

Neural Networks for Control of Artificial Life Form

Dan Su

Thesis for degree of MSc by research in Electronics

Department of Electronics

University of York

November 2010

1

Abstract

An artificial life form under the control of a spiking neural network has been created in a

chessboard environment which consists of 60*60 grids using Matlab GUI. The spiking neural

network consists of 8 neurons simulated using Izhikevich model which combines the property of

both biological plausibility and computational efficiency. The neurons within the network are

fully connected with each other. The ΨintelligenceΩ of the artificial life form is stored as value of

weights in the synaptic connections of neurons. STDP is the learning rule implemented to the

network in this project. STDP adjusts the synaptic weights according to the precise timing of pre

and postsynaptic spikes.

The artificial life form itself has been designed to complete certain tasks such as avoiding

obstacles and catching food in the chessboard. The behavior of the artificial life form under the

control of STDP in various situations will be investigated. Experiments will be carried out at the

same time trying to improve the behavior of the artificial life form so that the artificial life form

can evolve and show some adaption abilities according to the external environments.

2

Thesis content

1. Introduction 4

1.1 Aim and Objectives 4

1.2 Program Environment 4

1.3 Structure of the thesis 5

2. Background 6

2.1 Generation of action potential inside neurons 6

2.1.1 Elements of neuron system 6

2.1.2 Synaptic integration 6

2.1.3 Action Potential: Generation 7

2.2 Bio-inspired algorithm and learning rules 10

2.2.1 Introduction 10

2.2.2 Direction coding scheme 10

2.2.3 Distance coding scheme 12

2.2.4 Population vector 13

2.3 Noise 14

2.4 Izhikevich model 15

2.4.1 Which model to use? 15

2.4.2 Izhikevich model 15

2.4.3 Regular Spiking and Fast Spiking 18

2.4.4 Chattering 22

2.4.5 Resonator 24

2.5 STDP (Spike Timing Dependent Synaptic Plasticity) 27

2.5.1 What is STDP? 27

2.5.2 Investigation of the behavior of the artificial life form 29

3. Method 30

3.1 Choice of Simulation environment 30

3.1.1 Source of the code 30

3.1.2 Matlab GUI (Graphical User Interface) 30

3.1.3 Program structure 31

3.2 Initial Design 34

3.2.1 Displaying the artificial life form on the screen 34

3.2.2 Making the artificial life form move 35

3.3 Spiking Neural Network Implementation 36

3.3.1 Connections between the neurons 36

3.3.2 Injecting Noise 38

3.3.3 Implementation of the population vector 39

3.4 Environment Implementation 41

3.4.1 Assign different colors to various object 41

3.4.2 Representation of trajectories of the artificial life form 42

3.4.3 Adding signals to food-the implementation of the direction coding scheme 44

3.4.4 Assign field to the signals of the food-implementation of the distance coding

scheme 46

3

3.4.5 Adding ΨzeroΩ signal to the obstacles 48

* Testing the ability (efficiency) of the artificial life form overcoming the square obstacle

under the different noise conditions (with no STDP)

* Testing the ability (efficiency) of the artificial life form overcoming the cross obstacle

under the different noise conditions (with no STDP)

3.5 Implementation of STDP 52

3.5.1 Value and timing of STDP 52

 3.5.2 Potentiation 54

 3.5.3 Depression 55

 3.5.4 Updating the weight Wij 57

* Testing the ability (efficiency) of the artificial life form overcoming the cross obstacle

under the control of STDP

* The weight distribution

3.5.5 Implementation of Directional Damping 57

*Testing the ability (efficiency) of the artificial life form overcoming the cross obstacle

under the different noise conditions (with STDP and Directional Damping)

*Analysis the equilibrium of the weight distribution with Directional Damping

4. Testing 60

4.1 *Testing the ability (efficiency) of the artificial life form overcoming the square obstacle

under different noise conditions (with no STDP) 60

4.2 *Testing the ability (efficiency) of the artificial life form overcoming the cross obstacle under

different noise conditions (with no STDP) 62

4.3 *Testing the ability (efficiency) of the artificial life form overcoming the cross obstacle under

different noise conditions (with STDP) 64

4.3.1 *Statistical test 65

4.4 *Analysis of the weight distribution 66

4.5 *Testing the ability (efficiency) of the artificial life form overcoming the cross obstacle under

different noise conditions (with STDP and Directional Damping) 71

4.5.1 *Analysis of the equilibrium of the weight distribution with Directional Damping 73

4.5.2 *Testing the ability (efficiency) of the artificial life form overcoming the cross

obstacle under different noise conditions (with STDP and Directional Damping) 73

5. Discussion 74

6. Future work 77

7. Acknowledgements 79

8. Appendix 80

9. References and Bibliography 120

4

1. Introduction

1.1 Aim and Objectives

The aim of this project is to study the behaviors of simulated artificial life form under the control

of the neural networks. The neural networks will be spiking networks which use sequence of

spikes to carry information between neurons. The Izhikevich Model which combines the property

of both biological plausibility and computational efficiency has been studied and simulated using

Matlab.

This model will be slightly modified and implemented as the basis of the control of the spiking

networks. Four key parameters of this model could be used to control the behavior of the spikes

in the network; a lot of experience of using this typical model would be gained during this

process.

The STDP learning rule which adjusts the weight of the network according to the relative timing

of input and output spikes will be implemented into the Izhikevich Model in order to increase the

intelligence of the neural network. Investigations on the effect of the learning rule will be carried

out with a number of experiments testing the behavior of the artificial life form under the control

of STDP.

1.2 Program Environment

The artificial life form is operating in a 2-D chess board like environment; the environment will be

simulated using Graphical User Interface (GUI) in Matlab. The program code is based on a web

source downloaded from Matlab-Central and modified to fit the project use, so that the

implementation time could be saved and emphasis be placed on the neural network part.

The artificial life form is designed to catch food in the chess board while trying to avoid different

obstacles when the program starts. A number of rules are added to the simulation environment,

and some of them are taken from ideas inspired from the real biological world such as the neural

coding of movement in animals. Investigations of the behavior of artificial life form will be carried

out simultaneously, enabling the complexity of the network and environment to be increased

gradually.

With a combination of internal network learning rules and external environmental rules, the

artificial life form should have a high degree of interactions with its external environment, and it

should show some adaption abilities under different conditions. The use of STDP (Spike Timing

Depend Plasticity) will also improve the performance of the artificial life form so that it can avoid

the obstacles and catch the food faster. Investigations will be emphasized on this section and

there will be analysis and discussions on the experiment results of the effect of STDP.

The graphical user interface window will also be constructed carefully to facilitate the process of

experiment; so that the user could control a number of key parameters in the network and

environment allowing more space for testing.

