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This paper describes a multi-objective optimization model including Real Options concepts 

for the design and operation of water distribution networks.  This approach is explained 

through a case study with some possible expansion areas defined to fit different future 

scenarios. A multi-objective decision model with conflicting objectives is detailed. Also, 

environmental impacts are considered taking into account not only the life cycle carbon 

emissions of the different materials used during the construction of the networks, but also the 

emissions related to energy consumption during operation. These impacts are translated by 

giving a cost to each tonne of carbon dioxide emitted. This work presents a new multi-

objective simulated annealing algorithm linked to a hydraulic simulator to verify the 

hydraulic constraints, and the results are represented as points on the Pareto front. The 

results achieved show that the approach can deal explicitly with conflicting objectives, with 

environmental impacts and with future uncertainty. 
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1 Introduction 1 

Water distribution networks today are complex systems that require high investment for 2 

their construction and maintenance. The storage and transport of water has been 3 

extensively investigated in recent decades by applying optimization techniques to water 4 

distribution systems design (Sacks et al. 1989). In developed countries almost everyone 5 

has access to water systems, but several problems remain to be solved such as 6 

intermittent supply and the high level of water losses. Furthermore, as urban centers 7 

continue to grow so does the amount of water used. The networks have to continually 8 

adapt to new circumstances to provide an adequate service.  9 

The design of water distribution networks is often viewed as a single-objective, 10 

least-cost optimization problem with pipe diameters being the primary decision 11 

variables. But when we need to address several objectives, multi-objective optimization 12 

can be used to design of water distribution network instead. A number of researchers 13 

and practitioners have noted that the optimal design of water distribution systems is a 14 

multi-objective issue since it involves compromises between conflicting objectives, 15 

such as total cost, reliability and level of service. Savic (2002) demonstrates some 16 

shortcomings of single-objective optimization approaches and uses a multi-objective 17 

based genetic algorithm (Fonseca and Fleming 1993) to avoid these difficulties. 18 

Farmani, et al. (2004), Prasad et al. (2003), Creaco and Franchini (2012) and Todini 19 

(2000)  explored the application of multi-objective optimization where the minimization 20 

of cost and maximization of reliability are the main objectives. Di Pierro et al. (2009) 21 

compared two multi-objective algorithms for the design of real size networks. This 22 
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paper describes the solution of a multi-objective optimization model with two 23 

conflicting objectives.  24 

This work aims to include the cost of carbon emissions in the design and 25 

operation of water networks. We must therefore quantify the emissions from the very 26 

beginning of extraction of the different materials used in the water systems until their 27 

final disposal. Dennison et al. (1999) use life cycle analysis to compare the 28 

environmental impact of different pipe materials. Dandy et al. (2006) developed a 29 

multi-objective model that uses sustainability objectives in life cycle cost analysis, 30 

energy consumption, greenhouse gas emissions and resources consumption. The tool 31 

compared the minimum cost design with the sustainable environmental design. Herstein 32 

et al. (2011) presents an index-based method to assess the environmental impact of 33 

water supply systems. The index aggregates the consumption of resources, 34 

environmental discharges and environmental impacts in a single index. Different 35 

materials for tanks, manholes and moorings construction must be used to build up the 36 

water supply infrastructure. The most common are: the steel used in pipes, accessories 37 

and pumps; reinforced concrete; plastic for pipes and accessories; aggregates for 38 

pipeline backfill and asphalt for repaving.  The methodology presented Marques et al. 39 

(2014a) is used to evaluate the carbon emissions involved, considering the whole life 40 

cycle including the extraction of the raw materials, transport, manufacture, assembly, 41 

installation, disassembly, demolition and/or decomposition. The methodology also 42 

computes carbon emissions from the energy used during the network’s operation. 43 

Adding together the partial contributions of pipe installation and energy consumption it 44 

is possible to compute the total carbon emissions. It is also necessary to fix a value for 45 

the carbon emissions cost for each tonne emitted. These costs are included in the 46 

optimization model presented in the next section. 47 
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According to Haimes (1998) the great challenge for the scientific community in 48 

the third millennium will be to develop tools and technologies to support and maintain 49 

infrastructure. Several methods for the effective planning of water systems have 50 

appeared in the literature. If flexible planning can be adopted, the infrastructure will be 51 

able to cope with future uncertainty. Real options (ROs), originally from financial 52 

theory, could make an important contribution in this area. Myers (1977) was the first to 53 

introduce the term real options. Since then a large number of studies have been 54 

published where the concepts of ROs have been used in several fields.  55 

A number of studies have developed ROs approaches to solve a variety of 56 

problems: Nembhard and Aktan (2010), who systemized applications of ROs to design 57 

and resolve engineering problems;  De Neufville et al. (2006)  report the use of ROs in 58 

car parking problems, and Gersonius et al. (2010) apply ROs analysis to the option 59 

planning process in urban drainage systems to incorporate flexibility to accommodate 60 

climate change while reducing future flood risk. In the water industry, an ROs technique 61 

appears in the work of Woodward et al. (2011) to define maritime coastal defenses to 62 

reduce the risk of flooding. In the area of water systems expansion, Suttinon and Nasu 63 

(2010) present an ROs based approach where the demand increases. Zhang and Babovic 64 

(2012) use a ROs approach to evaluate different water technologies in water supply 65 

systems under uncertainty. The work of Creaco et al. (2014) proposes a multi-objective 66 

methodology aiming at considering the phasing of construction within the design of the 67 

water distribution systems, which grow in terms of layout size. The work of Huang et 68 

al. (2010) describes the application of ROs to the design of water distribution networks 69 

and Basupi and Kapelan (2013) presents a methodology to the flexible and optimal 70 

decision making dealing with future demand uncertainty. Finally the authors have 71 

already used ROs in two prior works: Marques et al. (2014b) to the optimal design of 72 
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water distribution systems using a single objective model formulation demonstrated in a 73 

simple case study and Marques et al. (2014a) taking into account carbon emissions and 74 

by using a different single objective model formulation demonstrated in “Anytown 75 

network”. Here a new multi-objective optimization tool based on simulated annealing is 76 

proposed to solve the multi-objective optimization model based on ROs that 77 

incorporates two conflicting objectives explicitly. There is a vast body of literature 78 

about multi-objective approaches that have been used in several fields: Hakanen et al. 79 

