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Abstract

An artificial life form under the control of a spiking neural networkhas been created ima
chessboardenvironment which consists of 60*60 gridsing Matlab GUIThe spiking neural
network consists of 8 neuronsimulated using Izhikevichadel which combinethe property of
both biological plausibility and computationafficiency The neurons withm the network are
fully connected with each other. Thitelligencef the artificial life formis storedas value of
weights in the synaptic connections néurons. STDBR the learning rule implemented to the
network in this project. STDP adjasihe synaptic weights acconag to the precise timing of pre
and postsynapticspikes.

The artificial life form itself has been designed to complete certain tasks such as avoiding
obstacles and catching food in the chessboard. The behaviteddrtificial life formunderthe
control of STDP in various situations will be investigated. Experiments will be cautiat the
same time tryng to improve the behavior ofthe artificial life formso that the artificial life form
canevolve andshow some adaption abilitiesccordingto the externalenvironmens.
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1. Introduction

1.1 Aim and Objectives

The aim of this project is to study theehavios of simulatedhrtificial life formunder the control

of the neural networks. The neural networks will be spiking networks which use sequence of
spikes tocarryinformation between neurons. The Izhikevich Model which combithesproperty

of both biological plausibility and computationefficiencyhas been studied and simulated using
Matlab.

This model will be slightly modified and implementedtlas basis of the control fothe spiking
networks. Four key parameters of this model could be used to controb&teviorof the spikes

in the network; a lot of experience of using this typical model would be gained duhigy
process

The STDP learning rule which adfitse weight of the network according to the relative timing

of input and output spikes will be implemented into the Izhikevich Model in order to increase the
intelligence of the neural network. Investigations on the effectheflearning rué will be carried

out with a number of experiments testing theehaviorof the artificial life formunder the control

of STDP.

1.2 Program Environment

Theartificial life formis operating in a-® chess board likenvironment;the environment will be
simulated using Graphicélserinterface GUI) in Matlab. The program code is based on a web
source downloaded from MatlaBentral and modified to fit the project use, so that the
implementationtime could be saved aneimphass be placed on the neural network part.

Theartificial life formis designed to catch food in the chess board while trying to avoid different
obstacles when the@rogram starts A number of rules are added to the simulation environment,
and some of them are takefinom ideas inspired fronthe real biologicalworld such as the neural
coding of movement in animals. Investigatiwi the behaviorof artificial life formwill be carried

out simultaneously enabling the complexity of the network and environment to be increased
gradually

With a combination of internal network learning rules and exterealvironmentl rules, the
artificial life formshould have a high degree of interactions wiihexternal environment, and

should show some adaption abilities under different conditions. TteeaisSTDRSpike Timing
Depend Plasticityill also improve thgerformanceof the artificial life formso that it can avoid

the obstacles and catch the food faster. Investigations will be emphasized on this section and
there will be analysis andiscussins on the experiment results of the effect of STDP.

The graphical user interface window will also be constructed carefully to &eilihe process of
experiment; so that the user could control a number of key parameters ie tietwork and
environmentallowing more space for testing.



1.3 Structure of the thesis

Detaikd background information will be described in Chagtesf the thesis, which includes the
basis of biological and engineering thedrghind the project, tre analysis of Izhikevich model
and an introduction of noise andthe STDP learning rulén Chapter3, the thesis will show the
complete project method from programming of the simulation environment using Matlab GUI to
each part of the program implementation process including STDP. Vdtiqerimentswill be
carried out with data collected from the pragm while the implementation goes deeper into the
project. Thedemonstrationof all the testing results using pkand diagrams will benade in
Chapter 4. Chapteb will discuss the results. Any worltsat can be done in future will be
mentioned in Chapte6.



2. Background

2.1Generation of action potential inside neurons

2.11 Elements of neuron system

It is very important to get some ideas of a real (ideal) neuron in a human brainaftiatogical

point of view before creating its model. A typical ideal spiking neuron structure is shown below in
Figurel
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Figurel above shows that a real typical neuron can be divided into three functionally distinct
parts called dendrites, somand axon. Thedendrite playsthe role of theYhput devic€that
collects signals from other neurons atrdnsmitsthem to the soma. The sanis the¥entral
processing unfdthat performs an important notinear processing stepThis noHinear
processing step is simulated using a spiking neural network model in this pvdpét will be
introduced later in &ction 2.4 of the thesi$n gereral, a neuron can process informaticeived

from thousands of other neuronE the total input exceesla certain threshold, then an output
signal (assumed to be in the form of a spike in the model of this project) is generated. This whole
process is represented as an action potential which is shown in the big dashed circle if; Rigure
is a short voltag pulse of 2 ms duration and amplitude of about@fnV. The biological view of

the generation ofthe action potentialwill be describedn detailslater in Sections2.1.3. The
output pike generated from neuron i then pasdbrough the ¥onnection passgeQ-axon to
neuron j. The Wonnection passad®s referredto the term WynapticA y (i S 3 Mdhich it FeQ
introduced in the next subsection.



2.12 Synaptic integration

The termsynapticrefers to the specialized sites for communication beémn neuronsnamed
synapsewhere input signals to a neuron are generat@il [The synapse is marked by the small
dashed circle in Figuré. The neurons that generate input signals are callegresynaptic
neuronsand the neuron that receives this input éslled thepostsynaptic neuronintegration
refers to the way inputs from many presynaptic neurons are processed in order to generate the
action potential in the postsynaptic neuron. Synaptic integratithmerefore, describes the
summation by the postsynuic neuron of inputs from many presynaptic neurons [1].