5

1.3 Structure of the thesis

Detailed background information will be described in Chapter 2 of the thesis, which includes the

basis of biological and engineering theory behind the project, the analysis of Izhikevich model

and an introduction of noise and the STDP learning rule. In Chapter 3, the thesis will show the

complete project method from programming of the simulation environment using Matlab GUI to

each part of the program implementation process including STDP. Various Experiments will be

carried out with data collected from the program while the implementation goes deeper into the

project. The demonstration of all the testing results using plots and diagrams will be made in

Chapter 4. Chapter 5 will discuss the results. Any works that can be done in future will be

mentioned in Chapter 6.

6

2. Background

2.1 Generation of action potential inside neurons

2.1.1 Elements of neuron system

It is very important to get some ideas of a real (ideal) neuron in a human brain from a biological

point of view before creating its model. A typical ideal spiking neuron structure is shown below in

Figure 1

Figure 1 taken from reference [1]

Figure 1 above shows that a real typical neuron can be divided into three functionally distinct

parts called dendrites, soma and axon. The dendrite plays the role of the Ψinput deviceΩ that

collects signals from other neurons and transmits them to the soma. The soma is the Ψcentral

processing unitΩ that performs an important non-linear processing step. This non-linear

processing step is simulated using a spiking neural network model in this project, which will be

introduced later in Section 2.4 of the thesis. In general, a neuron can process information received

from thousands of other neurons. If the total input exceeds a certain threshold, then an output

signal (assumed to be in the form of a spike in the model of this project) is generated. This whole

process is represented as an action potential which is shown in the big dashed circle in Figure 1; it

is a short voltage pulse of 1-2 ms duration and amplitude of about 100 mV. The biological view of

the generation of the action potential will be described in details later in Sections 2.1.3. The

output spike generated from neuron i then passes through the Ψconnection passageΩ -axon to

neuron j. The Ψconnection passageΩ is referred to the term Ψsynaptic ƛƴǘŜƎǊŀǘƛƻƴΩ which will be

introduced in the next subsection.

Dendrite-

input device

Soma-

central processing

unit

Axon-

Connection

passage

Postsynaptic Neuron-j

receives inputs

Presynaptic Neurons

generates inputs

Synaptic

Integration-

summation

Threshold Value

Action Potential

Presynaptic Neuron-i

generates inputs

Simple Passage

Detailed Passage

Explanation

7

2.1.2 Synaptic integration

The term synaptic refers to the specialized sites for communication between neurons, named

synapse, where input signals to a neuron are generated [2]. The synapse is marked by the small

dashed circle in Figure 1. The neurons that generate input signals are called a presynaptic

neurons and the neuron that receives this input is called the postsynaptic neuron. Integration

refers to the way inputs from many presynaptic neurons are processed in order to generate the

action potential in the postsynaptic neuron. Synaptic integration, therefore, describes the

summation by the postsynaptic neuron of inputs from many presynaptic neurons [1].

The synaptic integration can be represented as a multiple input to a

single output system. So the external input generated by presynaptic neurons can be divided into

several small input currents which sum up to form the total input currents I(t):

A structural model of the system is shown below:

Figure 2

In Figure 2, the total input currents I(t) are the sum of all the external input Ii(t). The factor Wij is a

measure of the efficacy of the synapse from neuron j to neuron i. Ui(t) is the internal state of

neuron i.
iqis the threshold needed for the neuron to produce an action potential.

The detailed simulation of synaptic connections and their implementations will be explained later

in Section 2.31 of Chapter 3.

2.1.3 Action Potential: Generation

Section 2.1.2 gives an overview on how information is passing through between each distinct

part of a real typical neuron from a systematic point of view. Now in this section a more detailed

look at how information can pass through the real neurons will be presented--the generation of

action potential. The neurons cannot pass any information without an action potential, so how is

action potential generated? Depolarizing the membrane potential and passing a critical

ΨthresholdΩ voltage will result in an action potential. Membrane potential is the electrical

potential difference between the inside and outside of a cell [3].

A set of graphs with voltage against time showing a complete process of action potential from

beginning to the end are listed in the next page. The relationships between the generation of

action potentials and the inward and outward flow mechanism of ions are also described in

Figure 3 below.

8

Figure 3 taken from reference [4]

Generally, if a neuron is at rest, its membrane potential is about -65mV. This is the resting

potential of a neuron, and it is labeled as Vrest on top trace of Figure 3. The resting potential is

kept by the total charge of different ions (Mainly sodium Na+ and potassium K+) inside and outside

of the cell. Roughly speaking, the inward and outward movement of these ions through the

membrane is the main reason that causes the depolarization of the membrane potential.

²ƘŜƴ ŀ ƴŜǳǊƻƴ ǊŜŎŜƛǾŜǎ ŀƴ άƛƴǇǳǘέΣ ǘƘŀǘ ǳǎǳŀƭƭȅ ƳŜŀƴǎ ǘƘŜǊŜ ǿƛƭƭ ōŜ ŀƴ ƛƴŎǊŜŀǎŜ ƛƴ ǘƘŜ bŀҌ ƛƴŦƭǳȄ

that changes the membrane potential and activates neighboring Na+ channels. A threshold value

about -50mV e (observed from Figure 3) is reached when the amount of Na+ entering the cell is

greater than the resting efflux of K+.

As more Na+ channels open, conductance continues to increase until all available Na+ channels are

open. This is shown on the middle trace of Figure 3. The increase in selective permeability

(conductance increase) to Na+ causes the membrane potential to depolarize toward ENa(The

Equilibrium potential for Na+ in neurons, which is about +60mV), thereby producing the rising

phase of the action potential [4]. All of these events occur within duration of less than one

millisecond -- the time it takes Na+ channels to activate.

After channels are open for about a millisecond, they inactivate by the pore-blocking mechanism

9

leading to a decrease in sodium conductance. Sodium channel inactivation is the first step in

action potential termination; the decrease in selective permeability to Na+ causes the membrane

potential to shift away from ENa and towards the normal resting membrane potential[4]. This part

of the action potentials is called the Ψfalling phaseΩ. Although Na+ channels inactivation could, by

itself, terminate the action potential, K+ channel activation provides a fail-save mechanism to

terminate the action potential [4].

The bottom trace on Figure 3 shows that K+ channel activates with a slower rate and a delay

compared to the Na+ channel activation. Ek (The Equilibrium potential for K+ in neurons, which is

about -60~-70mV) is near the resting membrane potential, so it is easy to see that a

conductance increase to K+ will tend to drive the membrane potential towards more negative

voltages, thus contributing to the falling phase of the action potential.

The contribution of K+ channels to action potential termination is also evident by the presence of a

period of hyper polarization, during which the membrane potential is briefly more negative than

the resting membrane potential. This arises under conditions where Ek is more negative than

Vrest, so an increase in K+ conductance hyperpolarizes the membrane potential. The after-hyper

polarization also arises because K+ channel inactivation is slower than Na+ channels inactivation.

As K+ channels finally inactivate, the after- hyper polarization declines to the resting potential [4].

