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Abstract  

Materials with a negative Poisson‟s ratio are referred to as auxetic. One recently invented 

example of this is the helical auxetic yarn (HAY). This has been proved to successfully 

exhibit auxetic behaviour both as a yarn and when incorporated into fabric. The HAY is 

based on a double-helix geometry where a relatively stiffer „wrap‟ is helically wound around 

a compliant core fibre. This paper studies the effect of the interaction between the core and 

the wrap fibre on the auxetic behaviour of the HAY, including the effect of their relative 

moduli. Assessment of the Poisson‟s ratio of the HAYs has revealed that an elevated 

difference in component moduli causes the wrap fibre embedding itself into the core fibre, 

thus decreasing the auxetic effect. Careful determination of an optimum core-wrap moduli 

ratio where the ratio is high enough to yield an auxetic effect and low enough to prevent the 

core-indentation effect can lead to the fabrication of a yarn with largest negative Poisson‟s 

ratio. 
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1. Introduction 

„Auxetic‟ materials are a relatively new class of functional materials which exhibit negative 

Poisson‟s ratio; i.e. an applied tensile strain in the longitudinal direction results in a positive 

strain in the transverse direction[1]. Such materials have many benefits such as increased 

shear to tensile stiffness ratios, indentation resistance, energy absorption and the ability to 

form synclastic doubly-curved surfaces[2-4]. A range of auxetic materials have been 

discovered, fabricated and investigated during the last two decades, including auxetic cellular 

solids[5, 6], auxetic microporous polymers [7, 8], auxetic composites[9-11], molecular 

auxetic materials[1, 12, 13]. 

 

Hook et. al. proposed a new geometry and composite for auxetic behaviour in the form of a 

helically wound yarn which can attain large negative Poisson‟s ratio, both by itself and in a 

textile[14]. This has been referred as the helical auxetic yarn (HAY), and may find 

applications in filtration[15] and healthcare[16]. Its basic structure and mechanics has been 

well investigated, both experimentally and theoretically, since its invention [10, 11, 17-19]. 

Owing to its wide variety of applications, research is continuing on improving its 

performance. Some more types of auxetic fibres have been fabricated by other researchers for 

textiles [20-22]. This study deals with some aspects of the HAY which reveals that an 

alteration of material parameters can cause large changes in its negative Poisson‟s ratio.  

 

A HAY is composed of two conventional fibres in which a relatively stiffer and thinner 

“wrap” fibre is helically wound around a more compliant and thicker “core” fibre, as shown 

in Fig. 1a. On application of longitudinal strain, the difference in the modulus of elasticity 

and diameters of the two fibres causes lateral displacement of the core by the wrap, resulting 

in an overall lateral expansion of the yarn‟s maximal width. By selecting fibre diameters, 
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moduli and the initial geometry of the HAY, a large negative Poisson‟s ratio can be 

generated. 

 

The configuration of a HAY requires the core to be more flexible than the wrap. If the core is 

both compliant and elastomeric the core performs two functions: enabling large lateral 

deformation when strain is applied, and acting as a „return spring‟ to recover its former 

position and reform the original helix in the wrap when the load is removed. However, with 

the compliancy of the core there is the possibility of generating an undesirable mechanism 

within the HAY. When the HAY is under tension the wrap may indent the surface of the core 

and embed itself into the core. As a consequence, there may be a reduction in the negative 

Poisson‟s ratio and hence the auxetic behaviour of the HAY. Some of the possible 

interactions are illustrated in Fig. 1b.  

  

These core-indentation effects depend on the relative moduli of the core and wrap and, at 

large deformation, the extent to which the core remains elastic or goes plastic. In previous 

research studies, auxetic behaviour has been demonstrated by HAYs with varying ranges of 

core and wrap materials and has also been observed to be strongly dependent on relative 

component moduli. Sloan et. al. fabricated a HAY using polyurethane fibre as the core 

(Young‟s modulus 30 MPa) and polyamide fibre as the wrap (Young‟s modulus 3.4 GPa). 

This HAY demonstrated a Poisson‟s ratio as low as-2.7 for the yarn with 13
o 
wrap angle[18]. 