The synaptic integration can be represented as a multiple inpat to

single output system. So the external input generated by presynaptic neurons can be divided into
several small input currents wgti sum up to form the total input currents I(t):

A structural model of the system is shown below:
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In Figure2, the totd input currents I(t) ar¢he sum of all the external inpu(t). The factor Wij is a
measure of the efficacy of the synagsem neuron j to neuron i. Ui(t) is the internal state of
neuron i. g is the threshold neededr the neuron to produce an action potential.

The detailed simulation of synaptic connections and their impldaateons will be explainedciter
in Sction 2.31o0f Chapter3.

2.1.3 Action Potential: Generation

Section 2.12 gives an overview on how information is passing through between each distinct
part of a real typical neuron fromgystematic point of view. Now in this sectiarmoredetailed

look at how information can pass throlighe real neurons will be presentethe generation of
action potential.The neurons camt pass any informatiowithout an action potential, so hovs
action potential generated?Depolarizing the membrane opential and passng a critical
YhresholdQvoltage will result in an action potential. Membrane potential is the electrical
potential differencebetween the insideandoutside of a cell3].

A set of graphs with voltage against time showing a complete process of action potential from
beginning to the end are listed in the next page. The relationships between the generation of
action potentials and the inward and outward flow mechanisfions are also described in
Fgure3 below.
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Generally, if a neuron is at rest, its membrane potential is ab6btnV. This is the resting
potential of a neuron, and it iebeledas Ves:0n top trace ofFigure3. The resting potential is

kept by the total charge of differemns Mainly sodium N&and potassiumk’) inside and outside

of the cell. Roughly speaking, the inward and outward movement of these ions through the
membrane is the maireason that causethe depolarization of the membrane potential.

2 KSYy | ySdzNPYy NBOSA@PSaE |y aAylLldziés GKIG dzadz €€ @
that changes the membrane potential and activates neighboring Na+ channels. A threshold value

abou -50mV e (obswed from Figure) is reached when the amount of Na+ entering the cell is

greater than the resting efflux of K+.

As more Nachannels open, conductance continues to increase until all availabhaanels are
open. This is shown on the middle traceFajure 3. The increase in selectiyErmeability
(conductanceincrease) to Nacauses the membrane potential to depolarize towagd(Ehe
Equilibrium potential for Nain neurons, which is about +60m¥)ereby producing the rising
phase of the actiorpotential [4]. All of these events occur with@furation of less than one
millisecond- the time it takes Nachannels to activate.

After channels are open for about a millisecond, they inactivate by theljocking mechanism

8



leading to a decrease in sodi conductance. Sodium channel inactivation is the first step in
action potential termination; the decrease in selective permeability tocsase the membrane
potential to shift away from g and towards the normal resting membrane poter{ddl This par

of the action potentials is called thlling phas@Although N&channels inactivation could, by
itself, terminate the action potential, "Kchannel activation provides a fahve mechanism to
terminate the action potentigH].

The bottom trace orFigure3 shows that K channel activates with a slower rate and a delay
compared to the Nachannelactivation. E (The Equilibrium potential for'kh neurons, which is
about -60~70mV) is near the resting membrane potential, so it is easy to see that a
conductance increase to' Will tend to drive the membrane potential towards more negative
voltages, thus contributing to the falling phase of the acpotential.

The contribution of Kchannels to action potential termination is also evident by tlesence of a
period ofhyper polarizationduring which the membrane potential is briefly more negative than
the resting membrane potential. This arises under conditions where fore negative than
Vrest so an increase in‘Konductance hyperpolarizeee membrane potential. The aftéyper
polarizationalso arises becausé ghannel inactivation is slower than Nehannels inactivation.
As K channels finally inactivate, the aftemyper polarization declines to the resting potenfig!

The detailedsimulation of action potential using $ing neural network modethe Izhikevich
model will be introduced later inegtion 2.4 of this lbapter.



2.2 Bio-inspired algorithmand learning rules

2.2.1 Introduction

In academic world, Neural Robotics has two madsearchapplications One is to create
autonomous artifacts omtelligent systems which inherit some or part of the br@functions in
order to help pegple sole realworld problems.Humanbrain consistof largescale of neural
networks with complexstructures and configurationsLhe investigation of brain is one of the
foremost challenges withimeurosciencetoday, especially within the @a of cognitive neural
science[5]. There are thousands of researstudies on human cognitive function in the context
of brain. The relationshipdetween the biomedicalengineering, cognitive neural scienand
artificial intelligence have become are closelyrelated ever than beforeResearch in these areas
alsogreatly stimulats the development of Neural RobotiEg.

The otherapplicationof Neural Robotics is to construct complex neural modelsantitectures
to investigate the basic principles of the brain and its relationships étiaviors Variousneural
network models hee been created so faivhich alwayshave adopted different algaithms and
learning ruledeinginspired by the biologicdlehaviorof living systems. The robot under control
of these neural networks caperform vast amount of intereshg behaviors. The study of these
behaviorscan promotethe development of artificial neural network$he applicationsof Neural
Robotics are playig more and more important roles in research of artificial intelligence.

2.2.2 Direction coding scheme

In this project, a 60*60 grid chess bodikk environment is simulated using Matlab. Objects
within the grid of environment have been set with different colors representing obstacles, food
and artificial life form Theatrtificial life formis designed t@void obstacles in order to catch food.

A set of ideas taken from research studiescognitive neural science vabeen appliedto
generate the algorithms to control thirtificial life form These ideas are inspired from a set of
experiments on the physological analysis of motor pathways of animaighich are used
investigate theneural coding of movement

One example is taken from the research pap# Model of Jatial Map Formation in the
Hippocampus of th& (iwgitten by K. I. Blum and L. Rbbott. By using experimental facts about
longterm potentiation (LTP) and hippocampal palace cells in the rat, they model how a spatial
map of the environment can be created in the rat hippocampus [18]. Sequential firing of place
cells during exploratioinduces, in the model, a pattern of LTP between place cells that shift the
location coded by their ensemble activity away from #wtuallocation of the animal [18]. These
shifts provide a navigational map that, in a simulation of the Morris maze, cde ¢ué animal
toward its goal [18]. In their paper, they also mentioned the previous research which suggested
the cognitive map of the spatial environment of the rat is stored by potentiated synaptic weights
representing both spatial and temporal corretats [18]. Inspired from these ideas, thigesis

also usesynaptic weights to represent the spatial information of the artificial life f@rexternal
environment.