(2013) in wastewater treatment plant design and operation; Ahmadi et al. (2014)  to 80 

calibrate of watershed models for pollutant source identification  and watershed 81 

management; Giuliani et al. (2014) to the operation of complex environmental systems 82 

and Zheng and Zecchin (2014) for designing water distribution systems with multiple 83 

supply sources are just some recent examples. 84 

It is very important in water systems planning to predict future operating 85 

conditions. However, cities are continually changing and the water supply networks 86 

have to be adapted to these changes. Sometimes a new urban or industrial area is built 87 

and the network has to be improved to accommodate the new conditions. The opposite 88 

can occur in areas where population declines and demand falls. This work presents a 89 

multi-objective approach where uncertainty is related to new expansion scenarios for 90 

the network. 91 

Some benefits of flexible design are associated with the ease of accommodating 92 

different future scenarios.  However, flexibility usually incurs an extra cost at the initial 93 

stage of a water network design. A flexible design is one that enables the designer, 94 

developer, or operator to actively manage or further develop the configuration of the 95 

system downstream, to adapt it to changes in the supply, demand, or economic 96 

environment. The ROs approach presented in this work uses a decision tree to reflect 97 
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different scenarios that may occur during the planning horizon. The process uses a 98 

multi-objective optimization model to find solutions for the first period and for different 99 

possible future realities according to the decision tree.  The model uses two objectives: a 100 

minimum cost objective function that takes into account the carbon emission costs and a 101 

level of service measure that minimizes the pressure failures that can occur over the 102 

entire planning horizon. Various scenarios are analyzed to predict different alternative 103 

future conditions. 104 

The new ROs approach presented in this work deals with future uncertainties 105 

and with two conflicting objectives, over the whole planning horizon. Decision planning 106 

based on trying to delay some decisions for the future, enables current investment to be 107 

reduced. This delay also incurs some costs because the initial solution has to be flexible 108 

enough to accommodate all the future conditions, and such flexibility comes at a price. 109 

The remainder of this paper is organized as follows: in the next section the ROs 110 

framework and the case study are set out. This is followed by a multi-objective decision 111 

model based on an ROs approach, and then the results are presented. Finally, the 112 

conclusions are set out. 113 

2 Real options framework and case study 114 

A real options approach makes it possible to consider different adaptations over the 115 

lifetime horizon, according to urban growth. Areas can become depopulated or 116 

urbanized. These modifications have impacts on the hydraulic behavior of the networks 117 

and should be taken into account. In this section a case study demonstrating how the 118 

multi-objective model considering ROs can be employed is presented. Figure 1 119 

represents a water distribution network inspired on the work of Walski et al. (1990). In 120 

the original case study the layout of the network is only the part represented inside the 121 
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dashed line. However, in this case study the possibility to expand the network for four 122 

different areas A1, A2, A3 and A4 it is considered. Furthermore an area A5 where it is 123 

possible to have a depopulated area is taken into account.  124 

  125 
Figure 1: Water distribution network inspired from Walski et al. (1990) 126 

The network is supplied by three fixed-level reservoirs and there is a pumping 127 

station placed at link 1 to transmit energy to the flow from reservoir R1. The 128 

characteristics of the nodes at demand conditions (1) and (2) are presented in Table 1. 129 

This work considers two kinds of minimum pressure: the desired pressure and the 130 

admissible pressure of reference. The lower limit of pressures (admissible pressures) is 131 

assumed to be high enough to permit that the demand can be totally satisfied. Pressure 132 

deficits for which the demand cannot be totally satisfied (Wagner et al. 1988) are not 133 

considered  here. The two different pressure levels are included to analyse the tradeoff 134 

between costs and service levels measured in terms of minimum nodal pressures that are 135 

desired and pressures that are effectively provided.  136 
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The efficiency of the pump is considered to be constant and equal to 75%, as a 137 

simplification of the problem and the daily consumption is 20 hours at demand 138 

condition (1) with the other 4 hours at demand condition (2). The energy costs are 139 

0.075$/KWh and should be evaluated for a 60-year period using a discount rate of 4% 140 

year. The discount rate is just used to assess the cost in different time interval of the 141 

planning horizon.This rate was fixed based on the work of Wu et al. (2010).  142 

Table 1: Characteristics of the nodes 143 

 144 

This is a new network that considers the 8 different commercial diameters 145 

available for the pipe design presented in Table 2. The installation of parallel pipes 146 

during the planning horizon is not considered in this study.  Carbon emissions are 147 

computed assuming a value of 0.637 KgCO2 per each KWh of energy produced. This is 148 

a mean value of the carbon emissions of the electricity generation sector between 2005 149 

and 2010 in Portugal (ERSE 2012). The characteristics of the pipes are given in Table 3. 150 

Node Areas 

Ground 

elevation 

(m) 

Nodal consumption (l/s) 
Minimum desirable  

pressure (m) 

Minimum admissible 

pressure (m) 

(1) (2) (1) (2) (1) (2) 

1 

2 

 36.48 

30.48 

Reservoir at the level of 35.48 m 

 0 0 28.132 17.583 21.099 10.550 

3  106.68 31.545 47.318 28.132 17.583 21.099 10.550 

4  117.35 Reservoir at the level of 151.73 m 

5  106.68 31.545 47.318 28.132 17.583 21.099 10.550 

6 A5 106.68 126.180 189.270 28.132 17.583 

17.583 

21.099 10.550 

7 A5 106.68 63.090 94.635 28.132 21.099 10.550 

8  121.92 Reservoir at the level of 156.30 m 

9 A1 106.68 31.545 47.318 28.132 17.583 21.099 10.550 

10 A1 106.68 31.545 47.318 28.132 17.583 21.099 10.550 

11 A1 106.68 31.545 47.318 28.132 17.583 21.099 10.550 

12 A2 106.68 31.545 47.318 28.132 17.583 21.099 10.550 

13 A2 106.68 31.545 47.318 28.132 17.583 21.099 10.550 

14 A3 106.68 31.545 47.318 28.132 17.583 

17.583 

21.099 10.550 

15 A3 106.68 31.545 

31.545 

47.318 28.132 21.099 10.550 

16 A4 106.68 47.318 28.132 17.583 21.099 10.550 

17 A4 106.68 31.545 47.318 28.132 17.583 21.099 10.550 
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Table 2: Diameter, unit cost, carbon emissions and Hazen-Williams coefficients 151 

Diameters  

(mm) 

Unit cost  

($/m) 

Carbon 

emissions 

(TonCO2/m) 

