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Bayesian Model Choice in Cumulative Link
Ordinal Regression Models

Trevelyan J. McKinley∗, Michelle Morters∗, and James L. N. Wood∗

Abstract. The use of the proportional odds (PO) model for ordinal regression is
ubiquitous in the literature. If the assumption of parallel lines does not hold for
the data, then an alternative is to specify a non-proportional odds (NPO) model,
where the regression parameters are allowed to vary depending on the level of the
response. However, it is often difficult to fit these models, and challenges regarding
model choice and fitting are further compounded if there are a large number of
explanatory variables. We make two contributions towards tackling these issues:
firstly, we develop a Bayesian method for fitting these models, that ensures the
stochastic ordering conditions hold for an arbitrary finite range of the explanatory
variables, allowing NPO models to be fitted to any observed data set. Secondly,
we use reversible-jump Markov chain Monte Carlo to allow the model to choose
between PO and NPO structures for each explanatory variable, and show how
variable selection can be incorporated. These methods can be adapted for any
monotonic increasing link functions. We illustrate the utility of these approaches
on novel data from a longitudinal study of individual-level risk factors affecting
body condition score in a dog population in Zenzele, South Africa.

Keywords: Bayesian inference, ordinal regression, Markov chain Monte Carlo,
reversible-jump, Bayesian model choice.

1 Introduction

The most common regression models for analysing ordinal data fall under the set of cu-
mulative link models, in which the categories of the response variable can be modelled as
contiguous intervals on some continuous scale (McCullagh, 1980). A general monotonic
increasing link function is then used to map these intervals from the continuous scale
onto the interval (0, 1). The choice of link function will generally lead to qualitatively
similar model fits, and so can be chosen on the basis of interpretability (McCullagh,
1980) or convenient mathematical properties (e.g. Albert and Chib, 1993). To this end
we concentrate on the logistic link, leading to comparisons of the cumulative odds.

A popular implementation assumes that the relationship between the cumulative
log-odds and the explanatory variables does not depend on the response category (the
proportional odds [PO] model—McCullagh, 1980). Under simple constraints, this imple-
mentation guarantees that the model exhibits stochastic ordering (i.e. it ensures that
for J ordered groups, the cumulative probability of belonging to group j is less than or
equal to the cumulative probability of belonging to group j+1, for j = 1, . . . , J−1). As
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a direct result of its simplicity and ease-of-interpretation, the PO model is commonly
used in the literature.

An alternative is to allow the relationship between the response and explanatory
variables to vary by response category (the non-proportional odds [NPO] model). Whilst
more flexible than the PO model, the use of NPO models in the literature is limited,
since the stochastic ordering conditions will only hold for a limited range of values
of the explanatory variables (Agresti, 2010). This means that many traditional fitting
mechanisms can fail to fit (Tutz and Scholz, 2003), and in the case where the PO
assumption fails to hold, it may be difficult to find estimates for the general NPO model.
A useful alternative is to fit a set of J − 1 separate binary logistic regression models to
each cumulative logit separately (Bender and Grouven, 1998; Cole et al., 2004), however,
the parameter estimates for the regression parameters do not always correspond to those
obtained from the general model (Tutz and Scholz, 2003). The partial proportional
odds (PPO) model (Peterson and Harrell, 1990) allows for a mixture of PO and NPO
variables to be included, though the structure for each variable must be specified in
advance. Various approaches have been developed as a means of assessing whether the
PO assumption is appropriate for a set of given variables (see e.g. Brant, 1990; Agresti,
2010), but these are difficult to apply to large numbers of variables, particularly if there
are interactions between some of them that may impact the relationship.

Another alternative approach—when the response variable is such that to belong to
a particular category it is necessary to pass through all previous categories in turn—is
to use continuation ratios (Feinberg, 1980). Good reviews of general ordinal regression
frameworks can be found in Ananth and Kleinbaum (1997) and Lall et al. (2002).

The motivating example for this paper is a longitudinal, individual animal-level
study of risk factors associated with body condition score in a population of dogs.
These data form part of a wider study to examine the impact of immunological and
demographic factors on canine rabies vaccination coverage, which covered four loca-
tions: Braamfischerville and Zenzele in Gauteng province, South Africa; and Antiga
and Kelusa in Bali province, Indonesia. Full details of the wider study, and a compre-
hensive analysis of all the data collected from each of the sites is provided in Morters
et al. (2014).

To illustrate the requirement and performance of the methodology, we focus at-
tention on one particular data set from Zenzele. Full details of these data are given in
Section 5. The response variable is body condition score (BCS)—defined on a scale from
1–9 where a score of 1 is highly underweight, 5 is healthy, and 9 is highly overweight.
As such it seems sensible to consider using cumulative link models.

There are various challenges with modelling this system, and we expand on each
point in the subsequent discussion:

1. We wish to perform variable selection, in order to assess the relative impact and
importance of a series of potential risk factors on BCS.

2. The data are longitudinal, and so it is necessary to account for clustering due to
repeated measurements on individual animals.



T. J. McKinley, M. Morters, and J. L. N. Wood 3

3. We wish to assess the weight-of-evidence for PO versus NPO structures for each of
the variables. This information is useful in helping to build up a picture (along with
other indirect sources of evidence—see Morters et al., 2014) of the environmental
processes driving canine demography in these regions (see Section 5 for a more
detailed discussion of this point).

4. In order to tackle point 3, it is necessary to overcome some of the challenges
regarding the fitting of NPO models when the stochastic ordering conditions may
not hold.

In a classical statistical framework, model choice is usually performed using some form
of model comparison criteria, such as Akaike’s Information Criterion (AIC; Akaike,
1974), or likelihood ratio testing. These procedures use information from a single point

estimate of the parameters, θ̂, and neglect the uncertainty in θ. In addition, inference
is made conditionally on the selected model, and does not incorporate uncertainty in
the choice of model. This can be important in cases where explanatory variables show
consistent evidence of an effect across a range of models, but is not selected in the ‘final’
model (see e.g. Viallefont et al., 2001). Here we propose to use a Bayesian framework,
and implement model selection using posterior probabilities of association (see e.g. Kass
and Raftery, 1995; Viallefont et al., 2001; O’Hara and Sillanpää, 2009). This has the
advantage that it allows us to assess the weight-of-evidence in favour of a given model,
and also allows us to assess the evidence for a particular variable being associated with
the response after averaging across all possible models. This is particularly important
to this study, since we also wish to assess the conditional evidence of a PO or NPO
structure for the relationship between an explanatory variable and the response, given
that an association exists.

A common method to account for clustering due to repeated measurements is to use
mixed effects models (see e.g. Diggle et al., 2002), in which the error term is split into
different components in order to model the variance-covariance structure at different
hierarchies (Hedeker and Gibbons, 1994; Gibbons and Hedeker, 1997; Hartzel et al.,
2001; Hedeker, 2003; Liu and Hedeker, 2006). These techniques are well characterised
in the literature, though there is some debate about how to perform model selection
in the presence of random effects in a classical setting (see e.g. Vaida and Blanchard,
2005; Liang et al., 2008). In the Bayesian setting, all parameters are considered random
variables, and it is straightforward to incorporate a priori clustering into the prior. The
model choice problem then remains the same, as the parameters are simply integrated
over when estimating the posterior probabilities of association.

