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Résumé 

Les mycotoxines sont des molécules toxiques produites par de nombreuses espèces fongiques. 
Les seules mycotoxines avérées aujourd'hui cancérigènes pour l'homme sont les aflatoxines. 
Elles sont produites par le genre Aspergillus principalement et sont retrouvées tout au long de 
la chaine alimentaire (champs, stockage, transformation, etc.). A cause du réchauffement 
climatique, la France devient de plus en plus exposée à la présence de ces mycotoxines. Afin 
de limiter l'exposition des consommateurs, de nombreuses stratégies de prévention ou de 
décontamination sont développées. Dans ce contexte, nous avons recherché à mettre au point 
un système de lutte biologique permettant de prévenir la production d'aflatoxines sur le maïs 
au champ. Pour cela, nous avons choisi des bactéries issues du sol et déjà connues pour être 
commercialisées pour la lutte biologique, les actinomycètes. Nous avons étudié l'interaction in 

vitro sur boites de Pétri entre Aspergillus flavus, principal producteur d'aflatoxines, et certains 
actinomycètes. Nous avons démontré que l'interaction peut réduire la concentration en 
aflatoxines mesurée par HPLC. De plus, certains isolats bactériens sont aussi capables de 
réduire, en culture pure, la concentration d'aflatoxine B1 dans le milieu. Des premiers tests 
d'adsorption ont été réalisés pour comprendre la nature de ce mécanisme. Par ailleurs, une 
étude approfondie via RT-qPCR sur 6 souches bactériennes du genre Streptomyces sp. a 
montré que celles-ci étaient capables d'impacter l'expression de différents gènes impliqués 
dans la voie de biosynthèse chez A. flavus et A. parasiticus. Enfin, nous avons complété les 
données déjà existantes sur l'impact de facteurs environnementaux (température, disponibilité 
en eau et du temps d'incubation) sur la production d'aflatoxines. 

Abstract 

Mycotoxins are toxic contaminants of foodstuffs produced by a wide range of fungal species. 
Aflatoxins are the only mycotoxins carcinogenic for humans. They are mainly produced by the 
Aspergillus genus and can be found at each step of the agrofood chain (e.g. field, storage, process). 
Due to climate changes, France is starting to be exposed to aflatoxins. In order to limit the consumer 
exposure, many prevention or decontamination techniques have been developed. To this aim, we 
started the development of a biocontrol against aflatoxins accumulation for maize field application. 
Actinomycetes, are soil-borne bacteria that has already been commercialized as biocontrol. In Petri 
dishes, we studied the in vitro interaction between some actinomycetes and Aspergillus flavus, the 
main aflatoxins producer. We revealed that the interaction reduced the aflatoxins content (monitored 
by HPLC). Moreover, some bacterial isolates were able to reduce pure-aflatoxin B1 added in the 
medium. To understand this mechanism, adsorption tests has been conducted. Otherwise, RT-qPCR 
methodology was used to study the impact of Streptomyces-Aspergillus sp. on aflatoxin gene 
expression. Finally, the current knowledge of the impact of environmental factors (temperature, water 
activity and incubation time) on aflatoxins production was supplemented. 
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General Introduction 

 Mycotoxins are toxic substances produced by fungi that contaminate various food and 

feedstuffs. There are about a hundred different types of mycotoxins which are produced by a 

wide range of fungal species. The variety of their toxicity is linked to the diversity of their 

chemical structure. 

 Amongst them, aflatoxins (except for aflatoxin M1) are the only mycotoxins 

considered as carcinogenic for humans (Group 1, IARC). In addition to carcinogenicity, they 

are also highly hepatotoxic, nephrotoxic, immunotoxic, etc. These toxins often contaminate 

maize, peanuts, pistachios and brazil nuts, etc. In European Union (EU), they are regulated for 

food and feedstuffs. Aflatoxins accumulation is due to the colonisation of foodstuffs by fungi. 

The latter mainly belong to the Aspergillus genus and can be found all along the agrofood 

chain (e.g. field, storage, process). 

 The producers of aflatoxins present 29 genes regrouped in a cluster situated in a 

subtelomeric region (chromosome 3). They encode enzymes that convert MalonylCoA and 

AcetylCoA into aflatoxins. This pathway is regulated by specific (AflR, AflS) as well as 

general transcription regulators which are themselves triggered by many environmental 

parameters. 

 Those enviromental parameters can be abiotic or biotic. The former involve 

temperature, water activity (aw), CO2 concentration, etc. Optimal conditions for aflatoxin B1 

production are 25 to 30°C and an aw of 0.96-0.99. Due to climate changes, those 

environmental conditions are starting to occurr in France where sporadic aflatoxins content 

above the EU limits have been detected (e.g.: 2003). Interwoven with abiotic parameters, 

biotic parameters such as fungal or bacterial interactions can also impact aflatoxins 

accumulation. 

 Biocontrols (based on various organisms) have been developed to avoid aflatoxins 

accumulation at field. Currently, afla-guard®: a non-toxigenic A. flavus strain is the main 

biocontrol available on the market. However, other biocontrols based on bacteria are under 

development. Bacteria such as Streptomyces (actinomycetes) were identified as interesting 

producers of inhibiting metabolites. 
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 In France, the main crop at risk of aflatoxins contamination is maize. Contamination 

could have major economic impacts (15.6 million tones of maize were produced in France in 

2011). Thus, it is crucial to limit aflatoxins content below the legal limits. 

 In order to limit aflatoxins content, management of biotic and abiotic parameters can 

mostly prevent aflatoxins accumulation. For maize, at seed level, Bt hybrids decrease 

aflatoxin B1 contamination by 6.2 fold. At field, agricultural practices focusing on irrigation, 

fertility and massive insects prevention can reduce aflatoxins accumulation. During maize 

storage, temperature management is the most commonly used technique to monitor grain 

conservation. At that step, chemical and natural compounds (BHA, PP, essential oils) can 

prevent aflatoxins production. 

 In terms of decontamination techniques, tortilla production can reduce up to 84% of 

the initial aflatoxin B1 content. Chemicals (e.g.: ammoniation or ozone) or degrading 

organisms can reduce aflatoxins content. Adsorbents and binding bacteria can also prevent 

aflatoxins absorption by animals. 

 Within this context, we developed a project to prevent aflatoxins occurrence in the 

maize foodchain called: Aflafree. To this aim, our work was divided into 2 axis. Firstly, we 

developed a biocontrol able to reduce aflatoxins contamination at field without impacting the 

maize microbial ecosystem and to understand the associated mechanisms involved. Secondly, 

we investigated the impact of A. flavus and its associated aflatoxins production on the local 

ecosystem (Fusarium sp.) and on D.O.N. production during the sensible step of maize pre-

storage. 

 This work is a first step towards the development of a biocontrol agent (or/and its 

enzymes & metabolites) against aflatoxins accumulation in maize. It is also the first milestone 

in the understanding the impact of A. flavus on the mycotoxigenic fungi already present in the 

maize ecosystem in France. 

 Hereafter, Chapter 1 focuses on bibliography. We will start with a brief introduction 

on mycotoxins, followed by the state of research on aflatoxins. We will specially focus on the 

prevention of their production and decontamination of food and feedstuffs thanks to bacteria. 

 Chapter 2 presents the different techniques developed to monitor the impacts of 

interactions and abiotic parameters on A. flavus (and A. parasiticus). 

 Chapter 3 focuses on the results and discussions. They are divided into 3 different 

parts: 
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 (i) Impact of environmental parameters on aflatoxin B1, aflatoxin B2 and D.O.N. 

  production; 

 (ii) Study of actinomycetes and A. flavus interaction; 

 (iii) Characterisation of the mechanisms involved by RT-qPCR and adsorption 

  tests; 

 Finally, we discusses results, drawing up conclusions and introducing future 

perspectives. 
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Bibliographic review 

1.1. Mycotoxins 

1.1.1. Definition 

 According to the Collins dictionary, mycotoxins are "any of various toxic substances 

produced by fungi, some of which may affect food and others of which are alleged to have 

been used in warfare". The word mycotoxin comes from the ancient Greek word "mykes" 

which means mushroom and the Latin word "toxicus" which means poison (Online 

Etymology Dictionary, 2014). Bennett & Klich (2003) elaborated a more precise definition of 

mycotoxins: 

(i)  low molecular weight molecules; 

(ii) secondary metabolites produced by filamentous fungi; 

(iii) which can cause death or disease to human being or animal at a low 

concentration. 

The 3 main mycotoxins producers are Aspergillus, Penicillium and Fusarium genera. 

Currently, 300 to 400 mycotoxins are known, among which 30 have been studied for their 

toxic and/or disturbing impacts for human and animal (Bennett & Klich, 2003; Boudergue et 

al., 2009). 

1.1.2. Classification 

 Due to their diverse chemical structures and origins, mycotoxins are very hard to 

classify. They can be arranged according to their chemical structure, toxicity, biosynthetic 

origin and/or producing fungi.  

Among the different biosynthetic origins, the best-known involve the polyketides.  

The Polyketide Synthases (PKS) are a family of multi-domains enzymes largely found in 

bacteria, fungi and plants. There are 3 types of PKS: 

Type I: large enzymes with multiple functional domains only active once during the 

biosynthesis (bacteria and fungi); 

Type II:  a complex of several single module proteins with separated enzymatic 

activities, acting iteratively to produce a polyketide (bacteria); 

Type III:  a single active site enzyme which acts repeatedly to form the final product; 

they function as homodimers and do not include a Acyl-Carrier Protein 

domain (mainly in plants). 
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Table 1 - The main 
mycotoxins 
originating from 
polyketides synthases. 
Based on Gallo et al., 
(2013). 

As we studied fungi, this study will solely focus on Type I PKS with a special attention to the 

following ones: 

 Fungal PKS (mainly Type I iterative PKS) can be divided according to their reducing 

functions depending on the absence or the presence of some or all domains of β-

Ketoreductase (KR), Dehydratase (DH) and Enoyl Reductase (ER). The different types of 

PKS and their associated mycotoxins are represented in table 1. 

 The Non-Reducing PKS (NR-PKS) AflC is essential for aflatoxins production 

(Watanabe & Townsend, 2002). This chemical family of mycotoxins includes 18 compounds 

based on 3 furans and 1 coumarin structure (Table 1).  

 The 6-methylsalicylique synthase, e.g. in Penicillium expansum, is a PKS without the 

ER domain. This PKS is called Partially-Reducing PKS (PR-PKS) and is essential for patulin 

production (Gallo et al., 2013).  

 The genes aoks1 of A. westerdijkiae and otapksPN of P. nordicum encode 2 different 

PR-PKS without the ER and DH domains. Their encoding PR-PKS are essential for the 

production of Ochratoxin A (OTA): an isocoumarin coupled with a l-phenylalanin (Bacha et 

al., 2009; Gallo et al., 2013).  

 The production of fumonisins and Zearalenon (ZEA) relies on Highly-Reducing PKS 

(HR-PKS), a specific type of PKS with the following 3 reducing domains: KR, DH and ER 

(Gallo et al., 2013). Fumonisins are based on a linear chain of 18 carbons. The fumonisin B1 

(FB1) and fumonisin B2 (FB2) are the most commonly known. FB2 is the C10 deoxy 

analogue of FB1. On the contrary, ZEA is an acid resorcyclic lactone.  
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 The second best known biosynthetic origin is the terpene cyclase trichodiene synthase 

(e.g.: Tri5). The latter is essential for the cyclisation of the farnesyl pyrophosphate which 

itself induces the production of trichothecenes (Hohn & Vanmiddlesworth, 1986). There are 

more than 200 trichothecenes with a common 12-13 epoxytrichothec-9-ene core structure 

(Table 2). They are classified in 4 groups from A to D, according to their attached radical 

group (R). The group at the C-8 position is the differentiating element between groups A and 

B. Table 2 represents the structure of those groups. For example, the T-2 toxin (Table 2 a.) 

has an esther function at C-8 whilst all Type B trichothecenes have a C-8 keto (carbonyl) 

function. These 2 types of trichothecenes are the most alarming in terms of occurrence and 

toxicity (McCormick et al., 2011). 

Table 2 - Structure of trichothecenes: type A and B (Inchem, 1990). 

 

 The third biosynthetic origin is the dimethylallyltryptophan synthase. The latter is 

essential for the conversion of l-tryptophan and dimethylallyl diphosphate into tetracyclic 

ergoline ring. This ring is the main core of ergots alkaloids which are toxins produced by 

fungi and plants. Ergots have been extensively reviewed in Wallwey & Li, (2010). 

1.1.3. Toxicity 

 1.1.3.a Brief history 

 Ergotism is supposedly the oldest human illness linked to mycotoxins, with major 

outbreaks in the Middle Age. Ergotism was the result of eating bread polluted by “ergot”. The 

most severe symptom of this illness was leg-necrosis and delirium. “Ergot” comes from 

Claviceps purpurea which can contaminate rye and can be transmitted to humans through 

bread consumption (van Dongen & de Groot, 1995).  

 At the end of 1959, peanuts from Brazil were imported in England as protein 

supplements in farming feeds. Soon afterwards, young turkeys began to die and other animals 

such as pigs fell ill. 100,000 turkey poults were killed by the so-called “turkey X disease”, 

a. b. 
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“X” referring to its supposedly viral origin (Cole, 1986). Shortly after, aflatoxins were 

identified as the source of this intoxication (Nesbitt et al., 1962). 

 1.1.3.b Toxicities  

 Following this incident, toxicologists began to study the toxicity of mycotoxins. 

Humans and animals are exposed to mycotoxins through ingestion, skin contact and 

inhalation. For instance, moisture-damaged indoor environments are one of the greatest 

threats in terms of inhalation of mycotoxins (Täubel et al., 2011). Nonetheless, until now, the 

highest risk of exposure remains ingestion. 

 Mycotoxins have a wide range of health impacts. This is due to the variety of their 

chemical structures. Table 3 draws a link between mycotoxins and their health impacts. 

Among those mycotoxins, aflatoxins (except for aflatoxin M1) are the only ones recognized 

as carcinogenic for humans (Group 1 (IARC, 2014)). 

Table 3 - Toxicity of the main mycotoxins regulated by the EU. '+'=  symptoms on animals; no sign = no evidence of 
symptoms on animals.  

 

Further details on this table are given below, except for aflatoxins' impact on human and 

animal health which will be further developed in chapter 1.2.2.  

 OTA is potentially carcinogenic for humans (Group 2B (IARC, 2014)). OTA is 

absorbed through the gastrointestinal tract, transported in blood vessels and accumulated in 

kidneys (Ringot et al., 2006). For animals, OTA is genotoxic, teratogenic, carcinogenic, 

hepatotoxic, nephrotoxic and immunotoxic (Hayes et al., 1974; Boorman et al., 1992; 

Castegnaro & McGregor, 1998; Al-Anati & Petzinger, 2006; Palma et al., 2007). OTA 
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exposure is supposedly linked to the Balkans human nephropathy (Petkova-Bocharova & 

Castegnaro, 1990). 

 Patulin is not carcinogenic for humans (Group 3 (IARC, 2014)). For animals, it is 

teratogenic and possibly immunotoxic (Osswald et al., 1978; Paucod et al., 1989; Llewellyn 

et al., 1998). In addition, symptoms such as weight loss, intestinal and gastric problems, 

neurotoxicity and nephrotoxicity can occur (Pfohl-Leszkowicz, 1999). 

 Deoxynivalenol (D.O.N.) is not carcinogenic for humans (Group 3 ((IARC, 2014)). 

The symptoms (animals and humans) linked to D.O.N. exposure are weight loss, anorexia, 

nausea, diarrhea, nutritional loss and immune system modification (Pestka, 2007; Burel et al., 

2009; Sobrova et al., 2010). 

 ZEA (Group 3 (IARC, 2014)) is genotoxic, teratogenic, carcinogenic, hepatotoxic, 

haematotoxic and immunotoxic for animals (Zinedine et al., 2007). It is also an endocrine 

disruptor due to its close structure to 17 ß-oestradiol (Fitzpatrick et al., 1989) leading to 

animal abortion and infertility. For humans, there is a presumed link between exposure to 

ZEA and premature puberty in Puerto-Rico (Sáenz de Rodriguez et al., 1985). 

 Fumonisins (B1+B2) (Group 2B (IARC, 2014)) are not considered as genotoxic but 

are teratogenic (Voss & Riley, 2013) (Group 2B (IARC, 2014)). Its other health impacts 

include liver toxicity, cancer, leukoencephalomalacia and pulmonary edema (the entire list of 

impacts is available in table 3). For humans, fumonisins are supposedly linked to esophagus 

cancer (Rheeder et al., 1992). 

 T-2 toxin (Group 3 (IARC, 2014)) is teratogenic, hepatotoxic and causes weight loss, 

decrease in blood cell and leukocyte count, reduction in plasma glucose and stomach toxicity 

for animals. There are few studies on the ht-2 toxin, its deacetylated form, which has alleged 

health impacts. Unfortunately, too little is known on t-2 & ht-2 impacts on human health (Li 

et al., 2011). 

 Citrinin is not carcinogenic for humans (Group 3 (IARC, 2014)) despite an identified 

in vitro genotoxicity (Knasmuller et al., 2004). It is teratogenic and nephrotoxic for animals 

(Reddy et al., 1982; Flajs & Peraica, 2009) but not enough data are available to identify its 

impacts on human health.  
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1.1.3.c Co-contamination 

 In addition to the studies linking a single mycotoxin exposure to its toxicity impacts, 

other research have been done in vivo on co-contamination, the effects of double or multiple 

mycotoxins exposure, on animal health. Those impacts can be organised in 4 categories: 

synergic, additive, less than additive or antagonistic effects categories (Figure 1).  

Figure 1 - Synergistic, additive, less than additive and antagonistic interactions as described by Grenier & Oswald, 
(2011). Effects of toxin A, toxin B and both toxins addition versus the control. 

Most studies have focused on Aflatoxin B1 (AFB1) and FB1 co-contamination. Grenier & 

Oswald (2011) made a summary of all research to date and found the four different categories 

of effects in a wide range of animals: 

 In almost all cases of co-contamination, the synergistic and/or additive effects were the 

reduction of the entire body weight (bw) gain. In some cases, the antagonistic effects were the 

reduction of organs, including liver and kidneys. For example, the aspartate amino-transferase 

is an enzyme monitored in blood. Its higher concentration is a sign of organs malfunction 

including liver, kidneys, brain and heart (Ozer et al., 2008). This enzyme amounts were 

measured in broilers after a 33 days exposure to different AFB1/FB1 mg.kg-1 of feed alone or 

in combination. At 0.05/50, synergistic effects were shown; at 0.05/200, additive and at 0.2/50 

or 0.2/200, antagonistic impacts. This example reveals the complexity of mycotoxins co-

contamination. Despite measuring the impact of 2 toxins on the same animal species, results 

differ depending on the ratios (Tessari et al., 2010).  

 Another example is AFB1 and OTA co-contamination. Synergistic effects were less 

predominant than in AFB1/FB1 co-contamination. Nonetheless, there were many additive and 

less than additive effects of AFB1 and OTA co-contamination on bw reduction and embryos 

mortality/egg production (Grenier & Oswald, 2011). This example highlights the need to 

study double and multiple contamination of mycotoxins to identify the most synergistic risks 

on animal and human health.  
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1.1.4. Food chain contamination and consumer exposure 

 Each mycotoxin is produced by 1 or several fungal genera. Depending on 

environmental conditions, each fungal species produces a wide range of different mycotoxins 

(Garcia et al., 2009). For instance, the single genus Aspergillus produces mycotoxins such as 

aflatoxins, ochratoxins, patulin and fumonisins (Frisvad et al., 2007). Table 4 represents the 

main fungal genera with their related mycotoxins and the main commodities they can 

contaminate: 

Table 4 - Mycotoxins, their related commodities and examples of associated producing fungi (engormix, 2014). 

 

 Mouldy commodities are not directly linked to a high mycotoxin content. On the 

contrary, macroscopically clean commodities can be highly contaminated with mycotoxins. 

This makes it difficult to sort commodities according to the level of mycotoxins 

contamination. The absence of mycotoxins in mouldy commodities can be due to a non-

mycotoxigenic fungal colonization or to environmental conditions not propitious to 

mycotoxins production. Those environmental parameters are listed in figure 2. 

 To manage mycotoxins, it is crucial to first pay attention to the fields (parts 1. and 2. 

of figure 2). Fields crops (1.) are naturally contaminated by a variety of mycotoxigenic fungi, 

depending on weather conditions, farmer practices, fungal competition and other parameters 

(listed in 1.). For example, the French maize is usually contaminated at field with Fusarium 

species including F. graminearum and section liseola (“Les Fiches Accidents,” 2014). Yet, in 

Italy, with its warmer climates, maize is usually contaminated by other fungi such as 

Aspergillus sp. (Giorni et al., 2007). These fungal contaminations have an impact on 

mycotoxins occurrence not only at field but also during storage (parts 3., 4., 5. and 6. (before 

and after process)) (Magan & Aldred, 2007). 
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Figure 2 - Risk factors affecting mycotoxin occurrence in feed, taking poultry as a case study (knownmycotoxins.com, 
2014) 
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 Managing storage conditions is the second crucial step (parts 3.,4., 5. and 6.). Drying 

duration, water activity (aw), temperature, CO2 monitoring and other parameters listed in 3.,4., 

5. and 6. are key factors to limit the production of mycotoxins during storage (Chulze, 2010).  

 The processing steps (parts 4. (milling process) and 6.) can reduce or increase the 

amount of mycotoxins. For example, during starch extraction, only 8.7% of the initial AFB1, 

aflatoxin B2 (AFB2), aflatoxin G1 (AFG1) and aflatoxin G2 (AFG2) (AFT) content is in the 

starch. Most of the initial AFT content (36.9%) is in feed by-products (e.g. 6.) (including 

fiber, germ and gluten) and can impact animals health (8.) (Aly, 2002).  

 The main feedstuffs at risk of contamination are maize, groundnuts, copra, palm nuts 

and oilseed cakes. A recent international survey (2012 and 2013) of 4,200 samples of 

feedstuffs analysed the presence of AFT, ZEA, D.O.N., fumonisins and OTA (Table 5). More 

than 50% of samples were found positive for D.O.N. and fumonisins. 25 to 30% of the 

samples were found positive for AFT with an average concentration of 33.5 µg.kg-1 (2012 and 

2013). The main contaminant was D.O.N.. 59-64% of samples were found positive with an 

average concentration of 770-1,088 µg.kg-1 depending on the year (2012-2013) (Nährer & 

Kovalsky, 2014). 

Table 5 - Overview of Biomin's worldwide survey (2012 and 2013) (Nährer & Kovalsky, 2014) 

 

 Depending on the geographic region, prevalence of mycotoxins differs (Figure 3). For 

instance, in Central Europe, the most predominant mycotoxin is D.O.N. with 66% of samples 

positive, followed by fumonisins 36% and AFT 29%. Notwithstanding, in Southern Europe, 

results have found a higher occurrence of mycotoxins with fumonisins at 71%, AFT at 55% 

and D.O.N. at 50%. 
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Figure 3 - Prevalence of mycotoxins in different regions according to the percentage of positive samples (Nährer & 
Kovalsky, 2014) 

 The level of mycotoxins exposure in crops is not a direct indicator of human exposure. 

It is very difficult to obtain reliable and accurate data due to censorship and to the 

heterogeneity of mycotoxins content in commodities. The results of recent studies in China, 

Korea, Malaysia and South Africa showed maximum levels of AFT daily intake ranging from 

2.69 to 133 ng.kg-1 of bw. European countries are usually less exposed (< 1 ng.kg-1 bw) with 

the exception of Greece. For instance, 2 French studies estimated children daily exposure 

between 1 and 10 pg.kg-1 bw. This can be explained by the European regulatory environment 

(Marin et al., 2013). 
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1.1.5. Regulations and socio-economic impacts 

 Confronted by the variety of contaminated commodities and toxicological data, the 

European Food Safety Agency (EFSA) listed all the sources of possible consumer exposure 

and proposed recommendations of maximum levels. The EU then issued regulations to limit 

consumer exposure based on those recommendations. Table 6 gives an overview of the 

various maximum limits applied for foodstuffs in Europe (1881/2006 modified on 6th March 

2014, European Union). The limits for AFT will be developed in chapter 1.2.3. The regulation 

sets concentration limits for D.O.N. from 1,250 µg.kg-1 in unprocessed cereals and milling 

fractions of maize (particles size higher than 500 µm) to 200 µg.kg-1 for baby food (infants 

and young children). 

 The EU has the lowest limits for mycotoxins contamination in the world. Although 

regulations aim to protect EU citizens health, their impact on international trade can be 

drastic. Wu (2008) studied the economic impacts of AFB1 limits on peanuts trade. In the EU, 

food processing industries experienced greater occurrences of supply shortage and a reduced 

space to set their own prices and substitute goods. In the countries supplying peanuts to the 

EU; trading routes changed as soon as the EU laws were enforced. Peanuts started to be 

traded between countries with identical or similar regulations on AFB1. Nations with poor or 

poorly enforced standards in terms of AFB1 contamination began to trade peanuts between 

themselves at a cheaper price (Wu, 2008). In the short term, EU regulations on AFT have 

reduced the ability of low-income nations to export certain foodstuffs to the EU market and to 

gain revenues from this trade. 
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Table 6 - Maximum levels authorised for mycotoxins in foodstuffs. (1881/2006 modified on 6th March 2014) (European 
Union, 2006). AFT= total among of AFT; M1 = aflatoxin M1. 
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1.1.6. "Emerging" mycotoxins 

 Currently, more than 300 mycotoxins have been identified. However, only 14 have 

been regulated due to their high exposure risk and health threats for EU consumers. Among 

the remaining mycotoxins, some are in the EU's priority lists. They are shown in table 7: 

 

Table 7 - Mycotoxins under surveillance (monitoring and follow-up) by the EU  

(European Union, 2012; Verstraete, 2013). 

 The first and second columns list mycotoxins whose presence in feed and food the EU 

recommends monitoring to evaluate consumer exposure.  

 The third column list mycotoxins whose contamination and toxicity risks have to be 

evaluated in the forthcoming years. 

 The "emerging" status of other mycotoxins is also directly linked to the availability of 

reliable techniques to analyse those mycotoxins and to develop reliable exposure data. The 

development of measurement techniques including LC-MS has revealed possible threats due 

to masked, hidden, bound or glycosylated mycotoxins, including D.O.N. metabolites with a 

high toxicity potential (Verstraete, 2013). 
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1.2. Aflatoxins 

1.2.1 Presentation 

There are currently 41,100 scientific publications among which more than 10,000 focus on 

aflatoxin. Figure 4 represents the number of publications per year on aflatoxin since the first 

characterisation in 1962. Nowadays, more than 300 publications are published every year on 

this subject. 

Figure 4 - Number of publications per year on "Aflatoxin" between 1963 and 2013 (Pubmed). 

