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Abstract 

Objectives: The objective of this review was to summarize and appraise evidence on functional electrical stimula‑
tion (FES) cycling exercise after spinal cord injury (SCI), in order to inform the development of evidence‑based clinical 
practice guidelines.

Methods: PubMed, the Cochrane Central Register of Controlled Trials, EMBASE, SPORTDiscus, and CINAHL were 
searched up to April 2021 to identify FES cycling exercise intervention studies including adults with SCI. In order to 
capture the widest array of evidence available, any outcome measure employed in such studies was considered 
eligible. Two independent reviewers conducted study eligibility screening, data extraction, and quality appraisal using 
Cochranes’ Risk of Bias or Downs and Black tools. Each study was designated as a Level 1, 2, 3 or 4 study, dependent 
on study design and quality appraisal scores. The certainty of the evidence for each outcome was assessed using 
GRADE ratings (‘High’, ‘Moderate’, ‘Low’, or ‘Very low’).

Results: Ninety‑two studies met the eligibility criteria, comprising 999 adults with SCI representing all age, sex, time 
since injury, lesion level and lesion completeness strata. For muscle health (e.g., muscle mass, fiber type composition), 
significant improvements were found in 3 out of 4 Level 1–2 studies, and 27 out of 32 Level 3–4 studies (GRADE rat‑
ing: ‘High’). Although lacking Level 1–2 studies, significant improvements were also found in nearly all of  35 Level 3–4 
studies on power output and aerobic fitness (e.g., peak power and oxygen uptake during an FES cycling test) (GRADE 
ratings: ‘Low’).

Conclusion: Current evidence indicates that FES cycling exercise improves lower‑body muscle health of adults 
with SCI, and may increase power output and aerobic fitness. The evidence summarized and appraised in this review 
can inform the development of the first international, evidence‑based clinical practice guidelines for the use of FES 
cycling exercise in clinical and community settings of adults with SCI.

Registration review protocol: CRD42018108940 (PROSPERO)
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Background
Functional electrical stimulation (FES) applies low-level 
electrical pulses to paretic or paralyzed muscles to restore 
or improve their functional capacity. It is a neuropros-
thetic, therapeutic or exercise modality for individuals 
with a nervous system injury to reactivate the peripheral 
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nervous system without significant lower motor neuron 
damage [1]. In clinical and community settings, one of 
the most commonly available and researched FES exer-
cise modalities is FES-evoked cycling [2–4]. FES cycling 
allows people with little or no voluntary leg movement to 
pedal an exercise bicycle, usually indoors on a stationary 
system. Computer generated, low-level electrical pulses 
are transmitted through transcutaneous electrodes to the 
leg muscles. This evokes coordinated contractions and a 
pedaling motion that mimics voluntary exercise training. 
Potential or anecdotal benefits include improvements in 
muscle, bone and cardiovascular health, fitness, feelings 
of well-being, and motor function of people with neuro-
logical conditions such as stroke, multiple sclerosis and 
spinal cord injury (SCI) [1, 5–8].

Despite the potential and its availability, FES cycling is 
currently not consistently deployed as a component of 
the lifelong rehabilitation care plan for all eligible indi-
viduals with SCI who are responsive to FES. More evi-
dence-based exercise and rehabilitation options would 
be of particular benefit to the SCI community [9], given 
their high risk of secondary health complications [10], 
and barriers to participate in exercise [11]. The avail-
ability of evidence-based clinical practice guidelines can 
enhance the use of therapeutic exercise and rehabilitation 
options [12–14]. Essential to the development of such 
guidelines is a systematic literature review in accordance 
with Grading  of Recommendations Assessment, Devel-
opment and Evaluation (GRADE) [13, 15, 16]. Although 
recent systematic reviews have provided helpful insight 
into specific outcomes [17–19], a comprehensive system-
atic review including GRADE assessments is currently 
not available for FES cycling research in SCI.

Accordingly, this review sought to summarize and 
appraise evidence of randomized controlled trials (RCTs), 
non-RCTs, pre-post studies, case series, case studies and 
cross-sectional controlled studies evaluating the effects 
of FES cycling exercise among adults with SCI. Any 
health or fitness-related outcome measures used in those 
studies were considered eligible for inclusion, to ensure 
a complete overview of what outcomes have been used 
in FES cycling exercise research for the SCI population. 
Although not a primary objective, the review also sought 
to provide an overview of adverse events reported in the 
included studies.

Methods
We designed the review’s protocol in accordance with 
international reporting standards [20, 21], and in con-
sideration for the future development of practice guide-
lines for clinical and community settings [14]. The review 
was registered in PROSPERO (CRD42018108940). 
Information required for compliance with the reporting 

standards that has not been provided in this paper can 
be found in an online data repository at https:// osf. io/ 
u9mvx/, including the reference list of eligible studies, a 
‘grey’ literature search, data extractions and risk of bias 
(quality appraisal) scoring.

Search strategy
PubMed, the Cochrane Central Register of Controlled 
Trials, EMBASE (OVID), SPORTDiscus (EBSCOhost), 
and CINAHL (EBSCOhost) were searched from the ear-
liest record until April 1st, 2021. To coincide with two 
guideline development meetings, these databases were 
first searched to June 2018, and then updated to May 
2019 (Fig. 1). An updated search was also conducted in 
April 2021 (Fig. 1). An independent librarian contributed 
to the search strategy. Keywords were a combination of 
terms representing SCI (e.g., paraplegia, tetraplegia) [2], 
FES (e.g., functional electric stimulation, electrotherapy) 
and cycling (e.g., cycle, pedalling), including database-
specific indexing terms (e.g., Emtree for EMBASE). The 
online repository (https:// osf. io/ u9mvx/) provides the 
tailored search strings for each database. To identify 
other relevant studies, we consulted content experts and 
searched the reference lists of previous reviews (Fig.  1). 
To identify potential publication bias, the World Health 
Organization trial registry was searched for unpublished 
RCTs or non-RCTs matching the study eligibility criteria 
(i.e., ‘grey’ literature search). Language familiarity of the 
review team limited the search to peer-reviewed articles 
written in English, which we anticipated to have limited 
effect on our conclusions [22].