Hazen-

Williams   

coefficients 

152.4 49.541 0.48 100 

100 203.2 63.32 0.59 

254 94.816 0.71 100 

304.8 132.874 0.81 100 

100 355.6 170.932 0.87 

406.4 194.882 0.96 100 

457.2 225.066 1.05 100 

508 262.795 1.14 100 

 152 

Table 3: Characteristics of the pipes 153 

Pipe 
Initial 

node 

Final 

node 
Length (m) Area 

1 1 2 Pump  

2 2 3 3218.688  

3 3 4 3218.688  

4 2 5 1609.344  

5 3 6 1609.344  

6 5 6 3218.688  

7 6 7 3218.688  

8 7 8 1609.344  

9 5 9 1609.344 A1 

10 6 10 1609.344 A1 

11 7 11 1609.344 A1 

12 9 10 3218.688 A1 

13 10 11 3218.688 A1 

14 2 12 1609.344 A2 

15 3 13 1609.344 A2 

16 12 13 3218.688 A2 

17 9 14 1609.344 A3 

18 10 15 1609.344 A3 

19 14 15 3218.688 A3 

20 12 16 1609.344 A4 

21 13 17 1609.344 A4 

22 16 17 3218.688 A4 

 154 
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A planning horizon of 60 years is assumed for this case study, which was 155 

subdivided into 3 stages of 20 years. The decision tree contemplates 8 possible 156 

scenarios where different conditions can occur in future time intervals. The different 157 

decision paths that can be taken are schematized through the tree shown in Fig. 2.  158 

159 
 160 
Figure 2: Decision tree for the planning horizon and probabilities of occurrence 161 

Each decision path has different probabilities. For this case study the 162 

probabilities considered for the different decision nodes are shown in the square boxes 163 

of Fig. 2. For real case studies, these probabilities have to be defined by decision 164 

makers using appropriate methods and knowledge. The values shown in the last 165 

branches of the decision tree are the probabilities of the scenarios and are calculated by 166 

multiplying the probabilities of all nodes on the path of that scenario. For the first 167 

period T=1 an initial design for the network is defined. For T=2, four different 168 

situations can occur, expansion to A1 and A2, expansion to A1, expansion to A2 and no 169 

expansion.  In the last period T=3, new expansion areas are possible, A3 and A4, 170 
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expansion to A3, expansion to A4 and no expansion. It is also possible to have a 171 

depopulated area A5 where the consumption could decrease by 30%. These scenarios, 172 

included in the decision tree of Fig. 2, are deemed the most probable future conditions 173 

for the case study. ROs permits an adaptive planning strategy and if the predicted future 174 

conditions turn out to be wrong, the model could be rerun for more realistic scenarios.  175 

This paper deals with a small water network example. In real-world large 176 

networks with many pipes and with many possible plans for upgrades, the decision tree 177 

can become very complex. However, the methodology presented here does allow 178 

numerous scenarios to be defined, and there is no restriction on the number of 179 

possibilities.  However, the aim is to keep the number of options relatively small by 180 

taking into account the most probable future scenarios for the water network. In that 181 

case, the decision trees are easy to understand and can be easily handled by decision 182 

makers and the methodology. 183 

Finally a cost must be assigned to the carbon emissions. A carbon cost of 5$ for 184 

each ton of carbon emitted is assumed here. This cost is defined according to European 185 

Energy Exchange 2013-2020 data.  186 

3 Optimization model 187 

This work presents a multi-objective model with two conflicting objectives. One of the 188 

objectives consists in minimizing the costs of construction and operations of the 189 

network. These systems are responsible for important carbon emissions during 190 

construction but mostly during the operation phase. Therefore, the carbon emissions are 191 

also computed to try to achieve an environmental friendly design for the water 192 

distribution system. The other objective of the model is used to determine a solution 193 
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taking into account the level of service. As it was stated, the model considers two kinds 194 

of minimum pressures, the minimum desirable pressures and the minimum admissible 195 

pressures. If nodal pressure remains between these two limits, the pressure violations 196 

are summed for all nodes. However the model considers that the network has to obey 197 

the desirable pressure constraints for the first 20 years. In the subsequent time intervals, 198 

pressures can decrease up to admissible pressures, according to the probability of 199 

occurrence of the decision paths. 200 

The decision model aims to minimize two objectives. The first one is given by 201 

Eq. 1. 202 

 1  iOF Min C Cf
 (1) 

Where: 203 

Ci - cost of the initial solution to be implemented for the first period in 204 

year zero ($); 205 

           Cf – future costs ($). 206 

 207 

The objective function OF1 of Eq. 1 is written so that the solution for the first 208 

period, T=1, can be determined while taking into account the different decision paths of 209 

the planning horizon. The objective function seeks to minimize both the initial cost and 210 

the probable future cost of the system. The term Ci computes the cost of the network for 211 

the first period T=1 of planning and is given by Eq. 2. 212 

 213 

     ,1 ,1 ,1 ,1 ,1
1 1 1

 
NPI NPU NDC

i i j d d
i j d

Cpipe CCEpipe Cps Ce CCEeCi
  

 
 
 
 

        (2) 

  214 
 Where: 215 

NPI - number of pipes in the network; 216 
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Cpipei,1 - cost of pipe i in period T=1; 217 

CCEpipei,1 - cost of the carbon emissions of pipe i in period T=1; 218 

NPU - number of pumps in the network; 219 

Cpsj,1 - pumping station costs of pump j in the period T=1; 220 

NDC - number of demand conditions considered for the design; 221 

Ced,1, – present value cost of energy in demand condition d in period T=1; 222 

CCEed,1, – present value cost carbon emissions by energy in demand 223 

condition d in period T=1. 224 

The initial cost is given by the sum of the cost of pipes, the cost of pumps and 225 

the present value of energy cost. The carbon emissions’ cost of pipes and energy are 226 

also included. The carbon emissions related to other network elements as pumps are not 227 

considered, since they are neglected compared with pipe construction and energy. The 228 

other term of the objective function OF1 represents the future cost of all the scenarios 229 

(Eq. 3), weighted by the corresponding probability of each scenario. 230 

 231 

, ,
s=1 t=2 2

tNS NTI

t s nt s
nt

Cf Cfuture prob


 
 
 
 

    (3) 

