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Abstract

This paper proposes an adaptive sliding mode super-twisting differentiator which allows the gains to adapt based on the
‘quality’ of the sliding motion. A Lyapunov based analysis for the adaptive super-twisting scheme is presented to demonstrate
its properties. As an example, the adaptive differentiator proposed in this paper has been used as part of a nonlinear FDI
scheme for an Oscillatory Failure Case (OFC) in an actuator. The FDI scheme requires an estimate of the rod speed which
is provided by the adaptive super-twisting differentiator. Due to the conditions in which the actuator operates, normally the
differentiator gains are initialized at low values to ensure good rod speed estimation in fault free conditions. However for large
amplitude/frequency OFCs, the gains must adapt in order to maintain sliding and provide a good estimation. Simulations on
a high fidelity nonlinear aircraft benchmark model have been carried out for both liquid and solid OFCs.
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1 Introduction

One of the areas of research which has benefited from
advances in the area of higher order sliding modes, is the
differentiation problem. In most engineering problems,
finding the derivative of a signal is normally avoided
– especially in the presence of noise. As highlighted in
[14], in most cases, the problem of estimating the deriva-
tive of a signal is posed as an observer problem. The
work of Levant described in [14] proposed a robust exact
differentiator using a second order sliding mode tech-
nique. This has become known as ‘super-twisting’. In
particular the superiority of the super-twisting differ-
entiator compared to conventional linear differentiators
has been demonstrated. In the original work, geometri-
cal arguments were used to prove the existence of slid-
ing. However, recent theoretical developments described
by Moreno and Osorio in [16] describe a Lyapunov ap-
proach. The use of Lyapunov based approaches has sub-
sequently been investigated in [9], which proposes a vari-
able gain formulation for the super-twisting algorithm,
and [22] which proposes a super-twisting adaptive con-
trol formulation.

One application area in which observers (including slid-
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ing mode observers) are employed is the field of fault
detection and isolation (FDI). The work of [19,4] consid-
ers the use of higher order sliding mode differentiators
for FDI. In [19], the differentiator generates a sufficient
number of derivatives of the measurements to allow the
unknown fault signals to be calculated. Derivatives of
the measured outputs created by the exact differentia-
tor from [14] are used in [6] to relieve the relative degree
conditions associated with classic sliding mode observers
[5]. Differentiators are also employed in [7] to provide
finite time estimates of faults in linear systems. Higher
order differentiators are also used for fault detection in
nonlinear systems [8].

Early work on Oscillatory Failure Case (OFC) prob-
lems in [3] was motivated by the study of the effect of
Electronic Flight Control Systems (EFCS) failures on
the structural load on aircraft. The generation of erro-
neous sinusoidal signals from faulty electronic compo-
nents (which is the main source of OFCs) propagate
through the actuator control loop between the Flight
Control Computer (FCC) and the control surface [11].
When coupled with the flexible modes of the structure,
the oscillations can become unacceptable and cause high
vibrations and loads due to resonance phenomenon. The
OFC detection scheme currently in service on the AIR-
BUS A380 is discussed in [11]. The FDI scheme uses a
filtered residual signal obtained from comparing the ac-
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tuator rod position and its analytical model-based esti-
mate to confirm the presence of an OFC using oscillation
counting. The work in [18] considers a linear observer
for OFC detection and results are presented from a lab-
oratory test rig for an inboard aileron actuation system.
The work in [1,2] proposes a nonlinear observer design
to generate a residual together with an oscillation count-
ing mechanism similar to the one in [11]. The nonlin-
ear observer in [1] has two feedback terms which allows
more degrees of freedom for the error system dynamics
to be adjusted. Other recent results based on nonlinear
observers are given in [13,17].