Study eligibility criteria
As part of the guideline development process, interna-
tional stakeholder meetings with FES users, researchers, 
clinicians and other practitioners were conducted in 2018 
and 2019 (Edmonton, Canada; Loughborough, UK; man-
uscript in preparation). These meetings were informed by 
a 2016 overview of SCI exercise evidence that included 
FES studies [2], and an additional scoping review on FES 
exercise RCTs and non-RCTs. The preliminary avail-
able evidence and stakeholders discussions informed 
the decision to focus the guideline development process 
(including the current review) on FES cycling, given that 
it is one of the most commonly used and accessible FES 
modalities with the largest body of high-quality evidence 
supporting it. Informed by these stakeholder meetings, 
the following selection of study eligibility criteria was 
established:

• Participants: Studies that included a sample of at 
least 50% with adults (≥ 16 years) with traumatic or 
non-traumatic SCI (any time post-onset SCI) who 

https://osf.io/u9mvx/
https://osf.io/u9mvx/
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were eligible and responsive to FES cycling. Excluded 
were those with a congenital condition (e.g., spina 
bifida), or a progressive disease (e.g., multiple sclero-
sis with spinal cord involvement).

• Interventions: Studies that employed an FES lower-
body cycling exercise intervention and describing 
exercise prescription parameters such as interven-
tion period (e.g., 12 weeks), exercise frequency (e.g., 
three times per week), and/or exercise duration 
(e.g., 30  min per session). FES cycling was defined 
as a modality whereby transcutaneous electrical 
currents are applied to paralyzed or paretic mus-
cles, with the necessary stimulation characteristics 

provided to evoke muscle contractions for lower-
body cycling movements. “Exercise” was defined as 
planned, structured, and repetitive physical activity 
that is performed to improve or maintain physical fit-
ness component(s) [23]. Excluded were interventions 
shorter than two weeks [2], and interventions that 
did not allow inferences about the specific contribu-
tions of FES cycling, e.g. activity-based restorative 
therapy [24, 25].

• Comparator/Control: Studies were eligible as a con-
trolled study if the comparator for the exercise inter-
vention was a control group not receiving an FES 
cycling exercise intervention. Receiving usual care 

Articles excluded based on full-text 
reviewing (n=172). Reasons:
• No FES cycling exercise intervention
• Absence of peer review (e.g. conference 

abstracts) 
• Absence of original data (e.g. review 

only)
• No or less than 50% adults with SCI
• Article not available in English

Articles included (n=90)Updated search from June 1st,
2018 – May 1st, 2019 (n=122):

• CINAHL (n=61) 
• Cochrane (n=2) 
• EMBASE (n=38) 
• PubMed (n=18)
• SPORTDiscus (n=3)

Articles identified through searching all 
databases from the earliest record to 

June 1st, 2018 (n=2049): 
• CINAHL (n=298) 
• Cochrane (n=118) 
• EMBASE (n=604) 
• PubMed (n=422)
• SPORTDiscus (n=607)

Articles eligible for full-text reviewing 
(n=228)

Articles eligible for scanning titles and 
abstracts (n=907) 

Duplicate articles removed (n=1142)

Articles excluded based on scanning titles 
and abstracts (n=679)

Articles included (n=56)

Articles excluded based on scanning titles 
and abstracts (n=128) 

Articles included (n=97) 
Studies without identical data/samples (n=92) 

Articles excluded based on 
scanning titles and abstracts 

(n=120)

Additional records identified 
through other sources (n=34).
• Previous reviews (n=24) 
• Databases of authors and 

content experts in the field
(n=6)

• Hand searches SCI journals: 
J Spinal Cord Med, Spinal 
Cord, Top Spinal Cord Inj 
Rehabil (n=4) 

• Unpublished RCTs or non-
RCTs identified in clinical trial 
registers of WHO portal (n=0)

Updated search from May 1st, 2019 – Apr 
1st, 2021 (n=133):

• CINAHL (n=10) 
• Cochrane (n=9) 
• EMBASE (n=60) 
• PubMed (n=53) 
• SPORTDiscus (n=1)

Fig. 1 Flow chart of the literature search and selection of eligible articles. Note The reference list of the 97 included articles with the 92 unique 
datasets is provided in the online repository (https:// osf. io/ u9mvx/). FES functional electrical stimulation; RCT  randomized controlled trial; SCI spinal 
cord injury; WHO World Health Organization

https://osf.io/u9mvx/
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(e.g., during the inpatient rehabilitation period) was 
also accepted as a control condition when the exer-
cise group also received this usual care in addition to 
the exercise intervention [2]. Studies comparing two 
FES cycling interventions (e.g., low-cadence vs high-
cadence cycling) were included and appraised as pre-
post studies.

• Outcome measures: Rather than focusing on a fixed 
set of outcomes, studies employing any type of health 
or fitness-related outcome measure were included, 
so long as they were measured in response to FES 
cycling exercise in participants with SCI. This wide 
array was chosen to ensure a complete overview of 
what outcomes have been used in FES cycling inter-
vention research for the SCI population.