Anotherexample idearnedfrom the experiments byApostolos Georgopoulos and his colleague
at Johns Hopkins Urersityto record the activity of cells in various regions of the matgstem
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of rhesus monkey§5]. In those experiments, the animaklwe trained to perform a set of tasks
under certainconditions; neurophysiologis investigate theactivities of single cells in animal
motor cortex while they are movingnd ask what parameters of movement are coded by such
cellularactivity. They observe a hierarchical coding of movement across the motor system; some
cells are directly related to thactivationof specific muscles, some cells are coding for movement
directions and some cells are even coding for more abstract concepts such as goals of action
depending on their hierarchical levels in the central nervous system.

The datafrom these expriments alsandicatethat motor cortex cells code movement direction
and that movement in a certain directiorequires activation of appropriate cellswhen the
animals perform specific actions, ttepikes in the corresponding coding neurare produced
more frequently than when it is at rest. This means that the number of spikes Hafltsnceon
the movement of animals.

Inspired bythese ideas, this project going to add a directional coding scheme to this spiking
neural network. Eighheuronsare used to represent eigldifferent directions which are shown in
Figure4.1

——

<IN\

Figure4.1EightNeurons Represent Eight Different Directions
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Figure4.2Directional coding scheme of the spiking neural network
The artificial life form receives signals from its external environment before each -temé
movement. A foodarget sendgositive signals while an obstacle itself representeadsignal.
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A positive signal acts as an electric DC input arnggers additional spikegAction Potentials)n

the neuron whichpoints to the direction ofthe food target. A¥erasignalbrings an excitatory
neuron back to its resting state if this neuron is pointiaghe signa® direction and theartificial

life form is just about to touchan obstacle There will be more details about issues of input
strength in the later chapters.

Theprogram then realizethe direction coding scheme by counting and comparingrthenber

of spikesthat occurwithin each neuron during a fixed time window. These fixed time wirglow
consist of only simulation timsteps,but it does take a lot of times for computer to execute all
the calculation and simulation commands. Unlike the @miwnal analogue neural networks
which compute all the inputsimultaneoushyand pass the outputs through layers of neurons, the
outputs of the spiking neural networks mainly rely on the relative timing of the spikes in pre and
post synaptic neurons. Inadt, if the time window consiss of too many timesteps, the
computational efficiency (speed) of the spiking networks will be greatly reduced. However, the
length of the time window should also be kept long enough allowingcserfit timing space for
spikes so that they could carry sufficient informatioTherefore timing will be a very important
issue in spiking neural networkghere should be acompromisebetween the efficiency and
sufficiency A number of testare run on this issugwhichwill be discussedn the first section in
Chapter4. Currently the program takes 400 simulation time steps asléngth of the time
window. Detailed timing process of the spiking network is shown in Figoesow.

Fixed time window with

400 simulation time steps
1 J

|

Computer execution time for the other

Computer Execution time for internal program codes (external chess board
spiking neural network controller environment, call backs ,functions......)
s ——
1 | | 1 | S
Cad
N1 D21 Receive inputs from the external ‘ g ! Normal time(t)
environment
N2 1

Count the No. of spikes in each

neurons within the time window . ,
Y

Compare the NO. of spikes in ‘1(
each neuron within the time
window before each movement

Total computer execution time for
one movement of the artificial life

Record the neuron that fires the
max No. of spikes
spikes

Ng T 4

Movement Direction Decision
- v \ 4
Move one step! Move one step!

Figure5 Detail timing process of the spikingetwork

In addition tothe hardware issue such as tlspeed of the computer CP,is very obvious in
Figure5 that the total executiontime for one movement of thartificial life formgreatly depends

on the length of the time window. The less simulatigteps it has, the quicker the spiking neural
network controller is going to execute the program code. However, as mentioned above, the time
window should also be kept long enough allowing isight timing space for spikeso that they

could carry suffient information
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By comparing the number of spikélsat occurin each neuron during the time window, the
spiking neural network controller can know the neuron that fires the maximum number of spikes.
The direction that this neuron is pointing to would the direction that theartificial life formis
going to move toward. As a result, a food target sending positive signals will attraattifigial

life form since it triggersadditional spikes in the neuron that points to its direction. An obstacle
will stop theartificial life formfrom touchingthe food targetbecause it makethe neuronthat
points to its direction maintairthe resting potentialso thatno spikes will be triggered in that
neuron.

2.2.3 Distance coding scheme

In spite of the direction coding scheme, a distance coding scheme imedsssaryfor this
spiking network. The distance coding scheme is added as a rule of the external environment,
which is implemented separately from the central neural controller. Bottom of Figure4.2
shows that the signal strength of the food is decaying as the distacoease (The equation will

be givenin Chapter3), which isthe core rule that governs thdistancecoding schemeWith this
distance coding scheme, ttagtificial life formwill move towards the food locatedoserto it. A

full explanaton ofthe distance coding scherean be foundn Chapter 3

2.24 Populationvector

Whenthere is more than one food target or with effect wbise 6ee bottom of Figurd.2), it is
possiblethat more than one neuromwill spikethe same maximum number of times within one
particular time window. An alternative coding scheme also inspired from the observation of
above experimental data is used to solve this problem. The data fhe experiment showthat

the command of monkey movement in a direction turns out to be the summed activity over all of
the cells devoted to a certain limb. This coding scheme has been callgabghdation vector
because it is a way to see how a globaént, a movement in a certain direction, can result from
the summed activity of many small elemerggchcontributing to its own votg6].