This paper uses a novel adaptive super-twisting dif-
ferentiator to create a nonlinear based method for re-
construction of the OFC signals. The idea is to obtain
an expression for the OFC signal by manipulating the
nonlinear mathematical model of the actuator. Except
for the actuator rod speed, the parameters used in the
manipulated nonlinear equations are available either
through direct measurement or estimation. In this pa-
per, the rod speed will be created using the adaptive
sliding mode differentiator proposed in this paper. Slid-
ing mode observers have previously been used to esti-
mate the presence of oscillations in aerospace structures
in [20]. The work in [20] uses a sliding mode observer
to estimate the sloshing effect and exploits this esti-
mate as part of the control feedback loop to mitigate
the effects on the structure. The adaptive differentiator
proposed in this paper is also different to the ones in
[9,21,22], since the latter papers consider a control de-
sign problem and seek to ensure the gains are as small
as possible to avoid chattering. Although the work
proposed in [21] considers an adaptive scheme which
assumes an unknown bound on the disturbance (sim-
ilar to the work proposed here), the adaptation rules
and the Lyapunov analysis are quite different and the
super-twisting gains continually adapt. The adaptation
scheme proposed in this paper is motivated by the prac-
tical requirement for good reconstruction of the OFCs
for a wide range of amplitudes/frequencies. For fault
free and low amplitude/frequency OFCs, it is essential
that the gains of the differentiator are as low as possible
to provide good reconstruction in the noisy environment
in which the actuator operates. However, during high
amplitude/frequency OFCs, a larger gain is required to
maintain sliding and to ensure a good reconstruction is
still maintained.

2 Adaptive Supertwist Differentiator

Consider the scalar differential equation

ẋ(t) = g(t, x, ξ) (1)

with measured output y(t) = x(t). The function ξ(t)
represents potential faults which may occur within the
system and is imprecisely known; however in fault free
conditions ξ ≡ 0. Because of the presence of the faults

the function g(·) is unknown but the time derivative of
the function on the right hand side of (1) is assumed to be
bounded by a scalar δ > 0. It is assumed that although
ξ(t) is unknown, some a-priori information is available
from engineering understanding of the system such that
a worst case (possibly very conservative) estimate rmax
is available such that

|ġ(t, x, ξ)| < δ < rmax (2)

Consider a differentiator scheme of the form suggested
in [14] with the following structure

ż1(t) =−α(t)|e1(t)|1/2 sign(e1(t)) + z2(t) (3)

ż2(t) =−β(t) sign(e1(t)) (4)

where e1(t) = z1(t) − x(t). Here α(t) and β(t) are time
varying scalars. Subtracting (1) from (3) yields

ė1(t) =−α(t)|e1(t)|1/2 sign(e1(t)) + z2(t)− g(t, x) (5)

ż2(t) =−β(t) sign(e1(t)) (6)

Define a new variable e2(t) = z2(t)− g(t, x, ξ), then (5)-
(6) can be written as

ė1(t) =−α(t)|e1(t)|1/2 sign(e1(t)) + e2(t) (7)

ė2(t) =−β(t) sign(e1(t))− ġ(t, x, ξ) (8)

If a 2nd order sliding motion is induced forcing e1(t) =
ė1(t) = 0, from (7), e2(t) = 0 ⇒ z2(t) = g(t, x, ξ).
Consequently z2(t) from (4) provides an estimate of ẋ(t).
In this paper, the gains α(t) and β(t) are chosen as:

α(t) =
√
2L(t) (9)

β(t) = 4L(t) (10)

for some time varying scalar L(t) which will be described
in the sequel. Suppose the gain L(t) has the form

L(t) = r(t) + ℓ > 0 (11)

where the variable ℓ is a fixed positive scalar while r(t)
(also positive) is adapted according to

ṙ(t) =

{
γ|e1(t)|1/2 if r(t) ≤ rmax
0 otherwise

(12)

where γ > 0 is a positive design constant and the scalar
rmax is the maximum value that r(t) can take.

Whilst this scheme is intuitive and simple, it is not prac-
tical. In practical implementations, an ideal sliding is
not achievable due to noise, and therefore the adaptation
rule in (12) would result in r(t) becoming unbounded.
In the application which will be presented in the sequel,

2



(12) has been modified to

ṙ(t) =

{
γD(|e1(t)|1/2) if r(t) ≤ rmax
0 otherwise

(13)

where the function D(z) : IR 7→ IR is the dead-zone

D(z) =

{
0 if |z| < ϵ
z otherwise

(14)

where ϵ is a positive scalar. The idea is to adapt the
gains only when |e1(t)|1/2 unacceptably deviates from
zero. The gain r(t) will increase in magnitude according
to (13) to force e1(t) back into a ‘real sliding’ regime.

Proposition 1 Under the assumption that the scalar
rmax is chosen sufficiently large such that (2) holds for
the class of faults represented by ξ(t), using the adapta-
tion rule (13) ensures the error system (7)-(8) and r(t)
remains bounded, and the variable |e1(t)| < aϵ in finite
time, where a is an arbitrary scalar satisfying a > 1.

