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Abstract

Planning a path for a robot in a complex environment is a crucial issue in robotics. So-called
probabilistic algorithms for path planning are very successful at solving difficult problems and
are applied in various domains, such as aerospace, computer animation, and structural biol-
ogy. However, these methods have traditionally focused on finding paths avoiding collisions,
without considering the quality of these paths. In recent years, new approaches have been
developed to generate high-quality paths: in robotics, this can mean finding paths maximiz-
ing safety or control; in biology, this means finding motions minimizing the energy variation
of a molecule. In this thesis, we propose several extensions of these methods to improve
their performance and allow them to solve ever more difficult problems. The applications
we present stem from robotics (industrial inspection and aerial manipulation) and structural
biology (simulation of molecular motions and exploration of energy landscapes).
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Summary

Planning a path for a mobile system in a complex environment is a crucial issue in robotics. In
this context, sampling-based path planning algorithms have been very successful despite their
conceptual simplicity. This is due to their ability to efficiently solve complex planning prob-
lems involving mobile systems with numerous degrees of freedom, so-called high-dimensional
problems. These algorithms have been successfully used in domains as diverse as robotics,
aerospace, manufacturing, virtual prototyping, computer animation, computational structural
biology, and medicine. Their underlying principle is to explore the space of the configurations
of the mobile system (known as the configuration space) by sampling it, and to build a graph
representing the topology of this space.

Sampling-based path planning has traditionally focused on finding feasible (i.e. collision-
free) paths, without considering their quality. This is referred to as “feasible path planning”.
However, in many applications it is important to compute high-quality (i.e. low-cost) paths
with respect to a given cost criterion. In recent years, variants of classical sampling-based
planners have been developed to take cost criteria into account during the space exploration.
This can be referred to as “cost-space path planning”. Some methods even aim at finding the
optimal path (i.e. the lowest-cost path) in a cost space, which is referred to as “optimal path
planning”.

In this thesis, we propose several extensions of sampling-based path planning algorithms
to efficiently solve ever more complex problems. Indeed, many application fields yield in-
creasingly difficult, high-dimensional problems that existing methods cannot cope with, or
only with difficulty. Our work focuses on robotics and structural biology applications. On the
robotics side, we need planning algorithms for robots moving in large-scale workspaces, such as
industrial installations. Beyond the classical computation of a path going from a point A to a
point B, industrial inspection tasks require to compute a path going through several waypoints
in an efficient manner. Another difficult problem we tackle is that of precise 6-dimensional
manipulation performed by a towed-cable system involving three aerial robots. On the struc-
tural biology side, all problems are inherently difficult because of their high-dimensionality,
even when only small molecules are studied. Our work touches on two different issues: ex-
ploring the energy landscape of a small peptide, and simulating the unbinding process of a
protein-ligand complex.

The methods presented in this thesis are based on the Rapidly-exploring Random Tree
(RRT), a popular algorithm that can solve the feasible path planning problem, as well as
some of its variants: the Transition-based RRT (T-RRT), that can solve the cost-space path
planning problem, and RRT*, that can solve the optimal path planning problem. This the-
sis encompasses several algorithmic contributions. First, we present several extensions of
T-RRT, allowing for a more efficient cost-space path planning. We improve the original
mono-directional variant of T-RRT and propose a bidirectional variant that we generalize
into a multiple-tree variant. Second, we combine the concepts underlying T-RRT and RRT*
in two different ways, leading to two novel anytime algorithms for optimal path planning with
improved results. We also show that this improvement is particularly significant when the
topology of the space is complex and/or when its dimensionality is high. Third, we propose
three parallel versions of RRT-like algorithms on distributed-memory architectures, which can
improve feasible, cost-space and optimal path planning. We evaluate parallel versions of RRT
and T-RRT, and we analyze the factors influencing their performance. Finally, we combine
several of these approaches (such as the anytime and multiple-tree paradigms) to develop new
algorithms able to solve challenging planning problems.
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A.1.1 La Planification de Chemin par Échantillonnage . . . . . . . . . . . . . 121
A.1.2 Contributions Algorithmiques de la Thèse . . . . . . . . . . . . . . . . . 123
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Chapter 1

Introduction

Planning a path for a mobile system, such as a robot, in a complex environment (typically, the
physical world) is a crucial issue in robotics. Addressing this issue has potential repercussions
reaching far beyond the field of robotics. We can start by mentioning the application domains
that directly profit from technological developments in robotics, such as the aerospace and
manufacturing industries. Other application domains that are less obviously connected to
robotics can also benefit, as is the case for virtual prototyping using CAD/CAM software,
for instance. Indeed, the (dis)assembly tests performed in this field can be modeled as path
planning tasks. Another example is computer animation: if virtual actors are modeled as
robots, path planning techniques become graphic animation tools. Furthermore, medical
applications also exist: for example, finding a minimally-invasive path for a surgical tool,
given a 3-dimensional model of a patient’s body, can be seen as a path planning problem.
Finally, thanks to the similarities between structural models of robots and molecules, path
planning techniques can be applied in computational structural biology.

The path planning problem was originally formulated for a rigid-bodied robot having to
move in an environment containing static obstacles, while only having to avoid collisions.
This has usually been referred to as the “piano mover’s problem”. A geometrical formulation
of the path planning problem was derived from the definition of the configuration space, i.e.
the space of all the possible configurations of the mobile system. Based on this concept,
the first methods proposed to solve the path planning problem were deterministic algorithms
providing an exact solution. Nevertheless, these methods cannot cope with difficult problems,
such as those mentioned above. The difficulty of a path planning problem stems from the
complexity of the mobile system, which is mainly expressed through the number of its degrees
of freedom, as well as the complexity of potential additional constraints. Path planning
problems involving mobile systems characterized by numerous degrees of freedom are usually
referred to as “high-dimensional problems”.

1.1 Sampling-based Path Planning

Contrary to deterministic algorithms, so-called “probabilistic” methods for path planning have
been successful at efficiently solving complex, high-dimensional problems. Their underlying
principle is to explore the configuration space of the mobile system by sampling it, and to
build a graph representing the connectivity of this space. Despite their conceptual simplicity,
sampling-based path planners have proven valuable to a wide range of applications, such as
those mentioned above. As a result, they have benefited from a considerable research effort
during the last 15 years. Several methods have been proposed, and have then been extended
to deal with challenging issues, such as kinodynamic planning, loop-closure constraints, or
dynamic environments. Among these methods, the Rapidly-exploring Random Tree (RRT)
algorithm has become very popular.

9
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Figure 1.1: Schematic representation of the relationships that exist between the three path
planning paradigms addressed in this thesis.

Sampling-based path planners such as RRT have traditionally been used to find feasible
paths (i.e. collision-free paths) without considering the quality of these paths. This paradigm
can be referred to as “feasible path planning” (cf. Fig. 1.1). However, in many application
fields it is important to compute high-quality paths, with respect to a given quality criterion.
Historically, the first quality criteria to be considered were path length and path duration,
mainly to address the fact that the paths produced by sampling-based algorithms were usually
“jerky”. Later on, the notion of clearance was introduced: the underlying idea was to generate
paths along which the mobile system would remain as far as possible from the obstacles, to
ensure its own safety. When using such quality criteria is desirable, after a solution path has
been computed by a sampling-based path planner, it is most common to try and improve the
quality of this path during a post-processing phase involving so-called “smoothing” methods.
Nevertheless, such methods only allow to improve the path locally. We explain, later on,
how better results can be achieved by taking the quality criteria into account during the
exploration of the configuration space.

As already mentioned, it can be useful to generate high-quality paths, based on the use of
specific quality criteria. In some application contexts, instead of considering a criterion, such
as path length, that assesses the quality of a path as a whole, it might be more interesting
to ensure that all configurations along the path have low costs, with respect to a given cost
function. For instance, when high-clearance paths are desirable, the cost of a configuration can
be based on the inverse of the distance between the mobile system and the closest obstacle. In
structural biology, the cost of a conformation of a molecule is the molecular energy. When such
a cost function is defined on the configuration space, we call the latter a “cost space”. This
paradigm can thus be referred to as “cost-space path planning” (cf. Fig. 1.1). In recent years,
variants of classical sampling-based algorithms have been developed to take cost functions
into account during the exploration of the configuration space. One of these methods is a
variant of RRT called the Transition-based RRT (T-RRT).
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Beyond the computation of a high-quality path, one might be looking for an optimal path,
with respect to a given path-quality criterion. This paradigm is referred to as “optimal path
planning” (cf. Fig. 1.1). When applied to this problem, classical grid-based methods, such
as A* or D*, can compute resolution-optimal solution paths. However, these methods are
limited to problems involving low-dimensional spaces that can be discretized without leading
to a combinatorial explosion. As an alternative, some deterministic path planners implicitly
compute the optimal path with respect to a specific criterion. For instance, the visibility
diagram produces the shortest path, and the Voronoi diagram generates the path with optimal
clearance. Nevertheless, such methods are also limited to low-dimensional spaces and can only
deal with polygonal obstacles. On the other hand, classical sampling-based path planners can
cope with high-dimensional spaces, but they usually produce sub-optimal solutions. As a
complement, the aforementioned smoothing methods can be used to improve path quality in
a post-processing phase, but they offer no guarantee of converging toward the global optimum.
The first RRT-like path planner providing such guarantee was RRT*.

Even though classical sampling-based path planners have achieved great success, their
cost-space counterparts are still in their infancy and suffer from strong limitations. Indeed,
many application fields yield increasingly difficult, high-dimensional problems that existing
methods cannot really cope with, or only with difficulty. Besides, optimal path planning
is even more challenging on such problems, as it amounts to solving a non-linear, non-
convex, high-dimensional, global optimization problem. Additionally, the most commonly
used path-quality criteria are still path length and path duration, and the most commonly
used configuration-cost functions are discrete, coarse-grained ones. Our work aims at dealing
with continuous configuration-cost functions, as well as path-quality criteria based on these
functions (cf. Fig. 1.1), which is more challenging. Our goals are to improve the capabilities
and the performance of sampling-based algorithms, mainly in the context of cost-space and
optimal path planning. We also aim to study applications that require the creation of new
path planning methods, in the fields of robotics and structural biology.

1.2 Algorithmic Contributions of the Thesis

In this thesis, we propose several extensions of sampling-based path planning algorithms to
efficiently solve ever more difficult problems involving complex continuous cost functions. The
methods we develop are based on RRT, which can solve the feasible path planning problem,
as well as some of its variants: T-RRT, that can solve the cost-space path planning problem,
and RRT*, that can solve the optimal path planning problem. The RRT, T-RRT and RRT*
algorithms are reviewed in Chapter 2. Then, we present the various algorithmic contributions
proposed in this thesis (cf. Fig. 1.2).

First, with the objective of achieving a more efficient cost-space path planning, we develop
several extensions of T-RRT, starting from enhancements of its original mono-directional
variant, then presenting a bidirectional variant, and finally generalizing it into a multiple-tree
variant (cf. Fig. 1.2 and Chapter 3). More precisely, we suggest to improve the performance
of the mono-directional T-RRT (that was originally proposed as an extension of the basic
Extend RRT) by modifying the implementation of its transition test (cf. Section 3.1). We
also show that using the Connect T-RRT or the Goal-biased T-RRT can generally provide
improvements (cf. Section 3.1). Then, we present a bidirectional extension of T-RRT that
reduces running time and sometimes increases (or otherwise maintains) solution-path quality
(cf. Section 3.2). By generalizing this approach, we also develop a multiple-tree extension
of T-RRT that can compute a path going through a set of waypoints, and we show that it
outperforms path planners involving the Bidirectional T-RRT (cf. Section 3.3). Throughout
Chapter 3, we apply these extensions of T-RRT to simulated yet practical robotic problems,
such as industrial inspection tasks involving aerial robots.
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Figure 1.2: Schematic organization of the principal algorithms proposed in this thesis, and
representation of the relationships between them.

Second, to improve efficiency in the context of optimal path planning, we combine the
beneficial, underlying concepts of T-RRT and RRT* in two different ways (cf. Chapter 4).
We propose an extension to RRT* named Transition-based RRT* (T-RRT*) and an extension
to T-RRT named Anytime T-RRT (AT-RRT). From their definitions, T-RRT* and AT-RRT
feature both 1) the cost-based filtering properties of the transition test of T-RRT, favoring
the creation of new nodes in low-cost regions of the configuration space, and 2) the quality-
based management of edges of RRT*, allowing the quality of the solution path to increase
with time (cf. Section 4.1). We show that both algorithms are probabilistically complete and
asymptotically optimal (cf. Section 4.2). Then, we evaluate T-RRT* and AT-RRT on several
optimal path-planning problems, and show that they converge toward the optimal solution-
path faster than RRT* (cf. Section 4.3). We also show that the performance improvement
they achieve is particularly significant when the topology of the configuration space is complex
and/or when its dimensionality is high.

Third, to improve the efficiency of feasible, cost-space and optimal path planning, we
propose three parallelization strategies for RRT-like algorithms (cf. Fig. 1.2 and Chapter 5).
We focus on parallelizing RRT on large-scale distributed-memory architectures, which requires
using the Message Passing Interface (MPI). More precisely, we develop three parallel versions
of RRT, based on classical parallelization schemes: OR parallel RRT, Distributed RRT and
Manager-worker RRT (cf. Section 5.1). Then, we evaluate the parallel versions of RRT
and T-RRT on several path planning problems (cf. Section 5.2), and we analyze the various
factors influencing their performance (cf. Section 5.3). Our evaluation results show that
parallelizing RRT-like algorithms with MPI can provide substantial performance improvement
in several cases that occur in numerous complex robotic problems and all structural biology
problems. Additionally, we discuss how the RRT-like algorithms introduced in this thesis can
be parallelized (cf. Section 5.4).
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Finally, we combine several of the approaches introduced in this thesis to develop novel
algorithms that can solve new kinds of challenging path-planning problems. Our motivation
for presenting these methods separately in Chapters 3 to 5 was the will to evaluate and analyze
them independently of each other. On the other hand, interesting new applications can be
addressed when combining some of these methods together. For instance, we integrate the
anytime and multiple-tree paradigms to create an Anytime Multi -T-RRT (cf. Fig. 1.2) that
we use in robotics (cf. Chapter 6) and structural biology (cf. Chapter 7).

1.3 Applications

In addition to the aforementioned algorithmic contributions, this thesis also features several
contributions on the application side. Indeed, we have applied several of the sampling-based
path-planning techniques presented in this thesis to challenging (and sometimes new) path-
planning problems encountered in robotics (cf. Chapter 6) and computational structural
biology (cf. Chapter 7).

Robotics

On the robotics side, we need path-planning methods that can deal with robots moving in
large-scale workspaces, such as industrial installations (oil platform, power plant, steel factory,
etc). Beyond the classical computation of a path going from a point A to a point B (which
we refer to as the “init-to-goal” problem), industrial inspection tasks require to compute a
path going through a given set of waypoints in an efficient manner, which we refer to as the
“ordering-and-pathfinding problem” (cf. Section 6.2). To solve this hybrid task-and-path
planning problem, we propose a variant of T-RRT called Anytime Multi -T-RRT, based on
the combination of two extensions of T-RRT presented in this thesis: the Multi -T-RRT and
the Anytime T-RRT. Using the Anytime Multi -T-RRT, ordering-and-pathfinding problems
can be solved from a purely geometrical perspective, without having to use a symbolic task
planner. We demonstrate this method on a simulated industrial inspection problem involving
an aerial robot.

Another difficult problem we tackle here is that of precise 6-dimensional manipulation
performed by a towed-cable system involving cooperative aerial robots (cf. Section 6.1). For
that, we propose a system, that we have called FlyCrane, and that consists of a platform
attached to three flying robots using six fixed-length cables. In addition, the main element of
our approach is an application-specific configuration-cost function that takes the constraints
inherent to this robotic system into account. More precisely, this cost function is based on
wrench-feasibility constraints (derived from the static analysis of cable-driven manipulators)
and on thrust constraints. To validate our approach, we study two simulated manipulation
problems. Our experiments show the superiority of cost-space path planning over feasible
path planning when dealing with such complex robotic systems.

Most of the path-planning problems we address on the robotics side emanate from the
ARCAS European project1. Some of the goals of this project are to develop robotic systems
involving cooperative aerial robots for the installation, the inspection, and the maintenance
of industrial installations in places that are difficult to access for humans. An example of
possible application is the construction of landing platforms in uneven terrains, for manned
or unmanned aircrafts. Another example is the assembly of temporary structures for the
evacuation of people in rescue operations. Note that, despite the interest of tackling such
problems in real-life situations, the role of our team has been to develop and evaluate new
path-planning methods within simulated environments. Real-life experiments are part of the
ongoing work within the ARCAS project.

1http://www.arcas-project.eu
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Computational Structural Biology

On the computational structural biology side, all problems are inherently difficult because of
their high dimensionality, even when only small molecules are considered.

The first issue we address in this thesis is the exploration of the energy landscapes of
small yet highly-flexible peptides (cf. Section 7.1). For that, we combine two complementary
sampling-based methods. 1) We propose a simplified version of the Basin Hopping algorithm
that can quickly reveal the meta-stable structural states of a peptide. In computational
structural biology, Basin Hopping is a classical method that enables sampling local minima
on the energy landscape of a molecule. 2) Then, we use the Multi -T-RRT and the Anytime
Multi -T-RRT to quickly determine transition state and transition path ensembles, as well as
transition probabilities between these meta-stable states. We validate this combined approach
on the terminally-blocked alanine.

The second issue we address is the simulation of the unbinding process of a protein-ligand
complex (cf. Section 7.2). We propose an approach that builds on a mechanistic representation
of the molecular system and that currently considers only partial flexibility. Besides, at the
moment, the approach is purely geometric, which means that no molecular energy is computed
and that motions are validated only on the basis of collision avoidance. This simplification of
the problem allows us to use a variant of RRT called Manhattan-like RRT (ML-RRT), whose
exploratory efficiency leads to very short computing times. This was a requirement imposed
by our decision to implement this method as an efficient web application. This tool yields
ligand unbinding pathways that, as a first approximation, can provide useful information
about protein-ligand interactions. We demonstrate this approach on the hexameric insulin-
phenol complex. Finally, let us mention that integrating molecular energy computations into
this approach is part of our ongoing research.

Our work in computational structural biology has been carried out within two research
projects named GlucoDesign and ProtiCAD. The objective of the GlucoDesign project was the
computer-aided design of enzymatic glycosylation tools for the synthesis of vaccines against
endemic shigellosis (or bacillary dysentery). The goals of the ProtiCAD2 project are to yield
advances in a general methodology for protein design, and to develop computational tools for
the synthesis of new proteins.

2http://projects.laas.fr/ProtiCAD



Chapter 2

Related Sampling-based Methods
for Path Planning

Sampling-based algorithms for path planning have been very successful at efficiently solving
difficult planning problems involving mobile systems characterized by numerous degrees of
freedom, so-called high-dimensional problems [33, 104]. They have proven valuable in a wide
range of application domains, such as robotics, aerospace, manufacturing, virtual prototyping,
computer animation, medicine, and computational structural biology. As a result, they have
benefited from a considerable research effort during the last 15 years. Several approaches
have been proposed (see, for example, [75,95,106]) and then extended to deal with challenging
issues, such as kinodynamic planning [40,75,105], loop-closure constraints [38,160], or dynamic
environments [59,61,67,152,166].

We now quickly review some of these existing methods, within the contexts of feasible,
cost-space, and optimal path planning. We focus more specifically on the algorithms that
we extend in this thesis or that we use for comparison with our approaches in experimental
evaluations. We also review related work in the context of parallel path planning.

2.1 Feasible Path Planning

Traditionally, path planning has focused on computing feasible paths for a mobile system in
an environment containing obstacles [102]. Informally speaking, for a path to be feasible, it
has to avoid collisions with obstacles and collisions between articulated parts of the mobile
system (so-called self-collisions).

2.1.1 Theoretical Framework

The classical formulation of the path planning problem relies on abstracting the workspace
of a mobile system into a configuration space C, also called C-space [110]. A configuration
q ∈ C describes the position and volume occupied by the mobile system in the workspace.
The subset of C containing the configurations inducing self-collisions or collisions with some
obstacles in the workspace is denoted by Cobst. Assuming that its complement in C is an open
set, we denote by Cfree the set cl(C \ Cobst) of configurations producing no collision, where cl()
denotes the closure of a set.

Given an initial configuration qinit ∈ Cfree and a goal configuration qgoal ∈ Cfree, a path
planning problem can be defined as a triplet (C, qinit, qgoal). A path over the C-space is a
continuous function π : [0, 1]→ C. It is said to be collision-free if for all t ∈ [0, 1], π(t) ∈ Cfree,
i.e. π : [0, 1]→ Cfree. Let Π denote the set of all paths over the C-space, and let Πfree denote
the set of collision-free paths in Π. The feasible path planning problem is classically defined
as follows:

15
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Definition 1 (Feasible path planning problem). Given a path planning problem (C, qinit, qgoal),
find a path π ∈ Πfree such that π(0) = qinit and π(1) = qgoal, if one exists, or report failure
otherwise.

Let Πfeas denote the set of feasible paths, i.e. the set of paths in Πfree such that π(0) = qinit

and π(1) = qgoal. Among the path planning problems having a solution, the theoretical frame-
work we rely on requires to focus on problems satisfying the robust feasibility property [93].
This property is based on the concept of strong clearance. Given λ ∈ R+, a path π ∈ Πfree is
said to have strong λ-clearance if π lies entirely inside the λ-interior of Cfree. The λ-interior
of Cfree is the set of configurations that are at least a distance λ away from any configuration
in Cobst. From that, robust feasibility is defined as follows:

Definition 2 (Robust feasibility). A path planning problem (C, qinit, qgoal) is said to be robustly
feasible if there exists a path π ∈ Πfeas having strong λ-clearance, for some λ ∈ R+.

Based on the geometric formulation provided by the configuration space, several techniques
have been proposed in the robotics community to solve the feasible path planning problem.
The first ones were deterministic methods providing an exact solution [102]. These methods
proved to be complete: they can terminate in finite time, returning a solution if one exists,
or failure otherwise. However, they cannot cope with difficult problems, and are limited to
low-dimensional spaces.

In this thesis, we focus on sampling-based approaches because they can solve the complex,
high-dimensional problems we are dealing with. The underlying principle of these methods is
to explore the configuration space of the mobile system by sampling it, and to build a graph
representing the connectivity of this space. The most popular sampling-based path planners,
that we present in the next sections, are the Rapidly-exploring Random Tree (RRT) and the
Probabilistic Road-Map (PRM). As all sampling-based path planners, they are not complete,
but they satisfy a property called probabilistic completeness, that can be interpreted as a
notion of “almost-sure” success [33]:

Definition 3 (Probabilistic completeness). An algorithm A is said to be probabilistically
complete if, for any robustly feasible path planning problem (C, qinit, qgoal), the probability that
A fails to return a solution when one exists decays to zero as the running time of A approaches
infinity.

2.1.2 Rapidly-exploring Random Tree (RRT)

The Rapidly-exploring Random Tree (RRT) is a prevalent sampling-based algorithm, usually
applied to single-query path planning problems [100, 103, 106]. It is suited to solve robot
path planning problems involving holonomic, nonholonomic, kinodynamic, or kinematic loop-
closure constraints [38,105,106]. It is also applied to planning in discrete spaces or for hybrid
systems [23,56]. In computational biology, it is used to analyze genetic network dynamics [9]
or protein-ligand interactions [39], for instance.

Let us consider the feasible path planning problem (C, qinit, qgoal). Starting from the initial
configuration qinit, RRT iteratively builds a tree T that tends to rapidly expand over the
C-space, thanks to the implicit enforcement of a Voronoi bias [106]. The nodes and edges
of T correspond to configurations and local moves between configurations, respectively. The
pseudo-code of the original variant of RRT is presented in Algorithm 1. At each iteration, a
configuration qrand is randomly sampled in C. Then, an expansion toward qrand is attempted,
starting from its nearest neighbor, qnear, in T . If the expansion succeeds, a new configuration
qnew is added to T , and connected by an edge to qnear. The criteria on when to stop the
exploration can be reaching the goal configuration qgoal, a given number of nodes in T , a
given number of iterations, or a given running time.
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Algorithm 1: RRT

input : the feasible path planning problem (C, qinit, qgoal)
output: the tree T

1 T ← initTree(qinit)
2 while not stoppingCriteria(T ) do
3 qrand ← sampleRandomConfiguration(C)
4 qnear ← findNearestNeighbor(T , qrand)
5 qnew ← extend(qnear , qrand)
6 if qnew 6= null then
7 addNewNode(T , qnew)
8 addNewEdge(T , qnear , qnew)

9 return T

The expansion procedure involved in the main loop of the RRT algorithm (line 5) can be
implemented in two different manners, called Extend and Connect. The Extend procedure
consists of performing an interpolation between qnear and qrand, at a distance equal to the
extension step-size, δ, from qnear (except if distance(qnear, qrand) < δ, in which case the result
of the interpolation is qrand itself) [103]. The Connect procedure consists of iterating the
Extend function until qrand is reached, or until an obstacle is encountered, in which case qnew

is defined as the last collision-free configuration [100]. Note that, when using the Connect
method, it is also possible to add all intermediate configurations (produced by the consecutive
Extend procedures) as nodes in T .

Theorem 1 (Probabilistic completeness of RRT). The RRT algorithm is probabilistically
complete [106].

Despite its successes, when applied to complex problems, the growth of an RRT can become
computationally expensive [29, 36, 84, 162]. Some techniques have been proposed to improve
the efficiency of RRT, by dynamically controlling its sampling domains [84], reducing the
dispersion of the samples drawn in C [109], or reducing the complexity of the nearest neighbor
search [162]. Performance can also be improved by relaxing the constraints used to validate
local motions and using gap reduction techniques perturbing the solution path in a post-
processing phase [29]. A well-known weakness of RRT is its sensitivity to the metric defined
on the C-space; this issue has been addressed in [30]. Furthermore, a resolution complete
variant of RRT has been developed [31]. In this thesis, we present an additional enhancement
of RRT, which consists of parallelizing it on large-scale distributed-memory architectures (cf.
Chapter 5).

2.1.3 Probabilistic Road-Map (PRM)

The Probabilistic Road-Map (PRM) is another well-known sampling-based algorithm, usually
applied to multiple-query path planning problems [95]. There exist numerous variants of
PRM. The pseudo-code of the one used in this thesis is presented in Algorithm 2. Given the
feasible path planning problem (C, qinit, qgoal), starting from the initial configuration qinit, this
version of PRM iteratively builds a graph G over the C-space. The most standard versions
of PRM differ from this variant in that they consist of two distinct phases: 1) a set of
configurations is randomly sampled in Cfree, and 2) connections are created between these
configurations. However, interleaving these two phases and building the graph iteratively, as
is done in Algorithm 2, allows us to benefit from an anytime behavior that is required by the
experimental evaluation in which PRM is involved here (cf. Section 3.3).
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Algorithm 2: PRM

input : the feasible path planning problem (C, qinit, qgoal)
the connection radius R

output: the graph G
1 G ← initGraph(qinit)
2 while not stoppingCriteria(G) do
3 qnew ← sampleRandomConfiguration(Cfree)
4 addNewNode(G, qnew)
5 Qnear ← findNodesInBall(G, qnew, R)
6 foreach qnear ∈ Qnear do
7 if isCollisionFree(path(qnew , qnear)) then
8 addNewEdge(G, qnew , qnear)

9 return G

The variant of PRM we use works as follows (see Algorithm 2): At each iteration, a new
configuration qnew is randomly sampled in Cfree, and a new node is added to G. Then, all the
nodes in G that are within a distance R of qnew (where R is called the connection radius) are
considered for edge creation. For each candidate qnear, if the path between qnew and qnear is
collision-free, a new edge is added to G. The criteria on when to stop the exploration are the
same are those defined for RRT.

Theorem 2 (Probabilistic completeness of PRM). The PRM algorithm is probabilistically
complete [95].

2.2 Cost-Space Path Planning

Instead of building paths that are only feasible, it can be important to generate “high-quality”
paths, with respect to some quality criteria. Historically, because the paths produced by
sampling-based algorithms were usually “jerky”, the first quality criteria to be used were
path length and path duration, which assess the quality of a path as a whole [69]. However,
it may be more interesting to ensure that all configurations along the path have low costs,
with respect to a given cost function. When such a cost function is defined on the C-space,
we call the latter a “cost space”, and we talk about “cost-space path planning”.

Early work in cost-space path planning only involved discrete, coarse-grained cost func-
tions [60, 93]. Our work focuses on continuous cost functions, which is more challenging. As
an example, in outdoor navigation problems, the cost of a configuration can be the elevation
of the position of a robot within a 2-D terrain. In planning problems where high-clearance
paths are desirable, the cost of a configuration can be based on the inverse of the distance
between the mobile system and the closest obstacle [49,83]. More complex cost functions can
appear in robotic problems [12,116] and structural biology problems [82].

Let c : C → R+ denote a cost function associating to each configuration of the C-space
a positive cost value. The cost-space path planning problem is denoted by a quadruplet
(C, qinit, qgoal, c). Solving this problem consists of solving the feasible path planning prob-
lem (C, qinit, qgoal) while taking the cost function c into account during the exploration of the
C-space. This amounts to performing a rejection sampling of configurations in C, by filtering
configurations on the basis of their costs. More precisely, each method aimed at solving the
cost-space path planning problem imposes a specific cost constraint evaluating each configu-
ration, based on its cost alone, or on the cost variation associated with the local move between
two configurations.
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Algorithm 3: RRTobst

input : the cost-space path planning problem (C, qinit, qgoal, c)
the cost threshold cmax

the increase rate of the cost threshold crate

output: the tree T
1 T ← initTree(qinit)
2 cmax ← c(qinit)
3 while not stoppingCriteria(T ) do
4 qrand ← sampleRandomConfiguration(C)
5 qnear ← findNearestNeighbor(T , qrand)
6 qnew ← extend(qnear , qrand)
7 if qnew 6= null and c(qnew) < cmax then
8 addNewNode(T , qnew)
9 addNewEdge(T , qnear , qnew)

10 cmax ← cmax + crate

11 return T

The first approaches dealing with cost-space path planning were based on RRT. Un-
fortunately, they were all focused on specific applications in the area of 2D robot naviga-
tion [57, 58, 60, 61, 107, 151], and some of them were evaluated only on configuration spaces
involving very coarse-grained, discrete cost functions [60,61,151]. More importantly, all these
methods suffer from different practical drawbacks [83]. For example, some of them rely on the
estimated cost-to-goal, which tends to bias the search straight toward the goal at the expense
of higher-quality paths [60, 61, 151]. Also, the threshold-based method presented in [57, 58]
suffers from the non-decreasing nature of its threshold and from its high sensitivity to the
increase rate of the threshold [83]. As it is involved in some of our experiments, we now
present in greater details this threshold-based method. After that, we present a variant of
RRT called the Transition-based RRT (T-RRT) that has been more successful for cost-space
path planning than the aforementioned methods.

2.2.1 Threshold-based RRT (RRTobst)

The RRTobst algorithm is an extension of RRT devised specifically for cost-space path plan-
ning. It was proposed in the context of rough terrain navigation [58]. The cost function
introduced in that work aimed to assess the level of difficulty (the so-called “obstacleness”)
corresponding to attaining a given configuration of the robot. The pseudo-code of RRTobst

is presented in Algorithm 3. The idea is to accept or reject new configurations created by
the RRT expansion based on their costs: a configuration is accepted if its cost is below a
given threshold, denoted by cmax, and rejected otherwise. This cost threshold is a dynamic
parameter of the algorithm: it is initialized to a low value (typically the cost of the initial
configuration) and iteratively increased during the space search, using the cost increment crate.
As a result, the search performed by RRTobst is biased toward low-cost regions of the config-
uration space. Higher-cost regions of the space are explored only when inevitable. Therefore,
paths produced by RRTobst follow low-cost regions of the space, and their maximal cost is
kept relatively low.

In our experimental evaluations (cf. Section 3.3), we use a multiple-tree variant of RRTobst,
called RRTobst way [57]. This method grows several trees rooted at various waypoints on the
C-space, and regularly tries to connect them. The idea is to explore significant low-cost basins
of the cost landscape before connections are made between them.



20 Chapter 2. Related Sampling-based Methods for Path Planning

Algorithm 4: Transition-based RRT

input : the cost-space path planning problem (C, qinit, qgoal, c)
output: the tree T

1 T ← initTree(qinit)
2 while not stoppingCriteria(T ) do
3 qrand ← sampleRandomConfiguration(C)
4 qnear ← findNearestNeighbor(T , qrand)
5 if refinementControl(T , qnear , qrand) then
6 qnew ← extend(qnear , qrand)
7 if qnew 6= null and transitionTest(T , c(qnear), c(qnew)) then
8 addNewNode(T , qnew)
9 addNewEdge(T , qnear , qnew)

10 return T

2.2.2 Transition-based RRT (T-RRT)

The Transition-based RRT (T-RRT) algorithm is a general sampling-based approach to cost-
space path planning that can deal with any configuration-cost function [83]. Being an exten-
sion of RRT, T-RRT combines the exploratory strength of RRT with a stochastic optimization
mechanism. It has been successfully applied to various cost-space path-planning problems in
robotics [12, 79, 83, 114] (some examples even involving human–robot interactions [114]) and
in computational structural biology [79, 82]. When compared to methods developed ear-
lier [58,151], T-RRT produced better-quality paths [83].

T-RRT extends RRT by integrating a stochastic transition test enabling it to favor the ex-
ploration of low-cost regions of the C-space [83]. This transition test is based on the Metropolis
criterion typically used in Monte Carlo optimization methods [65]. These techniques aim at
finding global minima in complex spaces and involve randomness as a way to avoid being
trapped in local minima. Similarly, T-RRT uses a transition test to accept or reject a new
candidate configuration, based on the cost variation associated with the local motion whose
target is the new configuration and whose source is its nearest neighbor in the tree. The
pseudo-code of T-RRT (shown in Algorithm 4) is analogous to that of the Extend RRT, with
the addition of the transitionTest and refinementControl functions.

The transitionTest presented in Algorithm 5 is used to accept or reject the move between
two configurations on the basis of their costs ci and cj. Note that ci refers to the cost of
the source configuration, and cj refers to the cost of the target configuration. Three cases
are possible: 1) A new configuration whose cost is higher than the maximal value cmax

1 is
automatically rejected. 2) A transition corresponding to a downhill move in the cost landscape
(cj ≤ ci) is always accepted. 3) An uphill move is accepted or rejected based on the probability
exp(−(cj−ci) / T ) that decreases exponentially with the cost variation cj−ci, in a way similar
to the Metropolis criterion. In that case, the level of selectivity of the transition test is
controlled by the adaptive parameter T , called temperature only by analogy to statistical
physics. Low temperatures limit the expansion to gentle slopes of the cost landscape, and
high temperatures enable to climb steep slopes. In T-RRT, the temperature is dynamically
tuned during the search process, based on the current number of consecutive rejections nFail
and on the maximal number of consecutive rejections nFailmax. 1) After each accepted uphill
move, T is decreased to avoid over-exploring high-cost regions. More precisely, T is divided
by the temperature adjustment factor α, and nFail is reset to 0. 2) After each rejected uphill
transition, different actions are possible, depending on the value of nFail. If nFail is less than

1A value can be provided for cmax when high-cost regions of the space have to be forbidden.
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Algorithm 5: transitionTest (G, ci , cj)

input : the maximal cost cmax

the current temperature T
the temperature adjustment factor α
the current number of consecutive rejections nFail
the maximum number of consecutive rejections nFailmax

output: true if the transition is accepted, false otherwise
1 if cj > cmax then
2 return False

3 else if cj ≤ ci then
4 return True

5 else if rand(0, 1) < exp(−(cj − ci) / T ) then
6 T ← T /α
7 nFail← 0
8 return True

9 else
10 if nFail > nFailmax then
11 T ← T · α
12 nFail← 0

13 else
14 nFail← nFail + 1

15 return False

Algorithm 6: refinementControl (G, qnear, qrand)

input : the extension step-size δ
the refinement ratio ρ

output: true if refinement is not too high, false otherwise
1 if distance(qnear, qrand) < δ and nbRefinementNodes(G) > ρ · nbNodes(G) then
2 return False

3 else
4 return True

its maximal value nFailmax, the temperature remains unchanged, but nFail is incremented by
1. If nFail is greater than nFailmax, T is increased to facilitate exploration and avoid being
trapped in a local minimum. More precisely, T is multiplied by the temperature adjustment
factor α, and nFail is reset to 0. According to experiments reported in [83], a value of 2
seems to be a good choice for the α parameter. Furthermore, note that the adaptive tuning
of the temperature allows T-RRT to automatically balance its bias toward low-cost regions
with the Voronoi bias of RRT. This can be controlled by changing the value of the nFailmax

parameter, which thus determines a trade-off between low computation time and high quality
of the produced paths. A small value (e.g. 10) leads to a greedy search, and a greater value
(e.g. 100) enables to produce higher-quality paths [83].

The adaptive tuning of the temperature ensures a given success rate for uphill transitions,
but it can also produce an unwanted side-effect: T may be reduced by the acceptance of new
states close to states already contained in the tree, whereas increasing T may be required
to go over a local cost barrier and explore new regions of the space. Accepting such states
only contributes to refining the exploration of low-cost areas already reached by the tree.
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The objective of the refinementControl procedure (shown in Algorithm 6) is to limit this
refinement and facilitate tree expansion toward unexplored regions of the space. The idea is
to reject an expansion that would lead to more refinement if the number of refinement nodes
already present in the tree is greater than a certain ratio ρ of the total number of nodes. A
refinement node is defined as a node whose distance to its parent is less than the extension
step-size δ. Another benefit of the refinement control is to limit the number of nodes in the
tree, and thus to reduce the computational cost of the nearest-neighbor search. According to
experiments performed in [83], a value of 0.1 seems to be a good choice for the ρ parameter.
It has been shown that this refinement-control mechanism is beneficial mainly when dealing
with low-dimensional spaces. However, its impact seems to be negligible on high-dimensional
problems. Therefore, for simplicity’s sake, we do not include this procedure in the T-RRT-like
algorithms we present in the rest of this thesis.

Theorem 3 (Probabilistic completeness of T-RRT). In the space where configurations whose
cost is greater than cmax are regarded as part of Cobst, the T-RRT algorithm is probabilistically
complete [83].

2.3 Optimal Path Planning

In some application contexts, beyond the computation of high-quality paths, it might be
interesting to produce an optimal path, with respect to a given path quality criterion. This
paradigm is referred to as “optimal path planning” [93]. This can mean, for instance, finding
the shortest path, as is often done in robotics. However, in this thesis, we do not wish to
restrict ourselves to such criteria that assess the quality of the path as a whole and ignore
the costs of the configurations along the path. Our objective is to deal with a more general
formulation of the optimal path planning problem, where the path-quality criterion is defined
based on the configuration-cost function characterizing the cost space (as we describe later
in this section). As examples, in robotics this kind of optimal path planning can result into
looking for the path maximizing safety; in biology this means finding the motion minimizing
the energy variation of a molecule.