• Study designs: RCTs, non-RCTs, pre-post, case 
series, case report, and cross-sectional controlled 
studies, in order to capture all available evidence 
beyond the limited available exercise RCTs in SCI [2]. 
Only cross-sectional studies without a control group 
were excluded, given the impossibility to make any 
assumptions about causality.

Study eligibility screening
Co-author SEV and a review team with content expertise 
(see ‘Acknowledgements’) conducted the study selection, 
supervised by primary author JWvdS. Two reviewers 
screened the titles and abstracts independently after 
duplication removal. Full-text articles were retrieved 
if one or both reviewers considered a study potentially 
eligible for inclusion. Two reviewers independently 
reviewed the full-text articles for eligibility, while record-
ing all reasons for exclusion. Any disagreements during 
this process were discussed between the reviewers. If no 

consensus was reached, JWvdS adjudicated the inclu-
sion/exclusion of an article. Reviewers were not blinded 
to authors or journals.

Data extraction
The data extraction sheets are provided in https:// osf. io/ 
u9mvx/. Data extracted included details on: study design, 
demographics, spinal cord lesion characteristics, training 
status at baseline, participant exclusion criteria, inter-
vention location and environment, exercise prescrip-
tion, neuromuscular stimulation characteristics, outcome 
measures, confidence intervals, statistical power, and 
adverse events. JWvdS and SEV pilot tested prelimi-
nary data extractions sheets and developed the final data 
extraction sheets with the other authors. Using these, two 
reviewers independently extracted data from a sample of 
eligible studies (10%) and achieved good agreement (at 
least 80% concordance), with the remainder extracted by 
one reviewer. JWvdS verified all data extractions.

Risk of bias in individual studies
Two reviewers independently appraised the included 
RCTs using Cochrane’s RoB 2.0 [26], non-RCTs using 
ROBINS-I [27], and used a modified Downs and Black 
tool  [28, 29] for the other study designs (see https:// 
osf. io/ u9mvx/. The reviewers discussed differences until 
full consensus was reached, if necessary adjudicated by 
JWvdS. One of 4 Levels of evidence was established for 
each study (Table 1), based on the strength of the study 
design and cut-off scores from the quality appraisal tools, 
similar to previous approaches [2, 29]. A Level 1 study 
indicated a study with the least risk of bias, and a Level 4 
study highest risk of bias.

Table 1 Rating system for risk of bias of individual studies

RCTs assessed with Cochrane’s Risk of Bias (RoB) 2.0 [21], non-RCTs with Cochrane’s The Risk Of Bias In Non-randomized Studies—of Interventions (ROBINS-I) tool [22], 
and all other study designs using a modified version of the Downs and Black scale which ranges from 0 to 28 points [23, 24]. Further details on risk of bias assessment: 
https:// osf. io/ u9mvx/

Level 1 ∙ Randomised controlled trials with Low risk of bias as assessed by RoB 2.0

Level 2 ∙ Randomised controlled trials with Some concerns or High risk of bias as 
assessed by RoB 2.0

∙ Non‑randomised controlled trials (including case–control, prospective 
and retrospective cohort studies) with Low or Moderate risk of bias as 
assessed by ROBINS‑I

Level 3 ∙ Non‑randomised controlled trials (including case–control, prospective 
and retrospective cohort studies) with Serious or Critical risk of bias as 
assessed by ROBINS‑I

∙ Pre‑post studies (any Downs and Black score)

Level 4 ∙ Case series defined by 3–5 individuals only (any Downs and Black score)
∙ Case report defined by 1–2 individuals only (any Downs and Black score)
∙ Cross‑sectional controlled study (any Downs and Black score)

https://osf.io/u9mvx/
https://osf.io/u9mvx/
https://osf.io/u9mvx/
https://osf.io/u9mvx/
https://osf.io/u9mvx/
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Evidence summary
The outcome measures that were identified during data 
extraction were categorized, in accordance with a previ-
ously published systematic review on cardiorespiratory 
fitness, power output, muscle strength, cardiometabolic 
health and bone health [2]. We then expanded the out-
come categories to fit the wider scope of outcomes cov-
ered by this review (e.g., subjective well-being [30]) and 
this review’s specific focus on FES cycling exercise. The 
proposed categorisation of outcome measures was vali-
dated and confirmed by FES content experts as part of 
the international expert panel meetings to develop FES 
cycling guidelines. The following outcome categories 
were defined:

• Muscle health: Including measures representing 
muscle volume, circumference and fiber type com-
position (e.g., cross-sectional leg muscle area, mid-
thigh muscle volume, % type IIa vs type IIb fibers)

• Power output: Including measures representing 
lower-body power output (e.g., peak power output 
during an incremental FES cycle test, or average 
power output during training)

• Aerobic fitness: Including measures representing 
peak oxygen uptake and respiratory capacity (e.g., 
peak oxygen uptake during an incremental FES 
cycle test, tidal volume)

• Muscle strength: Including measures represent-
ing isometric or isokinetic muscle force and torque 
(e.g., electrically stimulated peak leg extension 
torque, isometric knee extension force)

• Fat mass: Including measures representing adipose 
tissue (e.g., abdominal ectopic fat, cross-sectional 
leg fat area)

• Cardiovascular and metabolic factors: Including 
measures representing cardiac, arterial and meta-
bolic structure and function (e.g., arterial pulse 
wave velocity, insulin sensitivity, cytokine profiles)

