, the unobservable modes of(Ãi
1, Ã

i
31)) will

be a subset of the unobservable modes of(Ãi+1
1 , Ãi+1

31 ).
If (A1,M1, C1) is not minimum phase, then a stable sliding

motion for observerk does not exist [25]. But, if(A1,M1, C1)
is minimum phase, then a stable sliding motion exists for
observerk, and(Ãk

1 , Ã
k
31) is detectable. Then from Proposition

7, (Ãi
1, Ã

i
31) is also detectable fori < k, which implies that

stable sliding motions exist for all previous observers (Propo-
sition 6). Hence, A2 is satisfied if and only if(A1,M1, C1)
is minimum phase and Theorem 3 is proven. �

IV. D ESIGN EXAMPLE

The method proposed in this paper will now be demon-
strated using a model of a 2-cart system shown in Figure 2.

a (kg) a (kg) - u (N)
c (N/m)b (Ns/m)

rigid
wall

--

position and velocity of both carts

Fig. 2. The schematic diagram of the 2-cart system.

The first cart is connected to a rigid wall via a damper, and
is connected to a second cart by a spring. An external force
is then applied to the second cart via an actuator. Assume
both carts have a nominal mass ofa = 1 kg, the damper has
a nominal constant ofbo = 2 Ns/m and the spring has a
nominal constant ofco = 1 N/m. Assume that the positions
of both carts are measurable and the control input is the force
command. Assume that the force on the second cart is achieved
from the force command via an actuator modelled as a first
order lag with a time constantτ = 0.2. If the states are the
force, velocity of the first cart, velocity of the second cart,
position of the first cart and position of second cart, and if the
actuator is faulty, then in the notation of (1), the matricesthat
describe the system are as follows:C1 =

[
0 I2

]
and

A1 =









− 1
τ

0 0 0 0
0 − b

a
0 − c

a
c
a

1
a

0 0 c
a

− c
a

0 1 0 0 0
0 0 1 0 0









, M1 =









1
τ

0
0
0
0









Further suppose that the spring and damper constants are
imprecisely known; their actual values can deviate respectively
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by ±2% and±10% of their nominal known values. Therefore
the state equation of the system becomes

ẋ1 = (A1 + △A1)x+M1f1 (67)

where△A1 is the discrepancy between the known matrixA1

and its actual value. Notice that the 1st, 4th and 5th rows of
the matrixA1 do not contain any uncertainty due to the nature
of the state equations. Hence, any parametric uncertainty will
appear in the second and third and fourth rows ofA1. Equation
(67) can be placed in the framework of (1) by writing

△A1x1 =





01×2

I2
02×2





︸ ︷︷ ︸

Q1

[
0 ∆b 0 −∆c ∆c
0 0 0 ∆c −∆c

]

︸ ︷︷ ︸

E

x1 (68)

From (68), the disturbanceξ1 = Ex1 will be generated by
the statesx1, which is in turn generated by the faultf1. Notice
that the method in [10] cannot be used on this system as there
is no consideration of the disturbanceξ1. If the signalsf1

andξ1 are augmented to form a new ‘fault’ vector, as in [22],
this results in the new ‘fault’ vector having 3 components.
The number of outputs in this system is only 2, resulting in a
‘more faults than outputs’ scenario, and hence the method in
[10], [23] is still not applicable. In addition, it can be verified
thatC1M1 = C1A1M1 = 02×1, C

1(A1)2M1 =
[

0 5
]T

.
Hencerank(Ξ2) − rank(Ξ1) < rank(M1), and the method
in [20] will also not be applicable. However, it can be shown
thatrank(Ξ3)−rank(Ξ2) = rank(M1) (hencek = 3), hence
the fault can be reconstructed using the method in this paper,
specifically 3 observers in cascade. It can be established that
n1 = 5, p = 2, q = 1, h = 2, r̄1 = 0.

A. Design of observers

Performing the transformation forA1,M1, C1, Q1 given
in step 2 in the algorithm, where appropriate values for
T 1

1 , T
1
2 are T 1

1 = I5, T 1
2 = 1. It can be shown that

M1
1 =

[
5 0 0

]T
, M1

2 = 02×1, M
1
22 = α, C1

2 = I2.
From (67) - (68), the disturbance is generated asξ1 =

E(sI − (A1 + ∆A1))−1M1f1. Since the bounds on∆b and
∆c are known, bounds on the crossover frequencies for the
transfer functionGξ(s) := E(sI − (A1 + ∆A1)−1M1 can
be found from Bode diagrams. It was found that 5 rad/s
comfortably upper bounds the crossover frequency ofGξ(s)
and as a result of the high roll-off rate, at 10 rad/s, an approx-
imate attenuation level of -80 dBs is attained for all possible
variations of ∆b and ∆c. Consequently all the frequency
content ofξ1 will be below 10rad/s. In some situations where
the disturbanceξ1 represents a physical quantity, engineering
judgement and practical experience can be used to define
suitable bounds on the frequency content of the disturbances:
see for example [5], [16], [18]. Hence the filter matrices that
appropriately describe the characteristics ofξ1 are chosen as
A1