Where: 232 

NS - number of scenarios; 233 

NTI - number of periods into which the planning horizon is subdivided; 234 

Cfuturet,s - cost of future designs in scenario s for period t; 235 

  Probnt,s - probability of scenario s in period nt. 236 

The future scenarios’ costs are arrived at by summing all possible future costs, 237 

starting from T=2. These costs are computed by multiplying the cost of each decision 238 

option by the probability of taking that decision path. A mean is obtained for the future 239 
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possible costs for the network. The term Cfuturet,s is computed in Eq. 4, for all periods 240 

beginning in T=2 (the costs for the first period are already calculated in the Cinitial 241 

term). 242 

     
 

   

, , , , , ,
1 1 1

, , , ,
1 1

,
1

1

                     

t

NPI NPU NDC

i t s j t s d t s Y
i j d

NPI NDC

i t s d t s
i d

t s Cpipe Cps Ce
IR

CCEpipe CCEe

Cfuture
  

 

 
    

 

 
  
 

   

 
 (4) 

Where: 243 

 NPI - number of pipes in the network; 244 

Cpipei,t - cost of pipe i installed in period t in scenario s; 245 

NPU - number of pumps in the network; 246 

Cpsj,t,s - pumping station costs of pump j installed in period t in scenario s; 247 

NDC - number of demand conditions considered for design; 248 

Ced,t,s – present value cost of energy (actualized for the first year of the 249 

time interval t) in demand condition d  for period t in scenario s; 250 

CCEpipei,t,s - cost of the carbon emissions of pipe i installed in period t in 251 

scenario s; 252 

CCEed,t,s – present value cost carbon emissions  by energy in demand 253 

condition d for period t in scenario s; 254 

IR - annual interest rate for updating cost; 255 

Yt - year when costs will be incurred for period t. 256 

The first term of Eq. 4 computes the cost of pipes to be installed for different 257 

decision paths plus the costs to install pumps every 20 years plus the cost of energy. The 258 

current value of these cost are then determined. To compute the current value of the 259 

costs of energy, it is necessary to sum and discount the costs during the number of years 260 

of each the time interval. Thereafter, it is required to update these costs by Yt years to 261 
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year zero of the planning horizon. The carbon emission costs associated with pipe 262 

installation and with energy consumption are included in the second term. 263 

The sum of the initial costs with future costs is intended to represent the full 264 

planning horizon of the network, considering future uncertainty. The model aims to 265 

determine the decision variables not only for the first period but also for all the future 266 

decisions that have to be taken according to certain possible decision paths. The values 267 

of the decision variables that are achieved for the first period are effectively the ones 268 

that are needed to be adopted now.  269 

The second objective function is given in (5). The aim of this expression is to 270 

minimize the total pressure violations for the different future scenarios. 271 

 2  TPVOF Min  (5) 

            Where: 272 
  TPV - total pressure violations (m). 273 

The multi-objective model determines different solutions for different levels of 274 

pressure violations. The total pressure violations are computed according to Eq. 6: 275 

 , , ,min, ,
s=1 t=2 1d=1

0; n d t sn d

NS NTI NDC NN

n

Pdes PTPV Max


 
 
 

    (6) 

Where: 276 
NN - number of nodes; 277 

Pdesmin,n,d - minimum desirable pressure at node n for demand condition 278 

d; 279 

Pn,d,t,s - pressure at node n at demand condition d for time interval t and in 280 

scenario s. 281 

Eq. 6 computes the sum of pressure violations for each scenario, each time 282 

interval (starting from T=2), each demand condition and each network node. This sum 283 
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of pressure violations can be used as a measure of the network performance during the 284 

entire planning horizon.  285 

Table 1 presents the desirable and admissible minimum pressures for each node. 286 

However these admissible pressures are a threshold limit to compute the lowest value 287 

that the nodal pressures can reach according to the probability of scenarios. The 288 

constraint presented in expression (7) aims to obtain higher values, and thus less 289 

pressure violations, for scenarios with high probabilities of occurrence. In the first time 290 

interval, a decision node with probability equal to 1 is only considered. If in expression 291 

(7) the probability is set to 1, the minimum pressure become equal to the desired 292 

pressure. Thus, for the first time interval the pressures have to be higher or equal to 293 

desirable pressures and no violations are permitted in the first time stage. 294 

 min, , min, , min, ,,
2

, , ,
    

     ; ; ;

n d n d n d

t

nt s
nt

n d t s
Pdes Padm PadmprobP

n NN d NDC nt NTI s NS


  
 
  

 

       


 (7) 

Where: 295 

Padmmin,n,d - minimum admissible pressure at node n for demand 296 

condition d. 297 

Expression (7) is just one of the constraints of the model. The model also 298 

includes other constraints: Eq. (8) to verify the nodal continuity equations; Eq. (9) to 299 

compute the head loss of the pipes; Eq. (10) to guarantee a minimum diameter for the 300 

pipes; Eq. (11) so the candidate discrete diameter for each pipe is based on a set of 301 

commercial diameters; and Eq. (12) to ensure the assignment of only one commercial 302 

diameter for each pipe. The decision variables of this optimization problem described 303 

by Eq. (1 to 12) are the commercial pipe diameter assigned to each pipe of the network. 304 
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, , , , ,
1

     ; ; ;
NPI

n i i d t s n s
i

I Q QC n NN d NDC t NTI s NS


                         (8) 305 

, , , , , ,     ; ; ;i d t s i i d t sH K Q n NN d NDC t NTI s NS                                 (9) 306 

min     i iD D i NPI                                      (10) 307 

, ,      
1

.
ND

i d i d i
d

D YD Dcom i NPI


                                          (11)                                            308 

,
1

1  
ND

d i
d

YD i NPI


                                                    (12) 309 

            Where:  310 

In,i -incidence matrix of the network;  311 

Qi,d,t,s – flow on the pipe i in demand condition d for period t and scenario 312 

s (m3/s); 313 

QCn,d,t,s - consumption in node n  in demand condition d for period t and 314 

scenario s (m3/s);  315 

NN - number of nodes;  316 

ΔHi,s - head loss in pipe  i  in demand condition d for period t and 317 

scenario s;  318 

Ki ,α- coefficients that depends of the physic characteristics of the pipe i;  319 

Di - diameter of pipe i;  320 

Dmini - minimum diameter for the pipe i;  321 

YDd,i - binary variable  to represent the use of the diameter d in pipe i;  322 

Dcomd,i - commercial diameter d assigned to pipe  I; 323 

ND- number of commercial diameters.  324 
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4 Optimization tool 325 