 In 1962, the Turkey X disease led to the discovery of AFT. Nesbitt et al., (1962) 

identified 2 main types based on their fluorescence: the "B" aflatoxins (AFB) with a violet-

blue fluorescence (445 nm) and the "G" aflatoxins (AFG) with a green fluorescence (455 nm). 

  The AFB are made of AFB1 and AFB2. The chemical structure of AFB1 (figure 5 a.), 

is based on a coumarin group (in red) attached to a bisfuran ring (in green) and a pentanon 

Figure 5 - 2D representation of AFB1 (a.), AFB2 (b.), AFG1 (c.) and AFG2 (d.) structures  



 

group (in blue). AFB1 molecular weight is

(figure 5 b.) does not have a double bond in the bisfuran ring. 

 The AFG chemical structure is close to the B's, with the same coumarin and bisfuran 

ring. The difference is that AFG have a furan group (in purp

pentan group. The distinction between AFG1 and AFG2 is the same as between AFB1 and 

AFB2 (Figure 5 c. and d.). 

 Shortly after the discovery of AF

Allcroft & Carnaghan (1963) 

AFB1 contaminated groundnuts meal (daily intake of 2 

to 10.8 mg). The cows' milk was given to ducklings 

which developed liver lesions. An investigation of the 

milk revealed the presence of aflato

(Figure 6). The name AFM1 comes from cows' milk. 

is a result of AFB1 hydroxylat

metabolism (Allcroft & Carnaghan, 1963)

Evolutionary studies estimate that AFT have been produced for more than 400 million years 

(Alkhayyat & Yu, 2014). However, u

produce AFT. The hypotheses of Cary & Ehrlich (2006) are that AFT could:

 (i)  be a defense response by fungi to stress; 

 (ii)  provide protection from UV damage

 (iii) be by-products of primary metabolism

 (iv)  be virulence factors

 (v)  increase asexual spore production;

 (vi)  provide protection from predators for reproductive structures such as conidia and 

sclerotia.  

1.2.2. Toxicity 

 The toxicity of AFT 

Williams et al., 2004; IARC, 2012)

humans (except for AFM1) (Group 

& Linsell, 1977) but other targets remain

intradermal contact. The median lethal dose (LD50) for AFB1

rabbits to 18 mg.kg-1 bw for rats 
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Figure 6 - 2D representation of AFM1 structure

AFB1 molecular weight is 312 g.mol-1. Unlike AFB1, t

does not have a double bond in the bisfuran ring.  

The AFG chemical structure is close to the B's, with the same coumarin and bisfuran 

ring. The difference is that AFG have a furan group (in purple) where AFB aflatoxins have a 

pentan group. The distinction between AFG1 and AFG2 is the same as between AFB1 and 

the discovery of AFB and AFG, 

Carnaghan (1963) fed cows with naturally 

AFB1 contaminated groundnuts meal (daily intake of 2 

to 10.8 mg). The cows' milk was given to ducklings 

which developed liver lesions. An investigation of the 

milk revealed the presence of aflatoxin M1 (AFM1) 

(Figure 6). The name AFM1 comes from cows' milk. It 

hydroxylation by the cow's 

(Allcroft & Carnaghan, 1963).  

Evolutionary studies estimate that AFT have been produced for more than 400 million years 

However, until now, questions remain on the incentives for fungi to 

produce AFT. The hypotheses of Cary & Ehrlich (2006) are that AFT could:

nse response by fungi to stress;  

provide protection from UV damage; 

products of primary metabolism; 

factors; 

increase asexual spore production;  

provide protection from predators for reproductive structures such as conidia and 

 has already been broadly studied (Peers & Linsell, 1977; 

, 2004; IARC, 2012). Since 2012, those AFT are considered as carcinogen

(Group 1 (IARC, 2014)). The main target organ is the liver

targets remain. Exposure happens through ingestion, inhalation or 

intradermal contact. The median lethal dose (LD50) for AFB1 ranges from 

rats (Nutrition, 2014).  

2D representation of AFM1 structure 

Unlike AFB1, the AFB2 structure 

The AFG chemical structure is close to the B's, with the same coumarin and bisfuran 

le) where AFB aflatoxins have a 

pentan group. The distinction between AFG1 and AFG2 is the same as between AFB1 and 

Evolutionary studies estimate that AFT have been produced for more than 400 million years 

ntil now, questions remain on the incentives for fungi to 

produce AFT. The hypotheses of Cary & Ehrlich (2006) are that AFT could: 

provide protection from predators for reproductive structures such as conidia and 

(Peers & Linsell, 1977; 

considered as carcinogen for 

target organ is the liver (Peers 

Exposure happens through ingestion, inhalation or 

from 0.3 mg.kg-1 bw for 
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1.2.2.a Impacts on human health 

 Human ingestion of AFB1 can cause many different symptoms. Those symptoms are 

mainly due to its 8-9 epoxide form. This form, as well as other AFB1 metabolites, are 

represented in figure 7: 

Figure 7 - Pathways of AFB1 biotransformation and excretion in humans (Vincenzi et al., 2011). The grey boxes 
highlight the fluids of excretion. AFQ1: 3α-hydroxylation of AFB1. AFP1: O-demethylation of AFB1. 

a. Experimental and human evidence of metabolites excretion; b. Scarce or no evidence available; c. Only 
experimental evidence available.  

 Aflatoxin 8-9 epoxide is the result of AFB1 conversion by cytochrome P450 family  

into its carcinogenic form. This form can bind DNA or be hydrolysed and converted into 
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aflatoxin dihydriol to become aflatoxin albumine adducts in blood (AF-alb). The latter is a 

frequently used biomarker. Symptoms in humans are linked to AFT metabolites. The 

exposure can be acute (high levels (mg daily intake) of AFT resulting in immediate 

symptoms) or chronicle (low to moderate levels (µg daily intake) exposed regularly), and can 

impact various organs such as liver and kidneys. 

 Acute exposure: 

 The most occurring symptoms are linked to chronicle AFT exposure. However, in 

cases of exceptionally high AFT contents, clinical symptoms such as hepatitis, bile duct 

proliferation, edema, anorexia, malaise, reduced kidney function and lethargy can appear 

(Williams et al., 2004; Lizárraga-Paulín et al., 2011). Shortly after identifying AFT, a link 

between AFB1 food exposure and human hepatitis was found. The first case of endemic 

"aflatoxicosis" revealed that 397 persons were daily exposed to 2-6 mg of AFB1 during a 

month. Among these, 106 died due to a complete liver or/and kidneys failure (Krishnamachari 

et al., 1975). Since then, despite improvements in food safety, endemic aflatoxicosis still 

occur in many African and Indian countries. The last case was reported in April 2004 with a 

maize concentration of up to 46.4 mg.kg-1. This led to 317 cases of aflatoxicosis, among 

which 125 led to deaths (CDC, 2014). 

 Chronicle exposure: 

 HepatoCellular Carcinoma (HCC):  

 HCC is a common form of cancer: around 500,000 new cases are diagnosed every year 

around the world (El-Serag, 2011). Many cohort studies have been conducted in China to gain 

a precise knowledge of the incidence of AFT on HCC occurrence. Blood and/or urine samples 

were taken from more than 43,000 persons (aflatoxins and AFT biomarkers were quantified). 

Exposure to AFT led to a 2.4 to 5.5 fold increase of HCC occurrence (Ross et al., 1992; Qian 

et al., 1994; Wang et al., 1996). Those data led to the classification of AFT as carcinogenic 

for humans. Further investigations revealed that in 36% of HCC cases, AFT exposure was 

correlated with a G to T transversion at codon 249 of the TP53 tumour-suppressor gene (Stern 

et al., 2001). 

 Furthermore, there is an epidemic link between HCC cases and the Hepatitis B Virus 

(HBV). A cohort study evaluated the impact of HBV and AFB1 exposure on HCC incidence 

(Wu et al., 2009). As shown in table 8, the relative risk of HCC incidence in HBV-positive 

patients rises from 1 to 7. In case of high exposure to AFB1 (≥ 59.8 fmol.mg-1 of AF-alb) this 
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risk reaches 10.4. AFB1 exposure and HBV have a synergistic effect on the development of 

HCC. 

Table 8 - Cohort studies of AFB1 exposure, HBV and HCC (IARC, 2012). HBsAG positive = HBV-positive patients. 
HBsAG negative = HBV negative patients. 

 Impacts on the immune system: 

 Chronicle AFT exposure can also impact the immune system. There is currently few 

data available on those impacts on humans. Nonetheless, Jiang et al., (2005) studied the AF-

alb concentration of 64 Ghanaians. The AF-alb concentration ranged from 0.33 to 2.27 

pmol.mg-1 albumin. They showed that the number of leukocytes was the same, independently 

of AF-alb content. However, T/B lymphocytes and activity markers of leukocytes were shown 

to be significantly lower in case of high AF-alb. This data suggests a reduction of cellular 

immunity in case of AFB1 exposure (Jiang et al., 2005). 

 The Human Immunodeficiency Virus (HIV) leads to a progressive failure of the 

immune system. Jolly et al., (2011) studied 314 Ghanaians (including 155 HIV-positive). 

They first demonstrated that HIV-positive Ghanaians had a rate of AF-alb significantly higher 

than the seronegatives. Moreover, statistical analysis revealed a significant correlation 

between the quantity of AF-alb and the HIV viral load in HIV-positive persons (Jolly et al., 

2011). 

 Child growth retardation: 

 Another impact of chronicle exposure to AFT is child growth retardation. Gong et al., 

(2004) monitored the height and AF-alb concentration of 200 children between 16 and 37 

months old in Benin. A reverse correlation was established between the amount of AF-alb 

concentration and children height. For example, over an 8-month period, the children highly 

exposed to AFT grew 1.7 cm lesser than children less exposed. These data led to the 

conclusion that AFT exposure has an impact on infant growth (Gong et al., 2004). 
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 Infertility and birth incomes: 

 Only 1 publication deals with the links between human infertility and AFT chronicle 

exposure. Ibeh et al., (1994) showed that, among 100 men, AFB1 is present in the semen of 

40% of infertile and 8% of fertile men (in the samples found positive, the average AFB1 

concentration was 1.660 µg.ml-1 and 1.041 µg.ml-1 respectively). Feeding rats during 14 days 

at 8.5 mg.g-1 of AFB1 led to similar semen abnormalities (Ibeh et al., 1994).  

 Shuaib et al., (2010) reviewed birth outcomes in correlation with aflatoxin exposure. 

They highlighted that aflatoxin exposure is associated with reduced birth weight and 

increased occurrence of still born and jaundice.   

1.2.2.b Impacts on animal health 

 Many studies have been done on animals to evaluate the toxicity of AFT. Hereby, we 

will restrict our focus to impacts solely identified on animals. Among the symptoms not found 

in humans are pulmonary disease and tracheal exudates in horses and mucosa accumulation, 

pulmonary edema, capillarity fragility and icterus injuries in swine (Table 9). 

 AFT exposure has different impacts on animals depending on the species studied, the 

inter-individual response and the dose ingested. For instance, monogastric animals are more 

vulnerable to AFB1 exposure than ruminants (polygastric). Monogastric animals develop 

symptoms with feed contaminated above 50 µg.kg-1 while cattle symptoms occur above 1.5-

2.23 mg.kg-1 (Eaton, 1994). Table 9 proposed by Lizzarraga-Paulin et al., (2011) summarizes 

the major effects detected in different animals species:  

  



 

 

Table 9 - Major diseases caused by aflatoxicosis in some animal 
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Major diseases caused by aflatoxicosis in some animal species (Lizárraga-Paulín et al.

 

et al., 2011) 
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1.2.3. Aflatoxins exposure 

 One of the best ways to reduce the health impacts mentioned here above is to identify 

the risks of AFT exposure in food and feed.  

Tajkarimi et al., (2011) has ranked the risks of AFT exposure according to commodities:  

(i) high risk: maize (cereal), peanut, pistachio, brazil nut (nut), cottonseed, copra 

(oilseed) and coconut meat; 

(ii) moderate risk: wheat, oat, millet, barley, rice sorghum (cereal), cassava (root), 

soybean, bean, pulse (bean); 

(iii) low risk: cocoa bean, linseed, melon seed, sunflower seed. 

 

 In terms of high risk commodities, Ezekiel et al., (2013) studied the AFB1 content of a 

Nigerian peanut-based meal called 'kulikuli'. The highest AFB1 content detected was 2,824 

µg.kg-1 in the Lagos state, Nigeria. Another study focused on Iranian pistachios (2009-2011) 

and their highest AFT content was 390.49 µg.kg-1 (Dini et al., 2013). As for oilseed, a 2010-

2011 survey identified the highest concentration at 14.4 µg.kg-1 AFT in cottonseeds (Feizy et 

al., 2012). 

 Faced with those risks, the EU set maximum authorised levels of AFT in various 

products to reduce consumers exposure (See table 6 in chapter 1.1.5.). Regulations do not 

only apply to AFT but also specifically to AFB1 and AFM1 in milk and milk products. The 

maximum levels for AFB1 range from 12 µg.kg-1 in almonds, pistachios and apricot kernels 

(before being sorted for human consumption) to 0.1 µg.kg-1 for baby food and dietary food for 

medical purposes. For feed (Annex 1), the maximum levels of AFB1 range from 20 µg.kg-1 

for feed materials and for cattle, sheep, goats, pigs and poultry to 5 µg.kg-1 for dairy cattle, 

calves, sheep, lambs, goats, kids, piglets and young poultry animals. 

 Levels of enforcement of those EU regulations are high and notifications of non-

conformity are included in the Rapid Alert System for Food and Feed (RASFF). In 2013, 

there were 340 notifications for AFB1 and AFT. Table 10 represents the number of 

notifications and the level of contamination. Those data give an idea of AFT occurrence in 

food and feed. For example, the highest concentration of AFB1 and AFT (28,000 µg.kg-1 and 

31,100 µg.kg-1 respectively) was found in shelled peanuts from China. Nuts and associated 

products represent the highest number of notifications in 2013, followed by fruits and 

vegetables. 41 out of the 44 notifications for fruits and vegetables related to Turkish dried 

figs. Notifications have also been placed on herbs and spices, especially spices coming from 
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India and Indonesia. A great proportion of notifications on feed materials (21/35) and cereals 

and bakery products (4/10) are associated with maize (RASFF, 2014).  

 

 

 

 

  

 

 

 

 

Maize is the cereal with the highest risk of AFT accumulation. As maize is the most 

consumed commodity in many countries, its contamination is of greatest concern. In 2011, the 

Food and Agriculture Organisation estimated the daily intake of maize at more than 50 g.day-1 

in 61 countries (“FAOSTAT,” 2014).  

The levels of maize contamination by AFT differ widely (from none to 46.4 mg.kg-1 in 

Kenyan maize, 2004). There are numerous and regular surveys worldwide to monitor AFT 

occurrence. In 2011, Indians analysed 639 samples of maize pre and post-harvest. Among 

these, 22.97% (pre-harvest) and 53.93% (post-harvest) had AFB1 levels between 0.4 and 

149.32 µg.kg-1 (Karthikeyan et al., 2013). Another example is a Cameroonian survey on 

poultry maize. The analysis of 77 samples revealed that 9.1% were positive with AFT levels 

between 2 and 42 µg.kg-1 (Kana et al., 2013). To avoid acute exposure, many countries set 

maximum levels of AFT in maize for food, ranging from 40 (China, Nigeria) to 4 µg.kg-1 

(EU). Unfortunately, these regulations are often difficult to enforce.  

Those different AFT regulations for maize are represented in Figure 8: 

Table 10 - Notifications on total AFT given by the RASFF portal for the year 2013 in various products (RASFF, 
2014) / = no data available. 
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In Europe, 2 recent surveys on AFT occurrence have been done. A Serbian study 

revealed that among the 137 maize samples analyzed in 2012, 68.5% had between 1.01 and 

86.1 µg.kg-1 of AFT content (Kos et al., 2013). In Croatia, 633 maize samples were analyzed 

in 3 different regions in 2013. 38.1% of them were contaminated with AFB1 levels from 1.1 

to 2,072 µg.kg-1, the most contaminated region being Eastern Croatia (Pleadin et al., 2014). 

Although maize is not the main source of RASFF notifications, in France, it is the crop 

with the highest AFT risk. In 2012, the French maize production was 15.61 million tones and 

in 2011, the French maize exportation represented 1.9 billion € (“FAOSTAT,” 2014). In the 

last 10 years, there has been no RASFF notifications on maize in France. However, Italy has 

received more than 15 notifications (2004-2014) due to AFT in maize, with 4 in the last 3 

years. Moreover, recent meteorological models (figure 9) highlight potential AFT risks in 

France in the years to come. Indeed, the business-as-usual scenario (figure 9 a.) predicts 

negligible to low risks in South West France for the 2001-2100 period. Nonetheless, in case of 

climate change leading to a global temperature increase of 3°C (figure 9 b.), AFB1 risks could 

be medium in South West France. In the case of a 5°C increase (figure 9 c.), AFB1 risks 

could be high in South West France and medium to high in other French regions. Those data 

suggest that AFT could become an emerging issue in France in the coming years. 

 

 

 

Figure 8 - Maximum levels of  
AFT authorised in maize per 
country (Wu & Guclu, 2012).  

No regulation,  

40 µg.kg-1(e.g. China)  

4 µg.kg-1 (e.g. EU). 

Red represents the most 
stringent regulations 

 



 

1.2.4. The fungi producing a

 One of the best ways to manage the risks of AFT exposure in food and feed is to 

identify the fungi producing aflatoxins.

 AFT are mainly produced by the 

classified by Micheli in 1729 

easily and its high concentration in the air. 

soon as enough water and nutrients are available in its environment

Furthermore, it is a Deuteromycota

Nowadays, the Aspergillus genus

criteria (Geiser et al., 2007; Index Fungorum 

sections including Flavi, Ochraceorosei 

Figure 9 - Maps of the risks of AFB1 contamination in maize in different meteo
period. a.= Business as usual scenario (no changes in parameters); 
al., 2012). 
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flatoxins 

One of the best ways to manage the risks of AFT exposure in food and feed is to 

i producing aflatoxins. 

AFT are mainly produced by the Aspergillus genus (Table 11). This genus 

 (Wilson et al., 2002). It is characterised by its ability

concentration in the air. Moreover, thanks to its ubiquity, it can grow as 

soon as enough water and nutrients are available in its environment

Deuteromycota, meaning it has mainly an asexual mode of reproduction. 

genus comprises 260 or 837 species depending on classification 

, 2007; Index Fungorum et al., 2014). They are divided in 22 different 

Flavi, Ochraceorosei and Nidulantes (Table 11) (Varga & Samson, 2008)

AFB1 contamination in maize in different meteorological scenarios
Business as usual scenario (no changes in parameters); b.= +3°C scenario; c.= +5°C scenario. 

One of the best ways to manage the risks of AFT exposure in food and feed is to 

genus (Table 11). This genus was first 

ed by its ability to spread 

Moreover, thanks to its ubiquity, it can grow as 

soon as enough water and nutrients are available in its environment (Bennett, 2010). 

meaning it has mainly an asexual mode of reproduction. 

comprises 260 or 837 species depending on classification 

They are divided in 22 different 

(Varga & Samson, 2008).  

rological scenarios for the 2000-2100 
+5°C scenario. (Battilani et 
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Table 11 - Summary of species producing aflatoxins. 

 The predominant AFT producer is Aspergillus flavus, which only biosynthesises AFB. 

The second predominant producers are A. parasiticus and A. nomius which produce AFB and 

additionally AFG (Dorner et al., 1984; Kurtzman et al., 1987). An exhaustive list of the 

current scientific literature on AFT producers is drawn in table 11. Flavi, Ochraceorosei and 

Nidulantes are the 3 sections of Aspergillus producing aflatoxins. AFG production by species 

belonging to section Ochraceorosei and Nidulantes are not currently described.  

 There is however an exception to those rules. Schmidt-Heydt et al., (2009) 

demonstrated that Fusarium genus can produce AFT (Schmidt-Heydt et al., 2009).  

 Hereafter, we will focus on A. flavus as the most occurring contaminant and A. 

parasiticus as a model of AFT production. 

 

  



 

1.2.4.a Aspergillus flavus 

A. flavus is currently the main AFB1 producer

many commodities, including

Giorni et al., 2007; Reddy et al.

2013; Mauro et al., 2013; Adjovi 

colour of A. flavus is white with 

green colours due to conidiogenesis. Figure 10

represents a mature conidiophore (cd) composed of an 

hyphae (h) (≤1 mm long) connected to the cd

composed of a core element: a vesicule (v), surrounded 

by phialides (p) which produce smooth conidies (c). It 

is often biseriated with a metula (a sterile branch upon 

which p develop) situated between v and p. 

To understand the occurrence of 

field, figure 11 represents A. flavus

on plant residues is usually characterized by the presence of various size sclerotia. The latter 

has hyphae which regroup themselves and create a melan

They germ and sporulate on the plant or in the soil. The resulting conidies are transported 

mainly through wind and insects before starting their pathogenic stage on the crop. With its 

high capacity of germination, 

secondary inoculum on surrounding crops 

of reproduction is by asexual conidial sporulation, it is capable of 

reproduction (Horn et al., 2009)

There are 2 different types of strains among 

and their ability to produce AFB. The Large (L) strains have large sclerotia (300

produce no or little AFB. The Small (S) strains have smaller scle

produce larger amounts of AFB 
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is currently the main AFB1 producer in 

many commodities, including maize (Klich, 2002; 

et al., 2011; Ezekiel et al., 

, 2013; Adjovi et al., 2014). The 

white with usually yellow-green to 

colours due to conidiogenesis. Figure 10 

a mature conidiophore (cd) composed of an 

1 mm long) connected to the cd. It is 

composed of a core element: a vesicule (v), surrounded 

by phialides (p) which produce smooth conidies (c). It 

is often biseriated with a metula (a sterile branch upon 

which p develop) situated between v and p.  

To understand the occurrence of A. flavus at 

A. flavus pathogenic and saprophytic stages. The saprophytic stage 

on plant residues is usually characterized by the presence of various size sclerotia. The latter 

has hyphae which regroup themselves and create a melanin-based surface (black colour). 

They germ and sporulate on the plant or in the soil. The resulting conidies are transported 

mainly through wind and insects before starting their pathogenic stage on the crop. With its 

high capacity of germination, A. flavus can easily use again insects and wind to realize 

secondary inoculum on surrounding crops (Abbas et al., 2009). Although A. flavus

of reproduction is by asexual conidial sporulation, it is capable of 

2009). 

There are 2 different types of strains among A. flavus, depending on their sclerotia size 

and their ability to produce AFB. The Large (L) strains have large sclerotia (300

produce no or little AFB. The Small (S) strains have smaller sclerotia (150

produce larger amounts of AFB (Cotty, 1989). 

Figure 10 - Aspergillus flavus
c= conidies; cd= conodiophores; h= hyphae; 
p= phialides and v= vesicule.

pathogenic and saprophytic stages. The saprophytic stage 

on plant residues is usually characterized by the presence of various size sclerotia. The latter 

based surface (black colour). 

They germ and sporulate on the plant or in the soil. The resulting conidies are transported 

mainly through wind and insects before starting their pathogenic stage on the crop. With its 

can easily use again insects and wind to realize 

A. flavus main mode 

of reproduction is by asexual conidial sporulation, it is capable of Petromyces sexual 

, depending on their sclerotia size 

and their ability to produce AFB. The Large (L) strains have large sclerotia (300-700 µm) and 

rotia (150-250 µm) and 

Aspergillus flavus by microscopy. 
= conidies; cd= conodiophores; h= hyphae; 

vesicule. (Personal data) 



 

 

1.2.4.b Aspergillus parasiticus

 A. parasiticus was known as the second producer of 

AFT in food (Giorni et al., 2007)

sectorization of Aspergillus

reconsideration of occurrence studies based only on micro 

or macromorphological recognition of 

& Logrieco, 2014). A. parasiticus

AFT production. This fungus has a life cycle similar to 

flavus as shown in figure 11. 

and p can be recognized (Figure 12), There are however 

differences between A. flavus and 

(i)  has a darker green conid

(ii)  has rough conidies

(iii) is > 90% mostly uniseriate 

(iv)  both fungi also have different DNA sequences e.g.: ITS, 

  calmodulin sequences.

Figure 11 - The infection cycle of 
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Aspergillus parasiticus 

was known as the second producer of 

, 2007). However, the recent re-

Aspergillus species led to the 

reconsideration of occurrence studies based only on micro 

or macromorphological recognition of A. parasiticus (Leslie 

A. parasiticus is a model fungus for 

tion. This fungus has a life cycle similar to A. 

 Similar structures of h, c, cd 

and p can be recognized (Figure 12), There are however 

and A. parasiticus. The latter: 

has a darker green conidiation colour; 

rough conidies;  

mostly uniseriate (no metula); 

both fungi also have different DNA sequences e.g.: ITS, β-tubulin and 

calmodulin sequences. 

The infection cycle of Aspergillus flavus in maize (Abbas et al., 2009)

Figure 12 - Aspergillus parasiticus
microscopy. c: conidies, cd: 
conodiophores, h: hyphae, p: phialides 
and v: vesicule. (P

 

tubulin and  

2009) 

Aspergillus parasiticus by  
microscopy. c: conidies, cd: 
conodiophores, h: hyphae, p: phialides 

(Personal data) 
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 Other criteria such as extrolites profiles can differentiate them. For instance, their 

aflatoxin gene cluster, enabling A. parasiticus to produce AFG, is different.  

 Studying this gene cluster is key to understand the production of AFT. 

1.2.5. The biosynthesis pathway of aflatoxins 

 Before looking into the genetic parameters affecting the production of AFT, it is 

essential to recall that genetic regulation factors together with environmental factors influence 

the production of AFT. Unlike this document which deals with 1 factor (genetic regulation) 

before another (environment), interactions between those 2 parameters are much more 

interwoven. 

 

 Shortly after the discovery of the Turkey X disease, the biosynthesis study of AFT 

began with the characterisation of UV irradiated mutants (Lee et al., 1971).  

 Nowadays, we know that the entire cluster is a sequenced 75 kb cluster located in the 

subtelomeric region of chromosome 3 (Ehrlich et al., 2005b). Both A. flavus and A. 

parasiticus have this cluster in the same gene order. There is a slight difference between the 2 

though. A. flavus has a deletion in the cluster from 0.8 (L strains) to 1.5 kb (S strains) 

depending on the isolate. This deletion covers the 5' ends of aflF and aflU, and their entire 

279 bp intergenic region. This is the reason why A. flavus does not produce AFG. In the 

cluster, DNA studies revealed that A. flavus /A. parasiticus share a 96% homology (Ehrlich et 

al., 2005b). 

 We know that there are putatively 30 genes in this cluster, thanks to identification 

studies mostly done on A. parasiticus (Yu, 2012). Figure 13 represents the A. parasiticus 

cluster, the predicted genes and their associated enzymes in the biosynthesis pathway. 