Proof: If at some time t0 > 0 the adaptive gain r(t) =
rmax, then r(t) = rmax for all t > t0, and consequently

the gains take the fixed values α(t) =
√
2(ℓ+ rmax) and

β(t) = 4(ℓ + rmax) for all t > t0. Since ℓ + rmax >
|ġ(t, x, ξ)|, the analysis in [16] shows e1(t) = e2(t) = 0 for
all t > T > t0 for some (finite) time T and the statement
of the proposition is fulfilled. The remainder of the proof
addresses the situation in which r(t) < rmax for all time.

Consider the following Lyapunov function candidate for
the error system (7) and (8)

V (ζ, er) =
2
√
2

γ

(l̄ + er(t)) + δ)

(l̄ + er(t))2
e2r(t) +

1

(l̄ + er(t))3/2

×ζ(t)T
[

18(l̄ + er(t)) −
√
2(l̄ + er(t))

−
√
2(l̄ + er(t)) 2

]
ζ(t)(15)

where l̄ = ℓ+ δ, the error state

er(t) := r(t)− δ (16)

and the vector ζT(t) :=
[
|e1(t)|1/2sgn(e1(t)) e2(t)

]
.

The motivation for the choice of Lyapunov function is
that (15) can be equivalently written as

V (ζ, er) =
1

L3/2(t)
ζ(t)TP (t)ζ(t)

+

√
2

2γ
er(t)(4L

−1(t) + δL−2(t))er(t) (17)

where

P (t) =
1

2

[
4β(t) + α2(t) −α(t)

−α(t) 2

]
(18)

and the scalars α(t), β(t) and L(t) = ℓ + δ + er(t) are
defined in (9)-(10). Because 0 < r(0) + ℓ ≤ L(t) ≤
rmax + ℓ, it follows that β(t) > 0 and det(P (t)) > 0. A
further consequence is the function V (ζ, er) from (15) is
Lipschitz and positive definite. Taking the derivative of
(17) yields

V̇ (t) =
d

dt

(
1

L3/2(t)
ζ(t)TP (t)ζ(t)

)
︸ ︷︷ ︸

V̇1

+
d

dt

(√
2

2γ
er(t)(4L

−1(t) + δL−2(t))er(t)

)
︸ ︷︷ ︸

V̇2

(19)

The first component can be expressed as

V̇1(t) = ζT(t)

(
d

dt

(
1

L3/2(t)
P (t)

))
ζ(t)︸ ︷︷ ︸

V̇1a

+
1

L3/2(t)

(
ζ̇(t)TP (t)ζ(t) + ζ(t)TP (t)ζ̇(t)

)
︸ ︷︷ ︸

V̇1b

(20)

Consider initially the term V̇1a(t) in (20): substituting
for α(t) and β(t) from (9)-(10) gives

V̇1a(t) = ζT(t)

(
d

dt

1

2

[
18L−1/2(t) −

√
2L−1(t)

−
√
2L−1(t) 2L−3/2(t)

])
ζ(t)

=
1

2
ζT(t)

[
−9L−3/2(t)

√
2L−2(t)√

2L−2(t) −3L−5/2(t)

]
︸ ︷︷ ︸

ψ(t)

L̇(t)ζ(t) (21)

Notice that L̇(t) ≥ 0 since L̇(t) = ṙ(t), and from (12),
ṙ(t) ≥ 0 for all time. Since L(t) > 0 it can be easily

shown that ψ(t) < 0 and consequently since L̇(t) ≥ 0, it
follows

V̇1a(t) =
1

2
ζT(t)ψ(t)L̇(t)ζ(t) ≤ 0 (22)

Arguing as in [16], the term V̇1b(t) in (20) is given by

V̇1b(t) =
1

L3/2

(
− ġ(t)(−α(t)|e1|1/2sgn(e1) + 2e2)

− 1

|e1|1/2
ζTQζ

)
(23)

where

Q(t) =
α(t)

2

[
2β(t) + α2(t) −α(t)

−α(t) 1

]
(24)
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Since it is assumed that ġ(t, x) is bounded by δ

V̇1b(t)≤− α

2L3/2|e1|1/2

(
(2β + α2 − 2δ)|e1|+ e22

−2α|e1|1/2sgn(e1)e2 −
4

α
sgn(e1)ġ|e1|1/2sgn(e1)e2

)
(25)