The detailed simulation of action potential using spiking neural network model--the Izhikevich

model will be introduced later in Section 2.4 of this chapter.

10

2.2 Bio-inspired algorithm and learning rules

2.2.1 Introduction

In academic world, Neural Robotics has two main research applications. One is to create

autonomous artifacts or intelligent systems which inherit some or part of the brainΩs functions in

order to help people solve real-world problems. Human brain consists of large-scale of neural

networks with complex structures and configurations. The investigation of brain is one of the

foremost challenges within neuroscience today, especially within the area of cognitive neural

science [5]. There are thousands of research studies on human cognitive function in the context

of brain. The relationships between the biomedical engineering, cognitive neural science, and

artificial intelligence have become more closely related ever than before. Research in these areas

also greatly stimulates the development of Neural Robotics [5].

The other application of Neural Robotics is to construct complex neural models and architectures

to investigate the basic principles of the brain and its relationships with behaviors. Various neural

network models have been created so far, which always have adopted different algorithms and

learning rules being inspired by the biological behavior of living systems. The robot under control

of these neural networks can perform vast amount of interesting behaviors. The study of these

behaviors can promote the development of artificial neural networks. The applications of Neural

Robotics are playing more and more important roles in research of artificial intelligence.

2.2.2 Direction coding scheme

In this project, a 60*60 grid chess board-like environment is simulated using Matlab. Objects

within the grid of environment have been set with different colors representing obstacles, food

and artificial life form. The artificial life form is designed to avoid obstacles in order to catch food.

A set of ideas taken from research studies in cognitive neural science have been applied to

generate the algorithms to control this artificial life form. These ideas are inspired from a set of

experiments on the physiological analysis of motor pathways of animals, which are used

investigate the neural coding of movement.

One example is taken from the research paper άA Model of Spatial Map Formation in the

Hippocampus of the Rŀǘέ written by K. I. Blum and L. F. Abbott. By using experimental facts about

long-term potentiation (LTP) and hippocampal palace cells in the rat, they model how a spatial

map of the environment can be created in the rat hippocampus [18]. Sequential firing of place

cells during exploration induces, in the model, a pattern of LTP between place cells that shift the

location coded by their ensemble activity away from the actual location of the animal [18]. These

shifts provide a navigational map that, in a simulation of the Morris maze, can guide the animal

toward its goal [18]. In their paper, they also mentioned the previous research which suggested

the cognitive map of the spatial environment of the rat is stored by potentiated synaptic weights

representing both spatial and temporal correlations [18]. Inspired from these ideas, the thesis

also uses synaptic weights to represent the spatial information of the artificial life formΩs external

environment.

Another example is learned from the experiments by Apostolos Georgopoulos and his colleagues

at Johns Hopkins University to record the activity of cells in various regions of the motor system

11

of rhesus monkeys [6]. In those experiments, the animals are trained to perform a set of tasks

under certain conditions; neurophysiologists investigate the activities of single cells in animal

motor cortex while they are moving, and ask what parameters of movement are coded by such

cellular activity. They observe a hierarchical coding of movement across the motor system; some

cells are directly related to the activation of specific muscles, some cells are coding for movement

directions and some cells are even coding for more abstract concepts such as goals of action

depending on their hierarchical levels in the central nervous system.

The data from these experiments also indicate that motor cortex cells code movement direction

and that movement in a certain direction requires activation of appropriate cells. When the

animals perform specific actions, the spikes in the corresponding coding neuron are produced

more frequently than when it is at rest. This means that the number of spikes has an influence on

the movement of animals.

Inspired by these ideas, this project is going to add a directional coding scheme to this spiking

neural network. Eight neurons are used to represent eight different directions which are shown in

Figure 4.1

Figure 4.1 Eight Neurons Represent Eight Different Directions

Figure 4.2 Directional coding scheme of the spiking neural network

The artificial life form receives signals from its external environment before each real-time

movement. A food target sends positive signals while an obstacle itself represents a ΨzeroΩ signal.

12

A positive signal acts as an electric DC input and triggers additional spikes (Action Potentials) in

the neuron which points to the direction of the food target. A ΨzeroΩ signal brings an excitatory

neuron back to its resting state if this neuron is pointing to the signalΩs direction and the artificial

life form is just about to touch an obstacle. There will be more details about issues of input

strength in the later chapters.

The program then realizes the direction coding scheme by counting and comparing the number

of spikes that occur within each neuron during a fixed time window. These fixed time windows

consist of only simulation time-steps, but it does take a lot of times for computer to execute all

the calculation and simulation commands. Unlike the conventional analogue neural networks

which compute all the inputs simultaneously and pass the outputs through layers of neurons, the

outputs of the spiking neural networks mainly rely on the relative timing of the spikes in pre and

post synaptic neurons. In fact, if the time window consists of too many time-steps, the

computational efficiency (speed) of the spiking networks will be greatly reduced. However, the

length of the time window should also be kept long enough allowing sufficient timing space for

spikes so that they could carry sufficient information. Therefore, timing will be a very important

issue in spiking neural networks; there should be a compromise between the efficiency and

sufficiency. A number of tests are run on this issue, which will be discussed in the first section in

Chapter 4. Currently the program takes 400 simulation time steps as the length of the time

window. Detailed timing process of the spiking network is shown in Figure 5 below.

Figure 5 Detail timing process of the spiking network

In addition to the hardware issue such as the speed of the computer CPU, it is very obvious in

Figure 5 that the total execution time for one movement of the artificial life form greatly depends

on the length of the time window. The less simulation steps it has, the quicker the spiking neural

network controller is going to execute the program code. However, as mentioned above, the time

window should also be kept long enough allowing sufficient timing space for spikes so that they

could carry sufficient information.

13

By comparing the number of spikes that occur in each neuron during the time window, the

spiking neural network controller can know the neuron that fires the maximum number of spikes.

The direction that this neuron is pointing to would be the direction that the artificial life form is

going to move toward. As a result, a food target sending positive signals will attract the artificial

life form since it triggers additional spikes in the neuron that points to its direction. An obstacle

will stop the artificial life form from touching the food target because it makes the neuron that

points to its direction maintain the resting potential so that no spikes will be triggered in that

neuron.

2.2.3 Distance coding scheme

In spite of the direction coding scheme, a distance coding scheme is also necessary for this

spiking network. The distance coding scheme is added as a rule of the external environment,

which is implemented separately from the central neural controller. The bottom of Figure 4.2

shows that the signal strength of the food is decaying as the distance increases (The equation will

be given in Chapter 3), which is the core rule that governs the distance coding scheme. With this

distance coding scheme, the artificial life form will move towards the food located closer to it. A

full explanation of the distance coding scheme can be found in Chapter 3.