Aflatoxin biosynthesis uses 1 AcetylCoA and 9 MalonylCoA as first substrates. Hereafter, we 

will describe A. parasiticus genes, their encoding proteins and the known precursors involved 

in AFT production.  

 Below is a description of each step of the biosynthesis (numbered in figure 13). 
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Figure 13 - The genes cluster of the biosynthesis pathway of aflatoxin in A. parasiticus according to Yu (2012); Georginna & 
Payne (2009). New gene names are labelled on the left and old gene names are labelled on the right of the cluster. Number 1. to 
12. and their associated genes (predicted genes in brackets) represent the steps described in chapter 1.2.5.  

NOR= norsolorinic acid; AVN= averantin; HAVN= 5'-hydroxy-averantin; AVNN= averufanin; AVF= averufin; VHA= 
versiconal hemiacetal acetate; VAL= versiconal; VERB= versicolorin B; VERA= versicolorin A; DMST= 
demethylsterigmatocystin; DHDMST= dihydrodemethylsterigmatocystin; ST= sterigmatocysin; DHST= 
dihydrosterigmatocysin; OMST= O-methylsterigmatocystin and DHOMST= dihydro-O-methylsterigmatocystin. 
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Figure 15 - Averantin (AVN). The red part 
represents AflD action. 

The first step of the biosynthesis pathway is the synthesis of Norsolorinic acid (NOR). As 

with the other steps described below, we will describe the gene first and then focus on the 

functions of the encoded proteins responsible for AFT production.  

1.) The synthesis of NOR 

genes: aflA (fas-2) & aflB (fas-1) & 

aflC (pksA) and putative gene: aflCa 

(hypC) 

proteins and functions: AflA (Fatty 

acid synthase α) & AflB (Fatty acid 

synthase β) & AflC (Polyketide 

synthase). These 3 proteins constitute a 

complex, called NorS, of 1.4x106 Da 

(partially purified in A. parasiticus). 

As represented in figure 14, the first 

role of NorS is the synthesis of a 

hexanoyl primer thanks to the addition 

of 2 MalonylCoA units. This primer is then transferred to the acyl carrier or β-ketoacyl 

synthase domain of AflC (Watanabe & Townsend, 2002) and is converted into Noranthrone 

(NAA) by the iterative addition of 7 other MalonylCoA units. However, this intermediate is 

not stable in time and can be converted spontaneously into NOR or by the putative NAA 

oxidase: AflCa (Figure 14) (Ehrlich, 2009). NOR is the first stable metabolite of the aflatoxin 

biosynthesis. A. parasiticus mutated strains of aflD (nor-1) show accumulation of a red-

orange pigment: NOR (Lee et al., 1971).  

2.) The conversion of NOR into Averantin (AVN)  

gene: aflD (nor-1) 

protein and function: AflD is a ketoreductase (Trail et al., 

1994) involved in the reduction of the NOR 1'-keto group 

into the 1'-hydroxyl group of AVN (Figure 15). Although 

the function is confirmed, mutated strains of aflD do not 

completely stop AVN conversion. The other mechanisms 

leading to this reduction are not understood yet.  

 

Figure 14 - Formation of norsolorinic acid: the first stable metabolite of 
aflatoxin biosynthesis (Ehrlich, 2009). Norsolorinic Acid Anthrone (NAA) 
= Noranthrone. In red, the predicted role of AlfCa. 



 

3.) The conversion of AVN into 5'

gene: aflG (avnA, ord-1)  

protein and function: AflG is a cytochrome P450 

monooxygenase involved in the hydroxylation of the AVN 

5'-keto group into the 5'-hydroxyl group of the HAVN

(Figure 16) (Yabe et al., 1991)

4.) The conversion of HAVN into Averufin (AVF)

genes: aflH (adhA), aflK (vbs)

proteins and functions: This 

involved in the dehydrogenation (NAD dependent) of the 

5'-hydroxyl group of HAVN to the 5'

5'-oxoaverantin (OAVN) (Figu

AflH deletion mutants did not completely lose

possibility to produce OAVN, suggesting 

potential mechanisms might be 

OAVN cyclase and is involved in the dehydratation of the 

5'-oxide of OAVN leading to the formation of the (2'

AVF (Figure 18) (Sakuno et al.

5.) The conversion of AVF into 

Versiconal Hemiacetal Acetate 

(VHA) 

genes: aflV (cypX), aflI (avfA)

(moxY) 

proteins and putative function

is a cytochrome P450 oxidoreductase 

(Wen et al., 2005). As proposed in 

figure 19, a loss of an hydride 

group from the 2'-C of AVF by 

AflV is the initiation step. The predicted metabolite is then hydrated, and AflI supposedly acts 

as an oxidoreductase (Figure 19) 
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Figure 16 - 5'-Hydroxyaverantin (HAVN). The re
part represents AflG action.

Figure 18 - Averufi
AflK action. 

Figure 17 - 5'-oxoaverantin (OAVN). The red part
represents AflH action.

Figure 19 - Predicted steps in the conversion of AVF 
(HVN) from Ehlrich,

The conversion of AVN into 5'-Hydroxyaverantin (HAVN) 

AflG is a cytochrome P450 

monooxygenase involved in the hydroxylation of the AVN 

hydroxyl group of the HAVN 

, 1991).  

The conversion of HAVN into Averufin (AVF) 

(vbs) 

This HAVN dehydrogenase is 

involved in the dehydrogenation (NAD dependent) of the 

hydroxyl group of HAVN to the 5'-oxide group of the 

oxoaverantin (OAVN) (Figure 17) (Sakuno et al., 2003). 

mutants did not completely lose the 

possibility to produce OAVN, suggesting that other 

might be involved. AflK is a 

OAVN cyclase and is involved in the dehydratation of the 

oxide of OAVN leading to the formation of the (2'-5') 

et al., 2005).  

The conversion of AVF into 

Versiconal Hemiacetal Acetate 

aflI (avfA), aflW 

functions: AflV 

is a cytochrome P450 oxidoreductase 

. As proposed in 

figure 19, a loss of an hydride 

C of AVF by 

AflV is the initiation step. The predicted metabolite is then hydrated, and AflI supposedly acts 

as an oxidoreductase (Figure 19) (Yu et al., 2000). 

Hydroxyaverantin (HAVN). The red 
represents AflG action. 

Averufin (AVF). The red part represents 

oxoaverantin (OAVN). The red part
represents AflH action. 

Predicted steps in the conversion of AVF into Hydroversicolorone 
, (2009). 

AflV is the initiation step. The predicted metabolite is then hydrated, and AflI supposedly acts 



 

AflW monooxygenase is responsible for the insertion of 

an oxygen atom between the 4' and the 5' keton groups

of HAVN and leads to the formation of VHA (Figure 

20) (Wen et al., 2005). 

6.) The conversion of VHA into Versiconal (VAL)

gene: aflJ (estA)  

protein and function: AflJ is an esterase which catalyses 

the removal of an acetate at the extremity of VHA to 

convert it into VAL (Figure 21) 

7.) The conversion of VAL into Versicolorin B (VERB)

gene: aflK (vbs) 

protein and function: AflK is a cyclase already involved in 

4.) (Figure 22). Nonetheless, AflK was first identified in 

the cyclodehydratation of VAL to VERB 

Anderson, 1992). It is a key step of aflatoxin biosynthesis 

because it is responsible for the closure of the bisfuran 

ring. It is also the last common precursor of the AFB1

AFG1 and AFB2-AFG2 pathways.

8.) The conversion of VERB into Versicolorin A 

(VERA) - AFB1-AFG1 pathway onl

gene: aflL (verB) 

protein and function: AflL is a cytochrome P450 

monooxygenase which converts the 

tetrahydrobisfuran ring into a dihydrobisfuran ring 

(Kelkar et al., 1997) (Figure 23).

9.) The conversion of VERA into Demethylsterigmatocystin (DMST) and VERB into 

Dihydrodemethylsterigmatocystin (DHDMST)

genes: aflN (verA) & aflM(ver
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Figure 22 - Versicolorin B (VERB). The red
represents AflK action.

 

Figure 23 - Versicolorin A (VERA). The red
AflL action. 

Figure 20 - Versiconal Hemiacetal A
The red part represents AflW

is responsible for the insertion of 

atom between the 4' and the 5' keton groups 

of HAVN and leads to the formation of VHA (Figure 

The conversion of VHA into Versiconal (VAL) 

AflJ is an esterase which catalyses 

the removal of an acetate at the extremity of VHA to 

convert it into VAL (Figure 21) (Chang et al., 2004). 

The conversion of VAL into Versicolorin B (VERB) 

AflK is a cyclase already involved in 

(Figure 22). Nonetheless, AflK was first identified in 

the cyclodehydratation of VAL to VERB (Lin & 

a key step of aflatoxin biosynthesis 

because it is responsible for the closure of the bisfuran 

ring. It is also the last common precursor of the AFB1-

AFG2 pathways. 

The conversion of VERB into Versicolorin A 

AFG1 pathway only. 

is a cytochrome P450 

monooxygenase which converts the 

tetrahydrobisfuran ring into a dihydrobisfuran ring 

(Figure 23). 

The conversion of VERA into Demethylsterigmatocystin (DMST) and VERB into 

Dihydrodemethylsterigmatocystin (DHDMST) 

aflM(ver-1) putative genes: aflY (hypA) & aflX (ordB)

Figure 21 - Versiconal (VAL). The red 
represents AflJ action.

Versicolorin B (VERB). The red part
represents AflK action. 

Versicolorin A (VERA). The red part represents 

Versiconal Hemiacetal Acetate (VHA). 
The red part represents AflW action. 

The conversion of VERA into Demethylsterigmatocystin (DMST) and VERB into 

) 

Versiconal (VAL). The red part 
represents AflJ action. 



 

proteins and functions: AflN 

cytochrome P450 monooxygenase 

(Keller et al., 1994) and AflM a 

deoxygenase (Skory et al., 1992)

AflY and AflX are predicted to be 

a monooxigenase (Ehrlich et al.

2005a) and an oxidoreductase,

respectively. Both putative 

enzymatic functions are 

represented in figure 24 (Cary & 

Ehrlich, 2006; Ehrlich, 2009)

AFB1-AFG1 pathway. 

In the case of AFB2-AFG2 pathway

substrate instead of VERA leading to the formation of DHDMST. The difference betwe

DMST and DHDMST is the same as the difference between VERA and VERB. It is due to 

the double bond in the bisfuran ring.

10.) The conversion of DMST into Sterigmatocystin (ST) and DHDMST into 
Dihydrosterigmatocystin (DHST)

gene: aflO (omtB, dmtA)  

protein and function: AflO is an 

methyltransferase. It catalyzes the transfer 

between the methyl group of S

adenosylmethionine and the hydroxyls of 

DMST and DHDMST. This leads to the 

production of ST and DHST, depending on the 

pathway (Motomura et al., 1999)

11.) The conversion of ST into O
dihydro-O-methylsterigmatocystin 
(DHOMST) 

gene: aflP (omtA)  

protein and function: AflP 

methyltransferase of the pathway. It is specific 
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 is a 

cytochrome P450 monooxygenase 

and AflM a 

, 1992). 

AflY and AflX are predicted to be 

et al., 

and an oxidoreductase, 

respectively. Both putative 

enzymatic functions are 

(Cary & 

Ehrlich, 2009). These enzymatic steps lead to the production of DMST in 

AFG2 pathway, the same enzymatic steps are proposed with VERB 

substrate instead of VERA leading to the formation of DHDMST. The difference betwe

DMST and DHDMST is the same as the difference between VERA and VERB. It is due to 

the double bond in the bisfuran ring. 

The conversion of DMST into Sterigmatocystin (ST) and DHDMST into 
Dihydrosterigmatocystin (DHST) 

AflO is an O-

methyltransferase. It catalyzes the transfer 

between the methyl group of S-

adenosylmethionine and the hydroxyls of 

DMST and DHDMST. This leads to the 

production of ST and DHST, depending on the 

, 1999) (Figure 25).  

The conversion of ST into O-methylsterigmatocystin (OMST) and DHST into 
methylsterigmatocystin 

P is the second O-

methyltransferase of the pathway. It is specific 

Figure 24 - Putative enzymatic steps for the 
Demethylsterigmatocystin (DMST). The suggested intermediates shown in 
brackets are hypothetical. 

Figure 25 - Chemical structure: a. Sterigmatocystin (ST); b. 
Dihydrosterigmatocystin (DHST). 
action. 

Figure 26 - Chemical structure: a. O
(OMST), b. Dihydro-O-methylsterigmatocystin (DHOMST). 
red part represents AflP action.

. These enzymatic steps lead to the production of DMST in 

, the same enzymatic steps are proposed with VERB 

substrate instead of VERA leading to the formation of DHDMST. The difference between 

DMST and DHDMST is the same as the difference between VERA and VERB. It is due to 

The conversion of DMST into Sterigmatocystin (ST) and DHDMST into 

methylsterigmatocystin (OMST) and DHST into 

the conversion of VERA into 
The suggested intermediates shown in 

cture: a. Sterigmatocystin (ST); b. 
ihydrosterigmatocystin (DHST). The red parts represent AflO 

Chemical structure: a. O-methylsterigmatocystin 
methylsterigmatocystin (DHOMST). The 

red part represents AflP action. 
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to ST and DHST substrates (Yu et al., 1993). It allows the production of OMST and 

DHOMST (Figure 26). Indeed, a lack of aflP orthologue A. nidulans prevents the production 

of AFT (Yu, 2012).  

12.) The conversion of OMST into AFB1 and DHOMST into AFB2 

gene: aflQ (ordA) and putative genes: aflLa (hypB), aflX (ordB), aflMa (hypE),  

proteins and functions: AflQ is a cytochrome P450 monooxygenase (Prieto & Woloshuk, 

1997) involved in the conversion of OMST into AFB1. Ehrlich (2009) proposed a more 

detailed metabolism pathway which is represented in figure 27. In this predicted scheme, 

AflQ could be involved in C-11 hydroxylation and AflLa could introduce an oxygen into the 

keto-tautomer of 11-hydroxyOMST. Those reactions could lead to a 370 Da metabolite. 

AflMa is suspected to be involved in the demethylation of the A-ring and may act conjointly 

with a cytochrome P450 monooxygenase (figure 27) as the last step prior to AFT production 

in both aflatoxins pathways. 

12. bis) The conversion of OMST into AFG1 and DHOMST into AFG2 

 gene: aflU(cypA) putatives genes: nadA ,aflF(norB)  

The 370 Da metabolite proposed in figure 27 is the probable substrate for AflU oxidations to 

produce AFG. NadA and AflF could be good candidates to support AflU activity in AFG 

production as their function has not been determined yet (Ehrlich et al., 2004). 

Figure 27 - Speculated last steps from OMST to AFB1 production according to Ehlrich (2009). HOMST= 11-
HydroxyOMST. The numbers under the molecules are the atomic mass in Dalton. 



 

1.2.6 The genetic regulation of 

 The steps, described above and leading to the production of AFT, are modulated by 

certain transcription factors. The a

(AflR, AflS) as well as general transcription regulators.

 1.2.6.a AflR, a specific transcription factor

 aflR is the ninth gene of the aflatoxin biosynthesis cluster. It encodes a Cys

transcription factor needed for AFT production 

AflR transcription factor is represented in figure 28 (blue part).

 Among the different regions, the AflR N

the DNA-binding domain, including: the Nuclear Localization Domain (NLD) that ensures 

AflR transfer from cytoplasm to nucleus 

possibly involved in DNA-binding specificity. 

 The specific DNA sequence is composed of 11 bp: 5'

Guanine (G) or Cytosine (C); W: Adenine (A) or Thymine (T) and R: A or G) with the 

strongest binding site being 5'

localized at 200 bp (mainly in the promoter region) prior to the

start point (tsp) except for aflT

transcription start point (TSP) (white part in figure 28), a partial AflR binding site, suggesting 

an autoregulation. In the same in

binding proteins suggest that many regulation systems may impact 

Figure 28 - Schematic representation of 
DNA-binding transcription factors are represented in the 
Localization Domain; tsp= translational start point and His
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6 The genetic regulation of aflatoxins production  

The steps, described above and leading to the production of AFT, are modulated by 

certain transcription factors. The aflatoxin biosynthesis pathway is regulated by 

(AflR, AflS) as well as general transcription regulators. 

a specific transcription factor 

is the ninth gene of the aflatoxin biosynthesis cluster. It encodes a Cys

transcription factor needed for AFT production (Payne et al., 1993). The composition of the 

represented in figure 28 (blue part). 

Among the different regions, the AflR N-terminal region (C6 Cluster in figure 28) is 

, including: the Nuclear Localization Domain (NLD) that ensures 

AflR transfer from cytoplasm to nucleus (Ehrlich et al., 1998) and the linker region that is 

binding specificity.  

The specific DNA sequence is composed of 11 bp: 5'-TCGSWNNSCGR

Guanine (G) or Cytosine (C); W: Adenine (A) or Thymine (T) and R: A or G) with the 

strongest binding site being 5'-WCGSNNNSCGA-3'. These AflR binding sites are usually 

localized at 200 bp (mainly in the promoter region) prior to the aflatoxin genes translation 

aflT and avfA (Ehrlich, 2009). There is upstream of the 

transcription start point (TSP) (white part in figure 28), a partial AflR binding site, suggesting 

an autoregulation. In the same intergenic region, other binding sites from various DNA

binding proteins suggest that many regulation systems may impact aflR expression. 

Schematic representation of aflR gene proposed by Ehrlich et al,. (2011). Possible consensus domains for 
are represented in the aflS-aflR intergenic region (e.g. PacC, AflR,...). 

Localization Domain; tsp= translational start point and His-rich= section rich in Histidine. 

The steps, described above and leading to the production of AFT, are modulated by 

is regulated by specific 

is the ninth gene of the aflatoxin biosynthesis cluster. It encodes a Cys6Zn2 

. The composition of the 

terminal region (C6 Cluster in figure 28) is 

, including: the Nuclear Localization Domain (NLD) that ensures 

and the linker region that is 

TCGSWNNSCGR-3' (with S: 

Guanine (G) or Cytosine (C); W: Adenine (A) or Thymine (T) and R: A or G) with the 

3'. These AflR binding sites are usually 

aflatoxin genes translation 

. There is upstream of the aflR gene 

transcription start point (TSP) (white part in figure 28), a partial AflR binding site, suggesting 

tergenic region, other binding sites from various DNA-

expression.  

. Possible consensus domains for 
intergenic region (e.g. PacC, AflR,...). NLD= Nuclear 
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Figure 29 - Scheme representing the impacts of ∆aflR mutant on the aflatoxin gene cluster proposed by Georgianna &
Payne (2009). An arrow represents a down regulation. nc= low level changes. 

 Price et al., (2006) studied 40% of the A. parasiticus transcriptome in a wild type 

strain and its ∆aflR mutant which lacks the capacity to produce AFT. The microarray results 

are presented in figure 29. They revealed that most of the aflatoxin gene in the cluster were 

down regulated in the mutant (except for aflF, I ,Ma, N and Na) (Price et al., 2006). 

 

 1.2.6.b AflS, a putative transcription factor 

 aflS is the tenth gene of the aflatoxin biosynthesis cluster and share the same 

intergenic region with aflR (white in figure 28). Knockout mutants revealed that aflS is 

required for AFT production but AflS function remains to be characterised. Its three main 

potential roles are: 

 AflS is a potential coactivator of AflR (Chang, 2003), although deletion of aflS did not 

have any impact on aflR transcripts. AflS specifically interacts with the His-Arg (figure 28) of 

AflR (Chang, 2003). 

 A second role is impact on early genes of the aflatoxin biosynthesis (Meyers et al., 

1998). ∆aflS mutants repressed aflC, aflD, aflM and aflP transcription by 5 to 20 fold but had 

no impact on aflR expression (Meyers et al., 1998). However, another study rejected AflS 

impact on aflM and aflP expression (Du et al., 2007). The effect of AflS on the expression of 

early genes could be linked to its coactivating functions. 

 The last role is AflS potential interaction with LaeA (Ehrlich, 2009). Ehrlich et al., 

(2009) hypothesised that LaeA could need AflS to target specific gene cluster.  

 AflS is sensitive to incubation temperature. At 30°C, expression of aflS and aflR were 

higher of 5 and 24 fold compared to 37°C. For instance, this temperature sensitivity could 

regulates AFT production (Yu et al., 2011). 
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 1.2.6.c General transcription regulators 

 There are 7 well known general transcription regulators which regulate the aflatoxin 

biosynthesis pathway. Each pathway is relevant to this study as it explains the expression or 

inhibition of certain aflatoxin genes. 

 The production of fungal secondary metabolites is regulated by a complex system of 

proteins (Alkhayyat & Yu, 2014). Figure 30 represents 3 of the well known pathways 

regulating aflatoxin biosynthesis.  

 

 

 One general transcription regulator, the heterotrimeric G protein pathways (G 

proteins), is represented by Number 1. in figure 30.  

In eukaryotes, those pathways are associated with the cellular plasmid membranes and are 

transduction signals necessary to ensure the appropriate physiological status of the cell in 

Figure 30 - Various upstream elements influencing the Aflatoxin/Sterigmatocystin (AF/ST) gene cluster.
Representation of the different signaling elements, including: the heterotrimeric G protein signaling elements (FadA, 
GanB, GpgA and SfaD), the light velvet complex (VelB/VeA/LaeA) and the redox status (YapA, MsnA, AtfB, Ap-1 and 
SrrA) (Alkhayyat & Yu, 2014). 
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response to external signals. Those G proteins are composed of 3 subunits (α, β and γ) which 

lose their activity when regrouped in a trimeric form (Figure 30). The activation is due to a 

GTP-bound to the Gα subunit. Concerning AFT production, 2 Gα subunits: GanB and FadA, 

were shown to inhibit ST/AF production in case of GTP-binding via inhibition of aflR gene 

expression (Figure 30) (Hicks et al., 1997; Han et al., 2004). However, the Gβγ subunits 

(SfaD and GpgA) were shown to activate ST biosynthesis, suggesting differential roles on ST 

production depending on the G protein subunits studied (Seo & Yu, 2006).  

 A second transcription regulator is the response to the Reactive Oxygen Species 

(ROS).  

Number 2. in figure 30 represents a proposed model of action of this response. A disruption of 

yapA gene leads to an accumulation of aflatoxin biosynthesis suggesting YapA could inhibit 

ROS accumulation (Reverberi et al., 2007). In case of ROS accumulation, 4 DNA-binding 

transcription factors (MsnA, AtfB and AP-1/SrrA complex) were shown to bind specific DNA 

regions (1 for each of them) and induce aflatoxin biosynthesis by promoting aflatoxin genes 

(Hong et al., 2013). 

 A third transcription regulator is the 

light-sensitive velvet complex (VeA, VelB and 

LaeA), as represented in figure 30 (in a generic 

manner) and in figure 31 (in a more specific 

way). 

Light leads to a low veA expression level while 

VeA remains in the cytoplasm. However, in 

the dark, veA expression is higher and VeA is 

transported by the importer α carrier (KapA) 

into the nucleus (Stinnett et al., 2007). For 

LaeA to have an inhibition impact on HepA, it 

must be fixed on the VeA/VelB complex. 

HepA is a structural adapter putatively 

involved in the assembly of macromolecular 

complexes in the chromatin (Wang et al., 2000; 

Bayram et al., 2008). This HepA inhibition 

represses the conversion of heterochromatin into euchromatin at the aflR locus (Reyes-

Dominguez et al., 2010).  

Figure 31 - Proposed model for the velvet complex  
(Alkhayyat & Yu 2014). 
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Figure 32 - Ppo impacts on the production of ST. psi = 
hydroxylated linoleic (α) and oleic (β) with the hydroxy groups 
represented by a letter; psiA (5'-8'-dihydroxy-), psiB (8'-
hydroxy-) and psiC (lactone ring at the 5' of psiA) modified 
from Krijgsheld et al., (2013). 

 A fourth general transcription regulator, the PpoABC proteins, is represented in figure 

32.  

The ppoABC genes encode 3 different putative 

fatty acid oxygenases responsible for fungal 

oxylipins productions (Tsitsigiannis et al., 

2005). Those proteins, VeA, hydroxylated 

linoleic (psiα) and oleic acids (psiβ), are known 

to be involved in the shift between sexual and 

asexual development (Tsitsigiannis et al., 2004; 

Bayram et al., 2008). A ppoAC double deletion 

led to no ST production while a single deletion 

of ppoB led to an increased accumulation of 

ST. Recent studies suggest that the various Ppo 

oxygenases could result in oxylipins accumulation outside the fungal cell and could trigger G 

proteins mechanisms (Tsitsigiannis & Keller, 2007) 

 3 other examples of global transcription regulators include responses to extracellular 

stimuli. Figure 33 summarises the different pathways. Each of them is briefly described 

hereafter. 

 CreA is a zinc finger transcription factor 

involved in the activation of metabolic pathways in 

response to a carbon source (Figure 33) (Dowzer & 

Kelly, 1991). Aflatoxin biosynthesis is enhanced by 

high concentrations of glucose (≥ 1 M) (Wiseman & 

Buchanan, 1987). Further characterisation is needed 

to understand the involved pathways.  

 AreA is also a zinc finger transcription 

factor. It regulates the nitrogen metabolism (Wilson 

& Arst, 1998). An AreA-binding site is located in 

the aflS-aflR intergenic region (Figure 28) and could 

activate aflatoxin biosynthesis. 
Figure 33 - Other environmental stimuli impacting 
AF/ST biosynthesis according to Alkhayyat & Yu 
(2014). Dashes represent unproven connections. 



 

 PacC is a zinc finger transcription factor (Figure 33). It negatively regulates the ST 

production of A. nidulans in alkalin conditions 

the pH and can be cancelled in acid conditions. 

 In addition to all the

impact AFT production such as production localisation and excretion system.

 1.2.6.d Aflatoxin excretion

 In the last decade, many 

system. Roze et al., (2011) developed a 2

 

Figure 34 - 2-level model for aflatoxin excretion system proposed by Roze 
represented by dashed lines. Tc= C Vps tethering complex.
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PacC is a zinc finger transcription factor (Figure 33). It negatively regulates the ST 

in alkalin conditions (Keller et al., 1997). Its inhibition depends on 

the pH and can be cancelled in acid conditions.  

In addition to all the regulation systems described above, other mechanisms can 

impact AFT production such as production localisation and excretion system.

Aflatoxin excretion 

many discoveries have been made about the 

(2011) developed a 2-level model represented in figure 34:

flatoxin excretion system proposed by Roze et al., (2011). Hypothesized pathways are 
C Vps tethering complex. 

PacC is a zinc finger transcription factor (Figure 33). It negatively regulates the ST 

. Its inhibition depends on 

regulation systems described above, other mechanisms can 

impact AFT production such as production localisation and excretion system. 

 aflatoxin excretion 

level model represented in figure 34: 

thesized pathways are 
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 (i) Darkness triggers VeA activity which up-regulates gene transcription via the 

activation of transcription factors. Inside Peroxisomes, Acetyl-CoA from Mitochondria is 

converted into NOR due to AflA, B and C activity. NOR is then transferred into the aflatoxin 

specific peroxisomal vesicules: aflatoxisomes. 