If

ẽ2 := e2 −
(
α+

2

α
sgn(e1)ġ

)
|e1|1/2sgn(e1)

then replacing e2 with ẽ2 in (25) means

V̇1b(t)≤− α

2L3/2|e1|1/2

(
(2β + α2 − 2δ

−(α+
2

α
sgn(e1)ġ)

2)|e1|+ ẽ22

)
(26)

Finally it follows that

V̇1b(t)≤− α

2L3/2|e1|1/2

(
(2β + α2 − 2δ

−(α+
2

α
δ)2)|e1|+ ẽ22

)
(27)

since for any value of ġ satisfying |ġ| ≤ δ,

(α+
2

α
sgn(e1)ġ)

2 ≤ (α+
2

α
δ)2

because α > 0. Substituting for α and β from (9) and
(10) in (27) yields

V̇1b(t)≤− α

2L3/2|e1|1/2
(
ẽ2 + (8L− 6δ − 2δ2L−1)|e1|

)
≡− α

2L3/2|e1|1/2

(
ẽ2 +

2

L
(4L+ δ)(L− δ)|e1|

)
(28)

Using (9), (16) and the fact that L− δ = (r + ℓ− δ) =
ℓ+ er, (28) can be written as

V̇1b(t)≤− α(t)

2L3/2(t)|e1|1/2
ẽ2

−
√
2
(
4L−1 + δL−2

)
(ℓ+ er)|e1|1/2 (29)

Now consider V̇2 from (19): simple calculations give

V̇2(t) =

√
2

γ

(
4L−1 + δL−2

)
erγD(|e1|1/2)

− 1√
2γ

(
er
(
4L−2 + 2δL−3

)
L̇er

)
(30)

From (22), (29) and (30), the Lyapunov derivative is

V̇ (t) = V̇1a(t) + V̇1b(t) + V̇2(t)

≤ 1

2
ζTψ(t)L̇ζ − α

2L3/2|e1|1/2
ẽ2

−
√
2
(
4L−1 + δL−2

)
(ℓ+ er)|e1|1/2

+
√
2
(
4L−1 + δL−2

)
erD(|e1|1/2)

− 1√
2γ

(
4L−2 + 2δL−3

)
L̇e2r (31)

If ℓ + er > 0 (or equivalently if r(t) > δ − ℓ > 0) then

V̇ ≤ 0. Otherwise there are two cases to consider:

a) If |e1|1/2 > ϵ, then D(|e1|1/2) = |e1|1/2 and so substi-
tuting in (31) gives

V̇ (t)≤− α

2L3/2|e1|1/2
ẽ2 −

√
2
(
4L−1 + δL−2

)
ℓ|e1|1/2

− 1√
2γ

(
4L−2 + 2δL−3

)
L̇e2r (32)

Consequently V̇ (t) ≤ 0 since ψ(t) < 0 and L̇ ≥ 0.

b) If |e1|1/2 < ϵ, D(|e1|1/2) = 0 and substituting in (31)

V̇ (t)≤− 1√
2L|e1|1/2

ẽ2 − 1√
2γ

(
4L−2 + 2δL−3

)
L̇e2r

−
√
2
(
4L−1 + δL−2

)
|e1|1/2(ℓ+ er) (33)

after substituting for α(t) from (9). Recall ėr(t) = ṙ(t) ≥
0 and so er(t) ≥ er(0) for all t ≥ 0.Under the assumption
that r(0) < δ it follows

−er(t) ≤ −e(0) = δ − r(0) > 0

Also sinceL(t) = r(t)+ℓ and ṙ ≥ 0 it followsL(t) ≥ L(0)
for all t ≥ 0 and consequently

−
√
2(4L(t)−1 + δL(t)−2)|e1(t)|1/2er(t)

≤
√
2ϵ(4L(0)−1 + δL(0)−2)(δ − r(0))

Therefore for |e1|1/2 < ϵ, from (33), it follows that

V̇ (t)≤
√
2(4L(0)−1 + δL(0)−2)ϵ(δ − r(0))

− 1√
2(rmax + ℓ)ϵ

ẽ2 (34)

Define ϵ0 =
(
2ϵ2(rmax + ℓ)(4(r(0) + ℓ)−1 + δ(r(0) +

ℓ)−2)(δ − r(0))
)1/2

then it follows if ẽ2>ϵ2 then V̇ ≤0
in (34).