Miller et. al. fabricated a HAY using polyurethane fibre as core (Young‟s modulus 53 MPa) 

and ultra-high molecular weight polyethylene fibre as wrap (Young‟s modulus 6 GPa) and 

obtained a Poisson‟s ratio of -2.1[10]. Miller et. al. fabricated the HAY using nylon fibre as 

the core (Young‟s modulus 1.6GPa) and carbon fibre as the wrap (Young‟s modulus 143GPa) 
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which demonstrated Poisson‟s ratios of -5.8, -2.3 and -1.1 for 10
o 

, 20
o
 and 30

o
 wrap 

angles[11] respectively.  

 

In this paper we explore the effect of core-indentation effects on the auxeticity of the HAY by 

investigating a range of HAYs with various core moduli but the same wrap modulus and 

examining the resultant cross-sectional deformation of core and wrap. 

 

2. Experimental Methods 

Six types of HAYs were fabricated for core-indentation effect studies and subsequently 

named as yarns A, B, C, D, E and F. Helical auxetic yarns were manufactured using a 

bespoke spinner mechanism as described earlier [18]. Approximately 10 m of yarn were 

fabricated for each HAY type. According to previous works [17-19], the lower initial wrap 

angle of the HAY offers better auxetic performance. Therefore, a low initial wrap angle of 

approximately 12
o
 was maintained for all HAYs in this work.   

 

The yarn components and the material properties of the component fibres are summarized in 

Table 1. Mechanical testing of fibre and yarn samples were carried out according to ASTM 

D3822-07 – tensile properties of single textile fibres [23].  

 

2.1. Sample preparation for cross section analysis of the HAY 

The cross section analysis was carried out under optical microscope in order to investigate the 

core indentation effect of the HAY. A 70 mm length of each HAY was inserted through a 

glass pipette and the setup was mounted in a Lloyd instruments-EZ 20 tensile testing machine 

under one specific load. Epoxy resin was then carefully poured into the pipette and the 

bottom of the pipette was sealed. The epoxy was allowed to cure for a period of 12 hours. 
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The HAY under specific load was thus embedded in the resin and the yarn was frozen at the 

strain generated at that load.  After removal of the load, the yarn retained that strain. The 

sample was cut in the transverse direction (normal to the applied load), polished and the cross 

section of the HAY was investigated under optical microscope with 60 times magnification. 

For the sake of convenience, this shall be referred as „cross sectional image‟. Three yarn 

samples were prepared for each load value, and specific loads were selected to cover the 

entire load range between zero load and failure point of each HAY. The applied load values 

are summarized in Table 2. Cross-sectional images under zero load were not considered, as 

the wrap and the core would become loose and would lose their wrapping angle. A small 

amount of tension is required in order to maintain the HAY‟s characteristics.  

 

2.2. Study of deformation of the core and wrap caused by the wrap in the ideal case (no core-

indentation effect in the HAY) 

The cross-sectional images obtained from the process described above will be used to study 

core indentation effect of the yarn. In order to determine the auxetic effect in the ideal case, 

the length of the wrap embeds into the core was measured (Fig. 1c). When this length is 

added to the diameter of the yarn to compensate the losing net width of the yarn due to core 

indentation effect, then hypothetical diameter of the yarn with no core indentation effect is 

obtained. Image J software was used for the length measurement. The known diameter of the 

core was obtained through SEM image and was used for calibration. 

 

2.3. Determination of Poisson’s ratio of the HAY 

Once all the tests had been carried out, the Poisson‟s ratio of each HAY was determined 

through three separate methods: (1) Longitudinal and transverse strain was obtained by a high 

magnification, non-contact video system, coupled with Lloyd Instruments (www.lloyds-
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instruments.co.uk) EZ 20 tensile tester. Tensile measurements under displacement control 

were performed with a 500 N load cell at a speed of 5mm/min. Gauge lengths were 70 mm 

for all yarns. Meanwhile, the images were captured at regular strain intervals by a 4.9 MP 

digital camera (Edmund Optics EO-5012C USB). For the sake of convenience these images 

shall be referred as „external images‟; (2) Transverse strain obtained from the cross sectional 

images that were processed by the method in the section 2.1, and longitudinal strain obtained 

from the external images under the same load; (3) Transverse strain of the hypothetical yarn 

with no core-indentation effect at a specific load was determined using the modified cross-

sectional images through the method in the section 2.2, and longitudinal strain was obtained 

from the external images at the same load. Thus the Poisson‟s ratio was determined for the 

ideal case when there is no core indentation occurring. If there is no core indentation effect 

occurs for any of these HAYs, their Poisson‟s ratio will be determined only by the first 

method. Image analysis and strain measurements for these HAYs were performed based on 

Sloan et al.'s previous work [18]. 