 (ii) AflD, M and P are synthesised in free ribosome in the cytoplasm and then 

transported in aflatoxisomes. In aflatoxisomes, ST is converted into AFB1. VeA inhibits the 

activity of the C Vps tethering complex (Tc) (responsible for vesicules regroupment in 

vacuole), resulting in the accumulation of aflatoxisomes.  

 The 2 levels lead to first the accumulation of NOR and second the conversion of NOR 

into aflatoxin by the enzymes (AflD, M, P and K). VeA represses the fusion of aflatoxisomes 

and the vacuole. This repression leads to AFT accumulation. Aflatoxisomes are then exported 

outside the cell by exocytosis (Chanda et al., 2009). 

 

 In conclusion, we resumed that the biosynthesis of AFT is due to 12 different major 

steps involving various proteins. Furthermore, this biosynthesis is regulated by specific 

transcription factors, unspecific transcriptional regulators and an excretion system. 

1.2.7. Abiotic parameters: impact on aflatoxins production 

 Having observed genetic parameters, attention now needs to be paid to environmental 

factors, which, in conjunction with genetic parameters, influence the production of aflatoxins.  

 There are 2 types of environmental parameters influencing the production of 

aflatoxins: abiotic or biotic. We will describe below the main abiotic parameters: water 

activity (aw) and temperature, gas composition, medium composition, pH, light and chemical 

compounds addition.  

 1.2.7.a. Aw and Temperature (°C) 

 Many publications have focused on the interaction between aw and temperature on A. 

parasiticus and A. flavus growth and AFT production. This interaction is regarded as the 

principal controlling factor (Abdel-Hadi et al., 2012). 

 The aw is a physical measurement which represents the amount of freely available 

water in a substrate. As a mean of measurement, aw of 1 is pure water. Micro-organisms can 

use this freely available water to grow and to achieve enzymatic reactions. With a moisture 

sorption isotherm, a link can be made between aw and the total moisture content of a specific 



 

substrate (relation between water added (moisture content) and the a

equilibrium).  

 Garcia et al., (2011) studied the growth of 

at different temperatures (10, 

0.89, 0.91 and 0.93). Radial fungal growth was observed daily for 90 days. The estimated 

growth optimum conditions were a

lag phase of 7 days at 22-37°C at 0.87 of a

0.80 of aw. However, in this study, the authors do not measure AFT production. 

 Abdel-Hadi et al., (201

growth and AFB1 production. 

yeast extract, 150 g sucrose, 1 g MgSO

temperatures of 30-35°C at 0.99 a

0.95 (dark gray bars). At the driest conditions tested (0.85), growth only occurred at 30

(white bars).  

 AFB1 production revealed a different pattern (Figure 35 B.). The production opt

occurred at 25-30°C at 0.99. Sub

increase of AFB1 production from 20 to 35°C (from 0.3 to 1.7 mg.kg

produced at 0.85 and at 25-30°C for 0.90. 40°C was the least conducive tested 

AFB1 production. 

 Another study tested 2 

various aw (0.83, 0.86, 0.90, 0.94, 0.96 and 0.98) and temperatures (10, 15, 25, 30, 35 and 

40°C) for solely AFB1 production at 4 incubation times (7, 14, 21 and 28 days). Figure 36 

represents the results after 21 days of incubation for the 2 strains. Both showed si

Figure 35 - Effects of aw and temperature on growth
NRRL3357 according to Abdel-Hadi et al.,
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substrate (relation between water added (moisture content) and the a

studied the growth of A. parasiticus on malt extract a

 15, 20, 25, 30, 37 and 42°C) and various a

0.89, 0.91 and 0.93). Radial fungal growth was observed daily for 90 days. The estimated 

growth optimum conditions were a temperature of 31.1°C and an aw of 0.94. They predicted a 

37°C at 0.87 of aw and of 30 days regardless of the temperature at 

. However, in this study, the authors do not measure AFT production. 

(2012) studied aw and temperature impacts on A. flavus

growth and AFB1 production. A. flavus was incubated for 10 days on a YES medium (20 g 

sucrose, 1 g MgSO4.7H2O). The growth optimum (Figure 35 A.) was 

t 0.99 aw (black bars). Sub-optimal growth occurred at 25

0.95 (dark gray bars). At the driest conditions tested (0.85), growth only occurred at 30

AFB1 production revealed a different pattern (Figure 35 B.). The production opt

30°C at 0.99. Sub-optimal AFB1 production occurred at 0.95 with a gradual 

increase of AFB1 production from 20 to 35°C (from 0.3 to 1.7 mg.kg

30°C for 0.90. 40°C was the least conducive tested 

Another study tested 2 A. flavus isolates (BAFC4274 (A) and BAFC4275

(0.83, 0.86, 0.90, 0.94, 0.96 and 0.98) and temperatures (10, 15, 25, 30, 35 and 

40°C) for solely AFB1 production at 4 incubation times (7, 14, 21 and 28 days). Figure 36 

represents the results after 21 days of incubation for the 2 strains. Both showed si

and temperature on growth (A) and AFB1 production (B) on a 10 days
et al., (2012). 

substrate (relation between water added (moisture content) and the aw measured at 

on malt extract agar medium 

aw (0.80, 0.85, 0.87, 

0.89, 0.91 and 0.93). Radial fungal growth was observed daily for 90 days. The estimated 

of 0.94. They predicted a 

and of 30 days regardless of the temperature at 

. However, in this study, the authors do not measure AFT production.  

A. flavus NRRL3357 

was incubated for 10 days on a YES medium (20 g 

O). The growth optimum (Figure 35 A.) was 

optimal growth occurred at 25-37°C at 

0.95 (dark gray bars). At the driest conditions tested (0.85), growth only occurred at 30-37°C 

AFB1 production revealed a different pattern (Figure 35 B.). The production optimum 

optimal AFB1 production occurred at 0.95 with a gradual 

increase of AFB1 production from 20 to 35°C (from 0.3 to 1.7 mg.kg-1). No AFB1 was 

30°C for 0.90. 40°C was the least conducive tested temperature for 

 

and BAFC4275 (B)) at 

(0.83, 0.86, 0.90, 0.94, 0.96 and 0.98) and temperatures (10, 15, 25, 30, 35 and 

40°C) for solely AFB1 production at 4 incubation times (7, 14, 21 and 28 days). Figure 36 

represents the results after 21 days of incubation for the 2 strains. Both showed similar 

on a 10 days culture of A. flavus 
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profiles. AFB1 is produced at 15-35°C and at all the aw tested. The optimum AFB1 

production for both strains was 30°C at 0.96 aw (Astoreca et al., 2014).  

 

Figure 36 - 2- dimensional contour maps of AFB1 production profiles for A) BAFC4272 and B) BAFC4275 isolates on 
CYA medium (21 days after inoculation). The numbers on the contour lines refer to the mean AFB1 concentration 
(µg.g-1) (Astoreca et al., 2014). 

 Those 3 examples are the most recent of many studies which have led to the 

accumulation of a significant amount of data on how aw and temperature influence A. flavus 

growth and AFB production. They all agreed that the optimum conditions for AFT production 

were different that those for fungal growth. 

 Those data, obtained in vitro, are valuable as a first step to reduce the incidence of 

AFT in the field and in storage. At the field level, some predictions can be obtained based on 

known data on air relative humidity and temperature. For instance, Battilani & Logrieco 

(2014) have proposed a world map of AFT risks (figure 37). Those results show that the main 

countries at risks are mostly located in tropical and sub-tropical regions where high 

temperature and low aw occur. 



 

Figure 37 - Global risks of AFB1 contamination in maize. The prediction is based on the aridity index during heading 
and ear ripening (Battilani & Logrieco, 2014)

 In addition to temperature and a

influencing the production of aflatoxins.

 1.2.7.b. gaz composition

 Currently, the atmospheric CO

(Foucart, 2014). Climate change experts predict this figure could double or triple in the next 

10 to 25 years (Medina et al.

can rise. In storage bins for instance, an increase of CO

spoilage. In maize storage bins, a CO

with mold spoilage and insect activity 

does not seemingly impact A

2014), it enhances AFB1 production 

 Recently, Medina et al

production. They studied the impact of high CO

AFB1 production (34 and 37°C, a

concentration, an aw of 0.92 led t

at all aw tested and with a high CO

from 15.1 to 79.2 fold compared to control.

 Those data confirm the impact of CO

temperature x CO2 content can be monitored in maize grain storage to minimize AFT 

production (Maier et al., 2010)
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FB1 contamination in maize. The prediction is based on the aridity index during heading 
(Battilani & Logrieco, 2014). 

In addition to temperature and aw, gaz composition is also an abiotic parameter 

aflatoxins. 

1.2.7.b. gaz composition 

Currently, the atmospheric CO2 concentration is around 400 mg.dm

. Climate change experts predict this figure could double or triple in the next 

et al., 2014). In terms of confined environments, CO
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spoilage. In maize storage bins, a CO2 concentration higher than 500 mg.dm

nd insect activity (Maier et al., 2010). Although high CO

Aspergillus fungal growth (Garcia et al., 2011; Medina 

, it enhances AFB1 production (Giorni et al., 2008). 

et al,. (2014) reviewed aw x temperature x CO2

production. They studied the impact of high CO2 concentration (650 and 1000 mg.dm

AFB1 production (34 and 37°C, aw of 0.92, 0.95 and 0.97). At 34°C and with a high CO

of 0.92 led to the most important increase in AFB1 production. At 37°C, 

tested and with a high CO2 concentration, the increase in AFB1 production ranged 

from 15.1 to 79.2 fold compared to control. 

Those data confirm the impact of CO2 concentration on AFT production. Thus, a

content can be monitored in maize grain storage to minimize AFT 
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 In complement to CO2 content, a low O2 concentration can enhance the shelf life of 

food. At 25°C on CYA and PDA media, a O2 concentration under 0.5% and 20% CO2 

concentrations completely inhibited the production of A. flavus AFB (Taniwaki et al., 2009). 

 In addition to temperature, water availability and gas composition, medium 

composition are also an abiotic parameter influencing the production of aflatoxins. 

 1.2.7.c. Medium composition 

 Ahmad et al., (2013) studied the impacts of different combined concentrations in the 

medium of sorbitol (A), fructose (B), ammonium sulfate (C), KH2PO4 (D) and MgSO4 (E) on 

AFB1 production by A. flavus. After 15 days of incubation at 28°C, the highest levels of 

AFB1 production were obtained at 5, 5, 0.5 0.36 and 0 g.l-1 of A, B, C, D and E, respectively. 

This multifactorial testing led to the elaboration of a predicting model. The latter showed a 

positive correlation between AFB1 production and A, B and C concentrations and a negative 

correlation with D and E concentrations. 

 Those data help to understand the impact of different media on fungal growth and 

AFT production. However, extrapolations from those predictions to the food matrix are 

difficult (Garcia et al., 2011). To obtain data close to the maize matrix, maize-based media 

have been developed. For example, Astoreca et al,. (2014) tested AFB1 production by 2 

different strains on 2 different media: Czapek Yeast Agar (CYA) and Corn Extract agar 

(CEM). Both aflatoxigenic strains produced less AFB1 on CEM medium in comparison with 

CYA. At its climax point, the production of AFB1 was reduced 868 fold on CEM (Astoreca et 

al., 2014). 

 To further understand the specificity of maize-based media on AFT production. Giorni 

et al., (2011) tested maize at different ripening stage in the medium composition. The 

different maize tested had little impact on A. flavus growth and AFB1 production (Giorni et 

al., 2011). 

 A recent study compared A. flavus growth and AFB production on maize-based 

medium and on maize grain at 0.99 and 0.90 aw during 30 days. It obtained a similar fungal 

growth on maize grain and on agar medium. In both experiments, there was a correlation 

between fungal growth and AFB production. On maize grain, this correlation was even 

higher. On agar medium, the delay before AFB production was 1 day under both aw values 

whereas, on maize, it was 4 to 8 days at 0.90 and 2 days at 0.99 (Garcia et al., 2013). 
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 In conclusion, we showed that the medium composition impacts fungal growth and 

AFT production. Results vary between in vitro media and maize substrates. Nevertheless, 

maize-based medium appear to be the closest substitutes to maize even if AFT production 

occurred earlier on the maize-based medium. 

 In addition to temperature and aw, gas composition and to media composition, 

substrates, pH is also an abiotic parameter influencing the production of AFT. 

 1.2.7.d. pH 

Keller et al., (1997) studied the impacts of acid (4 to 6) neutral (7) and alkalin (8) pH 

on AFB1 and ST production. A completed ammonium medium was realised in various pH 

conditions and A. parasiticus was incubated up to 36 hours. The results showed that AFB1 

production increases in acidified media with 1,062 ng.ml-1 of AFB1 produced at pH 4 versus 

19 ng.ml-1 at pH 6. The incubation on an alkalin medium (pH 8) revealed a production of 22 

ng.ml-1 of AFB1. This production is close to pH 6 but inferior to the control medium (pH 2.7) 

(394 ng.ml-1). The mechanisms involved in the impact of pH are well known and detailed in 

chapter 1.2.5.  

 In addition to temperature and aw, gas composition, media composition and to pH, 

light is also an abiotic parameter influencing the production of AFT. 

 1.2.7.e. Light 

Joffe & Lisker (1969) were the first to study the effects of light on AFB production. 

They revealed that on Czapek's medium, the production of AFB increases in dark conditions. 

One of the most representative examples was at pH 6, 24°C, where AFB production was 5 

fold higher in dark versus light conditions (Joffe & Lisker, 1969). This light responsiveness 

seems to be correlated with the glucose amount in the medium (0.3 to 3% tested). Atoui et al., 

(2010) incubated A. nidulans 5 days on a glucose minimum medium. At a 1% glucose 

concentration, light inhibited ST production, compared to dark conditions. On the contrary, a 

2% glucose concentration triggered ST production under light (Atoui et al., 2010). The 

mechanisms involved in the impact of light are also described in chapter 1.2.5..  

 Lastly, chemical compounds addition are also an abiotic parameter influencing the 

production of AFT. 
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 1.2.7.f. Chemical compounds addition 

 Numerous studies have tested the impact of essential oils, fungal/bacterial extracts and 

chemical components (from plants, bacteria, fungi or chemically produced) on the production 

of AFT. Holmes et al., (2008) and Razzaghi-Abyaneh et al., (2010) reviewed part of them. 

The chemical components listed above come from various different families of compounds 

including alkaloids, coumarins, flavonoids, oxylipins, etc. Most of the studies have been 

undertaken on synthetic media. A smaller proportion of studies have investigated field/storage 

conditions. Only a few are at the stage of potential commercial development. Hereafter are 

examples of chemical compounds and their impacts on AFT production. 

 In maize storage, aflatoxigenic fungi are naturally present on the grain or introduced 

by the borers. The 2(3)-tert-Butyl-4-Hydroxyanisole (BHA) has recently been studied for its 

capacity to act as insecticide and AFB repressor. At a 20 mM concentration, this anti-oxidant 

inhibited fungal growth and AFB production on maize grain (Nesci et al., 2008). At the same 

concentration, BHA was also an insecticide against 2 insects (Stiphilus zeamais and Tribolium 

confusum) commonly found in maize. BHA application could be part of an integrated system 

for commercial storage facilities (Nesci, 2012). 

 Among the numerous examples of chemical components, we will only focus on the 

ones produced by Streptomyces species. 

 Among these, Dioctatin A, Aflastatin A and Blasticidins A were shown to have 

inhibition effects on AFT production by A. parasiticus (Sakuda et al., 1996; Ono et al., 1997; 

Yoshinari et al., 2007). Various concentrations of Dioctatin A were added to Potato dextrose 

broth and A. parasiticus was incubated during 4 days at 28°C. Results showed a maximum 

AFB1 inhibition of 97% at a 50 µM concentration of Dioctatin A in the medium. The fungal 

weight was not impacted even if conidiation was altered by the treatment. Moreover, the 

expression of aflC, aflM, aflP and aflR was repressed (Yoshinari et al., 2007). 

 Another chemical component, Aflastatin A, was added to both liquid and solid media 

at 0.5 µg.ml-1. It completely inhibited aflatoxin production in both media by A. parasiticus. 

Fungal growth was only impacted on the agar plate (37% reduction) (Ono et al., 1997). 

Further investigations revealed a reduction in aflC and aflR expressions (Kondo et al., 2001).  

 With regards to the last example, the production of AFT was reduced 166 fold by 

Blasticidin A and mycelial dry weight was reduced 2 fold when 1.0 µM was added into A. 

parasiticus liquid culture. Moreover, there was no expression of aflC and aflM and there was 

a reduction in the expression of aflP and aflR (Sakuda et al., 2000).  
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 Those chemical components offer a viable option to reduce AFT production in the 

field and storage. Nonetheless, current agricultural practices tend to reduce the use of 

pesticides. A negative public opinion could be an issue where those treatments marketed. 

Moreover, adding a single compound can lead to resistance from the fungus as well as 

environmental issues. This explains actual scientific moves towards the development of 

biocontrols. 

1.2.8. Biotic parameters: impact on aflatoxins production 

 The second type of environmental parameters influencing the production of AFT is 

biotic parameters. Prevention of AFT accumulation is presented hereafter, AFT 

biotransformation will be developed in chapter 1.2.9..  

 We will describe below the main biotic parameters: maize susceptibility, fungal 

interactions (intra and inter-species interactions) and bacterial interactions. 

1.2.8.a. Maize susceptibility 

 Maize is more susceptible to A. flavus in case of drought, nutriment deprivation, insect 

attacks and fungal attacks. Good agricultural practices are defined and available for farmers 

(resumed in Chapter 1.1.4). Hereafter we will briefly describe direct and indirect 

susceptibility management. 

 Direct susceptibility management is done through gene selection. Maize lines 

available on the market required many agronomic traits. They are genetically identified thanks 

to both Quantitative Trait Loci (QTL) (DNA sections linked with a quantitative trait) and 

gene identification (Warburton & Williams, 2014). Many QTL were identified in maize with 

regards to A. flavus and aflatoxin accumulation. However, few genes have been identified yet. 

For example, the gene AW424439 was identified thanks to QTL analysis and was predicted to 

be involved in systemic response to fungal infection (Mylroie et al., 2013). Unfortunately the 

success of those techniques is currently limited (Abbas et al., 2009). 

 Indirect susceptibility management is done through the Bt maize. It is a genetically 

modified maize made to resist to certain maize borers. In 2006, different lines of maize were 

harvested in USA. AFB1 occurrence in cobs from Bt-maize lines was 6.2 fold less than non-

Bt lines (Abbas et al., 2009). This is due to the reduction of A. flavus inoculum in the cobs (no 

borers entry) and other unknown mechanisms (Accinelli et al., 2014). 
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 In conclusion, we demonstrated that fungal interactions can strongly impact AFT 

production. Furthermore, intra-species and inter-species interactions are important biotic 

parameters. All in all, AFT production is triggered by many micro-organisms in conjunction 

with abiotic parameters.  

 1.2.8.b. Fungal interactions: 

 Numerous fungal genera are present in the maize ecosystem. For example, Pereira et 

al., (2009) studied maize seedling ecosystem and identified 5 different fungal genera 

(Aspergillus, Penicillium, Trichoderma, Monilella and Fusarium) (Pereira et al., 2009). This 

complex ecosystem can also be enriched by the addition of biocontrol agents. Both the 

ecosystem and biocontrol agents can impact A. flavus growth and AFB production.  

 We will thus describe below intra-species and inter-species interactions. Examples of 

fungi in the maize ecosystem and biocontrol agents will be given. 

Intra-species interactions: 

In the maize ecosystem, both aflatoxigenic and non-aflatoxigenic A. flavus are present. 

For the past 20 years, Dorner and colleagues have developed a methodology based on these 

non-aflatoxigenic strains (Dorner et al., 1998; Dorner, 2004, 2009; Dorner & Lamb, 2006). 

Local A. flavus or A. parasiticus strains are harvested. They are then selected thanks to 

a multi-step process: 

(i) harmlessness verification: they are genetically analysed to confirm their 

inability to produce AFT and Cyclopiazonic Acid (CPA); 

(ii) Simple Sequence Repeats (SSR) analysis: the strain which are the furthest from 

aflatoxigenic strains are selected;  

(iii) maize grain competition: their capacity to get the upper hand on aflatoxigenic 

strains is validated in vitro; 

(iv) non vegetative compatibility: their capacity not to form variable heterokaryon 

is verified. The remaining strains become adequate biocontrol.  

For example, those biocontrols were tested at peanuts field. A survey on treated 

peanuts revealed an AFB1 reduction of 85.2% (78.9 to 11.7 µg.kg-1after storage). Therefore, 

it was branded afla-guard® and was first commercialized for peanut and maize fields in the 

USA (Mehl & Cotty, 2010). Recently, based on the same methodology, afla-safe® was also 

commercialised in Africa (Atehnkeng et al., 2008; Ogunbayo et al., 2013).  

However, those biocontrols have limitations:  
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The first limitation is A. flavus capacity to sexually recombine. Indeed, in dark and 

nutrient-deprived conditions, A. flavus sexually recombines (Horn et al., 2009). This 

recombination between atoxigenic and toxigenic strains causes phenotypes with the capacity 

to produce AFB (Olarte et al., 2012).  

 The second limitation is A. flavus capacity to produce toxic metabolites. Recently, 56 

putative metabolites clusters were alleged in A. flavus (Ehrlich & Mack, 2014). Thus, A. 

flavus capacity to produce toxigenic metabolites is probably underestimated in the supposed 

non-toxigenic strains.  

 

Inter-species interactions: 

 In the maize ecosystem, among the numerous fungal species, A. flavus isolates can 

usually be detected (Giorni et al., 2007; Pereira et al., 2009). Those former co-existing species 

can affect A. flavus metabolism. In France, F. graminearum and F. verticillioides are natural 

contaminants in maize fields (Picot et al., 2012). As phytopathogens, they are often associated 

with huge grain loss. They can impact on one another secondary metabolism. For example, F. 

graminearum impacts F. verticillioides (F. moniliforme) growth and FB1 production. On 

maize grain, 3 aw (0.98, 0.95 and 0.93) and 2 temperatures (15, 25°C) were tested. F. 

verticillioides growth was reduced by F. graminearum under all the tested conditions. In 

addition, the production of FB1 was inhibited at 15°C and promoted at 25°C (for 0.95 and 

0.98) (Marín et al., 2001).  

 The example given above illustrates how fungal interaction impacts on one another 

secondary metabolism. Thus, those fungi could impact A. flavus growth and AFB production. 

F. verticillioides and A. flavus interaction was studied to provide some preliminary answers. 

On maize grain, F. verticillioides primarily overlapped A. flavus. However, no data were 

collected on AFB production (Marin et al., 1998). 

 Besides the natural ecosystem, fungal biocontrol have been shown to impact AFB1 

production. Lyophilised filtrat of T. versicolor CF 117 was added to contaminated (A. 

parasiticus) maize seeds. After 20 days at 30°C, AFB1 production in the seeds was reduced 

by 97%. In addition, expressions of aflE and aflR were delayed and reduced. The active 

compounds were identified. They were in the exopolysaccharide fraction of the extract and 

were linked to some proteins (Zjalic et al., 2006). Based on those results, Trametano® is a 

promising tool in maize storage conditions with a long-lasting impact of up to 6 months 

(Scarpari et al., 2014). 
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 Another biocontrol candidate is lyophilised filtrat of Lentinula edodes CF 42. The 

latter was added to potato dextrose broth. After 7 days at 30°C, AFB1 production was divided 

by 375 fold. In addition, expressions of aflE and aflR were delayed and reduced. β-glucans 

were predicted to be the active compounds (Reverberi et al., 2005). However, before they can 

be placed on the market, further studies are needed. 

 A last example of fungal biocontrol is Pichia anomala WRL076. The capacity of this 

yeast to inhibit NOR and AFB1 accumulation (by A. parasiticus) was tested. After 10 days at 

28°C, no NOR was detected and AFB1 production in potato dextrose agar was reduced 80 

fold (Hua et al., 1999). The volatile compound 2-phenylethanol was identified as the active 

compound. Depending on the incubation time, it reduced A. flavus expression of aflO, aflQ 

and aflK up to 10,000 fold (Hua et al., 2014). Based on those results, this yeast is currently 

tested in California for tree nuts (Hua et al., 2014). 

 In addition to fungal interactions, bacterial interactions is also a biotic parameter 

influencing the production of aflatoxins. 

 1.2.8.c. Bacterial interactions: 

 Numerous bacterial genera are also present in the maize ecosystem. For example, 

Pereira et al., (2009) studied maize seedling ecosystem and identified 5 different bacterial 

groups (Gram + spore-forming rods, cocci, irregular rods and rods; Gram - rods). This 

complex ecosystem can also be enriched by the addition of biocontrol agents. Both could 

impact A. flavus growth and/or AFB production.  

 Bacterial molecules are well studied as potential chemicals against AFT production 

(Ono et al., 1997; Sakuda et al., 2000; Yoshinari et al., 2007). However, bacterial filtrats or 

bacteria are less studied. Only few were tested for potential fields or storage application. 

Examples are given below. 

 Lactobacillus sp. are rod-shaped Gram-positive bacterium naturally found in the soil. 

The capacity of L. platarum K35 to inhibit AFB1 accumulation (by A. parasiticus and A. 

flavus) was tested. After 48h at 37°C, for both fungi, growth and AFB1 production were 

completely inhibited. Multiple potential active compounds were identified. However, impact 

in vivo has not been studied (Sangmanee & Hongpattarakere, 2014). Other Lactobacillus sp. 

showed similar pattern and are reviewed in Dalié et al., (2009). Many bacteria also have 

antifungal interest (Aouiche et al., 2012; Muzammil, 2012; Badji et al., 2013). However, we 

will focus hereafter on examples of bacteria mainly inhibiting AFT production. 
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 Pseudomonas sp. and Bacillus sp. are rod-shape bacterium Gram-negative and Gram-

positive, respectively. They are naturally found in the non-rhizosphere of maize soil. Their 

capacity to inhibit AFB1 accumulation by 8 strains (A. flavus and A. parasiticus) was 

assessed. After 11 days at 25°C, AFB1 production in malt extract medium (at 0.982 and 0.955 

aw) was effectively inhibited by some strains: Bacillus subtilis RCB 6, 55 and 90 and 

Pseudomonas solanacearum RCB 110 (Nesci et al., 2005). Unfortunately, no additional data 

are available on those strains. 