Theexperiment on hippocampal of rat also demonstraties concept of population vectorsWe
assume that the mdel network contains a large number of neurons with overlapping place fields.
Thus, if the animal is at a location x many neurons with place field center close to x are active at
the same timé [19]

By treating all the dominant neurons as a populationteec¢he network controller combines the
vectors andcalculates the overall movement direction for tlatificial life formto gointo the
next grid square. Faxample, in Figur@, if neuron N8 and\6 firethe same maximum number
of spikes within any pécular time window, the network will treat it as 6nN7 fires; If N8, N4,
N2 firethe same maximum number of times, the netwoskl treat it as only N2 firesvith N8
and N4 cancéihg each other out;If N1 and N6 firdhe same maximum number of timeshe
network will treat it as aly N7 fires. If N1 and N5 firthe network will treatit as no neuron fires
and theatrtificial life formwill remain still in itsoriginalposition.

Now, problems also arise with this coding scheme. Firstly, what can be done if neuron N1 and N5
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alwaysfire the same maximum number of spikes and tatificial life formremairs still all the

time? Secondly, what happens if N1 and N2 the samemaximumnumber of times? They
cannotcancel each other out and tteatificial life formcan only move one grid each turn for the
convenience of collecting data. These problems can be solved by introducing the noise into the
spiking néwork, which will bediscussd in the next section.

2.3 Noise

There is noise in all real life systems. In this project, the noise is implemented into the spiking
network to give theatrtificial life formsome degree of randomness. There are situations when
two possibleand equally desirable movements aeailable The situation thatN1 and N5 always

fire the same maximum number of spikes and #réficial life formremairs still for long time is

one of the poblemsthat may be causedTo solve this problem, an unfixeédput stimulus
selected fromarange of values (see bottom of Figute) will be randomly injected to any of the

8 neurons before each movemerithis project uses the Matlab commanhndo generate
uniformly distributed pseudorandom numbefeom 0 to 20mV.That is one wayf introducing
noise into the spiking networkvhich will cause unexpected spikesoccurwithin neurons(the
dynamic detad of how injected stimulus caes additional action potential¢spikeg in neuron
using lzhikevich models will liustratedin the next section). As a rdsuthe chance of N1 and

N5 always filng the same maximum number of spikes will be greatly reduced. Increasing the
strength of noise (the mean and thiuctuationg also increasethe number of unexpected
spikes and therefore increasthe degree of randomness of tteetificial life form

However, thestrengthof noise shouldalsobe limited due to various reasonshe first reason is

to prevent the model fromsaturating If a modé is in saturation, it will not produce any
additional spikes no matter how strong the input is applied to the neurons. The second reason is
that avery strong noise willlso reduce the efficiency of tteatificial life form which meanghat

more movemeis will be taken bythe artificial life formto catchthe food. The compromise
between the effect of noise and theignal sentfrom the external environmentwill be
investigatedn the first section oChapter4.

Under a limited level of noises coupled with dimited degree of randomess, theartificial life
form should be able to avoid small and simple obstaaled reach the final food targetithin a
relatively efficient time However,a larger degree of noisewill be required within the nevork

for the artificial life formto overcomecomplex obstacles, which consequently reduce the
efficiency of theartificial life form STDP is implemented in this situation to increase the
performance of theartificial life formunder such circumstams. There will be tests conducted
order to observe and investigate the effect of STDP on the behaviartii€ial life formunder
different conditions.The basicprinciple of STDRvill be discussedn the third section of this
chapter, anda more detailedexplanationas well agest resuls will be presented in Chapter 3
and 4.

To solve the second problem mentionidthe last sectionthe network randomly selestone of
the neuronsif N1 and N2 firehe same maximum number of spikes at a particular time window.
That also adds some degree of random to #r#ficial life form which act as another source of
noise in this model. In the nesection, the thesis wilexamine amore detailed level of the
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neuralcontrollert the spiking neural network models.

2.4 1zhikevich Model

2.4.1 Which model to use?

There is a great shifb the emphasion the artificial neural network community towasdpiking
neuralnetworks during last few yedts. Theartificial life formin this project is also controlled by
a spiking neural network. However, thereailarge number of spiking neural network models that
can be simulated usinsoftware such as Matland C++ Sowhichmodel to use and implement
will bea very important issue to consider before programming.

The first and most importantharacteristids the computationabr implementation efficiency of

the model. The first section has already mentioned the importance of the computational
efficiency (Plase refer to Figuré) because the simulation time window dstake a lot of
executiontime. Therefore it is really important that the model possess a high simulation speed so
that the artificial life formcan run with sufficient speed in real time evermitly consis$ of eight
neurons. The integratandfire model and the Izhikevich Model are the most suitable spiking
network models in this case. They both contairelatively small number of floating operations
which are needed to be completed during bagimulation time step.

The other important feature is the biological plausibility of the modiis project usekhikevich

Model because it is also capable of producing rich firing patterns exhibited byimagical
neurons such as regular and torspiking, bursting or even resonance. This feature of the
Izhikevich model gives the user a high degree of control on each single neuron and allows more
research space in future while the very simple integiatel fire mockl would be more limited.

2.4.2 Izhikevich model

There isageometrical analysis of neur@dynamical systenm the book DynamicalSystems in
Neuroscienck written by Eugene Mzhikevich. Irthe book, he ussa geometricalmethod-the
phaseportraits to describe four bifurcatiomechanisns. These four bifurcations represent all the
transitions from a resting neur@stable equilibrium mode to anexcitatoryy” S dzBBngtéble
periodic spiking mode [7]. This thesis will not go into the geometrical analiyie dynamics in
detail since the emphasis is on the algorithms and learning rules of the neural networks.
Nevertheless, a relatively brief description of the dynamical systemeizhikevich model will

be providedin this section to showhe basic abities of producing various biological spiking
patterns of reaheuronsusing thelzhikevich model.