 

Finally, the Poisson‟s ratio for yarns was calculated using the obtained engineering strains εy 

and εx. 

     
  

  
                                                                                                                                (1) 

Where νxy, εy, and εx are the Poisson‟s ratio, transverse strain and longitudinal strain of the 

HAY.  

 

3. Results and Discussion 

3.1. Yarn A 

This yarn comprises a PU core with a relatively large, multi-filament wrap. External and 

cross-sectional images of the yarn A under the same load were compared and the Poisson‟s 
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ratio of the yarn was analysed. Figs. 2a-2j show the external and cross-sectional images 

which were taken under 6, 15, 30, 40and 48 N load for yarn A respectively. Fig. 2a indicates 

that the yarn under 6N load shows no core-indentation phenomenon. The wrap starts to 

embed into the core when 15 N load is applied (see Fig. 2c), and the degree of indentation 

increases with an increase of load (see Figs 2e, 2g and 2i).  

 

Figure 3 presents a comparative analysis of the Poisson‟s ratio of yarn A obtained through all 

three methods described in the section 2.3. A sharp increase in the Poisson‟s ratio at low 

strains is initially observed followed by a significant decrease in Poisson‟s ratio due to the 

wrap fibre conforming to the unstrained core. Similar phenomena have been reported in 

previous study[18]. It can be seen that the Poisson‟s ratio obtained through the first two 

methods are nearly the same, as expected. For the ideal case where it is assumed that there is 

no core-indentation effect, there is an obvious augment in negative Poisson‟s ratio, then the 

auxetic effect of the HAY decreases as a result of an increased core-indentation effect. It is 

clear that the magnitude of the auxetic effect is diminished by the indentation. 

 

In order to test whether there was any shrinkage of the HAY caused by the resin, the diameter 

of the same HAY was measured by the external and the cross-sectional images, respectively.  

The results are presented in Table 3. It can be seen that there is no obvious shrinkage of the 

HAY due to embedding into the resin; hence this factor was ignored during further analysis. 

 

Core-indentation effect may be attributed to the lower Young‟s modulus of PU core relative 

to the UHMWPE wrap. In order to assess these phenomenon further, core fibres with higher 

Young‟s moduli were chosen for fabrication of yarns B, C and D while using the same 

UHMWPE wrap fibre. 



8 

 

3.2. Yarn B  

Higher modulus polyamide fibre was used for core for fabrication of yarn B and the same 

experiments were carried out. Figs. 4ashow the cross-sectional images captured with 60 times 

magnification under 10, 30, 50 and 70 N load respectively. The external images of the yarn 

were also obtained at the same time; however, they are not included in the paper as visually 

they do not add further insights into the indentation phenomenon.  

 

The above cross-sectional images clearly show that there is no core-indentation effect for 

yarn B. Hence the Poisson‟s ratio was determined only through external images, and a 

maximum negative Poisson‟s ratio of -1.67 was obtained at strain of 0.09. It is also visible 

that the cross-section of the core is not circular, but pentagonal.  

 

3.3. Yarn C 

For fabrication of yarn C, the core was replaced with PE. Figs. 4b show the images of cross 

section of the yarn captured with 60 times magnification under 20, 35, 50 and 65 N load 

respectively. It is interesting to note that there is no core-indentation phenomenon as well for 

this sample. The maximum negative Poisson‟s ratio determined through the external images 

was obtained to be -2.22 at strain of 0.06. 

 

3.4. Yarn D 

For fabrication of yarn D, the core was replaced with elastomeric polyester (PET). Figs. 4c 

show the cross sectional images captured with 60 times magnification under 15, 30 and 45 N 

load respectively. In this case as well, there is no core-indentation effect appearing for yarn D. 