When applied to the optimal path planning problem, classical grid-based methods, such as
A* or D*, can compute resolution-optimal solution paths [148]. However, these methods are
limited to problems involving low-dimensional spaces that can be discretized without leading
to a combinatorial explosion. As an alternative, some deterministic path planners implicitly
compute the optimal path with respect to a specific quality criterion. For instance, the visi-
bility diagram allows obtaining the shortest path, and the Voronoi diagram allows generating
the path with optimal clearance [102]. Nevertheless, such methods are also limited to low-
dimensional spaces, and can only deal with polygonal obstacles. On the other hand, classical
sampling-based path planners can cope with high-dimensional spaces, but usually produce
sub-optimal solutions because they focus on feasible path planning. As a complementary
technique, after a solution path has been computed, it is common to improve the quality
of this path during a post-processing phase involving so-called “smoothing” methods [69].
Nevertheless, such methods only allow to improve the path locally, and offer no guarantee of
converging toward the global optimum. The first sampling-based path planner providing such
guarantee was RRT* [90], that we present later in this section.

2.3.1 Theoretical Framework

Let cp : Πfree → R+ denote a quality criterion, associating to each collision-free path a positive
cost value, and whose definition is based on the configuration-cost function c : C → R+. Note
that cp can be defined in different ways (as the integral of the cost, the mechanical work, the
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maximal cost, etc) that we describe in the next section. The optimal path planning problem
can be defined as follows:

Definition 4 (Optimal path planning problem). Given a path planning problem (C, qinit, qgoal),
a configuration-cost function c : C → R+, and a monotonic, bounded path-quality criterion
cp : Πfree → R+, find a path π∗ ∈ Πfeas such that cp(π∗) = min{cp(π) |π ∈ Πfeas} if one exists,
or report failure otherwise.

Based on these notations, an optimal path planning problem is denoted by a quintuplet
(C, qinit, qgoal, c, cp). If it admits a solution path π∗, then π∗ is called the optimal path. Among
the optimal path planning problems having an optimal solution path, the theoretical frame-
work we rely on requires to focus on problems admitting a robustly optimal solution [93]. This
concept is based on the notion of weak clearance. Given λ ∈ R+, a path π ∈ Πfree is said
to have weak λ-clearance if there exists a path π′ ∈ Πfree having strong λ-clearance and a
homotopy ψ : [0, 1] → Πfree such that ψ(0) = π, ψ(1) = π′, and ∀α ∈ (0, 1), ψ(α) has strong
λα-clearance for some λα ∈ R+. Note that, if a path has strong λ-clearance, it obviously has
weak λ-clearance. From that, robust optimality is defined as follows:

Definition 5 (Robust optimality). An optimal solution path π∗ to an optimal path planning
problem (C, qinit, qgoal, c, cp) is robustly optimal if it has weak λ-clearance and if any sequence
of paths {πm}m∈N in Πfree such that limm→+∞ πm = π∗ satisfies limm→+∞ cp(πm) = cp(π∗).

In the context of optimal path planning, the evaluation of a planning algorithm should
be based not only on the concept of probabilistic completeness, but also on the concept of
asymptotic optimality [93]. A similar concept that has emerged in recent work, but that we
do not consider in this thesis is asymptotic near-optimality [54, 118]. Asymptotic optimality
can be interpreted as a notion of “almost-sure” convergence toward the optimal path, and has
been defined as follows [93]:

Definition 6 (Asymptotic optimality). An algorithm A is asymptotically optimal if, for any
optimal path planning problem (C, qinit, qgoal, c, cp) admitting a robustly optimal solution path
with finite cost c∗ ∈ R+, the cost of the current solution path that can be returned by A (this
cost being infinite if no solution is available yet) decreases toward c∗ as the running time of
A approaches infinity.

Note that it has been shown that RRT is not asymptotically optimal [93]. In other words,
RRT cannot solve the optimal path planning problem. As a consequence, T-RRT is not
asymptotically optimal either. Even though it yields high-quality paths when solving the
cost-space path planning problem, T-RRT cannot solve the optimal path planning problem
because it does not include any mechanism to improve its solution.

2.3.2 Path-Quality Criteria

The path-quality criterion cp : Πfree → R+ can be defined in several ways. As already
mentioned, the first criterion to be utilized was path length. In the context of cost-space path
planning, using path length would mean either 1) that the costs of configurations along the
path are ignored or 2) that the configuration-cost function associate to every configuration
the cost value 1. It is obviously more interesting to consider a path-quality criterion that
takes a more complex configuration-cost function into account. We now present the various
criteria that we consider in this thesis.

The most common criterion is the integral of the cost along a path. As a discrete approx-
imation of the integral of the cost (IC) with constant step size δ = 1

n (where n is the number
of subdivisions of the path), the cost of a path π can be defined as

cp (π) =
length(π)

n

n∑
k=1

c

(
π

(
k

n

))
. (IC)
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As an alternative, the mechanical work of a path can be defined as the sum of the positive
cost variations along the path. This can be interpreted as summing the “forces” acting against
the motion. It has been shown that the mechanical work can assess path quality better than
the integral of the cost in many situations [83]. As a discrete approximation of the mechanical
work (MW) with constant step size δ = 1

n , the cost of a path π can be defined as

cp (π) =
n∑
k=1

max

{
0 , c

(
π

(
k

n

))
− c

(
π

(
k − 1

n

))}
. (MW)

Additionally, we consider other, simpler cost criteria to evaluate path quality, such as the
maximal cost along the path (maxC), and the average cost (avgC). As discrete approximations
with n subdivisions of the path π, these costs are defined as follows:

cp (π) = max

{
c

(
π

(
k

n

))
; k = 0..n

}
(maxC)

cp (π) =
1

n

n∑
k=0

c

(
π

(
k

n

))
. (avgC)

Which criterion is the most suited depends on the planning problem and on the character-
istics of its expected optimal solution. Comparing quality criteria is out of the scope of this
thesis. In our experiments, we use several of these criteria not to limit ourselves to a single
criterion, which could bias the interpretation of the results. Finally, note that when using
such quality criterion, as a slight abuse of language, we interchangeably utilize the expressions
“high-quality path” and “low-cost path”.

2.3.3 The RRT* Algorithm

The RRT* algorithm was specifically proposed to solve the optimal path planning prob-
lem [93]. Indeed, it has been shown that RRT* offers asymptotic-optimality guarantees.
This path planner has been successfully applied to various robotic problems [87,93,94] (some
even involving kinodynamic planning [91] or manipulation tasks [131]) and to pursuit-evasion
games [92]. However, RRT* has been most often used to optimize path length (without any
configuration-cost function involved), and has only rarely been applied to more sophisticated
quality criteria. In these rare cases, it has been evaluated only on cost-space path-planning
problems involving coarse-grained, discrete configuration-cost functions. Furthermore, even
though RRT* performs very well in low-dimensional spaces, it appears to converge slowly
toward the optimum in high-dimensional spaces [49,79].

RRT* was developed as an extension to RRT. The two algorithms differ mainly in the
way connections are created between nodes of the tree. In RRT*, instead of being linked to
qnear, qnew is linked to the configuration (among its neighbors in C) maximizing the quality
of the path in T between qinit and qnew. Furthermore, if, as a parent in T , qnew allows one
of its neighbors in C to be connected to qinit via a higher-quality path than the one currently
available, some rewiring is performed in T . By deciding how to create and remove edges of
T based on the quality of the paths between qinit and every node in T , RRT* enables the
quality of the solution extracted from T to increase with time.

The pseudo-code of RRT* is shown in Algorithm 7. The part that differs from RRT
concerns what is done after a new configuration qnew is built. First, a new node is created
in T to store qnew (line 7). Then, a search in T is performed to compute the set Qnear of
configurations contained in a neighborhood of qnew of radius γ (log(n) / n)1 / d (line 9). This
radius depends on the dimension d of C, on a constant γ derived from the volume of Cfree,
and on the number n of nodes in T . This dependency on n ensures that the radius decreases
as T grows. The next step consists of finding the configuration qpar in Qnear ∪ {qnear} to
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Algorithm 7: RRT*

input : the optimal path planning problem (C, qinit, qgoal, c, cp)
the dimension d of the C-space
the γ constant derived from the volume of Cfree [93]

output: the tree T
1 T ← initTree(qinit)
2 while not stoppingCriteria(T ) do
3 qrand ← sampleRandomConfiguration(C)
4 qnear ← findNearestNeighbor(T , qrand)
5 qnew ← extend(qnear , qrand)
6 if qnew 6= null then
7 addNewNode(T , qnew)
8 n← numberOfNodes(T )

9 Qnear ← findNodesInBall(T , qnew , γ (log(n) / n)1 / d)
10 qpar ← findParentMinimizingCostFromInit(qnew , qnear , Qnear , cp)
11 addNewEdge(T , qpar , qnew)
12 foreach qn ∈ Qnear do
13 π ← pathInSpace(qnew , qn)
14 if costFromInit(qnew) + cp(π) < costFromInit(qn) and

isCollisionFree(π) then
15 removeEdge(T , parent(qn), qn)
16 addNewEdge(T , qnew , qn)

17 return T

which qnew should be connected (line 10): the parent of qnew is chosen as the configuration
via which the path between qinit and qnew has maximal quality (i.e. minimal cost). This is
done by computing, for all qn ∈ Qnear ∪ {qnear}, the cost cp(πTn ) + cp(πCn), where πTn is the
path between qinit and qn in T , and πCn is the path between qn and qnew in C. Finally, since
the addition of a new node in T potentially leads to the apparition of new paths having lower
costs than those currently in T , some rewiring might be performed (lines 12–16). For each
qn ∈ Qnear, if the cost of the path going from qinit to qn via qnew is lower than the cost of the
current path between qinit and qn in T , qnew becomes the new parent of qn in T .

Theorem 4 (Probabilistic completeness of RRT*). The RRT* algorithm is probabilistically
complete [93].

Let us assume that the γ constant involved in RRT* satisfies

γ > 2

(
1 +

1

d

) 1
d
(
µ(Cfree)

ζd

) 1
d

, (2.1)

where d is the dimension of the C-space, ζd is the volume of the unit ball in the d-dimensional
Euclidean space, and µ() is an operator measuring volumes. Under this assumption, RRT*
has proven to be asymptotically optimal [93]. The lower bound on γ expressed in (4.1) is the
minimal value allowing RRT* to be asymptotically optimal. Keeping in mind that increasing
the value of γ raises the computational cost of an RRT* iteration (because of the increased
number of neighbors to consider), this lower bound represents the optimal tradeoff between
efficiency and asymptotic optimality.

Theorem 5 (Asymptotic optimality of RRT*). If the γ constant satisfies (4.1), the RRT*
algorithm is asymptotically optimal [93].
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2.4 Parallel Path Planning

2.4.1 General Parallel Approaches

The idea of improving path planning performance using parallel computation has been ex-
plored for several decades. A survey of some early work suggests a classification scheme to
review various path planning approaches and related parallel processing methods [74]. A
more recent trend is to exploit the multi-core technology available on many of today’s PCs,
which allows having multiple threads collaboratively solving a problem [40]. Another re-
cent trend consists of using shared-memory models on many-core Graphics Processing Units
(GPUs) [15,17,129,130].

Among classical approaches, the embarrassingly parallel paradigm exploits the fact that
some randomized algorithms, such as PRM, are what is termed “embarrassingly parallel” [6].
The massive inherent parallelism of the basic PRM algorithm allows reaching a significant
speedup, even with simple parallelization strategies, especially on shared-memory architec-
tures. In this approach, computation time is minimized by having several processes coopera-
tively building the road-map.

Another simple approach is known as the OR parallel paradigm. It was first applied to
theorem proving, before providing a parallel formulation for the Randomized Path Planner
(RPP) [27]. Its principle is to have several processes running the same sequential randomized
algorithm, each one trying to build its own solution. The first process to reach a solution
reports it and broadcasts a termination message. The idea is to minimize computing time
by finding a small-sized solution. Despite its simplicity, this paradigm has been successfully
applied to other randomized algorithms [26].

More sophisticated approaches are the scheduler-processor scheme and the master-slave
scheme developed to distribute the computation of the Sampling-based Roadmap of Trees
(SRT) algorithm [134, 135]. In a first step, several trees (called milestones, and that can be
RRTs or ESTs) are computed in parallel by all processes. In a second step, a scheduler evenly
distributes the computation of edges linking these trees among the other processes [134]. As
an improvement to this, several masters can cooperate to distribute the workload among
their respective slave processes [135]. More generally, an approach based on growing several
independent trees, such as the Rapidly exploring Random Forest of Trees (RRFT) [9, 56] or
RRTLocTrees [149], can lead to a straightforward parallelization.

2.4.2 Parallel RRT

Only little work relates to parallelizing RRT [2, 25, 44, 142]. The first approach applied the
simple OR parallel and embarrassingly parallel paradigms, and a combination of both [25]. To
benefit from the simplicity of the shared-memory model, the embarrassingly parallel algorithm
is run on a single Symmetrical Multi-Processor (SMP) node of a multi-nodes parallel computer.
The only communication involved is a termination message that is broadcast when a solution
is reached, and some coordination is required to avoid concurrent modifications of the tree.
This scheme does not make use of the full computational power of the parallel platform,
contrary to the OR parallel algorithm, which is run on all processors of all nodes. The same
paradigms are also applied on a dual-core CPU in [2], where they are renamed OR and AND
implementations. In the Open Motion Planning Library (OMPL), the AND paradigm is
implemented via multi-threading, and thus for shared memory2. In [142], the OR paradigm is
used on shared memory. A more recent and very successful approach for parallelizing RRT and
RRT* on shared-memory architectures is presented in [78]. It is primarily based on lock-free
shared data structures that are updated using atomic compare-and-swap (CAS) operations,

2http://ompl.kavrakilab.org/classompl 1 1geometric 1 1pRRT.html#gpRRT
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and on a partition-based sampling (in other words, each thread is assigned a distinct region
of the space).

In Chapter 5 of this thesis, we focus on the less studied issue of parallelizing RRT on
distributed-memory architectures, using the Message Passing Interface (MPI). To the best
of our knowledge, there has been only one attempt to develop a parallel version of RRT
on distributed memory. In [44], the construction of the tree is distributed among several
autonomous agents, using a message passing model. However, no explanation is given on how
the computation is distributed, and how the tree is reconstructed from the parts built by the
agents.

The objective of our work was to provide parallel versions of the basic (single-tree) RRT
algorithm. This work was not about parallelizing subroutines of RRT, such as is done for
collision detection in [15], nor about parallelizing specific variants of RRT, such as is done
for the anytime RRT in [127]. In Chapter 5 we present three parallel versions of RRT based
on classical parallelization schemes: OR parallel RRT, Distributed RRT and Manager-worker
RRT [48, 50]. Since this work was published, two extensions of our Distributed RRT have
been proposed [81].





Chapter 3

Efficient Cost-based Path Planning
in Complex Continuous Cost Spaces

In path planning, instead of aiming only for collision avoidance, it can be important to compute
high-quality paths. In recent years, variants of classical sampling-based algorithms have been
developed to take cost functions into account during the exploration of the configuration space.
Among them, the Transition-based RRT (T-RRT) algorithm was developed as an extension
of RRT specifically targeting cost-space path planning (cf. Section 2.2).

T-RRT has been applied to diverse problems in robotics [12, 79, 83] (some even involving
human–robot interactions [114]) and computational structural biology [79,82]. These problems
are challenging because they involve high-dimensional spaces and complex continuous cost
functions. Our objective is to develop extensions of T-RRT that improve its performance and
allow solving even more difficult problems, as well as new kinds of problems. Since T-RRT
was devised as a mono-directional algorithm similar to the Extend RRT, there is room for
improvement, based on ideas that have proven beneficial for RRT, and new ideas.

In this chapter, we introduce several extensions of T-RRT, starting from enhancements of
its original mono-directional variant, then a bidirectional variant, and finally a multiple-tree
variant. First, we improve the performance of the mono-directional T-RRT by modifying
the implementation of its transition test. We also show that using a Connect T-RRT or a
Goal-biased T-RRT can sometimes be beneficial. Second, we present a bidirectional extension
of T-RRT that reduces running time and sometimes increases (or otherwise maintains) path
quality. We also show that the Bidirectional T-RRT can produce better-quality paths than
RRT* in high-dimensional spaces. Third, we propose a multi-tree extension of T-RRT that
can compute a path visiting a set of waypoints, and we show that it outperforms path planners
involving the Bidirectional T-RRT. We also provide a preliminary discussion on an anytime
version of the Multi-T-RRT that is detailed later in this thesis (cf. Chapters 6 and 7).
Finally, note that all the T-RRT variants presented in this chapter have been implemented
and evaluated within the path-planning platform Move3D [145].

3.1 Extensions of the Mono-directional Variant of T-RRT

In this section, we present various extensions of the original version of T-RRT, that was
proposed as a mono-directional algorithm similar to the Extend RRT (cf. Section 2.1). Due
to this similarity, one may think that the modifications improving the mono-directional RRT
are also beneficial to the mono-directional T-RRT. We show that this is not always true
for the Connect and Goal-biased variants of T-RRT. On the other hand, we propose some
enhancements of T-RRT’s transition test that improve performance. Before that, we start by
presenting the cost-space path-planning problems used in our evaluation, as they intervene in
all the experiments reported in this section and in Section 3.2.

29
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Figure 3.1: Search tree built by T-RRT on the Mountains problem. On this 2D cost-map,
the cost is color-coded (from green to red) and represented by the elevation.

3.1.1 Path Planning Problems and Evaluation Settings

Throughout this section and Section 3.2, we use the same four cost-space path-planning
problems to evaluate the performance of the mono-directional and bidirectional variants of
T-RRT we propose. In Section 3.3, we use similar but larger-scale problems that are better
suited to evaluate the multi-tree variants of T-RRT.

The examples we use in this section differ in terms of geometrical complexity, configuration-
space dimensionality and cost-function type. The Mountains problem is the 2D cost-map
illustrated by Fig. 3.1, in which the cost is represented by the elevation. The Stones-small
problem (presented in Fig. 3.2) is a 2-degrees-of-freedom (DoF) problem in which a disk
has to go across a space cluttered with rectangular-shaped stones. The objective being to
maximize clearance, the cost of a configuration is the inverse of the distance between the
disk and the closest obstacle. The Manipulator problem (illustrated in Fig. 3.3) involves a
6-DoF manipulator arm that has to get a stick through a hole in a wall while maximizing
the clearance of the stick. Therefore, the cost of a configuration is the inverse of the distance
between the stick and the obstacles. Finally, in the Engine-simple problem (shown in Fig. 3.4)
the same robotic arm holds a sensor with a spherical extremity used to inspect a car engine.
The objective being to keep the sensor as close as possible to the engine’s surface, the cost
of a configuration is the distance (in millimeters) between the sphere and the engine. In
this example, we set the cost-threshold value cmax (cf. Section 2.2.2) to 100 because of the
sensor’s range. The other examples do not require the use of a cost threshold, therefore we
set cmax =∞. Also, following [83], in all these examples, we initialize the temperature T (cf.
Section 2.2.2) to 10−6.

To fairly assess the benefits of each T-RRT variant, the solution paths are not subjected to
a post-processing phase involving “smoothing” methods [69]. On a given problem, we evaluate
each algorithm on the basis of the running time t (in seconds), the number of expansion
attempts X, the number of nodes N in the produced tree, and various quality criteria applied
to the extracted path: the average cost avgC, the maximal cost maxC, the mechanical work
MW , and the integral of the cost IC (cf. Section 2.3.2). For all variables, we give values
averaged over 100 runs. Results were obtained on an Intel Core i5 processor at 2.6 GHz with
8 GB of memory.
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Figure 3.2: Path computed by T-RRT on the Stones-small problem. The cost is the inverse
of the distance between the 2-DoF yellow disk and the blue rectangular-shaped obstacles.

Figure 3.3: Trace of a path computed by T-RRT on the Manipulator problem. A 6-DoF
manipulator arm has to get a stick through a hole while maximizing its clearance (i.e. its
distance to the obstacles).

3.1.2 Improvement of the Transition Test

Compared to its original version (cf. Algorithm 5 in Section 2.2.2) [83], the version of the
transition test we propose (shown in Algorithm 8) includes three enhancements. They not
only affect the way the Metropolis-like test is performed, but also the way the temperature is
adjusted during the exploration. Because this is not very informative, we do not report here
the numerical evaluation that we have performed to assess the impact of these modifications.
Results we have obtained show that they improve the performance of T-RRT: running times
are significantly reduced without incurring any loss in path quality.

The first enhancement appears at line 5. We have replaced the boolean expression
rand(0, 1) < exp(−(cj − ci) / T ) by exp(−(cj − ci) / T ) > p with p = 0.5 to better
control the stochastic aspect of the Metropolis-like test. Using rand(0, 1) instead of a fixed
probability p has the following detrimental consequence: if rand(0, 1) is close to 1, any move
has high chances to be accepted, even an undesirable steep uphill move; if rand(0, 1) is close
to 0, any move is likely to be rejected, even a gentle uphill move. We have varied the value
of p and observed that this change has no impact on the exploration, except if p is close to 1.
In fact, the adaptive nature of the temperature compensates any change in p: if p is lowered,
the temperature simply reaches higher values.
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Figure 3.4: Path computed by T-RRT on the Engine-simple problem. The 6-DoF manipulator
arm holds a sensor (the red sphere) that has to follow the surface of the car engine while
remaining as close to it as possible.

Algorithm 8: transitionTest (G, ci , cj)

input : the cost threshold cmax

the current temperature T
the temperature increase rate Trate

output: true if the transition is accepted, false otherwise
1 if cj > cmax then
2 return False

3 else if cj ≤ ci then
4 return True

5 else if exp(−(cj − ci) / T ) > 0.5 then

6 T ← T / 2(cj−ci) / (0.1 · costRange(G))

7 return True

8 else
9 T ← T · 2Trate

10 return False

The second improvement (line 9) consists of progressively increasing the temperature after
each rejection, instead of increasing it by performing a single larger jump after a given number
of consecutive rejections. For that, after each rejected uphill transition, T is multiplied by
2Trate , where Trate ∈ (0, 1] is the temperature increase rate. The Trate parameter determines a
trade-off between low computation time and high quality of the produced paths. A value not
too small (e.g. 0.1) leads to a greedy search, and a lower value (e.g. 0.01) enables to produce
higher-quality paths. In the sequel, we use only these two values for Trate.
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The third enhancement appears at line 6 and is borrowed from [79]. It consists of providing
an implicit refinement control mechanism by making the temperature reduction dependent on
the cost variation associated with an accepted uphill transition. To achieve that, T is divided
by 2 to the power of (cj − ci) / (0.1 · costRange(G)) , where costRange(G) is the cost
difference between the highest-cost and the lowest-cost configurations among those stored in
the nodes of the graph G.

3.1.3 Connect and Goal-biased Extensions of T-RRT

Compared to the basic Extend RRT, several classical RRT extensions are known to improve
performance [106]. For example, the Goal-biased RRT may converge faster toward the goal.
Also, with the Connect RRT, the search tree generally grows faster. However, when it comes
to T-RRT, improving performance means not only reducing running time, but also increas-
ing (or at least maintaining) path quality. Thus, one may wonder whether applying these
modifications of RRT to T-RRT is beneficial.

Goal-biased T-RRT

In the same way as it is done for RRT, implementing the Goal-biased T-RRT consists of
modifying the sampleRandomConfiguration function (line 3 in Algorithm 4, Section 2.2.2) so
that it returns qgoal with a probability goalBias. Results of the experimental evaluation of the
Goal-biased T-RRT (with goalBias = 0.01 and 0.1) are shown in Table 3.1. When compared
to the Extend T-RRT, the Goal-biased T-RRT yields lower running times on all examples.
However, when goalBias = 0.01, path quality improves on all problems if Trate = 0.1, but
not if Trate = 0.01. On the contrary, when goalBias = 0.1, path quality globally improves if
Trate = 0.01, but not if Trate = 0.1, especially on 2-DoF problems. Therefore, the Goal-biased
extension of T-RRT can be beneficial, but it lacks robustness with respect to path-quality
improvement. We show in the next section that, in the context of a simple “init-to-goal”
problem, the bidirectional variant of T-RRT is a better choice than the Goal-biased T-RRT.

Connect T-RRT

Contrary to the Connect RRT, the Connect T-RRT can be implemented in various ways,
due to the presence of the transition test. The simplest way consists of iterating the extend

and transitionTest functions (lines 6 and 7 in Algorithm 4) as long as there is no collision
and the transition test is passed (without adding the intermediate states to the tree). When
compared to other variants (delaying temperature tuning, or limiting uphill transitions), this
implementation yields the best results, which are reported in Table 3.1. In order not to
overload the tables, results obtained with the other Connect T-RRT variants are not reported
here. Results in Table 3.1 show that, in comparison to using the Extend T-RRT, using the
Connect T-RRT reduces running time, but does not always increase path quality, especially
if Trate = 0.01. Therefore, if achieving high path-quality is more important than reducing
running time, the Extend T-RRT should be preferred over the Connect T-RRT.

3.2 Bidirectional Extension of T-RRT

The Bidirectional RRT is known to be more efficient than the mono-directional RRT [106].
Therefore, in this section, we analyze whether it is possible to develop a Bidirectional version
of T-RRT that improves its performance. As already mentioned, this means not only reducing
running time, but also increasing (or at least maintaining) path quality. We compare several
possible implementations for the components involved in a Bidirectional T-RRT and select the
best ones; this concerns mainly how trees should be expanded and linked. Then, we analyze
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Table 3.1: Evaluation on four cost-space path-planning problems of several variants of T-RRT:
1) Extend T-RRT, 2) Goal-biased T-RRT with goalBias = 0.01, 3) Goal-biased T-RRT with
goalBias = 0.1, and 4) Connect T-RRT. All values are averaged over 100 runs.

Trate = 0.1 avgC maxC MW IC t (s) N X

Mountains

1 17.4 24.8 29.3 323 2.2 1,660 6,260
2 17.4 24.6 28.6 315 0.4 778 2,280
3 17.7 25.7 28.6 303 0.1 433 1,400
4 16.4 23.2 31.2 378 0.4 633 2,530

Stones-small

1 3.17 6.39 15.9 322 0.6 652 4,080
2 3.17 6.36 15.2 312 0.5 594 3,520
3 3.22 6.75 15.9 312 0.3 512 2,910
4 3.15 6.14 13.0 333 0.3 399 3,170

Manipulator

1 6.3 8.0 8.0 1,020 2.1 776 7,130
2 6.1 7.5 4.4 831 0.3 201 2,060
3 6.2 7.6 3.3 742 0.1 92 921
4 5.9 7.9 8.2 1,160 1.0 492 3,910

Engine-simple

1 24.1 80.9 379 8,900 11.3 321 2,720
2 21.5 72.6 356 7,780 10.7 293 2,520
3 19.1 73.3 324 6,590 9.9 270 2,340
4 12.3 49.9 236 4,500 9.8 146 2,190

Trate = 0.01 avgC maxC MW IC t (s) N X

Mountains

1 16.7 22.8 26.5 378 2.7 1,150 16,400
2 16.7 22.8 26.2 380 1.6 885 12,600
3 16.7 22.7 25.2 363 1.3 812 11,900
4 16.5 22.8 29.2 427 1.4 749 14,700

Stones-small

1 2.95 5.81 11.7 289 5.2 711 36,000
2 2.96 5.82 11.5 284 5.0 702 35,600
3 2.98 5.80 11.1 276 4.7 683 34,900
4 3.08 5.89 10.4 315 4.6 597 39,000

Manipulator

1 5.8 6.6 3.8 911 6.9 709 26,400
2 5.8 6.6 2.5 759 0.8 119 6,820
3 5.8 6.7 2.3 719 0.6 89 5,640
4 5.5 7.2 5.3 1,060 2.9 415 15,300

Engine-simple

1 1.7 10.9 88.9 626 78 288 23,600
2 1.8 11.0 91.3 658 78 293 23,500
3 1.6 9.9 87.4 587 77 274 23,300
4 1.8 12.6 78.3 642 64 202 20,600

cost profiles of paths produced by the Bidirectional T-RRT and the Extend T-RRT, to better
understand why the former sometimes outperforms the latter with respect to path quality. We
also compare these two variants of T-RRT to RRT*, and show that T-RRT produces paths of
higher quality than RRT* does in high-dimensional spaces. All these evaluations involve the
settings and the cost-space path-planning problems used in Section 3.1. Finally, we present
an industrial inspection problem featuring an aerial robot, that the Bidirectional T-RRT can
solve efficiently, but not the Extend T-RRT.
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Algorithm 9: Bidirectional T-RRT

input : the cost-space path planning problem (C, qinit, qgoal, c)
output: the tree T

1 T1 ← initTree(qinit)
2 T2 ← initTree(qgoal)
3 while not stoppingCriteria(T1, T2) do
4 qrand ← sampleRandomConfiguration(C)
5 q1

near ← findNearestNeighbor(T1, qrand)
6 qnew ← extend(q1

near , qrand)
7 if qnew 6= null and transitionTest(T1, c(q1

near), c(qnew)) then
8 addNewNode(T1, qnew)
9 addNewEdge(T1, q1

near , qnew)
10 q2

near ← findNearestNeighbor(T2, qnew)
11 T ← attemptLink(T1, qnew, T2, q2

near, 2)

12 swap(T1, T2)

13 return T

3.2.1 The Bidirectional T-RRT Algorithm

In the most efficient implementation of the Bidirectional RRT, computation is divided be-
tween growing two trees (from qinit and qgoal respectively) and trying to connect them. At
each iteration, an expansion is attempted from one tree toward a random configuration and,
if it succeeds, an expansion is attempted from the other tree toward the new node, potentially
leading to the junction of both trees; then, the roles of the trees are reversed by swapping
them. We now explain why, due to cost considerations, one has to be careful when applying
this scheme to T-RRT in order to improve its performance, and we present an efficient imple-
mentation of the Bidirectional T-RRT. As this is not very informative, we do not report here
the performance results obtained with all possible variants of the Bidirectional T-RRT, and
limit ourselves to the best one.

Tree Expansion

In the Bidirectional RRT, the attempt to expand one tree toward a random configuration can
be done with an Extend or Connect function [106]. Which one works best depends on the
problem at hand. The same happens for the Bidirectional T-RRT: using a Connect function
leads to lower running times, except on the Engine-simple problem. However, even when the
Connect function is computationally beneficial, this generally happens at the expense of path
quality. Therefore, it seems preferable to expand the trees using an Extend function.

Tree Junction

In the Bidirectional RRT, the attempt to link both trees can use an Extend or a Connect
function [106]. Employing the Extend function lacks efficiency because this requires the trees
to come at a distance smaller than the extension step-size. This may lead the two trees to
explore a wider space area than a single tree would do, which is indeed what we observe
with the Bidirectional T-RRT on very cost-constrained problems, such as Engine-simple.
The Bidirectional T-RRT is then slower than its mono-directional counterpart. Utilizing the
Connect function is more efficient at reducing running time, but this happens again at the
expense of path quality. The best junction strategy appears to be some kind of Connect
function that creates no node, and only tries to add a linking edge. Also, this function should
be applied only if the trees are closer than a given distance threshold, not to waste time
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Algorithm 10: attemptLink(T1, q1, T2, q2, n)

input : the extension step-size δ
output: the tree T

1 T ← null
2 if distance(q1, q2) < 10 · δ and isCollisionFree(path(q1, q2)) then
3 qcur ← q1

4 qnext ← extend(q1, q2)
5 while qnext 6= null and transitionTest(T1, c(qnext), c(qcur)) do
6 qcur ← qnext

7 qnext ← extend(qcur, q2)

8 if qcur = q2 then
9 T ← linkAndMerge(T1, q1, T2, q2)

10 n← n− 1

11 return T

checking potential edges that are unlikely to be valid. If this threshold is too low, though, the
tree junction becomes difficult, as with the Extend function. A value of ten times the extension
step-size seems to achieve the right balance. Finally, we have observed that, depending on
the planning problem and on the cost function, it can be more efficient to first check for the
absence of collisions and then apply the transition test, or reciprocally. For sake of simplicity,
we do not make this distinction in the algorithm presented here.

Bidirectional T-RRT

To sum up, the best implementation for the Bidirectional T-RRT is the one presented in
Algorithm 9. At each iteration, one tree is expanded toward a random configuration. If a
new node is created and passes the transition test, a connection to its nearest neighbor in
the other tree is attempted, via the attemptLink procedure shown in Algorithm 10. This
procedure starts by checking whether both nodes are closer than ten times the extension step-
size, and whether the path between them is collision-free. If this is the case, successive RRT
expansion steps toward the target node are performed (without creating additional nodes),
starting from the source node. If the transition test accepts all the expansion steps, the two
nodes are connected by an edge, the two trees are merged into one, and the number of trees
is decreased by 1. Note that we present a general implementation of this procedure because
it is also used in the multiple-tree extension of T-RRT (cf. Section 3.3).

3.2.2 Evaluation and Analysis

Performance results obtained with the Bidirectional T-RRT on the four cost-space path-
planning problems presented in Section 3.1 are reported in Table 3.2. Compared to using
the mono-directional T-RRT, using the Bidirectional T-RRT greatly reduces running time,
up to an order of magnitude. Moreover, this globally improves path quality: all path-cost
measurements are reduced, sometimes very significantly (e.g. on the Manipulator problem),
apart from a few exceptions (mainly on the Mountains problem) for which we observe a small
increase. Our Bidirectional scheme thus significantly improves the performance of T-RRT.
Furthermore, if we compare the results reported in Tables 3.1 and 3.2, we observe that the
Bidirectional T-RRT does not always outperform the Goal-biased and Connect T-RRT, but
it is more robust when it comes to improving path quality.
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Table 3.2: Evaluation of the Bidirectional T-RRT on four cost-space path-planning problems,
in comparison to the mono-directional T-RRT. All values are averaged over 100 runs.

Trate = 0.1 avgC maxC MW IC t (s) N X

Mountains
mono 17.4 24.8 29.3 323 2.2 1,660 6,260
bi 17.7 23.9 30.5 330 0.1 282 982

Stones-small
mono 3.17 6.39 15.9 322 0.6 652 4,080
bi 3.15 6.35 14.6 313 0.1 251 1,790

Manipulator
mono 6.3 8.0 8.0 1,020 2.1 776 7,130
bi 6.0 7.6 3.5 791 0.1 101 1,170

Engine-simple
mono 24.1 80.9 379 8,900 11.3 321 2,720
bi 21.6 74.5 332 7,520 8.7 254 2,530

Trate = 0.01 avgC maxC MW IC t (s) N X

Mountains
mono 16.7 22.8 26.5 378 2.7 1,150 16,400
bi 16.7 22.8 27.2 370 0.9 861 11,700

Stones-small
mono 2.95 5.81 11.7 289 5.2 711 36,000
bi 2.86 5.72 10.7 282 1.6 548 23,400

Manipulator
mono 5.8 6.6 3.8 911 6.9 709 26,400
bi 5.7 6.7 2.3 771 0.8 112 7,410

Engine-simple
mono 1.7 10.9 88.9 626 78 288 23,600
bi 1.6 7.5 87.2 575 69 304 25,200

Analysis of Cost Profiles

The cost profiles of paths obtained on the Manipulator problem reveal how the Bidirectional
T-RRT can improve path quality (cf. Fig. 3.5). In this specific situation, both tree roots are
in low-cost areas, and the solution path has to go through a saddle of the cost landscape (that
is located approximately mid-way between qinit and qgoal). When T-RRT starts a descending
phase after crossing the saddle, the temperature is high because of the previous ascension,
making the transition test less selective: some uphill moves are accepted on the way down.
The produced path is then a succession of downhill and uphill steps, leading to a jerky cost
profile. On the contrary, when T-RRT is on an ascending phase, it is hard to go up: few uphill
moves are accepted from a given node. But, these moves enable to reach the saddle and will
eventually appear in the extracted path. An ascending path is thus a rather smooth succession
of uphill moves, as can be seen in Fig. 3.5 for the first half of both cost profiles. Furthermore,
with the Bidirectional T-RRT, the second half of the path is also built during an ascending
phase, performed by the second tree. Taken in reverse direction, it appears as a smooth
descent. Note that what is observed in this specific situation might not be generalizable.

Tree Growth Bias

Besides its tree-linking role, the junction procedure proposed in [106] introduces a bias in the
search process: at each iteration, one tree is potentially grown toward a new node from the
other tree. While using the tree-linking mechanism presented in Algorithm 10, we evaluate
the impact of this bias. For that, at each iteration, if a new node is created in the tree Ta,
and if the junction to Tb fails, we try growing Tb toward the new node in Ta using an Extend
function. After evaluation, this bias appears to increase running time on some problems and
to globally decrease path quality. We therefore reject it.
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Figure 3.5: Cost profiles of two paths produced on the Manipulator problem by the Extend
and Bidirectional T-RRT respectively. These paths are representative in the sense that their
associated cost measurements are close to average values obtained over 100 runs.

Common Expansion Direction

We also evaluate a variant of the Bidirectional T-RRT directly adapted from a variant of the
Bidirectional RRT [106]. In this variant, at each iteration, both trees are grown toward the
same random configuration, and up to two junctions are attempted depending on the number
of new nodes. This variant appears to be less efficient than the one presented in Algorithm 9.
Its running time is slightly higher because of the greater number of attempted junctions. But
more importantly, the quality of the paths produced is globally reduced. Therefore, we do
not retain this modification.

Balanced Trees and Local Temperature

Finally, we evaluate two other versions of the Bidirectional T-RRT. The first one, which has
proven to be beneficial to RRT on some problems, consists of ensuring that both trees remain
balanced (in terms of number of nodes). The second one is specific to T-RRT and involves
having a separate temperature associated to each tree. After evaluation, it is unclear whether
these modifications are advantageous or not. They both appear to have sometimes a positive
impact and sometimes a negative impact on performance.

Comparison with RRT*

We now compare the Extend and Bidirectional T-RRT to RRT*. On the RRT* side, the
path-quality criterion to be optimized is chosen as being the mechanical work of a path, in
order to ensure a fair comparison with T-RRT. Indeed, even though T-RRT is not conceived
to be optimizing any quality criterion, it naturally tends to minimize the mechanical work
of a path [83]. To simulate an optimization process on the T-RRT side, we vary the value
of the Trate parameter: decreasing Trate increases running times, but improves the quality
of solution paths. In this experiment, we run the T-RRT variants with Trate = 0.1 and
Trate = 0.01. Results are reported in Fig. 3.6. We can see that, on the Mountains problem,
RRT* quickly finds a better solution than T-RRT, even though the Bidirectional T-RRT
performs equally well for 0.1 s. On the Stones-small problem, RRT* cannot find a solution in
less than 0.5 s, contrary to the Bidirectional T-RRT, that succeeds in 0.1 s; but, given enough
time, RRT* converges toward a better solution. On the Manipulator and Engine-simple
problems (involving a 6-DoF manipulator arm), even in its Extend form, T-RRT outperforms
RRT*. As pointed out in [79], RRT* converges slowly on high-dimensional problems.
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Figure 3.6: Path quality (measured by the mechanical work MW ) in relation to running
time (t, in seconds) for solution paths produced by T-RRT and RRT* on four cost-space
path-planning problems. For each segment representing T-RRT, the left point corresponds to
Trate = 0.1 and the right point to Trate = 0.01. Values are averaged over 100 runs.

3.2.3 Industrial Inspection Problem

This section presents a cost-space path-planning problem for a flying robot in a dense indus-
trial environment, as illustrated by Fig. 3.7. For safety reasons, the quadrotor has to move in
this environment while maximizing its distance to obstacles. This scenario is an example of
industrial inspection involving aerial robots, such as those addressed in the framework of the
ARCAS project. One of the goals of this project is to develop robot systems for the inspection
of industrial installations that are difficult to access for humans.