Ω = −κI2, B1
Ω = κI2, whereκ = 10 >> 5. Note the choice

of (A1
Ω, B

1
Ω) is not unique. In this example, first order filter

linear realizations have been chosen although higher order
linear filters could equally well have been chosen resultingin
a different(A1

Ω, B
1
Ω) pair. The crucial decision is the choice of

the filter bandwidth and not the particular choice of filter itself.
Here choosing first order filter representations minimize the
order n̄1. With this choice of(A1

Ω, B
1
Ω) an augmented system

of dimensionn̄1 = n1 +h = 7 is produced (as in (14)). It can
be shown thatm2 = 2. Then, to obtain the structures in (18)
- (20), a suitable transformation̄T 1 is T̄ 1 = I7.

For the first observer,̄L1
o was chosen so thatλ(Ā1

1 +
L̄1

oĀ
1
31) = {−1,−2,−3,−4,−5}. ThenA1

s = diag {−3,−4}
was chosen yielding the following:

Ḡ1

l =












−370.848 −32.160
−77.886 −349.233
−0.359 −0.068
45.291 4.903
7.754 35.883

−3.686 −0.728
−1.397 −1.313












, Ḡ1

n =












52.978 5.360
11.126 58.205
0.179 0.068

−6.686 −0.728
−1.397 −5.313

1.000 0
0 1.000












Sincep−m2 = 0, thenα1 does not exist. It follows that the
parameters for the system associated with the second observer
(with order n2 = n̄1 − m2 = 5 and the number of outputs
p = 2) areA2,M2, Q2 respectively being









−10 0 0 −5.3601 −52.9784
0 −10 0 −58.2056 −11.1267
0 0 −5 −0.0680 −0.1798
0 1 −1 5.3134 1.3975
1 0 0 0.7283 4.6866









,









0
0
5
0
0









,

[
10I2
03×2

]

It is clear thatC2M2 = 0, and hencēr2 = 0 which results
in r2 = 0. Then to obtain the structures of (9) - (11), suitable
coordinate transformationsT 2

1 , T
2
2 areT 2

1 = I5, T
2
2 = 1.

Here the matricesA2
Ω, B

2
Ω that describeξ2 are chosen as

A2
Ω = −κI2, B2

Ω = κI2. The augmented system (14) can
then be formed. It can be shown thatm3 = 1. To obtain the
structure (18) - (20) as in step 4, a suitable transformation
matrix T̄ 2 is









I3 0 0 0 0
0 1 0 0 0
0 1 1 0 0
0 0 0 0 1
0 0 0 1 0









It can be seen that̄A2
1 is stable. Hence, a convenient choice

is L̄2
o = 0. Then choosingA2

s = diag {−3,−4} results in

Ḡ2
l =













0 0
0 0

−52.9784 −5.3601
−11.1267 −58.2056
−10.9469 −58.1377

1.3975 9.3134
7.6866 0.7283













, Ḡ2
n =













0 0
0 0
0 0
0 0
0 0
1 0
0 1













The filter scalarα2 was chosen as10. It follows that the
system for observer 3 will be of ordern3 = n̄2 − m3 = 6
and the number of outputs isp = 2. The matricesA3,M3, Q3

respectively are
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









−10 0 0 0 0 0
0 −10 0 0 0 0

10 0 −10 0 0 0
0 10 0 −10 0 0
0 10 0 −5 −5 0
0 0 10 0 0 −10











,











0
0
0
0
5
0











,

[
10I2
04×2

]

It is obvious that rank(C3M3) = rank(M3), which
confirms the initial check that three observers are necessary
and sufficient to reconstruct the faultf1. Finally, a sliding
mode observer can be designed based onA3,M3, C3, Q3

using step 7 of the algorithm. It is clear that a choice of

D3 =

[
0 1
1 0

]

placesA3,M3 in the structure of (9) - (10).