The maximum negative Poisson‟s ratio determined through external images was obtained to 
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be -13.5 at strain of 0.02. It is noted that a multi-filament yarn may spread around the core, 

thus spreading the load. 

 

Figure 5 shows the Poisson‟s ratio of all the four yarns. Yarn A has the least auxetic 

behaviour and least negative Poisson‟s ratio of -1.65; which can be attributed to core-

indentation effect. The maximum negative Poisson‟s ratio of yarn B is -1.67; hence it can be 

concluded that the modulus of PA core relative to UHMWPE wrap presents a limit where the 

core is elastic enough to show reasonable auxetic behaviour and stiff enough to mitigate or 

circumvent core-indentation effect. The yarn with PET core (yarn D) shows the highest 

auxetic effect, with a maximum negative Poisson‟s ratio of -13.52. Further rise in modulus of 

the core in yarn C results into decrease in auxetic effect with maximum negative Poisson‟s 

ratio of -2.22. Yarn B holds the least core Young‟s modulus among yarn B, C and D, but 

contrary to expectation, it shows the least auxetic effect. This can be attributed to other 

factors such as component diameter and pentagonal cross-section of the core. The 

performance of the HAY can be affected by a series of design parameters, such as core/wrap 

diameter ratio and core/wrap tensile modulus ratio [17]. 

 

3.5. Yarn E and F 

The UHMWPE fibre that has been used as wrap in all HAYs discussed above (Yarn A, B, C 

and D) is a multifilament. A further comparison was made using a lower stiffness mono-

filament wrap – a co-polymer polyamide fibre. Therefore, Yarn E was fabricated with PU 

core which is the core fibre showing a strong core-indentation effect. The same experiments 

were carried out as for yarns A, B, C and D. Fig. 6 shows the micrographs of the two wrap 

fibres. 
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The cross sectional images of yarn E captured with 60 times magnification under 7 and 15 N 

load are shown in Fig. 7a and it indicates no core indentation effect. Fig. 7b shows 

comparison between cross section of yarn A and E, which has monofilament and 

multifilament wraps, respectively. It is obvious that unlike UHMWPE, co-polymer 

polyamide does not cause any indentation in the PU core; as a result of wrap‟s lower Young‟s 

modulus. Figure 8 presents a comparative analysis of Poisson‟s ratio of yarn A and, which 

are comprised of PU core and monofilament and multifilament wrap fibres. The negative 

Poisson‟s ratio of the yarn with PU core is much higher for co-polymer polyamide wrap 

compared to UHMWPE wrap. The maximum negative Poisson‟s ratio of yarn A is -1.65 

where as that of yarn E is -5.58. Yarn E shows larger auxeticity compared to yarn A in spite 

of a much lower modulus of the wrap fibre.  

 

Since yarn D with the PET core showed the largest negative Poisson‟s ratio among others, 

hence, its multifilament wrap was replaced with a monofilament co-polymer polyamide fibre 

to fabricate Yarn F for further investigation. Figs 9a show the cross sectional images of Yarn 

F captured with 60 times magnification under 10, 15 and 20 N load. Figure 9b shows 

comparison between cross section of yarn D and F. It clearly shows that both wrap fibres do 

not cause any indentation in the PET core, which can be attributed to high Young‟s modulus 

of the PET core. In comparison to PU, PET is stiff enough to prevent any core-indentation 

occurring in the yarn.  

 

It is also interesting to note that the contact surface area between core and wrap of Yarn A is 

much smaller than that of Yarn D under the same load (15 N) in Figs. 7b and 9b, respectively. 

Hence, in comparison to the Yarn D, core indentation effect is more likely to occur in the 

Yarn A due to higher localized stress on the core fibre from the wrap fibre. The wider spread 
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of multifilament wrap around the core is not always consistent as the other yarns. This can be 

due to various reasons:1) different surface roughness of the two core fibres; 2) stiffness 

values of the two core fibres; 3) multifilament wrap fibres are not bundled very well.  