In this example, the quadrotor is modeled as a 3-DoF sphere (i.e. a free-flying object)
representing the safety zone around the robot; therefore, no visibility constraint is considered.
We assume that the motions of the quadrotor are performed quasi-statically, thus neglecting
dynamic constraints. We restrict the problem to planning in position, controllability issues
being out of the scope of this thesis.

When running the Extend T-RRT on this problem, we observe that only 38 of the 100
runs succeed in less than five minutes with Trate = 0.1, and 67 with Trate = 0.01. On the
other hand, the Bidirectional T-RRT can find a solution in less than 3 s when Trate = 0.1,
and in about 38 s when Trate = 0.01 (on average over 100 runs). The example trajectory in
Fig. 3.7 is typical of what the Bidirectional T-RRT produces when Trate = 0.01: it shows that
the quadrotor follows a convoluted path in order to maximize clearance. When Trate = 0.1,
solution paths are more diverse, some being shorter but having a lower clearance.
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Figure 3.7: Path produced by the Bidirectional T-RRT for a quadrotor flying in a dense
industrial environment.

3.3 Multiple-Tree Extension of T-RRT

In this section, we propose a multiple-tree variant of T-RRT, named Multi -T-RRT. As
multiple-tree approaches to sampling-based path planning have been developed for various
applications, with different objectives in mind, we start by specifying the scope of our ap-
proach within this general context. In short, our aim is to develop a single-query planner that
can compute a path going through a given set of waypoints in a fixed environment. Since
there exist numerous multi-tree path planners that involve RRT, we evaluate existing strate-
gies used to expand and connect trees, and we select the most efficient ones to develop the
Multi-T-RRT. In addition, this requires dealing with the subtleties related to the presence
of cost constraints. Then, we evaluate the Multi-T-RRT and show that it outperforms path
planning schemes involving the Bidirectional T-RRT. Finally, we propose a useful-cycle addi-
tion procedure that leads to an anytime version of the Multi-T-RRT, allowing for a continual
improvement of the solution path. We also show that this variant of the Multi-T-RRT yields
a better convergence rate for solution-path quality than PRM and RRTobst way. Only prelim-
inary concepts and results are presented in this section; the anytime variant of T-RRT will
be discussed more thoroughly in Chapter 4.

3.3.1 Scope of the Approach

To develop the Multi-T-RRT, we have surveyed several techniques proposed in similar work
on multi-tree approaches to sampling-based path planning. Some approaches aim at solving
single-query problems, the way RRT usually works, but involve the construction of several
RRTs to reach a solution [9,34,56,57,63,149,157,158]. Others are multiple-query approaches
similar to PRM, where RRT is used as a local planner [108,122,134]. Others focus on dynamic
environments and build several RRTs at different points in time [67,166]. The version of the
Multi-T-RRT we present here is a single-query planner building several T-RRTs to find a
path. We do not deal with multiple queries or dynamic environments.

Growing multiple trees on the configuration space can be done in various ways. The aim
can be to have several RRTs rooted in different regions of the space to ensure a broader
exploration [34, 57, 63, 149, 157, 158]. In this context, trees are initialized and grown indepen-
dently of one another. Other approaches aim at maintaining a road-map of RRTs over the
space [67, 108, 134, 166]. In this case, trees can be created or modified as a result of merg-
ing, splitting or pruning operations. Other approaches make use of sub-trees produced by
previous queries [108, 166]. Others build RRTs in different subspaces, independently of each
other [9,56]. Finally, RRTs can be reduced to local connections between components of a large
road-map [122]. In this work, we focus on growing several T-RRTs rooted at given waypoints.
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Algorithm 11: Multi-T-RRT

input : the cost-space path planning problem (C, { qk
init | k = 1..n }, c)

where qk
init , k = 1..n are a set of waypoints

output: the tree T
1 for k = 1..n do
2 Tk ← initTree(qk

init)

3 while not stoppingCriteria({Tk | k = 1..n}) do
4 T ′ ← chooseNextTreeToExpand()
5 qrand ← sampleRandomConfiguration(C)
6 q′near ← findNearestNeighbor(T ′, qrand)
7 qnew ← extend(q′near , qrand)
8 if qnew 6= null and transitionTest(T ′, c(q′near), c(qnew)) then
9 addNewNode(T ′, qnew)

10 addNewEdge(T ′, q′near , qnew)
11 (T ′′, q′′near) ← findNearestTree(qnew)
12 T ← attemptLink(T ′, qnew , T ′′, q′′near , n)

13 return T

When building several trees, controlling their number and the timing of connection at-
tempts are difficult issues [104]. The number of trees can be unbounded [67, 108, 134]; it can
be subjected to a pre-defined bound [57,149,157,158] or implicitly limited at runtime [63,166].
Tree roots can be sampled a priori [57] or at runtime [67,134,166]; they can be strategic states
discovered at runtime, such as configurations in narrow passages [63, 149,157,158]. We focus
here on the case where the number of trees is fixed and equal to the number of waypoints.

3.3.2 The Multi-T-RRT Algorithm

The pseudo-code of the Multi-T-RRT is presented in Algorithm 11. Instead of building a
single tree rooted at some initial configuration, the algorithm grows n trees rooted at n given
waypoints qk

init, k = 1..n. At each iteration, a tree T ′ is chosen for expansion in a round-robin
fashion among the trees Tk, k = 1..n. Then, an extension is attempted toward a randomly
sampled configuration qrand, starting from its nearest neighbor, q′near , in T ′. We use an Extend
function and not a Connect one, as recommended for the Bidirectional T-RRT in Section 3.2.
If the extension succeeds and the transition test is satisfied, the new configuration qnew is
added to T ′ and connected to q′near. Then, we look for the configuration q′′near (and the tree
T ′′ containing it), which is the closest to qnew within all trees other than T ′. A connection
between qnew and q′′near is attempted by calling the attemptLink function. The exploration
continues until all trees are merged into one or another stopping criterion (number of nodes,
number of expansions, running time) is met.

The attemptLink function is the one used in the Bidirectional T-RRT (see Section 3.2).
If the two configurations are closer than ten times the extension step-size, if the local path
between them is collision-free, and if the configurations along this path pass the transition
test, then the two trees are merged, and the number of trees is decreased by 1. This distance
threshold (of ten times the extension step-size) represents a good trade-off between 1) wasting
time checking edges that are unlikely to be valid (if the threshold is too high) and 2) having
difficulties connecting trees (if the threshold is too low). Using the transition test of T-RRT
and testing tree connections based on cost constraints enables the Multi-T-RRT to favor
low-cost regions of the space, and thus to yield low-cost paths.



42 Chapter 3. Cost-based Path Planning in Continuous Cost Spaces

3.3.3 Other Multi-Tree Variants

To develop the Multi-T-RRT we addressed several points for which we had to choose among
various alternatives. Note that the numerical evaluation performed to assess the performance
of all these alternatives is not reported here because it is not very informative.

The first point is to decide which tree(s) to expand at a given step of the exploration
process. The simplest strategy is to grow all trees at each iteration toward the same configu-
ration qrand [67,108]. By having a single tree grown at each iteration, chosen in a round-robin
fashion [57, 158], the trees are expanded toward different configurations qrand, which appears
to work better. Another strategy is to expand the tree that is the closest to qrand [166].
However, when testing this approach, we have found that it can be difficult to expand trees
that are growing close to the boundaries of the configuration space. A more sophisticated
approach consists of choosing the tree to be expanded based on some probabilities that can
be fixed [149] or adaptive [157]. But, we have found that such strategies show no clear benefit
in terms of reducing running time or increasing path quality.

The second point is to decide when to attempt linking trees. The simplest strategy is to
try after each successful expansion of a tree [34,57,67,108,158,166]. Other, more sophisticated
approaches consist of attempting a connection only when the bounding box of the expanded
tree has increased in size [149], or when some stochastic test is satisfied, based on fixed or
adaptive probabilities [157]. However, we have found that these approaches lead to many
missed good opportunities for connection.

The third point is about how to perform the link attempt after a tree has been successfully
expanded. This can involve a single tree, usually the nearest one [57,157,166], or a randomly
chosen one. It can also involve all the other trees [34, 63, 67, 108, 149] or a subset of these
trees, containing, for example, some of the closest ones and some randomly chosen ones [134].
When a tree is chosen for the link attempt, we have to decide which node in this tree we will
try to connect the new node of the expanded tree to. Again, it can be the nearest one or a
randomly chose one. After evaluation, we have found that random choices are not beneficial.
It works better to attempt a connection between the new node and its nearest neighbor within
the nearest tree.

3.3.4 Evaluation Results

We have evaluated the Multi-T-RRT on several cost-space path-planning problems that differ
in terms of C-space dimensionality, geometrical complexity and cost-function type. We report
results for three of them here. For each example, we define ten waypoints that have to
be visited in a pre-defined order (only to facilitate the evaluation of the algorithms). The
Landscape problem is the 2D cost-map illustrated by Fig. 3.8, in which the cost is represented
by the elevation. The Stones-large problem (presented in Fig. 3.9) is a 2-DoF problem in
which a disk has to go through a large space cluttered with rectangular-shaped stones. The
objective is to maximize clearance, so the cost of a configuration is the inverse of the distance
between the disk and the closest obstacle. The Engine-multi problem (shown in Fig. 3.10)
involves a 6-DoF manipulator arm holding a sensor with a spherical extremity, used to inspect
a car engine. The objective is to keep the sensor as close as possible to the engine, so the cost
of a configuration is the distance between the sphere and the engine’s surface.

To fairly assess the Multi-T-RRT, no smoothing is performed on the solution paths. On
all problems, we record the running time t (in seconds), the number of expansion attempts
X, the number of nodes N in the produced tree, and several quality criteria evaluated on the
extracted path: the average cost avgC, the maximal cost maxC, the mechanical work MW ,
and the integral of the cost IC (cf. Section 2.3.2). For all variables, we give values averaged
over 100 runs. Note that Trate is set to 0.1 for all runs. Results were obtained on an Intel
Core i5 processor at 2.6 GHz with 8 GB of memory.
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Figure 3.8: Search tree built by the Multi-T-RRT on the Landscape problem. On this 2D
cost-map, the cost is color-coded (from blue to red) and represented by the elevation. The
ten waypoints are materialized by red disks.

Figure 3.9: Path computed by the Multi-T-RRT on the Stones-large problem, and going
through ten waypoints. The cost is the inverse of the distance between the 2-DoF yellow disk
and the blue rectangular-shaped obstacles.

We compare two variants of the Multi-T-RRT to the basic version presented in Algo-
rithm 11 and report the results in Table 3.3. The first variant involves having a local temper-
ature associated to each tree, as opposed to having a global temperature. After evaluation,
it seems that this modification has barely any influence on the results. The second variant
is based on ensuring that all trees remain balanced (in terms of number of nodes) during
the exploration. After evaluation, it is unclear whether this modification is advantageous or
not. It appears to have sometimes a positive impact (e.g., on the Stones-large problem) and
sometimes a negative impact (e.g., on the Landscape problem) on performance.

We also compare the Multi-T-RRT to the Bidirectional T-RRT in two ways. First, in a
simple scheme involving the Bidirectional T-RRT, we compute paths between pairs of con-
secutive waypoints, starting from scratch each time, and concatenate them to obtain the full
path visiting all waypoints. Second, in an incremental scheme involving the Bidirectional T-
RRT, we compute paths between pairs of consecutive waypoints, while keeping the tree built
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Figure 3.10: Ten waypoints defined for the Engine-multi problem. The 6-DoF manipulator
arm holds a sensor (the red sphere) that has to follow the surface of the car engine while
remaining as close to it as possible.

Table 3.3: Evaluation of the Multi-T-RRT and the Bidirectional T-RRT on three cost-space
path-planning problems. The algorithm variants considered here are: 1) basic Multi-T-RRT,
2) balanced Multi-T-RRT, 3) local-temperature Multi-T-RRT, 4) simple Bidirectional T-RRT,
and 5) incremental Bidirectional T-RRT.

avgC maxC MW IC t (s) N X

Landscape

1 11 22 240 10,000 0.06 1,100 6,000
2 11 22 230 9,900 0.18 1,300 13,000
3 11 22 240 10,000 0.08 1,200 9,000
4 11 22 230 9,800 0.12 2,700 20,000
5 11 22 240 9,900 0.12 1,400 10,000

Stones-large

1 2.4 5.9 110 27,000 0.38 2,000 18,000
2 2.4 5.9 110 29,000 0.28 1,100 8,000
3 2.5 5.9 110 29,000 0.38 2,100 18,000
4 2.3 5.9 97 25,000 0.57 4,500 38,000
5 2.2 5.9 104 28,000 0.43 2,100 18,000

Engine-multi

1 4.4 19 470 20,000 0.8 500 14,000
2 4.1 19 480 20,000 0.9 600 16,000
3 4.3 19 470 19,000 1.0 600 18,000
4 3.8 19 400 16,000 2.0 1,100 39,000
5 3.7 19 540 20,000 1.5 700 28,000

so far instead of deleting it as in the simple scheme. Results obtained with these two schemes
are reported in Table 3.3. As expected, the Multi-T-RRT is faster than the path planners
involving the Bidirectional T-RRT. Moreover, in spite of performing a quicker exploration of
the space, the Multi-T-RRT produces paths whose quality is only slightly worse than that
of paths produced by the path planners involving the Bidirectional T-RRT. Therefore, the
performance improvement is not achieved at the expense of path quality.



3.3. Multiple-Tree Extension of T-RRT 45

Figure 3.11: Path produced by the Multi-T-RRT enhanced with useful-cycle addition on the
Stones-large problem, for a running time of 5 s.

3.3.5 Useful-Cycle Addition

Even though the paths that the Multi-T-RRT returns have low cost, they might not necessarily
represent the most efficient way to visit a set of waypoints (e.g., see Fig. 3.9, where a trajectory
would have the disk go forward and then backward along several portions of the path). To
address this issue, we propose a simple approach based on the anytime paradigm and the
addition of useful cycles, which allows for a continual improvement of the solution’s quality.
The underlying principle is quite simple: after all trees are connected, we allow the exploration
to continue and we activate a cycle-addition procedure [124]. This leads to the creation of
new paths that can be of better quality than the best one found so far.

The cycle-addition procedure works as follows. When a new configuration qnew is added
to the graph, we consider all the other configurations within a pre-specified distance of qnew

in C as potential candidate targets for new edges. Among these candidates, we are interested
in those that are “close” to qnew in C, but “far” from qnew in the graph. For each candidate
qc, if the cost of the local path between qnew and qc in C is strictly less than the cost of the
lowest-cost path between qnew and qc in the graph, we add an edge between qc and qnew, thus
creating a useful cycle. More details on this cycle-addition procedure and on the anytime
variant of T-RRT are presented in Chapter 4.

As an example, Fig. 3.11 shows the benefits of using this Multi-T-RRT with useful-cycle
addition on the Stones-large problem. The improvement is especially visible when this figure
is compared to Fig. 3.9. The path in Fig. 3.11 appears smoother and does not feature so many
portions along which the disk would go forward and then backward. Note that this path is
representative of what we obtain for a running time of 5 s (as observed over 100 runs). Its
global (IC) cost is about half the cost of the path in Fig. 3.9 (obtained in 0.3 s).

To show what the Multi-T-RRT can achieve in realistic settings, we now introduce an
additional cost-space path-planning problem. It is an industrial inspection problem involving
an aerial robot in a dense environment, as illustrated by Fig. 3.12. In this Inspection example,
a quadrotor is used to inspect an oil platform, by going through eight waypoints whose order is
defined a priori. The context of this example is the same as what is presented in Section 3.2.3.
In order to maximize clearance, the cost of a configuration is defined as the inverse of the
distance between the quadrotor and the obstacles. Even though this example features a
large-scale workspace, the Multi-T-RRT can quickly provide a solution path: in about 5 s on
average over 100 runs.
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Figure 3.12: Eight waypoints (shown in red and circled in green) defined for a quadrotor
(whose close-up is shown in blue) inspecting an oil platform.

Finally, we perform an experiment aimed at quantifying the efficiency of the useful-cycle
addition procedure. For that, we evaluate the evolution over time of the quality of the solution
paths produced by the Multi-T-RRT on the four cost-space path-planning problems studied
in this section (see Fig. 3.13). On the Landscape problem, path quality is measured by the
mechanical work, MW , and on the other problems it is measured by the integral of the cost,
IC. To clarify this choice, on each problem we have picked the criterion producing the most
“natural-looking” optimal path: MW is interesting on 2D cost-maps because it avoids going
through high-cost saddles; IC is interesting in realistic problems because it produces shorter
paths (that intuitively look better). Note that we use two different quality criteria in order
not to bias our results by working only with a single one. We compare the rate of convergence
of the quality of paths produced by the Multi-T-RRT with useful-cycle addition to the rates of
convergence observed when planning with versions of PRM [124] and RRTobst way [57] creating
cycles. Fig. 3.13 shows that the Multi-T-RRT yields a slightly better rate of convergence than
RRTobst way. The poor results of PRM, especially in high-dimensional spaces, are due to the
fact that it does not involve any cost constraint. As it features a similar convergence rate,
IRS [117] would probably not perform better. RRT* [93] would provide a better point of
comparison, but it would require a multi-tree extension.

3.4 Conclusion

In this chapter, we have presented several enhancements to the T-RRT algorithm. We have
evaluated them on various cost-space path-planning problems that differ in terms of geomet-
rical complexity, configuration-space dimensionality and cost-function type.

First, we have focused on the mono-directional variant of T-RRT. We have explained
how its transition test can be modified to improve performance, mainly by optimizing the
adaptive behavior of the temperature parameter. We have also studied two extensions of
T-RRT inspired by classical RRT variants: the Goal-biased T-RRT and the Connect T-RRT.
We have shown that both are delicate to use because, despite reducing running time, they
sometimes decrease path quality.
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Figure 3.13: Evolution of the quality (measured by IC or MW) of paths produced by the
Multi-T-RRT, RRTobst way and PRM over time, on four cost-space path-planning problems of
increasing dimensionality.

Second, we have proposed a Bidirectional variant of T-RRT. Contrary to the development
of the Bidirectional RRT, which was rather straightforward, the development of an efficient
Bidirectional T-RRT is more challenging, because of the subtleties resulting from dealing with
cost constraints. We have shown that our Bidirectional T-RRT improves performance when
compared to the Extend T-RRT, mainly in terms of success rate and running time, but also
often in terms of path quality, and we have presented some clues as to why this is so. The
Bidirectional T-RRT does not always outperform the Goal-biased and Connect T-RRT, but
it provides more consistent results and is therefore a better choice. We have also illustrated
the need to enhance T-RRT this way with a realistic industrial inspection problem involving
an aerial robot. In such context, the Extend T-RRT cannot find a solution in a reasonable
amount of time, contrary to the Bidirectional T-RRT.

Third, we have presented a multi-tree variant of T-RRT named Multi -T-RRT. To achieve
the highest efficiency, we have selected the best techniques among those involved in other
multi-tree sampling-based path planners. When looking for a path going through a given
set of waypoints, we have shown that the Multi-T-RRT is faster than path planners based
on the Bidirectional T-RRT, and that it yields paths of similar quality. We have also given
preliminary explanations on how to devise an anytime variant of the Multi-T-RRT by en-
hancing it with a useful-cycle addition procedure that enables the solution to be continually
improved. Finally, we have shown that this anytime variant of the Multi-T-RRT yields a
better convergence rate for solution-path quality than PRM and RRTobst way.
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Developing an anytime variant of T-RRT to solve the optimal path planning problem is
part of what is presented in Chapter 4. In that chapter, we provide more details on the useful-
cycle addition procedure involved in this Anytime T-RRT. We also prove that this algorithm
is asymptotically optimal, meaning that it offers theoretical guarantees of convergence toward
the optimal solution-path. Then, later in this thesis, we integrate the Anytime T-RRT and the
Multi-T-RRT introduced in this chapter to develop an Anytime Multi -T-RRT. This algorithm
is applied to complex robotics problems that require to find the most efficient way to visit a
set of waypoints (cf. Chapter 6). It is also applied to the structural biology issue of exploring
the energy landscape of peptides (cf. Chapter 7).

As future work, we could investigate further improvements and extensions of T-RRT.
In particular, more sophisticated heuristics for the adaptive variation of the temperature
parameter could lead to a faster exploration while maintaining path quality. On another
front, the approach we have proposed to compute a path going through a set of waypoints is a
general one. It would be interesting to enhance other sampling-based path planners in a similar
way and compare their performance to that of the Multi-T-RRT. The poor results obtained
with PRM highlight that such path planners should involve cost constraints. Therefore, a
good candidate seems to be RRT* [93], in a multiple-tree version.



Chapter 4

Efficient Optimal Path Planning in
Complex Continuous Cost Spaces

In robotics, computing an optimal solution-path to a path planning problem (with respect to a
given path-quality criterion) has traditionally been done by using grid-based methods such as
A* or D* [148]. However, it is well-known that these methods are limited to problems involving
low-dimensional search spaces. In the context of sampling-based path planning, looking for
an optimal solution-path is a relatively new topic of research [93]. The first sampling-based
path planners to be developed for that purpose were a variant of PRM called PRM* and two
variants of RRT called RRG and RRT*. In fact, PRM*, RRG and RRT* have been proven to
guarantee asymptotic optimality and, therefore, to solve the optimal path-planning problem
(cf. Section 2.3). On the other hand, it has been shown that RRT (and by extension, T-RRT)
offers no asymptotic optimality guarantee [93].

Historically, the first quality criteria to be optimized were path length and path duration.
In this thesis, we aim at dealing with path-quality criteria defined on the basis of continuous
configuration-cost functions, which is more challenging. In this context, RRT* is not very
efficient because it does not take the configuration-cost function into account when sampling
the cost-space and creating new nodes. Indeed, RRT* only takes a path-quality criterion into
account, when creating or removing edges. As a possible consequence, it has been observed
that RRT* may converge slowly toward the optimal solution-path in high-dimensional cost-
spaces (cf. Section 3.2 and [79]). On the other hand, thanks to the filtering properties of its
Metropolis-like transition test, the exploration performed by T-RRT favors low-cost regions
of the configuration space. In fact, T-RRT mostly creates new nodes in these favorable areas.
Nevertheless, T-RRT does not take the path-quality criterion into account when creating
edges and, thus, involves no mechanism to allow for an improvement of the quality of the
current solution path. To summarize, we can see that RRT* and T-RRT build on different
(and even complementary) concepts that it is interesting to combine.

In this chapter, we address the issue of devising efficient algorithms that can solve difficult,
optimal path-planning problems featuring complex continuous configuration-cost functions.
For that, we build on the aforementioned extensions of RRT, namely T-RRT and RRT*.
We combine the two beneficial concepts underlying these methods: 1) the filtering properties
of the transition test in T-RRT, favoring the creation of new nodes in low-cost regions of
the space, and 2) the quality-based management of edges in RRT*, allowing the quality of
the solution path to increase with time. We do this in two different ways, by proposing an
extension to RRT* named Transition-based RRT* (T-RRT*) and an extension to T-RRT
named Anytime T-RRT (AT-RRT). Both algorithms offer asymptotic-optimality guarantees,
meaning that they can solve the optimal path planning problem. They allow us to efficiently
explore complex continuous cost-spaces, yielding high-quality solution paths that improve
with time in an anytime fashion.

49
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We evaluate T-RRT* and AT-RRT on several optimal path-planning problems, and show
that they converge toward the optimal path faster than RRT* does. Thanks to the filtering
properties of the transition test, T-RRT* and AT-RRT can efficiently solve difficult problems
on which RRT* converges very slowly. We present several examples illustrating various factors
that make an optimal path-planning problem difficult to solve. 1) If the problem features a
large-scale workspace, even in low dimension, favoring low-cost areas avoids wasting time
exploring the whole space. 2) If the space features several homotopic classes between which
it is difficult to jump, even in low dimension, using the transition test can bias the search
toward the class containing the optimal path and avoid being trapped in a sub-optimal class.
3) If the problem is high-dimensional, it is inherently complex because the search space is
intrinsically large and can potentially contain many homotopic classes.

4.1 Algorithms

In this section, we combine the beneficial concepts underlying RRT* and T-RRT to devise
novel algorithms inheriting their respective strengths and addressing their respective limita-
tions. The first algorithm, called Transition-based RRT* (T-RRT*), consists of integrating the
Metropolis-like transition test of T-RRT into RRT*. The motivation is to favor the exploration
of low-cost regions of the space by taking the configuration-cost function into account (as T-
RRT does), while maintaining the asymptotic properties of RRT*. The second algorithm,
called Anytime T-RRT (AT-RRT), consists of enhancing T-RRT with an anytime behavior
enabled by the integration of a procedure adding useful cycles (based on the path-quality
criterion) to the graph built over the space, as is done for PRM in [124]. The motivation is
to quickly obtain a first high-quality solution-path and, then, continue the exploration for the
solution to continually improve and converge toward the optimal path.

The anytime paradigm has often been applied to RRT-like algorithms. For instance,
the first anytime variant of RRT was based on building successive trees and exploiting the
search history [60]. The sampling process of this Anytime RRT was later improved [164].
Another anytime variant of RRT builds on the idea of pruning low-quality branches during the
exploration [1]. The Rapidly-exploring Random Graph (RRG) algorithm is also an anytime
variant of RRT, which consists of adding cycles to the tree built by RRT [93]. RRT* enhances
RRT with an anytime behavior by rewiring (i.e. removing and creating connections in) the
tree built by RRT [93]. Inspired by RRT*, the Rapidly-exploring RoadMaps (RRM) algorithm
is another anytime RRT-like algorithm that allows balancing the exploration and refinement
parts of the search process [5]. The meta-approach proposed in [112], based on short-cutting
and path hybridization, can also provide RRT-like algorithms with an anytime behavior. The
Anytime T-RRT we introduce here differs from other anytime RRT-like algorithms in that it
is based on adding useful cycles to the tree built by T-RRT.

4.1.1 Transition-based RRT* (T-RRT*)

The pseudo-code of T-RRT* is presented in Algorithm 12. It extends RRT* by integrating
the transition test of T-RRT (line 6). This transition test is used to accept or reject the move
from qnear to qnew based on their respective costs. If the move is accepted, T-RRT* behaves
exactly like RRT*. First, a new node is created in G to store qnew (line 7). Then, a search
in G is performed to compute the set Qnear of configurations contained in a neighborhood
of qnew of radius γ (log(n) / n)1 / d (line 9). As defined for RRT*, this radius depends on the
dimension d of C, on a constant γ derived from the volume of Cfree, and on the number n
of nodes in G. The next step of the algorithm consists of finding the configuration qpar in
Qnear ∪ {qnear} to which qnew should be connected (line 10): the parent of qnew is chosen as
the configuration via which the path between qinit and qnew has minimal cost. Finally, since
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Algorithm 12: Transition-based RRT* (T-RRT*)

input : the optimal path planning problem (C, qinit, qgoal, c, cp)
the dimension d of the C-space
the γ constant derived from the volume of Cfree

output: the graph G
1 G ← initGraph(qinit)
2 while not stoppingCriteria(G) do
3 qrand ← sampleRandomConfiguration(C)
4 qnear ← findNearestNeighbor(G, qrand)
5 qnew ← extend(qnear , qrand)
6 if qnew 6= null and transitionTest(G, c(qnear), c(qnew)) then
7 addNewNode(G, qnew)
8 n← numberOfNodes(G)

9 Qnear ← findNodesInBall(G, qnew , γ (log(n) / n)1 / d)
10 qpar ← findParentMinimizingCostFromInit(qnew , qnear , Qnear , cp)
11 addNewEdge(G, qpar , qnew)
12 foreach qn ∈ Qnear do
13 π ← pathInSpace(qnew , qn)
14 if costFromInit(qnew) + cp(π) < costFromInit(qn) and

isCollisionFree(π) then
15 removeEdge(G, parent(qn), qn)
16 addNewEdge(G, qnew , qn)

17 return G

Algorithm 13: transitionTest (G, ci , cj)

input : the current temperature T
the temperature increase rate Trate

output: true if the transition is accepted, false otherwise
1 if cj ≤ ci then
2 return True

3 if exp(−(cj − ci) / T ) > 0.5 then

4 T ← T / 2(cj−ci) / (0.1 · costRange(G))

5 return True

6 else
7 T ← T · 2Trate
8 return False

the addition of a new node in G potentially leads to the apparition of new paths having lower
costs than those currently in G, some rewiring might be performed (lines 12–16). For each
qn ∈ Qnear, if the cost of the path going from qinit to qn via qnew is lower than the cost of the
current path between qinit and qn in G, qnew becomes the new parent of qn in G.

Compared to the version of the transition test presented in Section 3.1.2, the one used
here (and shown in Algorithm 13) features a minor modification: it does not involve the cost
threshold cmax. This ensures that no configuration sampled in C has a probability zero to be
accepted. Therefore, the samples produced by T-RRT* can be considered to be drawn from
a continuous probability distribution with density bounded away from zero. This property is
important to ensure that T-RRT* is asymptotically optimal (see Section 4.2).
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Algorithm 14: Anytime Transition-based RRT (AT-RRT)

input : the optimal path planning problem (C, qinit, qgoal, c, cp)
output: the graph G

1 G ← initGraph(qinit)
2 while not stoppingCriteria(G) do
3 qrand ← sampleRandomConfiguration(C)
4 qnear ← findNearestNeighbor(G, qrand)
5 qnew ← extend(qnear , qrand)
6 if qnew 6= null and transitionTest(G, c(qnear), c(qnew)) then
7 addNewNode(G, qnew)
8 addNewEdge(G, qnear , qnew)
9 if solutionPathExists(G, qinit , qgoal) then

10 addUsefulCycles(G, qnew , cp)

11 return G

Algorithm 15: addUsefulCycles (G, qnew , cp)

input: the dimension d of the C-space
the γ constant derived from the volume of Cfree

1 n← numberOfNodes(G)

2 Qnear ← findNodesInBall(G, qnew , γ (log(n) / n)1 / d)
3 foreach qn ∈ Qnear do
4 πg ← pathInGraph(G, qnew , qn)
5 πs ← pathInSpace(qnew , qn)
6 if cp(πs) < cp(πg) and isCollisionFree(πs) then
7 addNewEdge(G, qnew , qn)

4.1.2 Anytime Transition-based RRT (AT-RRT)

The pseudo-code of AT-RRT is shown in Algorithm 14. It also features the transitionTest

(line 6) shown in Algorithm 13, and extends T-RRT by offering an anytime behavior. Before
any solution path is found, AT-RRT behaves exactly like T-RRT (lines 3–8). As opposed to
what happens in T-RRT, however, after a solution path is found, the exploration is allowed
to continue and a cycle-addition procedure is activated (lines 9–10). This procedure is based
on the notion of useful cycles, as described in [68, 124]. It leads to the creation in G of new
paths that can be of higher quality than the best one found so far. This allows the current
solution-path to be continually improved, in an anytime fashion, and to converge toward the
optimal path.

The addUsefulCycles procedure is presented in Algorithm 15. When a new configuration
qnew is added to G, we consider all other configurations in G, within a neighborhood of qnew,
as potential candidate targets for new edges. The radius of this neighborhood depends on the
dimension d of the C-space and on a constant γ derived from the volume of Cfree, as is done
for RRT*. Furthermore, this radius decreases with the number n of nodes in G. Within the
candidate set Qnear, we are interested in the configurations that are “close” to qnew in C, but
“far” from qnew in G, not in terms of distance but in terms of path cost. For each candidate
qn ∈ Qnear, if the cost of the local path πs between qnew and qn in C is strictly less than the
cost of the lowest-cost path πg between qnew and qn in G, and if πs is collision-free, we add an
edge to G between qnew and qn, thus creating a useful cycle.
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4.2 Theoretical Analysis

We now review the properties of the T-RRT* and AT-RRT algorithms, in terms of probabilistic
completeness (cf. Section 2.1) and asymptotic optimality (cf. Section 2.3).

It has already been proven in previous work that the T-RRT and RRT* algorithms are
probabilistically complete [83,93]. In the case of T-RRT, this property is directly derived from
the probabilistic completeness of RRT: despite the integration of the transition test in RRT
to devise T-RRT, the algorithm retains this property. A similar reasoning allows us to state
that T-RRT* is probabilistically complete, thanks to the probabilistic completeness of RRT*.
Furthermore, as AT-RRT behaves like T-RRT before a solution path is found, it satisfies the
same properties.

Theorem 6 (Probabilistic completeness of T-RRT*). The T-RRT* algorithm is probabilisti-
cally complete.

Theorem 7 (Probabilistic completeness of AT-RRT). The AT-RRT algorithm is probabilis-
tically complete.

Let us assume in the sequel that the γ constant involved in T-RRT* and AT-RRT, and
originally introduced in RRT*, satisfies

γ > 2

(
1 +

1

d

) 1
d
(
µ(Cfree)

ζd

) 1
d

, (4.1)

where d is the dimension of the C-space, ζd is the volume of the unit ball in the d-dimensional
Euclidean space, and µ() is an operator measuring the volume of a space. Under this assump-
tion, it has been proven that RRT* is asymptotically optimal [93].

The only difference between T-RRT* and RRT* is the addition of the transition test,
that filters the configurations added to G based on their costs. The consequence of applying
such rejection sampling is that the samples cannot be assumed to be drawn from a uniform
distribution on C. However, as already mentioned, they can be assumed to be drawn from a
continuous probability distribution with density bounded away from zero. Even though the
asymptotic optimality of RRT* was proven under a “uniform distribution” assumption, this
result can be extended to any continuous probability distribution with density bounded away
from zero [93]. Therefore, T-RRT* is also asymptotically optimal.

Theorem 8 (Asymptotic optimality of T-RRT*). The T-RRT* algorithm is asymptotically
optimal.

It is clear that AT-RRT and T-RRT* use the same procedure to create and filter nodes,
based on the extension mechanism of RRT and on the transition test of T-RRT. The difference
between the two algorithms lies in the management of edges. First, contrary to T-RRT*, in
AT-RRT no edge is removed, thus leading to the creation of cycles, but this has no impact
on the current analysis. The main point is that both algorithms make the decisions to create
alternative paths based on cost improvement. Where they differ is on the criterion that an
edge has to satisfy to be considered useful in terms of cost improvement. In T-RRT*, this
criterion is based on whether an edge allows a configuration to be connected to qinit via a
path in G having minimal cost. In AT-RRT, this criterion is based on whether an edge allows
two configurations to be connected via a path in C whose cost is lower than the costs of the
existing paths in G. It is clear that both criteria achieve the same goal: allowing the cost of the
solution path to decrease with time. Finally, since the cost-based decisions on the addition of
useful cycles happen in neighborhoods of radii based on a value of γ satisfying (4.1), AT-RRT
is also asymptotically optimal.

Theorem 9 (Asymptotic optimality of AT-RRT). The AT-RRT algorithm is asymptotically
optimal.
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Figure 4.1: Stones-large problem: 2-DoF yellow disk moving among blue rectangular-shaped
obstacles, while having to maximize its clearance. The figure shows graphs built by AT-RRT
(top) and T-RRT* (bottom) after a running time of 0.5 s.

4.3 Evaluation

4.3.1 Path Planning Problems

We have evaluated T-RRT* and AT-RRT on several path planning problems that differ in
terms of C-space dimensionality, geometrical complexity and cost function type.

The Stones-large problem (illustrated in Fig. 4.1, Fig. 4.5 and Fig. 4.9) is a 2-DoF example
in which a disk has to go through a space cluttered with rectangular-shaped obstacles. The
objective is to maximize clearance, so the cost function associates to each position of the disk
the inverse of the distance between the disk and its closest obstacle.

The Inspection problem deals with industrial inspection in a dense environment, and
involves an aerial robot, as shown in Fig. 4.2 and Fig. 4.6. The featured quadrotor is modeled
as a 3-DoF sphere (i.e. a free-flying sphere) representing the security zone around it. Assuming
that motions are performed quasi-statically, we restrict the problem to planning in position
(thus disregarding controllability issues). For safety reasons, the quadrotor has to move in
this environment trying to maximize clearance for the security sphere. The specificity of this
problem is its large-scale workspace.
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Figure 4.2: Inspection problem: quadrotor (whose close-up is shown in yellow) inspecting an
oil platform. The cost function involves the clearance of the quadrotor’s 3-DoF safety sphere.

The Transport problem features aerial robots, and deals with the collaborative transport
of objects, as shown in Fig. 4.3. Two quadrotors have to carry an H-looking object and go
through one of two holes in a wall. The robotic system comprises the quadrotors themselves
(and not safety spheres around them), the 3-R planar manipulator arms attached below them,
and the carried object. A configuration of this system is defined by the position and orientation
of the object in space, and the relative positions of the quadrotors with respect to the object.
This problem is restricted to planning in position for the quadrotors because of the quasi-
static assumption made on their motions. We consider a planar version of the problem, thus
disregarding translations along the Y axis and rotations around the X and Z axes. Besides,
the revolute joints of the arms are passive degrees-of-freedom in constraints related to the
closure of the kinematic chain. Therefore, the system can be described with 7 DoFs: 3 DoFs
for the object (two translations along the X and Z axes, and a rotation around the Y axis)
and 2 DoFs for each quadrotor (two translations along the X and Z axes). In this example,
different cost functions can be defined. The notion of clearance could be considered, but we
will use a cost function based on the notion of “balance” in our experiments. Assuming the
initial configuration is stable, the idea is to maintain it as much as possible, while allowing a
complete freedom of movement for the object with respect to the translations along the X and
Z axes. To achieve that, the cost of a configuration is defined as the sum of the differences
to the initial values for the rotation of the object and the translations of the quadrotors. The
specificity of the Transport problem lies in the fact that it features two very distinct homotopic
classes. The two holes in the wall constitute narrow passages of similar difficulty in terms
of purely geometrical planning: despite being wider, the lower hole is partly obstructed by
the second wall. Therefore, a geometrical planner such as RRT produces feasible paths going
through either hole with similar probability. However, when planning in the cost space with
the clearance-based cost function, paths going through the lower hole are favored because
it is larger than the other one. On the contrary, when planning in the cost space with the
balance-based cost function, paths going through the upper hole are favored because going
through the lower one requires the robotic system to tilt sharply.
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Figure 4.3: Transport problem: the two quadrotors have to transport an object and go through
one of the holes in the wall, while maintaining the balance of the whole system. Both images
show an intermediate configuration as well as the goal configuration along paths obtained
after 50 s. Top: path produced by T-RRT* when minimizing MW. Paths obtained when
minimizing IC, and paths produced by AT-RRT are similar. Bottom: path produced by
RRT* when minimizing IC. Paths obtained when minimizing MW are similar.

The Snake problem (illustrated in Fig. 4.4) involves a snake-like object constituted of
ten identical cylinders between which nine revolute joints are defined. We also consider
two translations and a rotation in the planar workspace, which adds up to 12 DoFs. The
cost function is defined as the sum of the absolute differences between the angular values
of consecutive revolute joints, added to the absolute value of the first revolute joint. The
objective is to favor a straight configuration of the robot, or configurations in which all
revolute joints have the same value, which correspond to a regular coiling of the robot. This
problem will enable us to analyze the behavior of the algorithms in higher dimension.