The neuron should not be seen just in terms of ions and channels, or in terms of an input/output
relationship, but alsasa dynamical systemA dynamical system consists of a set of variables
that describe its state and a law that describes the evolution of the state variables with time [7].
The Izhikevichmodel which contairs two ordinary differential equationds areducedform of
accurate butessefficient HodgkirHuxleymodel.

The two equations are shown beldaj.

v'=0.047 +5v+140- u+| Eql
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u'=a(bv- u) Eq2

With the auxiliaryafter spike resetting

vV« C
If v2 30mV then { Eqg3
u« u+d

INEqland EQ¥ @ Q YR WdzQ I NB RAYSyaAirzyftSaa GFNARFotSa |y
¢tKS GFENAIFIO6ES WPQ NBLINBaSyida GKS YSYoN)yYyS LRGSY
membrane recovery variable, which accounts for the activation of Kic ioorrents and

inactivation of Na+ ionic current®]. Membrane recovery variabl¢ dzQ LIN2 JARSa | FSSRol
membrane potential Therelationships between all the variables and parametemnsEql and Eq2

are shown irFigure6.

+—— peak 30 my

+—— resel ¢
'v'l;[:l

reset dT

i)
sensitivity b

Figure 6 relationships between variables and parameters of the Izhikevich modsjuations

taken from referencd4]

The parameter#Qdescribes the time scale of the recovery variabi€ The parameterBQ
describesthe sensitivity of the recoveryariable WQto the sub threshold fluctuations of the
membrane potentia/QThe parameteklescribes the aftespike reset value of the membrane
potential WQ Theparameter ¥ Ri€scribes the aftespike reset of the recovery variab¥QLike
most real neurons, the mode&loes not have a fixed threshol®epending on the history of the
membrane potential prior to the spike, the threshold potential can be as lo¥B%Z®mV or as high
as-40mV.

A typical settindor variables and parameters are a=0.02, b=0.26%~d=88]. Ths setting of the
Izhikevich model equations can produce the regular spiking pattern which is the most common
spikingbehaviorin an excitatory neuron in all biological systef8g This project iggoing toapply

this setting on the neurons in the spiking neural network controbéowever, there are also
many other settings of the variablesid parametes that can allow the modéb produce a lot of
different spiking patterngThe other type of spikingneurons @& not in consideratiorin this
thesisdue to the time limit and will be added inture works).A detailed diagram showing the
relationships between these settings and differapiking patterns is shown next page.
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Figure 7 Relationships between pararaters and variables of the Izhikevich model equations
and different spiking patterngaken from reference [3

Due to the sizeof the thesis, this section wifllot only a few of these spiking patterrRégular
Spiking, Fast Spiking, Tonic Spiking and Remgnsing Matlab through four experiments. Noise
will also be injected instead of direct DC input at experim2nih order todemonstratesome
more realistidoehavios of the spiking pattern within theeurons.

There is a matlab implementation of a simple model of spikiegronsprovided by Izhikevich in
his journaldSimple model of Spiking Neura@nshichillustratesthe simulations of a network of
randomly connected @00 neurons in real time[8]. Etproject hasmaodified the original version
of the Matlab ©de in order to produce andemonstratethe various firing patterns in single
neurons. A detailed Matlab code of the resooatspiking pattern will beattatched in the
Appendix and all the other related M fil@sll be saved in the fold€izhikevich Modelin CD.
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2.4.3 Regular Spikingnd Fast Spiking

Experimentl:

t I NI YS (i Deenh shered tofsée dtsffect on the spiking patterns of the neuroRarameters

b, c ,d are fixed at 0.2,65,8 respectively. A dc step input is applied to the neuron in this model.
Neuron A corresponds to theinhibitory fast spiking FS) neurons in the cortexNeuron B
corresponds to the excitatory regular spiking (RS) neurons in the cortex

Experimentl | Parameters

Neurons A b C d Input/magnitude
A 0.1 0.2 65 8 dc step input , 5
B 0.02 0.2 65 8 dc step input , 5
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The paramete Q RSAONRO6Sa GKS GAYS[8AOHINASMNI IS dpEE @FD &
ALISSR dzLJ GKS NBO2OSNE Nhus Speedl Bip the KeSoveNBae2oftBeNE G NAR
membrane potential vin Figure8 above, the dotted line shows the teof a regular spiking

neuron(RS) while the solid linedicatesthe trace of fast spiking (FS) neuron watharger value

of ’Q

[ I NBSNJ @IwhidhSsi0.12nTFhis Was€) makedzQ o dzA f R ly ddole @efoNaBthelj dzA O
beginningaccordng to the firstterm¢ dz Ay 91j H ® ¢ KS aYsg29/ER YAdENIYO oA foR
up further to a very positive valumefore itreses® ¢ KA & L2 aAGA 8 mérbrardzS 2 T WdzQ
LJ2 G Sy ( Atb & very BDlev@l lafferfthe reset. At this momembth cau and abv terrain

Eqeg A f £ ALISSR dzLlJ GKS YNBMD 2486 NB S N (VS eegativalaisn ayAR, OBJ Q
CFHaGSNI NBO2@SNE NI} OGS 2F WwWdzQ YSIya FFaiSNI NBO2 @S|
chosen for the model, more spikeill be generated.