• Bone health: Including measures representing bone 
mineral density (BMD), bone turnover markers and 
histomorphometry (e.g., whole-body BMD, bone-
specific alkaline phosphatase, N-telopeptides)

• Subjective well-being: Including measures repre-
senting anxiety and depression, life satisfaction, 
perceived stress (e.g., Hospital Anxiety and Depres-
sion Scale, World Health Organization Quality of 
Life Scale, Perceived Stress Scale)

• Functional and neurological outcomes: Including 
measures representing functional independence 
or neurological recovery (e.g., motor and sensory 
function, 6-min walking test, Functional Independ-
ence Measure, Spinal Cord Independence Measure)

• Other secondary health conditions: Including 
measures representing SCI-specific secondary 
conditions such as spasticity, bowel function or 
oedema (e.g., Modified Ashworth Scale, Neuro-
genic Bowel Dysfunction Score).

Following, the review team designated for each study 
whether the intervention showed an improvement in an 
outcome category or not, similar to a previous review 
[2]. Given the lack of benchmarks for clinically meaning-
ful improvements [31], and the anticipated large variety 
of outcome measures [2], “improvement” was defined as 
a statistically significant positive change following the 
intervention in at least one of the outcome measures 
within an outcome category [2]. For studies in which 
statistics were not applied, for example in a case series 
study, when all participants improved in an outcome, 
this was classified as an improvement. A study’s interven-
tion could also be designated to provide an “inconclu-
sive” result, for example when one subgroup improved 
in contrast to another, when one measure indicated an 
improvement and another measure of that same out-
come category indicated worsening, or when no statis-
tics were provided in a pre-post study. JWvdS verified all 
designations.

Studies showing an improvement or not were summa-
rized separately for Level 1, 2, 3 and 4 studies across each 
outcome category, to enable the evidence appraisal using 
GRADE (see below). Given the variety of study designs, 
interventions and reported outcome measures, we did 
not consider it feasible or valid to synthesise the results 
quantitatively using meta-analyses or forest plots. Com-
bining data on these measures for the purpose of meta-
analysis could be misleading if the magnitude of effects 
differed across outcomes and study designs. The poten-
tial for meta-analyses and forest plots was also limited by 
the low reporting quality in many studies. For example, 
some studies failed to provide group descriptive statis-
tics, while many studies did not report effect sizes or rela-
tive differences within and between groups.

Evidence appraisal using GRADE
GRADE methodology was used to assess certainty of the 
evidence for each outcome category [13, 15]. The GRADE 
method prescribes assessing the body of evidence (i.e., 
all studies taken together) for the following criteria: very 
serious risk of bias, serious risk of bias, inconsistency, 
imprecision, indirectness, and publication bias (Table  2) 
[13, 15]. If one or more of those issues appear, GRADE 
certainty in the evidence is to be downgraded from 
‘High’ to ‘Moderate’, ‘Low’ or ‘Very Low’ [13, 15]. Con-
versely, the GRADE method prescribed that certainty in 
the evidence can be upgraded if there are indications of 
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a dose–response gradient, plausible bias or large magni-
tude of effects in lower-quality studies [13, 15]. The higher 
the certainty, the more confidence one can have that the 
measured effect aligns with the true effect [16]. ‘Low’ or 
‘Very Low’ certainty in the evidence does not imply an 
intervention does not work; it merely indicates that con-
fidence is limited about the measured effect aligning with 
the true effect [16].

For the purpose of this review, we developed bench-
marks for each GRADE criterion (Table 2) in accordance 
with previously developed criteria [2]. GRADE certainty 
in the evidence was downgraded by two levels (e.g., from 
‘High’ to ‘Low’) if there was very serious risk of bias. It was 
downgraded by one level (e.g., from ‘High’ to ‘Moderate’) 
when serious risk of bias, inconsistency, imprecision, indi-
rectness or publication bias was present. Certainty of the 
evidence was upgraded by one level if we observed con-
sistent effects, plausible bias and/or a dose–response gra-
dient across the Level 2, 3 and 4 studies.

Adverse events
Although not a primary objective of this review, the 
included studies were summarized for their descriptions 
of suspected adverse reactions. These were defined in 

accordance with the US FDA as adverse events for which 
there was a reasonable possibility that the FES interven-
tion caused the adverse event [32]. For the studies that 
described adverse events, the summaries included the 
total number of participants reporting serious suspected 
adverse reactions (e.g., life-threatening event, event that 
required prolonged hospitalization), or other suspected 
adverse reactions [32].

Results
The search strategy and eligibility screening led to the 
inclusion of 97 articles that comprised 92 studies with-
out identical data/samples [33–129] (Fig.  1). The online 
repository (https:// osf. io/ u9mvx/) provides the refer-
ence list of the 97 articles, data extractions for each of 
the 92 studies, and details of the literature search in the 
trial registers. Tables  3, 4 and 5 provide an overview of 
extracted characteristics of participants, interventions 
and outcome measures.