4.3.2 Settings

Before applying T-RRT* and AT-RRT to these path planning problems, the values of their
parameters have to be set. First, Trate is set to 0.1 and T is initialized to 10−6. Finding a good
value for γ happens to be a real issue. As already mentioned, the lower bound for γ expressed
in (4.1) is the optimal value with respect to the tradeoff between efficiency and asymptotic
optimality. However, computing this value requires to estimate the volume of Cfree. This is
possible in low-dimensional spaces when the robotic system and the obstacles are represented
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Figure 4.4: Selected configurations along paths produced by AT-RRT when minimizing IC
(top) or MW (bottom), after a running time of 100 s, on the Snake problem. A snake-like
object has to move among obstacles while remaining as straight as possible. The cost function
favors regular over irregular coiling of the object. T-RRT* provides similar results.

with simple geometric models, but this is not realistic otherwise. To ensure that γ satisfies
(4.1), we use the value

γ = 2

(
1 +

1

d

) 1
d
(
µ(C)
ζd

) 1
d

. (4.2)

On the Stones-large and Inspection problems, since C is an Euclidean space, its volume can
easily be computed using the validity interval of every DoF. However, this is not straight-
forward on the Transport and Snake problems because of the revolute joints. For each DoF
corresponding to such joint, its angular range is multiplied by the length of the associated
rigid body.

T-RRT* and AT-RRT have been implemented in the motion planning platform Move3D.
To fairly assess them, no smoothing is performed on the solution paths. In this evaluation, to
assess path quality, we use both IC and MW not to limit ourselves to a single criterion, which
could bias the interpretation of the results. However, comparing cost criteria is out of the
scope of this evaluation. Note that values of IC and MW are averaged over 100 runs. Results
have been obtained on an Intel Core i5 processor at 2.6 GHz with 8 GB of memory.

4.3.3 Results

T-RRT* and AT-RRT build graphs over C in different ways because they involve different
strategies to create (and potentially remove) edges. This is illustrated in Fig. 4.1 on the
Stones problem. The upper figure clearly shows the cycles created by AT-RRT, and the
redundancy in paths. As can been seen in the lower figure, the tree built by T-RRT* is much
sparser, because high-cost edges are removed. The numerical results we present show that
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Figure 4.5: Solution paths produced by T-RRT* on the Stones-large problem when minimizing
IC (top) or MW (bottom) after a running time of 10 s. Solution paths produced by AT-RRT
are similar.

these differences in behavior do not create significant differences in performance. Also, the
solution paths produced by the two algorithms usually look very similar.

Differences in solution paths are mainly due to the choice of the cost criterion: IC or MW.
This is clearly visible in Fig. 4.5 and 4.6. Minimizing IC tends to favor shorter paths along
which the maximal cost can be very high (as illustrated by the cost profiles in the lower part of
Fig. 4.6), and minimizing MW sometimes produces strangely convoluted paths (as illustrated
by the lower part of Fig. 4.5). Another drawback of MW (not illustrated here) is that, if the
cost of qinit is high, MW can be low even for paths going through high-cost configurations. A
better cost criterion could probably be defined by combining the expressions of IC and MW,
but this goes beyond the scope of this thesis. Note that, on some problems, such as Transport,
the choice of the cost criterion has little impact on the results.

To evaluate the performance of T-RRT* and AT-RRT, we analyze the evolution over time
of the costs of the solution paths they produce. As a reference, we compare both algorithms to
RRT*. To obtain the best results with RRT*, we use the conditional activation and branch-
and-bound heuristics when they are beneficial. The conditional activation heuristic consists
of planning with a regular RRT until the first solution is found, and only then activating the
procedures specific to RRT* [87]. The branch-and-bound heuristic consists of trimming the
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Figure 4.6: Paths produced by AT-RRT on the Inspection problem when minimizing IC (top)
or MW (middle), after a running time of 10 s. The cost profiles of the two paths are also
shown (bottom). Paths produced by T-RRT* are similar.

nodes in G that cannot allow finding paths with costs lower than that of the current solution
path, which is assessed using a cost-to-go function [94]. Both heuristics are beneficial on the
Transport and Snake problems.

Numerical results obtained on the four path planning problems (each one being tested
with a given pair (qinit, qgoal) of configurations) are reported in Fig. 4.7 for IC, and Fig. 4.8
for MW. They clearly show that T-RRT* and AT-RRT converge faster than RRT* toward
the optimum. Even on a problem as simple as Stones-large, if only little time is available,
T-RRT* and AT-RRT yield better-quality solutions than RRT*. But, given enough time,
all algorithms produce paths of similar quality. Analyzing the exploratory behavior of each
algorithm reveals that the filtering properties of the transition test help focus the search on
the most relevant parts (i.e. the low-cost areas) of the workspace. Indeed, graphs produced
by RRT* contain numerous nodes in high-cost regions of the space (as is the case with RRT,
cf. Fig. 4.9), contrary to graphs produced by T-RRT* or AT-RRT (cf. Fig. 4.1).

When the size of the workspace is larger, as in the Inspection problem, the dominance of
T-RRT* and AT-RRT is even clearer. When the problem is even more complex, as is the case
of Transport, the weaknesses of RRT* start to translate into a very low rate of convergence.
Thanks to the transition test, the search performed by T-RRT* or AT-RRT is usually guided
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Figure 4.7: Evolution over time of the costs (IC) of the solution paths produced by RRT*,
T-RRT* and AT-RRT, on the four path planning problems.

toward the homotopic class containing the optimal path (i.e. the upper hole, when using the
balance-based cost function, as shown in the upper part of Fig. 4.3). On the contrary, the
first solution produced by RRT* can belong to any of the two homotopic classes; if it is found
in the sub-optimal one (i.e. the lower hole), RRT* gets stuck in this class and into optimizing
a low-quality solution (as shown in the lower part of Fig. 4.3).

On high-dimensional problems, such as Snake, RRT* usually converges very slowly. Look-
ing at Fig. 4.7 and Fig. 4.8, one may think that this is also the case for T-RRT* and AT-RRT.
To check that, we have let all algorithms run for 12 hours while minimizing MW. We have
obtained solutions of costs 3.42, 2.41 and 2.24 for RRT*, T-RRT* and AT-RRT respectively.
Looking at Fig. 4.8, it means that, after 100 s, T-RRT* and AT-RRT are already close to the
optimum, contrary to RRT*.

Finally, to assess whether what we observe is consistent across the domains corresponding
to the four optimal path-planning problems, we have evaluated the algorithms on instances
of these problems involving different pairs (qinit, qgoal) of configurations. The results we have
obtained (but that are not presented here because they are not very informative) are similar
to what we report above.

4.4 Conclusion

In this chapter, we have proposed two new sampling-based algorithms to solve the optimal
path planning problem by combining the underlying principles of T-RRT and RRT*, the goal
being to benefit from their respective strengths while overcoming their respective weaknesses.
On the positive side, T-RRT can efficiently explore a cost space thanks to the filtering proper-
ties of its transition test, and RRT* is asymptotically optimal. On the negative side, T-RRT
is not asymptotically optimal, and RRT* may converge slowly on complex cost spaces. The
two hybrid methods are: 1) the Transition-based RRT* (T-RRT*), which is an extension of
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Figure 4.8: Evolution over time of the costs (MW) of the solution paths produced by RRT*,
T-RRT* and AT-RRT, on the four path planning problems.

RRT* integrating the transition test of T-RRT, and 2) the Anytime T-RRT (AT-RRT), which
is an extension of T-RRT integrating a useful-cycle addition procedure. We have proven that
T-RRT* and AT-RRT are both probabilistically complete and asymptotically optimal. We
have evaluated them on several optimal path-planning problems featuring complex, contin-
uous cost functions, and compared them to RRT*. Results show that they converge faster
than RRT* toward the optimal path, sometimes even orders of magnitude faster. This is es-
pecially true when the search space is very large, when its topology is complex, and/or when
dimensionality is high.

Our experiments tend to show that AT-RRT performs slightly better than T-RRT*. As
future work, it would be interesting to analyze further how the two algorithms behave, to
pinpoint which strategy works best in general, or on particular classes of optimal path-planning
problems. Disregarding computational performance, a clear advantage of AT-RRT over T-
RRT* is that it builds a graph containing cycles, therefore providing alternative paths over
the configuration space. This could be leveraged when path replanning is required due to
errors in the model or moving obstacles.

Another interesting aspect of AT-RRT is that it can easily be extended into a multiple-tree
algorithm. This is what we do later in this thesis, based on the multiple-tree variant of T-
RRT presented in Chapter 3. We develop an Anytime Multi -T-RRT that we apply to difficult
problems in robotics and structural biology. On the robotics side, we apply this algorithm
to “ordering-and-pathfinding” problems (cf. Chapter 6). On the structural biology side, we
apply it to the exploration of energy landscapes of peptides (cf. Chapter 7).
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Figure 4.9: Graphs built on the Stones-large problem, by RRT (top), T-RRT (middle) and
RRT* (bottom). As this example involves a clearance-based cost function, nodes close to the
obstacles have high costs, and nodes far from the obstacles have low costs. Because they do
not take this configuration-cost function into account, RRT and RRT* create nodes close to
the obstacles. On the contrary, as it favors low-cost regions of the space, T-RRT creates nodes
further from the obstacles, similarly to what T-RRT* and AT-RRT do (cf. Fig. 4.1).



Chapter 5

Parallel Path Planning on
Distributed-Memory Architectures

Despite the successes achieved in sampling-based path planning, some difficult problems still
remain too challenging for current methods. One way to solve this issue is to propose enhanced
versions of existing approaches, at an algorithmic level, as we have done in Chapters 3 and 4.
Another solution is to optimize existing approaches, at an implementation level, to make them
more computationally efficient. In the context of RRT-like algorithms, several techniques
have been proposed, such as reducing the complexity of the nearest neighbor search [162],
dynamically controlling sampling domains [84], or reducing the dispersion of the samples [109].
Instead of optimizing the different components of these algorithms, a more global approach
can be adopted by building on parallel computing.

In this chapter, we address the issue of improving the performance of RRT-like algorithms
by exploiting the speedup inherent to parallel computation. Some results have been obtained
in that direction (cf. Section 2.4). However, existing work considers mainly shared-memory
architectures and small-scale parallelism, up to 16 processors. In this work, we are interested
in what can be achieved by larger-scale parallelism. We focus on parallelizing RRT-like
algorithms on large-scale distributed-memory architectures, which requires using the classical
Message Passing Interface (MPI).

This work on parallelization can be beneficial to feasible, cost-space and optimal path
planning. Nevertheless, the examples we present in this chapter focus on feasible and cost-
space path planning. For sake of clarity, we start by proposing parallel versions of the basic
mono-directional variant of RRT. Then, we perform experimental evaluations involving both
the RRT and T-RRT algorithms. Finally, we discuss how the novel RRT-like algorithms
introduced in other chapters, such as the (anytime) multiple-tree variant of T-RRT, can be
parallelized (cf. Section 5.4).

In what follows, we compare three parallel versions of RRT that are based on well-known
parallelization schemes: OR parallel RRT, Distributed RRT and Manager-worker RRT. In
addition to the algorithms themselves, we present the main technicalities involved in their
development (Section 5.1). Our contribution focuses on evaluating these algorithms on several
path planning problems and showing their differences in behavior (Section 5.2). We also
analyze their performance in order to understand the impact of several characteristics of the
studied problems (Section 5.3). Our evaluations show that parallelizing RRT-like algorithms
with MPI can provide substantial performance improvement in two cases: 1) problems for
which the variability in sequential runtime is high can benefit from the OR parallel RRT;
2) problems for which the computational cost of an RRT expansion is high can benefit from the
Distributed RRT and Manager-worker RRT. Virtually any problem in structural biology and
many problems in robotics are characterized by computationally-expensive RRT expansions
and can thus benefit from these parallel algorithms.

63
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Algorithm 16: OR parallel RRT

input : the feasible path planning problem (C, qinit, qgoal)
output: the tree T

1 T ← initTree(qinit)
2 while not ( stoppingCriteria(T ) or received(endMsg) ) do
3 qrand ← sampleRandomConfiguration(C)
4 qnear ← findNearestNeighbor(T , qrand)
5 qnew ← extend(qnear , qrand)
6 if qnew 6= null then
7 addNewNode(T , qnew)
8 addNewEdge(T , qnear , qnew)

9 if stoppingCriteria(T ) then
10 broadcast(endMsg)
11 return T

5.1 Parallelization of RRT

Many algorithms based on RRT or similar to RRT can be parallelized using the schemes we
propose here or slight adaptations of them. For clarity’s sake, we present these schemes as
parallel versions of the mono-directional RRT in its Extend version. Note that some of the
variants of RRT used in this thesis, such as ML-RRT or T-RRT, can be parallelized using the
proposed schemes as such.

For scalability purposes, we parallelize RRT on distributed-memory architectures, using
the message passing paradigm [85], one of the most widespread approaches in parallel program-
ming. Since this paradigm imposes no requirement on the underlying hardware and requires
to explicitly parallelize algorithms, it enables a wide portability: any algorithm developed
following this approach can also run on shared memory. Besides, scalable distributed-memory
architectures are rather commonly available, in the form of networks of personal computers,
clustered workstations or grid computers. To develop our parallel algorithms, we have chosen
to comply with the standard and widely-used Message Passing Interface1 (MPI). Its logical
view of the hardware architecture consists of p processes, each with its own exclusive ad-
dress space. Our message-passing programs are based on the Single Program Multiple Data
(SPMD) paradigm [137] and follow a loosely synchronous approach: all processes execute the
same code, containing mainly asynchronous tasks, but also a few tasks that synchronize to
perform interactions.

5.1.1 OR Parallel RRT

The simplest way to parallelize RRT is to apply the OR parallel paradigm. Algorithm 16
shows the OR parallel RRT, as defined in [25]. Each process performs its own RRT (lines
1-8), and the first one to reach a stopping criterion broadcasts a termination message and re-
turns its solution tree (lines 9-11). This broadcast operation cannot actually be implemented
as a regular MPI Broadcast routine, as this collective operation would require all processes to
synchronize. Rather, the first process to finish sends a termination message to all the others,
using MPI Send routines matched with MPI Receive routines. As it is not known beforehand
when these interactions should happen, a non-blocking receiving operation that will “catch”
the termination message is initiated before entering the while loop. The received(endMsg)
operation is implemented as an MPI Test routine checking the status (completed or pending)

1http://www.mpi-forum.org
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Algorithm 17: Distributed RRT

input : the feasible path planning problem (C, qinit, qgoal)
output: the tree T

1 T ← initTree(qinit)
2 while not ( stoppingCriteria(T ) or received(endMsg) ) do
3 while received(nodeData(qnew , qnear)) do
4 addNewNode(T , qnew)
5 addNewEdge(T , qnear , qnew)

6 qrand ← sampleRandomConfiguration(C)
7 qnear ← findNearestNeighbor(T , qrand)
8 qnew ← extend(qnear , qrand)
9 if qnew 6= null then

10 addNewNode(T , qnew)
11 addNewEdge(T , qnear , qnew)
12 broadcast(nodeData(qnew , qnear))

13 if stoppingCriteria(T ) then
14 broadcast(endMsg)
15 return T

of the request generated by the non-blocking receiving operation. Finally, in case of several
processes reaching a solution at the same time, the program ends with a collective opera-
tion for them to synchronize and agree on which one should report its solution. Note that
communications are negligible in the total runtime.

5.1.2 Collaborative Building of a Single RRT

Instead of constructing several RRTs concurrently, another possibility is to have all processes
collaborating to build a single RRT. Parallelization is then achieved by partitioning the build-
ing task into sub-tasks assigned to the processes. We propose two ways of doing so, based
on classical decomposition techniques. 1) Since constructing an RRT consists of exploring a
search space, we can use an exploratory decomposition [72]. Each process performs its own
sampling of the space (but without any space partitioning involved) and maintains its own
copy of the tree, exchanging new nodes with other processes. This leads to a distributed (or
decentralized) scheme where no task scheduling is required, aside from a termination detection
mechanism. 2) Another classical approach is to perform a functional decomposition of the task
[64]. In the RRT algorithm, two kinds of sub-tasks can be distinguished: the ones that require
to access the tree (initializing it, adding new nodes and edges, finding the nearest neighbor of
qrand, and evaluating the stopping criteria) and those that do not (sampling a random config-
uration and performing the extension step). This leads to the choice of a manager-worker (or
master-slave) scheme as the dynamic and centralized task-scheduling strategy: the manager
maintains the tree, and the workers perform the actions requiring no access to it.

Distributed RRT

The Distributed RRT is presented in Algorithm 17. In each iteration of the tree construc-
tion loop (lines 2-12), each process first checks whether it has received new nodes from other
processes (line 3) and, if so, adds them to its local copy of the tree (lines 4-5). Then, each
process performs an expansion attempt (lines 6-8). If it succeeds (line 9), the process adds
the new node to its local tree (lines 10-11) and broadcasts the node (line 12). Adding all
the received nodes before attempting an expansion ensures that every process works with the
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Algorithm 18: Manager-worker RRT

input : the feasible path planning problem (C, qinit, qgoal)
output: the tree T

1 if processID = mgr then
2 T ← initTree(qinit)
3 while not stoppingCriteria(T ) do
4 while received(nodeData(qnew , qnear)) do
5 addNewNode(T , qnew)
6 addNewEdge(T , qnear , qnew)

7 qrand ← sampleRandomConfiguration(C)
8 qnear ← findNearestNeighbor(T , qrand)
9 w ← chooseWorker()

10 send(expansionData(qrand , qnear), w)

11 broadcast(endMsg)
12 return T
13 else
14 while not received(endMsg) do
15 receive(expansionData(qrand , qnear), mgr)
16 qnew ← extend(qnear , qrand)
17 if qnew 6= null then
18 send(nodeData(qnew , qnear), mgr)

most up-to-date state of the tree. Note that processes never wait for messages; they simply
process them as they arrive. At the end, the first process to reach a stopping criterion broad-
casts a termination message and returns its tree (lines 13-15). This broadcast operation is
implemented in the same way as for the OR parallel RRT. In a similar manner, the broad-
cast of new nodes (line 12) is not implemented as a regular MPI Broadcast routine, which
would cause all processes to wait for each other. As a classical way to overlap computation
with interactions, we again use MPI Send routines matched with non-blocking MPI Receive
routines. That way, the received(nodeData) test (line 3) is performed by checking the sta-
tus of the request associated with a non-blocking receiving operation initiated beforehand,
the first one being triggered before entering the while loop, and the subsequent ones being
triggered each time a new node is received and processed. Again, we have to deal with the
case of several processes reaching a solution at the same time. Finally, a Universally Unique
Identifier (UUID) is associated with each node to provide processes with a homogeneous way
of referring to the nodes. UUIDs are classically used in distributed environments, but, as an
alternative, we could have used the pair (processID, nodeID forThisProcess).

Manager-Worker RRT

The Manager-worker RRT is introduced in Algorithm 18. It contains both the code executed
by the manager (lines 2-12) and the code executed by the workers (lines 14-18). The manager
is the only process that can access the tree, and it delegates the expansion attempts to the
workers. The expansion is generally the most computationally-expensive stage in the tree
construction because it involves motion simulation and validation. The manager could also
delegate the sampling step, but this would be worthless because of the low computational
cost of this operation in our settings (i.e. in the standard case of a uniform random sampling
in the whole configuration space): the additional communication cost would outweigh any
potential benefit.
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At each iteration of the construction loop (lines 3-10) the manager first checks whether it
has received new nodes from the workers (line 4). If so, it adds them to the tree (lines 5-6).
Then, it samples a random configuration (line 7) and identifies its closest neighbor in the tree
(line 8). Next, it looks for an idle worker (line 9), which means potentially going through
a waiting phase, and sends the data needed to perform an expansion attempt to the worker
(line 10). Finally, when a stopping criterion is reached, it broadcasts a termination message
(line 11). Workers remain active until they receive this message (line 14), but they can go
through waiting phases. During each computing phase, a worker receives some data from the
manager (line 15) and performs an expansion attempt (line 16). If it succeeds (line 17), it
sends the new node to the manager (line 18).

Contrary to the previous ones, this algorithm does not require non-blocking receiving op-
erations to broadcast the termination message. Workers being idle if they receive no data
from the manager, there is no need to overlap computation and interactions. Before en-
tering a computing phase, a worker waits on a blocking MPI Receive routine implement-
ing both the receive(expansionData) operation and the received(endMsg) test. The
type of received message determines its next action: stopping or attempting an expansion.
On the manager side, blocking MPI Send routines implement the broadcast(endMsg) and
send(expansionData) operations. The remaining question about the latter is: to which
worker should the data be sent. An important task of the manager is to perform load-
balancing among workers through the chooseWorker() function. For that, it keeps track of
the status (busy or idle) of all workers and sends one sub-task at a time to an idle worker,
choosing it in a round robin fashion. If all workers are busy, the manager waits until it
receives a message from one of them, that then becomes idle. This has two consequences.
First, on the worker side, the send(nodeData) operation covers two MPI Send routines: one
invoked to send new nodes when the expansion attempt succeeds, and the other containing
no data, used otherwise. Second, on the manager side, two matching receiving operations
are implemented via non-blocking MPI Receive routines, allowing to use MPI Wait routines
if necessary. This also enables to implement the received(nodeData) test with an MPI Test
routine. These non-blocking receiving operations are initiated before entering the while loop,
and re-initiated each time the manager receives and processes a message. Finally, to reduce
the communication costs of the send(nodeData) operation, workers do not send back the
configuration qnear. Rather, the manager keeps track of the data it sends to workers, thus
avoiding the need for UUIDs.

5.1.3 Implementation Framework

Since the sequential implementation of RRT we wanted to parallelize was written in C++,
and MPI being targeted at C and Fortran, we had to use a C++ binding of MPI. We were
also confronted with the low-level way in which MPI deals with communications, requiring
the programmer to explicitly specify the size of each message. In our application, messages
were to contain instances of high-level classes, whose attributes could be pointers or STL con-
tainers. Thus, we decided to exploit the higher-level abstraction provided by the Boost.MPI
library2. Coupled with the Boost.Serialization library3, it enables processes to easily exchange
class instances, making the tasks of gathering, packing and unpacking the underlying data
transparent to the programmer. We also used the implementation of UUIDs4 provided by the
Boost library.

2http://www.boost.org/doc/libs/1 47 0/doc/html/mpi.html
3http://www.boost.org/doc/libs/1 47 0/libs/serialization/doc/index.html
4http://www.boost.org/doc/libs/1 47 0/libs/uuid/index.html
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5.2 Experiments with RRT and T-RRT

Before presenting the results of the experiments, we introduce the metrics used to evaluate the
parallel algorithms. We also present the parallel platform we have worked on, and the motion
planning problems we have studied. We then explain the two experiments we have performed,
and report general results. A detailed analysis of the performance of the algorithms will be
the focus of Section 5.3.

5.2.1 Path Planning Problems and Evaluation Settings

Aimed at assessing the performance gain achieved by a parallel algorithm run on p processors,
the speedup S is defined as the ratio of the sequential runtime to the parallel runtime: S(p) =
TS / TP(p) [64, 72]. The parallel runtime TP(p) is measured on a parallel computer, using p
processors, and the sequential runtime TS is measured on a single processor of this computer.
We define TP(p) (resp. TS) as the mean time needed to reach a solution, by averaging the
runtimes obtained over 100 executions of a parallel (resp. sequential) algorithm. Another
common metric we use is the efficiency E of a parallel algorithm, which is defined as the ratio
of the speedup to the number of processors: E(p) = S(p) / p [64, 72].

The numerical results presented in this paper have been obtained by running the algo-
rithms on MareNostrum, the parallel platform of the Barcelona Supercomputing Center. It
is an IBM cluster platform composed of 2560 IBM BladeCenter JS21 blade servers connected
by a Myrinet local area network warranting 2 Gbit/s of bandwidth. Each server includes
two 64-bit dual-core PowerPC 970MP processors at 2.3 GHz, sharing 8 GB of memory. The
implementation of MPI installed on this platform is MPICH25.

We have evaluated the parallel algorithms on three path planning problems involving
molecular models, using the molecular motion planning toolkit we are currently develop-
ing [39]. The three problems involve free-flying objects (i.e. 6 DoFs)6. They are characterized
by different configuration-space topologies (cf. Fig. 5.1). Passage is a protein-ligand exit prob-
lem: a ligand exits the active site of a protein through a relatively short and large pathway
locally constrained by several side-chains. Corridor is a similar problem, but with a longer
and narrower exit pathway, i.e. more geometrically constrained than Passage. In Roundabout,
a protein goes around another one in an empty space, thus involving the weakest geometri-
cal constraints, but the longest distance to cover. For more details on these examples the
interested reader is referred to [39].

5.2.2 First Experiment - High Expansion Cost

Our first experiment aims at assessing the speedup achieved by the parallel variants of an
RRT-like algorithm. More precisely, this experiment involves parallel versions of T-RRT in
its Extend version. In this context, the expansion cost is dominated by the energy evaluation of
molecular motions, which is much more costly than the simple collision detection performed
by RRT. This exemplifies the case where the computational cost of the RRT expansion is
significantly greater than communication cost. This is a favorable situation for an MPI-
based parallelization (as illustrated by the results of the second experiment) because the
communication overhead is outweighed by the sharing of high-cost workload-units between
processes [64]. Such a situation happens when planning motions of complex systems, whether
molecules or robots (as discussed in Section 5.2.4).

5http://www.mpich.org
6Having a common dimensionality across examples facilitates the evaluation of the algorithms. Increasing

dimensionality would mainly raise the computational cost of the nearest neighbor search. Note that, however,
this cost becomes almost dimension-independent when using projections on a lower-dimensional space, without
a significant loss in accuracy [136].
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Problem name  Passage  Corridor  Roundabout 

Problem type       
TS  (s) 48 ± 18 1250 ± 1000 38 ± 18 

NS 644 ± 119 1030 ± 695 655 ± 336 Sequen
tial T-RRT XS 1810 ± 690 45400 ± 40900 1130 ± 456 

Figure 5.1: Schematic representation of the configuration spaces of the three path-planning
problems, and results obtained with the sequential T-RRT (that involves molecular energy
computation). Average values over 100 runs (and standard deviation) are given for the se-
quential runtime, TS (in seconds), the number of nodes in the tree, NS, and the number of
expansion attempts, XS.

Fig. 5.1 presents the numerical results obtained with the sequential version of T-RRT.
Fig. 5.2 shows the speedup achieved by the parallel algorithms on each problem. The OR
parallel T-RRT always shows a poor speedup, but the speedup achieved by the Distributed
T-RRT and the Manager-worker T-RRT can be really high. Differences between problems
are significant, the best speedup being achieved on the most constrained problem, Corridor,
then Passage, then Roundabout. These results are further explained in the analysis presented
in Section 5.3.

5.2.3 Second Experiment - Variable Expansion Cost

In our second experiment, we study how the speedup achieved by the parallel algorithms
evolves in relation to the computational cost of an RRT expansion. In parallel programming,
speedup generally improves as the computational cost of a process workload-unit increases
with respect to the communication overhead [64]. To test that, we run a controlled experiment
in which we artificially increase the cost of the RRT expansion. For that, we use RRT in its
Extend version, where motion validation is reduced to collision detection (meaning that no
energy evaluation is involved), thus performing low-cost expansions. To increase the expansion
cost c, we repeat t times the collision detection test in the extend() function. Note that we
estimate c by dividing the sequential runtime by the number of expansion attempts. Finally,
c is varied by varying t.

Fig. 5.3 shows how the speedup and efficiency achieved by the parallel algorithms vary
with respect to the expansion cost c, when run on 32 processors. As the number of processors
is fixed, efficiency is proportional to speedup. The speedup of the OR parallel RRT does
not change with c. In other words, it is not influenced by the ratio between computation
and communication costs. On the other hand, this ratio strongly impacts the speedup of the
Distributed and Manager-worker RRT. They both achieve a very low speedup when c is low:
the first point of each curve, obtained with t = 1, shows that in this case the parallel version
is even slower than the sequential one (i.e. S < 1). When c increases, both algorithms show a
similar and important increase in speedup. The magnitude of this increase is strongly influ-
enced by the studied problem: it is the greatest on the most constrained problem, Corridor
(for which almost optimal efficiency is achieved), then Passage, then Roundabout. When c is
high, making communication load insignificant compared to computation load, the speedup
reaches a plateau.
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Figure 5.2: Speedup (averaged over 100 runs) achieved by the parallel algorithms in relation
to the number of processors, on the Passage, Corridor and Roundabout problems (first ex-
periment). Both the observed speedup and the speedup estimated by the models presented
in Section 5.3 are reported.
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Figure 5.3: Speedup (left axis) and efficiency (right axis), averaged over 100 runs, achieved
by the parallel algorithms, in relation to the computational cost of the RRT expansion (in
milliseconds), when solving the Passage, Corridor and Roundabout problems on 32 processors
(second experiment). As a reference, the dashed vertical line shows the cost of the T-RRT
expansion (as estimated in the first experiment).
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5.2.4 Robotic Examples

Our results show that the Distributed and Manager-worker RRT are beneficial on problems
for which the computational cost of an RRT expansion c is significantly greater than the cost
of a communication. The communication cost being about 1 ms on MareNostrum, we obtain
a good speedup when c is greater than 25 ms (cf. Fig. 5.3). This means that most academic
path-planning benchmarks cannot benefit from an MPI-based parallelization of RRT-like al-
gorithms. Indeed, these examples often reduce motion validation to collision detection in
geometrically-simple scenes, leading to a fast RRT expansion. However, in the context of
robot path planning, high-cost expansions may occur in various situations. The first one is
the case of high geometric complexity, when objects of the world are represented by large
numbers of polyhedral faces. For example, c is about 27 ms on the flange benchmark [139],
and about 28 ms on the exhaust disassembly problem [41], despite efficient collision detection.
High-cost expansions may also occur on problems under kinodynamic constraints requiring
to use a dynamic simulator [40]. Another case is when planning on constraint manifolds em-
bedded in higher-dimensional ambient spaces [13], especially with complex systems such as
closed-chain mechanisms. For example, c is about 120 ms on a problem where the Justin robot
transports a tray in a cluttered environment [70]. An even more complex case is task-based
path planning involving humanoid robots with dynamic constraints [22,42]. For example, c is
greater than 1 s on a problem where two HRP-2 robots collaboratively transport a table [22].
Due to their high expansion costs, all these examples would benefit from a similar or even
higher speedup than those we have studied. This illustrates that a large class of practical
problems involving complex environments and complex robot systems can benefit from an
MPI-based parallelization of RRT-like algorithms.

5.3 Analysis of the Parallel Algorithms

The experiments we have presented in the previous section provide the first clues on the dif-
ferences in behavior between the parallel versions of RRT. Nevertheless, the resulting speedup
curves are not sufficient to understand performance variations due to the problem type, the
number of processors involved or the computational cost of the RRT expansion. This is what
we analyze now for each parallel algorithm.

5.3.1 OR Parallel RRT

The OR parallel RRT does not rely on sharing the computation load among processes, but
on finding small-sized solutions that are faster to compute. The more processes are involved,
the greater is the chance to find a solution quickly. On average, the number of expansions
attempted by the OR parallel RRT on p processors, XP(p), decreases with p. Similarly, the
number of tree nodes, NP(p), decreases with p (cf. Fig. 5.4). If we express the parallel runtime
as TP(p) = XP(p) · c, where c is the expansion cost, we get that TP(p) decreases with p. If the
sequential runtime is similarly expressed as TS = XS · c, with XS the number of expansions
attempted by the sequential RRT, we have:

S(p) =
XS

XP(p)
(5.1)

Fig. 5.2 illustrates the evolution with respect to p of both the observed speedup (com-
puted using runtimes averaged over 100 runs) and the speedup estimated by (5.1) (computed
using values of XS and XP(p) averaged over 100 runs). The graphs show that the estimated
speedup values fit well the observed data. Important features of the behavior of the OR
parallel RRT are reflected in (5.1). First, S is independent from the expansion cost c because
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Figure 5.4: Number of nodes (averaged over 100 runs) in the trees produced by the parallel
algorithms in relation to the number of processors, on the Passage, Corridor and Roundabout
problems (first experiment). The dashed horizontal line shows the number of nodes in the
trees generated by the sequential T-RRT.



74 Chapter 5. Parallel Path Planning on Distributed-Memory Architectures

Table 5.1: Summary of the numerical results obtained with the sequential and parallel algo-
rithms on the MareNostrum platform.

Passage Corridor Roundabout

sequential runtime variability 0.4 0.8 0.5

OR parallel RRT Smax 2 8 2.7

Distributed RRT
p̄ 36 > 160 25

Smax 8.3 > 50 3.4

Manager-worker RRT
p̄ 22 36 18

Smax 7.8 21.4 3.5

X is independent from it. This confirms what we could deduce from the fact that the effi-
ciency curves of the OR parallel RRT are almost flat (cf. Fig. 5.3). Second, the only factor
influencing the evolution of S(p) is XP(p), which decreases with p and is lower-bounded by
the minimum number of expansion attempts required to reach a solution. This explains why
S(p) increases with p toward an asymptotic value Smax (equal to 2, 8 and 2.7 on Passage,
Corridor and Roundabout respectively, as shown by Fig. 5.2). If we define the variability
in sequential runtime by the ratio of the standard deviation to the mean of the runtime TS

reported in Fig. 5.1, we get the values 0.4, 0.8 and 0.5 for Passage, Corridor and Roundabout
respectively. Table 5.1 shows that Smax is strongly positively correlated with this sequential
runtime variability.

5.3.2 Distributed RRT

In the Distributed RRT, the computation load is shared among processes. It can again be
expressed as XP(p) · c, where XP(p) decreases with p thanks to work sharing. A significant
communication load is added to the global workload, but communications happen only after
a new node is built. If we assume the tree construction is equally shared among processes,
from the NP(p) tree nodes, each process will have contributed NP(p) / p. Furthermore, each
process sends this amount of nodes to, and receives this amount of nodes from, each of the p−1
other processes. The total communication load between all processes can thus be estimated
by 2 (p− 1) · (NP(p) / p) ·m, where m is the cost of sending one node between two processes.

Therefore, we have: TP(p) = XP(p) · c+ 2 (p−1)
p ·NP(p) ·m. This highlights the fact that the

workload repartition between computation and communication mainly depends on the ratio
c
m . Finally, we get:

S(p) =
XS · c

XP(p) · c+ 2 (p−1)
p ·NP(p) ·m

(5.2)

Fig. 5.2 illustrates the evolution with respect to p of both the observed speedup and the
speedup estimated by (5.2) (and computed using numbers of nodes and expansion attempts
averaged over 100 runs). Knowing that TP(2) = XP(2) · c + NP(2) ·m, we can estimate m by
running the Distributed RRT on two processors. The graphs show that the estimated speedup
provides a good fit to the observed speedup. The main factor allowing S(p) to increase with
p is work sharing, i.e. the decrease of XP(p). Another beneficial factor is what we call the
“OR parallel effect”: as each process performs its own sampling of the search space, when
few processes are involved, the Distributed RRT reaches smaller solutions than the sequential
RRT. Fig. 5.4 shows that this happens mainly on problems whose sequential runtime vari-
ability is high, such as Corridor : in the middle graph, the curve representing NP(p) for the
Distributed RRT is below the horizontal line representing NS when p is low. On the other
hand, an important factor hampers the increase in speedup. When collaboratively building
an RRT, a side-effect of adding more processes is to change the balance between exploration
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and refinement (these terms being used as in [84]) in favor of refinement. Therefore, more ex-
pansions are attempted globally (i.e. p ·XP(p) increases with p) and larger trees are produced
(i.e. NP(p) increases with p, as shown by Fig. 5.4). As a result, the overall computation load
increases with p.

The denominator of (5.2) represents the workload of a single process. Even though the
global computation load for all processes increases with p, the computation load for one
process, XP(p) · c, decreases with p. However, the communication load for one process,
2 (p−1)

p · NP(p) · m, increases with p because NP(p) increases with p and 2 (p−1)
p increases

with p within [1, 2). The decrease in computation load seems to dominate, since Fig. 5.2
mainly shows an increase in speedup for the Distributed RRT. However, it appears from the
least constrained problem, Roundabout, that when p becomes too high the speedup decreases
slightly. The optimal observed speedup Smax is 8.3 and 3.4 for Passage and Roundabout,
and seems to be greater than 50 for Corridor (cf. Fig. 5.2). It is achieved for an optimal
value of p, denoted by p̄, equal to 36 and 25 for Passage and Roundabout, and greater than
160 for Corridor (cf. Fig. 5.2). Table 5.1 shows that p̄ and Smax are strongly positively
correlated: the more processes can collaborate without increasing refinement too much, the
higher Smax is. The increase in refinement is observed through the increase in number of
nodes (cf. Fig. 5.4). It appears that problems characterized by weak geometrical constraints,
such as Roundabout, are more sensitive to this issue, leading to poor speedup. For problems
characterized by strong geometrical constraints, such as Corridor, the speedup scales better
with respect to the expansion cost c (cf. Fig. 5.3).

5.3.3 Manager-Worker RRT

In the Manager-worker RRT, each expansion attempt is preceded by a communication from
the manager to a worker, and each successful expansion is followed by a communication
from a worker to the manager. Being empty, the message sent after a failed expansion can
be ignored. In the trivial case of the manager using a single worker, communication and
computation cannot overlap, and thus TP(2) = XP(2) · c + (XP(2) + NP(2)) · m, where m
is the cost of sending a message. We estimate m by running tests on two processors and
using this formula. If more workers are available, two cases should be considered. First, if
communication is more costly than computation (i.e. m > c) the manager can use at most two
workers at a time: while it sends some data to a worker, the other worker has already finished
its computation. In that case, we have TP(p) = (XP(p)+NP(p)) ·m > TS, and parallelization
is useless. Second, if c > m, more than two workers can be used, but the manager is still a
potential bottleneck depending on the ratio c

m : the less significant the communication cost
is compared to the expansion cost, the more workers can be used. For given values of c and
m, at most p̄ processors can be used, and thus, the number of workers effectively used is
min(p− 1, p̄− 1). Assuming the computation load is equally shared among workers, we have:

S(p) =
XS · c

XP(p)
min(p−1, p̄−1) · c + (XP(p) +NP(p)) ·m

(5.3)

The speedup estimated by (5.3) shows a good fit to the observed speedup of the Manager-
worker RRT (cf. Fig. 5.2). Equation (5.3) explains how the speedup evolves with respect to p
and c. When p ≤ p̄, S(p) increases with p thanks to work sharing among workers. However,
when p > p̄, increasing p becomes useless. Therefore, S(p) reaches a plateau around a value
Smax equal to 7.8, 21.4 and 3.5 for Passage, Corridor and Roundabout (cf. Fig. 5.2). In fact,
p̄ is the value of p for which S(p) reaches Smax: it is equal to 22, 36 and 18 for Passage,
Corridor and Roundabout respectively (cf. Fig. 5.2). Obviously, Smax is strongly positively
correlated with p̄ (cf. Table 5.1). Moreover, the second experiment shows that p̄ increases with
c. This explains why we observe on Fig. 5.3 that S increases with c at first, and then reaches
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Table 5.2: Summary of the numerical results obtained with the parallel algorithms on the
Cacao platform.