The literature surrounding the development of ordinal regression frameworks is large
and varied, applied in a wide range of fields. Focussing on Bayesian models; probit link
functions are frequently used (e.g. Albert and Chib, 1993; Chu and Ghahramani, 2005;
Yi et al., 2007) and there are various recent developments in modelling the link function
using mixture distributions (e.g. Lang, 1999; Leon-Novelo et al., 2010). Different fitting
mechanisms have also been developed, including Markov chain Monte Carlo (MCMC—
Lang, 1999; Ishwaran and Gatsonis, 2000; Holmes and Held, 2006; Yi et al., 2007; Webb
and Forster, 2008; Leon-Novelo et al., 2010), Laplace approximations (e.g. Chu and
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Ghahramani, 2005; Paquet et al., 2005) and expectation-propagation algorithms (Chu
and Ghahramani, 2005). Holmes and Held (2006) develop efficient MCMC samplers for
logistic multinomial regression models, and O’Brien and Dunson (2004) develop a multi-
variate logistic regression framework that provides a marginal logistic structure for each
of the outcomes. Some work has also been done on model selection using probit models
(e.g. Albert and Chib, 1997; Chu and Ghahramani, 2005; Webb and Forster, 2008),
and Mwalili et al. (2005) extend a PO model to account for interobserver measurement
error. This list is by no means exhaustive, but as far as we are aware no method has
been developed that accounts for all four of the challenges we highlighted earlier within
the same framework. This manuscript is an attempt to provide an alternative approach
for fitting logistic regression models, which allows both PO and NPO structures to be
used (and provides a model-driven means of assessing which structure is most relevant
for each variable in the presence of other variables), and which can be extended to deal
with repeated or clustered measurements, as well as variable selection.

The first challenge we address is to provide a framework in which the stochastic
ordering conditions can be made to hold for any given data set. This provides a means
to explore the fitting of NPO models to any data set, and facilitates the development of a
more general approach in which the relationship between the response and explanatory
variables (e.g. PO or NPO) can be allowed to vary according to the data. The latter is
our second contribution, and is useful because often we do not know which explanatory
variables are best modelled using PO or NPO structures in advance, particularly when
there are a large number of variables. To this end, Tutz and Scholz (2003) propose a
method that switches between the PO, PPO and NPO models, fitting the model via a
penalised likelihood approach. However, in this case we also would like to produce an
estimate of the support under the data for these competing structures for each of the
variables, which can provide some indirect evidence regarding the mechanisms at play
in the underlying system. Although the PO model could be viewed as a special case of
the NPO model, the näıve use of a straight NPO model could result in overfitting.

The challenge with comparing PO and NPO structures is that the dimensionality
of the system is different in each case (a single regression parameter for the PO model
corresponds to J − 1 parameters for the NPO model). To deal with this issue we use
reversible-jump Markov chain Monte Carlo (RJ-MCMC—Green, 1995) to fit the model,
and Bayesian model averaging (BMA—e.g. Kass and Raftery, 1995) to produce poste-
rior probabilities of association (PPAs) for the support under the prior and the data
for the choice of PO or NPO structure, averaged across the set of possible models.
Finally we extend these ideas to incorporate variable selection (see e.g. Dellaportas
et al., 2002; O’Hara and Sillanpää, 2009). Note that an implementation of model choice
based on Bayes Factors for ordinal regression models was developed in Albert and Chib
(1997), though each competing model needs to be fitted separately in order to be com-
pared (Chib, 1995). Here we integrate across the competing models in one framework,
which is likely to be much more efficient when searching across a large model space. An
alternative Bayesian RJ-MCMC approach to model choice for ordinal probit models is
developed in Webb and Forster (2008).

In Section 2 we discuss the Bayesian paradigm and (RJ-)MCMC. In Section 3 we
introduce the general cumulative link model, and more specifically the PO, NPO and
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PPO models. In Section 3.2 we discuss how the Bayesian framework can be used to
ensure stochastic ordering for specified variable ranges, and we justify this approach in
practice in Section 3.4. The specific RJ-MCMC sampler for this ordinal model choice
problem is described in Section 4. We then apply these methods to both simulated data,
as well as data from a longitudinal study of individual-level risk factors affecting body
condition score in a dog population in Zenzele, South Africa (Section 5). We conclude
with a discussion (Section 6).

2 Bayesian inference and Markov chain Monte Carlo

All of the models described in this paper will be formulated in a Bayesian framework,
and fitted using Markov chain Monte Carlo (MCMC). We assume that readers are fa-
miliar with the Bayesian framework, but otherwise they are referred to various excellent
texts available, such as Gilks et al. (1996); Gelman et al. (2004) and Gamerman and
Lopes (2006). The model fitting algorithms described in this manuscript are specifi-
cally variations of the Metropolis-Hastings (M-H) algorithm (Metropolis et al., 1953;
Hastings, 1970).

Reversible-jump MCMC (Green, 1995) is an extension to the classic M-H routine
that allows the Markov chain to jump between models with different dimensionality.
Again, we do not discuss the full details of RJ-MCMC here, but for good introductions
to the method the reader is referred to papers by Waagepetersen and Sorensen (2001)
and Hastie and Green (2012).

2.1 Bayesian model choice using reversible-jump MCMC

Assume that we have V competing models to choose between. We can formulate the
Bayesian model choice problem as one of estimating the posterior probability that a
model (Mv) is true, given the choice of competing models (M1, . . . ,MV ). Formally, this
quantity is defined as

P (Mv | D) =
f (D | Mv)P (Mv)∑V

u=1 f (D | Mu)P (Mu)
, (1)

with P (Mv) the prior probability of association for model Mv, and

f (D | Mv) =

∫
Ωv

f (D | ωv,Mv) f (ωv | Mv) dωv, (2)

the integrated likelihood ; where D is the data, and Ωv is the (multidimensional) param-
eter space for the unknown parameters ωv corresponding to model Mv. The quantity
(1) is sometimes referred to as the posterior probability of association (PPA). These
ideas for Bayesian model choice go back originally to Jeffreys (1935, 1961), and for a
detailed introduction see Kass and Raftery (1995) and O’Hara and Sillanpää (2009).

To implement model choice in an RJ-MCMC framework, let v = i be the model
indicator at a given iteration (i.e. the chain is in model Mi), then let p (Mi → Mj)
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denote the probability that a jump from Mi to Mj is proposed. In order to jump
between models of differing dimensionality, the parameters ωi are mapped to a set of
parameters ωj via the inclusion of a set of dummy parameters, ui and uj , that are
chosen to ensure that dim (ωi,ui) = dim (ωj ,uj). Once these dummy parameters are
chosen, (ωi,ui) is mapped to (ωj ,uj) through a deterministic bijective function gij ,
such that gij (ωi,ui) = (ωj ,uj), and the reverse move is gji (ωj ,uj) = (ωi,ui). The
acceptance probability of the move is then given by:

α = min

[
1,

f (D | ωj ,Mj)

f (D | ωi,Mi)
× f (ωj | Mj)

f (ωi | Mj)
× P (Mj)

P (Mi)

×p(Mj → Mi)qu (uj)

p(Mi → Mj)qu (ui)
×
∣∣∣∣∂ (ωj ,uj)

∂ (ωi,ui)

∣∣∣∣
]
, (3)

where qu (ui) is the proposal density for the dummy parameters ui, and likewise for
qu (uj). The final quantity in (3) is the absolute value of the determinant of the Jacobian
matrix.

One advantage of using RJ methodology is that for a well-mixing model, the PPA
defined in (1) for a model Mv can be simply estimated as the proportion of time that
the chain spends in model v. In Section 4 we show how this routine can be imple-
mented for variable selection, as well as choosing between PO and NPO structures for
individual variables. For other applications of RJ-MCMC in Bayesian model choice see
e.g. Richardson and Green (1997) and Dellaportas et al. (2002).