2.2.4 Population vector

When there is more than one food target or with effect of noise (see bottom of Figure 4.2), it is

possible that more than one neuron will spike the same maximum number of times within one

particular time window. An alternative coding scheme also inspired from the observation of

above experimental data is used to solve this problem. The data from the experiment shows that

the command of monkey movement in a direction turns out to be the summed activity over all of

the cells devoted to a certain limb. This coding scheme has been called the population vector

because it is a way to see how a global event, a movement in a certain direction, can result from

the summed activity of many small elements, each contributing to its own vote [6].

The experiment on hippocampal of rat also demonstrates the concept of population vectors. άWe

assume that the model network contains a large number of neurons with overlapping place fields.

Thus, if the animal is at a location x many neurons with place field center close to x are active at

the same timeέ [19]

By treating all the dominant neurons as a population vector, the network controller combines the

vectors and calculates the overall movement direction for the artificial life form to go into the

next grid square. For example, in Figure 2, if neuron N8 and N6 fire the same maximum number

of spikes within any particular time window, the network will treat it as only N7 fires; If N8, N4,

N2 fire the same maximum number of times, the network will treat it as only N2 fires with N8

and N4 cancelling each other out; If N1 and N6 fire the same maximum number of times, the

network will treat it as only N7 fires. If N1 and N5 fire, the network will treat it as no neuron fires

and the artificial life form will remain still in its original position.

Now, problems also arise with this coding scheme. Firstly, what can be done if neuron N1 and N5

14

always fire the same maximum number of spikes and the artificial life form remains still all the

time? Secondly, what happens if N1 and N2 fire the same maximum number of times? They

cannot cancel each other out and the artificial life form can only move one grid each turn for the

convenience of collecting data. These problems can be solved by introducing the noise into the

spiking network, which will be discussed in the next section.

2.3 Noise

There is noise in all real life systems. In this project, the noise is implemented into the spiking

network to give the artificial life form some degree of randomness. There are situations when

two possible and equally desirable movements are available. The situation that N1 and N5 always

fire the same maximum number of spikes and the artificial life form remains still for long time is

one of the problems that may be caused. To solve this problem, an unfixed input stimulus

selected from a range of values (see bottom of Figure 4.2) will be randomly injected to any of the

8 neurons before each movement. This project uses the Matlab command ΨrandΩ to generate

uniformly distributed pseudorandom numbers from 0 to 20mV. That is one way of introducing

noise into the spiking network, which will cause unexpected spikes to occur within neurons (the

dynamic details of how injected stimulus causes additional action potentials(spikes) in neuron

using Izhikevich models will be illustrated in the next section). As a result, the chance of N1 and

N5 always firing the same maximum number of spikes will be greatly reduced. Increasing the

strength of noise (the mean and the fluctuations) also increases the number of unexpected

spikes and therefore increases the degree of randomness of the artificial life form.

However, the strength of noise should also be limited due to various reasons. The first reason is

to prevent the model from saturating. If a model is in saturation, it will not produce any

additional spikes no matter how strong the input is applied to the neurons. The second reason is

that a very strong noise will also reduce the efficiency of the artificial life form, which means that

more movements will be taken by the artificial life form to catch the food. The compromise

between the effect of noise and the signal sent from the external environment will be

investigated in the first section of Chapter 4.

Under a limited level of noises coupled with a limited degree of randomness, the artificial life

form should be able to avoid small and simple obstacles and reach the final food target within a

relatively efficient time. However, a larger degree of noises will be required within the network

for the artificial life form to overcome complex obstacles, which consequently reduce the

efficiency of the artificial life form. STDP is implemented in this situation to increase the

performance of the artificial life form under such circumstances. There will be tests conducted in

order to observe and investigate the effect of STDP on the behavior of artificial life form under

different conditions. The basic principle of STDP will be discussed in the third section of this

chapter, and a more detailed explanation as well as test results will be presented in Chapter 3

and 4.

To solve the second problem mentioned in the last section, the network randomly selects one of

the neurons if N1 and N2 fire the same maximum number of spikes at a particular time window.

That also adds some degree of random to the artificial life form, which acts as another source of

noise in this model. In the next section, the thesis will examine a more detailed level of the

15

neural controllerτthe spiking neural network models.

2.4 Izhikevich Model

2.4.1 Which model to use?

There is a great shift in the emphasis on the artificial neural network community towards spiking

neural networks during last few years[5]. The artificial life form in this project is also controlled by

a spiking neural network. However, there is a large number of spiking neural network models that

can be simulated using software such as Matlab and C++. So, which model to use and implement

will be a very important issue to consider before programming.

The first and most important characteristic is the computational or implementation efficiency of

the model. The first section has already mentioned the importance of the computational

efficiency (Please refer to Figure 5) because the simulation time window does take a lot of

execution time. Therefore it is really important that the model possess a high simulation speed so

that the artificial life form can run with sufficient speed in real time even it only consists of eight

neurons. The integrate-and-fire model and the Izhikevich Model are the most suitable spiking

network models in this case. They both contain a relatively small number of floating operations

which are needed to be completed during each simulation time step.

The other important feature is the biological plausibility of the model. This project uses Izhikevich

Model because it is also capable of producing rich firing patterns exhibited by real biological

neurons such as regular and tonic spiking, bursting or even resonance. This feature of the

Izhikevich model gives the user a high degree of control on each single neuron and allows more

research space in future while the very simple integrate-and fire model would be more limited.

2.4.2 Izhikevich model

There is a geometrical analysis of neuronΩs dynamical system in the bookľDynamical Systems in

NeuroscienceĿwritten by Eugene M.Izhikevich. In the book, he uses a geometrical method--the

phase portraits to describe four bifurcation mechanisms. These four bifurcations represent all the

transitions from a resting neuronΩs stable equilibrium mode to an excitatory ƴŜǳǊƻƴΩs unstable

periodic spiking mode [7]. This thesis will not go into the geometrical analysis of the dynamics in

detail since the emphasis is on the algorithms and learning rules of the neural networks.

Nevertheless, a relatively brief description of the dynamical system of the Izhikevich model will

be provided in this section to show the basic abilities of producing various biological spiking

patterns of real neurons using the Izhikevich model.

The neuron should not be seen just in terms of ions and channels, or in terms of an input/output

relationship, but also as a dynamical system. A dynamical system consists of a set of variables

that describe its state and a law that describes the evolution of the state variables with time [7].

The Izhikevich model which contains two ordinary differential equations is a reduced form of

accurate but less-efficient Hodgkin-Huxley-model.

The two equations are shown below [8].