Passage Corridor Roundabout

OR parallel RRT Smax 2 8 2.4

Distributed RRT
p̄ 22 > 160 28

Smax 6.3 > 65 2.7

Manager-worker RRT
p̄ 25 31 23

Smax 8.8 23.5 3.2

a plateau: when p̄ reaches 32 (the number of processors used in the second experiment), S
cannot increase anymore. Contrary to the Distributed RRT, the Manager-worker RRT does
not benefit from the “OR parallel effect”: in Fig. 5.4, the curve of NP(p) is never below
the horizontal line representing NS. As a consequence, the Manager-worker RRT shows a
lower speedup than the Distributed RRT on problems with a high variability in sequential
runtime, such as Corridor (cf. Fig. 5.2). Besides, it suffers from the increase in refinement,
which translates into XP(p) and NP(p) increasing with p, when p ≤ p̄ (cf. Fig. 5.4). Path-
planning problems characterized by weak geometrical constraints, such as Roundabout, are
more sensitive to this issue.

5.3.4 Discussion

To evaluate the influence of the architecture, we have performed the two previous experiments
on another parallel platform, Cacao, available in our laboratory. Cacao is a small cluster
composed of 24 HP ProLiant DL160 G5 servers connected by a high-speed InfiniBand switch
warranting 10 Gbit/s of bandwidth, and using OpenMPI7. Each server includes two 64-bit
quad-core Intel Xeon E5430 processors at 2.66 GHz, with 12 MB of L2 cache, and sharing
7.79 GB of memory. We aimed to assess 1) the consistency of performance of the parallel
algorithms and 2) the goodness-of-fit of the models provided by (5.1), (5.2) and (5.3). First, we
observe that the models are robust and provide good estimations of the speedup achieved on
Cacao. Second, the numerical results obtained on Cacao and reported in Table 5.2 are similar
to those obtained on MareNostrum (cf. Table 5.1). The speedup of the OR parallel RRT is
the same on both architectures because no communication is involved. The Distributed RRT
is more impacted than the Manager-worker RRT by the choice of the architecture because
its “n to n” communication scheme makes it more sensitive to the level of optimization of
the MPI communications. As a result, when communications are less efficient (as observed
on Cacao) the Distributed RRT can be outperformed by the Manager-worker RRT on less
constrained problems (such as Passage and Roundabout) characterized by a low variability in
sequential runtime.

One may wonder whether the Manager-worker RRT could be improved by assigning work-
ers batches of multiple expansion attempts instead of single ones. Even though it reduces
communications, after evaluation this idea appears to yield mixed results. The drawback
of this variant is to further worsen the main hindrance affecting the Manager-worker RRT,
namely the increase in refinement with respect to p. If k is the size of a batch of expansion
attempts, we observe that XP and NP increase with k. On problems for which the success
rate of an RRT expansion is high (N/X = 1/3 for Passage and 1/2 for Roundabout), using
this modification reduces speedup, even with low values of k. Nevertheless, speedup increases
slightly on the Corridor problem, where this success rate is much lower (N/X = 1/50), except
when k becomes too high.

7http://www.open-mpi.org
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5.4 Application to Other RRT-like Algorithms

As already mentioned, some extensions of RRT can be parallelized using the exact same
schemes as those presented in Algorithms 16, 17 and 18. This is what we have done for the Ex-
tend version of T-RRT in Section 5.2, and it could have been done for other mono-directional
versions of T-RRT, such as the Connect or Goal-biased versions (cf. Section 3.1). We could
also develop a straightforward parallelization of the Anytime T-RRT (cf. Section 4.1). In
the Distributed case, this would require processes to exchange information about the added
edges. In the Manager-worker case, the manager would have to perform the cycle-addition
procedure, which would increase its workload.

Sampling-based tree planners similar to RRT, such as RRT* [93] or EST [75], can also
benefit from this work. For example, EST can be parallelized exactly in the same way as RRT
because its propagate function is the exact counterpart of the extend function of RRT. On
the other hand, parallelizing RRT* would be much more involved, except for the OR parallel
version. Besides new vertices, messages exchanged between processes should include added
and removed edges, thus increasing the communication load. This could be balanced in the
Distributed version by the higher cost of the expansion in RRT* than in RRT. However, as one
RRT* expansion intertwines operations requiring or not access to the tree, a Manager-worker
version of RRT* would not be very efficient. Furthermore, the Transition-based RRT* (cf.
Section 4.1) would suffer from the same issues.

Path planning algorithms building several trees can also benefit from this work. For
example, in the bidirectional-RRT variant where both trees are extended toward the same
random configuration [106], processes can be separated in two groups applying our parallel
algorithms, and getting random configurations from an extra process. More generally, any
multiple-tree variant of EST, RRT or T-RRT (cf. Sections 3.2 and 3.3) could be parallelized
similarly to what is proposed in [134], where the focus is on distributing the operations that
allow connecting trees. It would be interesting to combine the underlying principles of our
work and the work in [134]. This would provide two complementary “layers” of parallelization:
the distribution of the construction of a single tree, and the distribution of connection attempts
between trees. Seen from this perspective, the work in [134] is an extension of the OR parallel
RRT because each tree is built by a single process. In addition, it would be interesting to
analyze similar extensions of the Distributed and Manager-worker RRT.

5.5 Conclusion

In this chapter, we have presented and analyzed three parallel versions of RRT-like algorithms,
designed for distributed-memory architectures, and using MPI: OR parallel RRT, Distributed
RRT and Manager-worker RRT. The OR parallel RRT was first introduced in [25] and re-
used on shared memory in [2]. The Distributed RRT and Manager-worker RRT are the
counterparts for distributed memory of the AND (or embarrassingly parallel) RRT used on
shared memory [2, 25]. We have shown that parallelizing RRT-like algorithms with MPI can
provide substantial performance improvement in two cases. First, problems whose variability
in sequential runtime is high can benefit from the OR parallel RRT. Second, problems for
which the computational cost of an RRT expansion is high can benefit from the Distributed
RRT and Manager-worker RRT.

The empirical results and the performance analysis reveal that the best parallelization
scheme depends on the studied problem, the computational cost of an RRT expansion, and
the parallel architecture. The Distributed and Manager-worker RRT provide a good speedup,
except on problems with weak geometrical constraints. In that case, they suffer from an
increase in refinement (vs. exploration) translating into greater overall computation and
communication loads. On problems showing a low variability in sequential runtime, depending
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on the architecture, the Manager-worker RRT can outperform the Distributed RRT. On the
other hand, if the sequential runtime variability is high, the Distributed RRT outperforms the
Manager-worker RRT thanks to its “OR parallel effect”.

Based on these results, and as future work, we plan to improve the three parallelization
schemes presented here. First, note that the Distributed RRT can suffer from memory-
overhead issues because each process maintains its own tree. To address this, we plan to
better exploit the architecture of cluster platforms by combining message passing with multi-
threading and allowing the processes sharing the same memory to build a common tree.
Second, in the Manager-worker RRT, to avoid seeing the manager becoming a bottleneck,
a hierarchical approach involving several managers can be developed. Third, we plan to
investigate approaches combining several of the three paradigms. For example, integrating
the OR parallel RRT into the Manager-worker RRT could allow it to perform better on
problems showing a high variability in sequential runtime. Finally, instead of parallelizing
RRT itself, we could also parallelize its most computationally expensive components, such as
the collision detection, as done in [15].

Another interesting direction for research is to intertwine different levels of parallelization
in our methods. This would be extremely beneficial to the multiple-tree variant of T-RRT that
we use in Chapters 6 and 7. In this context, we could combine three levels of parallelization:
1) distributing the construction of the trees over several groups of processes; 2) sharing the
construction of each tree between several processes; 3) parallelizing the most computationally-
expensive components of the T-RRT expansion. Using such parallel version of the Multi-T-
RRT would allow solving very complex problems in robotics and structural biology.



Chapter 6

Application to Complex Robotic
Problems

In this chapter, we present two applications of the algorithms discussed in this thesis, within
the field of robotics. We show that, by developing sophisticated continuous configuration-cost
functions that are more application-specific than the basic clearance-based cost function used
in academic examples, it is possible to deal with complex realistic problems. Indeed, such cost
functions can take into account the constraints inherent to complex robotic systems, such as
aerial towed-cable systems involving several flying robots. We also show that, by combining
various of the extensions of T-RRT we have introduced in this thesis, it is possible to address
path-planning problems that are more challenging than traditional “init-to-goal” problems,
such as ordering-and-pathfinding problems.

First, we propose an innovative path planning approach for reliable, 6-dimensional, quasi-
static manipulation with an aerial towed-cable system. The novelty of this approach lies in the
use of a cost-space path-planning algorithm together with some results deriving from the static
analysis of cable-driven manipulators. Based on the so-called wrench-feasibility constraints
applied to the cable tensions, as well as thrust constraints applied to the flying robots, we
characterize the set of feasible configurations of the system. Besides, the expression of these
constraints leads to a criterion to evaluate the quality of a configuration. This allows us to
define a cost function over the configuration space, which we exploit to compute high-quality
paths using T-RRT. As part of our approach, we also propose an aerial towed-cable system
that we name FlyCrane. It consists of a platform attached to three flying robots using six
fixed-length cables. We validate the proposed approach on two simulated 6-D quasi-static
manipulation problems involving such a system, and we show the benefits of taking the cost
function into account for such path-planning tasks.

Second, we propose a new variant of T-RRT called Anytime Multi -T-RRT, based on the
combination of two extensions of T-RRT: the Multi-T-RRT (cf. Chapter 3) and the Anytime
T-RRT (cf. Chapter 4). This algorithm is especially useful to solve ordering-and-pathfinding
problems, i.e. to compute a high-quality path going through several waypoints that are not a
priori ordered. Using the Anytime Multi-T-RRT, such problems can be solved from a purely
geometrical perspective, without having to utilize a symbolic task planner. To demonstrate its
capabilities, we apply the Anytime Multi-T-RRT to a concrete industrial inspection problem
involving an aerial robot.

These two kinds of problems are typical of what the ARCAS1 project addresses. One of the
goals of this project is to develop robot systems for the assembly, inspection and maintenance
of industrial installations difficult to access for humans.

1http://www.arcas-project.eu
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Figure 6.1: Octahedral version of the FlyCrane system.

6.1 6-D Manipulation with an Aerial Towed-Cable System

Aerial towed-cable systems have been used for decades, mainly as crane devices. They have
proven to be useful in various contexts, such as supply delivery missions and rescue opera-
tions [14], as well as environmental monitoring and surveillance [159]. One such system has
even been successful as a safe soft-landing device for a rover on the martian surface [147],
for instance. In all these examples, the systems only required a certain accuracy in position,
for example to execute simple trajectories [123, 146]. Little work has been done on trying to
control a load both in position and in orientation. To the best of our knowledge, the only
existing technique for 6-dimensional manipulation with an aerial towed-cable system requires
a discrete set of load poses to be provided [62, 121]. Such a technique relies on solving the
inverse kinematics problem and determining the static equilibrium for all given poses. Re-
quiring a given set of platform poses may be too restrictive, though, especially in constrained
workspaces: it may yield no result, while there may exist solutions for other intermediate
poses.

In this section, we propose a new reliable path planning approach for 6-D quasi-static
manipulation with aerial towed-cable systems. The method only requires a start and goal
configurations as input, and provides a feasible path to achieve the manipulation task. In
addition to being feasible, the generated manipulation path has high quality, meaning that all
intermediate configurations fulfill adequate physical properties related to the forces applied
to the aerial system and to cable tensions. This quality is measured by a formal cost function
derived from the static analysis of the system, based on a formulation similar to that used
for cable-driven manipulators [18, 21]. Then, as it can take this cost function into account,
the T-RRT algorithm is applied to compute high-quality paths, i.e. feasible paths that do
not approach dangerous/uncontrollable configurations of the system. It is worth noting that,
to the best of our knowledge, this is the first time T-RRT is applied to aerial manipulation
problems.

In addition to the methodology, this section presents an aerial towed-cable system that
can perform 6-D manipulation tasks, and that we call the FlyCrane. This system consists of
a moving platform attached to three flying robots by means of six fixed-length cables linked
by pairs to each robot. The 6-D manipulation of the platform is performed by varying the
relative positions of the flying robots. An octahedral version of this system is illustrated in
Figure 6.1.
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Figure 6.2: Geometric structure of a generic FlyCrane system.

6.1.1 Path Planning Approach

Towed-cable systems present important analogies with cable-driven manipulators. This allows
the static analysis of towed-cable systems to be performed in a way similar to what is done
for cable-driven manipulators [18]. However, while cable-driven manipulators have to adjust
the lengths of their cables to reach a precise pose of the platform, towed-cable systems have
fixed-length cables and are actuated by displacing their anchor points. Manipulating the six
degrees of freedom of a load requires a minimum of seven cables, unless convenient forces
reduce this number. In the case of crane systems, for instance, gravity acts as an implicit
cable, and therefore six cables suffice for a full 6-D manipulation. Examples of such systems
are the NIST robocrane [4] or more general cable-driven hexapods [18].

In the aerial towed-cable system we propose, and that we call the FlyCrane, the platform
is also pulled by six cables, which, as illustrated in Fig. 6.2, are attached pairwise to three
flying robots (instead of being individually attached to six flying robots). It is worth noting
that three is the minimal number of flying robots required to properly operate this system, as
less robots would not allow for the manipulation of the six degrees of freedom of the platform.
Whenever the base points of the cables are also coupled (i.e. when B1 = B2, B3 = B4 and
B5 = B6), we call this system the octahedral FlyCrane. Indeed, the resulting structure can
be seen as an octahedron comprising the following eight triangles: the triangle formed by
the base points of the cables, the triangle formed by the flying robots, and the six triangles
corresponding to the pairs of adjacent cables. For a more detailed description of the FlyCrane,
the interested reader is referred to [116].

Note that we assume, in this section, that motions are performed quasi-statically; we
therefore ignore the dynamic analysis of this aerial system. Although it may appear as a
strong simplification, this assumption is frequently made in fine-positioning situations, where
slow motion is imperative. Nevertheless, dealing with dynamical aspects is an interesting
direction of future research.
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Even with six cables, the six degrees of freedom of the platform can be governed only in
a subset of the configuration space of the system. Indeed, the pose of the platform is locally
determined only when all cables are in tension. Therefore, it is important to prevent the
cables from being slack or too tight. Besides, the flying robots must be able to counteract
the forces exerted on them. These two conditions determine the feasibility of a configuration
of the system. More precisely, to be feasible, a configuration must satisfy the following two
types of constraints:

• Wrench-feasibility constraints: they guarantee that the system is able to statically coun-
teract a set of wrenches applied on the platform while ensuring that the cable tensions
always lie within a pre-defined, positive acceptance range; they are derived from the
static analysis of cable-driven manipulators [18,21].

• Thrust constraints: they guarantee that the thrust of the flying robots can equilibrate
the forces applied on them, namely the forces exerted by the cables and the force of
gravity.

For a detailed and formal definition of these feasibility constraints, the interested reader is
referred to [116].

The current aim of the FlyCrane system is the 6-D quasi-static manipulation of a load.
The resolution of such manipulation problem can be seen as a path-planning query with the
addition of the aforementioned feasibility constraints. Note that paths have to be found in the
manifold formed by the configurations satisfying these feasibility constraints. Furthermore, an
infinite number of feasible solution paths may exist for a given manipulation query. However,
the desired manipulation motions should avoid solution paths that may approach the violation
of the feasibility constraints. A way to discriminate the less appropriate paths is to define
a criterion assessing their quality. A high-quality path should be a path whose intermediate
configurations are attributed a low cost with respect to the physical properties of the system.
With this in mind, we define a quality measure of the configurations of the system, given as
a cost function c : C → R+.

A meaningful way to evaluate the cost of a configuration of the system is to derive it from
the previous feasibility constraints. The idea is to define a cost function that tends toward
infinity when a configuration approaches the limit of a feasibility constraint (i.e. when a cable
tension approaches one of its limits, or when a robot approaches its maximum thrust) and
that takes low positive values when a configuration is far from the non-feasible ones. Such cost
function can be written as a combination of terms deriving from the equations that define the
aforementioned feasibility constraints. More precisely, the cost of a configuration is defined
as the sum of the inverses of the following terms:

• for each cable, we compute the differences between the current tension exerted on this
cable and the bounds of its interval of admissible tensions

• for each flying robot, we compute the difference between the current thrust of this robot
and its maximal thrust.

For a detailed and formal definition of this configuration-cost function, the interested reader
is referred to [116].

Any sampling-based path planner, such as RRT, could be applied to compute collision-free
paths satisfying the previous feasibility constraints and performing 6-D manipulation tasks
with the FlyCrane system. However, RRT might produce low-quality paths (as shown in the
next section) because it cannot take the cost function into account. Therefore, we base our
path-planning strategy on using T-RRT.
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Table 6.1: Evaluation of RRT and T-RRT on the Puzzle and Rescue problems. Average values
over 100 runs are given for: the average cost avgC, the maximal cost maxC, the mechanical
work MW , the integral of the cost IC, the running time t (in seconds), the number of nodes N
in the tree, and the number of expansion attempts X.

avgC maxC MW IC t (s) N X

Puzzle
RRT 113 1,170 1,200 3,000 30 2,700 16,000
T-RRT 8 23 19 300 170 4,700 79,000

Rescue
RRT 10 58 55 810 130 1,400 190,000
T-RRT 4 4 1 250 50 400 210,000

6.1.2 Test Cases

We evaluate the proposed approach on two 6-D quasi-static manipulation problems involving
the octahedral FlyCrane system and an equilateral platform. The first example is a complex
task (inspired by classical motion planning benchmarks) in which the FlyCrane has to get a
3-D puzzle piece through a hole, as illustrated by Fig. 6.3. The second example, presented in
Fig. 6.4, simulates a more realistic situation in which the FlyCrane has to install a lightweight
footbridge between two buildings to evacuate people during a rescue operation. These exam-
ples differ in terms of difficulty: the Rescue problem is the easiest one because it requires only
a translation and two rotations about a single axis of the FlyCrane for a solution to be found;
the Puzzle problem requires to simultaneously perform a translation and four rotations about
two axes of the FlyCrane.

On both examples, we evaluate the performance of the RRT and T-RRT algorithms on
the basis of their running time t (in seconds), the number of attempted expansions X, and
the number of nodes N in the produced tree. To avoid generating trivially-non-feasible paths,
RRT only accepts feasible configurations, i.e. collision-free configurations satisfying the afore-
mentioned feasibility constraints. After performing a smoothing operation (based on the
random shortcut method [69]) on the paths generated by RRT and T-RRT, we evaluate path
quality by computing the average cost avgC, the maximal cost maxC, the mechanical work
MW , and the integral of the cost IC (cf. Section 2.3.2). For all variables, we give values
averaged over 100 runs. Results were obtained on an Intel Core i5 processor at 2.6 GHz with
8 GB of memory.

Table 6.1 contains the results of our evaluation of RRT and T-RT on the Puzzle and
Rescue problems. Unsurprisingly, it shows that T-RRT provides higher-quality paths than
RRT on both examples: on the Puzzle problem, all cost statistics are between 10 and 100
times lower for paths generated by T-RRT; on the Rescue problem, they are between 3 and 50
times lower. Since it generally requires more expansion attempts to find configurations with
acceptable cost, T-RRT is often slower than RRT. This is what happens on the Puzzle problem
were RRT runs faster than T-RRT (30 s vs 170 s) mainly because it performs less expansions
(16,000 vs 79,000). On the contrary, it is worth noting that T-RRT runs faster than RRT
on the Rescue problem (50 s vs 130 s). This is a consequence of the beneficial filtering and
biasing effects of the transition test of T-RRT. Indeed, we observe that, even though T-RRT
and RRT perform a similar number of expansions (210,000 vs 190,000), T-RRT produces less
nodes than RRT (400 vs 1,400).

It is interesting to analyze what makes path quality differ when planning paths with RRT
or T-RRT. For that, we compute the tensions exerted on each cable and the forces exerted
on each quadrotor, along the paths produced by RRT and T-RRT, after dividing every path
into 100 steps corresponding to intermediate configurations of the system. Then, for each
path-step, we compute the minimal and maximal tensions (over all cables) and forces (over
all quadrotors) over the 100 paths produced by RRT and over the 100 paths produced by T-
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Figure 6.3: The Puzzle problem: the FlyCrane has to get a 3-D puzzle piece through a hole.
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Figure 6.4: The Rescue problem: the FlyCrane has to install a lightweight footbridge between
two buildings for a rescue operation.
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Figure 6.5: Profiles of a) the tension range and b) the force range, observed over 100 paths
produced by RRT and T-RRT on the Rescue problem. The filled areas between the red curves
represent the ranges for T-RRT; the areas between the green curves represent the ranges for
RRT. Plots obtained on the Puzzle problem are similar.

RRT. Therefore, for each path-step, we obtain the tension ranges and the force ranges yielded
by RRT and T-RRT respectively. Fig. 6.5 presents the profiles of the tension range and of
the force range, respectively, on the Rescue problem. Similar plots have been obtained on the
Puzzle problem. We can see that using T-RRT leads to smaller tension and force ranges than
using RRT. More importantly, we observe that RRT produces paths along which a tension or
a force can be dangerously close to a bound of its validity interval. For example, Fig. 6.5.a
shows that, along some path, at least one tension comes close to zero, meaning that at least
one cable almost goes slack. Similarly, on the Puzzle problem, one force comes close to the
maximal thrust value (not shown here). Therefore, we argue that using a cost-space path
planner, such as T-RRT, allows planning safer paths for the FlyCrane system than using a
simple path planner, such as RRT.

6.1.3 Conclusion

We have presented an approach for the 6-D quasi-static manipulation of a load with an
aerial towed-cable system. The main contribution of the approach lies in the combination
of results deriving from the static analysis of cable-driven manipulators with the application
of a cost-space path-planning algorithm to solve manipulation queries. The link underlying
this combination is the definition of a quality measure for the configurations of the system.
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First, this quality measure is based on wrench-feasibility constraints similar to those applied to
cable-driven manipulators, and on additional thrust constraints. It allows us to 1) discriminate
non-feasible from feasible configurations, and 2) favor configurations that are far from violating
these constraints, by attributing them a low cost. Second, this quality measure leads to the
definition of a configuration-cost function, thus allowing for the use of a cost-space path
planner, such as T-RRT. As a result, rather than simply computing collision-free paths, the
proposed approach produces high-quality paths, with respect to the constraints imposed on
the system.

As part of our approach, we have additionally proposed an aerial towed-cable system that
we have named the FlyCrane. This system consists of a platform attached to three flying
robots by means of three pairs of fixed-length cables. We have evaluated the approach, in
simulation, on two 6-D manipulation problems involving an octahedral version of the FlyCrane
system. Results show that the proposed path planning approach is suitable to solve 6-D
quasi-static manipulation tasks. They have also confirmed that RRT may produce paths that
occasionally approach dangerous situations, while T-RRT produces safer paths. Furthermore,
we have observed that, because of the complexity of the constraints involved, T-RRT can find
a solution path faster than RRT on some problems, which is usually not the case with simpler
systems incorporating simpler cost functions. To summarize, this work clearly illustrates the
interest of cost-space path planning over feasible path planning when dealing with complex
robotic systems.

The proposed approach allows for extensions in several ways. In particular, we expect
to extend the method to consider positioning errors for the flying robots, which could be
due to external force perturbations and to errors in the localization methods. Additionally,
an interesting and challenging extension to this work is the introduction of dynamics in the
motion of the load and of the flying robots, as they play an important role in the overall
manipulation of the system.

In this section, we have applied the proposed approach in simulated environments. As
part of our future work, we plan to implement it in a real aerial towed-cable system. This
will serve as a testbed to validate the method and its further extensions, providing relevant
feedback on the real limitations of the approach and of the system. In real-life situations,
this approach could be helpful in various contexts. As illustrated by the simulated Rescue
problem, one possible application is the construction of platforms for the evacuation of people
in rescue operations. Another application could be the installation of platforms in uneven
terrains for the landing of manned or unmanned aircrafts. More generally, it could be useful
for the assembly of structures in places difficult to access for humans.

Finally, an interesting prospect is to combine the work presented in this section (which
focuses on the definition of an application-specific cost function) with the algorithmic results
presented in previous chapters. Indeed, the approach involving the FlyCrane could be enriched
by using some of the more sophisticated variants of T-RRT we have developed, such as the
Anytime T-RRT (cf. Chapter 4) or the Multi-T-RRT (cf. Chapter 3). This is particularly
true for the Anytime T-RRT, as it would allow us to produce the optimal path to perform a
given manipulation task.
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6.2 Ordering-and-Pathfinding Problems

In this section, we aim at going beyond simple “init-to-goal” path-planning problems. Our
objective is to generate high-quality paths going through a set of unordered waypoints in a
cost space. Note that “multi-waypoints” problems have already been studied in the context
of optimal path planning, with pre-ordered waypoints [89, 113, 119, 161, 165] or unordered
waypoints [8, 43, 138, 141, 150]. However, most approaches focus on minimizing path length
or path duration [8, 43, 89, 113, 119, 138, 141, 150], and very few consider more sophisticated
quality criteria [161, 165]. To the best of our knowledge, this work is the first attempt to
address “multi-waypoints” problems with unordered waypoints in the context of cost-space
path planning, i.e. using a cost-based quality criterion.

Because of their dual nature, instead of referring to these path planning problems as being
“multi-waypoints” problems, we call them “ordering-and-pathfinding” problems. Indeed, they
involve two separate aspects: a low-level path planning problem that consists of connecting
pairs of waypoints via high-quality paths (i.e. low-cost paths), and a high-level ordering
problem that consists of finding an efficient way to visit all the waypoints (which is a simple
kind of task planning problem).

Hybrid approaches to solve task-and-path planning problems are often based on decoupling
the two aspects: a symbolic task planner computes a high-level plan (possibly based on
geometrical data) that is refined by a geometric path planner computing precise low-level
paths [24, 88, 96]. Other approaches aim at further interleaving the task planning and path
planning levels, e.g. by using temporal constraints [120, 133]. In some cases, when tasks
are simple enough, the overall problem possesses a purely geometrical formulation, and no
symbolic task planner is needed [144].

In this work, we also follow a purely geometrical approach and we apply it to a cost space:
the geometric path planner yields high-quality high-level solutions based on the costs of the
low-level paths it computes between waypoints. To achieve that, we combine two extensions
of T-RRT presented in previous chapters, namely the Multi-T-RRT (see Section 3.3) and the
Anytime T-RRT (see Chapter 4), which produces the Anytime Multi -T-RRT. The objective
is to quickly obtain a high-quality solution path going through all the waypoints, and then
continually improve it in an anytime fashion. In this way, the current solution-path can
converge toward the optimal path.

6.2.1 The Anytime Multi-T-RRT Algorithm

The pseudo-code of the Anytime Multi-T-RRT is presented in Algorithm 19. It consists of
first running the Multi-T-RRT until all trees rooted at the n waypoints are merged into a
single tree (lines 1–14). If this succeeds, meaning that n has been decreased to 1 (line 15),
there exists in the tree T a path going through all the waypoints. Then, if some running time
is still available, the Anytime T-RRT is used to improve the current solution path by carrying
on the exploration and adding cycles to the graph G (lines 16–24).

The role of the extractPathFromGraph procedure is to extract from G the path having
minimal cost and going through all the waypoints. No symbolic task planner is required if we
consider that this is simply an instance of the Traveling Salesman Problem (TSP) involving
the complete graph2 whose nodes are the waypoints. The distance associated with an edge
of this graph can be estimated as the cost of the lowest-cost path between two waypoints in
G. When only few waypoints are defined, the TSP is solved by an exhaustive search among
all sequences. When more waypoints are involved, the Nearest-Neighbor or Multi-Fragment
heuristics are used [10].

2Note that this can be a graph or a digraph, depending on the criterion used to assess path quality. If
we use a symmetric quality criterion, such as IC, we obtain a graph. If we use a quality criterion that is not
symmetric, such as MW, we obtain a digraph.



6.2. Ordering-and-Pathfinding Problems 89

Algorithm 19: Anytime Multi-T-RRT

input : the optimal path planning problem (C, { qk
init | k = 1..n }, c, cp)

where qk
init , k = 1..n are a set of unordered waypoints

output: the path P going through all the waypoints
1 for k = 1..n do
2 Tk ← initTree(qk

init)

3 while not stoppingCriteria({Tk | k = 1..n}) do
4 T ′ ← chooseNextTreeToExpand()
5 qrand ← sampleRandomConfiguration(C)
6 q′near ← findNearestNeighbor(T ′, qrand)
7 qnew ← extend(q′near , qrand)
8 if qnew 6= null and transitionTest(T ′, c(q′near), c(qnew)) then
9 addNewNode(T ′, qnew)

10 addNewEdge(T ′, q′near , qnew)
11 (T ′′, q′′near) ← findNearestTree(qnew)
12 T ← attemptLink(T ′, qnew , T ′′, q′′near , n)

13 if n = 1 then
14 G ← initGraph(T )
15 while not stoppingCriteria(G) do
16 qrand ← sampleRandomConfiguration(C)
17 qnear ← findNearestNeighbor(G, qrand)
18 qnew ← extend(qnear , qrand)
19 if qnew 6= null and transitionTest(G, c(qnear), c(qnew)) then
20 addNewNode(G, qnew)
21 addNewEdge(G, qnear , qnew)
22 addUsefulCycles(G, qnew , cp)

23 P ← extractPathFromGraph(G, { qk
init | k = 1..n }, cp)

24 return P
25 else
26 return null

As an example, Fig. 6.6 shows the interest of using the Anytime Multi-T-RRT on the
Stones-large problem, where ten waypoints are defined without explicit order. The upper
part of Fig. 6.6 shows a path that is representative of what is generated by the Multi-T-
RRT, in about 0.3 s (on average over 100 runs). It features many portions along which the
disk would have to go forward and then backward, which is a very inefficient way to visit the
waypoints. The lower part of Fig. 6.6 shows a path that is representative of what the Anytime
Multi-T-RRT produces for a running time of 5 s (as observed over 100 runs). Its cost (based
on IC) is about half the cost of the first path. From the labels, we can also see that this path
provides a much more efficient way to visit all the waypoints than the first path.

6.2.2 Application to Industrial Inspection

Based on this ordering-and-pathfinding approach, we present an industrial inspection problem
involving an aerial robot in a dense environment, as illustrated by Fig. 6.7. This example is
a multi-waypoints variant of a similar example involved in the experimental evaluations of
Chapters 3 and 4. The version used in previous chapters is a simpler “init-to-goal” path-
planning problem whose main interest is to feature a large-scale workspace on which we can
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Figure 6.6: The Stones-large problem, featuring ten waypoints (that are not ordered a priori).
The cost is the inverse of the distance between the 2-DoF yellow disk and the blue rectangular-
shaped obstacles. Top: path generated by the Multi-T-RRT in 0.3 s. Bottom: path produced
by the Anytime Multi-T-RRT, after a running time of 5 s. The labels show the order in which
waypoints are visited.

evaluate the scalability of path-planning algorithms. Here, the size of the workspace allows
us to define a relevant and challenging “multi-waypoints” path-planning problem.

In this example, a quadrotor is used to inspect an oil platform, going through eight way-
points defined a priori without explicit order (cf. Fig. 6.7). The quadrotor is modeled as a
3-DoF sphere (i.e. a free-flying sphere) representing the security zone around it. For safety
reasons, it has to move in this environment trying to maximize clearance. Therefore, the
cost of a configuration is the inverse of the distance between the quadrotor and the obstacles.
Assuming that the motions of the quadrotor are performed quasi-statically, we restrict the
problem to planning in position (thus ignoring controllability issues).

Even though this example features a large-scale workspace, the Anytime Multi-T-RRT can
quickly provide a high-quality solution path going through all the waypoints in an efficient
manner. For instance, the path featured in Fig. 6.7 has been computed in 50 s. Its cost (based
on IC) is about half the cost of the first solution path generated by the Multi-T-RRT (and
found in about 5 s). Contrary to existing approaches, that could allow computing the shortest
path going through all the waypoints, using the Anytime Multi-T-RRT enables us to obtain
a path along which clearance is maximized, while additionally optimizing the way all the
waypoints are visited. Therefore, the solution paths produced by the Anytime Multi-T-RRT
maintain a good balance between safety and efficiency.
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Figure 6.7: Top: eight waypoints (shown in red and circled in blue) defined for a quadrotor
(whose close-up is shown in yellow) inspecting an oil platform. Bottom: example of a path
efficiently visiting these waypoints, and produced in 50 s by the Anytime Multi-T-RRT.

6.2.3 Conclusion

We have developed a variant of T-RRT called Anytime Multi -T-RRT, and based on the
combination of two extensions of T-RRT presented in previous chapters: the Multi-T-RRT
and the Anytime T-RRT. The Multi-T-RRT can be used to compute a path going through a
set of waypoints in a cost space. The Anytime T-RRT allows improving the current solution
path and converging toward the optimal path.

In this section, we have focused on path-planning problems where the order of the way-
points is not defined a priori. Such problems, that we refer to as ordering-and-pathfinding
problems, involve both task and path planning aspects. Using the Anytime Multi-T-RRT in
this context allows us to find a way to visit the waypoints following a high-quality “global”
path computed (without the use of a symbolic task planner) based on the costs of the “local”
paths connecting pairs of waypoints. We have demonstrated the interest of this approach on
a simulated yet realistic industrial inspection problem featuring a large-scale workspace and
an aerial robot.

In the next chapter, we show another application for the Anytime Multi-T-RRT, in the field
of structural biology. This domain is particularly challenging and could push our algorithm
to its limits. Indeed, instead of growing a few trees over the search space, we might want to
grow hundreds or even thousands of trees simultaneously.





Chapter 7

Application to Structural Biology
Problems

In this chapter, we present two applications of sampling-based algorithms, within the field
of computational structural biology. The main challenge in this field is that all problems
are inherently difficult because of their high-dimensionality, even when only small molecules
are considered. Many interesting research questions can be addressed using robotics-inspired
algorithms because they allow for an efficient exploration of the conformational space of a
molecule or even a molecular complex. Here, we focus on two different themes: the exploration
of the energy landscapes of small peptides, and the simulation of the unbinding process of a
protein-ligand complex.

First, we address the issue of obtaining a full characterization of energy landscapes of small
yet highly-flexible peptides. For that, we suggest to combine two complementary sampling-
based methods: the Basin Hopping and the (Anytime) Multi-T-RRT algorithms. We propose
a simplified version of the classical Basin Hopping algorithm, that can quickly reveal the
meta-stable structural states of a peptide and the corresponding low-energy basins in the
landscape. Then, we use variants of the T-RRT algorithm to quickly determine transition
state and transition path ensembles, as well as transition probabilities between these meta-
stable states. More precisely, we propose an Anytime Multi-T-RRT tailored to structural
biology problems, based on the Multi-T-RRT (cf. Chapter 3) and on the Anytime T-RRT
(cf. Chapter 4). We demonstrate the approach combining Basin Hopping and T-RRT on the
terminally-blocked alanine.

Second, we tackle the problem of simulating protein-ligand interactions taking place far
away from the active site of the protein, during ligand binding or release. As a first step toward
what we want to achieve, the approach we present here is purely geometric. It is based on
a mechanistic representation of the molecular system, considering partial flexibility, and on
the application of a variant of RRT, called Manhattan-like RRT (ML-RRT), to explore the
conformational space. This means that no molecular energy is computed, and that motions are
validated only on the basis of collision avoidance. Such a purely geometric approach, together
with the efficiency of the exploration algorithm, enables the simulation of ligand unbinding
within very short computing time. Achieving low runtime is a constraint we had imposed
on ourselves, with the objective of developing an efficient web server. This web tool yields
ligand unbinding pathways that, as a first approximation, can provide useful information
about protein-ligand interactions. We show the interest of this computational tool on the
hexameric insulin-phenol complex.

All the algorithms presented in this chapter have been developed in a computer software
called MoMA (for Molecular Motion Algorithms), which implements a collection of robotics-
inspired algorithms for the simulation of molecular motions.
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7.1 Exploration of the Energy Landscape of a Small Peptide

Global thermodynamic and kinetic properties of molecules can be extracted from an analysis
of their conformational energy landscapes [155]. In particular, obtaining an accurate repre-
sentation of a molecule’s energy landscape is a significant first step to conducting detailed
structure-function studies for bio-molecules of central importance in the cell, such as proteins
and peptides [143].

In this work, we focus on small peptides. Despite their modest size, they represent in
many ways a more challenging setting than larger proteins. Peptides exhibit high structural
flexibility, which enables them to recognize different molecular partners in the cell, and thus
to modulate their biological function [128]. Contrary to proteins, that are often characterized
by a unique native state and a funnel-shaped energy landscape, peptides are characterized
by several meta-stable structural states; their energy landscape may contain a multitude of
competitive low-energy basins.

The existence of multiple local minima in a molecule’s energy landscape makes it particu-
larly challenging to map this landscape and reconstruct all the functionally-important regions
in it. Experimental methods, such as X-ray crystallography or nuclear magnetic resonance
(NMR), cannot reveal such maps, as they can uncover only few structures at best [7]. It is
therefore the task of computational techniques to obtain detailed representations of energy
landscapes.

Currently, only sample-based representations of the energy landscape can be afforded.
Even for small peptides, the space of possible conformations is vast, and the degrees of free-
dom needed to represent a conformation are numerous. The high dimensionality of the space
is accompanied by a complex (non-linear, non-convex) expression for the conformational en-
ergy, which is the result of competing local and non-local inter-atomic interactions. Probing
this landscape is thus very computationally-costly. Currently, only stochastic optimization
techniques provide the right balance between accuracy and computational efficiency [143,155].

Obtaining a representation of an energy landscape can be divided into two sub-problems:
(1) determining meta-stable structural states (i.e. local energy minima); (2) computing tran-
sition paths between the identified states. Both can be addressed by achieving a dense yet
efficient sampling of the conformational space.

In this section, we propose to combine two sampling-based techniques to obtain a full
characterization of energy landscapes of small yet highly-flexible peptides. First, we utilize
our own variant of the Basin Hopping algorithm [156] to sample local minima in a peptide’s
energy landscape, and characterize low-energy basins in this landscape. Local minima are
then organized via density-based clustering to reveal meta-stable structural states. Second,
we use the Multi-T-RRT and the Anytime Multi-T-RRT to map out the connectivity between
these states, thus completing the reconstruction of the energy landscape. More precisely, we
compute transition path and transition state ensembles, as well as transition probabilities
between meta-stable structural states. To illustrate this, and as a proof-of-concept, we present
results obtained on the terminally-blocked alanine, which is a frequent benchmark for studies
in theoretical physical chemistry.