Risk of bias in individual studies
Each of the 92 studies was classified for its individual 
Level of evidence in accordance with Table 1. Two were 
classified as Level 1 studies, 7 as Level 2 studies, 65 as 

Table 2 Criteria and benchmarks to assess certainty of the evidence using GRADE [10, 12, 16]

GRADE certainty in the evidence can be ‘High’, ‘Moderate’, ‘Low’ or ‘Very Low’, subject to the presence of the criteria presented in this table [10, 12]

AIS American Spinal Injury Association Impairment Scale, PICO Participants, Intervention, Comparator, Outcomes

GRADE criterion Meaning Benchmark used in this review

Risk of bias Quality of the evidence No risk of bias if at least one Level 1 study was present
Serious risk of bias if only one Level 2 was present
Very serious risk of bias if no Level 1 or 2 studies were present

Inconsistency Results for a given outcome not similar across studies No inconsistency if improvements shown in at least:
– Two thirds of Level 1 or 2 studies and half of Level 3 or 4 

studies; or
– Half of Level 1 or 2 studies and two third of Level 3 or 4 

studies; or
– Two thirds of Level 3 or 4 studies in absence of Level 1 or 

2 studies

Imprecision Insufficient statistical power or wide confidence intervals No imprecision if at least one study was sufficiently powered 
and at least one study showed narrow confidence inter‑
vals surrounding the estimate of effects

Indirectness Evidence differs from study eligibility criteria (PICO) No indirectness if—across the studies—the following partici‑
pant characteristics were represented: male/female, young 
and middle‑aged adults (16–65 years) and older adults 
(> 65 years), time since injury > 1 year and > 1 year, and 
lesion characteristics (AIS and lesion level) with sufficient 
lower motor neuron capacity to respond to FES cycling

Publication bias Selective publication of studies Publication bias present if unpublished studies added to the 
evidence summary would have changed assessment of 
any of the criteria shown above

Reasons for upgrading 
level of certainty in the 
evidence

If lower‑quality studies provide convincing evidence – Consistent effects across a large number of Level 2, 3 or 4 
studies

– Plausible bias caused by including participants not respon‑
sive to FES cycling

– Dose–response gradient present in one study or across all 
studies

https://osf.io/u9mvx/
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Level 3 studies, and  18 as Level 4 studies. An RCT design 
was used in five studies, with RoB 2.0 scores ranging from 
Low to Serious risk of bias. A non-RCT design was used 
in four studies, with ROBINS-I scores ranging from Low 

to Moderate risk of bias. Downs and Black scores ranged 
from 4 to 22 (mean ± SD: 12 ± 4) across the studies with 
pre-post, case series, case report and cross-sectional 

Table 3 Summary of participant characteristics across all studies

Further details on data extraction for each study: https:// osf. io/ u9mvx/

AIS American Spinal Injury Association Impairment Scale, NR not reported

*Averaged range calculated using coding for each lesion level

Demographics Total participants: 999
Total men/women/NR: 782/143/74
Mean age reported: 36 ± 8 (20–60) years
Min age reported: 27 ± 9 (16–60) years
Max age reported: 47 ± 10 (20–80) years
Mean TSI reported: 9.0 ± 6.7 (0.04–33) years
Min TSI reported: 4.0 ± 6.6 (0.03–33) years
Max TSI reported: 17.6 ± 12.6 (0.04–53) years

Lesion characteristics Lesion level averaged* (range): C6‑T8 (C1‑L1)
AIS A: 47 out of 92 studies
AIS B: 30 out of 92 studies
AIS C: 17 out of 92 studies
AIS D: 6 out of 92 studies
AIS NR: 30 out of 92 studies

Training status at baseline No training in FES cycling: 66 out of 92 studies
Trained in FES cycling: 8 out of 92 studies
Training status NR: 18 out of 92 studies

Most frequent exclusion criteria Bone fractures in the trochanter or pelvic area: 
22 studies

Presence of severe osteoporosis or similar 
conditions: 21 studies

Too limited range of motion of hip or knee 
joints: 20 studies

Not able to cycle due to spasticity: 17 studies
Presence of pressure injuries: 16 studies

Table 4 Summary of intervention characteristics across all studies

Further details on data extraction for each study: https:// osf. io/ u9mvx/

NR not reported, RPM revolutions per minute

*Period reported as Median (interquartile range). All other values reported as Mode (range). Extreme outliers of these parameters were excluded from this summary, 
i.e. periods of 37 months, 56 months or 0.4–7 years; frequency of seven times/week; duration of 100 min; max cycle speed of 20 RPM

**4 studies took place in both research and clinical environments

Exercise prescription* Period: 16 (8–26) weeks
Frequency: 3 (2–5) times/week
Duration: 30 (10–60) min/session
Min cycle speed: 35 (10–50) RPM
Max cycle speed: 50 (35–60) RPM

Neuromuscular stimulation characteristics* Pulse width: 300 (200–500) µs
Amplitude: 140 (0–180) mA
Stimulation frequency: 35 (20–60) Hz

Intervention environment Research centre: 24 out of 92 studies**
Clinical centre: 19 out of 92 studies**
Home‑based: 18 out of 92 studies
Environment NR: 27 out of 92 studies

Most frequent study locations USA: 44 out of 92 studies
UK: 9 out of 92 studies
Australia: 7 out of 92 studies
Canada: 6 out of 92 studies
Denmark: 5 out of 92 studies
The Netherlands: 5 out of 92 studies

https://osf.io/u9mvx/
https://osf.io/u9mvx/
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designs. Detailed risk of bias scores for each checklist 
item of the studies are available at https:// osf. io/ u9mvx/.

Participant characteristics
Overall, the evidence included 999 participants repre-
senting all demographic and spinal cord lesion character-
istic strata (Table  3). Underrepresented in the evidence 
were women, adults > 65 years, participants with motor 
incomplete injuries and those with high cervical or lum-
bar lesions. Most participants were untrained in FES 
cycling exercise at baseline, although some received FES 
strength training before starting the intervention. They 
were free of bone fractures, pressure injuries or other 
common reasons for exclusion from participating in FES 
exercise.