 Stenotrophomonas sp. are rod-shaped Gram-negative bacterium naturally found in the 

soil. The capacity of Stenotrophomonas rhizophila 27 to inhibit AFB1 accumulation (by A. 

parasiticus and A. flavus) was tested. After 3 days at 27°C, AFB1 production in potato 

dexrtrose broth was reduced to non-detected depending on the bacterial concentration without 

affecting fungal growth. The cyclo (L-Ala-L-Pro) and cyclo (L-Val-L-Pro) diketopiperazines 

were identified as the main active compounds. For instance, co-cultures tests reduced A. 

parasiticus expression of aflC, aflO and aflR by 5, 6 and 2 fold, respectively. After 3 weeks, 

first results in traditional storage conditions in Thailand showed an AFT reduction of up to 3 

fold. However, before they can be placed on the market, further studies are needed (Jermnak 

et al., 2013). 

 Achromobacter sp. are straight-rods Gram-negative bacterium. A. xylosoxidans was 

isolated from human ear and is a bacteria potentially promoting plant growth. Its capacity to 

inhibit NOR accumulation by A. parasiticus was tested. After 3 to 7 days at 28°C, NOR was 

not detected. Cyclo (L-Leu–L-Pro) was the active compound. This is because A. parasiticus 

expression of hexB, aflO and aflR seemed to be reduced when Cyclo (L-Leu–L-Pro) was 

added in the medium (3.5 mg.ml-1) (Yan et al., 2004). Unfortunately, no additional data are 

available on this strain. 

 The last example is Streptococcus lactis. It is a cocci-shaped Gram-positif bacterium 

found in milk. Its capacity to inhibit AFB1 accumulation (by A. flavus) was tested. After 5 

days at 28°C, AFB1 accumulation was reduced by 15 fold. The active compound was not 

identified. Moreover, S. lactis reduced pure-AFB1 and pure-AFG1 concentration. After 2 

days at 28°C, no AFB1 or AFG1 were detected (initial concentrations were 18 µg.ml-1 each). 

(Coallier-Ascah & Idziak, 1985). The mechanisms which led to the reduction of pure-AFB1 

are further described in chapter 1.2.9. 

 In addition to fungal interactions and bacterial interactions, maize susceptibility is also 

a biotic parameter influencing the production of AFT.  



 

 1.2.8.d. Streptomyces: good biocontrol candidates 

Introduction of Streptomyces: 

 Streptomyces are members of the Actinobacteria class. The later were first 

characterized in the 1830s. Nowadays, they are defined as gram

aerobic, chimio-heterotrophe and ubiquitous. 

mycelium of branching hyphal filaments, and reproduc

turn into chains of spores. They are identified by molecular biology thanks to their high DNA

content of G and C (> 55%) and their identified similarity by rRNA 16S gene

by DNA-DNA hybridisation (e.g.: chapter 3.1)

 Among these, the genus of 

2011). It is an historical source of

and agricultural use. It has also been identified as source of aflatoxin inhibitors (e.g.: chapter 

1.2.7.f). This genus can be differentiated from other Actinobacteria by its mycelium 

morphology. The latter is regrouped in 3 types: the

Apertum (RA) and S= Spira (Figure 38).

Figure 38 - Micromorphology of Streptomyces
Retinaculum Apertum, S= Spira. 

 

 In addition to morphological i

to chemical characterisation. Indeed, their cell wall includes the LL isomer of the 

diaminopimelic acid and glycine (group IC), their cell menbrane includes 

phosphatidylethanolamine (group PII) and they have a G and C content

(Garrity et al., 2004; Meklat, 2012)
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Streptomyces sp. (Bergey, 1989). MA= Aerial Mycelium, RF= 

In addition to morphological identification, Streptomyces sp. are also identified thanks 

to chemical characterisation. Indeed, their cell wall includes the LL isomer of the 

diaminopimelic acid and glycine (group IC), their cell menbrane includes 

phosphatidylethanolamine (group PII) and they have a G and C content between 68 and 78% 

, 2004; Meklat, 2012). 

 

are members of the Actinobacteria class. The later were first 

positive bacteria, mainly 

like life cycle includes: growth as 

by sending up aerial branches that 

They are identified by molecular biology thanks to their high DNA-

) and their identified similarity by rRNA 16S gene-sequencing and 

sp. is the most predominent (Labeda et al., 

secondary metabolites applied as antibiotics for medical 

and agricultural use. It has also been identified as source of aflatoxin inhibitors (e.g.: chapter 

1.2.7.f). This genus can be differentiated from other Actinobacteria by its mycelium 

(RF), the Retinaculum 

 

. MA= Aerial Mycelium, RF= Rectus Flexibilis, RA= 

sp. are also identified thanks 

to chemical characterisation. Indeed, their cell wall includes the LL isomer of the 

diaminopimelic acid and glycine (group IC), their cell menbrane includes 

between 68 and 78% 
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Potential biocontrol characteristics: 

 As a potential biocontrol, Streptomyces sp. has many interesting characteristics.  

The most interesting ones are succinctly presented below: 

 (i) Streptomyces are ubiquitous bacteria. Indeed, they are found in various 

environments as in the soil of maize field. A study conducted during 8 years at maize field, 

identified actinobacteria as redundant community with 0.4 nmol.g-1 of dry soil (quantification 

of actinobacteria-specific lipid (10Me18:0) by phospholipids fatty acid analysis) (Dong et al., 

2014). As an endogenous bacterium of the maize field community, biocontrol based on 

actinobacteria (including Sptreptomyces) are likely to survive in this environment. 

 (ii) Since their discovery, Streptomyces have been a source of metabolites 

production. Those metabolites are sources of antibiotics useful for the pharmaceutical and 

agricultural industries. Among these, some were identified as aflatoxins inhibitors and are 

presented in chapter 1.2.7.f. Those inhibitors of aflatoxins production are but few examples of 

Streptomyces metabolites that could possibly lead to the inhibition of aflatoxins production.  

 (iii) Listeria, Salmonella, etc. are bacterial species known to be threats for human 

health. Streptomyces, in contrast, are harmless bacteria. Only few reports identified 

Streptomyces as harmful to human health and they were mainly associated with immuno-

deficiency (Carey et al., 2001; Moss et al., 2003; Riviere et al., 2012). The main threat linked 

to those bacteria enhancement in our diet could be linked with the toxicity of their produced 

metabolites. To minimize this impact, Streptomyces will be chosen having mutual antagonism 

on contact rather than inhibition of Aspergillus at distance as fungicides are known to have 

little impact on aflatoxins production (Abbas et al., 2009). 

 (iv) In France, on the maize crop, no treatment is sprayed after the 6 leaves stage 

due to limitation in agricultural machinery. This problem negates the application of the 

biocontrol at the end of maize maturation (aflatoxin production time (Abbas et al., 2009)). 

Thus, a potential solution is the development of biocontrol able to survive in the crop until the 

targeted period. Actinobacteria are known to have endophytic abilities. Moreover, a recent 

study showed that they can be endophyte and survive in the maize crop (Costa et al., 2013). A 

part of the Aflafree project will focus on verifying the endophyte abilites of the most 

interesting strains selected after in vitro direct interaction. 
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1.2.9. The reduction of aflatoxins 

 Having described the impact of genetic and environmental parameters on the 

production of AFT, attention now needs to be paid on mechanisms which reduce AFT.  

 AFT are stable molecules (268-269°C) which resist chemical and physical treatments. 

This makes decontamination of contaminated food and feedstuffs difficult without altering the 

initial nutritional values of the infected commodities. However, different decontamination 

techniques are available to reduce AFT content.  

 There are 3 types of decontamination techniques. They will be presented in order of 

importance: physical and chemical methods; adsorbents and biological mechanisms (binding 

and degradation).  

 1.2.9. Physical and chemical methods:  

 During food processing, many physical methods can impact AFT content. Hereafter, 

we will only focus on the main examples. 

 Sorting is a preliminary method to reduce AFT content. Various sorting criteria are 

based on the grain (damaged, small or discolored) or the fungal infection (UV and IR-based). 

UV-based sorting is frequently used, even though IR-based methods showed more interesting 

results. Indeed, the initial average contamination of AFT (53 µg.kg-1) was reduced by 81% 

thanks to a IR-based (750 and 1,200 nm filters) sorting (Pearson et al., 2004). 

 Alkaline cooking is another step in food processing. Maize is often consumed as 

tortillas. Water boiling or microwave heating is a key process in tortillas production. Both 

decreased AFT content up to 84% (Torres et al., 2001; Pérez-Flores et al., 2011). Lesser 

AFB1 reduction was achieved in baked muffins with only a 13% removal (Stoloff & 

Trucksess, 1981). 

 During food processing, many chemical methods can impact AFT content, including 

ammoniation and ozone. Ammoniation hydrolyses the lactone ring of aflatoxin (up to 90% 

removal) and leads to less toxic compounds (e. g. aflatoxin D1). Ozone react with the furan 

ring of aflatoxins (up to 95% removal) (Grenier et al., 2014). 

 More physical and chemical methods are reviewed in Grenier et al., (2014). In 

addition to physical and chemical methods, adsorbents are also used as decontamination 

technique to reduce aflatoxins. 
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 1.2.9.b Adsorbents 

 Adsorbents are mineral or organic based compounds. Numerous binders have been 

evaluated in in vivo studies. Among these are activated charcoal, silicate binders and other 

minerals adsorbents. Jard et al., (2011) summarised the different binders available.  

 Bentonite is the most representative example as it is the latest adsorbent authorised for 

commercialisation in the EU. Adsorbents need to meet several criteria to be placed on the 

market such as high bound efficacy, stability in animal's digestive tract (pH resistant) and no 

adverse effect (on the health and the environment) (Jard et al., 2011; European Union, 2013). 

At 37°C in 4 µg.ml-1 AFB1 concentration, addition of bentonites at 0.02% (w/v) bound more 

than 90% of AFB1 (pH 5). This binder is added to contaminated feed for ruminants, poultry 

and pigs at a bentonites concentration of 20 g.kg-1.  

 1.2.9.c Biological binding and degradation: 

 Micro-organisms can be able to bind or degradate mycotoxins. Binding and 

degradation of aflatoxins have been well studied. Some binding molecules and degrading 

enzymes are identified. These are produced by a wide range of organisms. Those include 

mushrooms, protozoa, soil-borne bacteria and lactic acid bacteria. Wu et al., (2009) 

summarised the different biological binders and degradation enzymes currently known. 

Hereafter, we only focus on examples of bacteria, the domain used in this thesis. 

 Flavobacterium are rod-shaped Gram-negative bacterium naturally found in the soil. 

F. aurantiacum is the first bacteria studied for AFB1 degradation. After 44 hours in contact 

with live cells, 74% of AFB1 was removed (Ciegler et al., 1966). After 24 hours at 30°C, 

AFB1 was removed by 74.5% thanks to the crude protein extract of F. aurantiacum. Enzymes 

were identified as the active compounds of the degradation process (Smiley & Draughon, 

2000). 

 From then on, different bacteria were studied for their potential to remove AFB1. 

Table 12 summarises them. Some reduction rates of up to 100% were achieved. Teniola et al., 

(2005) studied cell free extracts of Rhodococcus erythropolis DSM 14303 and 

Mycobacterium fluoranthenivorans sp. nov. DSM 44556T for their ability to degrade AFB1. 

The initial concentration of AFB1 (2.5 mg.l-1) was almost completely degraded in 8 hours. A 

less efficient bacterium is Mycobacterium smegmatis. It took 2 days at 28°C, to remove all the 

initial concentration of AFB1 (6 mg.l-1) in the medium. 
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Table 12 - Examples of aflatoxin removal by bacteria. 

 

 These examples highlight how bacteria are interesting AFT reducers. Physical, 

chemical, adsorbents and biological agents are techniques that the end of a lengthy process of 

work. AFT management can only be achieved if all the steps in the food processing chain are 

rightfully managed and monitored. Monitoring of physical parameters and bacterial biocontrol 

is needed to ensure a safer food process. This explains the objectives of our work. 
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1.3. Project Aflafree 

 The previous bibliographic review has highlight the problem of AF contamination in 

cereals. In Europe, significant AFB1 concentrations in freshly-harvested maize samples are 

too frequently found (e.g.: summer 2003 in France, regular above regulation samples in 

northern Italy). The announced global warming suggests an increase of such situations in the 

near future. Thus we decide to focus on temperature and aw as the 2 environmental parameters 

that greatly influence the fungal growth and the mycotoxin production (Figure 39, WP1). 

 Due to this alarming situation and as an alternative to reduce the chemical inputs, the 

AFLAFREE project proposes to prove the concept that soil-borne bacteria could be applied as 

biocontrol against AFT accumulation at maize field. The biocontrol could either interrupt 

AFT biosynthesis or reduce AFT content. Intermediates of AFT biosynthetic pathway and 

other side-products will be searched and their residual toxicity will be assessed in vitro 

(Figure 39, WP2).  

 In addition to in vitro testing, the greenhouse tests deal with the optimization of 

protocol to study A. flavus-maize interaction and the biocontrol's impact on this interaction. 

The best couple bacteria-maize against AFT is studied and validated in greenhouse. Attention 

is given to conceive the best application of the biocontrol and to validate its safety. The 

chosen formula will be applied at different physiological maize stages. The efficiency is 

tested, during ripening and after harvest of maize kernels. To choose the biocontrol, it is 

necessary to take into account the technical possibilities available at field to treat crop and 

later grains (Figure 39, WP3). 

 In complement to the field approach, ECCLOR Europe SAS follows aw and 

temperature parameters during the different maize post-harvest stages. Their patented sensors 

are refined to be used to follow the evolution of aw and temperature from the maize field to 

the transformation facilities (Figure 39, WP4). 

 The results of this project will be delivered in agricultural development and on the 

maize chain as Good Agricultural Practices accompanied by advices on grain conservation 

and products process. In the sustainable development spirit, all results will be transferred to 

the different actors of the maize chain in the form of decision making tools to reduce the 

sanitary risk, chemical inputs and to be economically feasible. Governance is established 

based on score-cards including indicators and corrective actions. All this will help to avoid 

crisis situations (Figure 39, WP5).  
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This project links 4 partners having different skills (microbiology, molecular biology, plant 

physiology, electronic, toxicology) to produce a sustainable maize food-chain. 

This 42-month long project has been financed by the French National Research Agency and is 

divided into 5 workpackages (as described previously): 

 

Figure 39 - Organisation of the Project AFLAFREE (2011-2015) 

The 3 partners involved are the BioSyM department of the LGC, with Pr. Florence 

MATHIEU as the project coordinator, ECCLOR Europe SAS and INRA ToxAlim. 
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1.3.1. Objectives of the thesis 

The objectives of the thesis were: 

a) to monitor the entry of A. flavus into the French maize ecosystem (e. g. Fusarium sp.) and 

its impact on the management of prestorage to ensure no aflatoxins and D.O.N. risks. 

b) to develop a biocontrol (based on actinomycetes) able to reduce (in interaction with 

Aspergillus sp.) AFT contamination at field without impacting the maize microbial 

ecosystem; 

c) to characterise those interactions impacts on the prevention of AFT production (through 

RT-qPCR) and on the reduction of aflatoxin content (through reduction and adsorption test); 
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2.1. Micro-organisms 

2.1.1. Fungal strains 

 In this study, 4 fungal strains were used: 

 Aspergillus flavus NRRL 62477 (=E73), isolated from Moroccan paprika as described 

in El Mahgubi et al., (2013). 

 Aspergillus flavus NCPT180 (=Afc5), isolated from Benin cassava as described in 

Adjovi et al., (2014).  

 Aspergillus parasiticus strain NCPT 217, isolated from nuts is a producer of AFT.  

The 3 strains were gracefully provided by Dr. Olivier Puel, Toxalim, INRA, Saint Martin du 

Touch, France. 

 Fusarium graminearum INRA 155, maize-isolated in south-west of France. This strain 

was provided by Dr. Christian Barreau, MycSA, INRA Bordeaux, France.  

2.1.2. Actinomycete isolates 

 Isolates were collected and macroscopically identified as actinomycetes by members 

of Ecole Normale Supérieure (ENS) Kouba, Algeria.  

2.2 Media: 

2.2.1 Pre-culture media: 

 Pre-cultures of A. flavus and A. parasiticus were realized on YEPD medium 

containing: 5 g.l-1 Yeast Extract (Fisher Scientific), 10 g.l-1 Casein Peptone (Fisher Scientific), 

10 g.l-1 α-D-Glucose (Fisher Scientific) and 15 g.l-1 Agar (Kalys). 

 Pre-cultures of F. graminearum were realized on PDA medium containing: 20 g.l-1 α-

D-Glucose, 4 g.l-1 Potato Infusion and 15 g.l-1 Agar (mixed by Sigma). 

 Pre-cultures of Streptomyces were realized on ISP-2 medium containing: 4 g.l-1 α-D-

Glucose (Fisher Scientific), 10 g.l-1 Malt Extract (Fisher Scientific), 4 g.l-1 Yeast Extract 

(Fisher Scientific) and 20 g.l-1 Agar (Kalys) using non-distilled water and adjusted to pH 7. 
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2.2.2 Growth media: 

 2.2.2.a Aspergillus-actinomycetes interaction 

 The co-culture between A. flavus and the actinomycetes isolates were performed on 

ISP-2 medium. We selected this medium as it is a standard medium for actinomycetes growth 

and A. flavus grew well and produced high amount (around 1-5 ppm after 7 days) on this 

medium (preliminary tests). 

 In case of gene expression study, the Petri dishes were filled with ISP-2 medium (34 

ml per Petri dishes). Cellophane sheets (Hutchinson, France) were cut at the Petri dishes 

shape. The cellophane sheets were exposed 20 minutes for each face to UV lights for 

sterilization, then, the sheets were displayed on the media thanks to pliers. The sheets were 

used to recover the fungal biomass without the agar medium. 

 2.2.2.b aw study: Maize-based medium 

 Maize grain was provided by Arterris (harvest 2011, Lespinasse, France). The maize 

was washed with water and 90° alcohol. 200 g.l-1 of maize were added to boiled water. After 

30 minutes under agitation, the infusion was cooled down and passed through a Tami (Ø 2 

mm). Absorption at 350 nm was validated at 0.6 (±0.05) (after 15 min at 12.000 g). The aw 

was measured by HydroPalm Aw1® and measure probe HydroClip AW-DIO (ROTRONIC 

AG, Basserdorf, Switzerland). The medium had an aw of 1.  

 The aw of the medium was modified thanks to glycerol (Fisher Scientific) addition to 

obtain the desired values. The experiment was done 3 times. The aw according to glycerol 

concentration is represented in figure 40. 

 

Figure 40- Aw of the maize based infusion depending on glycerol concentration 



101 
 

 Nutriments were added to the maize-based infusion (supplemented by glycerol): 5 g.l-1 

Yeast Extract (Fisher Scientific), 10 g.l-1 α-D-Glucose (Fisher Scientific) and 15 g.l-1 Agar 

(Kalys). 

 To prevent Maillard reaction, the medium was autoclaved separately from the 

glycerol. Medium was added in sterile condition in the glycerol bottle at a temperature of 

60°C (to avoid glycerol high viscosity). The bottle was highly agitated prior to Petri dishes 

filling. 

 2.2.2.c AFB1 supplemented media 

A 1 mg.ml-1 AFB1 solution was prepared in methanol solution. This solution was added to 

ISP-2 medium after autoclaving to obtain a final concentration of 5 mg.kg-1.  

2.2.3 Conservation media: 

3 medium were used to conserve strains: 

 (i) on Petri dishes for short term conservation (1 week to 6 months); 

 (ii)  in inclined tubes for intermediate conservation: screw-capped tubes were filled 

with 12 ml of medium. After autoclaving, the tubes were inclined (around 10°) and were left 

at room temperature for cooling. The strains were left for growth until sporulation. The 

inclined tubes were then put at +4°C for conservation (more than a year conservation - 

transplanting yearly);  

 (iii) in cryotubes for long term conservations: strains were grown on Petri dishes. 

After sporulation, spores were taken with a sterile loop and were put in cryotubes containing a 

20% glycerol solution (more than five year conservation - transplanting every 4 years). 

 Actinomycetes were conserved in different ways to insure reliable isolates 

conservation. On Petri dishes, actinomycetes were grown on ISP-2 medium and conserved at 

+4°C. In inclined tubes, on ISP-2 medium and conserved at +4°C and in cryotubes at -20°C. 

 Fungal strains were also conserved in different ways. On Petri dishes, strains were 

grown on YEPD and PDA media for Aspergillus sp. and Fusarium sp., respectively. After 

sporulation, the Petri dishes were conserved at +4°C. In inclined tubes, on PDA medium and 

conserved at +4°C and in cryotubes at -20°C and -80°C.  



 

2.3 Culture: 

2.3.1 Culture for the screening study of good aflatox

chapter 3.2): 

 The co-culture screening method is based on the method proposed by Sultan 

(2011). A. flavus spores are dislodged from the pre

ml sterile water + 0.05% Tween

spores.ml-1 concentration solution was prepared. In a Petri dish filled with ISP

actinomycetes and A. flavus 

following instructions: 10 µl of spores suspension from 

Petri dish periphery. Actinomycetes streak is inoculated perpendicularly to 

actinomycete axe at 4.5 cm of the 

in Verheecke et al., (2014) are hereabove:

Figure 41 -Methodology used for interaction assessment and aflatoxins extraction (Verheecke 

 The incubation is made during 10 days at 28 °C, 

end of the incubation time. Experiment is realized twice in triplicate. The interaction between 

the 2 micro-organisms is observed macroscopically and 

(ID) (Magan & Lacey, 1984). 
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2.3.2. Culture for the RT-qPCR study of the impact of selected Streptomyces on aflatoxin 

gene expression (results chapter 3.3): 

 the co-culture method for RT-qPCR analysis is based on the latter with slight 

modifications. The methodology is represented is figure 42: 

 

Figure 42 - Methodology used for interaction assessment, RT-qPCR and AFT extractions. 

The protocol used is described above: 

Day 0: Inoculation in a Petri dish filled with ISP-2 medium, actinomycetes and A. flavus are 

inoculated on the same time. Inoculation is done with the following instructions: 10 µl of 

spores suspension from A. flavus are spotted  in the middle of the Petri dishes. Actinomycete 

streaks are inoculated in parallel with A. flavus spot in the center.  

90 hours: With a scalpel, the cellophane close to the mycelium growth was cut. At the 

interaction point, all the eye seen mycelium was taken avoiding bacterial biomass. Fungal 

biomass was separated from the bacterial one.  

Day 7: The fungal biomass (without bacterial biomass) was removed from the cellophane 

sheet for dry weight (18 hours at 80°C prior to weight measurement) and in the remaining 

media 3 agar plugs (Ø 9 mm) were taken from the fungal growth area for AFT extraction as 

shown in a grey box. 
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2.3.3 Culture for the AFB1-reduction test of 12 chosen actinomycetes (results chapter 

3.2): 

 On AFB1-supplemented medium, actinomycetes were inoculated with a loop to cover 

completely the Petri dish surface. After a 4 days long incubation period at 28°C, AFB1 was 

extracted. The actinomycete growth was observed macroscopically in the ISP-2 medium, 

control medium (methanol addition without AFB1) and in the AFB1-supplemented medium. 

The experiment was realized twice in triplicate. 

2.3.4 Culture for the AFB1 adsorption test for 2 chosen actinomycetes strains (S13 and 

S06) (results chapter 3.3): 

 Streptomyces (S13 and S06) spores were dislodged from the pre-culture with a sterile 

loop and placed in 10 ml sterile water. Spores were counted using a Thoma cell and a 106 

spores.ml-1 concentration solution was prepared. In a glass vial, 990 µl of spore solution and 

10 µl of AFB1 (100 µg.ml-1) were added to achieve a global concentration of 1 µg.ml-1. After 

1 or 60 minutes at 30°C, the mixture was collected thanks to syringe and needle. It was filtred 

(PVDF, 13 mm, 0.45 µm, Whatman) and transfer into vial n°1. The filter was rinsed once 

with sterile water (1 ml) and the rinse water was transferred into vial n°2. Finally, the filter 

was also rinsed with methanol (Fisher Scientific) and the rinse methanol was transferred into 

vial n°3. The experiment was done twice in triplicates. A student t-test was realized as a 

statistical analysis. 

2.4 Analytical methods: 

2.4.1 Aflatoxins HPLC measurement: 

 3 agar plugs (Ø 9 mm) are taken: at 5 mm from actinomycete streak (co-culture 

screening) and randomly on actinomycete growth area (AFB1 reduction test). The 5 mm 

distance was taken to mesure the direct impact of the A. flavus closest to the interaction zone. 

 The total weight of agar was measured. One milliliter of methanol was added to the 

plugs, shaken 5 seconds 3 times and incubated 30 min at room temperature. After 

centrifugation 15 min at 12,470 g, the supernatant was recovered and filtered through 0.45 µm 

PVDF Whatman filter into a vial and stored at -20°C until analysis.  

AFB1 measurement was done by an HPLC Ultimate 3000 (Dionex, FR) coupled with a 

Coring Cell (Diagnostix Gmbh, GE) for post-column derivatization. The Fluorescence 

Detector (Ultimate 3000, RS Fluorescence Detector, Dionex) was fixed at an excitation 
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wavelength λex = 362 nm and emission wavelength λem = 440 nm. 3 differents analytic 

columns were used. A C18, 5 μm (150 x 4,6 mm) Prontosil ODS1 with a pre-column (10 x 

4,3 mm) was first used. To optimize AFT separation two other columns were used, C18 

Phenomenex Luna and Kinetex (3 µm, 200 x 4-6 mm). A 10 to 100 μl injection volume was 

used (depending on the level of AFT quantified) with a Dionex auto-injector. The mobile 

phase was methanol: acetonitrile (Fisher, UK): water (20 : 20 : 60) with 119 mg.l-1 of 

potassium bromure (acros organics, BE) and 100 µl.l-1 of 65% Nitric acid (MERCK, DA) 

added. The flow rate was 0.8 to 1 ml.min-1. AFT quantification was done with standards 

(AFB1 produced by A. flavus, Sigma-aldrich, France) and the data were treated thanks to 

Chromeleon software. 

 The recovery ratio was calculated thanks to the addition of 5 µg.kg-1 of AFB1 in the 

medium. The standard solution and the medium extracted were both analysed in triplicate. A 

recovery ratio was calculated as 50% ± 5%. 

2.4.2 RT-qPCR: 

 2.4.2.a. Primer design: 

Primers were design thanks to Primer-blast software 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/ ) with slight parameters modifications: 

 (i) annealing temperature Tm: 59°C (Tm variance ≤ 2°C between the primers) 

 (ii) 80 to 150 pb long amplicon (with an intron if possible)  

 (iii) no more than 2 G/C in the last 5 nucleotides (3' end), 

To confirm no strong secondary structure (≥-∆G:4), produced primers were validated by 

Beacon software (http://www.premierbiosoft.com/qOligo/Oligo.jsp?PID=1). 

cDNA structure was checked with the mfold software (http://mfold.rna.albany.edu/?q=mfold). 

Primers were selected to be outside of the secondary structures of cDNA. 