From the preceding argument, outside

R={(e1, ẽ, er) | |e1|1/2 < ϵ, |ẽ| < ϵ0, −δ ≤ er ≤ −ℓ}(35)

the derivative V̇ ≤ 0 and consequently the states
(e1, ẽ, er) remain bounded. Define another hyper rect-
angle Ra = {(e1, ẽ, er) | |e1|1/2 < aϵ, |ẽ| < aϵ0, − aδ ≤
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er ≤ −ℓ/a} where the scalar a > 1. Then by construc-
tion R ⊂ Ra and outside the set Ra, the Lyapunov
derivative V̇ (t) ≤ −ϵa where ϵa > 0 is a positive con-
stant depending on a (with the property that ϵa tends
to zero from above as a→ 1 from above). Consequently
Ra is entered in finite time and hence |e1(t)| < aϵ in
finite time.

Remark: In the next section, the reasoning behind the
use of an adaptive scheme, even though an upper bound
on ġ(t, x, ξ) is known, will be given in terms of a real en-
gineering OFC application. In the situation when ξ(t) a
small incipient low frequency fault, small values for α(t)
and β(t) are preferable, because the effect of noise on
the measurement y(t) and its subsequent effect on the
estimate ẏ(t) (which is used in the FDI scheme to esti-
mate ξ(t)), will be mitigated. The transfer of noise via
unnecessarily large values for the gains α(t) and β(t) will
tend to mask small incipient low frequency faults, mak-
ing them harder to detect. However in order to preserve
a sliding motion, and hence the accuracy of the estimate
of ẏ(t) in the presence of high amplitude high frequency
faults, large values of α(t) and β(t) must be employed.
Consequently in order to preserve the fidelity of the es-
timate of ẏ(t) for a wide range of high and low frequency
faults, the gains must be allowed to adapt.

Remark: In a situation when no adaptation takes place
and the gains remain fixed, the observer behaves ex-
actly as a Levant differentiator [14] and so all the opti-
mal properties of that scheme with respect to noise and
sampling are preserved.

3 OFC Estimation - ADDSAFE Benchmark

The Advanced Fault Diagnosis for Sustainable Flight
Guidance and Control (ADDSAFE) project is an Euro-
pean funded collaboration which aims to demonstrate
the applicability of advanced fault detection and diag-
nosis (FDD) methods for aircraft to support the de-
velopment of sustainable aircraft. The main objectives
are to improve FDD methods to support new ‘green’
technologies allowing optimization of the aircraft struc-
tural design, improving aircraft performance and reduc-
ing the environmental footprint [15]. The ADDSAFE
benchmark model provided by AIRBUS [10] represents a
high fidelity generic twin engine civil commercial trans-
port aircraft. It comprises a rigid-body aircraft model
with a complex aerodynamic database, a full set of con-
trol surfaces, highly detailed nonlinear actuators and
sensor models, and realistic levels of sensor noise.

One of the fault detection problems to be investigated
in ADDSAFE is the Oscillatory Failure Case (OFC). An
OFC is a type of EFCS failure which can cause unac-
ceptably high vibration and significant increases in the
structural load due to erroneous oscillation [11]. The
idea is to estimate actuator rod speed (using the adap-
tive sliding mode super-twisting differentiator) which is

needed for estimating OFC (through the manipulation
of the analytical mathematical model of the actuator).

3.1 Modelling of hydraulic actuator

The hydraulic actuator model which will be considered
here is from [10,11] and is given by

ẋ(t) = Vc(t)

(
∆p(t)− sign(i(t))Faero(t)

S

∆pref + Kd(t)
S V 2

c (t)

) 1
2

(36)

where nominally

Vc(t) = Kci(t) (37)

and Kc is a conversion factor from electrical current
(mA) to speed (mm/s). The current i(t) is given by

i(t) =K(u(t)− x(t)) (38)

where K is the (fixed) servo control gain. This model is
embedded in the benchmark model. The signal u(t) is
the commanded rod position from the FCC and x(t) is
the hydraulic actuator rod position. The fixed constants
are S which is the piston surface area and ∆pref which is
the differential pressure corresponding to the maximum
rod speed. The parameters which depend on varying op-
erational conditions (e.g. fluid temperature and/or the
number of actuators used simultaneously on a given hy-
draulic circuit) are Faero(t) which represent the aerody-
namic forces applied on the control surface, ∆p(t) which
is the actual hydraulic pressure delivered to the actua-
tor and Kd(t) which is the adjacent actuator damping
coefficient.