Intervention and control characteristics
The average intervention period across all studies was 
16 weeks, mostly cycling three times per week for 30 min 
at 35–50 revolutions per minute, using a neuromuscu-
lar stimulation amplitude up to 140  mA, a pulse width 
of 300 µs, and a pulse frequency of 35 Hz (Table 4). If a 
form of progression was used and reported in the studies, 
it consisted of increasing absolute resistance or torque 
levels within or across sessions, based on participants’ 
cycling frequency, fatigue, and/or personal tolerability. 
None of the studies reported gauging exercise intensity 
using physiological criteria such as percent peak oxygen 
uptake or heart rate, except for peak power output.

The majority of interventions took place in research 
and/or clinical environments, while 19 studies employed 
home-based environments (Table  4). In 19 studies, FES 
cycling was preceded or complemented by other lower-
body strength exercise, such as a number of weeks of FES 
quadriceps strengthening preceding subsequent weeks 

of FES cycling. Almost half of the studies (44 out of 92) 
were conducted in the USA, while 4–8 studies took place 
in Australia, Canada, Denmark, the Netherlands, Swit-
zerland, or the UK (Table 4). The remainder of the stud-
ies took place in other countries across Asia, Australia, 
Europe, the Middle East and South America. Control 
groups followed usual in-patient rehabilitation care, con-
ducted passive cycling or upper-body exercise, or did not 
participate in any exercise intervention.

Outcomes
As summarized in Table 5, the most frequently employed 
outcome measures were indices of muscle health (e.g., 
muscle cross-sectional area, ratio between muscle fiber 
types), power output (e.g., peak power output on an 
incremental FES cycling test, average power output dur-
ing training), or aerobic fitness (e.g., peak oxygen uptake 
on an incremental FES cycling test, tidal volume). For 
muscle health (36 studies), the one Level 1 study reported 
non-significant findings, while the four Level 2 studies 
and over 80% of Level 3 or 4 studies demonstrated sig-
nificant improvements. For power output and aerobic 
fitness, Level 1 or 2 studies were lacking, but over 35 
Level 3 and 4 studies were available. Nearly all of these 
studies showed significant improvements, for example 
in 29 out of 30 Level 3 studies on power output and 17 
out of 21 Level 3 studies on aerobic fitness. Lower con-
sistency or less evidence was available for the other out-
comes (Table 5). For example, less than half of the studies 
on bone health (11 out of 23 studies) found significant 
improvements after 8–26  weeks of FES cycling exer-
cise in measures such as bone mineral density and bone 
turnover markers. Studies on functional and neurological 
outcomes (e.g., independence measures, ISNCSCI motor 

Table 5 The number of Level 1, 2, 3 or 4 studies showing significant improvements for each outcome category (ordered from most to 
least frequently studied)

Further details on data extraction for each study: https:// osf. io/ u9mvx/

AIS American Spinal Injury Association Impairment Scale

Outcome category Total Level 1 Level 2 Level 3 Level 4

Muscle health 30 out of 36 0 out of 1 3 out of 3 12 out of 16 15 out of 16

Power output 34 out of 35 0 out of 0 0 out of 0 29 out of 30 5 out of 5

Aerobic fitness 20 out of 26 0 out of 0 0 out of 0 17 out of 21 3 out of 5

Bone health 11 out of 23 0 out of 0 1 out of 2 6 out of 12 4 out of 9

Cardiovascular and metabolic factors 16 out of 21 0 out of 0 0 out of 0 12 out of 17 4 out of 4

Fat mass 8 out of 16 0 out of 1 1 out of 2 1 out of 3 6 out of 10

Muscle strength 12 out of 14 0 out of 0 0 out of 1 10 out of 11 2 out of 2

Other secondary health conditions 7 out of 13 0 out of 1 1 out of 2 5 out of 7 1 out of 3

Subjective well‑being 7 out of 10 0 out of 1 0 out of 0 3 out of 4 4 out of 5

Functional and neurological outcomes 3 out of 5 0 out of 0 0 out of 0 3 out of 5 0 out of 0

https://osf.io/u9mvx/
https://osf.io/u9mvx/
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scores) were limited to five Level 3 studies, of which three 
demonstrated significant improvements.

Evidence appraisal using GRADE
For muscle health, the GRADE assessment identified 
potential imprecision (Table  2), due to limited or no 
information on statistical power or confidence intervals 
around effect estimates. The GRADE assessment also 
revealed indirectness (i.e., limited generalizability), but 
only for older adults > 65 years. The evidence on muscle 
health included participants with paraplegia or tetraple-
gia (C1 to L1, AIS A, B, C or D), 0.04–53 years post-injury 
(mean: 10 years), aged 16–67 years (mean: 36 years). We 
upgraded certainty in the evidence for muscle health by 
one level due to the consistent effects found across the 
large number of Level 2, 3 and 4 studies (Table 5). This 
led to ‘Moderate’ certainty in the evidence for any adult 
with SCI, and ‘High’ certainty in the evidence for young 
to middle-aged adults with SCI.

For power output, the GRADE assessment revealed 
very serious risk of bias due to the absence of Level 1 or 
2 studies, and potential imprecision due to lack of infor-
mation about statistical power and confidence intervals. 
The evidence on power output included participants 
with paraplegia or tetraplegia (C3 to L1, AIS A, B, C or 
D), 0.16–53  years post-injury (mean: 10 years), aged 
17–80  years (mean: 38 years). We upgraded certainty 
in the evidence by one level due to the highly consistent 
effects found across the large number of Level 3 studies 
(Table  5). Therefore, GRADE certainty in the evidence 
for augmented power output was ‘Low’ for any adult with 
SCI.