Experiment2:

ParameteQ 0Q Kl a o6SSy FfGSNBR (2 asSS8S Ada STFSOO 2y i
Parameters ag, d are fixed at 0.02,65,8 respectively. A random thalamic input \&ithean value

of 0 anda fluctuation of 5 is applied to the neuron in this modd\oise is also injected as

random thalamic input to show a more realistic view of the spiking pattern in neurons.

Experiment2 | Parameters

Neurons a b C d Input/mean/fluctuations

A 0.1 0.2 65 8 random thalamidnput,0,5
B 0.1 0.25 65 8 random thalamic input,0,5

20



|

|
=]
)

1
=)
A

| | 1
=) =) =) =) o
@ <+ « I

80

80 —
_1%

AW/QA

Figure9 Noise injectedSpikingPatternwith a different value of\HQ

21

200 300 400 500 600 700 800 900 1000
time/ms

100

-20



¢KS LI NI YSGSNI WwoQ RS a GebddverySvariable K1So thieSsybiesdhdld A Ge 2 F
fluctuationsof the membrane potential [8]. In Figured above, the solid line shows the trace of a

regular spikingheuron(RS) while the dotted linadicatesthe trace ofa fast spiking (FS) neuron

with a larger value ofHQ

Larger values oB(result lowcthreshold spiking dynamick Figured above you can observe a

small peak value between the first and second spike of the dotted trace (FS). That peak value
doesn't cause a spik&hich meanghat the relative membrane potential sensitivity of the fast
spiking neuron (FS) tanrds a success spike is relatividw compared to the regular spiking
neuron (RSY¥or the fast spiking neuron(the dotted tracd)etvalue of¥/Qs negative below the
threshold, thus a greater value #Qslows the rising rate afi down at the sulihreshold level
according to the %' term WbvQin Eq3.Slower rising rate oiQmeans faster rising rate 6#Qso

more spikes will be generated if a larger value of b is chosen for the model.

2.4.4 Chattering

Experiment3

Parametedh WO Q | y RtheYaRe®d LBAS|ESONMDESS G O £ dzS 2F GKS YSYo6 N
NEO2 BSNE @I NX I dhieydavebden altdt& dopiddGoe th&dtit Spiking which is

also calle Chattering in this experimenChattering (CH) neurons céire stereotypical bursts of

closely spaced spikdS§]. It is believed that such neurons contribute to the gamfrequency

oscillations in the braint hasaNB t | GG A @St & f-UsNa&sndl vbldeDWHR T R OO

Experiment3 | Parameters
Neurons a b c d Input/magnitude
A 0.02 0.2 45 2 dc step input , 5
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Figurel0 SpikingPattern showing the Chattering (CH)

23

(=3
o

|
o

o

1
o

AW/n

owno
geoy,

m

200 300 400 500 600 700 800 900 1000
time/ms

100

o



In Figurel0,a KA 3KSNJ £t S@St 2F YSYOoONIyYyS LRGSYOGALIE wo@Q |
Therefore if the aftespike reset value of v is high (i.e-48), the value of u should also be
ANBFGSNI Ay 2NRSNJ ( 2thrashell yalie a¢ddrding RoZEdfthe fzBikeviclkK S & dzo
model.| 26 SGSNE | &Yl ffSNI @FftdzS 2F R YI{1Sa dz 6dzAft R
spikes with greater frequencies during a limited amount of time (bursting) until the value of u is

fF NBES Sy2dzaK G2 otkiksfich vakid As adcbnOequerniedh tim& & spikedso

triggered,the neuron will fire bursts of spikes and stop within a limited amount of time when the
NEO2JSNE G NAIFofS WdzQ 0S02Y Skehatid NS chitteringK & I A S
neuronsin cortex.

2.45 Resonator

Experiment

Resonator (RZ) neurons have damped or sustainedtsabhold oscillations. They resonate to
rhythmic inputs having appropriate frequency][ RZ neurons have both relatively large
parametes 2 T Wl QImpleyhéhtatiéhd d the model for resonator neuron using Matlib
shown inAppendi.

Experiment4 | Parameters
Neurons a B c d Input/magnitude
Rz 0.1 0.26 65 8 dc step input , ?~?
A stimuli appliedat time 500ms with magnitude 0.4mV and durationmi<)
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After a few experiments,he RZ neuron is found resonating only when a dc step input with
magnitude about 0.16~0.22mV &pplied to the model. That corresponds to the behavior of RZ
neuron which only resonates to rhythmic inputs having appropriate frequ&xtyieuron also
shows a bbtability of resting and repetitive spiking states. The neuron can be switched between
the states by an appiriately timed brief stimulus9] as shown in the experiment table above.

wStIFiA@gSte tFNBS QGFtdzS 2F W Q ¢2dAd R &aLISSR dzZlJ GKS
according to the firstterngt dz Ay 91j o ® | 2 @® BofhNdativalyFlarge i@ secofdR  Wo Q

term abv in Eq2 which can sladown the rising rate uner the threshold (or when v<®yill

oFftlryOS GKS NIXdGS 2F WdzQd !'a F NBadzZ 6z GKS @I dzS
converge to a steady s&if an appropriate input has been applied.
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2.5 STDP (Spike Timing Dependent Synaptic Plasticity)

Theartificial life formin this project is designed possessomedntelligenceso thath & O Yy WE S| NJ/ ¢
to avoid obstacles and catthe targett the food. This also mearbkat the artificial life formcan

Evolvelby itself TheUhtelligenceof the artificial life formis contained in the connections and

weightings between neurons within the spiking neuratwork controller. The network controller

can make theartificial life form GhtelligentQby controlling how these weights changend the

ways of controlling the weightare called learningules. STDP is the learning rulged tocontrol

the weight of tie spiking neural network controller in this project.