3.2 OFC modelling

An OFC is caused by a faulty digital component in
the Electrical Flight Control System EFCS (aka fly by
wire), which generates unwanted sinusoidal signals in
the actuator loop between the Flight Control Computer
(FCC) and the control surface [11] (see Figure 1). The
oscillations propagate within the loop generating extra
structural loads. When coupled with the aeroelastic be-
haviour of the aircraft they can create excessive loads
and vibrations (and could generate resonances in the
natural modes of the structure) [11]. Similar to [11], only
an OFC located in the servo control loop is considered
in this paper. Specifically, it is assumed that the OFC
originates from the analogic output signal between the
FCC and the actuator (See Figure 1). In the ADDSAFE
model, the OFC affects the computed/desired rod speed
Vc(t) so that

Vc(t)=

{
V0(t) nominal
V0(t) +Kcfliq(t) liquid OFC
Kcfsol(t) i.e. V0(t) = 0 solid OFC

(39)
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Fig. 1. Source of OFC in the ADDSAFE benchmark problem

where V0(t) = KcK(u(t) − x(t)). The OFC signals are
considered as sinusoids with amplitude and frequency
uniformly distributed over the range 1-10Hz [11]. Due to
the low pass characteristics of the actuator, an OFCwith
frequency beyond 10Hz has no effect on control surface
oscillation. As shown in (39) the liquid OFC behaves as
an additive fault, and the OFC signal adds to the de-
sired position from the FCC, and hence the control sur-
face tracks the corrupted demand signal. In the case of a
solid OFC, the demanded surface position is totally re-
placed by the OFC signal and the control surface does
not respond to the desired rod position command – i.e.,
it is totally ‘disconnected’ from the FCC, and instead
performs a pure periodic motion. Consequently any at-
tempt to damp the oscillation does not have any impact.

3.3 OFC Estimation

To obtain an estimate of the OFC, the nonlinear equa-
tions (36), (38) and (39) have been rearranged to obtain
an expression of the OFC signal. Consider initially the
liquid OFC case. By algebraic rearrangement, (36) and
(39) are equivalent to

fliq(t)=

ẋ(t)

(
∆pref

∆p(t)−sign(i(t))
Faero(t)

S
−ẋ2(t)

Kd(t)

S

) 1
2

−V0(t)

Kc
(40)

All the variables on the right hand side of (40) are avail-
able (measured) or can be estimated except for the actu-
ator rod speed ẋ(t). For the solid OFC case, since V0 = 0
in (39), similar arguments give

fsol(t) =

ẋ(t)

(
∆pref

∆p(t)−sign(i(t))Faero(t)
S −ẋ2(t)

Kd(t)

S

) 1
2

Kc
(41)

The idea in this paper is to use the adaptive super-
twisting differentiator from Section 2 to provide a ro-
bust estimate of rod speed from the measurement of rod
position x(t). Once ẋ(t) is estimated, the OFC can be
estimated using (40) and (41) since all the values on the
right hand side are known.

In fault free conditions, ‘small gains’ are sufficient to
ensure a good estimate of rod speed while ensuring that
the effect of noise is not accentuated. However, when an

OFC occurs, for small values of α and β sliding might
be broken thus compromising the estimate of the rod
speed and OFC estimation. In this case, larger gains
are required to ensure sliding is maintained to provide a
good rod speed and OFC estimate.

4 Simulations

The proposed scheme has been tested on a high fidelity
aircraft model provided by AIRBUS [10]. The high fi-
delity nonlinear actuator model is parameterized by the
varying parameters (∆p, Faero and Kd) which change
based on the operating conditions. For observer design
purposes, these parameters are assumed to be fixed at
their mean values. The simulations have been conducted
at an altitude of 20000ft, a speed of 220kts, a weight of
230 tonnes and centre of gravity of 37% MAC. For the
simulations in this paper, the control surface considered
is the left elevator and the OFC is considered to origi-
nate from the analogic output of the FCC. The OFC at
this source will corrupt the electrical signal which pro-
vides the desired actuator position to the solenoid valve
of the actuator. The challenge specified from ADDSAFE
requires an OFC to be detected within 3 periods.