The GRADE assessment for aerobic fitness was simi-
lar to that of power output; very serious risk of bias and 
potential imprecision, and strengthening of confidence in 
the evidence by the consistent effects across the Level 3 
studies (Table 5). The evidence on power output included 
participants with paraplegia or tetraplegia (C3 to L2, AIS 
A, B, C or D), 0.08–33 years post-injury (mean: 9 years), 
aged 16–70  years (mean: 35 years). Accordingly, the 
GRADE assessment established ‘Low’ certainty in the 
evidence for improved aerobic fitness after FES cycling 
exercise.

The GRADE assessments led to ‘Very Low’ certainty 
in the evidence for the other outcomes shown in Table 5, 
due to an absence of Level 1 or 2 studies, effects being 
inconsistent across the studies, imprecision, and/or 
indirectness.

Adverse events
None of the studies had adverse events as its primary 
outcome. Adverse events were described in 21 stud-
ies comprising 203 participants, as detailed in the data 

extraction table (https:// osf. io/ u9mvx/). Of these, 18 par-
ticipants experienced suspected adverse reactions to FES 
cycling. One out of these 18 participants experienced a 
serious suspected adverse reaction; the participant was 
reported to be withdrawn from an FES-cycling interven-
tion related to haemotoma development in the ischial 
region, which may or may not have been associated with 
the intervention. Seventeen participants experienced 
other suspected adverse reactions such as temporary post-
exercise hypotension (n = 4), increased spasticity (n = 4), 
light-headedness (n = 2), skin redness (n = 2), bowl acci-
dent (n = 1), autonomic dysreflexia caused by stimula-
tion (n = 2), increased leg swelling (n = 1), and a small 
quadriceps haemotoma that was resolved within 2 weeks 
(n = 1). Two of these could not finish the FES interven-
tion due to increased spasticity.

Discussion
This review has provided the first summary and appraisal 
of evidence for the effects of FES cycling exercise inter-
ventions on health and fitness-related outcomes meas-
ured after SCI. The GRADE assessments revealed ‘High’ 
certainty in the evidence for significant improvements 
in lower-body muscle health (e.g., larger muscle volume, 
shift to more fatigue-resistant fiber types), and ‘Low’ cer-
tainty in the evidence for significant improvements in 
power output and aerobic fitness (e.g., peak power output 
and oxygen uptake during an incremental FES cycling 
test) of adults with SCI. This review also highlighted that 
future high-quality research is necessary to validate con-
clusions about other potential benefits, such as improved 
cardiovascular health, and functional or neurological 
adaptations. The limited available evidence on adverse 
events suggested that harmful reactions are unlikely to 
occur when adults with SCI engage in FES cycling.

All but one RCT and a large number of Level 3–4 
studies found significant improvements in outcomes for 
muscle health. The one RCT without significant improve-
ments may be explained by a relatively short intervention 
duration (i.e., < 3  months), and insensitivity of its out-
come measure related to the location of measurement of 
cross-sectional area [71, 130]. Overall, the evidence indi-
cated that FES cycling could help counteract the vast loss 
of muscle mass after SCI, which can be as high as 80% 
when compared to able-bodied controls [131, 132]. This 
might reduce risk of pressure injuries [133], increase the 
low resting metabolic rates that can contribute to obe-
sity [134], and enhance satisfaction with body appear-
ance [135]. The changes in fiber type composition shown 
by the evidence (e.g., shift from type IIb and IIx fibers to 
type IIa fibers) indicate that FES cycling can help reverse 
the loss of oxidative capacity of paralyzed muscles [136]. 
This may aid beneficial vascular adaptations [137], 

https://osf.io/u9mvx/
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improve aerobic metabolism [5], and reduce the onset of 
fatigue during further FES training [138].

A large number of Level 3 and 4 studies provided con-
sistent evidence that FES cycling exercise could improve 
lower-body power output and aerobic fitness. If these 
improvements relate at least to some extent to the car-
diovascular and cognitive health benefits found in lower-
body exercise in the able-bodied population [139, 140], 
then FES cycling has great potential for reducing the high 
risk of cardiovascular and cerebrovascular conditions 
after SCI [141–144].

Strengths and limitations of this review
One of the strengths of this review was the transpar-
ent use of GRADE to appraise the body of evidence for 
each outcome, in accordance with international stand-
ards [13, 16]. However, we also acknowledge that a sole 
focus on GRADE criteria may not provide recommenda-
tions that clinicians can easily utilize [145]. For example, 
the quality of SCI evidence about exercise will always be 
prone to downgrading using the GRADE criteria due to 
imprecision and indirectness, considering the inherent 
challenges in undertaking high-quality exercise research 
in this population [146]. These include the small poten-
tial participant pools, an inherent age and sex distribu-
tion in the SCI population traditionally representing 
relatively fewer women and older adults, neurological 
heterogeneity common in SCI samples, and the com-
plexity of spinal cord lesion characteristics influencing 
outcomes. Notwithstanding, evidence-based guidelines 
can still be developed even when the GRADE assessment 
reveals ‘Low’ certainty in the evidence, by weighing in the 
views, preferences and experiences of stakeholders [147]. 
We involved a large number of clinical and community 
stakeholders in designing this review and developing 
evidence-based FES cycling clinical practice guidelines 
(manuscript in preparation). This process demonstrated 
that many people with SCI and their health-care pro-
viders encourage the cautious use of evidence beyond 
gold-standard RCTs, given the importance they see 
in deploying FES cycling in clinical and community 
environments.