3 Cumulative link models

Let Y = (Y1, . . . , YJ) be a set of counts of individuals in j = 1, . . . , J ordered categories,
which can be modelled as

Y ∼ Mult (n,p) , (4)

where n is the number of individuals, and p = (p1, . . . , pJ ) correspond to the probabil-

ities of each individual being in any given category j (such that
∑J

j=1 pj = 1). If we
have a set of K explanatory variables, Xi = (Xi1, . . . , XiK), associated with subset i
of the n individuals (where i = 1, . . . , I, such that n = n1 + · · ·+ nI), then

Yi ∼ Mult (ni,pi) , (5)

where pi = (pi1, . . . , piJ) and
∑J

j=1 pij = 1. For a fully individual-based model then
I = n and ni = 1 for all i. Letting Ci correspond to the category that an individual i
belongs to (such that Ci takes values 1, . . . , J), then following McCullagh (1980), we can
model the cumulative probabilities, P (Ci ≤ j) = γij through a monotonic increasing
link function h(·), mapping the interval (0, 1) → (−∞,∞), as

h (γij) = θj − μi, (6)

where μi = β0+β1Xi1+· · ·+βKXiK is a linear regression term, and β = (β0, . . . , βK) is
a vector of K+1 regression parameters. In this framework the θj parameters correspond
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to a set of latent continuous ‘cut-points’, such that −∞ < θ1 < · · · < θJ−1 < ∞. For
identifiability we set β0 = 0. The probabilities of category membership are then given
by

pij =

⎧⎨
⎩

γij for j = 1,
γij − γi(j−1) for j = 2, . . . , J − 1,
1− γi(J−1) for j = J.

(7)

In (6), the effect of the explanatory variables is independent of the grouping, and so
regardless of the choice of link function the models display strict stochastic ordering (Mc-
Cullagh, 1980). This means that subject to the constraint −∞ < θ1 < · · · < θJ−1 < ∞,
the cumulative probabilities will be such that 0 < γi1 < γi2 < · · · < γi(J−1) < 1.

A more general model would allow the effect of the covariates to vary between the
groups, such that

h (γij) = θj − μij . (8)

In this case the models are only stochastically ordered for certain ranges of explanatory
variables (see e.g. Agresti, 2010; Congdon, 2005; Tutz and Scholz, 2003). We discuss
both forms of these models in detail for the case of the logistic-link function, but also
extend the discussion to more general cases.

3.1 Proportional odds model

A common form for the link function is the logistic link:

h (γij) = log

(
γij

1− γij

)
= θj − μi. (9)

This is known as the proportional odds (PO) model (McCullagh, 1980), so-called because
the cumulative log-odds ratio for two sets of explanatory variables, X1 and X2 is given
by

logit (γ1j)− logit (γ2j) = θj − βTX1 − θj + βTX2

= βT (X2 −X1) . (10)

Hence the cumulative log-odds ratio is proportional to the distance between X1 and
X2 (see also Agresti, 2010).

In the case of the PO model (9), the θ and β parameters are a priori independent,
and so the joint prior distribution can be written as f (β,θ) = f (θ) f (β), where we let

f (β) =

K∏
k=1

f (βk) and f (θ) = f (θ1)

J−1∏
j=2

f (θj | θj−1) , (11)

where f (θ1) is defined in (−∞,∞), and f (θj | θj−1) is defined in the range (θj−1,∞) for
j = 2, . . . , J − 1 (see also Albert and Chib, 1993; Johnson and Albert, 1999; Congdon,
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2005). This ensures stochastic ordering for any values of β. We let θ1 ∼ N
(
0, σ2

θ

)
,

βk ∼ N
(
0, σ2

β

)
(for k = 1, . . . ,K) and

θj | θj−1 ∼ N
(
0, σ2

θ

)
I (Tj−1,∞) for j = 2, . . . , J − 1, (12)

where I (Tj−1,∞) signifies that the distribution is truncated in the region (Tj−1,∞)
(i.e. it is a lower-truncated normal distribution) with Tj−1 = θj−1. Other alternative
choices for the prior distributions include doubly-truncated normals (Congdon, 2005),
an ordered uniform distribution (Ishwaran, 2000), or a re-parameterisation which maps
the constrained variables θ to a set of unconstrained variables, α, which can be given,
for example, a multivariate normal prior (Fahrmeier and Tutz, 1994; Albert and Chib,
1997). We choose normal random walk proposal distributions for each βk, such that

β′
k | β(i)

k ∼ N
(
β
(i)
k , σ2

Pβ

)
, (13)

where σ2
Pβ is the proposal variance. For the cut-point parameters, θj , we choose trun-

cated uniform random-walk proposals, such that

θ′j | θ(i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

U
(
θ
(i)
j − τθ,min

[
θ
(i)
j + τθ, θ

(i)
j+1

])
if j = 1,

U
(
max

[
θ
(i)
j − τθ, θ

(i)
j−1

]
,min

[
θ
(i)
j + τθ, θ

(i)
j+1

])
if j = 2, . . . , J − 2,

U
(
max

[
θ
(i)
j − τθ, θ

(i)
j−1

]
, θ

(i)
j + τθ

)
if j = J − 1,

(14)
where τθ > 0 controls the size of the maximum unconstrained move away from the
current value at each iteration.

3.2 Non-proportional odds model

The non-proportional odds (NPO) model is specified as

log

(
γij

1− γij

)
= θj − μij . (15)

In this case the regression parameters are allowed to vary with category level, such that
μij = βT

j Xi (see e.g. Agresti, 2010; Bender and Grouven, 1998; Tutz and Scholz, 2003;
Congdon, 2005). The key challenge is that in order for stochastic ordering to hold, it is
necessary that

−∞ < θ1 − β1X < θ2 − β2X < · · · < θJ−1 − βJ−1X < ∞ (16)

for all X. For identifiability we set each of the intercept parameters β0j = 0. If we
have K explanatory variables, then after expanding out the regression in the stochastic
ordering constraints (16), for any j = 1, . . . , J − 2, we have that

θj − θj+1 <

K∑
k=1

(
βkj − βk(j+1)

)
Xk, (17)
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which must hold for any value of Xk.

In the first instance, assume that we have a lower and upper bound for the possible
values of Xk, such as would be the case if Xk were categorical. Denote the minimum and
maximum values of Xk as Xm

k and XM
k respectively. The condition (17) then becomes

θj − θj+1 <

K∑
k=1

min
([
βkj − βk(j+1)

]
Xm

k ,
[
βkj − βk(j+1)

]
XM

k

)
. (18)

For brevity, let

Ckj = min
[
Xm

k

(
βkj − βk(j+1)

)
, XM

k

(
βkj − βk(j+1)

)]
and Cj =

K∑
k=1

Ckj . (19)

In a similar manner to the PO model, we can therefore specify the joint prior dis-
tribution of β and θ; however this time we do not assume both sets of parameters are
independent, hence

f (β,θ) = f (θ | β) f (β)

= f (θ1)

⎡
⎣J−1∏

j=2

f
(
θj | θj−1,βj ,βj−1

)⎤⎦ K∏
k=1

f (βk) , (20)

where f (βk) (k = 1, . . . ,K) and f (θ1) are defined as before, and
f
(
θj | θj−1,βj ,βj−1

)
is the probability density function for a truncated normal distri-

bution, N
(
0, σ2

θ

)
I (Tj−1,∞) with Tj−1 = θj−1 − Cj−1. We choose to update each βkj

parameter in turn, conditional on all other parameters remaining fixed. It is tricky to
define a simple mechanism for truncated sampling of the regression parameters, due to

the fact that the conditions (16) change according to whether we propose β′
kj < β

(i)
k(j+1)

or β′
kj > β

(i)
k(j+1). Instead we opt here for a simple random-walk proposal, such that

β′
kj | β

(i)
kj = U

(
β
(i)
kj − τβ , β

(i)
kj + τβ

)
, (21)

where τβ > 0 controls the size of the maximum move away from the current value at each
iteration. For the cut-point parameters, θj , we choose truncated uniform random-walk
proposals, such that