The slidingmode super-twisting differentiator design pa-
rameters from (11) and (13) used in the simulation are
γ = 3×104, ℓ = 50 and ϵ = 0.5. In the following simula-
tions rmax = 5000 mm/s2 has been chosen. This value
corresponds to the maximum rate of acceleration of the
actuator rod because ġ(x, u, ξ) = ẍ(t). This choice is
very conservative and well beyond what can be phys-
ically attained by the actuator according to the man-
ufacturer’s data sheet. It is also well beyond the value
obtained from simple worst case calculations associated
with the most aggressive fault (a sinusoidal input of am-
plitude 10 at a frequency of 10 Hz) occurring instan-
taneously with a severe step-input pilot command. As
will be seen in the later simulations, this value of rmax
is an order of magnitude larger that the actual values
r(t) ever takes during the simulation tests. To ensure a
design which satisfies the restrictions on the computa-
tional power load associated with the flight computer,
(running at 100hz), the simulations were performed us-
ing a solver with a fixed time step of 0.01s. For added
realism, sensor and process noise have been included in
the simulation.

4.1 Simulation Results

For consistency and for comparison, the OFC is set to
occur at 20.3sec and the excitation which has been con-
sidered for the ADDSAFE benchmark problem is the ‘α
protection’ manoeuvre (see Figure 2(a)). This aggres-
sive manoeuvre is characterized by a sudden large pilot
stick movement at 20sec, which triggers the angle of at-
tack protection system (currently a built-in feature of the
controller) to prevent an excessively high angle of attack
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(see Figure 2(b)). For brevity, although a wide range of
OFC amplitudes and frequencies have been tested, the
results shown here represent the extreme cases of low and
high amplitude/frequency to highlight the performance
of the proposed scheme. The low amplitude OFC case
shows the smallest amplitude the scheme can detect (es-
pecially when masked by the noise in the system) while
the high frequency OFC case represents a challenge to
detect the failure within the required time.

Figure 2 shows the fault free scenario. Figure 2(a) shows
the sudden large input applied to the pilot longitudinal
stick to excite the system. The effect of the stick input
on the left elevator deflection is also given in Figure 2(a).
In nominal fault free conditions, the actual control sur-
face deflection (blue solid line), is overlapped by the de-
mand signal from the FCC (red dash line). The change in
the operating condition is shown in Figure 2(b). Figure
2(c) shows the performance of the sliding mode super-
twisting differentiator in the nominal case with the error
signal e1 close to zero and no adaptation taking place
(L(t) remains constant). Figure 2(d) shows a good es-
timate of rod speed ẋ(t) (solid blue line) compared to
the actual rod speed (red dashed line). Figure 2(d) also
shows no OFC is present. This is confirmed by the de-
tection signals (boolean) shown in Figure 2(e).

Figures 3-4 show the results for a liquid OFC type
failure for low amplitude/frequency and high ampli-
tude/frequency OFC cases. Figure 3 shows an OFC
with an amplitude of 0.5deg at a frequency of 0.5Hz.
Figure 3(a) shows the effect of a liquid OFC on the
left elevator deflection (blue solid line) after 20.3sec
whereby the OFC signal adds to the demanded signal
(red dashed line) from the FCC. Figure 3(c) shows that
for this combination of low amplitude and frequency, no
adaptation to the super-twisting gain L(t) is required
as no degradation in the sliding motion occurs (e1(t)
close to zero). Figure 3(d) shows a good estimate of rod
speed ẋ (solid blue line) as it overlaps the actual rod
speed (red dashed line). Figure 3(d) also shows a good
estimate of the OFC (blue solid line) compared with
the actual OFC (red dashed line). Note that the green
line at ±1 on the plot of the OFC estimation represents
the threshold which has been used in the detection logic
(essentially oscillation counting similar to the one in
[11]). The detection logic confirms the presence of an
OFC after 2.5 cycles (Figure 3(b)).

Figure 4 shows the results for a liquid OFC with ampli-
tude 1deg and a frequency of 7Hz. Zoomed-in plots from
19-23sec are presented due to the high frequency asso-
ciated with the OFC. Figure 4(c) shows that when the
OFC occurs at 20.3sec, the quality of sliding degrades
and the gain L(t) increases to re-establish sliding. Figure
4(d) shows the estimate of both the rod speed and the
OFC. During the period of sliding degradation, the rod
speed and the OFC estimate slightly degrade, but once
the gain L(t) is sufficiently big, the quality of the estima-
tion quickly recovers and both the rod speed and OFC
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Fig. 2. Fault free condition