7.1.1 Methods

This work is motivated by recent studies showing that robotics-inspired sampling-based algo-
rithms can be a good basis for efficient conformational sampling and exploration in structural
biology [3, 71]. Among such algorithms, T-RRT has been involved in previous work, in a
biology context [82]. In this section, we utilize two variants of T-RRT, called Multi-T-RRT
and Anytime Multi-T-RRT. These algorithms are combined with an in-house variant of the
Basin Hopping algorithm involving a simplified minimization process. Together they are used
to obtain a complete representation of the energy landscape of a small peptide.
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Algorithm 20: Anytime Multi-T-RRT

input : the conformational space C
the energy function E : C → R
the initial conformations qk

init, k = 1..n
the extension step-size δ

output: the graph G
1 for k = 1..n do
2 Tk ← initTree(qk

init)

3 while not stoppingCriteria({Tk | k = 1..n}) do
4 T ′ ← chooseNextTreeToExpand()
5 qrand ← sampleRandomConformation(C)
6 q′near ← findNearestNeighbor(T ′, qrand)
7 qnew ← extend(q′near, qrand, δ)
8 if qnew 6= null and transitionTest(T ′, E(q′near), E(qnew)) then
9 addNewNode(T ′, qnew)

10 addNewEdge(T ′, q′near , qnew)
11 (T ′′, q′′near) ← findNearestTree(qnew)
12 if distance(qnew, q′′near) ≤ δ then
13 T ← linkAndMerge(T ′, qnew, T ′′, q′′near)
14 n← n− 1

15 if n = 1 then
16 G ← initGraph(T )
17 while not stoppingCriteria(G) do
18 qrand ← sampleRandomConformation(C)
19 qnear ← findNearestNeighbor(G, qrand)
20 qnew ← extend(qnear, qrand, δ)
21 if qnew 6= null and transitionTest(G, E(qnear), E(qnew)) then
22 addNewNode(G, qnew)
23 addNewEdge(G, qnear , qnew)
24 for qcan ∈ G \ {qnew} do
25 if distance(qnew, qcan) ≤ δ and noEdgeBetween(qnew, qcan) then
26 addNewEdge(G, qnew, qcan)

27 return G
28 else
29 return null

Anytime Multi-T-RRT

The variants of T-RRT we use in the structural biology context are slightly different from
those used in the robotics context. Moreover, the terminology differs slightly. For instance,
instead of talking about configuration space, we talk about conformational space, i.e. the space
of all the conformations of a molecule. The cost function defined on this space associates to
each conformation its molecular energy. In this context, we propose an Anytime Multi -T-RRT,
based on the Multi-T-RRT (cf. Section 3.3) and on the Anytime T-RRT (cf. Section 4.1). The
pseudo-code of the Anytime Multi-T-RRT is presented in Algorithm 20. The main differences
with its robotics counterpart are the way connections are attempted between trees (lines 12–
14) and the way useful cycles are created (lines 24–26). As we focus on developing an Extend
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Algorithm 21: transitionTest (G, Ei, Ej)

input : the energy threshold Emax

the current temperature T
the temperature increase rate Trate

the Boltzmann constant K
output: true if the transition is accepted, false otherwise

1 if Ej > Emax then
2 return False

3 else if Ej ≤ Ei then
4 return True

5 else if e−(Ej−Ei) / (K·T ) > 0.5 then

6 T ← T / 2(Ej−Ei) / (0.1 · costRange(G))

7 return True

8 else
9 T ← T · 2Trate

10 return False

version of the algorithm, for now, both operations are based on using the extension-step size δ.
During the initial construction of the trees, if the distance between a new node and its closest
neighbor in another tree is no more than δ, the two trees involved are linked and merged into
one. In the anytime part of the algorithm, if the distance between a new node and another
node in the graph is no more than δ, an edge is added between these two nodes (if they are
not already linked by an edge), thus creating a cycle. Finally, in the biology context, the
Metropolis-like expression in the transition test of T-RRT includes the Boltzmann constant
(as shown in Algorithm 21, line 5).

In this section, we use the mechanical work to assess path quality. Other criteria could
be considered, such as the minimum resistance (linked to the MaxFlux algorithm [76, 77])
or the maximum flux [163]. However, finding which criterion is the most relevant in this
context is out of the scope of this thesis. Furthermore, it has been shown that, in the case
of the terminally-blocked alanine, transition paths produced using different criteria are often
similar [163].

Basin Hopping

The Basin Hopping (BH) algorithm is a popular method for sampling local minima of an
energy landscape. It was originally introduced to obtain the Lennard-Jones minima of small
atom clusters [156]. Recently, BH has gained new attention to predict protein structure [126],
and to find intermediate structures of chemical reactions [98]. The method consists of repeat-
edly applying a structural perturbation followed by an energy minimization, which yields a
trajectory of minima. The result is a (discrete) coarse-grained representation of the energy
landscape that can be seen as a collection of interpenetrating staircases.

Our variant of BH differs from the classical one in that it does not involve local, gradient-
based minimizations, but relies on simple Monte-Carlo-based (MC-based) minimizations. Our
implementation of BH (whose pseudo-code is presented in Algorithm 22) follows a random
restart procedure performing several rounds, each one starting from a conformation randomly
sampled in the search space. Every round builds a trajectory of minima by performing
a succession of structural perturbations followed by MC-based minimizations. Every MC-
based minimization starts from a conformation obtained by performing a large-amplitude
perturbation of the minimum reached at the previous step, or from the random sample,
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Algorithm 22: Basin Hopping

input : the conformational space C
the number of rounds nbRounds
the number of Monte-Carlo-based minimizations nbMC

output: the list of trajectories of minima L
1 L ← φ
2 for r = 1..nbRounds do
3 T ← φ
4 q ← sampleRandomConformation(C)
5 for m = 1..nbMC do
6 if m > 1 then
7 q ← doLargeAmplitudePerturbation(q)

8 q ← doMonteCarloBasedMinimization(q)
9 addMinimum(T , q)

10 addTrajectory(L, T )

11 return L

in the first step. An MC-based minimization is an iterative succession of small-amplitude
perturbations. The search goes on, accepting new conformations if the energy decreases or
the Metropolis criterion is satisfied, until a given number of consecutive rejections is reached.
Every MC-based minimization produces a low-energy conformation that we call a “minimum”
in a minor abuse of language. Every round produces what we call a milestone: the minimum
(along the trajectory) having the lowest energy.

All the milestones (or the minima) produced by BH have to be grouped to provide a
comprehensible list of meta-stable structural states. This clustering can be done in several
ways. In this work, we perform a density-based clustering requiring the user to define the
distance threshold between two clusters [97]. Distance computations are based on Root-Mean-
Square Deviation (RMSD) and involve dihedral angles or atom coordinates.

Force Field

To compute conformational energy values, we use an in-house implementation of the AMBER
parm96 force-field with an implicit representation of the solvent using the Generalized Born
approximation. All results are obtained on an Intel Core i5 processor at 2.6 GHz with 8 GB
of memory.

7.1.2 Results and Discussion

Terminally-Blocked Alanine

As a proof of concept, we use our methods to explore the potential energy landscape of the
terminally-blocked alanine. This molecule is an alanine residue acetylated in its N-terminus
and methylamidated in its C-terminus: Ace–Ala–Nme (cf. Fig. 7.1). Despite its small size, it is
a common test-model in theoretical physical chemistry studies because of its complex energy
landscape characterized by several local minima connected by multiple pathways involving
various transition states [19,32,66,125,154].

The exploration of the conformational space is performed using an internal-coordinate
representation of the terminally-blocked alanine, assuming constant bond lengths and bond
angles. The conformational parameters are the dihedral angles {φ, ψ, χ} of the Ala residue,
χ of the Ace capping, χ of the Nme capping, ω of the Ace-Ala peptide bond, and ω of the
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Figure 7.1: Internal-coordinate representation of the terminally-blocked alanine.
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Figure 7.2: One-dimensional projections of the energy landscape of the terminally-blocked
alanine for all internal coordinates. For reference, the lowest energy value is set to 0 kcal/mol.

Ala-Nme peptide bond (cf. Fig. 7.1). As the peptide bond torsions are known to undergo
only small variations, the ω dihedral angles are allowed to vary only up to 10◦ from the planar
trans conformation.

The φ and ψ dihedral angles of the terminally-blocked alanine are very important because
their flexibility allows internal hydrogen bonds to form. Consequently, the energy landscape
of the terminally-blocked alanine is often projected on these two coordinates to facilitate anal-
ysis [32,125,154]. To verify that no important information is discarded by this simplification,
we examine other projections of the energy landscape. First, we compute the 1-dimensional
projections of the landscape for all coordinates {φ, ψ, χ1, χ2, χ3, ω1, ω2} (cf. Fig. 7.2). For each
coordinate C, its energy profile is obtained by varying the value of the dihedral angle with a
1◦ step and finding the lowest-energy conformation corresponding to each value. This local
minimum is determined using a random restart procedure performing multiple, independent
minimizations. Each minimization starts from a randomly sampled conformation, and gener-
ates new conformations by perturbing any dihedral angle (except C) of the current minimum.
A new conformation is accepted only if its energy is lower than the current minimum. The
minimization stops when a maximum number of consecutive rejections is reached.

Fig. 7.2 shows that the dihedral angles having the greatest influence on the shape of the
energy landscape of the terminally-blocked alanine are φ, ψ and χ3. Local minima are located,
on the energy profile of φ, at −141◦, −62◦ and 44◦, on the profile of ψ , at −53◦ and 163◦,
and on the profile of χ3, at −175◦, −55◦ and 65◦. Regarding the other dihedral angles, local
minima are located, on the profile of χ1, at −120◦, 0◦ and 120◦, on the profile of χ2, at −60◦,
60◦ and 180◦, and on the profiles of ω1 and ω2, at 180◦. It also appears from Fig. 7.2 that each
coordinate in {χ1, χ2, χ3, ω1, ω2} is likely to be independent from the other six coordinates:
the corresponding energy profiles are very smooth, and cyclic in the case of {χ1, χ2, χ3}. This
is not the case for the φ and ψ coordinates.
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Figure 7.3: Projection of the energy landscape of the terminally-blocked alanine on the (φ, ψ)
internal coordinates, as seen in 2-D (top) and in 3-D (bottom). For reference, the lowest energy
value is set to 0 kcal/mol. Names reported for the local minima are taken from [32,125].

As φ and ψ are not independent, to get a better picture of the energy landscape of the
terminally-blocked alanine, we compute a Ramachandran map by projecting this landscape
on the 2-dimensional space defined by the (φ, ψ) coordinates (cf. Fig. 7.3). This 2-D map
is generated by varying both dihedral angles with a 5◦ step and finding the lowest-energy
conformation corresponding to each (φ, ψ) pair using a random restart procedure performing
multiple, independent minimizations while blocking the (φ, ψ) angles. Furthermore, an anal-
ysis of the 2-dimensional projections of the landscape associated with the (φ, χ3) and (ψ, χ3)
pairs of coordinates (not shown here) confirm that χ3 is independent from φ and ψ. Therefore,
despite its high influence on energy, χ3 is disregarded in the sequel. The six local minima
visible on the (φ, ψ) Ramachandran map (cf. Fig. 7.3) correspond to six known meta-stable
states of the terminally-blocked alanine, namely the C5, PII, αR, αP, Cax

7 , αL states [32,125].
To determine the energy values and the (φ, ψ) coordinates of these minima, the exhaustive
exploration of the (φ, ψ) projection of the energy landscape is refined with a 1◦ step in the
relevant areas. Results are reported in Table 7.1.
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Table 7.1: Energy and (φ, ψ) coordinates of the local minima of the terminally-blocked alanine.
Names are taken from [32,125]. For reference, the lowest energy value is set to 0 kcal/mol.

C5 PII αR αP Cax
7 αL

φ (◦) -141 -62 -57 -140 44 43
ψ (◦) 163 150 -53 -72 -107 61
E (kcal/mol) 0 0.44 1.11 1.52 3.27 3.48
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Figure 7.4: Results of the exploration of the energy landscape of the terminally-blocked alanine
produced by Basin Hopping. The minima generated by the Monte-Carlo-based minimizations
are represented by grey discs, and the selected milestones by yellow discs. Among them, the
red discs are the cluster representatives. For reference, the labeled black circles show the six
(target) minima identified by the exhaustive search.

Meta-stable States of the Terminally-blocked Alanine

We now show that, using Basin Hopping, we can quickly find the energy minima of the
terminally-blocked alanine, as identified by the (costly) exhaustive exploration of the (φ, ψ)
space presented previously. The parameters of BH are set as follows: we perform 100 rounds,
each round executing 10 MC-based minimizations whose maximal number of consecutive
rejections is set to 10. Therefore, every run of BH produces 1000 minima and 100 milestones,
in about 2 s (on average over 100 runs). The large-amplitude perturbations initiating MC-
based minimizations affect only the φ or ψ dihedral angle. The small-amplitude perturbations
performed during an MC-based minimization affect only one, randomly chosen angle among all
dihedral angles. The clustering procedure used to group the milestones is based on an RMSD
similarity measure involving the coordinates of the carbon atoms of the backbone of the
terminally-blocked alanine, and on a similarity threshold of 0.25 Å. This method consistently
produced six clusters, after each one of the 100 runs, and the cluster representatives fitted
well the six target minima (see Fig. 7.4). To evaluate the precision of the method, we compute
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Figure 7.5: Differences between the target minima of the terminally-blocked alanine and the
minima returned by BH over 100 runs. For each minimum, and for both φ and ψ coordinates,
the difference between the target value and the average of the 100 values returned by the BH
runs is evaluated, as well as their standard deviation.

the average (and standard deviation) of the coordinates of these representatives, and compare
them to the (φ, ψ) coordinates of the target minima. Results are reported in Fig. 7.5, and
show that precision is very high. For each coordinate of any minimum, the difference between
the average of the values returned by BH and the target value is never greater than 0.5◦ (which
is the error inherent to the resolution of the exhaustive search), and the standard deviation
of the values returned by BH is never greater than 0.3◦.

We have also used BH to obtain a description of the catchment basins on the energy
landscape of the terminally-blocked alanine. This enables us to characterize the low-energy
basins to which the meta-stable states belong, as well as the transition state ensembles between
them. To do that, the parameters of BH are set as follows: we perform 100 rounds, each round
executing 10 MC-based minimizations whose maximal number of consecutive rejections is set
to 100. Therefore, a run of BH produces 1000 minima, which takes about 25 s. Clustering these
minima (and not the milestones, as previously done) produces again the same six clusters.
This allows grouping the associated starting points of the MC-based minimizations into six
clusters, representing six catchment basins (see Fig. 7.6). A visual analysis of the result
shows that these clusters provide a good characterization of the low-energy basins (where the
clusters do not overlap) and of the transition state ensembles between them (where the clusters
overlap). These regions could be automatically characterized using segmentation techniques,
but this is out of the scope of this thesis.

Transition Path Ensembles of the Terminally-blocked Alanine

In this section, we show that the variants of T-RRT can quickly produce many transition
paths between the meta-stable structural states of the terminally-blocked alanine. The con-
formations used as input for the (Anytime) Multi-T-RRT are the energy minima produced by
BH. The conformational distance is based on the L2 norm in the (φ, ψ) space. The extension
step-size δ is set to 0.1 rad, meaning that the maximal angular variation between two con-
formations is about 5.7◦. The Boltzmann constant being 1.987 · 10−3 kcal/mol/K, by setting
the initial temperature to 70 K, we impose the probability of accepting an energy increment
of 0.1 kcal/mol to be around 50% at the beginning of the exploration. The (relative) energy
threshold Emax in the transition test is set to 13 kcal/mol. Finally, the temperature increase
rate Trate is set to 0.1.
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Figure 7.6: Characterization of the catchment basins on the energy landscape of the
terminally-blocked alanine, obtained with Basin Hopping. The colored disks represent the
starting points of the MC-based minimizations. The color of a disk identifies the cluster to
which the minimum produced by the corresponding MC-based minimization belongs.

Starting with six trees, the Multi-T-RRT quickly returns a single tree (containing about
300 nodes, obtained after about 1,500 expansions, in about 0.1 s on average over 100 runs)
from which paths connecting the minima are extracted. These paths are then projected on
the (φ, ψ) space and plotted on the Ramachandran map of the terminally-blocked alanine. We
observe that some of these paths may sometimes look “unnatural”: in the instance illustrated
by Fig. 7.7 (top), the transition path from PII to αL goes through almost all the other minima.
Using the Anytime Multi-T-RRT allows solving this issue, thanks to the alternative paths in
the graph. For example, Fig. 7.7 (bottom) shows a graph obtained after letting the Anytime
Multi-T-RRT run for 100 s. This method produces more direct transition paths between all
pairs of minima. In fact, the longer the Anytime Multi-T-RRT runs, the more direct paths
are found thanks to the increasing coverage of the space by the graph and to the increasing
number of cycles in the graph. While remaining acceptable for a user, a running time of 100 s
allows obtaining a reasonably dense coverage of the space (i.e. about 6,000 nodes).

To get an idea of the diversity of the transition paths of the terminally-blocked alanine,
we run both variants of the Multi-T-RRT 100 times and aggregate all the extracted paths on
the same Ramachandran map, as illustrated by Fig. 7.8. We can see that most low-energy
and medium-energy regions of the landscape are covered by the transition paths. However, in
the case of the Multi-T-RRT, the paths going through the medium-energy area corresponding
to φ ∈ [−100◦,−50◦] and ψ ∈ [0◦, 50◦] are under-represented in comparison to the case of the
Anytime Multi-T-RRT. Finally, we observe that no transition path goes through the energetic
barrier corresponding to φ ∈ [100◦, 150◦].

The Anytime Multi-T-RRT can be used to compute transition probabilities between all
pairs of energy minima of the terminally-blocked alanine. This is done by running it 1000
times and counting how many runs yield a graph from which a direct transition path can be
extracted between a given pair of minima. More precisely, we consider that a run produces a



7.1. Exploration of the Energy Landscape of a Small Peptide 103

-150 -100 -50  0  50  100  150

φ

-150

-100

-50

 0

 50

 100

 150

ψ

 0

 2

 4

 6

 8

 10

 12
C5 PII

αRαP

C7
ax

αL

-150 -100 -50  0  50  100  150

φ

-150

-100

-50

 0

 50

 100

 150

ψ

 0

 2

 4

 6

 8

 10

 12
C5 PII

αRαP

C7
ax

αL

Figure 7.7: Graphs generated by two variants of T-RRT exploring the conformational space
of the terminally-blocked alanine. Top: graph produced by the Multi-T-RRT in about 0.1 s.
Bottom: graph produced by the Anytime Multi-T-RRT after running for 100 s. The edges of
the graph are represented by thin grey lines. The transition path from PII to αL (extracted
from the graph) is highlighted in black.
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Figure 7.8: Transition paths generated by 100 runs of the Multi-T-RRT (top) and 100 runs
of the Anytime Multi-T-RRT (bottom) exploring the conformational space of the terminally-
blocked alanine. The maximal running time was set to 100 s for the latter.
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Figure 7.9: Transition probabilities (expressed as percentages) between all pairs of minima of
the terminally-blocked alanine, in relation to the running time of the Anytime Multi-T-RRT
(in seconds, on a logarithmic scale). Probabilities are computed on the basis of 1000 runs. In
each plot, the title indicates the initial conformation of the transition paths extracted from the
graph, and the five curves correspond to the possible goal conformations (see color legend).

direct transition path between two minima if the best path in the graph between them does
not go through another minimum. By varying the maximal running time of the algorithm, it is
possible to determine which transitions are most or least likely. The results of this experiment
are reported in Fig. 7.9. It appears that the most likely transitions involve the pairs (C5, PII)
and (αR, αP), as already shown in [32]. Direct transition paths are easily found between the
minima in these pairs, even when runtime is low. If we had no other information about the
energy landscape, we could infer that these minima are not separated by high-energy barriers
or other low-energy basins. On the other hand, it requires a longer time for the transition
probabilities associated with (Cax

7 , αL) to reach 1, meaning that high-energy barriers probably
separate them. Furthermore, since transitions from αP to αR are very likely, it takes some
time before the algorithm is able to produce transition paths from αP to C5 or PII that do
not go through αR. That is why the corresponding transition probabilities increase slowly
with runtime. This is similar for the transitions going from C5 to αP. Interpreting the other
curves is difficult: it is impossible to know how many high-energy barriers or low-energy basins
separate the corresponding minima without additional information.
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Figure 7.10: Transition state ensembles (represented by black dots) of the terminally-blocked
alanine, obtained by aggregating the results of 1000 runs of the Multi-T-RRT, and clustering
the extracted transition states (i.e. the highest-energy conformations along all direct transition
paths). Transition states rejected by the clustering procedure appear as grey dots. The red
disks are the cluster representatives, i.e. the lowest-energy conformations in all clusters.

Transition State Ensembles of the Terminally-blocked Alanine

From the transition paths computed by the Multi-T-RRT, we can extract the transition
state ensembles of the terminally-blocked alanine. First, we define a transition state as the
conformation having the highest energy along a given path. Our experiment consists of
running the Multi-T-RRT 1000 times (which takes about 120 s on average) and aggregating on
the Ramachandran map the transition states found along all direct transition paths between
any pair of minima. To obtain ensembles, we group the transition states using the same
clustering procedure as when grouping the minima produced by BH. Among all the clusters,
we reject those containing less than 100 states (i.e. 10% of the number of runs) as being
not significant. We also reject clusters containing more than 1000 states because they cannot
correspond to a single transition state ensemble. Indeed, as the Multi-T-RRT is run 1000
times, it can produce at most 1000 direct paths between a given pair of minima; therefore,
clusters with more than 1000 states encompass several classes of paths (between several pairs
of minima). Finally, we choose as cluster representatives the conformations having the lowest
energy within each cluster. After repeating the whole procedure 100 times, we observed that
it consistently produced four clusters (as illustrated by Fig. 7.10), i.e. four transition state
ensembles.

Within each transition state ensemble, the conformation with the lowest energy is chosen
as the ensemble representative. To assess the precision of our procedure at determining the
(φ, ψ) coordinates and the energy values of these representatives, we compute averages and
standard deviations across the 100 trials we performed. Results are reported in Table 7.2.
From their standard deviations, we can infer that it is difficult to accurately estimate the
coordinates of these ensemble representatives. However, since the standard deviation of the
energy values is very low (less than 0.05 kcal/mol), we can speculate that this is mainly due
to the flatness of the saddles.
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Table 7.2: Energy and (φ, ψ) coordinates of the transition state ensembles representatives of
the terminally-blocked alanine, averaged over 100 trials. Standard deviation is also given for
the coordinates. Standard deviation of the energy was less than 0.05 kcal/mol.

φ (◦) 67 ± 3 1 ± 2 0 ± 3 69 ± 3
ψ (◦) 128 ± 5 92 ± 2 -88 ± 3 -13 ± 4
E (kcal/mol) 6.2 6.8 6.9 7

7.1.3 Conclusion

In this section, we have presented a methodology to explore and obtain a complete repre-
sentation of the energy landscape of small flexible peptides. The methodology combines a
variant of Basin Hopping (BH) with several extensions of T-RRT. By implementing a sim-
plified version of the BH algorithm, where local, gradient-based energy minimization steps
are replaced by simple Monte-Carlo-based minimization steps, we achieve an efficient explo-
ration of the energy landscape yielding numerous samples around energy minima. This leads
to a quick determination of meta-stable structural states and low-energy basins containing
them. In addition, the Multi-T-RRT is very fast at generating transition paths between meta-
stable states. This provides us with a good description of the transition path and transition
state ensembles. Finally, using the Anytime Multi-T-RRT, we are able to estimate transition
probabilities between meta-stable states.

Our objective was to demonstrate that combining sampling-based algorithms such as BH
and T-RRT allows quickly obtaining an accurate representation of the energy landscape of a
small yet highly-flexible peptide. Studying the terminally-blocked alanine served as a proof-
of-concept here. Our next targets are bigger peptides, starting with the met-Enkephalin (Tyr–
Gly–Gly–Phe–Met). Despite the great interest it has sparked due to its dynamical structure
and its potential role in pain inhibition, alcoholism, and cancer treatment, this peptide is
currently poorly understood [140]. The preliminary tests we have performed on the met-
Enkephalin show that the methods we propose can remain efficient even with bigger peptides.
Indeed, when running the Multi-T-RRT using as input three conformations corresponding
to local energy minima of the met-Enkephalin (computed in another context by a simulated
annealing procedure), we obtain a graph connecting them in about 0.08 s (on average over
100 runs). As part of our ongoing work, we also have to ensure that the clustering procedures
involved in our methods remain effective when dealing with bigger peptides.

Directions of future work include exploiting the graph produced by a single run of the
Anytime Multi-T-RRT to describe transition path and transition state ensembles. This will
allow us to make better use of computational resources, as opposed to aggregating paths
extracted from several runs of the Multi-T-RRT. In addition, Markov-based transition-step
analysis can be conducted on the graph produced by one or more runs of the (Anytime) Multi-
T-RRT. This analysis can allow estimating stabilities of each computed state, and provide a
rigorous basis for the designation of a state as stable or semi-stable.

In contrast to robotics, computational structural biology offers great opportunities to
tackle very complex and high-dimensional problems that appear when studying large molecules.
In the context of the exploration of energy landscapes, analyzing large molecules means hav-
ing to deal with numerous interesting structural states, whether local energy minima or local
energy saddle-points. This results in extremely challenging settings for the multiple-tree (any-
time) variants of T-RRT that we have presented in this thesis. Indeed, we plan to analyze how
well these algorithms can scale by growing hundreds or even thousands of trees simultaneously
in a molecule’s conformational space.
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7.2 Simulation of Protein-Ligand Unbinding

In the past, experimental and computational approaches aimed at investigating protein-ligand
interactions have mostly focused on the molecular complex, when the ligand is docked in the
active site of the protein. However, an increasing amount of research shows that important
interactions that may determine protein-ligand specificity and activity occur far away from
the active site, during ligand binding or release (see for example [16,28,101,132]).

Despite impressive advances in structural biology techniques, obtaining accurate experi-
mental data about protein-ligand interactions taking place far from the active site remains
challenging. Computational methods may help in better understanding such interactions.
However, simulating ligand (un)binding, particularly when the active site is deeply buried
in the protein, is also a difficult problem for current computational approaches. Some vari-
ants of molecular simulation methods have been devised specifically for that. In particu-
lar, Steered Molecular Dynamics (SMD) [80] and Random Acceleration Molecular Dynamics
(RAMD) [111] have become popular techniques for the simulation of ligand (un)binding. Both
methods are based on the same principle: the application of an artificial force to accelerate
the ligand diffusion inside the protein. The direction of this force is defined by the user,
in the case of SMD, or chosen randomly, in the case of RAMD. Although the interest and
the relevance of these methods are not questioned here, it should be noted that this artifi-
cial force must be carefully parameterized to avoid strongly biased (or inaccurate) results.
Monte-Carlo-based techniques have also been proposed to study ligand (un)binding and dif-
fusion [20]. They perform a more computationally-efficient exploration of the conformational
space compared with techniques based on molecular dynamics simulations, and do not require
additional artificial forces in the molecular force field to accelerate simulations. Nevertheless,
all the aforementioned methods remain computationally expensive.

Our work is based on an original approach to simulate protein-ligand (un)binding, and
other types of large-amplitude (long time-scale) molecular motions, at a very low computa-
tional cost [37,39,99]. This approach involves a mechanistic representation of molecules, and
RRT-like algorithms to explore their conformational space. It has been validated on exper-
imental data, and compared to other computational methods. It has also been successfully
applied to rational enzyme engineering [73,101].

This section presents a technique to simulate protein-ligand unbinding in a computa-
tionally efficient way. Starting from the model of a protein-ligand complex, this technique
computes the ligand unbinding path from the active site to the surface of the protein. In
the current version, flexibility is considered only for the ligand and the protein side-chains.
Furthermore, only geometric constraints are involved, which means that no molecular energy
is computed, and that motions are validated only on the basis of collision avoidance. Our
approach involves a variant of RRT, called Manhattan-like RRT (ML-RRT) [36,37], to explore
the conformational space of the protein-ligand complex. Such a purely geometric approach,
together with the efficiency of the exploration algorithm, enables the simulation of ligand
unbinding within very short computing time, ranging from a few seconds to a few minutes.
Achieving such low runtime is a constraint we had imposed on ourselves, with the objective
of developing an efficient web server, that we have named MoMA-LigPath1, as it builds on
the MoMA software. Even though they satisfy only geometric feasibility, the paths gener-
ated by this approach can provide interesting information to biologists and chemists. They
can also serve as a first approximation that can be further refined using standard molecular
modeling techniques. In this section, we show the interest of this approach on the hexameric
insulin-phenol complex.

Finally, note that our goal in the long run is to take molecular energies into account and
to integrate variants of T-RRT into this approach (as discussed in Section 7.2.3).

1http://moma.laas.fr
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7.2.1 Methods

Manhattan-like RRT (ML-RRT)

The method we have developed to simulate protein-ligand unbinding features a robotics-
inspired algorithm based on the Manhattan-like RRT (ML-RRT) [36, 37]. The ML-RRT
algorithm was originally proposed as an extension of RRT for disassembly path planning of
complex objects with articulated parts [35]. Its key concept is to divide variables (i.e. con-
formational parameters, in the molecular context) into two groups, called active and passive
variables, and to generate their motions in a decoupled manner. Active variables correspond
to parts whose motions are essential for the disassembly task, whereas passive variables corre-
spond to parts that should move only if they hinder the motions of other mobile parts (active
or passive). Compared with the basic RRT, the ML-RRT algorithm offers two important ad-
vantages. First, it can solve problems that are practically intractable with RRT, by implicitly
reducing the dimensionality of the search space. Second, it allows automatically identifying
which parts should move to find a solution to the disassembly problem.

In the structural biology context, ML-RRT considers the ligand as an articulated mech-
anism to be disassembled from the protein. All the protein side-chains are also articulated
with freely rotatable bonds. For the conformational exploration, the active variables are the
parameters defining the pose (position and orientation) of a reference frame associated with
the geometric center of the ligand, as well as the ligand bond torsions; the passive variables
are the bond torsions of the protein side-chains. Collision avoidance between non-bonded
atoms is the only feasibility condition evaluated when validating molecular motions.

Parameters of the Approach

The main input of MoMA-LigPath is a .pdb file containing the atomic coordinates of the
protein-ligand complex. This file can contain several proteins and ligands, as well as other
molecules, such as structural waters or ions, but only one ligand is considered to be mobile.
Moreover, only the side-chains (and not the backbone) of a molecule can be defined as flexible.
By default, all side-chains are considered flexible, but one can locally modify the flexibility of a
molecule by blocking some side-chains. The main output of MoMA-LigPath is a set of solution
paths. Each solution is a sequence of intermediate conformations of the molecules along the
ligand exit-path. The path is discretized in such a way that the maximum displacement of an
atom of the ligand between two consecutive frames is approximately 0.5 Å.

The method allows tuning the following parameters:

• % of van der Waals radii: This parameter is used for collision detection between non-
bonded atoms. 75% is a reasonable default value, often used to check atom overlaps in
other computational methods. A lower percentage may be necessary to find solutions to
very constrained problems, which would require some flexibility of the protein backbone.
In easy cases, this value can be increased to force the ligand to move along the medial
axis of the exit channel.

• RRT expansion strategy: By default, the method applies a Connect strategy to expand
nodes during the construction of the search tree. This can be changed to the more
basic Extend strategy, which generally produces shorter local moves, and is thus more
computationally expensive. Nevertheless, the Extend strategy can be more efficient
when solving very constrained problems.

• Exit distance: The length of the unbinding paths to be produced can be specified by
defining the distance (in Å) that has to be reached between the geometric centers of the
ligand and the protein. When left unspecified, this distance is computed automatically,
based on the molecule sizes.



110 Chapter 7. Application to Structural Biology Problems

• N fail max: This parameter determines the number of consecutive expansion failures
after which a node in the search tree is considered “exhausted”, and is no more selected
for expansion during the ML-RRT construction. This heuristic is further explained in
basic papers on ML-RRT [36]. The default value, 50, provides good results in general.
This value can be increased for very constrained problems.

7.2.2 Results and Discussion

We now briefly present some results we have obtained with our unbinding simulation method
for the hexameric insulin-phenol complex. This molecular complex is an interesting test system
because of the likely existence of multiple pathways for phenol unbinding. The reported results
only aim to illustrate the capabilities of the method, further biological interpretations being
out of the scope of this thesis. More detailed explanations on the application of robotics-
inspired algorithms to simulate protein-ligand unbinding in the context of enzyme engineering
can be found in [73,101].

Insulin, in its monomeric, active form, is composed of two short peptide chains. In the
presence of zinc ions, insulin monomers tend to associate, forming more stable hexameric
structures [55]. Different conformational states of the insulin hexamer have been observed
experimentally. Here, we consider the so-called R6 state, which has a threefold symmetric,
toroidal shape (see Fig. 7.11), and is stabilized by bound phenolic molecules [11]. Under-
standing the mechanism of phenol unbinding is important because it is possibly involved in
the conversion of the hexamer into the monomeric, active form of insulin [153]. Note that the
study of the hexameric insulin-phenol complex and of the hexamer-monomer conversion are
of interest in pharmacology for the treatment of type 1 diabetes.

The structure of the R6 insulin hexamer, determined by X-ray crystallography, is avail-
able in the Protein Data Bank2, with PDB ID: 1ZNJ. The R6 insulin hexamer presents six
hydrophobic pockets containing bound phenol molecules. We have applied our method to
simulate the unbinding of one of them: the one located in the binding pocket between chains
A, B, F and H. The other phenol molecules were kept in the input file, and considered to
be static molecules. The side-chains of the six histidines interacting with the zinc ions where
blocked. Hydrogen atoms were not added. This is acceptable because the solutions provided
by our method are not expected to be an accurate representation of unbinding paths, but
simply a first approximation.

As a first experiment, we simulated 20 phenol unbinding paths. To emphasize the com-
putational efficiency of the method, let us mention that the average computing time for one
solution was less than 10 s on a single processor. A significant variability in the solutions
can be observed. In most simulations, the phenol molecule exits following pathways at the
interface between chains A, F and H (see Figure 7.11). Such paths can be clustered into two
groups, which we refer to as pathway 1 (PW1) and pathway 2 (PW2), following the notations
used in related work [153]. 25% of the paths (5 over 20) follow PW1. The ligand finds a
passage between residues Ile10-A and His5-F, by inducing a significant conformational change
of His5-F. Note that ring-flipping of His5 has been suggested by other computational and ex-
perimental studies on this system [153]. The ligand also induces the motion of the side-chain
of Tyr16-H, which itself induces the motion of Tyr26-F. The conformations of other residue
side-chains are also slightly perturbed by phenol unbinding following PW1.

PW2 is the most frequent pathway observed among the 20 solutions: 60% of the paths
follow PW2. After a quick analysis of the solutions using a molecular viewer, one can observe
that PW2 is the shortest and geometrically easiest pathway between the binding pocket and
the surface of the protein, which explains the highest probability to obtain this type of solution.
The ligand follows a narrow, partially open channel, and induces slight conformational changes

2http://www.rcsb.org/pdb
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Figure 7.11: Structure of the R6 hexameric insulin-phenol complex. The phenol molecule in
the pocket between chains A, B, F and H can follow different unbinding pathways. The two
most likely pathways are located at the interface of chains A, F and H. However, diffusion
through the inner part of the hexamer is also geometrically feasible. Images of molecular
models in this section have been generated using PyMOL (http://www.pymol.org).

of only a few residues, mainly of Leu17-H. Remarkably, a combination of RAMD and SMD
methods also pointed out PW2 as the most likely pathway for phenol unbinding [153].

Fig. 7.12 shows some intermediate frames of two solutions: one following PW1 and the
other following PW2. The ligand and moving side-chains are represented. The figure also
illustrates another type of pathway that was not reported in related work [153]: Surprisingly,
in a few simulations (3 over 20), the ligand diffuses inside the insulin hexamer before finding an
exit pathway. Indeed, the phenol molecule moves at the interface of insulin monomers toward
the center of the hexamer, as indicated by the dashed line in Fig. 7.11, eventually finding exit
channels that are the symmetric counterparts of PW1 and PW2. Note that the other phenol
molecules, considered to be static in the simulations, do not obstruct these pathways. In two
of the simulations, the ligand exits through a pathway similar to PW2 between chains F, H
and K. One of such inner pathways is represented in Fig. 7.12. In another simulation, the
ligand follows a pathway similar to PW1 between chains C, J and L. Exit through all the
other pathways symmetric to PW1 and PW2 seems to be geometrically feasible.

Finally, note that none of the 20 simulation runs reported here, and none of 100 additional
runs performed in the same conditions (as a second experiment), was able to find a third class
of pathway (PW3) obtained by RAMD simulations, as reported in [153]. PW3 is located at
the interface between the two chains of the insulin monomer. It is a narrow corridor, involving
steric interactions of phenol with many residues. The fact that PW3 was not found means
that it is geometrically unlikely, or even impossible, if the protein backbone does not deform.
In a third experiment, we have run 20 additional simulations with a reduced atom size, namely
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Figure 7.12: Different paths for phenol unbinding from the R6 insulin hexamer. The location
of the phenol molecule and the conformations of moving side-chains are represented for some
intermediate frames. The two images at the top correspond to paths following the most likely
unbinding pathways: PW1 and PW2. The image at the bottom illustrates one of the pathways
going through the inner part of the insulin hexamer.

60% of van der Waals radii, to simplistically emulate slight fluctuations of the backbone. In
this case, 10% of the solutions followed PW3. Nevertheless, since some of the results obtained
with such a reduced atom size can be unrealistic, we prefer not to argue about the existence of
this pathway type. More generally, a further analysis of the results presented here, considering
molecular energies, would be necessary to yield a more accurate model of phenol unbinding
from the R6 insulin hexamer.
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7.2.3 Conclusion

In this section, we have presented a method to simulate protein-ligand unbinding in a compu-
tationally efficient way. This efficiency has enabled us to develop a web server, named MoMA-
LigPath, which is, to the best of our knowledge, the first such application. Our approach is
based on a mechanistic representation of the molecular system, considering partial flexibility,
and on the application of the ML-RRT algorithm to explore the conformational space. The
simplicity of the molecular model, together with the efficiency of the exploration algorithm,
allow for the simulation of protein-ligand unbinding within very short CPU time, ranging
from a few seconds to a few minutes. We have observed that the performance of the method
depends on the geometric difficulty, which is mainly related to the narrowness/topology of
the access/exit channel, rather than on molecule sizes.

The simulation method we have proposed can be interesting for protein engineering, to
help decision making for site-directed mutagenesis experiments. More generally, information
on local protein-ligand interactions taking place far away from the active site may help under-
standing the overall molecular interaction mechanism. Nevertheless, although geometry can
play a decisive role, it is well known that electrostatics, pH and other conditions that are not
considered in this work can also dramatically affect protein-ligand (un)binding. Therefore,
solutions provided by our method have to be considered as a first approximation that may
require subsequent refinement and analysis using more accurate models. Note that this ap-
proach has already started to bare fruits: since this work was published [45], MoMA-LigPath
has been involved in the (un)binding analysis of an anticancer compound [86].

As part of our future work, we plan to extend the capabilities of our simulation method.
For instance, the issue of limited flexibility can be addressed by utilizing an improved version
of ML-RRT taking backbone flexibility into account [37]. More importantly, our goal on
the long run is to take molecular energies into account. For that, we will integrate in our
approach the variants of T-RRT introduced in this thesis. However, they cannot be used
as such because T-RRT suffers from the same limitations as RRT on such high-dimensional
problems. Recall that the interest of using ML-RRT in this work is that it allows implicitly
reducing the dimensionality of the conformational space. Therefore, if we want to maintain
computational efficiency, we will have to combine ML-RRT with the variants of T-RRT we
have proposed in previous chapters, as was done for the basic T-RRT itself in [79].





Chapter 8

Conclusion

In this thesis, we have addressed the issues of improving the efficiency and enhancing the
capabilities of sampling-based algorithms in the context of feasible, cost-space, and optimal
path planning. Our intention was to deal with difficult, high-dimensional problems involving
complex, continuous cost functions. Therefore, our work has more specifically focused on cost-
space and optimal path planning. This was justified by the fact that, even though classical
sampling-based methods have reached a high level of success, their cost-space counterparts
have been developed only recently and still require further research. In Chapters 3 to 5,
we have introduced several extensions of RRT-like path planners, based on the T-RRT and
RRT* algorithms. In Chapters 6 and 7, we have presented various applications of these novel
approaches in the fields of robotics and computational structural biology.