θ′j | θ(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

U
(
θ
(i)
j − τθ,min

[
θ
(i)
j + τθ, θ

(i)
j+1 + C

(i)
j

])
if j = 1,

U
(
max

[
θ
(i)
j − τθ, θ

(i)
j−1 − C

(i)
j−1

]
,

min
[
θ
(i)
j + τθ, θ

(i)
j+1 + C

(i)
j

])
if j = 2, . . . , J − 2,

U
(
max

[
θ
(i)
j − τθ, θ

(i)
j−1 − C

(i)
j−1

]
, θ

(i)
j + τθ

)
if j = J − 1,

(22)

where τθ > 0 controls the size of the maximum unconstrained move.
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3.3 Partial proportional odds

The partial proportional odds (PPO) model, proposed by Peterson and Harrell (1990),
allows some variables to have a proportional odds structure and some to not. It takes
the form

log

(
γij

1− γij

)
= θj − βTXi − ηT

j U i, (23)

where i = 1, . . . , n and j = 1, . . . , J − 1. The regression parameters β correspond to
the set of explanatory variables, Xi, that have a proportional odds structure, and the
regression parameters ηj correspond to the set of explanatory variables, U i, that have a
non-proportional odds structure. The approaches described in Sections 3.1 and 3.2 can
be combined in order to fit a PPO model, where the PO and NPO variables (X and
U) are known in advance. In subsequent sections we formulate an approach whereby
the optimal choice of PO or NPO structure for each explanatory variable can instead
be directly estimated by the model.

3.4 Justification of approach

The approach described in the previous section assumes that each of the Xk variables is
bounded in some finite region, which is true for any set of categorical explanatory vari-
ables, since for a categorical variable Zi with L levels (0, . . . , L−1), it is straightforward
to represent Zi as a set of L− 1 dummy variables, Xi1, . . . , Xi(L−1), such that

Xl =

{
1 if Zi = l,
0 otherwise.

(24)

In the case of continuous or discrete explanatory variables that are bounded in a finite
range, then the approach described in Section 3.2 will also ensure stochastic ordering
holds. However, if Xk is defined over an infinite range, then these conditions will break
for some values of Xk if the βkj parameters are also unbounded.

Here we argue for a pragmatic solution to this problem, by considering that it is
possible to define an upper and lower bound for Xk based on the observed data, and
then use (18) to set boundary conditions for the conditional priors in (20). Although
this does not mean that the stochastic ordering will hold for all possible theoretical
values of Xk, it does ensure that the stochastic ordering will hold for the range of values
found in the observed data. We make two main arguments to justify this approach:

1. Although theoretically the values for Xk might be infinite, for any practical appli-
cations of the model there will almost certainly be a finite range of possible values.
If the observed data are a fair representation of the underlying population, then
provided the model is a good fit, any population-level inference made from the
model is likely to be fairly robust (i.e. the posterior distribution is the distribution
of the parameters given the observed data, so this is explicitly represented within
the Bayesian paradigm).
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2. The assumptions underlying any statistical model can only be assessed across the
range of values used to fit the data, there is no guarantee that the assumptions
will hold beyond this range, even if it is possible to extrapolate without breaking
any conditions of the model.

4 Reversible-jump algorithm for variable selection in
cumulative odds ordinal regression models

Consider that we have K parameters describing the explanatory variables. In the first
instance assume that each parameter measures the effect of a single variable (i.e. there
are no categorical variables with > 2 levels, or any interaction effects). We will extend
discussion to these more complex variables in due course. We can model the relationship
between the response variable Y and each variable Xk in one of three ways: either with
a PO structure, an NPO structure or no relationship at all; in this example giving 3K

possible models. Here we will assume that we have no prior information to distinguish
between which of these models is most likely, and so assume equal prior probabilities
of association for each competing model. To model these structures we introduce an
indicator variable Sk, for k = 1, . . . ,K, where

Sk =

⎧⎨
⎩

0 if Xk has a PO structure,
1 if Xk has an NPO structure,
2 if Xk is excluded.

(25)

To ease programming, it is helpful to treat each of these three possibilities as special
cases of the NPO-structure, such that if a variable has a PO-structure then this is
equivalent to setting βkj = βk for j = 1, . . . , J − 1, with independent point-mass priors
on βk2, . . . , βk(J−1) such that f (βkj = 0) = 1. If a variable is excluded then this is
equivalent to setting βkj = 0 with a point-mass prior f (βkj = 0) = 1. This enables us
to use the conditions in (16) to ensure general stochastic ordering.

4.1 Adding or removing variables

Our stochastic search routine updates each variable Xk in a random order, by propos-
ing to add the variable (if currently excluded) or to remove the variable (if currently
included) with a probability pjump (hence we do nothing with a probability 1− pjump).

To add a variable into the model, we sample whether to use a PO or NPO structure
with probability pPO and pNPO = 1− pPO respectively. To add a variable to the model
with a PO structure, we define a bijective function

g0→PO (u1) = u1 = βk, (26)

where u1 is sampled from some distribution with p.d.f. qu(·). To add a variable with an
NPO structure, we define a bijective function

g0→NPO (u1, . . . , uJ−1) = (u1, . . . , uJ−1) =
(
βk1, . . . , βk(J−1)

)
, (27)

where u1, . . . , uJ−1 are independent and identically distributed (i.i.d.) samples from a
distribution following qu(·). For a 0 → PO move, the acceptance probability is



12 Bayesian Model Choice in Ordinal Regression Models

α = min

⎡
⎣1, f

(
Y | β′,θ(i)

)
f
(
Y | β(i),θ(i)

) × f (β′
k)

1
× 1

qu (u1)
× 1

pPO

⎤
⎦ . (28)

The probability of adding or dropping a variable, pjump, is the same for the forwards and
reverse moves, and so cancel in the acceptance ratio. The determinant of the Jacobian
matrix is 1. For a 0 → NPO move, the acceptance probability is

α = min

[
1,

f
(
Y | β′,θ(i)

)
f
(
Y | β(i),θ(i)

) ×

[∏J−1
j=1 f

(
β′
kj

)] [∏J−1
j=2 f

(
θ
(i)
j | θ(i)j−1,β

′
j ,β

′
j−1

)]
[∏J−1

j=2 f
(
θ
(i)
j | θ(i)j−1,β

(i)
j ,β

(i)
j−1

)]

× 1

qu (u1, . . . , uJ−1)
× 1

1− pPO

]
. (29)

We let uj be i.i.d. random variables such that uj ∼ N
(
0, σ2

Pβ

)
, where σ2

Pβ is the

proposal variance. To remove a variable that is currently included we can simply reverse
this process, amending the acceptance probabilities accordingly.

4.2 Updating included variables

The second stage of our MCMC routine involves updating the values for any parameters
that are currently included in the model. In a random order, we select each of the K
variables in turn, and with probability pmove we propose new values for the associated
parameter(s), and with probability 1 − pmove we propose a shift from PO → NPO (if
variable k has a PO structure), or NPO → PO (if variable k has an NPO structure).

If variable k has a PO structure, then to update the value of βk we simply propose

a new value from some proposal distribution with p.d.f. qβ

(
β
(i)
k

)
. The update is then a

standard Metropolis-Hastings step. Likewise for βkj (j = 1, . . . , J − 1) if variable k has
an NPO structure.