A new method has been developed to solve the multi-objective model. This work 326 

presents a multi-objective simulated annealing algorithm inspired by the work of 327 

Bandyopadhyay et al. (2008). In these problems the objective is to search for a group of 328 

optimal solutions that are normally named “optimal Pareto front”, introduced by Pareto 329 

(1896). These solutions are characterized by the fact that it is not possible to enhance 330 

one objective without worsening the other. 331 

The original simulated annealing method for single-objective problems proposed 332 

by Kirkpatrick et al. (1983) needs some changes before multi-objective optimization 333 

problems can be solved. A fundamental difference is the use of a dominance concept to 334 

guide the exploration of neighborhoods during the search process. The concept of 335 

dominance is generally used to compare two solutions is  and js . If is  is not worse for 336 

all the objectives than js  and only better for at least one objective, it is said that is  337 

dominates js . Also, a solution opts  is said to be non-dominated if no other feasible 338 

solution found so far dominates it. The set of non-dominated solutions opts is known as a 339 

Pareto optimal front. 340 

This method makes use of an archive where the non-dominated solutions seen so 341 

far are stored. The structure of the proposed optimization tool is presented in Fig 3. 342 

 343 

 344 

 345 

 346 
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 361 

Figure 3: Multi-objective simulated annealing flow chart 362 

 363 
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Some parts of the algorithm are similar to the single-objective simulated 364 

annealing tool:  the initial solution, the annealing parameters, the building method of the 365 

neighborhoods, the cooling process and the stop criteria that are given in the work of 366 

Cunha & Sousa (2001) are also used in this method. But some important differences are 367 

highlighted below. 368 

After the generation of a candidate solution and verification of the constraints of 369 

the model we must check the domination status. This is the key difference between the 370 

single-objective and multi-objective tools based on simulated annealing. In the single-371 

objective method the candidate solution is accepted according to the Metropolis 372 

criterion that compares the current solution with the candidate solution. However, in 373 

this multi-objective method the candidate solution is compared both with the current 374 

solution and with the solutions saved in the archive.  375 

The dominance between two solutions is computed by Eq. 13: 376 

  377 

 Where: 378 

  Δdoma,b – dominance a to b; 379 

  N– total number of objectives; 380 

  OFi(a) –value of objective function i for solution a; 381 

  OFi(b) – value of objective function i for solution b. 382 

 The dominance between two solutions is computed by multiplying the change in 383 

the values of the N objectives, if this difference is other than zero.  The domination 384 

concept is explained in Fig. 4 for the example of two objective functions. 385 
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i i
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a b i i
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dom OF a OF b
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 386 

Figure 4: Domination between solutions a and b, adapted from Bandyopadhyay et al. 387 

(2008) 388 

The amount of domination is represented in Fig. 4 by the area of the rectangle 389 

between solutions a and b and is used by the multi-objective simulated annealing to 390 

compute the acceptance probability. 391 

Three different conditions can occur when checking the domination status: 392 

current solution dominates candidate solution; candidate and current solutions are non-393 

dominated and candidate solution dominates current solution. According to the 394 

domination status, it can also be necessary to compute the dominance of the candidate 395 

solution in relation to the solution in the archive. According to the situation, the solution 396 

can be accepted directly and become the new current solution. But, if the candidate 397 

solution is dominated by current solution or by the archive, a metropolis criterion is 398 

used to compute the acceptance probability for three distinct cases of dominance, as 399 

presented in Fig. 3.  For case 1, the dominance is computed by Eq. 14: 400 
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 401 

 Where: 402 

  Δdommean – mean dominance relative to the candidate solution; 403 

  Δdomi,cand – dominance of the archive relative to the candidate solution; 404 

  Δdomcurr,cand – dominance of the current solution relative to the candidate 405 

solution; 406 

p – total number of solutions in the archive that dominate the candidate 407 

solution. 408 

 Eq. 9 considers not only the dominance of the current solution in relation to the 409 

candidate solution, but also the sum of dominance of all the solutions in the archive that 410 

dominate the candidate solution. This sum is divided by the number of solutions in the 411 

archive that dominate the candidate solution, plus one, to take into account the 412 

dominance of the current solution relative to the candidate solution. For case 2, the 413 

current and candidate solutions are non-dominated and the mean dominance is 414 

computed by Eq. 15:  415 

  416 
 This expression is analogous to case 1, except that now the dominance between 417 

the current and candidate solutions is not taken into account. Lastly, for case 3, the 418 

candidate solution dominates the current solution. But if the archive dominates the 419 

candidate solution a minimum dominance is computed through Eq. 16, deemed equal to 420 

the minimum value of dominance between the solutions of the archive that dominate the 421 

candidate solution. 422 
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 Where: 423 

  Δdommin – minimum dominance relative to candidate solution. 424 

  425 
 After calculating the dominance in these three different cases the Metropolis 426 

criterion is used to compute the acceptance probability of the candidate solution. For 427 

cases 1 and 2 the acceptance probability is computed by Eq. 17, and for case 3 the 428 

acceptance probability is computed by Eq. 18: 429 

 430 

 431 

 For cases 1 and 2, if the Metropolis criterion is met the current solution becomes 432 

the candidate solution. For case 3, if the Metropolis criterion is met the current solution 433 

becomes equal to the solution of the archive with the minimum dominance relative to 434 

the candidate solution. These movements are also called uphill moves because they are 435 

contrary to the direction to the minima can be accepted according to the computed 436 

probabilities. This method is thus able to explore, in theory, the full solution space and 437 

the solutions achieved, regardless of the starting point of the algorithm.  438 

 According to the structure of the algorithm of Fig. 3, the multi-objective process 439 

is repeated for a number of iterations at each temperature. The temperature is reduced 440 

until the stop criteria are attained and the process stops.  441 

 The archive contains the non-dominated solutions found so far. The size of the 442 

archive is given by two limits, a lower limit LL and an upper limit SL. During the search 443 
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process, solutions are stored in the archive until it is completed with SL solutions.  Then 444 

a clustering technique is used to lower the number of solutions stored to the lower limit 445 

LL. The clustering technique is based on the work of Hartigan and Wong (1979). This 446 

tool aims to find a small number of LL solutions that represents the group of SL 447 

solutions. The values are LL=10 and SL=30 and are defined according to the number of 448 

final of Pareto front solutions that we wish to obtain.  449 

This optimization method was linked to the EPANET hydraulic simulator 450 

(Rossman, 2000) to verify the hydraulic constraints of the multi-objective model. 451 