The primers were produced and delivered by IDT (http://eu.idtdna.com/site) and their 

specificity was validated by qPCR followed by a nucleotide analyzer (experion - 100bp DNA 

StSens chip (Bio-Rad)). 

 2.4.2.b. Efficiency determination: 

 The efficiency of each primer sets was determined as describe: cDNA serial dilutions 

were made from a randomly chosen sample (100 fg, 1 ng, 10 ng, 100 ng) and were amplified 
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in duplicate using the same protocol as RT-qPCR. The efficiency was determined by CFX 

Manager (BioRad) and the efficiencies between 85 and 115% were validated. 

 2.4.2.c. RT-qPCR: 

 RNA extraction. The (90 hours aged) fungal biomass was crushed to a fine powder 

under liquid nitrogen and stored at -80°C until RNA isolation. Approximately 60 mg of 

mycelia were taken for extraction. Total RNA was isolated using the Aurum Total RNA Kit 

(BioRad) according to the manufacturer’s instructions for eukaryotic and plant cell material 

with the following modifications: DNase I digestion increased to 1 hour and the elution was 

done at 70°C for 2 min in elution buffer. Total RNA was eluted into 80 µl and stored at -20°C 

for short term storage. 1 µl of Total RNA of each sample was loaded into a RNA StSens chip 

(Bio-Rad) and quantified on nanodrop 2000 (Thermo scientific) according to the 

manufacturer’s instructions. Samples with RQI> 6.5, A260/280>2 and A260/230>1.3 were taken 

for further analysis. 

 Reverse transcription (RT) and qPCR. RT was carried out with the Advantage RT-

PCR Kit (Clontech) with Oligo (dT)18 primer (eukaryote only) according to the 

manufacturer's instructions (1 µg total RNA) with 1 modification: reaction incubation at 42°C 

was increased to 4 hours. RT-qPCR was performed in a CFX96 Touch instrument (Bio-Rad) 

using SsoAdvancedTM SYBR Green Supermix (Bio-Rad) with the protocol recommended for 

cDNA by the manufacturer's instructions (annealing temperature: 59°C; concentrations: 

Primers: 500 nM and cDNA: 100 ng). Each sample was run in duplicate. Following the RT-

qPCR, data were analysed using CFX Manager Software (version 3.0, Bio-Rad) for melting 

curves analysis. The Cq values were analysed thanks to the qbase+ software (biogazelle) 

(Hellemans et al., 2007). A One-way ANOVA (control versus all strains), paired t-test 

(control vs each strain) and spearman correlation test were done for statistical analysis. 

 2.4.2.d. Reference genes validation: 

 Based on the literature, we studied 7 candidate genes ( act1, βtub, cox5, ef1, gpdA, 

hisH4, rpl13 and tbp) as potentially suitable reference genes (Radonić et al., 2004; Bohle et 

al., 2007). For the identification of stability and optimal number of reference genes, 8 samples 

(randomly selected among the different conditions) were tested in triplicate. The gene stability 

measures V (gene pairwise variation) and M (V of a gene with other genes) were calculated 

with geNorm software (Vandesompele et al., 2002). 

 Optimal reference genes were then calculated. 
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2.4.3 16S sequencing: 

For DNA extraction, cultures of actinomycetes were grown for 3 days on ISP-2 

medium using non-distilled water (Shirling & Gottlieb, 1966) at pH 7. The protocol for 

bacterial DNA extraction was taken from Liu et al., (2000). Nucleic acid quantification 

following DNA extraction was performed using Nanodrop 2000 (Thermo scientific) 

according to the manufacturer’s instructions.   

PCR amplification of the 16S region was performed using a C1000 Touch Mycycler 

(BioRad). The chosen primers were the 27F (5' AGAGTTTGATCCTGGCTCAG 3') and the 

1492R (5' GGTTACCTTGTTACGACTT 3'). PCR reactions were performed in 50 µl 

reactions containing 0.5 µM of each primer, 10 x of reaction buffer containing MgCl2, 10 µM 

of deoxyribonucleotides (dNTP), and 5 U.µl-1 of Taq DNA polymerase (MP Biomedical). 

Samples were subjected to an initial 1 minute denaturation at 98°C, followed by 30 cycles of 

1 minute denaturation at 94°C, 1 minute primer annealing at 57°C, and 2 minutes of extension 

at 72°C, with a final 10 minutes extension step at 72°C (Zitouni et al., 2005). PCR amplicons 

were detected by agarose gel electrophoresis and were visualized by UV fluorescence after 

ethidium bromide staining. 

PCR amplicons were sequenced by Beckman Coulter Genomics (Grenoble, France). 

Sequencing primers were 10-30F (5’ GAGTTTGATCCTGGCTCA 3’) and 1500R (5’ 

AGAAAGGAGGTGATCCAGCC 3’). 

The 16S rRNA DNA sequences were compared with the EzTaxon database 

(http://eztaxon-e.ezbiocloud.net/). Similar 16S rRNA gene sequences were detected and the 

pairwise similarity was calculated. All the strains 16S sequence and their 3 closest strains 

were entered into Mega 6 software (Tamura et al., 2013) for analysis. The 16S DNA 

sequences were aligned against neighboring nucleotide sequences using CLUSTAL W 

(Larkin et al., 2007).  

Phylogenetic tree was constructed by using neighbour-joining (algorithm to compare 

sequences between each others)(Saitou & Nei, 1987) and Kimura model was used. This latter 

is based on the assumption that transitional substitutions (A=>G and C=> T) occurred twice 

less than transversional (G=>C, G=>T, A=>C and A=>T) through time. Bootstrap analysis 

(Felsenstein, 1985) was performed to evaluate the reliability of the tree topology. 
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Introduction 

 In this project, our aim was to investigate A. flavus impact on the maize microbial 

ecosystem (Fusarium sp.) and its impact on AFB, D.O.N. and fumonisins production. Our 

objectives included different steps: 

(i)  characterisation of A. flavus growth and AFB production on a maize-based 

medium; 

(ii) characterisation on the same medium of F. graminearum and F. verticillioides 

growth and their D.O.N. and fumonisins production, respectively; 

(iii) characterisation of the competition between those species 2-by-2 and the 3 

together on the same medium; 

(iv) tests in vitro on maize grain; 

(v) development on decision making tools available for storage agencies. 

 As a beginning, we focused on the first 2 steps. Based on the literature, we defined the 

aw and temperature conditions where A. flavus could grow and produce AFB. However, few 

data are available on the kinetic of production in controlled environments. These data are 

crucial for our ultimate step. Indeed, storage agencies needs reliable data to give an order of 

priority to the dryer. Those decisions will depend on the aw and temperature of the stored 

grain and time available prior to mycotoxins risks. 

 Thus, in the publication hereafter we conduct in vitro experiments on maize-based 

medium to determine the early stages of AFB and D.O.N. production by A. flavus and F. 

graminearum, respectively. Different abiotic parameters (time, temperature and aw) 

interwoven with sole and mixed inoculation were tested. 
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ABSTRACT (200 words) 

BACKGROUND: provides a rationale for the study (understandable to a broad 

audience) and states the main aim(s). 

Aflatoxins and Deoxynivalenol are mycotoxins that can be produced in maize prestorage. 

Those mycotoxins productions depend on the prestorage conditions (time, temperature and 

aw) and natural microbial maize ecosystem (e.g.: presence of Aspergillus sp. and Fusarium 

sp.). We studied the impact of these biotic and abiotic parameters on two representative 

producers: A. flavus and F. graminearum for aflatoxins (B1+B2) and Deoxynivalenol 

productions, respectively. 

RESULTS: describes the main findings, including important numerical values.  

In sole culture, A. flavus grew after 1 day and Fusarium after 2. Aflatoxin B1 production 

started at day 2 (36°C, 1) while no Deoxynivalenol was detected after 7 days. Maximum 

aflatoxin B1 and B2 production occurred after 4 days (28°C, 1). In co-inoculation tests, the 

growing fungus with the highest growth rate (in separate conditions) seems to overtake the 

other one. 

Keywords: Aspergillus flavus, Fusarium graminearum, aw, temperature, deoxynivalenol, 

aflatoxins 
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INTRODUCTION 

 In France, maize is the second crop production (FranceAgriMer, 2013). Thus, 

prevention against mycotoxins content above the regulation is crucial. Prestorage is a 

dangerous step regarding mycotoxins content (Grosjean & Gourdain, 2010). The former 

consists of temporary storage (1 to 6 days) before the first drying of the long term storage. At 

this step, high temperatures (30-35°C) and aw (> 0.80) may occur (personal communication). 

 At prestorage, fungal growth and mycotoxin production result from a complex 

interaction of several factors. Those includes abiotic (water activity (aw), temperature, time, 

etc.) and biotic parameters (microbial interaction) (Giorni et al., 2008; Formenti et al., 2012; 

Picot et al., 2012). A monitoring of each parameter involved is essential to understand the 

overall process and to predict and prevent mycotoxins development during this temporary 

step. In France, proper prestorage management is based on rapid drying (maximum 48h) and 

cooling (under 20°C) (Journal officiel, 2011). However, technical constraints can sometimes 

postpone this drying step. 

 At field, French maize can be contaminated with Fusarium sp. (Picot et al., 2012) and 

the newcomer Aspergillus section Flavi. The latter is already present in Italy (Giorni et al., 

2007) and starting to occur in France due to climate changes (Battilani et al., 2012). As an 

effect, prestorage maize can be contaminated with Fusarium sp. and Aspergillus section Flavi, 

both able to produce mycotoxins. 

 F. graminearum is one of the most representative of mycotoxigenic Fusarium sp. and 

produces Deoxynivalenol (D.O.N.) (Reid et al., 1999). The latter is colloquially known as the 

vomiting toxin:"vomitoxin"(Pestka, 2007) and its maximum limits in maize is 750 µg.kg-1 for 

human consumption (European Union, 2006). A. flavus is the most representative of 

aflatoxins B1 and B2 (AFB) producers (Nesbitt et al., 1962). The latter are potent 

carcinogenic compounds (“IARC Publications list,” 2012). 

 Thus, determination of the safety space-time of maize pre-storage prior to mycotoxins 

risks is needed. Moreover, the impact of the newcomer A. flavus needs to be assessed. Faced 

with the need for reliable data to prevent D.O.N. and AFB accumulation, maize-based 

medium have been developed (Garcia et al., 2013). The use of this medium provide 

preliminary data needed for a future model development dedicated to prestorage. 

 The aim of this work was to evaluate, in vitro, on a maize-based medium, the effect of 

temperature, aw, early incubation time and co-inoculation on fungal growth and toxin 
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production by A. flavus (AFB producer) and F. graminearum (D.O.N. producer). Both fungi 

were together and separately incubated on such medium.  
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EXPERIMENTAL 

Fungal isolates. The fungal strains used were Aspergillus flavus NCPT180 and Fusarium 

graminearum INRA 155 (maize-isolated in south-west of France) as they were previously 

identified as high aflatoxin and D.O.N. producers on maize-based medium, respectively. Both 

strains were conserved at -20°C in cryotubes in a 20% glycerol solution. 

Medium preparation and water activity adjustment. 

French dent maize was harvested in 2011. The maize was washed with water and 90° alcohol. 

200 g.l-1 of maize were added to boiled water. After 30 minutes under agitation, the infusion 

was cooled down and passed through a Tami (Ø 2 mm). Absorption at 350 nm was validated 

at 0.6 (±0.05) (after 15 min at 12.000 g). The aw was measured thanks to HydroPalm Aw1® 

and measure probe HydroClip AW-DIO (ROTRONIC AG, Basserdorf, Switzerland). The 

initial medium had an aw of 1. The medium aw was adjusted thanks to the addition of glycerol 

(Fisher Scientific, France) to obtain the desired aw values. The sorption isotherm of the media 

depending on the quantity of glycerol added was evaluated in triplicates. Nutriments were 

added to the maize-based medium: 5 g.l-1Yeast Extract (Fisher Scientific, France), 10 g.l-1 α-

D-Glucose (Fisher Scientific, France) and 15 g.l-1 Agar (Kalys, France). The medium (pH 5.3) 

was separately autoclaved from the glycerol. The medium was mixed with the glycerol at 

60°C. The aw of plates was not significantly different after seven days (statistics performed 

with R (2.15.2), t-test). 

Inoculation method. Pre-cultures were realized as previously described (Verheecke et al., 

2014). A. flavus and/or F. graminearum spores are dislodged from the pre-culture with a 

sterile loop and placed in water. In a Petri dish filled with maize-based medium, A. flavus 

(1.106 spores.ml-1) or F. graminearum (2.5.105 spores.ml-1) were centrally inoculated by 

applying 10 μl of spores suspension. In case of co-inoculation the spore suspension was 

composed of A. flavus (1.106 spores.ml-1) and F. graminearum (1.105 spores.ml-1). All the 

experiments were done in triplicates.  

Incubation and growth assessment. 2 hours prior inoculation, the plates were incubated at 

the different temperature (12, 20, 28 and 36°C) in incubators (AQUALYTIC FKS 3600 Index 

10B, LIEBHERR, Fisher Scientific, France.) supplemented with water containers. During 7 

days, three plates per condition (aw, temperature) were randomly chosen each day of culture. 

Growth measurements were taken in two directions at right angles to each others. A picture 

per condition was taken and the mycotoxin extraction was realized.  
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Mycotoxins extraction and quantification. In the colonized media (sole or co-incubation), 3 

agar plugs (Ø 9 mm) were taken randomly at the periphery, in the middle and in the center of 

the colony. Aflatoxin extraction and quantification were done as previously described 

(Verheecke et al., 2014) with a slight modification: methanol incubation was extended to 1 

hour (limit of detection 0.05 ppb). The same extraction was applied to DON. The HPLC 

system used for DON analysis was an Ultimate 3000 system (Dionex- Thermo Electron, Fr) 

with all the RS series modules. A C18 column and its associated pre-column (Prontosil, 

ODS1 5 µm, 125 x 4 mm) were used at 45°C. Analyses are realized at a flow rate of 1 ml.min-

1 during a 22 min run divided in 4 steps with different acetonitrile:water (pH 2.6). Step 1, 0 to 

10 min the ratio raised from (0:100) to (45:55). Step 2, 10 to 15 min the ratio raised from 

(45:55) to (90:10). Step 3, during 5 minutes, the ratio remained stable. Step 4, the ratio 

dropped from (90:10) to (5:95). The quantification is realized by the Chromeleon software, 

thanks to a standard of DON (Sigma-Aldrich, FR). The limit of quantification is 0.5 mg.kg-1.
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RESULTS 

A. flavus growth. Fungal growth was highly influenced by the 3 studied parameters: 

temperature, aw and time of incubation. 12°C and aw of 0.75 and 0.80 were the most repressive 

conditions with no growth after 7 days. At day 1, growth only occurred in 2 conditions: at an 

aw of 1, the fungus grew by 0.4 and 0.5 cm at 28°C and 36°C, respectively. At day 2 (a. figure 

1), more conditions were permissive to A. flavus growth: an aw of 1 for all the remaining 

temperature and an aw of 0.95 for 28 and 36°C. Days 3 and 4 (b. and c. figure 1), both aw of 1, 

0.95 and 0.90 (28°C and 36°C) led to A. flavus growth. At day 5 (d. figure 1), a complement 

growth was observed at 0.85 (36°C). Day 6 and 7 (e. and f. figure 1), only an aw of 0.85 

(20°C, 28°C) remained suppressive for fungal growth. Aw of 0.95 and 36°C were the most 

permissive conditions: the maximum growth (4.2 cm) was at day 7 (0.95, 36°C). 

AFB production by A. flavus. AFB were also highly influenced by the 3 studied parameters. 

12°C and aw of 0.75, 0.80 and 0.85 were repressive conditions with no AFB1 production. At 

0.90, only between days 6 and 7 AFB1 (not AFB2) occurred, with 0.7 and 11 ppb produced, 

respectively. At day 2 (Table 1), AFB1 only occurred at 36°C at an aw of 1. For the following 

days, the highest AFB detected were at an aw of 1 for 28°C and an aw of 0.95 for 36°C. At 

20°C, the production of AFB1 started at day 5 and AFB2 at day 6: the maximum occurred at 

day 7 and an aw of 1. Overall, the maximum AFB production was achieved at day 4 and an aw 

of 1 where 3,070.0 and 41.7 ppb were detected for AFB1 and AFB2, respectively. 

F. graminearum growth. Fungal growth was highly influenced by the 3 studied parameters: 

temperature, aw and time of incubation. 36°C and aw of 0.75, 0.80 and 0.85 were the most 

repressive conditions with no growth after 7 days. At day 1, no growth occurred. At 0.90, 

growth only occurred (0.3 cm) at day 7 and 28°C. The other 6 incubation days are represented 

in figure 2 (a. for an aw of 0.95 and b. for 1). At both aw and 12°C, growth was delayed by 2 

days (day 4) compared to 28 and 36°C. The Petri dishes were completely recovered after 6 

days at an aw of 1 and 28°C (most permissive conditions). 

D.O.N. production. No production was detected at 7 days in all the conditions tested. 

A. flavus and F. graminearum co-inoculation. 0.75, 0.80 and 0.85 were the most repressive 

conditions with no growth after 7 days. At day 1, growth only occurred in 2 conditions: at an 

aw of 1, the fungi grew by 0.5 cm at 28°C and 36°C. The growth at 0.90 started day 3 at 36°C 

and day 4 at 20 and 28°C. From day 2 to day 5, the fungal growth was higher at 20 and 36°C 
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than 28°C. Macroscopic study showed that F. graminearum was predominant at 20°C, both 

developed at 28°C and only A. flavus at 36°C.  

Results concerning metabolites are currently under analysis. Growth and metabolites 

production at 12°C remains to be investigated. 
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DISCUSSION 

 In this work, the impacts of aw, temperature and time (taken together or alone) on A. 

flavus and F. graminearum were monitored on a maize-based medium. The aim was to 

specifically study those impacts on early days of AFB and D.O.N. production as they would 

appear in prestorage.  

 It is known that A. flavus is a representative fungus for AFB production. To 

understand this production many in vitro studies have been done on synthetic medium (Garcia 

et al., 2011; Abdel-Hadi et al., 2012; Astoreca et al., 2014). In this study, we optimized a 

maize-based medium for AFB production. Giorni et al., (2008) studied AFB1 production by 

A. flavus on Potato Dextrose Agar. For instance, after 7 days (25°C, 0.95) the fungal growth 

was 4.1 cm and the AFB1 production was 470 ng.g-1. Similar AFB1 results were observed at 

28°C in the present study (380 ng.g-1). Nonetheless, in our study we draw attention on the day 

4 which revealed to be the optimal incubation time for AFB concentration. 

 We monitored early days of F. graminearum growth and D.O.N. production. Garcia et 

al., (2012) also monitored F. graminearum growth and D.O.N. production on a soybean-

based medium at different temperatures (15, 20, 25°C and 30°C). After 7 days, at 25°C, the 

Petri dishes were saturated by F. graminearum growth. It was the only incubation temperature 

leading to D.O.N. production with 0.11 µg.g-1 produced (Garcia et al., 2012). In our study, no 

D.O.N. production occurred. This difference could be explained by our higher detection limit 

(0.5 µg.g-1) and differences in medium composition. 

Discussion around co-incubation will be added according to the future results. 

 Our study provided results on biotic and abiotic impacts on AFB and D.O.N. 

production. Recently, Garcia et al., (2013) developed a model on maize-based medium and 

maize for AFB production by A. flavus (separately incubated). They showed that fungal 

growth and AFB production were delayed (1 to 2 days) on maize compared to the maize-

based medium. Moreover, AFB (up to 120 ng.g-1) was less produced in the maize (10 ng.g-1). 

In future studies, we may get similar delay when transposed into maize experiments. Such 

results will help to provide data for risk management of aflatoxins and D.O.N. depending on 

environmental parameters. 
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Figure Legends: 

Figure 1: radial growth of A. flavus at day 2 (a.), day 3 (b.), day 4 (c.), day 5 (d.) day 6 (e.) 

and day 7 (f.) versus temperature and aw. 

Figure 2: radial growth of F. graminearum at aw of 0.95 (a.) and 1 (b.) versus temperature and 

days of incubation. 

Figure 3: radial growth of A. flavus and F. graminearum (after co-inoculation) at day 2 (a.), 

day 3 (b.), day 4 (c.), day 5 (d.) day 6 (e.) and day 7 (f.) versus temperature and aw. 

Table 1: Production of AFB1 and AFB2 by A. flavus on maize-based medium at different 

temperatures, aw and incubation time. 

Figure 43 - Figure 1 - radial growth of A. flavus at day 2 (a.), day 3 (b.), day 4 (c.), day 5 (d.) day 6 (e.) and day 7 (f.) 
versus temperature and aw. 
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Figure 44 - Figure 2 - radial growth of F. graminearum at aw of 0.95 (a.) and 1 (b.) versus temperature and days of 
incubation. 

 

Figure 45 - Figure 3 - radial growth of A. flavus and F. graminearum (after co-inoculation) at day 2 (a.), day 3 (b.), day 
4 (c.), day 5 (d.) day 6 (e.) and day 7 (f.) versus temperature and aw 
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Table 13 -Table 1: Production of AFB1 and AFB2 by A. flavus on maize-based medium at different temperatures, aw 
and incubation time 
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Conclusion 

 In this work, we wanted to evaluate, in vitro on a maize-based medium, the effect of 

temperature (12, 20, 28 and 36°C), aw (0.75, 0.80, 0.85, 0.90, 0.95 and 1), early incubation 

time (day 1 to 7) and co-inoculation on fungal growth and toxin production by A. flavus (AFB 

producer) and F. graminearum (D.O.N. producer). We specially focused on early stages as 

they are the key to the understanding of prestorage risks. 

 Firstly, A. flavus growth was followed. 28°C and 36°C were the most permissive 

temperature and showed growth after 1 day. For the aw of 1, 0.95 and 0.90, a reduction of aw 

was correlated with a delay of 1 day in fungal growth. At 20°C, growth started at day 2 and a 

delay was observed with the decrease in aw (aw of 1 (day 2), aw of 0.95 (day 3) and aw of 0.90 

(day 6)). No growth of A. flavus was observed at 12°C and at an aw lower than 0.90 with an 

exception after 7 days at 36°C. 

 Secondly, we monitored AFB production by A. flavus. At 36°C, only AFB1 was 

produced after 2 days at an aw of 1 (3.4 µg.kg-1). Moreover, from day 3 to day 7, AFB1 was 

produced preferably at an aw of 0.95 compared to 1. AFB1 production occurred at day 6 for an 

aw of 0.90. At 28°C, AFB1 production started at day 3 and was produced preferably at an aw 

of 1. At 20°C, AFB1 production started at day 5 for an aw of 1 and day 7 for an aw of 0.95. 

 Thirdly, F. graminearum growth and D.O.N. production was followed. Growth only 

occurred at aw of 0.95 and 1. Fungal growth started at day 2 and saturated the Petri dishes 

after 5 days. No D.O.N. was detected after 7 days. 

 Further characterisation are needed to assess the impact of A. flavus co-inoculation on 

the AFB and D.O.N. risks. 
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3.2. Study of actinomycetes and Aspergillus 

flavus interaction 
  



130 
 

Introduction 

 In this project, our aim was to identify a bacterial biocontrol able to grow with A. 

flavus and reduce AFT accumulation in maize. Our objectives included different selection 

criteria: 

 (i) AFT concentration must be reduced by the biocontrol (ultimate aim in planta);  

 (ii) the maize ecosystem have to be modified as little as possible; 

 (iii) harmlessness of the biocontrol must be verified; 

 (iv) the biocontrol have to survive in maize or in maize soil.  

 As a beginning, we focused on the 2 first criteria. Based on those, we selected 

potential biocontrol. We decided to focus on actinomycetes.  

 Those bacteria are soil-borne and can be easily detected on maize (Costa et al., 2013). 

They are already used as biocontrol agents. For example, in greenhouse maize, Streptomyces 

DAUFPE 11470 and 14632 were tested for their antagonism against F. moniliforme (= F. 

verticilliodes). Streptomyces showed up to 55% (11470) and 62.5% (14632) reduction of 

damping-off (Bressan & Figueiredo, 2008). This example, among others, reveals 

actinomycetes interesting criteria as biocontrols. 

 Moreover, actinomycetes are also producers of a wide range of secondary metabolites 

(Neuss et al., 1970; Lamari et al., 2002; Yoshinari et al., 2007). The latter have already been 

applied in many fields: pharmaceutical, agronomics, etc. As so, choosing actinomycetes 

increase the chances to get interesting results. Thus, we took actinomycetes available in our 

own collection (jointly with ENS Kouba) as potential biocontrol agents. Those actinomycetes 

were chosen as they come from ecosystems where A. flavus is a regular contaminant 

(Algeria). 

 To choose an efficient biocontrol, it is important to characterise its mode of action. 

Two hypotheses are suggested: either the biocontrol prevent aflatoxin biosynthesis or/and it 

reduces pure-AFB1. Firstly, intermediate of aflatoxin biosynthesis may be accumulated. 

Secondly, side-products of degradation may also be accumulated. Both can impact the 

harmlessness of the interaction. Thus, in this publication we conducted in vitro experiments to 

segregate AFB-reducing isolates in interaction with A. flavus. Moreover, the best candidates 

were tested for pure-AFB1 reduction as a first characterisation.  
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Table 14 - Table 1 - Actinomycetes presenting the same ID and 
the impact on AFBs concentration (Pictures in Annex 1) 
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Table 15 - Table 2 - Effect of different actinomycetes isolates on fungal growth and aflatoxin B1 and aflatoxin B2 concentration. 
Only the 27 which has shown mutual antagonism on contact with Aspergillus flavus (ID(2/2) are represented. 
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Table 16 - Table 3 - Impact of actinomycetes on aflatoxin B1 
concentration in the media 
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Figure 46 - Figure 1 - a. Inoculation (day 0) in a Petri dish filled with ISP2 medium, actinomycetes and A. flavus are inoculated on 
the same time. Inoculation is done with the following instructions: 10 µl of spores suspension from A. flavus are spotted at 2 cm 
from the Petri dish periphery. Actinomycete streak is inoculated perpendicularly to A. flavus -actinomycete axe at 4.5 cm of the A. 
flavus spot.  

b. Interaction assessment and aflatoxins extractions, in case of ID (2/2). The growth measurements are done and is represented in 
grey for A. flavus and in stripes for the isolate. The aflatoxin extraction area is delimited by a white box. 
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Additional results 

 The 12 best candidates studied for pure-AFB1 reduction had additionally their 16S 

rRNA gene sequence analysed for identification. 

 Usually, actinomycetes are identified by a multitude tests: 

(i) Genus identification: isolation on a chitine medium (supplemented with 

fungicides), morphology (e.g.: mycelium observation), and chemical 

characterisation (e.g.: amino acid, sugar, lipides), 16S rRNA gene sequencing 

(e.g.: a pairwise similarity under 95% leads to different genus); 

(ii) Species identification: physiology (e.g.: degrade or tolerate chemical), 16S 

rRNA gene sequencing (e.g.: for Streptomyces pairwise similarity under 97% 

leads to new species) and DNA-DNA hybridisation (e.g.: for Streptomyces an 

homology under 70% leads to a new species) (Meklat, 2012). 