To switch structures we require a reversible-jump step. To make an NPO → PO
move—i.e. map

(
βk1, . . . , βk(J−1)

)
→ βk—we define a bijective function

gNPO→PO

(
βk1, . . . , βk(J−1)

)
=

(
β̄k·, β̄k· − 2βk2, . . . , β̄k· − 2βk(J−1)

)
= (βk, u1, . . . , uJ−2) , (30)

where β̄k· = (J − 1)−1
∑J−1

j=1 βkj . To make the reverse move we do not have to propose
any new values, and simply use the inverse function

gPO→NPO (βk, u1, . . . , uJ−2)

=
J − 1

2

⎛
⎝βk (4− J) +

J−2∑
j=1

uj , (βk − u1) , . . . , (βk − uJ−2)

⎞
⎠

=
(
βk1, . . . , βk(J−1)

)
. (31)
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These choices are based around the moment matching approach of Brooks et al. (2003).
The acceptance probability for a PO → NPO move is:

α = min

[
1,

f
(
Y | β′,θ(i)

)
f
(
Y | β(i),θ(i)

) ×
∏J−1

j=1 f
(
β′
kj

)
f
(
β
(i)
k

)

×
∏J−1

j=2 f
(
θ
(i)
j | θ(i)j−1,β

′
j ,β

′
j−1

)
∏J−1

j=2 f
(
θ
(i)
j | θ(i)j−1,β

(i)
j ,β

(i)
j−1

) × 1

qu (u1, . . . , uJ−2)

× (J − 1)

(
J − 1

2

)J−2
]
, (32)

where the final term is the absolute value for the determinant of the Jacobian. Similarly,
the acceptance probability for an NPO → PO move is

α = min

[
1,

f
(
Y | β′,θ(i)

)
f
(
Y | β(i),θ(i)

) × f (β′
k)∏J−1

j=1 f
(
β
(i)
kj

)

×
∏J−1

j=2 f
(
θ
(i)
j | θ(i)j−1,β

′
j ,β

′
j−1

)
∏J−1

j=2 f
(
θ
(i)
j | θ(i)j−1,β

(i)
j ,β

(i)
j−1

) × qu (u1, . . . , uJ−2)

1

×
(

1

J − 1

)(
2

J − 1

)J−2
]
. (33)

We then proceed to update the cut-points, θ(i), in the same way as described in Sec-
tion 3.2.

We note that this general RJ-MCMC algorithm can be adapted in various ways
simply by altering the move probabilities. For example, we can remove the variable
selection steps and just allow the model to move betwen the PO and NPO structures
for each variable by setting pjump = 0. Similarly, we can also fix all parameters to have
either a PO or NPO structure, both with or without variable selection, by adjusting
pjump and pmove accordingly.

4.3 Tuning

In some cases there may be some identifiability issues between regression parameters
and their corresponding inclusion indicators when implementing variable selection rou-
tines using the framework decribed above. For example, there may be almost identical
likelihoods when a parameter is removed (set to zero) and when a parameter is present
but has a value close to zero (e.g. O’Hara and Sillanpää, 2009). If vague priors are used
for the regression parameters and inclusion indicators, then these parameters may be
unidentifiable. One way to control this is to use a more informative prior, such as one
guided by the data or training runs of the model. However, as O’Hara and Sillanpää
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(2009) note, there is a danger that these approaches will contravene the philosophical
construct that the prior distribution should represent one’s beliefs about the parameters
before obtaining any data.

A potential way to tackle this problem in this case is to introduce a hyperprior
governing the variance component of the priors for the regression parameters, β. This
could be done in various ways, but for PO structures we set

βk ∼ N
(
0, σ2

kβ

)
where σkβ ∼ U (0, ξ) (34)

and ξ is the maximum a priori range for σkβ (O’Hara and Sillanpää, 2009), and for
NPO structures we set

βkj ∼ N
(
0, σ2

kjβ

)
where σkjβ ∼ U (0, ξ) . (35)

This adds a further complexity to the model since it introduces additional parameters
to sample during the dimension-jumping steps. For example, a 0 → PO move would
now consist of moving from 0 → (βk, σkβ), likewise a PO → NPO jump would consist
of moving from (βk, σkβ) → (βk1, σk1β , . . . , βk(J−1), σk(J−1)β

)
and so on. To do this we

update each β parameter and its corresponding σβ parameter at the same time, using
independent proposal distributions.

A slight complexity is that the standard deviations must be positive. Hence for a 0 →
PO or 0 → NPO move (or the reverse moves), we use the same bijective functions as are
described in Section 4.1, except that the dummy variables for the standard deviations
are i.i.d. samples from a U (0, ξ) distribution. The acceptance probabilities are adjusted
accordingly. For a PO→ NPO, we use a slightly different bijective function for proposing
the standard deviations than for the regression parameters. Here we propose values for
u1, . . . , uJ−2 as i.i.d. U (max [0, σk − τσ] ,min [σk + τσ, ξ]) variables, and then define

gPO→NPO (σk, u1, . . . , uJ−2) = (σk, σk + u1, . . . , σk + uJ−2)

=
(
σk1, . . . , σk(J−1)

)
. (36)

To make the reverse move we do not have to propose any new values, and simply use
the inverse function

gNPO→PO

(
σk1, . . . , σk(J−1)

)
=

(
σk1, σk2 − σk1, . . . , σk(J−1) − σk1

)
= (σk, u1, . . . , uJ−2) . (37)

The acceptance probabilities are updated accordingly, but the additional proposals of
the standard deviation terms do not change the Jacobian terms in (32) or (33).

4.4 Including categorical explanatory variables with > 2 levels, and
interaction effects

When comparing nested models including interaction effects, it is usual to specify that
interactions can only be included as long as the corresponding main effect terms are
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also included, and that higher-order interaction terms are included only if all lower-order
terms are included (Krzanowski, 1998). These constraints can be incorporated into the
routines described in Section 4 by altering the move probabilities. For example, consider
the possible moves for a main effect variable, Xk, currently included in the model (with
a PO structure). If there were no interaction effects, then we propose to exclude the
variable with probability pjump. If we are modelling interaction effects, then we would
instead propose to exclude the variable with probability p′jump, where

p′jump =

{
0 if any interaction effect relating to Xk is present,
pjump otherwise.

(38)

Likewise, to add interaction effects we need to check that all associated main effects and
lower-order interaction effects are present first. This ensures that we only drop or add
variables in the correct manner.

Explanatory variables with > 2 categories require more than one dummy variable
to model (see Section 3.4). In this case, when proposing to add or remove a variable of
this form, we must ensure that all associated dummy variables are added or removed
simultaneously. We propose to add a variable of this nature with probability pjump,
and then for each associated dummy variable Xk, we independently propose whether
these will have PO or NPO structures on addition, with probabilities pPO or pNPO

respectively. The acceptance probabilities are amended accordingly, with the Jacobian
term being just a product of the corresponding Jacobian terms for each of the dummy
variables. The reverse process proceeds in a similar manner.

5 Applications

All the following routines were coded in C and R (R Core Team, 2012) and are available
in an R package called BayesOrd, which in turn uses the coda (Plummer et al., 2006)
and multicore (Urbanek, 2011) packages to produce output and run multiple chains in
parallel. All results are reported to 2 significant figures (s.f.). The development version
of this package is available at https://github.com/tjmckinley/BayesOrd. Following Link
and Eaton (2012), we do not thin our MCMC chains once the burn-in has been discarded.

5.1 Simulation study

To test the performance of our algorithms, we simulated different data sets assuming

(a) each variable has a PO structure;

(b) each variable has an NPO structure; and

(c) a mixture of PO and NPO variables are used.

For each scenario we simulated nsim = 100 data sets, each containing n = 1000 samples.
Each sample corresponds to measurements on the response variable (Y ) and 7 explana-
tory variables (5 binary, X1, . . . , X5, and 2 discrete, X6 and X7). The response is an
ordinal variable with three levels.

https://github.com/tjmckinley/BayesOrd
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Each simulation proceeds as follows:

1. In scenario (a), set each explanatory variable, Xk, to have a PO structure. In
scenario (b) set each structure to NPO, and in scenario (c) sample the structure
for each Xk from a Bernoulli distribution with probability 0.5.