Although this is a demand driven hydraulic simulator, the methodology included in this 452 

paper could be easily adapted for a pressure driven hydraulic simulator to include issues 453 

related to network deterioration and leakages. 454 

 In this work a simple water network it is used to illustrate the approach. For 455 

large size networks the computation demand increases due to the size of the network, 456 

which has impacts on how quickly the RO problem can be solved. For large networks, if 457 

the computation time increases too much, some strategies can be used to overcome this 458 

problem: considering just the more important parts or by dividing the network in 459 

subzones, such as district metered areas (DMAs) or using parallel computing.   460 

5 Results 461 

Figure 5 provides some results obtained by solving the multi-objective model given by 462 

the objective functions and constraints (Eq. 1 to 12). The model determines the Pareto 463 

front consisting of 10 different solutions. The total cost represents not only the 464 

investment and operation costs but also the carbon emission costs of the network 465 

lifecycle. The minimum pressure violations are arrived at by summing all the violation 466 
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values for each node and considering the different conditions that the network can cope 467 

with. 468 

 469 

Figure 5: Pareto front of objectives OF1 and OF2 470 

 471 
The Pareto front that can be traced through the points represented in Fig. 5 gives 472 

an idea about how the cost decreases when pressure violations are permitted. Fig.5 473 

provides the Pareto front identified by the optimization tool. This figure represents 10 474 

distinct solutions. The number of solutions is given a by the lower limit of the archive 475 

LL. This limit is defined according to the number of final solutions required. If it is 476 

necessary to identify a high number of solutions, with the objective to obtain an 477 

extended Pareto Front in terms of cost (Higher costs than 5.784×106) or lower pressure 478 

violations (lower than 23 m) the number of final solutions has to increase. However, the 479 

computational effort will also increase. These 10 solutions were achieved in 480 

approximately 2.5×105 evaluations. Details of the cost of pipes, pumps and energy 481 

(PPE), carbon emission costs, total costs and total pressure violations for each solution 482 

of the Pareto front are given in Table. 4.  483 

 484 
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Table 4: Pareto front solutions 485 

Solution 1 2 3 4 5 6 7 8 9 10 

PPE cost $(×106) 5.784 5.461 5.358 5.291 5.279 5.276 5.273 5.253 5.248 5.246 

Carbon cost $(×106) 0.161 0.150 0.149 0.148 0.148 0.148 0.147 0.147 0.146 0.146 

Total cost $(×106) 5.945 5.611 5.507 5.439 5.427 5.424 5.420 5.399 5.395 5.392 

Pressure Viol. (m) 23 32 41 55 61 67 74 79 85 92 

 486 

Table 4 also shows that the total cost falls if high pressure violations are 487 

allowed.  A higher level of service requires an increase in the network capacity to meet 488 

the minimum desirable pressures of the network.  We can also see that for solutions 10 489 

to 4 a small increment in the total cost makes it possible to define solutions with 490 

significant falls in the total minimum pressure violations. Thus, it is possible to improve 491 

the level of service of the network within this range of solutions for a low expenditure.  492 

The carbon emission cost falls as the PPE cost decreases, as indicated in Table 4. 493 

The carbon emission varies for different solutions on the Pareto front between a 494 

minimum of $146,227 for solution 10 and a maximum of $161,019 for solution 1.  In 495 

fact, the variation in carbon costs for these 10 solutions is small and thus the impact on 496 

the optimization process is low. This value is nonetheless included in the model to 497 

quantify the carbon emissions involved in construction and operation of water networks. 498 

In order to explain how solutions are defined, the extremities of the Pareto front 499 

(solution 1 and solution 10) will be detailed next, just for the first scenario.. Fig 6 shows 500 

the total cost of the solution 1, for scenario 1 and for the 60-year planning horizon, is 501 

$7,455,992 and is composed of PPE costs of $7,260,067 and carbon emission costs of 502 

$195,925, associated with the design and operation of the network. The total cost of 503 

solution 10 (Fig. 7) for the same scenario and for the 60-year planning horizon, is 504 



 

27 
 

$7,068,095 and consists of PPE costs of $6,883,401 and carbon emission costs of 505 

$184,694. In this scenario all the areas are expanded, thus the total consumption in the 506 

network increases. This is the most demanding case considered in the decision tree and 507 

has a 6% probability of occurrence.  The diameters are given in millimeters and the 508 

expansion areas are indicated by traced ellipses aggregating the new consumption 509 

nodes. 510 

 511 

Figure 6: Design for solution 1 and considering scenario 1 in the last time interval 512 
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 513 

Figure 7: Design for solution 10 and considering scenario 1 for the last time interval 514 

In terms of violations, solution 1, for scenario 1, has 18m and solution 10, for 515 

scenario 1, has 35m total minimum pressure violations. Differences between solutions 516 

indicate that a cost increment of 6% is needed for scenario 1 to lower the total minimum 517 

pressure violations by 17m. Also, the carbon emission costs increase 6% if a network 518 

with low pressure violations is required. 519 

The optimization model aims to simultaneously minimize the installation, 520 

operation and carbon emission costs of the first objective function OF1. But it also aims 521 

to minimize the pressure violations given by objective function OF2. The designs 522 

represented by Figs 6 and 7 can be used as solutions for the case study described in this 523 

work if scenario 1 occurs. However, other solutions given by the multi-objective model 524 

can be chosen, according to the preferences of decision makers. All the possible 525 
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decision paths of solution 1 of the Pareto front in Fig. 5 determined by the multi-526 

objective tool, are shown in greater detail in Fig. 8. 527 

Decisions have to be made for each time interval of the decision tree. Fig. 8 528 

presents, for each node, a table with the results of design solution 1 of the Pareto front, 529 

beginning with the diameters of pipes (in millimeters) required in the network. Then the 530 

costs are shown, divided into PPE costs, carbon costs, total cost and minimum pressure 531 

violations. Finally, the last branches of the decision tree represent the total cost of PPE, 532 

carbon emissions, total cost and total pressure violations for each scenario. These 533 

figures represent, for each scenario, the total cost and pressure violations that may be 534 

expected if that scenario occurs.  535 

Only the first stage design decision has to be implemented now, and therefore 536 

the future decisions will be made as new information comes. At the end of each phase 537 

the methodology should be applied again and different scenarios from those considered 538 

initially could be  considered (Creaco et al. 2014). The ROs approach is formulated as a 539 

multi-stage model whose objective is to design the network for the first time interval 540 

and help decision makers to find the best system development strategy while 541 

minimizing the costs.  542 

The design for the network depends not only on the hydraulic conditions of the 543 

present decision but on the decision paths that can be followed, too. The decisions taken 544 

in prior stages have to accommodate the future possible conditions of the network. The 545 