 

A comparative analysis of Poisson‟s ratio of yarn D and F are shown in Fig. 10. Yarn D gives 

different a much better auxetic behaviour than yarn F. In addition, the maximum negative 

Poisson‟s ratio of yarn D is also much larger than yarn F. Therefore, in case of no core-

indentation effect occurring of the HAY, multifilament and high stiffness wrap fibre gives a 

better auxetic behaviour. This result is demonstrated by comparing the results in Figs. 9b and 

10.  The mechanical properties of all core, wrap and yarns are presented in an increasing 

order of core Young‟s modulus in Table 4. The Young‟s modulus of PU is lower than that of 

other core fibres and is extremely low compared to that of the wrap (21.96 GPa); hence the 

core-indentation effect may be assumed to be the consequence of this variation in core 

Young‟s modulus. A rise in modulus of core fibre has resulted in exclusion of this effect. 

Yarn D gives the best auxetic effect among others. 

 

4. Conclusions 

This paper explores the effect of a core-indentation phenomenon on the performance of 

helical auxetic yarns. Analysis of the cross-section of a series of strained yarns showed that 

large differences between the component moduli results into significant deformation of the 

core fibre by the wrap fibre. Core-indentation phenomenon renders a large negative effect on 

the auxetic behaviour of the yarn. In this work, a chain of experiments has been carried out to 

determine a limit where the relative component moduli is high enough to demonstrate auxetic 

effect and low enough to prevent core-indentation effect occurring. The structure of the wrap 

fibre has also been observed to be crucial in originating core-indentation. The multifilament 
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wrap fibre has a different core–indentation mechanism than the monofilament fibre on the 

yarn; therefore, it indicates that choosing an appropriate wrap fibre is essential to optimise 

auxetic behaviour of the yarn. Overall, the negative Poisson‟s ratio is maximised if the wrap 

is much stiffer than the core provided that indentation does not occur. Indentation will occur 

if the wrap is too stiff. Appropriate combination of component moduli and geometric 

parameters has facilitated the fabrication of the HAY with large negative Poisson‟s ratio of -

13.52. This work gives a significant guidance to tailor auxetic behaviour of helical auxetic 

yarns for their particular applications.  
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Table 1. Specifications of HAYs fabricated for core-indentation study and material properties of the component fibres. 

Yarn Core Wrap  Fibre type Fibre diameter (mm) 

(+/- 0.01mm) 

Fibre Young’s 

Modulus  

(MPa) 

A Polyurethane (PU) Ultra-high-molecular-weight 

polyethylene (UHMWPE) 

Monofilament core and 

multifilament wrap  

Core: 0.65 

Wrap: 0.23 

Core: 114 ± 20 

Wrap: 21960 + 1200 

B Polyamide 12 (PA) UHMWPE Monofilament core and 

multifilament wrap 

Core: 1.06 

Wrap: 0.23 

Core: 260 ± 40 

Wrap: 21960 + 1200 

C Polyethylene (PE) UHMWPE Monofilament core and 

multifilament wrap 

Core: 0.55 

Wrap: 0.23 

Core: 630 ± 25 

Wrap: 21960 + 1200 

D Polyethylene 

terephthalate (PET) 

UHMWPE Monofilament core and 

multifilament wrap 

Core: 0.70 

Wrap: 0.23 

Core: 420 ± 30 

Wrap: 21960 + 1200 

E PU 

 

Co-polymer polyamide (CPPA) 

 

Monofilament core and 

monofilament wrap 

Core: 0.65 

Wrap: 0.18 

Core: 114 ± 20 

Wrap: 2355 + 1500 

F PET CPPA Monofilament core and 

monofilament wrap 

Core: 0.70 

Wrap: 0.18 

Core: 420 ± 30 

Wrap: 2355 + 1500 

  

Table(s)
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Table 2. Summary of loads that were selected for the cross sectional images.  

Yarn Load (N) 

A 6, 15, 30, 40 and 48. 

B 10, 30, 50 and 70. 

C 20, 35, 50 and 65. 

D 15, 30 and 45. 

E 7, 15. 

F 10, 15 and 20. 