8.1 Summary of the Algorithmic Contribution

First, we have proposed several extensions of the T-RRT algorithm in order to enhance cost-
space path planning [49]. More precisely, we have improved its mono-directional variant by
optimizing its transition test. We have also proposed a bidirectional variant of T-RRT, taking
into account the cost constraints involved. We have shown that, in the context of a simple
“init-to-goal” path planning problem, using the Bidirectional T-RRT is a better strategy than
using the Connect or Goal-biased mono-directional T-RRT. Later on, as a generalization of
this bidirectional approach, we have proposed a multi-tree variant of T-RRT that can compute
a path going through a given set of waypoints [52].

Second, we have explained how to solve optimal path planning problems in a more efficient
way than what RRT* currently allows on cost spaces. By combining the underlying concepts
of T-RRT and RRT*, i.e. a cost-based node creation and a quality-based edge management,
we have proposed two new sampling-based algorithms that are asymptotically optimal: the
Transition-based RRT* and the Anytime T-RRT. We have also shown that they converge
faster than RRT* toward the optimal path, especially when the topology of the configuration
space is complex and/or when its dimensionality is high [51].

Third, we have proposed three parallel versions of RRT targeting large-scale distributed-
memory architectures: the OR parallel RRT, the Distributed RRT, and the Manager-worker
RRT [48]. We have also discussed how these parallelization schemes can be applied to other
RRT-like algorithms such as those introduced in this thesis. We have observed that using
these parallel algorithms can significantly reduce running times when dealing with complex
robotic problems or structural biology problems [50].

Finally, we have suggested that combining some of these novel approaches can allow for
new kinds of planning problems to be solved. For instance, by integrating the Anytime T-RRT
and the Multi-T-RRT, we have developed an Anytime Multi-T-RRT that we have utilized in
several applications.
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8.2 Summary of the Applications

In robotics, we have first utilized the Anytime Multi-T-RRT to solve ordering-and-pathfinding
problems [52]. With this approach, such problems can be solved from a purely geometrical
perspective, without having to use a symbolic task planner. As an example, we have presented
a simulated industrial inspection problem involving an aerial robot. Second, we have explained
how a cost-space approach can be useful to perform precise 6-dimensional manipulation tasks
with the FlyCrane, a towed-cable system involving three aerial robots [115, 116]. For that,
we have defined an application-specific configuration-cost function taking the constraints of
this robotic platform into account. We have evaluated the approach, in simulation, on 6-D
manipulation problems involving this platform.

In computational structural biology, we have used the (Anytime) Multi-T-RRT, in addition
to another sampling-based method called Basin Hopping, to produce a full characterization
of the energy landscape of a small flexible peptide [47, 53]. This combined approach allowed
for the determination of meta-stable structural states of the peptide, as well as transition
state ensembles, transition path ensembles, and transition probabilities between these meta-
stable states. We have validated this approach on the terminally-blocked alanine. Another
application we have presented here is the simulation of the unbinding process of a protein-
ligand complex [45, 46]. As a first step, we have proposed a geometric approach involving
the Manhattan-like RRT, that we could implement as a web server, thanks to its very short
running times. We have demonstrated the interest of this method on the hexameric insulin-
phenol complex.

8.3 Directions of Future Research

As an initial direction for future research, we could start by improving the methods presented
in this thesis. Indeed, some of our approaches can be investigated further to reach higher
levels of efficiency. First, in the cost-space path-planning context, T-RRT-like algorithms can
be enhanced by taking the configuration-cost function into account in a more effective way.
Indeed, a drawback of the rejection-sampling strategy currently in use is its wastefulness. A
possible solution is to partially guide the exploration of the cost landscape by exploiting, for
example, gradient-based methods, as is done in [12]. However, this requires maintaining a
good balance between the resulting bias and the inherent exploratory strength of RRT-like
algorithms. Second, in the optimal path-planning context, we can develop a more efficient
path planner based on AT-RRT, T-RRT*, or a combination of both. This requires analyzing
AT-RRT and T-RRT* further, and determining which strategy works best in general or on
specific classes of problems. Finally, in the parallel path-planning context, a more powerful
parallelization scheme can be obtained by combining the three parallel approaches presented
in this thesis.

On another front, we should consider taking full advantage of the graph produced by the
anytime variants of T-RRT-like methods, as this can have beneficial repercussions. First, on
the computational structural biology side, when exploring the energy landscape of a peptide,
we can exploit this graph to describe transition path and transition state ensembles, and to
estimate transition probabilities between meta-stable states. This would make better use of
computational resources than the current method does, and allow us to study bigger peptides.
Second, on the robotics side, instead of computing a path going through all the waypoints while
considering them as having a similar status, we can envision other useful applications. For
example, we can solve problems involving a single initial configuration and several potential
goal configurations. The different paths extracted from the graph can represent several ways
to solve this hybrid task-and-path planning problem, allowing us to choose the best path or
to change the current plan.
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In robotics, combining the methods we have proposed in this thesis offers great possibilities.
For example, in the context of 6-dimensional manipulation with the FlyCrane, the approach
can be enriched by using some of the more sophisticated variants of T-RRT. This is particularly
true for the Anytime T-RRT, as it would allow us to produce the optimal path to perform
a given manipulation task. Furthermore, the Multi-T-RRT can be used to solve complex
task-and-path planning problems encompassing the manipulation of several objects for the
(dis)assembly of a large structure.

Some of the algorithms we have introduced can be used in other planning contexts than
those studied here. First, anytime variants of T-RRT-like methods can be useful for path
replanning. As they build a graph containing cycles, they provide alternative paths over the
space, that are readily available if the current solution path is invalidated because of errors
in the model or moving obstacles. Second, these anytime algorithms can be used for online
planning. While only part of the current solution path is executed by a robot, the rest of the
path can be further optimized [94].

In computational structural biology, interesting new problems can be solved by using the
algorithms presented in this thesis. This is particularly true for the simulation of protein-
ligand interactions because we have not applied the multi-tree and anytime paradigms to
this problem yet. First, if various conformations of a protein-ligand complex are available, a
multiple-tree approach can allow us to generate several possible unbinding pathways at the
same time, and to determine the most likely one. Second, an anytime approach would allow
us to find the optimal unbinding pathway with respect to a given path-quality criterion, such
as minimum resistance or maximum flux.

The structural biology domain produces examples potentially requiring enormous amounts
of computational resources. When exploring the conformational space of a molecule or of a
molecular complex, growing several trees simultaneously has already proven useful for the
applications presented in this thesis. Going even further, instead of building a few trees on
the search space, it can be useful to grow hundreds or even thousands of trees simultaneously.
The parallel-planning paradigm can allow the multiple-tree variants of T-RRT-like methods
to meet this challenge, by interleaving several levels of parallelization. For instance, we can
imagine to combine the three following levels: 1) distributing the construction of the trees
over several groups of processes; 2) sharing the construction of each tree between several
processes; 3) parallelizing the most computationally-expensive components of the T-RRT
expansion. Using such parallel versions of multi-tree algorithms would enable us to exploit
numerous computational resources and to solve extremely complex problems.





Appendix A

Extensions des Méthodes de
Planification de Chemin par
Échantillonnage dans des Espaces
de Coût Complexes :
Applications en Robotique et en
Biologie Structurale

Résumé Abrégé

Planifier le chemin d’un robot dans un environnement complexe est un problème crucial
en robotique. Les méthodes de planification probabilistes peuvent résoudre des problèmes
complexes aussi bien en robotique, qu’en animation graphique, ou en biologie structurale. En
général, ces méthodes produisent un chemin évitant les collisions, sans considérer sa qualité.
Récemment, de nouvelles approches ont été créées pour générer des chemins de bonne qualité
: en robotique, cela peut être le chemin le plus court ou qui maximise la sécurité ; en biologie,
il s’agit du mouvement minimisant la variation énergétique moléculaire. Dans cette thèse,
nous proposons plusieurs extensions de ces méthodes, pour améliorer leurs performances et
leur permettre de résoudre des problèmes toujours plus difficiles. Les applications que nous
présentons viennent de la robotique (inspection industrielle et manipulation aérienne) et de
la biologie structurale (mouvement moléculaire et conformations stables).

Mots-clés

planification de chemin · espace de coût · robotique · biologie structurale
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Résumé

Planifier un chemin pour un système mobile dans un environnement complexe est un point
crucial en robotique. Dans ce contexte, les algorithmes de planification de chemin par
échantillonnage ont eu beaucoup de succès malgré leur simplicité conceptuelle. Cela vient
de leur capacité à résoudre des problèmes de planification complexes faisant intervenir des
systèmes mobiles ayant de nombreux degrés de liberté. Ces algorithmes ont été utilisés dans
des domaines aussi divers que la robotique, l’aérospatiale, le prototypage virtuel, l’animation
graphique, la biologie structurale, et la médecine. Leur principe de base est d’explorer
l’espace des configurations du système mobile en l’échantillonnant, et de construire un graphe
représentant la topologie de cet espace.

En général, la planification par échantillonnage produit des chemins faisables (ou sans
collision) mais ne considère pas leur qualité. On parle de “planification faisable”. Cependant,
dans de nombreux domaines, il est important de calculer des chemins de bonne qualité sur la
base d’un critère donné. Récemment, des variantes des méthodes de planification classiques
ont été créées pour prendre en compte une fonction de coût durant l’exploration. Cela s’appelle
la “planification en espace de coût”. Certaines méthodes visent même à trouver le chemin
optimal dans cet espace de coût. On parle alors de “planification optimale”.

Dans cette thèse, nous proposons plusieurs extensions de méthodes de planification par
échantillonnage, pour résoudre efficacement des problèmes toujours plus difficiles. En effet, de
nombreuses applications produisent des problèmes en haute dimension avec des contraintes
géométriques et différentielles complexes. Les méthodes existantes ne peuvent pas résoudre de
tels problèmes, ou difficilement. Notre travail est centré sur des applications en robotique et en
biologie structurale. En robotique, nous développons des méthodes de planification pour des
robots évoluant dans de très larges environnements, tels que des installations industrielles. Au-
delà du simple calcul d’un chemin allant d’un point A à un point B, une inspection industrielle
nécessite de calculer un chemin visitant plusieurs points de façon efficace. Un autre problème
complexe est la manipulation précise en 6 dimensions exécutée par un système à câbles avec
trois robots aériens. En biologie structurale tous les problèmes sont difficiles de par leur
dimensionnalité, même pour de petites molécules. Notre travail comporte deux aspects :
explorer le paysage énergétique d’un petit peptide, et simuler le processus de séparation d’un
ligand et d’une protéine.

Les méthodes présentées dans cette thèse se basent sur le Rapidly-exploring Random Tree
(RRT), un algorithme populaire en planification faisable, ainsi que certaines variantes: le
Transition-based RRT (T-RRT), pour la planification en espace de coût, et RRT*, pour la
planification optimale. La contribution algorithmique de cette thèse est triple. (1) Nous
présentons des extensions bidirectionnelles et multi-arbres de T-RRT, pour une planification
en espace de coût plus efficace. Nous les appliquons à des problèmes de robotique (inspection
industrielle et manipulation aérienne) et de biologie structurale (mouvement moléculaire et
conformations stables). (2) Nous combinons les concepts de T-RRT et RRT* de deux façons
différentes conduisant à de nouvelles approches améliorant la planification optimale. Nous
les évaluons sur plusieurs problèmes de robotique, et montrons que l’amélioration est partic-
ulièrement significative quand la topologie de l’espace est complexe et/ou sa dimensionnalité
élevée. (3) Nous proposons trois versions parallèles des algorithmes de type RRT pour des ar-
chitectures à mémoire distribuée, afin d’améliorer la planification faisable, en espace de coût,
et optimale. Nous évaluons les versions parallèles de RRT et T-RRT sur des problèmes de
mouvements moléculaires, et analysons les facteurs influençant leurs performances.
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A.1 Introduction

Planifier un chemin pour un système mobile, tel qu’un robot, dans un environnement complexe
(typiquement, le monde réel) est un problème crucial en robotique. Résoudre ce problème
a des répercussions qui peuvent aller bien au-delà du champ de la robotique. Nous pou-
vons commencer par mentionner les domaines applicatifs qui bénéficient directement des
développements technologiques de la robotique, tels que les industries aérospatiale et manu-
facturière. D’autres domaines applicatifs qui sont moins directement connectés à la robotique
peuvent aussi bénéficier de ces avancées : c’est le cas, par exemple, du prototypage virtuel util-
isant des logiciels CAD/CAM. En effet, les tests de (dés)assemblage réalisés dans ce domaine
peuvent être modélisés par des tâches de planification de chemin. L’animation graphique est
un autre exemple : si les personnages virtuels sont modélisés comme des robots, les techniques
de planification de chemin deviennent des outils d’animation graphique. Il existe aussi des
applications médicales : par exemple, trouver un chemin minimalement-invasif pour un outil
chirurgical, étant donné un modèle en trois dimensions du corps d’un patient, peut être vu
comme un problème de planification de chemin. Finalement, grâce aux similitudes existantes
entre les modèles structurels des robots et des molécules, les techniques de planification de
chemin peuvent être appliquées en biologie structurale computationelle.

Le problème de planification de chemin avait originellement été formulé pour un robot
à éléments rigides devant se déplacer dans un environnement contenant des obstacles immo-
biles tout en évitant de rentrer en collision. Cette formulation est généralement nommée le
“problème du déménageur de piano”. Une formulation géométrique du problème de planifi-
cation de chemin a été dérivée de la définition de l’espace des configurations, qui n’est autre
que l’espace contenant toutes les configurations possibles du système mobile. Sur la base de
ce concept, les premières méthodes proposées pour résoudre le problème de planification de
chemin ont été des méthodes déterministes fournissant une solution exacte. Cependant, ces
méthodes ne peuvent pas résoudre les problèmes difficiles, comme ceux mentionnés ci-dessus.
La difficulté d’un problème de planification de chemin provient de la complexité du système
mobile, qui est principalement exprimée par le nombre de ses degrés de liberté, ainsi que
de la complexité de possibles contraintes additionnelles. Les problèmes de planification de
chemin impliquant des systèmes mobiles caractérisés par de nombreux degrés de liberté sont
généralement appelés “problèmes en hautes dimensions”.

A.1.1 La Planification de Chemin par Échantillonnage

Contrairement aux méthodes déterministes, les méthodes de planification de chemin dites
“probabilistes” ont eu beaucoup de succès du fait qu’elles ont permis de résoudre de façon ef-
ficace des problèmes complexes en hautes dimensions. Leur principe sous-jacent est d’explorer
l’espace des configurations du système mobile en l’échantillonnant, et de construire un graphe
représentant sa connectivité. Malgré leur simplicité conceptuelle, les planificateurs de chemin
par échantillonnage se sont avérés être d’une grande valeur dans une large palette d’applications,
telles que celles mentionnées précédemment. De ce fait, elles ont bénéficié d’efforts de recherche
considérables durant ces 15 dernières années. Plusieurs méthodes ont été proposées, et ont
ensuite été améliorées pour résoudre des problèmes difficiles, tels que la planification kinody-
namique, les contraintes de châınes cinématiques fermées, ou les environnements dynamiques.
Parmi ces méthodes, l’algorithme nommé “Rapidly-exploring Random Tree” (RRT) est de-
venu très populaire.

Les planificateurs de chemin par échantillonnage tels que RRT ont traditionnellement été
utilisés pour trouver des chemins faisables (c’est-à-dire des chemins sans collision) sans con-
sidérer la qualité de ces chemins. Ce paradigme peut être nommé la “planification de chemin
faisable” (cf. Fig. A.1). Cependant, dans de nombreux domaines applicatifs il est important
de générer des chemins de bonne qualité, par rapport à un critère de qualité donné. His-
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Figure A.1: Représentation schématique des relations qui existent entre les trois paradigmes
de planification de chemin étudiés dans cette thèse.

toriquement, les premiers critères de qualité a avoir été utilisés sont la longueur du chemin et
la durée de la trajectoire, principalement pour répondre au fait que les chemins produits par les
algorithmes de planification par échantillonnage étaient généralement “saccadés”. Plus tard,
la notion de “dégagement” a été introduite : l’idée sous-jacente est de générer des chemins
le long desquels le système mobile reste le plus loin possible des obstacles, afin d’assurer sa
propre sécurité. Quand l’utilisation d’un tel critère de qualité est importante, après qu’un
chemin-solution soit calculé par le planificateur de chemin par échantillonnage, il est d’usage
courant d’essayer d’améliorer la qualité de ce chemin durant une phase de post-traitement im-
pliquant des méthodes dites de “lissage”. Néanmoins, ces méthodes ne permettent d’améliorer
le chemin que localement. Nous expliquerons, plus loin, comment de meilleurs résultats peu-
vent être obtenus en prenant en compte le critère de qualité pendant l’exploration de l’espace
des configurations.

Comme mentionné précédemment, il peut être utile de générer des chemins de bonne
qualité, sur la base de l’utilisation d’un critère de qualité spécifique. Dans certains contextes
applicatifs, au lieu de considérer un critère, tel que la longueur du chemin, qui évalue la qualité
d’un chemin globalement, il peut être plus intéressant de s’assurer que toutes les configurations
le long du chemin sont de bas coût, par rapport à une fonction de coût donnée. Par exemple,
si l’on souhaite obtenir des chemins à haut dégagement, le coût d’une configuration peut être
basé sur l’inverse de la distance entre le système mobile et l’obstacle le plus proche. En biologie
structurale, le coût d’une conformation d’une molécule est l’énergie moléculaire. Quand une
telle fonction de coût est définie sur l’espace des configurations, on appelle ce dernier un
“espace de coût”. Ce paradigme peut donc être nommé la “planification de chemin en espace
de coût” ou la “planification de chemin basée-coût” (cf. Fig. A.1). Ces dernières années, des
variantes des algorithmes par échantillonnage classiques ont été développées afin de prendre
en compte des fonctions de coût durant l’exploration de l’espace des configurations. Une de
ces méthodes est une variante de RRT appelée le “Transition-based RRT” (T-RRT).
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Allant au-delà de la production d’un chemin de bonne qualité, on peut rechercher un
chemin optimal, par rapport à un critère de qualité de chemin donné. Ce paradigme s’appelle
la “planification de chemin optimal” (cf. Fig. A.1). Appliquées à ce problème, les méthodes à
base de grille classiques, telles que A* et D*, peuvent calculer des chemin-solutions optimaux
en fonction de la résolution de la grille. Cependant, ces méthodes sont limitées aux problèmes
faisant intervenir des espaces à faibles dimensions qui peuvent être discrétisés sans conduire à
une explosion combinatoire. Alternativement, certains planificateurs de chemin déterministes
calculent implicitement un chemin optimal par rapport à un critère spécifique. Par exemple,
le diagramme de visibilité produit le chemin le plus court, et le diagramme de Voronoi génère
le chemin avec dégagement optimal. Néanmoins, ces méthodes sont également limitées aux es-
paces à faibles dimensions et peuvent traiter uniquement les obstacles polygonaux. D’un autre
côté, les planificateurs de chemin par échantillonnage classiques sont capables de traiter des
espaces en hautes dimensions, mais ils produisent généralement des solutions sous-optimales.
En complément, les méthodes de lissage mentionnées précédemment peuvent être utilisées
pour améliorer la qualité des chemins dans une phase de post-traitement, mais elle n’offrent
aucune garantie de convergence vers l’optimum global. Le premier planificateur de type RRT
à fournir une telle garantie a été RRT*.

Malgré les brillants succès des planificateurs de chemin par échantillonnage classiques, leurs
équivalents basés-coût n’ont été proposés que très récemment et souffrent encore de certaines
limitations. En effet, de nombreux domaines applicatifs produisent des problèmes en hautes
dimensions de difficulté toujours croissante, que les méthodes existantes ne peuvent pas traiter,
ou seulement avec difficulté. En outre, la planification de chemin optimal est d’autant plus
difficile sur de tels problèmes, car cela revient à résoudre un problème d’optimisation globale,
non-linéaire, non-convexe, en hautes dimensions. De plus, les critères de qualité de chemin les
plus utilisés sont toujours la longueur du chemin et la durée de la trajectoire, et les fonctions
de coût de configuration les plus utilisées sont des fonctions discrètes à gros grains. Notre
travail vise à traiter des fonctions de coût de configuration continues, ainsi que des critères
de qualité de chemin basés sur ces fonctions de coût (cf. Fig. A.1), ce qui représente un défi
beaucoup plus important. Nos objectifs sont d’améliorer les capacités et les performances des
algorithmes d’échantillonnage, principalement dans le contexte de la planification en espace
de coût et de la planification de chemin optimal. Nous souhaitons également étudier des
applications nécessitant la création de nouvelles méthodes de planification de chemin, dans
les domaines de la robotique et de la biologie structurale.

A.1.2 Contributions Algorithmiques de la Thèse

Dans cette thèse, nous proposons des extensions des algorithmes de planification de chemin
par échantillonnage afin de résoudre efficacement des problèmes toujours plus difficiles faisant
intervenir de complexes fonctions de coût de configuration continues. Les méthodes que nous
développons sont basées sur RRT, qui peut résoudre le problème de planification de chemin
faisable, ainsi que sur certaines de ses variantes : T-RRT, qui peut résoudre le problème de
planification de chemin en espace de coût, et RRT*, qui peut résoudre le problème de planifi-
cation de chemin optimal. Les algorithmes RRT, T-RRT et RRT* sont rapidement présentés
dans le Chapitre 2. Ensuite, nous présentons les différentes contributions algorithmiques
proposées dans cette thèse (cf. Fig. A.2).

Premièrement, afin d’aboutir à une planification de chemin basée-coût plus efficace, nous
développons plusieurs extensions de T-RRT, en commençant par améliorer sa variante mono-
directionnelle originelle, puis en proposant une variante bidirectionnelle que nous généralisons,
pour finir, en une variante multi-arbres (cf. Fig. A.2 et Chapitre 3). Plus précisément, nous
suggérons d’améliorer les performances du T-RRT mono-directionnel (qui avait été originelle-
ment proposé comme une extension du RRT Extend de base) en modifiant l’implémentation
de son test de transition (cf. Section 3.1). Nous montrons également qu’utiliser le T-RRT



124 Appendix A. French Summary

Planification de
Chemin Optimal

Transition-based
RRT*

T-RRT
Anytime

Multi-T-RRT
Anytime

Planification de
Chemin Basée-coût

T-RRT
mono-directionnel

T-RRT
Bidirectionnel

Multi-T-RRT

Planification de
Chemin Faisable

Planification de Chemin en Parallèle

RRT
OU parallèle

RRT
Distribué

RRT
Maître-esclave

Figure A.2: Organisation schématique des principaux algorithmes proposés dans cette thèse
et des relations entre eux.

Connect ou le T-RRT Biaisé-but produit généralement des améliorations (cf. Section 3.1).
Ensuite, nous présentons une extension bidirectionnelle de T-RRT qui permet de réduire les
temps de calcul et qui augmente parfois (ou sinon maintient) la qualité du chemin-solution (cf.
Section 3.2). En généralisant cette approche, nous développons une extension multi-arbres
de T-RRT qui peut produire un chemin passant par un ensemble de points de passage, et
nous montrons que cet algorithme surpasse des planificateurs de chemin utilisant le T-RRT
Bidirectionnel (cf. Section 3.3). Dans tout le Chapitre 3, nous appliquons ces extensions de
T-RRT à des problèmes de robotique utiles en pratique (bien qu’uniquement simulés dans nos
expérimentations) tels que des tâches d’inspection industrielle faisant intervenir des robots
aériens.

Deuxièmement, pour améliorer l’efficacité des approches de planification de chemin opti-
mal, nous combinons les concepts bénéfiques sous-jacents à T-RRT et RRT* de deux façons
différentes (cf. Chapitre 4). Nous proposons une extension de RRT* nommée Transition-
based RRT* (T-RRT*) et une extension de T-RRT nommée T-RRT Anytime (AT-RRT). De
part leurs définitions, T-RRT* et AT-RRT incluent tous deux 1) les propriétés de filtrage
basées-coût du test de transition de T-RRT, favorisant la création de nouveaux nœuds dans
les régions de bas coût de l’espace des configurations, et 2) la gestion des arêtes basée-qualité
de RRT*, permettant à la qualité du chemin-solution de s’améliorer au fil du temps (cf. Sec-
tion 4.1). Nous montrons que ces deux algorithmes sont probabilistiquement complets et
asymptotiquement optimaux (cf. Section 4.2). Ensuite, nous évaluons T-RRT* et AT-RRT
sur plusieurs problèmes de planification de chemin optimal, et nous montrons qu’ils convergent
vers le chemin-solution optimal plus rapidement que RRT* (cf. Section 4.3). Nous montrons
également que l’amélioration de performance observée est particulièrement significative quand
la topologie de l’espace des configurations est complexe et/ou quand sa dimensionnalité est
élevée.
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Troisièmement, afin d’améliorer l’efficacité de la planification de chemin faisable, basée-
coût et optimale, nous proposons trois stratégies de parallélisation pour les algorithmes de
type RRT (cf. Fig. A.2 et Chapitre 5). Nous nous concentrons sur la question de paralléliser
RRT sur des architectures à mémoire distribuée, ce qui nécessite d’utiliser la “Message Pass-
ing Interface” (MPI). Plus précisément, nous développons trois versions parallèles de RRT
basées sur des schémas de parallélisation classiques : RRT OU parallèle, RRT Distribué
et RRT Mâıtre-esclave (cf. Section 5.1). Ensuite, nous évaluons les versions parallèles de
RRT et T-RRT sur plusieurs problèmes de planification de chemin (cf. Section 5.2), et nous
analysons les différents facteurs influençant leurs performances (cf. Section 5.3). Nos résultats
expérimentaux montrent que paralléliser les algorithmes de type RRT avec MPI peut aboutir
à des améliorations de performance substantielles dans plusieurs cas correspondants à de
nombreux problèmes de robotique complexes et à tous les problèmes de biologie structurale.
De plus, nous expliquons comment les algorithmes de type RRT introduits dans cette thèse
peuvent être parallélisés (cf. Section 5.4).

Finalement, nous combinons plusieurs des approches présentées dans cette thèse pour
développer de nouveaux algorithmes pouvant résoudre de nouveaux types de problèmes de
planification de chemin difficiles. La raison qui nous a poussée à présenter ces méthodes
séparément dans les Chapitres 3 à 5 est d’avoir la possibilité de les évaluer et de les analyser
indépendamment les unes des autres. D’un autre côté, de nouvelles applications intéressantes
peuvent être traitées en combinant certaines de ces méthodes. Par exemple, nous intégrons
ensemble les paradigmes “anytime” et “multi-arbres” pour créer un Multi -T-RRT Anytime
(cf. Fig. A.2) que nous utilisons en robotique (cf. Chapitre 6) et en biologie structurale (cf.
Chapitre 7).

A.1.3 Applications

En complément des diverses contributions algorithmiques mentionnées ci-dessus, cette thèse
contient également plusieurs contributions applicatives. En effet, nous avons appliqué plusieurs
des techniques de planification de chemin par échantillonnage présentées dans cette thèse à
des problèmes de planification de chemin difficiles (et parfois nouveaux) dans les domaines de
la robotique (cf. Chapitre 6) et de la biologie structurale computationelle (cf. Chapitre 7).

Robotique

En robotique, il est nécessaire de développer des méthodes pouvant prendre en compte des
robots se déplaçant dans des espaces de travail de grande échelle, tels que des installa-
tions industrielles (plate-formes pétrolières, centrales électriques, aciéries, etc). Au-delà de
la génération d’un chemin allant d’un point A à un point B (ce que nous appelons le problème
“départ-à-but”), les tâches d’inspection industrielle nécessitent de produire un chemin pas-
sant de manière efficace par un ensemble de points de passage donnés, ce que nous appelons le
problème “d’ordonnancement et de recherche de chemin” (cf. Section 6.2). Pour résoudre ce
problème hybride de planification de tâche et de chemin, nous proposons une variante de T-
RRT appelée Multi -T-RRT Anytime, basée sur la combinaison de deux extensions de T-RRT
présentées dans cette thèse : le Multi -T-RRT et le T-RRT Anytime. Grâce au Multi -T-RRT
Anytime, les problèmes “d’ordonnancement et de recherche de chemin” peuvent être résolus
de façon purement géométrique, sans avoir à utiliser un planificateur de tâches symbolique.
Nous démontrons l’intérêt de cette méthode sur un problème d’inspection industrielle faisant
intervenir un robot aérien.

Un autre problème difficile que nous abordons ici est celui de la manipulation de précision
en six dimensions effectuée par un système à câbles faisant intervenir plusieurs robots aériens
coopérants (cf. Section 6.1). Pour cela, nous proposons un système, que nous avons appelé le
FlyCrane, et qui est constitué d’une plate-forme attachée à trois robots volants, au moyen de
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six câbles de longueurs fixes. De plus, l’élément principal de notre approche est une fonction
de coût de configuration spécifique à cette application, qui prend en compte les contraintes
associées à ce système robotique. Plus précisément, cette fonction de coût est basée sur des
contraintes de faisabilité de tension (dérivées de l’analyse statique des manipulateurs à câbles)
ainsi que sur des contraintes de poussée. Afin de valider notre approche, nous étudions deux
problèmes de manipulation en simulation. Nos expérimentations montrent la supériorité de la
planification de chemin basée-coût sur la planification de chemin faisable pour de tels systèmes
robotiques complexes.

La plupart des problèmes de planification de chemin que nous traitons en robotique sont
issus du projet européen ARCAS1. Les objectifs de ce projet sont de développer des systèmes
robotiques faisant intervenir des robots aériens coopérants, pour l’installation, l’inspection
et la maintenance d’installations industrielles, dans des endroits difficiles d’accès pour des
humains. Un exemple d’application possible est la construction de plate-formes d’atterrissage
en terrain irrégulier, pour des avions ou des drones. Un autre exemple est l’assemblage de
structures temporaires pour l’évacuation de personnes lors d’opérations de secours. Il est à
noter que, malgré l’intérêt de traiter de tels problèmes dans des situations réelles, le rôle de
notre équipe a été de développer et d’évaluer de nouvelles méthodes de planification de chemin
dans des environnements virtuels. Les expérimentations dans le monde réel font partie des
travaux en cours au sein du projet ARCAS.

Biologie Structurale Computationelle

En biologie structurale computationelle, tous les problèmes sont difficiles par nature, du fait
de leur dimensionnalité élevée, même quand seulement de petites molécules sont considérées.

Le premier thème que nous abordons dans cette thèse est l’exploration des paysages
énergétiques de peptides petits mais hautement flexibles (cf. Section 7.1). Pour cela, nous
combinons deux méthodes d’échantillonnage complémentaires. 1) Nous proposons une ver-
sion simplifiée de l’algorithme Basin Hopping, qui permet de très rapidement isoler les états
structurels méta-stables d’un peptide. En biologie structurale computationelle, le Basin Hop-
ping est une méthode classique permettant d’échantillonner les minima locaux du paysage
énergétique d’une molécule. 2) Ensuite, nous utilisons le Multi -T-RRT et le Multi -T-RRT
Anytime pour rapidement déterminer les ensembles d’états de transition et les ensembles de
chemins de transition, ainsi que les probabilités de transition, entre ces états méta-stables.
Nous validons cette approche combinée sur l’alanine aux terminaisons bloquées.

Le second thème que nous abordons ici est la simulation du processus de séparation d’un
complexe protéine-ligand (cf. Section 7.2). Nous proposons une approche basée sur une
représentation mécanique du système moléculaire et qui, pour le moment, ne considère qu’une
flexibilité partielle. La version actuelle de notre approche est purement géométrique, ce qui
signifie qu’aucun calcul d’énergie moléculaire n’est effectué, et que les chemins sont validés
uniquement sur la base de la détection de collisions. Cette simplification du problème nous per-
met d’utiliser une variante de RRT appelée Manhattan-like RRT (ML-RRT), dont l’efficacité
exploratoire conduit à des temps de calcul très courts. Nous nous étions imposé cette obli-
gation afin de pouvoir développer cette méthode comme une application web performante.
Cet outil produit des chemins de séparation de ligand qui, en tant que première approxima-
tion, peuvent être une source d’informations utiles concernant les interactions protéine-ligand.
Nous démontrons l’intérêt de cette approche sur le complexe hexamère insuline-phénol. Enfin,
il est à noter que l’intégration des calculs d’énergie moléculaire dans cette approche fait partie
de nos travaux en cours.

Notre travail en biologie structurale computationelle a été effectué au sein de deux projets
de recherche nommés GlucoDesign et ProtiCAD. L’objectif du projet GlucoDesign était la

1http://www.arcas-project.eu
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conception assistée-par-ordinateur d’outils de glycosylation enzymatique pour la synthèse de
vaccins contre la shigellose endémique (ou dysenterie bacillaire). Les objectifs du projet
ProtiCAD2 sont de produire une méthodologie générale pour la conception de protéines, et
de développer des outils informatiques pour la synthèse de nouvelles protéines.

A.2 Méthodes Apparentées de Planification de Chemin par
Échantillonnage

Les algorithmes de planification de chemin par échantillonnage ont eu beaucoup de succès
dans le cadre de la résolution efficace de problèmes de planification difficiles faisant inter-
venir des systèmes mobiles caractérisés par de nombreux degrés de liberté, autrement dit des
problèmes en hautes dimensions [33,104]. Ils se sont avérés très utiles pour un large éventail de
domaines applicatifs, tels que la robotique, l’industrie aérospatiale, l’industrie manufacturière,
le prototypage virtuel, l’animation graphique, la médecine, et la biologie structurale compu-
tationelle. En conséquence, ils ont bénéficié de considérables efforts de recherche durant ces
quinze dernières années. Plusieurs approches ont été proposées (cf., par exemple, [75,95,106])
et ont ensuite été étendues pour traiter des problèmes difficiles, tels que la planification kino-
dynamique [40, 75, 105], les contraintes de fermeture de châınes cinématiques [38, 160], ou les
environnements dynamiques [59,61,67,152,166].

Dans ce chapitre, nous passons rapidement en revue certaines de ces méthodes, dans le
contexte de la planification de chemin faisable, basée-coût, et optimale. Nous insistons plus
particulièrement sur les algorithmes sur lesquels nous avons travaillé dans cette thèse, ou que
nous avons utilisé comme point de comparaison dans nos évaluations expérimentales. Nous
passons également en revue les travaux apparentés dans le contexte de la planification de
chemin en parallèle.

A.2.1 Planification de Chemin Faisable

Traditionnellement, la planification de chemin s’est focalisée sur la génération de chemins
faisables, pour un système mobile, dans un environnement contenant des obstacles [102]. De
façon informelle, un chemin est dit faisable s’il évite les collisions avec les obstacles et les
collisions entre différentes parties articulées du système mobile (ou auto-collisions).

A.2.2 Planification de Chemin en Espace de Coût

Au lieu de construire des chemins qui sont uniquement faisables, il peut s’avérer important de
générer des chemins de “bonne qualité” par rapport à un critère de qualité donné. Historique-
ment, comme les chemins produits par les algorithmes de planification par échantillonnage
était généralement “saccadés”, les premiers critères de qualité à avoir été considérés ont été
la longueur du chemin et la durée de la trajectoire, évaluant ainsi la qualité d’un chemin dans
sa globalité [69]. Cependant, il peut être plus intéressant de s’assurer que toutes les config-
urations le long d’un chemin sont de coût faible par rapport à une fonction de coût donnée.
Quand une telle fonction de coût est définie sur l’espace des configurations, on appelle ce
dernier un “espace de coût”, et l’on parle de “planification de chemin en espace de coût” ou
de “planification de chemin basée-coût”.

Les premiers travaux en planification de chemin en espace de coût faisaient intervenir
uniquement des fonctions de coût discrètes à gros grain [60, 93]. Notre travail se concentre
sur des fonctions de coût continues, ce qui est plus difficile. Par exemple, dans des problèmes
de navigation en extérieur, le coût d’une configuration peut être l’élévation de la position
d’un robot dans un terrain en deux dimensions. Dans les problèmes où l’on souhaite obtenir

2http://projects.laas.fr/ProtiCAD
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des chemins à haut dégagement, le coût d’une configuration peut être basé sur l’inverse de la
distance entre le système mobile et l’obstacle le plus proche [49,83]. Des fonctions de coût bien
plus complexes peuvent intervenir dans des problèmes robotiques [12, 116] ou des problèmes
de biologie structurale [82].

Soit c : C → R+ une fonction de coût associant à chaque configuration un coût positif.
Résoudre le problème de planification de chemin en espace de coût revient à résoudre le
problème de planification de chemin faisable en prenant en compte la fonction de coût c lors de
l’exploration de l’espace des configurations. Ceci est équivalent à effectuer un échantillonnage
par rejet, en filtrant les configurations sur la base de leurs coûts. Plus précisément, chaque
méthode visant à résoudre le problème de planification de chemin en espace de coût impose
une contrainte de coût spécifique, évaluant chaque configuration sur la base de son coût seul
ou de la variation de coût associée au mouvement local entre deux configurations.

Les premières approches traitant le problème de planification de chemin en espace de coût
étaient dérivées de RRT. Malheureusement, toutes ces approches étaient focalisées sur des
applications spécifiques dans le domaine de la navigation robotique en deux dimensions [57,
58, 60, 61, 107, 151], et certaines d’entre elles étaient évaluées uniquement sur des espaces de
configurations faisant intervenir des fonctions de coût discrètes à gros grains [60, 61, 151].
En outre, toutes ces méthodes souffrent de divers désavantages pratiques [83]. Par exemple,
certaines se basent sur l’estimation du “coût-au-but”, qui tend à biaiser la recherche droit
vers le but au détriment de chemins de meilleure qualité [60, 61, 151]. De plus, la méthode à
seuil présentée dans [57, 58] souffre de la nature non-décroissante de son seuil et de sa haute
sensibilité au taux d’accroissement du seuil [83]. Dans cette section, nous présentons une
variante de RRT appelée Transition-based RRT (T-RRT), qui a eu plus de succès que les
méthodes précédentes dans le cadre de la planification de chemin en espace de coût.

A.2.3 Planification de Chemin Optimal

Dans certains contextes applicatifs, au-delà de la génération de chemins de bonne qualité, il
peut s’avérer intéressant de produire un chemin optimal, par rapport à un critère de qualité
donné. Ce paradigme est appelé la “planification de chemin optimal” [93]. Cela peut signifier,
par exemple, trouver le chemin le plus court, comme ceci est souvent le cas en robotique.
Cependant, dans cette thèse, nous souhaitons ne pas nous restreindre à de tels critères, qui
évaluent la qualité d’un chemin dans sa globalité en ignorant les coûts des configurations le long
de ce chemin. Notre objectif est d’introduire une formulation plus générale du problème de
planification de chemin optimal, où le critère de qualité de chemin est défini sur la base d’une
fonction de coût de configuration caractérisant l’espace de coût. Par exemple, en robotique,
ce type de planification de chemin optimal peut correspondre à la recherche d’un chemin
maximisant la sécurité ; en biologie, cela signifie trouver un mouvement minimisant la variation
d’énergie d’une molécule.