Iuvvv +-++= 140504.0' 2
 Eq1

16

)(' ubvau -= Eq2

With the auxiliary after spike resetting

If mVv 30² then {
duu

cv

+«

«
 Eq3

In Eq1 and Eq2, ΨǾΩ ŀƴŘ ΨǳΩ ŀǊŜ ŘƛƳŜƴǎƛƻƴƭŜǎǎ ǾŀǊƛŀōƭŜǎ ŀƴŘ ŀΣōΣŎΣŘ ŀǊŜ ŘƛƳŜƴǎƛƻƴƭŜǎǎ ǇŀǊŀƳŜǘŜǊǎΦ

¢ƘŜ ǾŀǊƛŀōƭŜ ΨǾΩ ǊŜǇǊŜǎŜƴǘǎ ǘƘŜ ƳŜƳōǊŀƴŜ ǇƻǘŜƴǘƛŀƭ ƻŦ ǘƘŜ ƴŜǳǊƻƴ ŀƴŘ ΨǳΩ ǊŜǇǊŜǎŜƴǘǎ ŀ

membrane recovery variable, which accounts for the activation of K+ ionic currents and

inactivation of Na+ ionic currents [9]. Membrane recovery variable ΨǳΩ ǇǊƻǾƛŘŜǎ ŀ ŦŜŜŘōŀŎƪ ǘƻ ǘƘŜ

membrane potential. The relationships between all the variables and parameters in Eq1 and Eq2

are shown in Figure 6.

Figure 6 relationships between variables and parameters of the Izhikevich model equations

taken from reference [4]

The parameter ΨaΩ describes the time scale of the recovery variable ΨuΩ. The parameter ΨbΩ

describes the sensitivity of the recovery variable ΨuΩ to the sub threshold fluctuations of the

membrane potential ΨvΩ. The parameter ΨcΩ describes the after-spike reset value of the membrane

potential ΨvΩ. The parameter ΨŘΩ describes the after-spike reset of the recovery variable ΨuΩ. Like

most real neurons, the model does not have a fixed threshold. Depending on the history of the

membrane potential prior to the spike, the threshold potential can be as low as -55mV or as high

as -40mV.

A typical setting for variables and parameters are a=0.02, b=0.2, c=-65, d=8 [8]. This setting of the

Izhikevich model equations can produce the regular spiking pattern which is the most common

spiking behavior in an excitatory neuron in all biological systems [8]. This project is going to apply

this setting on the neurons in the spiking neural network controller. However, there are also

many other settings of the variables and parameters that can allow the model to produce a lot of

different spiking patterns (The other types of spiking neurons are not in consideration in this

thesis due to the time limit and will be added in future works). A detailed diagram showing the

relationships between these settings and different spiking patterns is shown next page.

17

Figure 7 Relationships between parameters and variables of the Izhikevich model equations

and different spiking patterns taken from reference [8]

Due to the size of the thesis, this section will plot only a few of these spiking patterns(Regular

Spiking, Fast Spiking, Tonic Spiking and Resonator) using Matlab through four experiments. Noise

will also be injected instead of direct DC input at experiment 2 in order to demonstrate some

more realistic behaviors of the spiking pattern within the neurons.

There is a matlab implementation of a simple model of spiking neurons provided by Izhikevich in

his journal άSimple model of Spiking Neuronsέ which illustrates the simulations of a network of

randomly connected 1000 neurons in real time[8]. The project has modified the original version

of the Matlab code in order to produce and demonstrate the various firing patterns in single

neurons. A detailed Matlab code of the resonator spiking pattern will be attatched in the

Appendix and all the other related M files will be saved in the folderΩ Izhikevich Model Ψ in CD.

18

2.4.3 Regular Spiking and Fast Spiking

Experiment 1:

tŀǊŀƳŜǘŜǊ ΨŀΩ Ƙŀǎ been altered to see its effect on the spiking patterns of the neuron. Parameters

b, c ,d are fixed at 0.2,65,8 respectively. A dc step input is applied to the neuron in this model.

Neuron A corresponds to the inhibitory fast spiking (FS) neurons in the cortex. Neuron B

corresponds to the excitatory regular spiking (RS) neurons in the cortex.

Experiment1 Parameters

 Neurons A b C d Input/magnitude

A 0.1 0.2 65 8 dc step input , 5

B 0.02 0.2 65 8 dc step input , 5

19

Figure 8 Spiking Pattern with different value of ΨaΩ

20

The parameter ΨŀΩ ŘŜǎŎǊƛōŜǎ ǘƘŜ ǘƛƳŜ ǎŎŀƭŜ ƻŦ ǘƘŜ ǊŜŎƻǾŜǊȅ ǾŀǊƛŀōƭŜ ǳ [8]. ! ƭŀǊƎŜǊ ǾŀƭǳŜ ƻŦ ΨŀΩ ǿƛƭƭ

ǎǇŜŜŘ ǳǇ ǘƘŜ ǊŜŎƻǾŜǊȅ ǊŀǘŜ ƻŦ ǘƘŜ ǊŜŎƻǾŜǊȅ ǾŀǊƛŀōƭŜ ΨǳΩ, thus speed up the recovery rate of the

membrane potential v. In Figure 8 above, the dotted line shows the trace of a regular spiking

neuron (RS) while the solid line indicates the trace of fast spiking (FS) neuron with a larger value

of ΨaΩ.

[ŀǊƎŜǊ ǾŀƭǳŜǎ ƻŦ ΨŀΩ όwhich is 0.1 in this case) make ΨǳΩ ōǳƛƭŘ ǳǇ ǾŜǊȅ ǉǳƛŎƪly above zero at the

beginning according to the first term ςŀǳ ƛƴ 9ǉнΦ ¢ƘŜ ǎŜŎƻƴŘ ǘŜǊƳ ΨŀōǾΩ ƛƴ 9ǉн ƳŀƪŜǎ ΨǳΩ ōǳƛƭŘ

up further to a very positive value before it resetsΦ ¢Ƙƛǎ ǇƻǎƛǘƛǾŜ ǾŀƭǳŜ ƻŦ ΨǳΩ ƳŀƪŜǎ ǘƘe membrane

ǇƻǘŜƴǘƛŀƭ ΨǾΩ Ŧŀƭƭ to a very low level after the reset. At this moment, both ςau and abv terms in

Eq2 ǿƛƭƭ ǎǇŜŜŘ ǳǇ ǘƘŜ ǊŜŎƻǾŜǊȅ ǊŀǘŜ ƻŦ ΨǳΩ ǎƛƴŎŜ ΨǳΩ ƛǎ ǾŜǊȅ ǇƻǎƛǘƛǾŜ ŀƴŘ ΨǾΩ ƛǎ very negative now.

CŀǎǘŜǊ ǊŜŎƻǾŜǊȅ ǊŀǘŜ ƻŦ ΨǳΩ ƳŜŀƴǎ ŦŀǎǘŜǊ ǊŜŎƻǾŜǊȅ ǊŀǘŜ ƻŦ ΨǾΩΣ ǘƘŜǊŜŦƻǊŜ ƛŦ ŀ ƭŀǊƎŜǊ ǾŀƭǳŜ ƻŦ ΨŀΩ ƛǎ

chosen for the model, more spikes will be generated.