ROs approach considers different scenarios with different probabilities. By adding 546 

together the initial cost and all the future weighted costs we can arrive at the present 547 

value of the ROs solution in the Pareto front, which is $5.945×106. The sum of all 548 

pressure violations at the nodes of the network for this solution is 23m. 549 
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 550 

 551 

 552 

Figure 8: Designs for solution 1 according to the planning horizon decision tree 553 
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 554 

The design achieved for each link has enough capacity to extend the network to 555 

future new areas that may be built. Pipes 2 to 8 (see Fig. 1) are designed in the first 556 

stage, but need to have enough capacity for different decision paths. However, there is a 557 

tradeoff to determine the minimum cost solution involving carbon emissions and the 558 

minimum pressure violations that are allowed in the planning horizon. 559 

6 conclusions 560 

An ROs approach has been described that takes future uncertainties into account and 561 

deals with conflicting objectives over the whole planning horizon. A case study has 562 

been detailed with some possible expansion areas defined for different future scenarios. 563 

This was followed by a multi-objective decision model based on an ROs approach. The 564 

model aims to minimize two objectives and cope with all the different planning horizon 565 

scenarios that are considered. The objective functions and their constraints determine 566 

the solutions to be implemented in the first period, T=1, while taking into account all 567 

the possible future conditions that the network may have to cope with. ROs enable 568 

initial investments to be reduced by postponing some decisions for the future.  569 

The model aims to minimize two objectives. The first is given by the total cost 570 

computed as the sum of the installation cost of pipes and pumps plus the energy costs 571 

and the carbon cost over the lifecycle of the network. These costs are actualized to year 572 

zero and weighted by the probabilities of the future scenarios. The second objective is to 573 

minimize the minimum desirable pressure violations computed by summing the extent 574 

of the violation for all the nodes of the network and for all the scenarios. This objective 575 

can be seen as a level of service measure for the water supply system. The model is 576 

solved by a multi-objective simulated annealing heuristic and the results are represented 577 
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as points on the Pareto front. Carbon emissions are considered in the model. These 578 

environmental impacts are reduced by decreasing the size of the diameters and by 579 

cutting energy consumption. But, in this case study, there is a relationship between the 580 

pipe design and the energy consumed by pumps. Energy consumption can be reduced 581 

by using large pipe diameters that decrease the head losses, thereby reducing the amount 582 

of energy required to pump water. The optimization model has to handle this tradeoff. 583 

A group of solutions is obtained by the multi-objective model. These results 584 

enable decision makers to choose which solution to implement according to some 585 

preferences. One of these solutions is shown in more detail by means of a decision tree, 586 

including the values for the different decision variables, the total investment, the 587 

operating and carbon emission costs that will be incurred, and the minimum pressure 588 

violations. 589 

From the results, it was concluded that the carbon emission costs do not have a 590 

significant influence on the objective function value. As future trends, carbon emission 591 

costs should be included explicitly in the multi-objective optimization model to express 592 

the compromise between the minimization of these eco-friendly aspects and the other 593 

objectives. Furthermore, energy and pipe costs are conflicting with each other and the 594 

cost of energy could be viewed as another distinct objective to optimize.  595 

Overall, this study suggests that the multi-objective optimization tool based on 596 

ROs and considering environmental impacts can be used for solving water network 597 

design and operation problems with a long-term and uncertain planning horizon. The 598 

results also suggest that a multi-objective simulated annealing method can be 599 

successfully applied, leading to sparse Pareto front solutions. 600 



 

33 
 

7 Acknowledgments 601 

This work has been financed by FEDER funds through the Programa 602 

Operacional Factores de Competitividade – COMPETE, and by national funds from 603 

FCT –Fundação para a Ciência e Tecnologia under grant PTDC/ECM/64821/2006. The 604 

participation of the first author in the study is supported by FCT – Fundação para a 605 

Ciência e Tecnologia through Grant SFRH/BD/47602/2008. 606 

8 References 607 

Ahmadi, M., Arabi, M., Ascough, J. C., Fontane, D. G., and Engel, B. A. (2014). 608 
Toward improved calibration of watershed models: Multisite multiobjective 609 
measures of information. Environmental Modelling & Software, 59, 135–145. 610 

Bandyopadhyay, S., Saha, S., Maulik, U., and Deb, K. (2008). A Simulated Annealing-611 
Based Multiobjective Optimization Algorithm: AMOSA. Evolutionary 612 
Computation, IEEE Transactions on. 613 

Basupi, I., and Kapelan, Z. (2013). Flexible Water Distribution System Design under 614 
Future Demand Uncertainty. Journal of Water Resources Planning and 615 
Management. 616 

Creaco, E., and Franchini, M. (2012). Fast network multi-objective design algorithm 617 
combined with an a posteriori procedure for reliability evaluation under various 618 
operational scenarios. Urban Water Journal, 9(6), 385–399. 619 

Creaco, E., Franchini, M., and Walski, T. (2014). Accounting for Phasing of 620 
Construction within the Design of Water Distribution Networks. Journal of Water 621 
Resources Planning and Management, 140(5), 598–606. 622 

Cunha, M., and Sousa, J. (2001). Hydraulic Infrastructures Design Using Simulated 623 
Annealing. Journal of Infrastructure Systems, 7(1), pp. 32–39. 624 

Dandy, G., Roberts, A., Hewitson, C., and Chrystie, P. (2006). Sustainability Objectives 625 
For The Optimization Of Water Distribution Networks. In W. D. S. A. S. 2006 626 
(Ed.), Water Distribution Systems Analysis Symposium 2006 (pp. 1–11). American 627 
Society of Civil Engineers. 628 

De Neufville, R., Scholtes, S., and Wang, T. (2006). Real Options by Spreadsheet: 629 
Parking Garage Case Example. Journal of Infrastructure Systems, 12(2), 107–111. 630 



 

34 
 

Dennison, F. J., Azapagic, A., Clift, R., and Colbourne, J. S. (1999). Life cycle 631 
assessment: Comparing strategic options for the mains infrastructure — Part I. 632 
Water Science and Technology, 39(10–11), 315–319. 633 