Among these, the 16S rRNA gene sequencing provides two different key information: 

the species identification and phylogenetic tree design. 

In our study, only Saccharothrix algeriensis NRRL B-24137 (S34) has already been 

characterised and identified (Zitouni et al., 2004). The Streptomyces genus of the other 

isolates was previously identified thanks to morphological observations (ENS Kouba). 16S 

rRNA gene sequencing was done for these strains (except S08). 

The first results concern the species identification. It is based on sequence blasting 

between the new sequence and those available in databases (e.g.: Extaxon). Those results 

(Table 17) exhibited more than 95% pairwise similarities with Streptomyces strains. It 

confirms the belonging of those isolates into the Streptomyces genus. 

Among these, the lowest similarity level (95.1%) was for S27 with S. neopeptinius 

KNF 2047. The 16S rRNA gene sequence similarities between S27 and other remaining 

Streptomyces were also below 97%. It is known that a pairwise similarity under 97% with the 

other Streptomyces strains can lead to potential new species. In our results, S27 could possibly 

be a new species. A complete characterisation of S27 should be subjected to identify a 

potential new Streptomyces species. 

The isolates S03 and S04 were highly similar to S. zaomyceticus (99.1 and 99.0 %, 

respectively). Each remaining strain was similar to a distinct Streptomyces species: S06 to S. 

roseolus (99.0%), S13 to S. calvus (99.2%), S17 to S. thinghirensis (99.1%), S21 to S. 
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griseorubens (99.0%). S33, S35 and S38 had the highest similarity rates with: S33 to S. 

rochei (99.6%), S35 to S. pratensis (99.9%) and S38 S. caeruleatus (99.6%). 

 All those strains showed 99.0 to 99.9% pairwise similarities with Streptomyces strains. 

Many studies discovered new species, even though high pairwise similarity were detected 

(Santhanam et al., 2012; Mohammadipanah et al., 2014; Sakiyama et al., 2014). This suggests 

that further DNA-DNA hybridisation should be done with the strain having the closest 

sequence to determine the 70% threshold. 

Another output of 16S sequencing is the design of phylogenetic trees. This latter is 

calculated thanks to phylogenetic algorithm and validated by statistical analysis (Meklat, 

2012).  

 This produced tree (Figure 47) showed the close phylogenetic association of strain S03 

and S04 with S. zaomyceticus and S. omiyaensis. S13 and S33 were also closely associated. 

Similar patterns were observed with S35 and S06, and, S21 and S17. S38 and S27 had the 

biggest difference of phylogenic association with the other strains. S38 and S27 were the most 

diverse in base substitution per site. S27 formed an independent phyletic line of its own, and 

the topology was supported by a high bootstrap value (82%).  

 Currently, phylogenetic trees are based on 16S rRNA gene sequences. It was made to 

reflect the evolution pattern between the different species separation. Generally, trees based 

16S rRNA sequence find similar results with phenotypic and chemical taxonomy (Meklat et 

al., 2011, 2013).  

 

 

 

Table 17 - Isolates, corresponding strains and their associated pairwise similarity in percent. 
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Figure 47 - Phylogenetic tree between our isolates and selected species of Streptomyces genus. The evolutionary history 
was inferred using the Neighbor-Joining method (Saitou & Nei, 1987). The optimal tree with the sum of branch length 
= 0.22168834 is shown. The percentage of replicate trees in which the associated taxa clustered together in the 
bootstrap test (1000 replicates) are shown next to the branches (only values greater than 50% are given) (Felsenstein, 
1985). The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to 
infer the phylogenetic tree. The evolutionary distances were computed using the Kimura 2-parameter method 
(Kimura, 1980) and are in the units of the number of base substitutions per site. The analysis involved 35 nucleotide 
sequences. Evolutionary analyses were conducted in MEGA6 (Tamura et al., 2013). 
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Conclusion 

 In this chapter, we studied the interaction between actinomycetes isolates and A. 

flavus. Our aim was to study those isolates capacity to reduce AFB production without 

impacting fungal growth. Among the 37 actinomycetes chosen, after a 10 day co-incubation 

in vitro, only 27 isolates showed mutual antagonism in contact. We evaluated the impact of 

these isolates on AFB accumulation by A. flavus. They reduced AFB1 residual concentration 

from 38.6% to 4.4%, depending on the isolate.  

 Among them, 12 were tested for their ability to reduce pure-AFB1 content. After 4 

days at 28°C on ISP-2 medium, AFB1 (5 mg.kg-1) was reduced by 8 isolates. The remaining 

AFB1 concentration varied between 82.2 and 15.6%. 4 isolates reduced AFB1 content under 

30% of the control. 

 These 12 isolates also had their 16S rRNA gene sequence analysed for identification. 1 

strain was Saccharothrix algeriensis B-24137 and another was not analysed. For the 10 

remaining strains, their belonging to Streptomyces genus was confirmed. The S27 is 

potentially a new species whereas for the other strains further DNA-DNA homology tests 

need to be made. 
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3.3. Characterisation of the mechanisms 

involved by RT-qPCR while A. 

flavus and A. parasiticus interaction and 

AFB1-adsorption tests 
  



144 
 

 

 

  



145 
 

Introduction 

 A. flavus is currently the main AFB1 producer in many commodities. Thus, it is 

regularly chosen as a representative of AFB producers (Abbas et al., 2009; Abdel-Hadi et al., 

2012; Battilani et al., 2013). Besides, A. parasiticus is a representative fungus for AFT 

production. Thus, we decided also to study the impact of Streptomyces on the AFT production 

by A. parasiticus. 

 We try to elucidate the molecular mechanisms involved in the reduction of AFB1 

concentration during Aspergillus sp.-Streptomyces isolates interaction. To achieve this, we 

selected 6 Streptomyces strains as good candidates. Those 6 strains, showed mutual 

antagonism in contact with A. flavus and reduced AFB concentration under 17%. Moreover, 2 

did not reduced (S17, S13), 3 moderately reduced (S27, S35, S38) and 1 highly reduced (S06) 

pure-AFB1 concentration. 

 Among the possible mechanisms, prevention of AFT production (repression on 

aflatoxin genes expression) and/or reduction of AFT content (adsorption or degradation) 

could be involved. 

 To study the repression of gene expression, different techniques can be used: 

microarray, northern blot, Reverse Transcription quantitative PCR (RT-qPCR). RT-qPCR is a 

powerful technique to obtain quantitative gene expression data. Nevertheless, this sensitive 

technique can easily give non representative results. Thus, it is critical to ensure adequate RT-

qPCR protocol and reference gene normalisation (Bustin et al., 2009). 

 In the publication hereafter we conduct in vitro experiments to study gene expression 

of aflatoxin genes.  
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SUMMARY 

Aspergillus flavus and A. parasiticus are producers of aflatoxins, a carcinogenic compound. 

Streptomyces sp. may interact with Aspergillus and lead to the in vitro reduction of aflatoxin 

concentration. To shed light on the mechanisms involved, we studied the microbial interaction 

between Aspergillus and six selected Streptomyces strains and looked into the quantification 

of aflatoxins and the expression of 5 genes aflD, aflM, aflP, aflR and aflS thanks to RT-qPCR.  

When Streptomyces strains were separately put in contact with A. flavus and A. parasiticus, 

the level of aflatoxins production decreased. In terms of gene expression, it was either lower 

or higher depending on the Streptomyces strains and the gene studied. Therefore, we 

demonstrate that all the six tested strains reduce aflatoxin production and have various 

impacts on gene expression.  

 

Keywords: Aspergillus, Streptomyces, RT-qPCR, gene expression, aflatoxin 
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INTRODUCTION 

 Aflatoxins are carcinogenic polyketide-derived furanocoumarins (IARC, 2014) which 

may contaminate agricultural foodstuffs. Aspergillus flavus and A. parasiticus are the main 

producers of aflatoxins. They are found in different crops such as maize, hazelnut, peanut, etc. 

(Giorni et al., 2007; Passone et al., 2010). To reduce risks associated with aflatoxin ingestion, 

particularly aflatoxin B1 (AFB1), multiple nations have set maximum authorised levels of 

aflatoxins in food and feed (Wu & Guclu, 2012). 

 The 29 aflatoxin pathway genes are regrouped in a 80-kb long cluster, characterized in 

both A. flavus and A. parasiticus species (Yu, 2012). In terms of structural genes, early (aflD), 

medium (aflM) and late (aflP) genes are denominated. AflD encodes the reductase enzyme is 

involved in the conversion of the norsolorinic acid (NOR) into averantin (Papa, 1982). AflM 

is required for the conversion of versicolorin A (VERA) into demethylsterigmatocystin 

(DMST) (Skory et al., 1992). AflP encodes the methyltransferase which converts 

Sterigmatocystin (ST) into O-methylsterigmatocystin (Bhatnagar et al., 1988). Two 

regulatory genes are also present, AflR encodes a transcription activator which binds a 

consensus sequence in the promoter regions of aflatoxin genes (Payne et al., 1993) and AflS 

is a potential co-activator of AflR (Meyers et al., 1998). Schmidt Heydt et al. (2009) showed 

that the aflR:aflS ratio can be an indicator of aflatoxin accumulation. This ratio, above 1, 

promotes aflatoxin accumulation. In addition to aflR and aflS, the clustered biosynthetic genes 

are also regulated by aspecific transcriptional regulators.  

 Yeast, bacteria and fungi can impact the production of aflatoxins (Yin et al., 2008). In 

Streptomyces - A. flavus interactions, a significant reduction of in vitro AFB1 and aflatoxin 

B2 (AFB2) (AF) medium concentration (mc) was observed. For instance, in vitro interaction 

between A. flavus NRRL 62477 and Streptomyces revealed an antagonism upon contact 

leading to a AF mc at less than 17% of the control (Verheecke et al., 2014). Schroeckh et al. 

(2009) also revealed that some Actinomycetes strains can specifically induce secondary 

metabolism of A. nidulans. 

 Previously we have demonstrated that, Streptomyces strains inhibit in vitro AF 

accumulation by A. flavus (Verheecke et al., 2014). In order to investigate the mechanisms 

involved, we first studied those six strains in interaction with A. parasiticus. As fungal growth 

wasn't correlated with AF(AFB1, AFB2 and AFG1) reduction, we secondly adopted a RT-

qPCR approach to monitor the impacts of Streptomyces interactions with A. flavus and A. 

parasiticus on AF gene expression. 
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METHODS 

 Fungal and Streptomyces strains. The fungal strains used were A. flavus NRRL 62477 

and A. parasiticus Afc5. Six actinomycete strains were selected and their 16S rRNA gene was 

sequenced by the method previously described (Zitouni et al., 2005). The six strains 

(Streptomyces roseolus S06, S. calvus S13, S. thinghirensis S17, Streptomyces spp. S27, S. 

griseoplanus S35, S. caeruleatus S38) were kept at -20°C in cryotubes in a 20% glycerol 

solution. 

 Interaction method and AF quantification. Pre-cultures and cultures were prepared 

as previously described (Verheecke et al., 2014) with slight modifications: a sterile 8.5 cm 

cellophane sheet (Hutchinson, France) was added on ISP-2 prior to inoculum and two streaks 

(instead of one) of Streptomyces culture were inoculated (in parallel) 2 cm away from A. 

parasiticus inoculation. Two sets of plates were inoculated for optimum data analysis, one set 

for RNA extraction after 90 h and the other after 7 days to determine fungal growth and AF 

concentration. As for the first set, after 90 hours, the fungal biomass was separated from the 

bacterial one. With a scalpel and unaided, the cellophane close to the mycelium growth was 

cut. This enabled to avoid bacterial biomass. The fungal biomass was then removed from the 

cellophane surface for RNA extraction. As for the second set, after 7 days, the fungal biomass 

was removed from the cellophane sheet for measurement of dry weight (18 hours at 80°C 

prior to weight measurement). In the remaining media, three agar plugs (Ø 9 mm) were 

removed from the fungal growth area for AF extraction (Verheecke et al., 2014). All the 

experiments were done twice. The same protocol was applied with A. flavus in a separate 

experiment. 

 RNA extraction and quantification. 60 mg of mycelium were crushed in liquid 

nitrogen into a fine powder. The powder was then stored at -80°C until RNA isolation. Total 

RNA was isolated using the Aurum Total RNA Kit (BioRad). The manufacturer instructions 

for eukaryotic and plant cell materials were followed, except for two modifications: DNase I 

digestion was extended to one hour and elution was done at 70°C for 2 min in the elution 

buffer. Total RNA was eluted into 80 µl and stored at -20°C for a short period of time. 1 µl of 

Total RNA of each sample was loaded into a RNA StSens chip (Bio-Rad) and quantified on 

nanodrop 2000 (Thermo scientific) according to the manufacturer instructions. Samples with 

RQI> 7, A260/280>2 and A260/230>1.3 were selected for further analysis. 

 RT-qPCR. RT was carried out with the Advantage RT-PCR Kit (Clontech) with 

Oligo (dT)18 primer according to the manufacturer instructions (1 µg total RNA), except for 
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one modification: incubation at 42°C was extended to four hours. RT-qPCR was performed in 

a CFX96 Touch instrument (Bio-Rad) using SsoAdvancedTM SYBR Green Supermix (Bio-

Rad). Primer pairs and associated efficiencies were validated (85-115%) (Table S1) and 

statistics were made with the qbase+ software.  

 Reference genes validation. Seven candidate genes (act1, βtub, cox5, ef1, gpdA, 

rpl13 and tbp) were tested as potentially suitable reference genes (Bohle et al., 2007; Radonić 

et al., 2004). The measures of gene stability V and M were calculated with geNorm software 

(Vandesompele et al., 2002). This led to the choice of act1 and βtub as optimal reference 

genes (Figure S1).  

RESULTS  

Interaction of Streptomyces with A. parasiticus and A. flavus 

After seven days, all the tested Streptomyces strains showed a mutual antagonism when in 

contact with A. parasiticus. The fungal residual dry weight (rdw) ranged from 24.7 to 57.2% 

of the control dry weight (100%) when treated with the six strains (Table 1). The reduction 

effect increased in the following order: S17 (57.2%) > S38 (44.3%) > S27, S13 (35.2%) > S35 

(32.9%) >S06 (24.7%). 

Mutual antagonism was also showed in contact with A. flavus with the same Streptomyces 

strains, with a lower impact on A. flavus growth (Table 2). The rdw ranged from 60.7 to 

92.7% of the control dry weight (100%) when treated with the same six strains. The reduction 

effect increased in the following order: S27 (92.7%) > S13 (81.3%) > S17 (77.7%) > S06 

(64.6%) >S38 (62.4%) > S35 (60.7%). 

Reduction of AFB1 

Among the six studied bacterial strains, all lead to a reduction of AFB1 production by A. 

parasiticus and A. flavus. S17 showed a lesser reduction on AFB1 production. It was 13% mc 

for A. parasiticus and 24% for A. flavus. S27 and S38 present more significant reduction in 

the AFB1 concentration: the mc for A. flavus and A. parasiticus were 4.1% and 8.1% by S27 

and 4.5% and 3.1% by S38. S06 and S35 were extremely effective strains. Indeed, no AFB1 

was detected in interaction with A. parasiticus and mc of 2.3% (S06) and 0.2% (S35) in A. 

flavus interaction. Finally, S13 had varying impact on AFB1 production depending on the 

strain studied : no AFB1 detected after A. parasiticus interaction although 15.6% were 

detected in A. flavus interaction. 
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Reduction of AFB2 and AFG1 

AFG1 production by A. parasiticus was monitored in the same conditions. Among the six 

studied strains, three totally inhibited AFG1 production and three didn't: S17, S27 and S38 

with 6.2%, 2.9% and 4.0% respectively (Table 1). AFB2 production by A. flavus was 

monitored. Among the six studied bacterial strains, four totally inhibited AFB2 production 

and two didn't: S13 and S17 with 9.3% and 5.3% respectively (Table 2). S17 also had a lesser 

reduction on AFG1 and AFB2 production.  

RT-qPCR for aflatoxin gene expression. The study of the gene expression was carried out 

with A. flavus or A. parasiticus alone (controls) and in interaction with the 6 Streptomyces 

strains. Five genes (aflD, aflM, aflP, aflR and aflS) were investigated relatively to two 

reference genes (act1 and βtub). 

Focus on A. flavus, the expression of aflD and aflS was not significantly impacted by the six 

strains. 

S35 repressed the expression of aflM (8.4 fold) and aflR (1.5 fold). S38 repressed the 

expression of aflP (4.8 fold) and aflR.S06 enhanced the expression of aflR (2.37 fold). 

Regarding A. parasiticus, aflD expression was not significantly impacted. AflM expression 

was slightly impacted by S13 (7.7 fold), moderately by S35 (33.3 fold) and very highly by 

S06 (100 fold). S35 and S06 also reduced aflP expression 83 and 250 fold, respectively. 

Regarding aflS and aflR, S13 significantly reduced aflS expression (6.25 fold) and S06 

repressed the expression of both aflS (10 fold) and aflR (14.3 fold). 

The ratio aflR:aflS was monitored in both producing strain. Both positive control were close 

to 1: 0.8 for A. parasiticus and 0.9 for A. flavus. It was above 1 for A. parasiticus in S06 (1.2), 

S13 (1.2), S17 (1.4) and S38 (1.5) interactions and for A. flavus in S06 (2.9), S17 (1.8) and 

S35 (1.3) interactions. Otherwise, under 1 ratios were observed. 
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DISCUSSION 

 In this work, Streptomyces spp. inhibit aflatoxin production by A. flavus and A. 

parasiticus in Petri Dishes on ISP-2 medium. It is known that micro-organisms interactions 

can led to aflatoxin inhibition (by A. parasiticus and A. flavus) without fungal growth 

inhibition. Pichia anomala, Stenotrophomonas sp., Achromobacter sp. were but three of the 

many examples (Hua et al., 1999; Jermnak et al., 2013; Yan et al., 2004). In this study, we 

add Streptomyces to this list. 

 In interaction with the six bacterial strains, significant differences in AF concentration 

was detected depending on the producing strain. Bluma et al., (2008a, 2008b) studied the 

impacts of essential oils addition. AF reduction mainly was observed on A. parasiticus and A. 

flavus (Bluma et al., 2008a, b). However, in certain conditions, A. parasiticus and A. flavus 

overproduced AF compared to the control. In our study, AF production by both producing 

strains were similarly repressed. Our selected strains clearly have a repressing impact on AF 

production independently of the strain tested. 

 This inhibition can be linked to AF biotransformation or production prevention. The 

latter has already been studied. The concentration of pure-AFB1 was significantly reduced by 

S06 (15.6% mc), S35 (29.4% mc) and S38 (38.0% mc) in contrast to S27 (76.6%), S17 

(96.6%) and S13 (104.9%) (Verheecke et al., 2014). A significant difference in aflatoxin 

inhibition percentage was observed in the present study, although the same Streptomyces 

strains were used. This potentially suggests additional gene repression involved. 

 It is known that aflatoxin inhibition can occur through gene repression (Alkhayyat & 

Yu, 2014; Yu, 2012). The expression of aflM was mostly repressed (between 2.2 and 100 

fold) in the tested conditions. A disruption of aflM homolog in A. nidulans (verA ) led to a 

reduction of ST production by 200 to 1000 fold (Keller et al., 1994). Just as in this study, 

repression of aflM expression could be linked with the reduction of aflatoxin production.  

 Other expressions of genes were also repressed. Similar results were shown by the 

addition of caffeic acid in the media. AflD (6.6 fold), aflM (7.1 fold), aflP (9.1 fold) and aflS 

(1.5 fold) were repressed without affecting fungal growth (by A. flavus) (Kim et al., 2008). In 

our case, the same range of repression was observed in interaction with our Streptomyces 

strains. This suggests that Streptomyces were responsible of the gene repression. 
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 The expression of aflR was differently impacted. It was enhanced 2.37 fold (by S06 in 

A. flavus) and repressed up to 10 fold (by S06 in A. parasiticus). Variation of aflR expression 

was also observed in contact with lyophilized filtrat of Trametes versicolor (aflatoxin 

repressive). In A. parasiticus, at 72h, aflR expression was enhanced by more than 10 fold 

(Zjalic et al., 2006). In our study, even though aflR expression was enhanced, aflatoxin 

production was also reduced. This suggests that Streptomyces can impact independently from 

aflR the expression of aflD, aflM and aflS (S06). 

 Depending on fungal and bacterial strains, the ratio aflR:aflS was differently impacted. 

It ranged from 2.9 by S06 in A. flavus to 0.5 by S35 in A. parasiticus and by S13, S27 and 

S38 in A. flavus. This ratio was first studied under various aw and temperature. A ratio above 

one resulted in activation of AFB1 biosynthesis (Schmidt-Heydt et al., 2009). In our study, a 

ratio above one was not correlated with high AF accumulation and was found in most 

conditions. Another indicator besides the aflR:aflS ratio, could be investigated for AF 

accumulation in Streptomyces interaction. 

 Streptomyces strains reduce AF accumulation by A. flavus and A. parasiticus. Those 

former mainly repressed aflM and aflS and differently impacted aflP and aflR expressions. 

Studies are now in progress to identify the mechanisms involved. Pure-AFB1 reducers and 

genes repressor Streptomyces will be further tested as potential biocontrol agents on maize 

grain.  
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TABLES: 
Table 1: Streptomyces strains impact on A. parasiticus aflatoxins and gene expression. 

Table 2: Streptomyces strains impact on A. flavus aflatoxins and gene expression. 

Table S1: RT-qPCR Primers used for candidate reference genes and genes of interest.  

 

FIGURES: 

Figure S1: The gene stability measure M for the seven reference genes candidates. 

Table 18 - Table 1 - Streptomyces strains impact on A. parasiticus aflatoxins and gene expression 

 

Table 19 - Table - 2 Streptomyces strains impact on A. flavus aflatoxins and gene expression 
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Table 20 - Table S1 - RT-qPCR Primers used for candidate reference genes and genes of interest. 

 

Figure 48 - Figure S1 - The gene stability measure M for the seven reference genes candidates 
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Additional results 

 To study adsorption mechanisms, additional results were obtained. An AFB1-reducer 

(S06) and AFB1-non-reducer representative (S13) were chosen. The results are represented in 

table 21. The AFB1 level was analysed in the supernatant (1) and in the 2 successive washing 

steps (2 and 3). In control conditions, at both incubation time, 73% of the initial AFB1 was 

recovered in the supernatant. Then, after a first wash with water and a second with methanol, 

14 and 4-6% additional recovery was observed. The total recovery was 90-93%. Similar 

results were obtained in addition with S06 and S13. 
Table 21 - Adsorption test results. Cells were suspended in water in the presence of AFB1 (1 µg) and incubated at 
30°C during 1 and 60 minutes. Data are means ± standard deviations in % of the standard. 1= supernatant; 2= 
washing water and 3= washing methanol. 

 

 Even though S06 was able to reduce pure-AFB1 (15.6%), those results bring out the 

absence of binding in the S06's AFB1 reducing process. Indeed, in case of binding, after 1 

hour, 79.4% of AFB1 (15 mg.kg-1) was removed from the supernatant by Lactobacillus 

rhamnosus TISTR54 (Elsanhoty et al., 2013). This pattern was not observed with S06. This 

lack of binding suggests that other mechanisms were involved. 

 A possible explanation could be linked with the degradation process. In case of higher 

incubation time (8 hour), Teniola et al., (2005) showed that cell extraction buffer of M. 

fluoranthenivorans sp. nov. DSM 44556T was able to completely degrade AFB1. This 

degradation was potentially linked to enzymes. Similar enzymes could be investigated. 
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Conclusion 

 In this work, the potentials of 6 Streptomyces strains to reduce AFT production by A. 

flavus and A. parasiticus were evaluated. Confirmation of Streptomyces strains capacity to 

reduce AFB by A. flavus was done. Moreover, they were able to reduce AFB1 and AFG1 

production by A. parasiticus with little impact on fungal growth.  

 On one hand, expression assays were carried out for A. flavus and A. parasiticus. The 

results showed that this interaction significantly impacts gene expression of aflatoxin 

biosynthesis. In both fungi, expression of aflM and aflS were mainly repressed. We also 

revealed that the ratio aflR:aflS is not a relevant indicator in Streptomyces interaction. We 

conclude that S06, S35 and S38 were good candidates as biocontrol agents. 

 On the other hand, we showed that the capacity of S06 to reduce pure-AFB1 is not 

linked to adsorption mechanisms.  
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Discussion and Perspectives 

 The maize microbial ecosystem is complex. Numerous fungal and bacterial genera are 

present in this ecosystem. Among these, certain fungi including Fusarium sp. can produce 

mycotoxins. In our study, we chose F. graminearum as a representative of those 

mycotoxigenic fungi in French maize. Our aim was to investigate the impact of A. flavus (and 

its AFB production) entry on F. graminearum and its D.O.N. production. We specially 

focused on the early impacts as our ultimate goal is to prevent AFB and D.O.N. production 

maize pre-storage. Different abiotic (time, temperature and aw) and biotic (fungal 

competition) parameters were tested. 

 We observed (in sole culture) Aspergillus grew after 1 day and Fusarium grew after 2. 

In sole culture, AFB1 production started on the second day (36°C, 1) while no D.O.N. was 

detected after 7 days. The peak of AFB concentration occurred after 4 days (28°C, 1). In co-

inoculation tests, the strain with the highest growth rate (sole culture) overtook the other. 

Results of AFB and D.O.N. content while co-inoculation remains to be investigated. 

 Storage facilities such as silos can have different thermal isolation. In case of low 

isolation, a daily cyclisation of temperature up to 15°C may occur on the silo's side (personal 

data). Garcia et al., (2012) showed that cycling temperatures (15/20, 15/25 and 25/30) 

impacted F. graminearum D.O.N. production. This latter was either reduced, unchanged or 

enhanced depending on the cycling temperatures (Garcia et al., 2012). Thus, cycling (e.g. in 

case of poor thermal isolation) could impact our results on early aflatoxins and D.O.N. 

production. 

 In our study, we focused on F. graminearum as a producer of D.O.N. and A. flavus as 

an AFB producer. Both fungi produce many other secondary metabolites. F. graminearum is 

a representative of mycotoxigenic fungi in French maize. As a producer of ZEA, nivalenol 

and 3 or 15-acetylDON (Jennings et al., 2004) it should be investigated accordingly. A. flavus 

is a producer of CPA (Luk et al., 1977). Our chosen strains could produce those secondary 

metabolites and attention should be given. Furthermore, F. verticillioides (FB1 and FB2 

producer) is another representative of mycotoxigenic fungi. It would be interesting to 

inoculate this fungus on the maize-based medium, separetely, and in interaction with the other 

mycotoxins producers studied in this PhD. 