The robot undethe control of STDP produces a rich varietypehavios anddesirableproperties

such as sensorimotor and synaptabustnesg14]. It also exhibg& great computational abilities.
What is interesting about using STDP in spiking neural networks compared to traditional
rate-based plasticity ishat it shows robust to jitter and spike train randomization, suggesting
counter intuitively that under certain conditions, spikiming dependentsynaptic (STDP) rules

can work very well even when spike timingdisrupted[14]. The importantguestionis in what
situations, if any, analogous robustness may be found in natural systems. To answer this,
behavioralstudies are needed [14]n Dit | 2sfpab€ 6SpikeTiming Dependent Plasticity for
Evolved Robots he demonstrates the usefulness of robotic studies for itigating the
properties of STDR4].

2.51What is STDP

The idea that information in theervoussystem is coded by spikate has beerwidely accepted

and used in the application of spikased neural controllers traditionally. Howeveecent
experimental studiegndicatethat the changes isynapticefficacy the weighting) could be highly
dependent on the relative timing of &hpre and postsynaptic spikes, which meathst the
timing of the spikes could be responsible for carrying informatisiDonald Hebb was the first

to suggest a precise rule that might govern thmapticchanges, suchules hae been named
SpikeTiming DependentSynaptic PlasticitySTDP). In Hel@rules,WWHen an axon of cell A is
near enough to excite a cell B and repeatedly or persistently takes part in firing it, some growth
LINEOSaa 2NJ YSiGlo2ft A0 OKFy3aS (l pfiRidnylak dnedobtheh y 2y S 2
cells firing BA & A y QLIBONn& féaRi@ O this rule is that it correlates the activity of-prel
postsynapticneuronscausally Another feature of this rule ihat it only describes the condition
under which synaptic ef€acy increasesbut does not describe the condition under which it
decreases. Recent experimental studies in viweliaund that depression alsoccursin some of

the synapses whepresynapticspikesoccursafter the postsynapticsynapse This resultsuggests

that HeblQ originalrule governing potentiation must be supplemented with an opig@timing
dependent process of depression[12].

Therefore a temporally asymmetric STDP rule has bdsento be implemented into the
spiking neural network controller. In this case, if a presynaptic spike precedgsohigynaptic
spike the synapse is potentiatedvhereas the opposite relation leads the depression of the
synapse Figure 12 below describediow the weights of the synapse change according to the
timing of the spikes in pre and postsynaptic neurons.
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Figurel2 Relationships of the timing of the spikes between pre and postsynaptic neurons

In Figurel2, presynaptic neuron A fires and ispike arrives in postsynaptic neuron B after D
(20ms in thisproject) milliseconds. If the spike from A arrdi@ B before neuron B fires, which
means the pre spike precedéhe post spike, the weight between A and B will increase. That is
called the potatiation. If the spike from A arrivein B afterneuron B fires, which means the post
spike preceds the pre spike, the weight between A and B will decrease. That is called the
depressionHow much the weight is increased or decreased during poteantiaénd depression
depends orhow the value of STDP varies with the time interval between prepastisynaptic
spikes. The detailed time windowhichincludes themodification function of theSTDP showing
this relationshipisillustratedin Figurel3 below.

pre +——
post————

A—J— A+e—t/7}

A_em}l_

0
interval, t

Fgure 13 Time window of STDP shwing its relationships with the time interval between pre
and post synaptic spikes
Taken from reference [10]

In Figurel3, the weight of synaptic connection from prio postsynaptic neuron is aneased if
the post neuronfires after the presynaptic spike, that is, the interspike inter#dd> 0. Tle

magnitude of change decreas@sqe’’'’-. Reversethe order results in a decrease of the
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synaptic weight with magnitude4e*’* [10].

Parametersised[10]:

t, =t =20ms, A =01and 4 =0.12
According to Figurd3l 0 2 @S> SI OK ySdz2NRPyQa {¢5t @gAff RSOFe& ¢
constant ¢t =20ms and being reset to 0.1 once the neufioes.

One of the key concerns of using this rule for synaptic plasticityaisthe potentiationmight go
out of control whichwill cause stability problems in the spiking netkoDirection damping is
one of thewaysthat can solve thigproblem; it has been added as an additional element to
regulate the activity of STDP in order to make sof¢he stability of the network A cetailed
explanation and implementation including the equations abdi¢ctionaldamping will be given
at the end of Gapter3.

2.5.2 Investigation of thévehaviorof theartificial life form

Theartificial life formwill then show variousnterestingbehavios under the control of an STDP
implemented spiking network. The project will alter various parameters in the networkrgrid t
increase the efficiency of thartificial life form(the speed of catching the food) and discover the
potential of using STDP tevelopthe intelligence of theartificial life form Investigation of the
STDP will also beonductedthrough various eperiments and testsinder different conditions.
From the results of these tests and experiments, the thesis will try to discover the relationships
between thebehaviorof the artificial life formand its synaptic connections and the effect of
STDP on them.

A spiking neural networkhat consist of 1000 randomly connected neurons simulated using
Matlab is provided byEugene M. Izhikevicim his paperdComputation with spikes[10]. This
project smplifiesand modifiesthe originalversion of this Matlab code to fit its own use.