Experiment 2:

Parameter Ω ōΩ Ƙŀǎ ōŜŜƴ ŀƭǘŜǊŜŘ ǘƻ ǎŜŜ ƛǘǎ ŜŦŦŜŎǘ ƻƴ ǘƘŜ ǎǇƛƪƛƴƎ ǇŀǘǘŜǊƴǎ ƻŦ ǘƘŜ ƴŜǳǊƻƴΦ

Parameters a, c, d are fixed at 0.02,65,8 respectively. A random thalamic input with a mean value

of 0 and a fluctuation of 5 is applied to the neuron in this model. Noise is also injected as a

random thalamic input to show a more realistic view of the spiking pattern in neurons.

Experiment2 Parameters

 Neurons a b c d Input/mean/fluctuations

A 0.1 0.2 65 8 random thalamic input,0,5

B 0.1 0.25 65 8 random thalamic input,0,5

21

Figure 9 Noise injected Spiking Pattern with a different value of ΨbΩ.

22

¢ƘŜ ǇŀǊŀƳŜǘŜǊ ΨōΩ ŘŜǎŎǊƛōŜǎ ǘƘŜ ǎŜƴǎƛǘƛǾƛǘȅ ƻŦ ǘƘŜ recovery variable u to the sub-threshold

fluctuations of the membrane potential v [8]. In Figure 9 above, the solid line shows the trace of a

regular spiking neuron (RS) while the dotted line indicates the trace of a fast spiking (FS) neuron

with a larger value of ΨbΩ.

Larger values of ΨbΩ result lowςthreshold spiking dynamics. In Figure 9 above, you can observe a

small peak value between the first and second spike of the dotted trace (FS). That peak value

doesn't cause a spike, which means that the relative membrane potential sensitivity of the fast

spiking neuron (FS) towards a success spike is relatively low compared to the regular spiking

neuron (RS). For the fast spiking neuron(the dotted trace), the value of ΨvΩ is negative below the

threshold, thus a greater value of ΨbΩ slows the rising rate of u down at the sub-threshold level

according to the 2nd term ΨabvΩ in Eq3. Slower rising rate of ΨuΩ means faster rising rate of ΨvΩ, so

more spikes will be generated if a larger value of b is chosen for the model.

2.4.4 Chattering

Experiment 3

Parameterǎ ΨŎΩ ŀƴŘ ΨŘΩ ŘŜǎŎǊƛōŜ the after-ǎǇƛƪŜ ǊŜǎŜǘ ǾŀƭǳŜ ƻŦ ǘƘŜ ƳŜƳōǊŀƴŜ ǇƻǘŜƴǘƛŀƭ ΨǾ Ψ ŀƴŘ

ǊŜŎƻǾŜǊȅ ǾŀǊƛŀōƭŜ ΨǳΩ ǊŜǎǇŜŎǘƛǾŜƭȅΦ They have been altered to produce the tonic spiking which is

also called Chattering in this experiment. Chattering (CH) neurons can fire stereotypical bursts of

closely spaced spikes [8]. It is believed that such neurons contribute to the gamma-frequency

oscillations in the brain. It has a ǊŜƭŀǘƛǾŜƭȅ ƭŀǊƎŜ ǾŀƭǳŜ ƻŦ ΨŎΩόŎҐ-45) and a small value of ΨŘΩ όŘҐнύΦ

Experiment3 Parameters

 Neurons a b c d Input/magnitude

A 0.02 0.2 45 2 dc step input , 5

23

Figure 10 Spiking Pattern showing the Chattering (CH)

24

In Figure 10, a ƘƛƎƘŜǊ ƭŜǾŜƭ ƻŦ ƳŜƳōǊŀƴŜ ǇƻǘŜƴǘƛŀƭ ΨǾΩ ŀƭǎƻ ƎƛǾŜǎ ŀ ŦŀǎǘŜǊ ǊƛǎƛƴƎ ǊŀǘŜ ƻŦ ΨǾΩΦ

Therefore if the after-spike reset value of v is high (i.e. v=-45), the value of u should also be

ƎǊŜŀǘŜǊ ƛƴ ƻǊŘŜǊ ǘƻ ōǊƛƴƎ ΨǾΩ Řƻǿƴ ǘƻ ǘƘŜ ǎǳō-threshold value according to Eq1 of the Izhikevich

model. IƻǿŜǾŜǊΣ ŀ ǎƳŀƭƭŜǊ ǾŀƭǳŜ ƻŦ Ř ƳŀƪŜǎ ǳ ōǳƛƭŘ ǳǇ ǎƭƻǿƭȅΦ ¢Ƙŀǘ ŀƭƭƻǿǎ ΨǾΩ ƎŜƴŜǊŀǘƛƴƎ ƳƻǊŜ

spikes with greater frequencies during a limited amount of time (bursting) until the value of u is

ƭŀǊƎŜ ŜƴƻǳƎƘ ǘƻ ōǊƛƴƎ ΨǾΩ ōŀŎƪ ǘƻ ǘƘŜ ǎǳō-threshold value. As a consequence, each time a spike is

triggered, the neuron will fire bursts of spikes and stop within a limited amount of time when the

ǊŜŎƻǾŜǊȅ ǾŀǊƛŀōƭŜ ΨǳΩ ōŜŎƻƳŜǎ ƭŀǊƎŜǊΦ ¢Ƙŀǘ ƎƛǾŜǎ ǘƘŜ ¢ƻƴƛŎ .ǳǊǎǘƛƴƎ behavior of the chattering

neurons in cortex.

2.4.5 Resonator

Experiment 4

Resonator (RZ) neurons have damped or sustained sub-threshold oscillations. They resonate to

rhythmic inputs having appropriate frequency [8]. RZ neurons have both relatively large

parameters ƻŦ ΨŀΩ ŀƴŘ ΨōΩΦ Implementation of the model for resonator neuron using Matlab is

shown in Appendix1.

Experiment4 Parameters

 Neurons a B c d Input/magnitude

RZ 0.1 0.26 65 8 dc step input , ?~?