 

 

 

 

Table 3. Diameter of the yarn A under different load was measured by the external and the 

cross-sectional images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Load (N) Diameter of yarn obtained 

from external images 

(mm) 

Diameter of yarn obtained 

from cross-sectional images 

(mm) 

6  0.723 0.711 

15 0.748 0.731 

30 0.752 0.797 

40 0.748 0.794 

48 0.773 0.841 



3 

 

Table 4.  Summary of mechanical properties of core, wrap and yarn.  

Yarn Young’s modulus of 

the core  

        (MPa) 

Young’s modulus of 

the wrap 

         (MPa) 

Max negative Poisson’s 

ratio 

Strain at max 

negative 

Poisson’s ratio 

A PU - 114+ 20 UHMWPE - 21960 + 

1200 

-1.65 + 0.33 0.09 

E PU - 114+ 20 Co-polymer 

polyamide - 2355  

+ 1500 

-5.58 + 0.47 

 

0.008 

B PA - 260 ± 40 UHMWPE - 21960 + 

1200 

-1.67 + 0.27 0.09 

F PET - 420 ± 30 Co-polymer 

polyamide - 2355  

+ 1500 

-0.39 + 1.01  

 

0.21 

D PET - 420 ± 30 UHMWPE - 21960 + 

1200 

-13.52 + 3.78 0.02 

C PE - 630 ± 25  UHMWPE - 21960 + 

1200 

-2.22  + 0.47 0.06 
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Fig. 1. (a) HAY at zero strain and at maximum strain. (b) Cross-section of HAY (clockwise): 

Ideal case, the wrap spread around the core, partial core-indentation and entire core-

indentation. (c) Component of the wrap embeded into the core. 
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wrap 
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Figure(s)
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Fig. 2. (a and b) Cross-sectional and external images at 6N. (c and d) Cross-sectional and 

external images at 15N. (e and f) Cross-sectional and external images at 30 N. (g and h) 

Cross-sectional and external images at 40 N. (i and j) Cross-sectional and external image at 

48 N. 

 

 

Wrap 

Core 

Core Wrap 
(a) (b) 

(c) (d) 

(e) (f) 

 (h) 

(i) (j) 



3 

 

-5 0 5 10 15 20 25 30 35 40 45 50 55

-3

-2

-1

0

1

2

3

4

5

6

7
 External measurments

 Cross-sectional measurements

 Ideal case measurements

P
o

is
so

n
's

 r
a

ti
o

Load(N)

 

Fig. 3. Poisson’s ratio as a function of load for yarn A. 1) External measurements, transverse 

and longitudinal strain obtained from the external image taken during tensile testing; 2) 

Cross-sectional measurements, transverse strain obtained from the cross-sectional image and 

longitudinal strain obtained from the external image; 3) Ideal case measurements, transverse 

strain of the yarn with hypothetically no indentation of the core measured from the modified 

cross sectional image, and longitudinal strain from the external image. 
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Fig. 4. (a) Cross-sectional image of yarn B at 10, 30, 50 and 70 N respectively. (b) Cross-

sectional image of yarn C at 20, 35, 50 and 65 N respectively. (c) Cross-sectional image of 

yarn D at 15, 30 and 45 N respectively.  
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Fig. 5. Poisson’s ratio of yarn A, B, C and D as function of strain. 

 

 

 

Fig. 6.  Micrographs of multifilament UHMWPE and monofilament CPPA wrap fibres. 
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Fig. 7. (a) Cross-sectional image of yarn E at 7 and 15 N. (b) Comparison between cross 

section of yarn A and E at 15 N load and 60 times magnification. 

 

 

Wrap 

Core 

Yarn A Yarn E 

(a) 

(b) 



7 

 

0.00 0.05 0.10 0.15 0.20 0.25

-8

-6

-4

-2

0

2

4

6

8

P
o

is
so

n
's

 r
a

ti
o

Strain

 Yarn A with multifilament UHMWPE wrap

 Yarn E with monofilament Co-polymer polyamide wrap

 

Fig. 8. Poisson’s ratio of yarn A and E as a function of strain. 
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Fig. 9. (a) Cross-sectional image of yarn F at 10, 15 and 20 N respectively. (b) Comparison 

between cross section of yarn D and F at 15 and 20 N under 60 times magnification. 
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Fig. 10. Poisson’s ratio of yarn D and F as a function of strain. 

 