ChoosingA3
s = diag {−3,−4} and minimizingγ subject to

(45) yieldedγ = 1.2097,W1 = 0 and

Ḡ3
l =











0 −17.4555
0 0
0 19.4717
0 0

−2 0
0 10.0346











, Ḡ3
n =











0 2.9093
0 0
0 1.6035
0 0
1 0
0 1











B. Simulation results

For observer 1, the gains were chosen asψ1
1 = ψ1

2 =
2
√

50, β1
1 = β1

2 = 50, γ1
1 = 197.5, γ1

2 = 351.1. For
observers 2 and 3, the same gains were chosen. Firstly, the
nominal uncertainty-free situation will be considered, where
∆b = 0,∆c = 0 ⇒ ∆A1 = 0 ⇒ ξ1 = 0. The left subfigure
of Figure 3 shows the applied fault, and the right subfigure
shows the reconstruction. It is clear that the reconstruction is
a visually perfect replica of the fault, which shows that any
degradation in accuracy due to the cascade observer scheme is
not significant. The remaining simulations are associated with
the presence of uncertainty: specifically when∆b = 0.2 and
∆c = 0.02. The left subfigure of Figure 5 shows the distur-
bancesξ1 that arise from the applied fault. The left subfigure
of Figure 4 shows the fault reconstruction. The right subfigure
of Figure 5 showsξ3 which is a fictitious signal obtained from
ξ1 by performing the operationξ2 = 1

κ
ξ̇1 + ξ1, ξ3 = 1

κ
ξ̇2 + ξ2

(which is the reverse of the fictitious filtering ofξ3 to obtainξ1

usingA1
Ω = A2

Ω = −κI2, B1
Ω = B2

Ω = κI2) whereκ = 10. It
can be seen in Figure 5 thatξ3 is almost identical toξ1 which
implies the weighting function for the disturbance using the
values ofA1

Ω = A2
Ω = −κI2, B1

Ω = B2
Ω = κI2 is valid for

this example. Although there is a slight degradation due to
∆b,∆c 6= 0, the reconstruction is not severely affected byξ1

(which is significant – being more than10% of the magnitude
of the fault) because the fault reconstruction scheme has
been designed to minimize the upper bound of theL2 gain
from ξ3 to f̂1 (where ξ3 ≈ ξ1). Then, white noise of
standard deviation10−3 has been added to the sensors and the
simulation repeated. The right subfigure of Figure 4 shows the
fault reconstruction performance. It can be seen that although
the fault reconstruction is noisy, the ‘underlying signal’is a
good approximation to the fault itself. This demonstrates that

0 5 10 15 20

0

0.02

0.04

0.06

0.08

0.1

0 5 10 15 20

0

0.02

0.04

0.06

0.08

0.1

Fig. 3. The simulation where∆b = ∆c = 0. The left subfigure is the fault
applied to the actuator. The right subfigure is its reconstruction.
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Fig. 4. The left subfigure is the fault reconstruction for∆b = 0.2, ∆c =

0.02. The right subfigure is the reconstruction with sensor whitenoise.
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Fig. 5. The left subfigure shows the components ofξ1. The right subfigure
shows the fictitious signalξ3.

the fault reconstruction scheme can also cope with the effects
of sensor noise, and is practical.

Additional designs and simulations have been performed,
where the values ofκ have been varied to investigate the
effect of bandwidth choices on the performance of the fault re-
construction scheme. Figure 6 shows the fault reconstructions
when κ = 10−4, 10−3, 10−2, 0.1, 1 and 10. For these values
of κ = 10−4, 10−3, 10−2, 0.1 (all considerably smaller than
10), it can be verified thatξ3 is not a good approximation
of ξ1, and the fault reconstruction is worse compared to the
case whenκ = 10 in Figure 4. It can be noted however, that
the fault reconstruction improves asκ progressively moves
towards 10. For the cases whenκ = 20, 50 and70, the quality
of the fault reconstruction is indistinguishable fromκ = 10.
These simulation results confirm the claims in Remark 2.

V. CONCLUSION

This paper has presented a new scheme for robust fault
reconstruction, using multiple observers in cascade. Signals
from one observer are used as outputs of a fictitious system,
and the next observer is designed based on the fictitious
system. The novelty of this scheme is that it can reconstruct
faults in a wider class of systems, compared to previous meth-
ods. In addition, the scheme is formulated into a framework
which enables the minimization of disturbances on the fault
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Fig. 6. The left subfigure is the fault applied to the actuator, the right
subfigure is its reconstruction for various values ofκ.

reconstruction. This is particularly useful in cases when the
number of outputs is less than the number of disturbances and
faults, a scenario that will render many other multiple observer
methods inapplicable. Necessary and sufficient conditions, in
terms of original system matrices, have been investigated.This
enables the designer to immediately know if the scheme is
applicable, something which is absent in some other multiple
observer methods. In addition, the results in this paper also
indicate precisely the number of observers in cascade that
are required and sufficient. A simulation example verifies the
effectiveness of the scheme.
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