Appliquées au problème de planification de chemin optimal, les méthodes de grille clas-
siques, telles que A* et D*, peuvent calculer un chemin-solution optimal en résolution [148].
Cependant, ces méthodes sont limitées à des problèmes faisant intervenir des espaces à faibles
dimensions qui peuvent être discrétisés sans conduire à une explosion combinatoire. Alter-
nativement, certains planificateurs de chemin déterministes calculent un chemin optimal par
rapport à un critère de qualité spécifique. Par exemple, le diagramme de visibilité permet
d’obtenir le chemin le plus court, et le diagramme de Voronoi permet de générer le chemin à
dégagement optimal [102]. Néanmoins, ces méthodes sont aussi limitées aux espaces à faibles
dimensions, et peuvent uniquement traiter des obstacles polygonaux. D’un autre côté, les
planificateurs de chemin par échantillonnage classiques peuvent traiter des espaces en hautes
dimensions, mais produisent généralement des solutions sous-optimales, parce qu’ils se fo-
calisent sur la planification de chemin faisable. En complément de ces méthodes, après qu’un
chemin-solution ait été généré, il est courant d’essayer d’améliorer la qualité de ce chemin
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durant une phase de post-traitement faisant intervenir des méthodes dites de “lissage” [69].
Néanmoins, ces méthodes permettent seulement d’améliorer le chemin localement et n’offrent
aucune garantie de convergence vers l’optimum global. Le premier planificateur de chemin
par échantillonnage fournissant cette garantie était RRT* [90].

A.2.4 Planification de Chemin en Parallèle

L’idée d’améliorer les performances de la planification de chemin en utilisant le calcul par-
allèle a été explorée depuis déjà plusieurs dizaines d’années. Un article passe en revue les
premiers travaux sur le sujet et suggère un schéma de classification pour présenter diverses
approches de planification de chemin et leur méthodes parallèles associées [74]. Une tendance
récente est d’exploiter la technologie multi-cœurs disponible sur de nombreux ordinateurs
modernes, et qui permet d’avoir plusieurs threads travaillant en collaboration à la résolution
d’un problème [40]. Une autre tendance récente consiste à utiliser des modèles à mémoire
partagée sur des Graphics Processing Units (GPUs) [15,17,129,130].

Dans le Chapitre 5 de cette thèse, nous étudions le problème de la parallélisation de
RRT sur des architectures à mémoire distribuée, en utilisant la Message Passing Interface
(MPI). A notre connaissance, il existe une seule tentative de parallélisation de RRT sur
mémoire distribuée. Dans [44], la construction de l’arbre est distribuée entre plusieurs agents
autonomes, en utilisant un modèle à messages. Cependant, aucune explication n’est donnée
concernant la distribution des calculs, ou comment l’arbre est reconstruit à partir des parties
construites par les agents.

Notre but est de développer des versions parallèles de RRT. Nous ne traitons pas la
parallélisation des routines de RRT, telles que la détection de collision [15], ni la parallélisation
des variantes de RRT, telles que le RRT anytime [127]. Dans le Chapitre 5, nous présentons
trois versions parallèles de RRT, basées sur des schémas de parallélisation classiques : le RRT
OU parallèle, le RRT Distribué, et le RRT Mâıtre-esclave [48,50]. Depuis que ce travail a été
publié, deux extensions de notre RRT Distribué ont été proposées [81].

A.3 Planification de Chemin Basée-coût Efficace dans des
Espaces de Coût Continu Complexes

En planification de chemin, au lieu de viser seulement à éviter les collisions, il peut être
important de produire des chemins de bonne qualité. Ces dernières années, des variantes des
algorithmes d’échantillonnage classiques ont été développées afin de prendre en compte des
fonctions de coût lors de l’exploration de l’espace des configurations. Parmi ces méthodes, le
Transition-based RRT (T-RRT) avait été créé comme une extension de RRT visant à effectuer
spécifiquement de la planification de chemin en espace de coût (cf. Section 2.2).

T-RRT a été appliqué à des problèmes variés en robotique [12, 79, 83] (certains faisant
même intervenir des interactions homme–robot [114]) et en biologie structurale computa-
tionelle [79, 82]. Ces problèmes représentent de vrais défis car ils font intervenir des espaces
en hautes dimensions et des fonctions de coût continues complexes. Notre objectif est de
développer des extensions de T-RRT permettant d’améliorer ses performances et de résoudre
des problèmes encore plus difficiles, ainsi que de nouveaux types de problèmes. Puisque T-
RRT a été créé comme un algorithme mono-directionnel similaire au RRT Extend, il peut
faire l’objet d’améliorations significatives, sur la base d’idées qui se sont avérées bénéfiques
pour RRT, ainsi que de nouvelles idées.

Dans ce chapitre, nous présentons plusieurs extensions de T-RRT, en commençant par
des améliorations de sa variante mono-directionnelle originelle, puis une variante bidirection-
nelle, et enfin une variante multi-arbres. Premièrement, nous améliorons les performances
du T-RRT mono-directionnel en modifiant l’implémentation de son test de transition. Nous
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montrons également qu’utiliser un T-RRT Connect ou un T-RRT Biaisé-but peut parfois être
profitable. Deuxièmement, nous présentons une extension bidirectionnelle de T-RRT qui per-
met de réduire les temps de calcul et parfois d’accrôıtre (ou alors de maintenir) la qualité des
chemins. Nous montrons également que le T-RRT Bidirectionnel peut produire des chemins
de meilleure qualité que RRT* dans des espaces en hautes dimensions. Troisièmement, nous
proposons une extension multi-arbres de T-RRT, qui peut produire un chemin passant par
un ensemble de points de passage, et nous montrons qu’elle surpasse des planificateurs de
chemin faisant intervenir le T-RRT Bidirectionnel. Ce chapitre contient aussi une discussion
préliminaire sur une version anytime du Multi-T-RRT, qui est détaillée plus loin dans cette
thèse (cf. Chapitres 6 et 7). Enfin, il est à noter que toutes les variantes de T-RRT présentées
dans ce chapitre ont été implémentées et évaluées dans la plate-forme de planification de
chemin Move3D [145].

A.3.1 Extensions de la Variante Mono-directionnelle de T-RRT

Dans cette section, nous présentons diverses extensions de la version originelle de T-RRT, qui
avait été introduit comme un algorithme mono-directionnel semblable au RRT Extend (cf.
Section 2.1). De part cette similarité, on pourrait penser que les modifications ayant amélioré
le RRT mono-directionnel puissent être aussi avantageuses pour le T-RRT mono-directionnel.
Nous montrons que ce n’est pas toujours le cas pour les variantes Connect et Biaisé-but de
T-RRT. D’un autre côté, nous proposons des modifications du test de transition de T-RRT
qui améliorent ses performances.

A.3.2 Extension Bidirectionnelle de T-RRT

Le RRT Bidirectionnel est plus performant que le RRT mono-directionnel [106]. De ce fait,
dans cette section, nous évaluons s’il est possible de développer une version bidirectionnelle de
T-RRT qui améliore ses performances. Il est à noter que cela ne signifie pas seulement réduire
les temps de calcul, mais aussi accrôıtre (ou au moins maintenir) la qualité des chemins. Nous
comparons plusieurs implémentations possibles pour les composantes du T-RRT Bidirection-
nel et sélectionnons les meilleures ; ceci concerne principalement la façon dont les arbres sont
étendus et connectés. Ensuite, nous analysons les profiles de coût de chemins produits par le
T-RRT Bidirectionnel et le T-RRT Extend, afin de mieux comprendre pourquoi le premier sur-
passe parfois le second en termes de qualité de chemins. Nous comparons également ces deux
variantes de T-RRT à RRT*, et nous montrons que T-RRT produit des chemins de meilleure
qualité que RRT* dans les espaces en hautes dimensions. Enfin, nous présentons un problème
d’inspection industrielle faisant intervenir un robot aérien, que le T-RRT Bidirectionnel peut
résoudre efficacement, mais pas le T-RRT Extend.

A.3.3 Extension Multi-arbres de T-RRT

Dans cette section, nous proposons une variante multi-arbres de T-RRT, que nous avons ap-
pelé le Multi -T-RRT. Comme des approches multi-arbres pour la planification de chemin par
échantillonnage ont été développées pour des applications diverses, avec différents objectifs,
nous commençons par spécifier l’étendue de notre approche dans ce contexte général. En
bref, notre but est de développer un planificateur à requête simple, capable de générer un
chemin passant par un ensemble de points de passage donné, dans un environnement fixé.
Puisqu’il existe de nombreux planificateurs de chemin multi-arbres faisant intervenir RRT,
nous évaluons les stratégies existantes pour l’expansion et la connexion d’arbres, et nous
sélectionnons les plus efficaces pour développer le Multi-T-RRT ; cela nécessite de prendre
en compte les subtilités liées à la présence de contraintes de coût. Ensuite, nous évaluons le
Multi-T-RRT et nous montrons qu’il surpasse les schémas de planification de chemin faisant
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intervenir le RRT Bidirectionnel. Finalement, nous proposons une procédure d’ajout de cycles
utiles conduisant à une version anytime du Multi-T-RRT, et permettant d’améliorer contin-
uellement le chemin-solution. Nous montrons également que cette variante du Multi-T-RRT
conduit à une convergence plus rapide vers l’optimum que PRM et que RRTobst way. Seuls
des résultats préliminaires sont présentés dans cette section ; la variante anytime de T-RRT
est présentée plus en détails dans le Chapitre 4.

A.4 Planification de Chemin Optimal Efficace dans des
Espaces de Coût Continu Complexes

En robotique, calculer un chemin-solution optimal (par rapport à un critère de qualité de
chemin donné) pour un problème de planification de chemin, se fait, de façon classique, en
utilisant des méthodes de grille telles que A* ou D* [148]. Cependant, ces méthodes sont
connues pour être limitées à des problèmes faisant intervenir des espaces de recherche en
faibles dimensions. Dans le contexte de la planification de chemin par échantillonnage, la
génération d’un chemin-solution optimal est un sujet de recherche relativement nouveau [93].
Les premiers planificateurs de chemin par échantillonnage développés dans ce but ont été une
variante de PRM appelée PRM*, et deux variantes de RRT appelées RRG et RRT*. En
fait, il a été démontré que les algorithmes PRM*, RRG et RRT* fournissent des garanties
d’optimalité asymptotique, et qu’ils peuvent, de ce fait, résoudre le problème de planification
de chemin optimal (cf. Section 2.3). D’un autre côté, il a été montré que RRT (et, par
extension, T-RRT) n’offre aucune garantie d’optimalité asymptotique [93].

Historiquement, les premiers critères de qualité à avoir été utilisés sont la longueur du
chemin et la durée de la trajectoire. Dans cette thèse, nous souhaitons travailler avec des
critères de qualité de chemin définis sur la base de fonctions de coût de configuration contin-
ues, ce qui est plus difficile. Dans ce contexte, RRT* n’est pas très efficace, car il ne prend pas
en compte la fonction de coût de configuration lors de l’échantillonnage de l’espace de coût
et de la création de nouveaux nœuds. En effet, RRT* peut prendre en compte uniquement
un critère de qualité de chemin, lors de la création ou de la suppression d’arêtes. Ceci peut
potentiellement expliquer le fait qu’il a été observé que RRT* converge vers le chemin-solution
optimal assez lentement dans les espaces de coût en hautes dimensions (cf. Section 3.2 et [79]).
D’un autre côté, grâce aux propriétés de filtrage de son test de transition de type Metropolis,
l’exploration effectuée par T-RRT favorise les régions de bas coût de l’espace des configura-
tions. En fait, T-RRT crée de nouveaux nœuds principalement dans ces zones favorables.
Néanmoins, T-RRT ne peut pas prendre en compte le critère de qualité de chemin lors de
la création d’arêtes, et, de ce fait, ne possède aucun mécanisme permettant d’améliorer la
qualité du chemin-solution. Pour résumer, il apparâıt clairement que RRT* et T-RRT sont
basés sur des concepts différents (et complémentaires) qu’il est intéressant de combiner.

Dans ce chapitre, nous abordons la question de concevoir des algorithmes efficaces pour
résoudre des problèmes de planification de chemin optimal difficiles et faisant intervenir des
fonctions de coût de configuration continues complexes. Pour cela, nous nous basons sur
les extensions de RRT mentionnées ci-dessus, à savoir T-RRT et RRT*. Nous combinons
les deux concepts bénéfiques sous-jacents à ces méthodes : 1) les propriétés de filtrage du
test de transition de T-RRT, favorisant la création de nouveaux nœuds dans les régions de
bas coût de l’espace, et 2) la gestion basée-qualité des arêtes de RRT*, permettant à la
qualité du chemin-solution d’augmenter avec le temps. Nous effectuons cela de deux façons
différentes, en proposant une extension de RRT* nommée Transition-based RRT* (T-RRT*)
et une extension de T-RRT nommée T-RRT Anytime (AT-RRT). Ces deux algorithmes offrent
des garanties d’optimalité asymptotique, c’est-à-dire qu’ils peuvent résoudre le problème de
planification de chemin optimal. Ils permettent d’explorer efficacement les espaces de coût
continu complexes, produisant des chemin-solutions de bonne qualité qui s’améliorent avec le
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temps de façon “anytime”.
Nous évaluons T-RRT* et AT-RRT sur plusieurs problèmes de planification de chemin

optimal, et nous montrons qu’ils convergent vers le chemin optimal plus rapidement que
RRT*. Grâce aux propriétés de filtrage du test de transition, T-RRT* et AT-RRT peuvent
résoudre efficacement des problèmes difficiles sur lesquels RRT* converge très lentement. Nous
présentons plusieurs exemples illustrant divers facteurs pouvant rendre un problème de plan-
ification de chemin optimal difficile à résoudre. 1) Si le problème fait intervenir un espace
de travail de grande échelle, même en faibles dimensions, favoriser les régions de bas coût
évite de gaspiller du temps à explorer tout l’espace. 2) Si l’espace comprend plusieurs classes
d’homotopie entre lesquelles il est difficile de passer, même en faibles dimensions, utiliser le
test de transition peut biaiser la recherche vers la classe contenant le chemin optimal et éviter
de se retrouver bloqué dans une classe sous-optimale. 3) Si le problème est en hautes dimen-
sions, il est intrinsèquement complexe, car l’espace de recherche est très grand, par nature, et
peut potentiellement contenir de nombreuses classes d’homotopie.

A.4.1 Algorithmes

Dans cette section, nous combinons les concepts bénéfiques sous-jacents à T-RRT et RRT*,
pour développer de nouveaux algorithmes héritant de leurs points forts mais pas de leurs
points faibles respectifs. Le premier algorithme, nommé Transition-based RRT* (T-RRT*),
est basé sur l’intégration du test de transition de type Metropolis de T-RRT dans RRT*.
L’idée est de favoriser l’exploration des régions de bas coût de l’espace, en prenant en compte
la fonction de coût de configuration (comme le fait T-RRT), tout en maintenant les propriétés
asymptotiques de RRT*. Le second algorithme, nommé T-RRT Anytime (AT-RRT), consiste
à enrichir T-RRT avec un comportement “anytime” en intégrant une procédure ajoutant des
cycles utiles (par rapport au critère de qualité de chemin) dans le graphe construit sur l’espace
des configurations, comme cela est fait pour PRM dans [124]. L’idée est d’obtenir rapidement
une première solution de bonne qualité et, ensuite, de continuer l’exploration pour que la
solution s’améliore continuellement et converge vers le chemin optimal.

A.4.2 Analyse Théorique

Dans cette section, nous montrons que T-RRT* et AT-RRT sont tous deux probabilistique-
ment complets et asymptotiquement optimaux.

A.4.3 Évaluation

Dans cette section, nous évaluons T-RRT* et AT-RRT sur plusieurs problèmes de planification
de chemin optimal, qui diffèrent en termes de dimensionnalité, de complexité géométrique, et
de type de fonction de coût de configuration.

A.5 Planification de Chemin en Parallèle sur des Architec-
tures à Mémoire Distribuée

En dépit du niveau de succès atteint par la planification de chemin par échantillonnage, cer-
tains problèmes difficiles représentent toujours un défi trop grand pour les méthodes actuelles.
Une façon de relever ce défi est de proposer des versions améliorées des approches existantes,
au niveau algorithmique, comme nous l’avons fait dans les Chapitres 3 et 4. Une autre so-
lution est d’optimiser les approches existantes, au niveau implémentation, pour les rendre
plus efficaces. Dans le contexte des algorithmes de type RRT, plusieurs techniques ont été
proposées, telles que la réduction de la complexité de la recherche du plus proche voisin [162],
le contrôle dynamique des domaines d’échantillonnage [84], ou la réduction de la dispersion
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des échantillons [109]. Au lieu d’optimiser les différentes composantes de ces algorithmes, une
approche plus globale peut être adoptée, sur la base du calcul parallèle.

Dans ce chapitre, nous abordons la question d’améliorer les performances des algorithmes
de type RRT en exploitant l’accélération intrinsèque au calcul parallèle. Certains résultats ont
déjà été obtenus dans ce sens (cf. Section 2.4). Néanmoins, les travaux existants considèrent
principalement les architectures à mémoire partagée et le parallélisme à petite échelle, jusqu’à
16 processeurs. Dans ce travail, nous nous intéressons à ce qui peut être obtenu grâce au
parallélisme à grande échelle. Nous nous focalisons sur la parallélisation des algorithmes
de type RRT sur des architectures à mémoire distribuée de grande échelle, ce qui nécessite
d’utiliser la Message Passing Interface (MPI).

Ce travail de parallélisation peut bénéficier à la planification de chemin faisable, basée-
coût, et optimale. Cependant, les exemples présentés dans ce chapitre se concentrent sur la
planification de chemin basée-coût et optimale. Par souci de clarté, nous commençons par
présenter des versions parallèles de la variante mono-directionnelle de base de RRT. Ensuite,
nous réalisons des évaluations expérimentales faisant intervenir les algorithmes RRT et T-
RRT. Pour finir, nous expliquons comment les nouveaux algorithmes de type RRT proposés
dans les autres chapitres, tels que la variante multi-arbres (anytime) de T-RRT, peuvent être
parallélisés (cf. Section 5.4).

Nous comparons trois versions parallèles de RRT, basées sur des schémas de parallélisation
bien connus : le RRT OU parallèle, le RRT Distribué et le RRT Mâıtre-esclave. En complément
des algorithmes eux-mêmes, nous présentons les principales spécificités techniques impliquées
dans leur développement (Section 5.1). Notre contribution se concentre sur l’évaluation de
ces algorithmes sur plusieurs problèmes de planification de chemin, afin de montrer leurs
différences de comportement (Section 5.2). Nous analysons également leurs performances afin
de comprendre l’impact de plusieurs caractéristiques des problèmes étudiés (Section 5.3). Nos
évaluations montrent que paralléliser les algorithmes de type RRT avec MPI peut apporter
des améliorations de performance significatives dans deux cas : 1) les problèmes dont la vari-
abilité du temps de calcul séquentiel est élevée peuvent bénéficier du RRT OU parallèle ; 2)
les problèmes pour lesquels le coût d’une expansion de RRT est élevé peuvent bénéficier du
RRT Distribué et du RRT Mâıtre-esclave. Tous les problèmes de biologie structurale, ainsi
que de nombreux problèmes de robotique, sont caractérisés par des expansions de RRT ayant
un coût de calcul important, et peuvent donc bénéficier de ces algorithmes parallèles.

A.5.1 Parallélisation de RRT

Pour des raisons de passage à l’échelle, nous parallélisons RRT sur des architectures à mémoire
distribuée, en utilisant la Message Passing Interface3 (MPI), une des approches les plus
répandues en programmation parallèle. L’architecture matérielle considérée comprend p pro-
cesseurs, chacun ayant son espace dadressage respectif. Puisque ce paradigme n’impose aucune
restriction sur le matériel sous-jacent et nécessite de paralléliser explicitement les algorithmes,
il permet une large portabilité : un algorithme développé selon cette approche peut aussi être
utilisé en mémoire partagé.

A.5.2 Expérimentations avec RRT et T-RRT

Avant de présenter nos résultats expérimentaux, nous définissons les métriques utilisées pour
évaluer les algorithmes parallèles. Nous présentons également la plate-forme parallèle utilisée,
et les problèmes de planification de chemin étudiés.

3http://www.mpi-forum.org
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A.5.3 Analyse des Algorithmes Parallèles

Nous présentons une analyse détaillée de nos trois algorithmes parallèles, afin de mieux com-
prendre les résultats obtenus en termes d’accélération. Nous étudions l’influence du type de
problème, du nombre de processeurs, et du coût d’une expansion de RRT.

A.5.4 Application à d’Autres Algorithmes de Type RRT

Dans cette section, nous expliquons brièvement comment les nouveaux algorithmes de type
RRT proposés dans cette thèse peuvent être parallélisés.

A.6 Application à des Problèmes de Robotique Complexes

Dans ce chapitre, nous présentons deux applications des algorithmes étudiés dans cette thèse,
dans le domaine de la robotique. Nous montrons qu’en développant des fonctions de coût de
configuration continues sophistiquées, et plus adaptées à une application spécifique que la fonc-
tion de coût basée sur le dégagement (classiquement utilisée dans les exemples académiques),
il est possible de traiter des problèmes réalistes complexes. En effet, de telles fonctions de coût
peuvent prendre en compte les contraintes inhérentes à des systèmes robotiques complexes,
tels que les systèmes aériens à câbles, impliquant plusieurs robots volants. Nous montrons
également qu’en combinant plusieurs des extensions de T-RRT proposées dans cette thèse, il
est possible de traiter des problèmes de planification de chemin plus difficiles que les problèmes
classiques de type “départ-à-but”, tels que les problèmes “d’ordonnancement et de recherche
de chemin”.

Ces deux types de problèmes sont caractéristiques des sujets traités dans le projet ARCAS.
Un des objectifs de ce projet est de développer des systèmes robotiques pour l’assemblage,
l’inspection et la maintenance d’installations industrielles difficiles d’accès pour les humains.

A.6.1 Manipulation 6-D avec un Système à Câbles Aérien

Dans cette section, nous proposons une approche de planification de chemin innovante pour la
manipulation quasi-statique sûre, en six dimensions, avec un système à câbles aérien. La nou-
veauté de cette approche réside dans l’utilisation combinée d’un algorithme de planification
de chemin en espace de coût et de résultats dérivant de l’analyse statique des manipulateurs
à câble. Sur la base de contraintes de faisabilité de tension, appliquées aux câbles, et de
contraintes de poussée, appliquées aux robots volants, nous caractérisons l’ensemble des con-
figurations faisables du système. En outre, l’expression de ces contraintes conduit à un critère
permettant d’évaluer la qualité d’une configuration. Ceci permet de définir une fonction de
coût sur l’espaces des configurations, que nous exploitons pour calculer des chemins de bonne
qualité en utilisant T-RRT. Dans le cadre de notre approche, nous proposons également un
système aérien à câbles que nous avons appelé le FlyCrane. Il est constitué d’une plate-
forme attachée à trois robots volants, à l’aide de six câbles de longueurs fixes. Nous validons
l’approche proposée, en simulation, sur deux problèmes de manipulation quasi-statique en six
dimensions faisant intervenir un tel système, et nous montrons l’intérêt de prendre en compte
la fonction de coût pour de telles tâches de planification de chemin.

A.6.2 Problèmes “d’Ordonnancement et de Recherche de Chemin”

Dans cette section, nous proposons une nouvelle variante de T-RRT appelée le Multi -T-
RRT Anytime, basée sur la combinaison de deux extensions de T-RRT : le Multi-T-RRT
(cf. Chapitre 3) et le T-RRT Anytime (cf. Chapitre 4). Cet algorithme est particulièrement
utile pour résoudre des problèmes “d’ordonnancement et de recherche de chemin”, c’est-à-
dire pour générer un chemin de bonne qualité passant par plusieurs points de passage non
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ordonnés a priori. En utilisant le Multi-T-RRT Anytime, ces problèmes peuvent être résolus
de façon purement géométrique, sans avoir à utiliser un planificateur de tâche symbolique.
Afin de démontrer ses capacités, nous appliquons le Multi-T-RRT Anytime à un problème
d’inspection industrielle concret faisant intervenir un robot aérien.

A.7 Application à des Problèmes de Biologie Structurale

Dans ce chapitre, nous présentons deux applications des algorithmes de planification par
échantillonnage, dans le domaine de la biologie structurale computationelle. Le défi ma-
jeur de ce domaine est que tous les problèmes sont intrinsèquement difficiles, du fait de leur
dimensionnalité élevée, même quand seules de petites molécules sont considérées. De nom-
breuses questions de recherche intéressantes peuvent être traitées en utilisant des algorithmes
d’inspiration robotique, car ils permettent d’explorer efficacement l’espace des conformations
d’une molécule ou même d’un complexe moléculaire. Dans cette thèse, nous nous concentrons
sur deux thèmes différents : l’exploration du paysage énergétique d’un petit peptide, et la
simulation du processus de séparation d’un complexe protéine-ligand.

Tous les algorithmes présentés dans ce chapitre ont été développés au sein d’un logiciel
appelé MoMA (pour Molecular Motion Algorithms) qui contient un ensemble d’algorithmes
d’inspiration robotique pour la simulation de mouvements moléculaires.

A.7.1 Exploration du Paysage Énergétique d’un Petit Peptide

Dans cette section, nous abordons la question de l’obtention d’une caractérisation complète du
paysage énergétique d’un peptide petit mais hautement flexible. Pour cela, nous suggérons de
combiner deux méthodes d’échantillonnage complémentaires : le Basin Hopping et le Multi-
T-RRT (Anytime). Nous proposons une version simplifiée de l’algorithme de Basin Hopping,
qui permet de révéler rapidement les états structurels méta-stables d’un peptide, ainsi que les
bassins énergétiques correspondants, dans le paysage. Ensuite, nous utilisons des variantes
de l’algorithme T-RRT pour déterminer rapidement les ensembles d’états de transition et les
ensembles de chemins de transition, ainsi que les probabilités de transition, entre ces états
méta-stables. Plus précisément, nous proposons un Multi-T-RRT Anytime spécifique aux
problèmes de biologie structurale, basé sur le Multi-T-RRT (cf. Chapitre 3) et sur le T-RRT
Anytime (cf. Chapitre 4). Nous démontrons l’intérêt de cette approche combinant Basin
Hopping et T-RRT sur l’alanine aux terminaisons bloquées.

A.7.2 Simulation de la Séparation d’un Complexe Protéine-Ligand

Dans cette section, nous abordons la question de la simulation des interactions protéine-ligand
se produisant loin du site actif de la protéine, durant la liaison ou la séparation du ligand.
Dans une première étape allant vers ce à quoi nous souhaiterions aboutir, l’approche que nous
présentons ici est purement géométrique. Cette approche est basée sur une représentation
mécanique du système moléculaire, considérant une flexibilité partielle, et sur l’application
d’une variante de RRT appelée Manhattan-like RRT (ML-RRT), pour explorer l’espace des
conformations. Cela signifie qu’aucune énergie moléculaire n’est calculée et que les mouve-
ments sont validés uniquement sur la base de l’absence de collision. Cette approche pure-
ment géométrique, couplée avec un algorithme d’exploration efficace, permet de simuler la
séparation d’un ligand en un temps de calcul très court. Le fait d’aboutir à des temps de
calcul très courts était une contrainte que nous nous étions imposé afin de pouvoir développer
un serveur web efficace. Cet outil en ligne génère des chemins de séparation pour un ligand,
qui, en tant que première approximation, peuvent fournir des informations utiles concernant
les interactions protéine-ligand. Nous démontrons l’intérêt de cet outil informatique sur le
complexe hexamère insuline-phénol.
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A.8 Conclusion

Dans cette thèse, nous avons abordé les questions de l’amélioration de l’efficacité et de
l’enrichissement des capacités des algorithmes d’échantillonnage dans le contexte de la plan-
ification de chemin faisable, basée-coût, et optimale. Notre intention était de traiter des
problèmes en hautes dimensions difficiles, faisant intervenir des fonctions de coût continues
complexes. De ce fait, notre travail a été plus spécifiquement orienté vers la planification
de chemin basée-coût et optimale. Ceci était justifié par le fait que, bien que les méthodes
d’échantillonnage classiques aient atteintes une forte reconnaissance, leurs équivalentes en es-
pace de coût n’ont été développées que récemment et nécessitent des travaux de recherche
supplémentaires. Dans les Chapitres 3 à 5, nous avons proposé plusieurs extensions de plan-
ificateurs de chemin de type RRT, basés sur les algorithmes T-RRT et RRT*. Dans les
Chapitres 6 et 7, nous avons présenté des applications variées de ces approches nouvelles,
dans les domaines de la robotique et de la biologie structurale computationelle.

A.8.1 Résumé des Contributions Algorithmiques

Premièrement, nous avons proposé plusieurs extensions de l’algorithme T-RRT visant à améliorer
la planification de chemin en espace de coût [49]. Plus précisément, nous avons amélioré sa
variante mono-directionnelle en optimisant son test de transition. Nous avons également
proposé une variante bidirectionnelle de T-RRT, prenant en compte les contraintes de coût.
Nous avons montré que, dans le contexte d’un problème de planification de chemin de type
“départ-à-but”, utiliser le T-RRT Bidirectionnel était une meilleure stratégie qu’utiliser le
T-RRT Connect ou le T-RRT Biaisé-but mono-directionnels. Ensuite, en généralisant cette
approche bidirectionnelle, nous avons proposé une variante multi-arbres de T-RRT, qui peut
générer un chemin passant par un ensemble de points de passage [52].

Deuxièmement, nous avons expliqué comment résoudre les problèmes de planification de
chemin optimal de façon plus efficace que ce que RRT* ne permet à présent dans les espaces
de coût. En combinant les concepts sous-jacents à T-RRT et RRT*, c’est-à-dire la création
de nœuds basée-coût et la gestion d’arêtes basée-qualité, nous avons proposé deux nouveaux
algorithmes d’échantillonnage qui sont asymptotiquement optimaux : le Transition-based
RRT* et le T-RRT Anytime. Nous avons également montré qu’ils convergent plus vite que
RRT* vers le chemin optimal, en particulier quand la topologie de l’espace des configurations
est complexe et/ou quand sa dimensionnalité est élevée [51].

Troisièmement, nous avons présenté trois versions parallèles de RRT destinées aux archi-
tectures à mémoire distribuée de grande échelle : le RRT OU parallèle, le RRT Distribué,
et le RRT Mâıtre-esclave [48]. Nous avons également expliqué comment ces schémas de
parallélisation peuvent être appliqués aux algorithmes de type RRT autres que ceux intro-
duits dans cette thèse. Nous avons observé qu’utiliser ces algorithmes parallèles peut réduire
les temps de calcul de façon significative sur des problèmes de robotique complexes ou des
problèmes de biologie structurale [50].

Pour finir, nous avons suggéré que combiner certaines de ces approches nouvelles pou-
vait permettre de résoudre de nouveaux types de problèmes de planification. Par exemple,
en intégrant le T-RRT Anytime et le Multi-T-RRT, nous avons développé le Multi-T-RRT
Anytime que nous avons utilisé dans plusieurs applications.

A.8.2 Résumé des Contributions Applicatives

En robotique, nous avons tout d’abord utilisé le Multi-T-RRT Anytime pour résoudre les
problèmes “d’ordonnancement et de recherche de chemin” [52]. Avec cette approche, ces
problèmes peuvent être résolus de façon purement géométrique, sans avoir à utiliser de plan-
ificateur de tâche symbolique. Comme exemple, nous avons présenté, en simulation, un
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problème d’inspection industrielle faisant intervenir un robot aérien. Deuxièmement, nous
avons expliqué comment une approche basée-coût peut être utile pour réaliser des tâches de
manipulation précise en six dimensions, avec le FlyCrane, un système à câbles composé de trois
robots aériens [115, 116]. Pour cela, nous avons défini une fonction de coût de configuration
spécifique à cette application et prenant en compte les contraintes de cette plate-forme robo-
tique. Nous avons évalué cette approche, en simulation, sur des problèmes de manipulation
6-D faisant intervenir ce système.

En biologie structurale computationelle, nous avons utilisé le Multi-T-RRT (Anytime), en
complément d’une autre méthode d’échantillonnage appelée Basin Hopping, pour produire
une caractérisation complète du paysage énergétique d’un petit peptide flexible [47,53]. Cette
approche combinée nous a permis de déterminer les états structurels méta-stables du peptide,
ainsi que les ensembles d’états de transition, les ensembles de chemins de transition, et les
probabilités de transition, entre ces états méta-stables. Nous avons validé cette approche
avec l’alanine aux terminaisons bloquées. Une autre application que nous avons présenté ici
est la simulation du processus de séparation d’un complexe protéine-ligand [45, 46]. Dans
une première étape, nous avons proposé une approche géométrique utilisant le Manhattan-
like RRT, ce qui, du fait d’avoir des temps de calcul extrêmement faibles, nous a permis de
l’implémenter comme un serveur web. Nous avons démontré l’intérêt de cette méthode sur le
complexe hexamère insuline-phénol.

A.8.3 Perspectives de Travaux Futurs

Comme première direction de recherche possible pour la suite, nous pourrions commencer
par améliorer les méthodes présentées dans cette thèse. En effet, certaines de nos approches
peuvent être poussées plus loin pour atteindre un meilleur niveau d’efficacité. Premièrement,
dans le contexte de la planification de chemin en espace de coût, les algorithmes de type T-RRT
peuvent être améliorés en prenant en compte la fonction de coût de façon plus performante.
En effet, un problème inhérent à la stratégie d’échantillonnage par rejet utilisée actuellement
est le gâchis de ressources qu’elle engendre. Une solution possible est de guider partiellement
l’exploration du paysage de coût en exploitant, par exemple, des méthodes de gradient, comme
cela est fait dans [12]. Cependant, cela nécessite de maintenir un bon équilibre entre le biais
résultant de cette approche et les bonnes caractéristiques exploratoires des algorithmes de type
RRT. Deuxièmement, dans le contexte de la planification de chemin optimal, nous pouvons
développer un planificateur de chemin plus performant, basé sur AT-RRT, T-RRT*, ou une
combinaison des deux. Cela nécessite de poursuivre l’analyse de AT-RRT et RRT*, et de
déterminer quelle stratégie fonctionne le mieux en général ou sur des classes de problèmes
spécifiques. Enfin, dans le contexte de la planification de chemin en parallèle, un schéma de
parallélisation plus performant pourrait être obtenu en combinant les trois approches parallèles
présentées dans cette thèse.

Sur un autre plan, nous pourrions essayer de tirer un meilleur profit du graphe produit par
les variantes anytime des méthodes de type T-RRT, car cela pourrait avoir des répercussions
bénéfiques. Premièrement, du côté de la biologie structurale computationelle, dans le cadre de
l’exploration du paysage énergétique d’un peptide, nous pourrions exploiter ce graphe pour
décrire les ensembles d’états de transition et les ensembles de chemins de transition, ainsi
que pour estimer les probabilités de transition entre les états méta-stables. Cela aboutirait
à une meilleure utilisation des ressources computationelles que ce que n’offrent nos méthodes
actuelles, et cela nous permettrait d’étudier des peptides plus gros. Deuxièmement, du côté
de la robotique, au lieu de générer des chemins passant par des points de passage considérés
comme ayant tous le même statut, nous pourrions envisager d’autres applications utiles. Par
exemple, nous pourrions résoudre des problèmes faisant intervenir une seule configuration
initiale et plusieurs configurations comme buts potentiels. Les différents chemins extraits
de ce graphe pourraient représenter plusieurs façons de résoudre ce problème hybride de
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planification de tâche et de chemin, nous permettant ainsi de choisir le meilleur chemin ou de
modifier le chemin actuel.

En robotique, combiner les méthodes que nous avons proposé dans cette thèse offre des
possibilités intéressantes. Par exemple, dans le contexte de la manipulation en six dimensions
avec le FlyCrane, l’approche proposée pourrait être enrichie par l’utilisation de variantes
plus sophistiquées de T-RRT. Ceci est particulièrement vrai pour le T-RRT Anytime, car
nous pourrions alors produire le chemin optimal pour réaliser une tâche de manipulation
donnée. En outre, le Multi-T-RRT pourrait être utilisé pour résoudre des problèmes complexes
de planification de tâche et de chemin englobant la manipulation de plusieurs objets pour
l’assemblage ou le désassemblage d’un grande structure.

Certains algorithmes que nous avons proposé dans cette thèse peuvent être utilisés dans
d’autres contextes de planification que ceux que nous avons étudié ici. Premièrement, les
variantes anytime des méthodes de type T-RRT peuvent être utiles pour la re-planification de
chemin. Puisqu’elles construisent un graphe contenant des cycles, ces méthodes fournissent
des chemins alternatifs qui deviennent disponibles dans le cas où le chemin-solution actuel est
invalidé du fait d’erreurs dans le modèle ou de déplacements des obstacles. Deuxièmement,
ces algorithmes anytime peuvent être utilisés pour la planification en ligne. Tandis que seule
une partie du chemin-solution actuel est exécutée par le robot, le reste du chemin peut être
davantage optimisé [94].

En biologie structurale computationelle, de nouveaux problèmes intéressants peuvent être
étudiés en utilisant les algorithmes présentés dans cette thèse. Ceci est particulièrement
vrai pour la simulation d’interactions protéine-ligand, car nous n’avons pas encore appliqué
les paradigmes multi-arbres et anytime à ces problèmes. Premièrement, si plusieurs confor-
mations du complexe protéine-ligand sont disponibles, une approche multi-arbres pourrait
nous permettre de générer plusieurs chemins de séparation possibles en même temps, et de
déterminer lequel est le plus probable. Deuxièmement, une approche anytime pourrait nous
permettre de trouver le chemin de séparation optimal par rapport à un critère de qualité de
chemin donné, tel que la résistance minimale ou le flux maximal.

Le domaine de la biologie structurale produit des exemples pouvant nécessiter d’énormes
quantités de ressources computationelles. Dans le cadre de l’exploration de l’espace des con-
formations d’une molécule ou d’un complexe moléculaire, construire plusieurs arbres simul-
tanément s’est déjà avéré utile pour les applications présentées dans cette thèse. Pour aller
encore plus loin, au lieu de construire seulement quelques arbres dans l’espace de recherche, il
peut s’avérer utile de construire des centaines, voire des milliers, d’arbres simultanément. Le
paradigme de planification parallèle peut permettre aux variantes multi-arbres des méthodes
de type T-RRT de relever ce défi, en entrecroisant plusieurs niveaux de parallélisation. Par
exemple, nous pouvons envisager de combiner les trois niveaux suivants : 1) distribuer la
construction des arbres entre plusieurs groupes de processeurs ; 2) partager la construction
de chaque arbre entre plusieurs processeurs ; 3) paralléliser les composantes les plus coûteuses
en calcul de l’expansion de T-RRT. L’utilisation de telles versions parallèles des algorithmes
multi-arbres nous permettrait d’exploiter de nombreuses ressources computationelles et de
résoudre des problèmes extrêmement complexes.
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[35] J. Cortés, L. Jaillet, and T. Siméon. Molecular disassembly with RRT-like algorithms.
In Proc. IEEE International Conference on Robotics and Automation (ICRA), pages
3301–3306, 2007.
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[85] J. Jájá. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.

[86] M. S. Jamal, S. Parveen, M. A. Beg, M. Suhail, A. G. Chaudhary, G. A. Damanhouri,
A. M. Abuzenadah, and M. Rehan. Anticancer compound plumbagin and its molec-
ular targets: a structural insight into the inhibitory mechanisms using computational
approaches. PLoS ONE, 9(2):e87309, 2014.



Bibliography 145

[87] J. Jeon, S. Karaman, and E. Frazzoli. Anytime computation of time-optimal off-road
vehicle maneuvers using the RRT*. In Proc. IEEE Conference on Decision and Control
(CDC), pages 3276–3282, 2011.
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