A stimuli applied at time 500ms with magnitude 0.4mV and duration 10ms

25

Figure 11 Spiking Pattern showing the Resonator (RZ)

26

After a few experiments, the RZ neuron is found resonating only when a dc step input with

magnitude about 0.16~0.22mV is applied to the model. That corresponds to the behavior of RZ

neuron which only resonates to rhythmic inputs having appropriate frequency. RZ neuron also

shows a bi-stability of resting and repetitive spiking states. The neuron can be switched between

the states by an appropriately timed brief stimulus [9] as shown in the experiment table above.

wŜƭŀǘƛǾŜƭȅ ƭŀǊƎŜ ǾŀƭǳŜ ƻŦ ΨŀΩ ǿƻǳƭŘ ǎǇŜŜŘ ǳǇ ǘƘŜ ǊƛǎƛƴƎ ǊŀǘŜ ƻŦ ǳ ǳƴŘŜǊ ǘƘŜ ǘƘǊŜǎƘƻƭŘ όƻǊ ǿƘŜƴ ǳғлύ

according to the first term ςŀǳ ƛƴ 9ǉоΦ IƻǿŜǾŜǊΣ ƛŦ ΨŀΩ ŀƴŘ ΨōΩ are both relatively large, the second

term abv in Eq2 which can slow down the rising rate under the threshold (or when v<0) will

ōŀƭŀƴŎŜ ǘƘŜ ǊŀǘŜ ƻŦ ΨǳΩΦ !ǎ ŀ ǊŜǎǳƭǘΣ ǘƘŜ ǾŀƭǳŜ ƻŦ ǳ ŎƻǳƭŘ ǊŜǎƻƴŀǘŜ ŀǘ ǇŀǊǘƛŎǳƭŀǊ ƛƴǇǳǘ ŦǊŜǉǳŜƴŎȅ ŀƴŘ

converge to a steady state if an appropriate input has been applied.

27

2.5 STDP (Spike Timing Dependent Synaptic Plasticity)

The artificial life form in this project is designed to possess some ΩintelligenceΩ so that ƛǘ Ŏŀƴ ΨƭŜŀǊƴΩ

to avoid obstacles and catch the targetτthe food. This also means that the artificial life form can

ΨevolveΩ by itself. The ΨintelligenceΩ of the artificial life form is contained in the connections and

weightings between neurons within the spiking neural network controller. The network controller

can make the artificial life form ΨintelligentΩ by controlling how these weights change, and the

ways of controlling the weight are called learning rules. STDP is the learning rule used to control

the weight of the spiking neural network controller in this project.

The robot under the control of STDP produces a rich variety of behaviors and desirable properties

such as sensorimotor and synaptic robustness [14]. It also exhibits great computational abilities.

What is interesting about using STDP in spiking neural networks compared to traditional

rate-based plasticity is that it shows robust to jitter and spike train randomization, suggesting

counter intuitively that, under certain conditions, spike-timing dependent synaptic (STDP) rules

can work very well even when spike timing is disrupted [14]. The important question is in what

situations, if any, analogous robustness may be found in natural systems. To answer this,

behavioral studies are needed [14]. In Di tŀƻƭƻΩs paper άSpike-Timing Dependent Plasticity for

Evolved Robotsέ, he demonstrates the usefulness of robotic studies for investigating the

properties of STDP [14].

2.5.1 What is STDP?

The idea that information in the nervous system is coded by spike-rate has been widely accepted

and used in the application of spike-based neural controllers traditionally. However, recent

experimental studies indicate that the changes in synaptic efficacy (the weighting) could be highly

dependent on the relative timing of the pre- and postsynaptic spikes, which means that the

timing of the spikes could be responsible for carrying information. As Donald Hebb was the first

to suggest a precise rule that might govern the synaptic changes, such rules have been named

Spike-Timing Dependent Synaptic Plasticity (STDP). In HebbΩs rules, ΨΨwhen an axon of cell A is

near enough to excite a cell B and repeatedly or persistently takes part in firing it, some growth

ǇǊƻŎŜǎǎ ƻǊ ƳŜǘŀōƻƭƛŎ ŎƘŀƴƎŜ ǘŀƪŜǎ ǇƭŀŎŜ ƛƴ ƻƴŜ ƻǊ ōƻǘƘ ŎŜƭƭǎ ǎǳŎƘ ǘƘŀǘ !Ωǎ efficiency as one of the

cells firing B ƛǎ ƛƴŎǊŜŀǎŜŘΩΩ[11]. One feature of this rule is that it correlates the activity of pre-and

postsynaptic neurons causally. Another feature of this rule is that it only describes the condition

under which synaptic efficacy increases, but does not describe the condition under which it

decreases. Recent experimental studies in vivo have found that depression also occurs in some of

the synapses when presynaptic spikes occurs after the postsynaptic synapse. This result suggests

that HebbΩs original rule governing potentiation must be supplemented with an opposite timing

dependent process of depression[12].

Therefore a temporally asymmetric STDP rule has been chosen to be implemented into the

spiking neural network controller. In this case, if a presynaptic spike precedes the postsynaptic

spike, the synapse is potentiated, whereas the opposite relation leads to the depression of the

synapse. Figure 12 below describes how the weights of the synapse change according to the

timing of the spikes in pre and postsynaptic neurons.

28

Figure 12 Relationships of the timing of the spikes between pre and postsynaptic neurons

In Figure 12, presynaptic neuron A fires and its spike arrives in postsynaptic neuron B after D

(20ms in this project) milliseconds. If the spike from A arrives in B before neuron B fires, which

means the pre spike precedes the post spike, the weight between A and B will increase. That is

called the potentiation. If the spike from A arrives in B after neuron B fires, which means the post

spike precedes the pre spike, the weight between A and B will decrease. That is called the

depression. How much the weight is increased or decreased during potentiation and depression

depends on how the value of STDP varies with the time interval between pre and postsynaptic

spikes. The detailed time window which includes the modification function of the STDP showing

this relationship is illustrated in Figure 13 below.

Figure 13 Time window of STDP showing its relationships with the time interval between pre

and post synaptic spikes

Taken from reference [10]

In Figure 13, the weight of synaptic connection from pre- to postsynaptic neuron is increased if

the post neuron fires after the presynaptic spike, that is, the interspike interval ΨtΩ > 0. The

magnitude of change decreases as +-

+

t/teA . Reverse the order results in a decrease of the

29

synaptic weight with magnitude --

-

t/teA [10].

Parameters used [10]:

 ms20== -+ tt , 1.0=+A and 12.0=-A

According to Figure 13 ŀōƻǾŜΣ ŜŀŎƘ ƴŜǳǊƻƴΩǎ {¢5t ǿƛƭƭ ŘŜŎŀȅ ǿƛǘƘ ŀ ǇŀǊǘƛŎǳƭŀǊ ǊŀǘŜ ǿƛǘƘ ǘƛƳŜ

constant t=20ms and being reset to 0.1 once the neuron fires.

One of the key concerns of using this rule for synaptic plasticity is that the potentiation might go

out of control, which will cause stability problems in the spiking network. Direction damping is

one of the ways that can solve this problem; it has been added as an additional element to

regulate the activity of STDP in order to make sure of the stability of the network. A detailed

explanation and implementation including the equations about directional damping will be given

at the end of Chapter3.

2.5.2 Investigation of the behavior of the artificial life form

The artificial life form will then show various interesting behaviors under the control of an STDP

implemented spiking network. The project will alter various parameters in the network and try to

increase the efficiency of the artificial life form (the speed of catching the food) and discover the

potential of using STDP to develop the intelligence of the artificial life form. Investigation of the

STDP will also be conducted through various experiments and tests under different conditions.