 Such experiments along with the impact of CO2 content on mycotoxins production 

will provide data to select the critical conditions (aw, temperature, time, fungi) for maize grain 
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testing. Obtained data on maize-based medium and on maize grain will provide the details 

needed to develop modelling tools. Those will be provided to storage agencies to help the 

prevention of EU-regulated mycotoxins (AFT, D.O.N., ZEA, FB1 and FB2).  

 Overall, this results will help to understand the impact of A. flavus on the French 

microbial ecosystem of maize. Besides understanding the microbial ecosystem, mycotoxin 

prevention can be achieved by the use of biocontrol agent.  

 

 Our second aim, was to develop a biocontrol (based on actinomycetes) able to reduce 

(in interaction with Aspergillus sp.) AFT contamination at field without impacting the maize 

microbial ecosystem.  The first step in biocontrol development was to distinguish a biocontrol 

able to inhibit in vitro AFB accumulation without impacting the fungal growth. We chose 

actinomycetes as potential candidates as they are a source of aflatoxin-repressing metabolites.  

 Interaction between A. flavus and actinomycetes isolates was conducted in vitro. 27 of 

38 actinomycetes isolates showed a mutual antagonism in contact with A. flavus and had their 

impact on AFB was monitored. In current literature, if isolates did not inhibit fungal growth, 

tests were not realised on their capacity to produce AFB (Sultan & Magan, 2011; Haggag & 

Abdall, 2012). In our work, we chose to promote both micro-organisms growth. This decision 

was based on the following facts: we wanted to impact as less as possible the maize microbial 

ecosystem and to limit the spread of resistant strains.  

 Our first key finding showed that after a 10 day in vitro co-incubation period (28°C), 

the 27 isolates with mutual antagonism in contact reduced AFB1 residual concentration from 

38.6% to 4.4%, depending on the isolate. Similar results were observed in interaction with 

Pichia anomala WRL076: it inhibited AFB1 accumulation (by A. parasiticus) on PDA 

medium by 80 fold (Hua et al., 1999). This range of reduction is similar to our observations. 

 We conducted our experiments at an aw of 1 on ISP-2 medium. Interactions can have 

different impacts at various aw. The variation of aw was extensively studied in case of 

antioxidants or essential oils addition (Passone et al., 2007; Bluma et al., 2008a, 2008b). As 

Streptomyces are xerophilous bacteria, they can develop under a wide range of aw (down to 

0.87) (Stevenson & Hallsworth, 2014). This impact has not been characterized yet in 

Aspergillus-Streptomyces interaction. The former should be tested under various aw (0.87 to 1) 

and temperature conditions (20 à 36°C). Those tests could evaluate the efficiencies of those 

interactions in various climate conditions (found in the field).  
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 Streptomyces strains efficiently reduced AFB production by A. flavus. Thus, we 

looked whether this reduction is similar in interaction with the AFT producer: A. parasiticus. 

6 of the most AFB1-reducing actinomycetes strains (among the 27 isolates) were chosen for 

testing.  

 Our second key finding revealed that in contact with A. parasiticus, those strains 

reduced AFB1 from 13% to non detected levels. As for AFG1, it was reduced from 6.2% to 

non detected level.  

 Although the 6 bacterial strains showed significant differences in AFB1 reduction, 

AFB1 content was clearly reduced independently of the Aspergillus sp. strain tested. Bluma et 

al., (2008a, 2008b) showed that the addition of essential oils can reduce AFB1 production by 

A. parasiticus and A. flavus. However, this addition did not always inhibit AFB1 production, 

compared to the control. On the contrary, our strains were 100% efficient in reducing AFB1 

in interaction with Aspergillus sp..  

 We monitored AFB1 and AFG1 content in Streptomyces-A. parasiticus interaction. In 

the literature, most studies provide data on AFB1 alone or total AFT (Zjalic et al., 2006; El-

Nagerabi et al., 2012). Notwithstanding, Khosravi et al., (2011) studied the impact of 

Cuminum cyminum essential oil (0.25 mg.ml-1) on A. parasiticus growth and AFT production. 

Both were repressed, with AFB1 and AFG1 being repressed by 94.2% and 98.9%, 

respectively. In our study, in case of S17, S27 and S38 interaction, the reduction of AFB1 was 

also slightly lesser than the reduction of AFG1. 

 To develop larger scale tests, the production of the biocontrol in erlenmeyers and in 

bioreactors should be developed. Such development will provide enough bacterial biomass to 

assess its impact on maize (in vitro), the maize crop and at field regarding AFT production by 

Aspergillus sp.. Moreover, their impact on other metabolites produced by Aspergillus sp. 

should be studied (e. g.: CPA, aflatrem and kojic acid). 

 It will also provide a bacterial biomass to assess the biocontrol impact on other 

mycotoxigenic fungi (e.g. Fusarium sp.) and their associated mycotoxins (e.g. D.O.N., ZEA, 

FB1 and FB2).  

 Our third key finding revealed that the gene expression of aflatoxin biosynthesis genes 

in the 2 fungi (A. flavus and A. parasiticus) were impacted by the same 6 Streptomyces strains 

chosen. The highest levels of repression were found on aflM (a structural gene) and aflS (a 

regulatory gene).  
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 We developed a technique to study 5 genes of the aflatoxin biosynthesis. In our study, 

we monitored gene expression after 90 hours, for optimum gene expression. In A. parasiticus, 

Zjalic et al., (2006) also observed aflR expression in contact with lyophilized filtrate of 

Trametes versicolor (aflatoxin repressive). 5 incubation times where monitored (1, 2, 3, 7 and 

9 days). The maximum aflR expression occurred at 2 and 7 days. In lyophilized filtrate 

addition, the expression was delayed (about 2 days) compared to the control and the 

expression values were always under the utmost value of the control (Zjalic et al., 2006). 

 Our results revealed that S35 and S38 mainly repressed aflM and aflP expression and 

at a lesser grade aflR, aflD and aflJ expression by Streptomyces-Aspergillus sp. interaction. 

This repression can be regulated by a complex combination of transcriptional regulators. 

Among these, the lack of laeA (encoding a methyltransferase) was shown to reduce by 100 

fold aflM and aflP expression and partially reduce aflR, aflD and aflJ expressions (Chang et 

al., 2012). Thus, in our case we didn't target laeA expression, but laeA could have been 

repressed by S35 and S38.  

 S38 repressed aflM, aflP and aflR expression while reducing AFB1 production. This 

could be due to metabolites production. Indeed, Streptomyces metabolites have already been 

studied for their impacts on aflatoxin biosynthesis (Kondo et al., 2001; Yoshinari et al., 2007, 

2010). For example, Streptomyces sp. SA-2581 produce a metabolite called Dioctatin A., 

which was shown to repress aflC, aflM, aflP and aflR gene expression of A. parasiticus while 

inhibiting AFB1 accumulation (Yoshinari et al., 2007). In our study, S38 repressed aflM, aflP 

and aflR expression. However, neither conidiogenesis impact nor repression of aflD 

expression were observed. Both achieved with Dioctatin A addition. This suggests another 

metabolite (e.g. aflastatin A) and/or mechanism involved. 

 In our study, aflM was almost entirely repressed in A. flavus and A. parasiticus with a 

reduction of AFB1 by 4.16 fold to non detected levels and 7.7 fold to non detected levels, 

respectively. A. nidulans is a producer of ST. A. nidulans disruptant of verA (aflM homolog) 

were shown to produce less ST by 200-1000 fold and accumulate VERA (Keller et al., 1994). 

In Streptomyces-Aspergillus sp. interaction, a lack of aflM expression could be linked with 

VERA accumulation. 

 In A. flavus-S06 interaction, no induction of aflD or aflP and a reduction of AFB1 by 

43 fold were detected. Overexpression of aflR thanks to constitutive expression induced aflD 

and aflP expression and an identical or reduced AFB1 production (compared to wild-type) 
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(Flaherty & Payne, 1997). This suggests that S06 employed other mechanisms than aflR 

modulation to reduce aflatoxin production.  

 One of these mechanisms could be linked to PkaA. Calvo et al., (2002) showed that an 

upregulation of PkaA promoted AflR phosphorylation. This phosphorylation prevents AflR 

nuclear localisation and inhibits its activation on the aflatoxin structural genes (Calvo et al., 

2002). Thus in case of S06 interaction, we would expect a reduction of pkaA expression. 

 However many other approaches should be applied to further understand the impact on 

gene expression: 

 (i) A kinetic of gene expression (e.g. day 1 to 7) should be done in interaction 

with S06, S35 and S38. Kinetics of expression will provide more data to verify a possible 

delay in gene expression;  

 (ii) Mutated strains of A. flavus or A. parasiticus can accumulate NOR (lacks the 

capacity to convert into AVN). Streptomyces interaction with those mutated strains should be 

done to evaluate the proportion of NOR inhibition;  

 (iii) It could be interesting to monitor the expression of general transcription 

regulators (e.g.: laeA, pkaA) to further understand the mechanisms involved in the reduction 

of aflatoxin biosynthesis; 

 (iv) Techniques such as microarray should be used to monitor the primary 

metabolism as well as the secondary metabolism involved in aflatoxin repression.  

 Besides the study of gene expression, identification of a potential metabolite 

preventing AFT production should be tested. This includes the dosage of metabolites already 

known as AFT-repressor which could be produced by our biocontrol (e.g.: aflastatin, 

dioctactin, blasticidin). If none of those are the active compounds, purification of the new 

active compound will be needed.  

 In our fourth key findings, these Streptomyces strains were tested for their efficiencies 

to reduce pure-AFB1, apart from reducing gene expression,. Thus, 12 isolates were selected 

based on their AFB1-prevention rates (under 17% remaining) in Streptomyces-A. flavus 

interaction. They were inoculated in the presence of pure-AFB1 (5 mg kg-1) in solid medium. 

Among the 12 selected isolates, 8 reduced pure-AFB1 (range between 82.2 and 15.6%). 

Similar results were observed with Lactobacillus plantarum (PTCC 1058) on maize. After 4 

to 7 days, 77% of the AFB1 (240 µg.kg-1) was removed. Khanafari et al., (2007) hypothesised 
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that this reduction could be linked with binding. However, the mechanism remains to be 

investigated. The 8 remaining strains can reduce pure-AFB1 and this characteristic may 

depend on binding and/or degradation mechanisms. 

 

 Our last key finding, the most efficient strain (S06) was tested for adsorption and 

showed to be unable to adsorb pure-AFB1. After 1 or 60 minutes at 30°C in contact with 

pure-AFB1 (1 µg.ml-1), no adsorption was detected. Similar methodology should be applied 

to identify potential adsorption the other Streptomyces strains. The inability of S06 to adsorb 

pure-AFB1 leads to putative degradation mechanisms. Aside from the F420H2 reductase 

(Taylor et al., 2010) found in Actinomycetales, MADE from Myxococcus fulvus NSM068 is 

also a degradation enzyme. After 48h at 30°C, this enzyme degraded AFB1 (71.89%), AFG1 

(68.13%) and AFM1 (63.82%). Characterisation showed an activity in a wide range of pH (4-

9) and temperatures (25-50°C) (Zhao et al., 2011). In our study, after 4 days at 28°C, similar 

reductions of pure-AFB1 were observed. In case of S06, a similar degradation mechanism 

could be involved.  

 The AFB1-degradation mechanisms in the biocontrol agent (e.g. S06) should be 

identified. Special care should be given to S03, S04 and S06 as new peaks on the HPLC 

chromatogram were identified (Chapter 3.2). The enzyme(s) involved should be purified and 

characterised. This enzyme identification would be a first for Streptomyces genus. The 

potential metabolites produced must be identified and their harmlessness assessed. This 

process of degradation should be tested on maize grain. An optimum formulation of this 

degradation tool should be investigated for maize. This could be sprayed at field (after 

drought stress), in pre-storage, in storage and in some stages of food processing. In the long 

run, a potential DNA sequence containing the gene encoding the desired enzyme could be 

included into genetically modified maize.  

 A potential application of this thesis could be the use of this kind of biocontrol at field. 

In order to monitor the dissemination of the biocontrol at field, specific primers should be 

developed. Thus, in regards to the chosen bacteria, DNA-DNA hybridisation and physiology 

should be performed to fully identify the biocontrol agent. A whole genome sequencing 

should be done and the strain should be patented. Moreover, the Streptomyces-maize-

Aspergillus interaction should be studied. Possible endophytism from the biocontrol should be 

tested as well as possible induction of the plant systemic resistance. 
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ABSTRACT (300 words) 

This work aimed to study the interaction between Streptomyces bacteria and Aspergillus 

flavus to promote mutual antagonism in contact leading to a reduction of Aflatoxin B1 

(AFB1) concentration. Thirty-seven Streptomyces isolates were chosen as potential 

candidates. After a 10 days in vitro co-incubation on Petri dishes, 27 of the 37 isolates 

respond to mutual antagonism in contact criteria. AFB1 and B2 analysis revealed that these 

isolates led to an AFB1 residual concentration from 38.6% to 4.4% compared to the control, 

depending on the isolate.  

 To begin identifying the mechanisms involved, we selected 12 isolates and tested their 

capacity to reduce AFB1 in pure culture, AFB1 was reduced by eight isolates. The remaining 

AFB1 concentration (rcm) varied between 82.2 and 15.6%. This phenomenon could be due to 

degradation or adsorption mechanisms. 

To further understand the mechanisms involved, we studied six Streptomyces strains 

(4 strains able to reduce pure AFB1 rcm and 2 not) in interaction with A. flavus and we 

monitored by RT-qPCR, the genes expressions of aflD, aflM, aflP, aflR and aflS. The tested 

strains revealed two different patterns. The first one (S06, S35 and S38) showed reduced 

Aflatoxins concentrations (3.1 to 0.2% residual AFB1) with different impacts on gene 

expression. Thus, S06 repressed aflS, aflM and enhanced aflR expression, while S35 and S38 

generally repressed all the studied genes. The second pattern (S13, S17 and S27) which 

moderately reduced Aflatoxins concentrations (24.0 to 8.0% residual AFB1). S13 and S27 

showed no significant impact on gene expression, while S17 significantly decreased aflM and 

aflS expression. These findings led us to suggest that some Streptomyces strains have an 

impact on Aflatoxin gene expression. 

This study showed that Streptomyces are potential biocontrol candidates as they could 

prevent production (Aflatoxin gene expression) and decontaminate (AFB1 reduction) 

Aflatoxin in food and feed. 

 

KEYWORDS: Aspergillus flavus, Streptomyces, co-culture, degradation, RT-qPCR, 

gene expression, aflatoxin 
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 Aflatoxins B1 and B2 (AFBs) are secondary metabolites produced by filamentous 

fungi. Those polyketide-derived furanocoumarins are carcinogenic (IARC 2013) and their 

contamination in food and feed is a major food-related health issue. Thus, the European 

Union has limited their presence to four µg kg-1 in maize foodstuff (European Union 2006) 

and China to 40 µg kg-1 (Wu & Guclu 2012) to prevent Aflatoxins (AFs) ingestion by the 

consumer. The most producing fungus, Aspergillus flavus, is found in different crops 

including : maize, hazelnuts, peanuts, etc (Giorni et al. 2007; Passone et al. 2010).  

 Maize Aflatoxin contamination is already well studied. Abiotic and biotic stimuli can 

prevent Aflatoxins accumulation. Abiotic stimuli like temperature and water activity (aw) are 

the most affecting aflatoxin accumulation (Holmquist et al. 1983). Moreover, other abiotic 

parameters can affect as well, including: pH, carbon sources, chemical compounds, etc. 

(Keller et al. 1997; Wilkinson et al. 2007; Holmes et al. 2008). At field conditions, where 

abiotic parameters are difficult to manage, biotic solutions has to be developed. 

 Techniques based on biocontrol agents are currently available: afla-guard®(USA) and 

afla-safe®(Africa). Those non aflatoxigenic A. flavus overtake the maize fungal niche and 

prevent other mycotoxigenic fungi colonization. This technique can prevent aflatoxins 

occurrence between 70.1 to 99.9% (Atehnkeng et al. 2008). Other micro-organisms could be 

potential aflatoxin inhibitor like Fusarium spp and Streptomyces spp. They can reduce AFB1 

accumulation by A. parasiticus on irradiated maize grain and also by A. flavus in vitro (Marín 

et al. 2001; Zucchi et al. 2008). 

 Biotic stimuli could also act directly on AFs molecules to reduce concentration. 

Indeed, bacteria were shown to detoxify, bind to their cell wall or enzymatically degrade 

AFB1 (Wu et al. 2009; Alberts et al. 2009).  

 In order to understand the mechanisms involved in the prevention of AFs 

accumulation, we proposed to monitor aflatoxin gene expression. Indeed, the AFs molecular 

pathway is now well described and the cluster corresponds to a 80-kb DNA sequence 

containing 25 well characterized genes and five transcripts (Yu 2012). Among these, aflR and 

aflS encodes transcription activators with AflS helping AflR to fix a consensus sequence 

localized in Aflatoxin genes promoters (Payne et al. 1993; Meyers et al. 1998). Concerning 

structural genes, the most studied are aflD, aflM and aflP, encoding respectively a 

norsolorinic acid reductase, a versicolorin A deshydrogenase and a sterigmatocystin 

methyltransferase (Papa 1982; Bhatnagar et al. 1988; Skory et al. 1992). Those 5 genes 

expressions are affected directly by the primary metabolism thanks to regulators including the 
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putative methyltransferase LaeA (Yu 2012). Those regulators can be impacted by many 

stimuli including biotic stimuli. 

 Biotic interaction can reveal many advantages, thus it is interesting to find field 

friendly micro-organisms able to inhibit aflatoxin production. To respond to this demand, we 

investigated Actinomycetes as potential biocontrol agents. Thanks to different techniques 

(Microbiological, Analytical and Molecular) we investigated Streptomyces effect on Aflatoxin 

accumulation. Those results lead us to identify three strains able to both inhibit Aflatoxin 

biosynthesis and remove pure AFB1.  



207 
 

Materials And Methods 

A. Fungal strain and actinomycete isolates. 

The fungal strain used was A. flavus NRRL 62477, the Actinomycetes strains were chosen 

and conserved as described in Verheecke et al. 2014. 

B. Interaction method.  

The interaction methodology for the screening of Actinomycetes was realized as described in 

(Verheecke et al. 2014). For the RNA extraction, this methodology was used with slight 

modifications: (i) a sterile 8.5 cm cellophane sheet (Hutchinson, France) overlaid the media, 

(ii) two streaks of Actinomycetes were inoculated 2 cm away from A. flavus inoculation point, 

(iii), the fungal biomass, without bacterial biomass, was removed from the cellophane surface 

after 90 hours of incubation.  

C. Aflatoxin extraction and quantification.  

Aflatoxin extraction, quantification and statistical analysis were done as previously described 

(Verheecke et al. 2014).  

D. RNA extraction, RT and qPCR. 

The fungal biomass was crushed to a fine powder under liquid nitrogen and stored at -80°C . 

Approximately 60 mg of mycelia were taken for extraction. Total RNA was isolated using the 

Aurum Total RNA Kit (BioRad) according to the manufacturer’s instructions for eukaryotic 

and plant cell material with the following modifications: DNase I digestion increased to one 

hour and the elution was done at 70°C for 2 min in elution buffer. RNA quantity and quality 

was checked by nanodrop (ThermoFisher, France) and experion (BioRad, France) according 

to manufacturer's instructions. 

RT was carried out with the Advantage RT-PCR Kit (Clontech) with Oligo (dT)18 primer 

according to the manufacturer's instructions with one modification: reaction incubation at 

42°C was increased to four hours. RT-qPCR was performed in duplicate in a CFX96 Touch 

instrument (Bio-Rad) using SsoAdvancedTM SYBR Green Supermix (Bio-Rad) with the 

protocol recommended for cDNA by the manufacturer's instructions. Following the RT-

qPCR, data were analyzed using CFX Manager Software (version 3.0, Bio-Rad). The data 

were statistically analyzed by qbase+ software (biogazelle) with act1 and βtub as reference 

genes and a One-way ANOVA (control versus all strains), paired t-test (control vs each strain) 

were done. 



208 
 

E. Solid media AFB1 reduction test 

The experiment was done as previously described (Verheecke et al. 2014).  
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Results  

A. Streptomyces-A. flavus screening results.  

Among the 37 chosen actinomycete candidates only 27 showed mutual antagonism on contact 

and promote actinomycetal and A. flavus growth. However, only 16 strains were also able to 

reduce both AFBs residual concentration in the media (rcm) to less than 17% compared to the 

control. As examples, the isolate S17 was able to reduce AFB1 and B2 rcm to 10.6 % and 

10.8 % respectively, whereas S35 was able to reduce to 4.4 % and 5.5 %. In order to 

understand if these strains are able to prevent AFBs accumulation we decided to study the 

interaction effect on gene expression with a RT-qPCR approach. 

B. RT-qPCR Aflatoxin gene expression.  

Study of the aflatoxin pathway genes expression was carried out with A. flavus alone (control) 

and also in interaction with six different Streptomyces strains. Five genes (aflD, aflM, aflP, 

aflR and aflS) were investigated for their relative expression. Table 1 summarize relative gene 

expression quantities in interaction with Streptomyces strains (normalization with the control 

condition). aflD expression was not significantly impacted in all tested conditions. Only S35 

and S38 were able to repress significantly gene expression. Both strains repressed aflM 

expression by more than 7 fold. Moreover, S38 was able to significantly repress aflP 

expression by 4.8 fold and aflR expression by 1.4 fold. As S35 and S38 are able to repress 

significantly gene expression, they could prevent aflatoxin accumulation by this strategy. 

However, we wanted to know if they could also remove pure AFB1. 

C. Effects of selected Actinomycetes isolates on pure AFB1 

We decided to test if those strains could reduce AFB1 concentration in pure culture to 

possibly identify decontamination mechanisms. Those strains were inoculated in the presence 

of AFB1 in solid media at an initial concentration of 5 mg kg-1. As shown in Table 1, S13 and 

S17 showed no significant impact on the AFB1 rcm. S27 slightly reduced the initial AFB1 

concentration to 76.6 % rcm. S35 and S38 showed a more significant reduction of the AFB1 

concentration with 29.4 and 38.0% rcm, respectively. Finally, S06 was the most efficient with 

a rcm of 15.6%.  

D. Conclusion 

The tested Streptomyces strains have been identified as reducing AFBs accumulation in 

interaction with A. flavus. Two different patterns concerning AFBs accumulation impact were 

shown. S06, S35 and S38 represent the first pattern, with high reduction of AFBs rcm in Petri 

dishes co-culture and an high capacity to remove pure AFB1 in the media. The second pattern 
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included S13, S17 and S27 which also reduced AFBs rcm but were less efficient in pure 

AFB1 removal. Focusing on gene expression, the first pattern revealed a capacity to repress 

Aflatoxin gene expression with S06 repressing aflS (p<0,19) and aflM (p<0,19), S35 and S38 

repressing aflM and aflR (p<0,09 et p<0,08, respectively) and S38 repressing aflP. While the 

second pattern showed no significant impact on the studied genes expression. 
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Discussion 

Little data is available on Streptomyces-Aspergillus micro-organisms interaction. Many 

studies have focused on Streptomyces metabolites, for example, Mohamed et al., 2013, 

revealed that 69% of 16 strains free cell extracts were not able to reduce fungal growth 

(Mohamed et al., 2013). Unlike our study, other researchers have chosen fungal growth 

inhibition as the main selection criteria for their potential biocontrol agents against mycotoxin 

production (Sultan & Magan 2011; Haggag & Abdall 2012). Our work focus on promoting 

both micro-organisms growth and AFB1 concentration reduction.  

We obtained these results with 27 of our Streptomyces isolates. They have been identified as 

reducing AFBs accumulation in interaction with A. flavus. In 1997, Ono et al. identified 

Streptomyces sp. MRI142 as a producer of aflastatin A. This molecule is able to completely 

inhibit AFB1 production at 0.5 µg ml-1 in the media without impacting the fungal growth 

(Ono et al. 1997). A possible explanation could be that some of our strains may produce 

aflastatin A.  

Moreover, aflastatin A inhibitory mechanisms were further investigated by RT-qPCR. At a 

0,1% (v/v) concentration, aflastatin A inhibited the expression of aflC, aflM, aflP and aflR in 

A. parasiticus ATCC24690 (Kondo et al. 2001). In our study our strain S38 inhibited aflM, 

aflP and aflR expression. These results suggest a possible aflastatin A production by this 

strain.  

Another strain, S35, repressed aflM expression by 8.4 fold and AFB1 rcm by 11.4 fold. Our 

study on S35 and S38 strains impacts revealed lesser expression of aflM and aflP compared to 

the control. A possible mechanism involved in S35 and S38 pattern could be linked to LaeA. 

A gene mutation of laeA in A. flavus revealed a aflM and aflP 100 fold less expression (Chang 

et al. 2012). Thus, a laeA repression could be involved in the reduction of aflatoxin 

production by S35 and S38. 

A complementary advantage to our biocontrol candidate could be pure AFB1 removal thanks 

to adsorption or degradation mechanisms. S06, S35 and S38 were able to highly remove pure 

AFB1 concentration (15.6, 29.4 and 38% rcm, respectively). This mechanism could be linked 

to cell wall surface binding like described in lactic acid bacteria (El-Nezami et al. 1998). 

Another possibility is an enzymatic degradation of AFB1. A F420H2 reductase commonly 

found in Actinomycetales genus has been already shown to transform AFB1 into several low 



212 
 

molecules (Taylor et al. 2010). Nevertheless, this reductase has not yet been characterized in 

Streptomyces genus.  

The health risks linked to AFB1 degradation by-products has been well studied. These were 

often found as less toxic than AFB1 like aflatoxin D (Elaasser & El Kassas 2011; Krifaton et 

al. 2011; Samuel et al. 2014). 

Our results showed that S17, S27 and S13 are able to act on Aflatoxin accumulation through 

mechanisms not yet identified. Concerning S06, S35 and S38, they were able to prevent and 

remove AFB1 accumulation, suggesting that they are good biocontrol candidates. These 3 

strains have to be further investigated in greenhouse to evaluate their ability to maintain their 

interesting characteristics.  
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Table caption : 

Table 1: Results concerning Aflatoxins accumulation, gene expression and effect on pure 

AFB1 by six chosen actinomycetal strains. 
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Annex 2 - Maximum levels and Guidance values for mycotoxins in feedstuffs (European Union, 2002, 2006) 
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Annex 3 - Aflatoxin biosynthesis according to Yu et al., (2004) 
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Annex 4 - Picture of the different Index of Dominance (ID) represented in Verheecke et al., 2014 (Table 1). 
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Annex 5 - Poster presented in World Mycotoxin Forum meets IUPAC, Hollande (2012). 
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Annex 6 - Posters presented in the International Conference on Mycotoxins 2014, Beijing, China. 
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