Di Pierro, F., Khu, S.-T., Savić, D., and Berardi, L. (2009). Efficient multi-objective 634 
optimal design of water distribution networks on a budget of simulations using 635 
hybrid algorithms. Environ. Model. Softw., 24(2), 202–213. 636 

ERSE. (2012). Comércio Europeu de Licenças de Emissão de Gases com Efeito de 637 
estufa (p. 30). 638 

Farmani, R., Savic, D., and Walters, G. (2004). The Simultaneous Multi-Objective 639 
Optimization of Anytown Pipe Rehabilitation, Tank Sizing, Tank Siting, and Pump 640 
Operation Schedules. In Critical Transitions in Water and Environmental 641 
Resources Management (pp. 1–10). American Society of Civil Engineers. 642 

Fonseca, C. M., and Fleming, P. J. (1993). Genetic Algorithms for Multiobjective 643 
Optimization: FormulationDiscussion and Generalization. In Proceedings of the 644 
5th International Conference on Genetic Algorithms (pp. 416–423). San Francisco, 645 
CA, USA: Morgan Kaufmann Publishers Inc. 646 

Gersonius, B., Ashley, R., Pathirana, A., and Zevenbergen, C. (2010). Managing the 647 
flooding system’s resiliency to climate change. Proceedings of the Institution of 648 
Civil EngineersEngineering Sustainability, 163(1), 15–22. 649 

Giuliani, M., Galelli, S., and Soncini-Sessa, R. (2014). A dimensionality reduction 650 
approach for many-objective Markov Decision Processes: Application to a water 651 
reservoir operation problem. Environmental Modelling & Software, 57, 101–114. 652 

Haimes, Y. Y. (1998). Sustainable Operation of Threatened Infrastructures. Journal of 653 
Infrastructure Systems, 4(1), 1–4. 654 

Hakanen, J., Sahlstedt, K., and Miettinen, K. (2013). Wastewater treatment plant design 655 
and operation under multiple conflicting objective functions. Environmental 656 
Modelling & Software, 46, 240–249. 657 

Hartigan, J. A., and Wong, M. A. (1979). Algorithm AS 136: A k-means clustering 658 
algorithm. Applied Statistics, 28(1), 100–108. 659 

Herstein, L., Filion, Y., and Hall, K. (2011). Evaluating the Environmental Impacts of 660 
Water Distribution Systems by Using EIO-LCA-Based Multiobjective 661 
Optimization. Journal of Water Resources Planning and Management, 137(2), 662 
162–172. 663 

Huang, D., Vairavamoorthy, K., and Tsegaye, S. (2010). Flexible Design of Urban 664 
Water Distribution Networks. In World Environmental and Water Resources 665 
Congress (pp. 4225–4236). 666 

Kirkpatrick, S., Jr., C. D. G., and Vecchi, M. P. (1983). Optimization by simmulated 667 
annealing. Science, 220(4598), 671–680. 668 



 

35 
 

Marques, J. C. R.;  Cunha, M. C.; Savic, D. (2014a) “Using Real Options for an Eco-669 

friendly Design of Water Distribution Systems”. Journal of Hydroinformatics In 670 

Press, IWA Publishing 2014  |  doi:10.2166/hydro.2014.122 671 

Marques, J. C. R.;  Cunha, M. C.; Savic, D. (2014b) “Using Real Options in the Optimal 672 

Design of Water Distribution Networks”. Journal of Water Resources Planning 673 

and Management, n. 1274. accepted for publication. 674 

Myers, S. C. (1977). Determinants of corporate borrowing. Journal of Financial 675 
Economics, 5(2), 147–175. 676 

Nembhard, H. B., and Aktan, M. (2010). Real options in engineering design, operations, 677 
and management. Production Planning & Control, 21(7), 718–719. 678 

Pareto, V. (1896). Cours d’Economie Politique. Gen\`eve: Droz. 679 

Prasad, T. D., Hong, S.-H., and Park, N. (2003). Reliability based design of water 680 
distribution networks using multi-objective genetic algorithms. KSCE Journal of 681 
Civil Engineering, 7(3), 351–361. 682 

Rossman, L. A. (2000). Epanet 2 users manual. (U. S. E. P. Agency, Ed.)Cincinnati US 683 
Environmental Protection Agency National Risk Management Research 684 
Laboratory, 38(September), 200. 685 

Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P. (1989). Design and Analysis of 686 
Computer Experiments. Statistical Science, 4(4), 409–423. 687 

Savic, D. (2002). Single-objective vs. Multiobjective Optimisation for Integrated 688 
Decision Support,. In In: Integrated Assessment and Decision (pp. 7–12). 689 

Suttinon, P., and Nasu, S. (2010). Real Options for Increasing Value in Industrial Water 690 
Infrastructure. Water Resources Management, 24(12), 2881–2892. 691 

Todini, E. (2000). Looped water distribution networks design using a resilience index 692 
based heuristic approach. Urban Water, 2(2), 115–122. 693 

Wagner, J. M., Shamir, U., and Marks, D. H. (1988). Water Distribution Reliability: 694 
Simulation Methods. Journal of Water Resources Planning and Management, 695 
114(3), 276–294. 696 

Walski, T. M., Gessler, J., and Sjostrom, J. W. (1990). Water distribution systems: 697 
Simulation and sizing. (M. Wentzel, Ed.)Environmental Progress (p. 321). 698 
Chelsea: Lewis Publishers. 699 

Woodward, M., Gouldby, B., Kapelan, Z., Khu, S.-T., and Townend, I. (2011). Real 700 
Options in flood risk management decision making. Journal of Flood Risk 701 
Management, 4(4), 339–349. 702 



 

36 
 

Wu, W., Simpson, A. R., and Maier, H. R. (2010). Accounting for Greenhouse Gas 703 
Emissions in Multiobjective Genetic Algorithm Optimization of Water 704 
Distribution Systems. Journal of Water Resources Planning and Management, 705 
136(5), 146–155. 706 

Zhang, S. X., and Babovic, V. (2012). A real options approach to the design and 707 
architecture of water supply systems using innovative water technologies under 708 
uncertainty. Journal of Hydroinformatics, 14(1), 13–29. 709 

 Zheng, F., and Zecchin, A. (2014). An efficient decomposition and dual-stage multi-710 
objective optimization method for water distribution systems with multiple supply 711 
sources. Environmental Modelling & Software, 55, 143–155. 712 

 713 