2. For each categorical variable Xik (i = 1, . . . , n; k = 1, . . . , 5), sample its value (0
or 1) from a Bernoulli distribution with probability 0.5. (Ensure that there are at
least 5% of samples in each group by resampling if required.)

3. For each discrete Xik (i = 1, . . . , n; k = 6, 7), sample data points as Xik = |X ′
ik|,

where X ′
ik ∼ N

(
0, σ2

k

)
. Here, σk = |σ′

k| and σ′
k ∼ N(0, 52).

4. Sample the regression parameters βkj ∼ N(0, 52), where j = 1, 2 corresponds
to the length of the response. For each k corresponding to a PO structure, set
βkj = βk1∀j.

5. Sample the first threshold parameter, θ1 ∼ N(−1, 0.12), and then simulate the
second threshold parameter, θ2 conditional on θ1, the simulated data X and the
regression parameters β, ensuring that the stochastic ordering conditions (16)
hold. To do this we can use (18) to define a lower bound for θ2, and then add some
positive random noise (we chose the absolute value from aN

(
0, 0.12

)
distribution).

(Note that in the case of scenario (a) we only need to simulate such that θ1 < θ2,
since the stochastic ordering conditions always hold.)

6. Finally, sample values of the response variable, Yi, from a multinomial distribution
with probability vector defined using (23). (Ensure that there are at least 5% of
the samples in each category of the response, else re-simulate.)

Once the data sets were simulated, we proceeded to fit PO and NPO models in
both Bayesian and maximum likelihood (ML) frameworks. The Bayesian models were
fitted using the routines developed in this manuscript and implemented in the BayesOrd
package. The maximum likelihood PO models were fitted using the polr function in the
MASS (Venables and Ripley, 2002) package in R, and the ML NPO models were fitted
using binary logistic regressions, as described in e.g. Bender and Grouven (1998). We
also fitted a Bayesian PPO model, using the reversible-jump routines described earlier
to choose between the competing structures for each variable. For the MCMC routines,
we used 200,000 updates, with the first 10,000 discarded as burn-in.

To summarise the results we examine the distributions for the squared error be-
tween the true value of the regression parameters and the ML estimate or posterior
mean accordingly. Table 1 summarises these results. Focussing first on the results from
scenario (a), we can see that as expected, the PO models perform well, with the ML and
Bayesian estimates showing a similar degree-of-accuracy. The NPO and PPO models
also perform well, suggesting that although they are overparameterised, given enough
data they can produce robust inference on the parameters.

For data sets simulated using scenario (b), the PO models now fit poorly, but the
NPO and PPO models once again perform well. Similar patterns are observed for the
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simulations based on scenario (c), and once again the Bayesian NPO and PPO models
perform very well in comparison to the other approaches. There are occasional poor
estimates of the parameters used in the simulations (seen by the high 97.5% credible
intervals in Table 1). These could be caused either by a lack-of-fit (most likely when
these values are very high), or more frequently when the data are a sample from the
extremes of the expected sampling distribution. In any case, the Bayesian methods
seem more robust to these outliers, particularly compared to the extreme ML NPO
mismatches. We postulate that this is likely due to the fact that the Bayesian methods
contain all information in the likelihood, as opposed to the ML NPO method which
must treat groups independently.

As a simple exploration of the utility of the Bayesian PPO model for discrimi-
nating between PO and NPO structures, we apply a threshold such that any vari-
able with PPAPO > 0.5 is classified as having a PO structure. In this case we have
7 × 100 possible predictions for each simulation scenario. In the case of scenario (a),
only 3/700 = 0.43% are incorrectly specified as having an NPO structure. In the case
of scenario (b), 229/700 = 33% are misclassified as having a PO structure. For sce-
nario (c), 124/700 = 18% are misclassified, of which 95/700 = 14% are NPO variables
misclassified as PO variables, and 29/700 = 4% are PO variables misclassified as NPO
variables. This shows a good predictive power, bearing in mind that the Bayesian model
choice framework intrinsically favours more parsimonious models, and as such the ma-
jority of misclassifications were NPO variables being reduced to PO variables, such as
we might expect if the differences between the regression parameters for each level of
the response are small. Of course these ‘misclassifications’ may be directly due to quirks
in the data as a result of random sampling, and to this end Table 1 suggests that the
Bayesian NPO and PPO estimates are robust compared to other methods, even ac-
counting for any misclassification in the actual structure used for the simulations. We
reiterate that these model fits were performed blind, without a prerequisite descriptive
analysis that might shed some light on our a priori expectations of variable structures.
In practice we would take more care with our preliminary model exploration and our
model diagnostics, but with this in mind we think the methods perform well.

5.2 Longitudinal study of individual-level risk factors affecting body
condition score in a dog population in Zenzele, South Africa

These data form part of a wider study to examine the impact of immunological and
demographic factors on canine rabies vaccination coverage. This study was conducted
in four locations: Braamfischerville and Zenzele in Gauteng province, South Africa; and
Antiga and Kelusa in Bali province, Indonesia. Full details of the study, and a compre-
hensive analysis of all the data collected from each of the sites is provided in Morters
et al. (2014).

To illustrate the methodology, we focus attention on one particular data set from
Zenzele, exploring individual-level risk factors associated with body condition score in
a population of dogs. The data set consists of 2746 entries, for 738 dogs, with each dog
examined between 1 and 17 times across the period 3rd March 2008–8th April 2011.
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Scenario Algorithm 2.5% Median 97.5%

(a) PO

ML (PO) 0.00 0.06 3.5
Bayesian (PO) 0.00 0.06 1.8
ML (NPO) 0.00 0.10 7.8
Bayesian (NPO) 0.00 0.07 3.1
Bayesian (PPO) 0.00 0.06 1.9

(b) NPO

ML (PO) 0.02 5.2 85
Bayesian (PO) 0.02 6.3 86
ML (NPO) 0.00 0.32 1821
Bayesian (NPO) 0.00 0.37 34
Bayesian (PPO) 0.00 0.48 37

(c) PPO

ML (PO) 0.00 2.5 61
Bayesian (PO) 0.00 3.4 66
ML (NPO) 0.00 0.24 321
Bayesian (NPO) 0.00 0.18 18
Bayesian (PPO) 0.00 0.16 20

Table 1: Summaries of squared error between estimated and true values, for data sets
generated using three different scenarios (defined in the main text). Within each panel,
nsim = 100 simulated data sets are generated, each of size n = 1000 samples. Each panel
is further stratified by the type of model (PO, NPO, PPO) and the fitting mechanism
(ML or Bayesian).

Body condition score (BCS) was assessed using a nine-point scoring system (German
and Holden, 2006), with each dog being scored by two assessors simultaneously. The
system assigns a score of 1–9, with 1 being very underweight, 5 being normal, and
9 being obese. To maintain a reasonable sample size in each group, we amalgamated
the extreme scores, resulting in 5 BCS groups: 1–2, 3, 4, 5 and 6–9. Eight explana-
tory variables were collected: gender (male/female), OPL (oestrus-pregnancy-lactation;
coded as normal/lactating/pregnant), number of dogs in the sample unit (discrete be-
tween 1–9), age (0–6 months, 7–12 months, 13–36 months and >36 months), sterilisa-
tion (true/false), confinement (true/false), owner reported clinical signs in the previous
7 days (none/minor/major-short duration/major-medium duration/major-long dura-
tion) and clinical signs observed by enumerator during interview (none/minor/major).
In the interests of comparison, we fitted two separate models, the first assuming that
the maximum BCS between the two assessors was correct, and the second assuming the
minimum was correct. Summaries of the data are provided in Table 2, and distributions
by BCS are shown in Figure 1.