From the results of these tests and experiments, the thesis will try to discover the relationships

between the behavior of the artificial life form and its synaptic connections and the effect of

STDP on them.

A spiking neural network that consists of 1000 randomly connected neurons simulated using

Matlab is provided by Eugene M. Izhikevich in his paper άComputation with spikesέ [10]. This

project simplifies and modifies the original version of this Matlab code to fit its own use.

Chapter 2 has given the basic background information from various aspects. The relevant

biological background, the underlying bio-inspired learning rules and algorithms, the uses of

Izhikevich model and the basic theory of STDP are all introduced in this Chapter. Now a detailed

explanation of this spiking neural network model and its implementation process will be unfolded

in Chapter 3.

30

3. Method

In this chapter, Section 3.1 will first give a detailed description of the simulation environment

used in this project. Then Section 3.2 will illustrate the initial design of the artificial life form.

Section 3.3 and 3.4 will demonstrate implementation of the spiking network controller and the

implementation of the external environment separately. Finally Section 3.5 will conclude the

chapter by the showing the implementation of STDP.

3.1 Choice of simulation environment

3.1.1 Source of the code

The Matlab program code used in this project is based on a web source named ΨConwayΩs game

of lifeΩ provided by Moshe Lindner with a license file. The web source is downloaded from

Matlab-Centralhttp://www.mathworks.com/matlabcentral/fileexchange/26805-conways-game-o

f-life[15]. All the related M file in the original document is stored in the folder ΨConway's game of

lifeΩ in CD. The original program implements a simple cellular automation which consists of no

neural network. This project modifies and uses part of the program code of ΨConwayΩs game of

lifeΩ as its own environmental settings in order to save time for the research on neural networks.

The modified version of Izhikevich model is then implemented into the environment as the

artificial life formΩs central network controller. The Neural Network part is completely a novel part

compared to the original program. The final version of the modified Matlab code named ΨArtificial

life formΩ is listed in Appendix2 in Chapter 7, and the related M file is stored in folder ΨFinal

version of Artificial life formΩ in CD.

3.1.2 Matlab GUI (graphical user interface)

The original ΨConwayΩs game of lifeΩ is represented as a Matlab GUI. A graphical user interface

(GUI) is a graphical display that contains devices, or components, that enable a user to perform

interactive tasks [16]. Matlab also provides a very powerful tool named Guide (graphical user

interface development environment) which simplifies the process of programming and laying out

GUIs. When the original GUI program is modified in this project, using the Guide Layout editor

provides great advantages and saves a lot of programming time. The GUIDE Layout Editor allows

the users to configure various GUI components such as buttons, text fields, sliders, and axes in

the layout window. As soon as the configuration is completed and saved, an updated M file will

be generated automatically and the user could use the M file editor to further develop the GUI by

modifying the contents of the callbacks within the M file. A callback provides the routines that

execute in response to user-generated events such as a mouse click. Each component in the

layout window has its own corresponding callbacks in the M file editor. All the functions in the

program can be configured in detail by editing the contents of callback.

Most parameters and variables of the spiking neural network and environment are stored in the

handles structure at the beginning of the M file. The handles structure is another powerful

function provided by Matlab which allows the users to save and load huge amounts of data at

any time they want. When the program runs, the data in the handles structure is passed as an

argument to all callbacks. This powerful data storing structure greatly saves time for testing since

the experiments in this project are required to load plenty of data from time to time during

simulations.

http://www.mathworks.com/matlabcentral/fileexchange/26805-conways-game-of-life
http://www.mathworks.com/matlabcentral/fileexchange/26805-conways-game-of-life

31

All the commands, handles, functions and callbacks mentioned in the later sections of the thesis

that can be found in the Matlab program code in Appendix2 will be marked in blue color for the

readerΩs convenience of understanding the program.

A final designed version of the layout window is shown in Figure 14 below.

Figure 14 Final designed version of the layout window

Figure 14 shows the final version of the layout window. The menu tool bar placed on top of the

layout window has been configured through the menu editor in this project. This menu provides a

lot of functions such as saving images and videos which can show the whole running process of

the artificial life form. The users could also find a user manual that briefly describes the functions

of all the components in the layout window. A detailed explanation of functions of these

components such as buttons, sliders, and boxes will be given in the later sections of this chapter.

3.1.3 Program structure

Figure 15 below shows the basic flow diagram of the whole program structure:

32

Figure 15 Whole program structure

Figure 15 above shows the whole program structure. The previous sections of this chapter have

already introduced the handles structures, functions and callbacks including window display

which will be initialized and set up at the start of the program. There are three main loops in the

program. The inner most loop represents the computational process that happens inside the

central spiking network controller. Its Matlab implementation will be explained in Section 3.3. The

second loop is the simulation time window required for one movement of the artificial life form.

33

Its computational process is closely related to the outside environment, which will be described in

detail in Section 3.4. In Section 3.5, the thesis will discuss the implementation of STDP which plays

the most important role throughout the whole program including the third loop. The third loop

represents the repeat runs of the artificial life form during each experiment.

34

3.2 Initial Design

3.2.1 Displaying the artificial life form on the screen

In Figure 14, the grids(cross lines)of the chessboard-like axes displayed in the layout window are

created in the Ψfunction grid_size_N_Callback(hObject, eventdata, handles)Ω This callback allows

users to change the size of the grid using the grid size-slider located at the right part of the layout

window. The default size and color of the chessboard are defined as Ψhandles.vis_grid=zeros(60);Ω

in the handles structure at the start of program. The value of the grid is zero because the default

background color-white has been assigned to zero. The variable ΨΨhandles.vis_gridΩ is also used to

define the position coordinates of each grid in the axes in this program.

Before designing the dynamics of the artificial life form, the project should first ΨdrawΩ an artificial

life form on the screen, and display it in front of the users. All the ΨdrawingΩ command has been

defined in the function Ψfunction [a]Ω located at the end of the program. The value of ΨaΩ for the

drawing function of artificial life form has been assigned to ǘƘŜ ƴǳƳŜǊƛŎŀƭ ǾŀƭǳŜ Ψ1ΩΦ ±ŀƭǳŜ ΨмΩ ƛǎ

the image value assigned to the color of the artificial life form; in this program it represents the

display of color black in the layout window. Inverse and non-inverse, white and black, 0 and 1,

only 2 image value of colors are required since there is only one type of object in the screen at

current stage. As the development goes further, more colors will be needed and a function

defining the color-map settings of the whole program will be described in Section 3.4. The

position of the artificial life form is defined as Ψhandles.vis_grid(30,30)=artificial_life;Ω in the

handles structure. (0, 0) represents the coordinates of the origin which is located at the top left

of the axes. (30, 30) is the initial coordinates of the artificial life form, which in this case is located

in the center of the chessboard since the chessboard has the maximum horizontal and vertical

size of 60 respectively. When the setting is completed, the layout window should look like this:

Figure 16 Display of the artificial life form