estimate (blue solid line) overlap the actual rod speed
and OFC (red dashed line). The green line at ±400 in
the plot of L(t) (Figure 4(c)) is a threshold which has
been used in conjunction with the oscillation counting
for OFC detection. The detection logic confirms the pres-
ence of an OFC either by oscillation counting or when
the threshold of L(t) has been exceeded. In the event of
a high frequency OFC, the gain L(t) increases. As shown
in Figure 4(b), the detection of the OFC is immediate,
and much less than the 3 cycle detection requirement.
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Fig. 3. Liquid OFC (amplitude 0.5, frequency 0.5)
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Fig. 4. Liquid OFC (amplitude 1.0, frequency 7.0)
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Fig. 5. Solid OFC (amplitude 0.5, frequency 0.5)
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Fig. 6. Solid OFC (amplitude 1.0, frequency 7.0)

Figures 5-6 show solid OFC type failures for two differ-
ent amplitudes and frequencies. Figure 5 shows a low
frequency/amplitude OFC case (amplitude 0.5deg at a
frequency of 0.5Hz) while Figure 6 shows a high fre-
quency/amplitude OFC case (amplitude 1deg at a fre-
quency of 7Hz). Figure 5(a) shows the effect of the low
amplitude/frequency OFC on the left elevator. It can
be seen that after 20.3sec (immediately after the α pro-
tection manoeuvre), the commanded signal (red dashed
line) is totally replaced by the OFC signal (blue solid
line). After this point, the elevator does not respond to
any commanded signal from the FCC. Figure 5(c) shows
that the error signal e1 remains close to zero and there is
no super-twisting gain adaptation required for this level
of OFC. Figure 5(d) shows a good estimate of the rod
speed is obtained as the estimate (blue solid line) over-
laps the actual (red dashed line) rod speed. Figure 5(d)
also shows a good OFC estimate (blue solid line) from
equation (41) as a result of the good rod speed estimate.
The green line at ±0.25 on the plot of the OFC estimate
is a threshold used for oscillation counting to confirm an
OFC has occurred (Figure 5(b)).

Figure 6 shows a solid OFC of amplitude 1deg and fre-
quency of 7Hz. Zoomed-in plots (19-23sec) are shown
to illustrate the effectiveness of the scheme. Figure 6(a)
shows the effect of a solid OFC on the left elevator. Again
the OFC totally replaces the command signal from the
FCC (red dashed line) when the OFC occurs at 20.3sec.
Figure 6(c) shows the gain L(t) adapting to ensure that
sliding is reestablished (see e1(t) signal) after the OFC
occurs and to ensure good estimates (blue solid lines) of
both rod speed and the OFC as shown in Figure 6(d).
These good estimates are obtained in the presence of
noise. Figure 6(b) shows an almost immediate detection
which confirms the presence of the OFC after 20.3sec.
Here, (apart from the typical oscillation counting) the
adaptive gain L(t) was used as part of the detection
logic. The idea is to use the higher gains required to re-
establish sliding, as a measure of severity of the high fre-
quency OFC. As shown in Figure 6(c), the green line is
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the threshold set for the high frequency OFC detection,
which for a solid OFC is set at 500. In Figure 4(c) it can
be seen that in the formulation adopted here the gain
L(t) can only increase. In some situations this would
be a disadvantage: for example in a situation where the
super-twist structure is used for feedback control, it is
extremely useful to keep the gains as small as possible
to help prevent chattering. Here this is not a significant
issue because the observer is used purely for monitoring
purposes and is not part of a control feedback loop.

5 Conclusions

This paper has presented a new adaptive super-twisting
differentiator scheme in which the stability analysis is
based on a Lyapunov approach. This adaptive differen-
tiator has been used as a basis for a fault reconstruction
scheme. The super-twisting gains are allowed to adapt
to maintain sliding in a situation in which a severe fault
is present in the system, but remain low in the fault free
case. This is motivated by the need for good estima-
tion even in the presence of noise, requiring the super-
twisting gains to be as low as possible. When a severe
fault occurs in the system, sliding is degraded and the
super-twisting gains are allowed to increase to regain a
sliding motion. The efficacy of the proposed method is
shown by applying it to an OFC detection problem. Sim-
ulations based on the full nonlinear model of the aircraft
using a highly detailed model of the actuators have been
carried out for both liquid and solid OFC cases. The re-
sults show good estimates of the OFCs allowing their
detection within the required specified time.
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