A limitation of this review is the use of counting 
the number of studies showing statistically significant 
improvements [2, 148]. However, lack of established 
benchmarks for clinically meaningful improvements 
in SCI [31], and mere absence of reporting mean dif-
ferences, effect sizes, 95% confidence intervals, or indi-
vidual data, rendered this the best possible approach 
towards synthesizing the evidence [2]. Although this 
approach increased the risk of type II errors and family-
wise error rates [148], it is unlikely that such errors influ-
enced the primary findings of this review, as significant 

improvements were found in nearly all studies and out-
come measures related to muscle health, power output 
and aerobic fitness.

Implications for future research: gaps identified in this 
review
The gaps in the evidence identified in this review can 
inform the prioritization and direction of future research. 
It was encouraging to observe that the research base for 
FES cycling after SCI has steadily increased since the 
1980s, with many new studies conducted over the last 
decade (e.g., almost half of all included studies in this 
review were published between 2010 and 2020). Impor-
tant evidence gaps remain however, and clinical practice 
and policy development would be served by addressing 
these.

One key gap is the current lack of high-quality evi-
dence on potential functional or neurological benefits of 
FES cycling. The few Level 3 pre-post studies identified 
in this review showed some improvements in adults with 
chronic SCI. Animal studies have suggested that initiat-
ing exercise during a critical early period may enhance 
functional recovery [149]. However, lacking are high-
quality FES cycling controlled trials taking place within 
the first 3–6  months after SCI when recovery is most 
likely [150], while focusing on underlying mechanisms, 
and functional and neurological outcomes sensitive to 
change. Such trials can also inform the ongoing debate 
about the potential of FES cycling for neurorecovery [24].

Other key research gaps identified by this review relate 
to potential effects of FES cycling on the risk of cardio-
metabolic disease [141, 151], reduction of debilitating 
secondary health conditions such as pressure injuries, 
chronic pain, and urinary tract infections [152–154], 
and enhancement of subjective well-being [155, 156]. For 
these outcomes, the review highlighted a lack of high-
quality research employing instruments sensitive to exer-
cise-induced changes in adults with SCI that can provide 
insight into the magnitude of potential improvement of 
these outcomes following SCI. Such research should be 
aligned and combined with what SCI users of FES cycling 
often report anecdotally, such as functional and neuro-
logical improvements and psychological benefits.

Changes in many of these outcomes may require inter-
vention periods over a longer period (e.g., 1–2  years) 
than what most FES cycling studies have used so far (on 
average 16  weeks, see Table  3). For example, structural 
cardiac and vascular improvements may occur secondary 
to adaptations in muscle health and aerobic fitness, but 
might not be visible in the first months of a person with 
SCI engaging in FES or other forms of exercise [157]. If 
they occur, changes in bone health may require at least 
one year of FES cycling exercise [87, 158, 159].
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RCTs over such long periods are costly, likely face ethi-
cal challenges, and are often not feasible due to small 
potential participant pools [146]. A solution is the use 
of longitudinal designs taking place in clinical and com-
munity centres where FES cycling is used daily as part of 
ongoing rehabilitation and exercise programs. The sta-
tistical power and high external validity of such a design, 
combined with high-quality reporting of the interven-
tion details and environment, could provide a wealth of 
information about a range of outcomes on which future 
clinical practice guidelines can be build. An additional 
or alternative successful approach could be home-based 
FES cycling [58], in particular when combined with bet-
ter user education and establishment of user-specific 
goals between a practitioner and a person with SCI [3].

The intervention studies identified by this review did 
not analyse or provide sufficient information to draw 
conclusions about the minimum or optimal dose of FES 
cycling exercise and which neuromuscular stimulation 
characteristics would be required for that. This highlights 
a need for more robust comparisons of FES exercise pre-
scriptions and approaches to selecting neuromuscular 
stimulation characteristics, how to keep providing pro-
gressive overload for continued improvements, and how 
to best deal with the “fatigue” problem due to reverse-
order muscle fibre recruitment [160–162]. This for exam-
ple requires novel comparative studies on dose–response 
and stimulation strategies tailored towards informing 
clinical practice guideline development.

Finally, current limitations of the evidence base, which 
prohibited meaningful synthesis of the evidence using 
forest plots and meta-analysis, could be overcome by 
improving reporting quality and establishing standard-
ized outcome measures for each outcome category. The 
relatively poor scores on the risk of bias assessments 
highlight the need for better description of randomiza-
tion procedures, intervention protocols, control condi-
tions, dropout rates, sample size calculations, effect sizes, 
confidence intervals, and incidence of adverse events, in 
accordance with international reporting standards [163–
165]. Using a set of standardized outcome measures 
would enlarge the potential for a clinically relevant meta-
analysis. Provision of data specific for subgroups with dif-
ferent levels of injury and impairment scales could help 
determine potential differences in effects among various 
groups of people with SCI.

Conclusion
The current evidence indicates that FES cycling exer-
cise improves lower-body muscle health (e.g., muscle 
mass, fiber type composition) of adults with SCI, and 
may increase power output and aerobic fitness (e.g., peak 
power and oxygen uptake during an FES cycling test). 

The evidence summarized and appraised in this review 
can inform the development of the first international, 
evidence-based clinical practice guidelines for the use of 
FES cycling exercise in clinical and community settings 
of adults with SCI. Ultimately, these clinical practice 
guidelines help to shape lifelong rehabilitation care plans 
for the SCI population that fit national and local care 
contexts and resources.
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