To account for the repeated measurements, an individual dog-level term, ψDi , was
introduced, with prior distribution

ψDi ∼ N
(
0, σ2

ψ

)
, (39)

where Di denotes the specific dog corresponding to observation i (Di = 1, . . . , 738),
and σ2

ψ has a vague gamma hyperprior with shape and rate parameters 0.01 and 0.01
respectively (i.e. mean=1 and variance=100). At each iteration 30% of the ψDi terms
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Variable Level Count / summary

BCS

1–2 123
3 462
4 927
5 858
6–9 376

Gender
Female 1468
Male 1278

OPL
Normal 2483
Lactating 160
Pregnant 103

# dogs in SU

Min: 1
Lower quartile: 1

Median: 1
Mean: 1.8

Upper quartile: 2
Max : 9

Age

0–6m 294
7–12m 452
13–36m 587
> 36m 1413

Sterilisation
No 2679
Yes 67

Confinement
No 1955
Yes 791
None 2300

Owner reported Minor 165
clinical signs in Major/short 65
previous 7 days Major/med. 135

Major/long 81
Clinical signs None 1983
observed by Minor 497
enumerator Major 266

Table 2: Marginal summaries of the data (assuming maximum BCS). The final column
contains counts unless otherwise stated. For comparison, the BCS counts when choosing
the minimum BCS are 191, 652, 1082, 617 and 204 respectively.

were updated in turn at random, using a uniform random walk proposal with the max-

imum proposal jump given by τψ. Likewise the variance σ2
ψ was also updated in the

same manner with the maximum proposal jump given by τσψ
.

To complete the Bayesian specification we set the prior variance for the cut-points,

σ2
θ = 1, and the maximum a priori value for the standard deviations of the regression

parameter priors, ξ = 20 (following O’Hara and Sillanpää, 2009). The proposal param-
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eters were: τβ = 1, τθ = 1, σ2
Pβ = 1, τσ = 1, τψ = 1 and τσψ

= 1. Two chains were
run, and after a short training run of 1,000 iterations, from which initial values for the
main chains were generated, we ran 500,000 iterations with the first 50,000 discarded as
burn-in. To produce the fitted plots (Figure 1) we took 2,000 samples from the posterior.
Full trace and density plots are given in Supplementary Materials.

The PPAs for each variable, averaged across the competing models are shown in
Table 3. For clarity, values < 1 × 10−1 are rounded to zero. More precise results are
shown in Supplementary Table S1. Using conventional rules-of-thumb for interpreting
these values (see e.g. Viallefont et al., 2001), if a variable has a PPA of inclusion of
<0.5, then we consider that there is negligible evidence to support this variable being
associated with the response. PPAs of inclusion of 0.5–0.75 are considered weak evidence,
0.75–0.95 positive evidence, 0.95–0.99 strong evidence and >0.99 very strong evidence.

Max. BCS Min. BCS
Variable Level PO NPO Exc. PO NPO Exc.

Gender
F
M 0.52 0 0.48 0.72 0 0.28

OPL
Norm.
Lac. 1 0 0 1 0 0
Preg. 1 0 0 1 0 0

# dogs in SU 0.025 0 0.98 0.038 0 0.96

Age

0–6m
7–12m 1 0 0 1 0 0
13–36m 1 0 0 1 0 0
>36m 0 1 0 0.82 0.18 0

Sterilised
N
Y 0.5 0 0.5 0.43 0 0.57

Confined
N
Y 0.98 0.02 0 1 0 0

None
Owner reported Minor 0 0 1 0 0 1
clinical signs in Major/short 0 0 1 0 0 1
previous 7 days Major/med. 0 0 1 0 0 1

Major/long 0 0 1 0 0 1
Clinical signs None
observed by Minor 1 0 0 1 0 0
enumerator Major 1 0 0 1 0 0

Table 3: Posterior probabilities of association for different variables, averaged across all
models.

In this case we can see that there is consistency in the variables identified as being
important from both analyses (i.e. using the maximum and minimum BCS scores as the
response). In this case we identify gender as showing weak evidence of an association;
and OPL, age, confinement and enumerator observed clinical signs as showing very
strong evidence of an association.
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Figure 1: Marginal posterior predictive distributions for the explanatory variables,
against the observed data. Bars represent the data, the points are the marginal pre-
dictive means and the error bars are the 95% prediction intervals.
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For those variables with PPAs > 0.5, we can see that in almost all of these cases the
PO structure is preferred, which is reflected in the model averaged log cumulative odds
ratios shown in Table 4. For clarity, where the posterior means and SDs are the same
across the levels (to 2 s.f.—i.e. the variable has an effective PO structure), we show only a
single result. For all intents and purposes the only variable that shows any possible non-
negligible support for an NPO structure is the >36 month age class. Posterior predictive
distributions for the observed values can be obtained, and the marginal means and 95%
prediction intervals for the categorical explanatory variables are shown in Figure 1.

The overall patterns using both the minimum BCS and maximum BCS as response
are the same, and so in the following discussion we will focus on the estimates obtained
from using the maximum BCS only. When assessing the posteriors, it is possible to
produce conditional inference based on a given model, or produce a posterior based on
a weighted mixture of the posteriors from each of the models being averaged over (see
e.g. Kass and Raftery, 1995; Viallefont et al., 2001; O’Hara and Sillanpää, 2009). In
the case of variables that have a non-zero posterior probability of exclusion, the latter
approach will shrink these estimates towards zero.

With this in mind, males are on average 1.2 times more likely to have a lower BCS
than females. However, lactating females are, on average, 3.0 times more likely to have
a lower BCS than equivalent males and non-pregnant females. Pregnant females on the
other hand, are 1.6 times more likely to be have a higher BCS. For this variable, there is
mixed support for the inclusion of gender with a PO structure, and exclusion altogether.
Therefore, in this case these posterior estimates will have been shrunk towards zero
relative to the conditional posterior given inclusion. This effect will be minimal for the
other variables discussed below which each have a high probability of inclusion.

The effect of age is interesting; relative to the 0–6 month category, dogs aged between
7–12 months are 1.1 times more likely to have a higher BCS; dogs aged between 13–36
months are 1.2 times more likely to have a lower BCS, and as adults (>36 months) they
are between 1–4.5 times more likely to have a higher BCS, depending on the category
level (since the adult age class has very strong evidence of an NPO structure). A likely
explanation is that this pattern reflects normal morphological variation—generally, as
dogs become older their activity levels will decrease, resulting in a general increase in
BCS.

An interesting finding in this analysis is that other than the > 36 month age cat-
egory, all other variables had very strong support for a PO structure (conditional on
inclusion). One of the key motivations for the study that generated these data was to
examine the hypothesis that these canine populations are regulated by environmen-
tal resource constraints (as they would be in wild populations). If this hypothesis is
true, then consistent with empirical evidence in other species and ecological theory, the
thin dogs should generally be the ones with highest energy requirements (particularly
lactating and growing dogs). The marginal distributions shown in Figure 1 provide qual-
itative evidence against this hypothesis, since whilst on average there was a tendency
for lactating dogs to be thinner than non-lactating dogs, overall the body condition
distribution for lactating dogs shows that most dogs are in reasonable body condition,
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Maximum BCS Minimum BCS
Variable Level of Level of

Mean SD Mean SD
(baseline level) variable response

Gender (F) M

1

-0.18 0.20 -0.28 0.21
2
3
4

OPL (normal)

Lac.