Chapter 2has given the basic background information from various aspects. rdlbgant
biological background the underlying bienspired learning rules and algorithmdjet uses of
Izhikevich model anthe basic theoryof STDP arall introducedin this ChapterNow adetailed
explanation of thispiking neurahetwork modeland its impémentation process will benfolded
in Chapter 3.
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3. Method

In this chapter Section 3.1 wilfirst give a detailed description othe simulation envirament
used in this projectThen Section 3.2 will illustrate the initial design of thaartificial life form

Section 3.3and 3.4will demonstrateimplementation ofthe spikingnetwork controller and the

implementation of the external environmergeparately Finally Section 3.5will conclude the
chapter by the showinthe implementation of STDP

3.1 Choice of simulation environment

3.11 Sourceof the code

The Matlab program code used in this project is based on a web source n@wmeda@® game
of lifeQprovided byMoshe Lindnerwith a licensefile. The web source is downloaded from
Matlab-Centrahttp://www.mathworks.com/matlabcentral/fileexchange/26888onwaysgameo
fife[15]. All the related M file in theriginaldocument is stored in the foldé€onway's game of
lifeQn CD.The original program implements smple cellular automation which consists of no
neural network.This project modifisand use part of the program code d€onwa® game of
lifeCas its own environmental settings in order to save tifoethe research on neural networks.
The modifiedverdon of Izhikevich modeis then implemented into theenvironmentas the
artificial life form@central network controllerThe Neural Btwork part is completely a novel part
compared to the original progranthe final version of the modified Matlab code nanidificial
life formQis listed in Appendix2 in Chapter &nd the related M file is stored in foldefFinal
version ofArtificial life form(in CD.

3.1.2 Matlab GUI(graphical user interfage

The orignal \€onway® game of lif@s represented as a Matlab GW.graphical user interface
(GUI) is a graphical display that contains devices, or components, that enatde @ perform
interactive taskq16]. Matlab also provides a vepowerful tool namedGuide @raphical user
interface development environmepivhich simplifies the process of programming and laying out
GUIs. When theriginal GUI programnis modified in this project, using the Guide Layout editor
provides great advantages asdves a lot of programming timeThe GUIDE Layout Editafows

the usess to configure various GUI components such as buttoest, fields, sliders, and axes

the layout window. As soon as the configuration is completed and saved, an updated M file will
be generatedautomatically and the user could use the M file editor to furtiewelopthe GUI by
modifying the contents of the callbacks within the M file. A callback providesathiines that
execute in response to usgeneraed events such as a mouse cli@fach component in the
layout window has its own corresponding callbacks in the M file editor. All the functions in the
program can be configured in detail bglitingthe contents of callback.

Most parameters and variables of the spiking neural netwamkl environment are stored in the
handles structure at the beginning of the M file. The handles structure is another powerful
function provided by Matlab which allathe usersto saveandload huge amourtt of data at

any time they want. When the progranums, the data in the handles structure is passed as an
argument to all callbacks. This powerful data stostmicture greatly saves time for testing since
the experiments in this project are required to load plenty of data from time to time during
simulaions.
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All the commands, handles, functions and callbackstioned in the later sectiagof the thesis
that can be found in the Matlab program code in Appendix2 will be marked in blue color for the
reader@conveniencef understanding the program.

A final designed version of the layout window is shown in Figdreelow.
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Figurel4 Final designed version of the layout window

Figurel4 shows the final version of the layout window. The menu tool bar placed on top of the
layout window has been configured through the menu editor in this project. This menu provides a
lot of functions such as saving images atfideoswhich can show the wholeinning process of

the artificial life form The useis could also find a user manual that brieflgscribs the functions

of all the components irthe layout window.A detailed explanation of functions of these
components such as buttons, slidensd boxeswill begivenin the later sections of this chapter.

3.13 Programstructure
Figurel5 belowshows the basic flow diagram of timhole program structure
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Set-up Handles
Store program variables and parameters

l

Set-up Functions and CallBacks
Window display(60*60 chess board)
Buttons, Boxes, Background colour......
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handles.vis_grid Update Display
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Figurel5 Whole program structure

Figurel5 above shows the whole program structure. The mewvisections of this chapter V&
already introduced the handles structures, functions and callbacks including window display
which will beinitializedand set up at the start of the prograrihere are thee main loopsn the
program. The inner most loop represettitee computatiorl process that happenmside the
centralspikingnetwork controller.ts Matlab implementation will bexplainedin Section 3.3 The
second loop is the simulation time window wégd for one meement of theartificial life form
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Its computational process is closely related to the oetgidvironment, which will beéescribedn
detail inSection 3.4 In Sction 3.5 the thesis wiltliscusghe implementation of STDP whiplays
the most important roleghroughout the whole program including the third locdfhe third loop
represents the repeat runs of thetificial life formduring each experiment.
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3.2 Initial Design

3.21 Displayinghe artificial life formon the screen

In Figurel4, the grids(cross lines)of the chessbotikeé axes displayed in the layout window are
created in theWinction grid_size_N_Callback(hObject, eventdata, hanQléds$ callback allosv
users to change the size of the grid using the gridslider located at the right part of the layout
window. The default size and color of the chessboard are definddbaslles.vis_grid=zeros(69Q);
in the handles structure at the start of program. TNadueof the grid is zero because the default
background colowhite has been assigned to zero. The varidbilghdles.vis_grids also used to
define the position coordinates of each grid in the axes in this program.

Before designing the dynamics of thdificial life form the project should firs#rawCan artificial

life form on the screen, and display it in front of the users. All $rawingcommand has been
defined in the functionflinction [aQocated at theend of the program. The value &Cfor the
drawing function ofartificial life formhas been assigned i K Sy dzY S NIQ®| & | @ dzZ@m @
the image valueassigned to the color of thartificial life form in this program it represents the
display d color blackin the layout windowlnverse and nofinverse, white and black, 0 and 1,
only 2image value otolors are required since there is only one type of object in the scaten
current stage. As the development goes further, more colors lvélineaded and a function
defining the color-map settings of thewhole program will be described iSection 3.4. The
position of the artificial life formis defined asHandles.vis_grid(30,30)=artificial_li@in the
handles structure. (0, 0) represents the coordinates of the origin wisitdtated atthe top left

of the axes. (3030) is the initialcoordinatesof the artificial life form whichin this cases located

in the center of the chessboard sinceetichessboard has the maximum horizontal and vertical
size of 60 respectively. When the setting is completed, the layout window should look like this:

Figurel6 Displayof the artificial life form
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