1

-1.1 0.18 -1.3 0.18
2
3
4

Preg.

1 0.46 0.25

0.47 0.22
2 0.46 0.22
3 0.46 0.22
4 0.46 0.22

Age (0–6m)

7–12m

1

0.12 0.15 0.35 0.16
2
3
4

13–36m

1

-0.19 0.15 0.09 0.15
2
3
4

>36m

1 -0.0065 0.22 0.64 0.28
2 0.27 0.18 0.69 0.2
3 0.74 0.17 0.79 0.2
4 1.5 0.21 0.86 0.31

Confined (N) Y

1 -0.56 0.14

-0.58 0.12
2 -0.55 0.12
3 -0.55 0.12
4 -0.55 0.13

Minor

1

-0.14 0.11 -0.14 0.11
2

Clinical signs 3
observed by 4
enumerator

Major

1

-1 0.15 -1.3 0.15
(None) 2

3
4

Table 4: Model averaged posterior means and standard deviations for the log cumulative
odds ratios. Only those variables with non-negligible assocation to response (i.e. a PPA
of inclusion of >0.5) are shown. For clarity, those variables that have the same means
and SDs for each level of the response (to 2 s.f.) are shown as a single entry.
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with fewer dogs in the extremes. Crucially there are underweight lactating dogs and un-
derweight non-lactating dogs, and there are overweight lactating dogs and overweight
non-lactating dogs—consistent with variable food availability most likely from an owner,
rather than from the environment (e.g. scavenging). The same is true for young dogs.

A similar argument could be made by examining the evidence for PO versus NPO
structures for these key variables (particularly OPL and age). Under the hypothesis of
environmental constraints limiting population size, then we might expect lactating and
young dogs to be more likely to exhibit an NPO structure, with decreasing negative log-
odds ratios with increasing BCS. We do not observe this here. There is strong evidence
of an NPO structure for the > 36 month age class, though this is again consistent with
the population being ‘managed’, rather than acting as a wild population.

Similar results are obtained for all four study regions. This information has impor-
tant implications for designing optimal vaccination strategies against rabies in these
populations. For full details of the study, and a comprehensive discussion about all the
collected evidence, see Morters et al. (2014).

Confinement is associated with a lower BCS, with confined dogs being 1.7 times more
likely to have a lower BCS than unconfined dogs. Although confinement, as defined in
this study, was highly variable (with regards to the length of time dogs were confined
and the frequency that they were released), in general it was observed that dogs that
were tied up were often neglected. See Morters et al. (2014) for a full discussion on these
issues.

Finally, the clinical signs variables cover a wide range of possible conditions. These
were classified into ‘minor’ (considered unlikely to cause weight loss, such as localised
skin lesions and lameness) and ‘major’ (considered likely to cause weight loss, such as
vomiting and lethargy). This variable serves as an indicator of the general health of the
dog, and it can be seen that as expected, dogs that show evidence of an ongoing medical
condition (that is likely to cause weight loss), are more likely to have lower BCS values
than their healthy counterparts: 1.2 times more likely for minor ailments and 2.7 times
more likely for major ailments.

6 Discussion

We have introduced a method for fitting cumulative link ordinal regression models that
does not require a priori assumptions regarding PO or NPO structures to model the
relationship between the response and explanatory variables. For categorical explana-
tory variables we show how stochastic ordering can be ensured in the case of NPO
models, and provide a pragmatic approach to ensuring that stochastic ordering holds
for continuous or discrete covariates within the range of the observed data. In addition
these approaches can be extended to incorporate variable selection within a Bayesian
framework, allowing posterior probabilities of association to be produced for competing
models. It is straightforward to include individual-level terms to account for repeated
measures, and Bayesian model averaging can to be used to provide weighted PPA esti-
mates for the parameters that account for model uncertainty. We have illustrated the
methods on a large-scale real-life data set.
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The method uses reversible-jump MCMC to jump between models of differing dimen-
sionality. However, implementational difficulties can exist with this method, particularly
when jumping between models where the dimensionality is quite different. We found
that the simple proposal mechanisms used throughout the paper worked well for this
application and others we have tried. Nonetheless it is likely that specific situations may
require more additional tuning (as with any MCMC method). For example, if some of
the intervals specified by the stochastic ordering conditions (16) are small, and the pro-
posal size, τβ is too large, then for NPO structures this may result in a large proportion
of proposed values for the βkj parameters being rejected as a result of breaking the
prior conditions on stochastic ordering. An alternative would be to sample from some
form of truncated distribution, though due to the nature of the constraints, this is not
trivial.

Another interesting alternative would be to use some form of shrinkage model, where
the model is defined as

log

(
γij

1− γij

)
= θj − ηT

j Xi, (40)

where i = 1, . . . , n and j = 1, . . . , J − 1. The conditional prior distributions for the
ηkj parameters are centred around the corresponding βk with a small prior variance.
The βk parameters can be given the same prior distribution as before. In this variation
the model does not change dimensionality, and so no reversible-jump step is required.
The ηkj parameters then correspond to the degree to which the parameter estimates
deviate away from the proportional odds structure. This idea could also be expanded
to incorporate variable selection in various ways (see e.g. O’Hara and Sillanpää, 2009).

Using single-component updates with simple random-walk proposals can also pro-
duce Markov chains that are highly autocorrelated, and thus require a large number
of iterations and a lot of thinning. Adaptive proposal mechanisms (Haario et al., 2001;
Roberts and Rosenthal, 2009) exist for standard (i.e. non-transdimensional) MCMC,
that can automatically tune the proposal distributions to produce much more efficient
chains in terms of both convergence and mixing. However, it is not currently under-
stood whether these sorts of approaches hold for transdimensional routines, and this is
a key area of ongoing research for those who are developing these methods (Hastie and
Green, 2012). For the kinds of examples shown in this paper the runtimes required to
produce a reasonable number of pseudo-independent samples are not prohibitive, and
so we do not worry about this aspect here. It is not the purpose of this paper to provide
a catch-all routine that works well in every situation, but rather to provide a flexible
method that can be adapted to deal with different situations as required.

We occasionally noticed some identifiability issues when fitting NPO models, pre-
dominantly between categorical explanatory variables with low counts in some of the
groups, and the cut-off parameters. This can be tackled in two main ways: firstly, the
variables can be recategorised to ensure that there is a minimum number of individuals
in each group. Secondly, we can start the MCMC routines using more informative initial
values. Appealing to the Occam’s Razor principal, in this paper we decided to generate
initial values by producing a short training run, using a PO model that includes all of
the explanatory variables (but ignoring the repeated measures). We then ran the full
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model using the parameter values from the final iteration of the training run as initial
values. A similar approach would be to generate maximum likelihood estimates for the
simple PO model and use these as initial values instead.

An example of the utility of these routines is that stochastic ordering can be ensured
for continuous/discrete covariates within the range of the observed data. It is theoreti-
cally possible to ensure these conditions hold for any finite range of values, if an upper
or lower bound was known from sources of information other than the observed data.
In any case, if it is of interest to extrapolate beyond the range of the data, then it is
possible to use the posterior samples to explore the range of covariate values over which
the stochastic conditions will hold—essentially building a posterior distribution for the
range of valid values. This could also be used as a form of sensitivity analysis to the
model assumptions based on the model fit.

It is also worth noting that although we have illustrated these methods using a
logistic link function, the methods are applicable to any monotonically increasing link
function (though of course the interpretation of the regression parameters will no longer
be in terms of the cumulative odds).

Supplementary Material

Supplementary Materials: Bayesian model choice in cumulative link ordinal regression
models: an application in a longitudinal study of risk factors affecting body condition
score in a dog population in Zenzele, South Africa (DOI: 10.1214/14-BA884SUPP; .zip).
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