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Abstract

This thesis focuses on the hydrodynamics of gas-liquid Taylor flow (or slug flow) in
microchannels. These flows, which are generally dominated by surface tension forces,
have been investigated in rectangular channels of various cross-sectional aspect ratios
by means of both experimental visualizations and numerical simulations. The first ex-
perimental part aims at characterizing the bubble generation process (bubble length
and frequency of break-up) depending on the operating conditions, the fluid proper-
ties, as well as the junction where both fluids merge. Numerical simulations of fully
developed Taylor flow have been carried out with the JADIM code. The computation
of such surface tension dominated flows requires an accurate calculation of the surface
tension force. Some limitations of the Volume of Fluid method have been highlighted
and a Level Set method has been developed in order to improve the calculation of
capillary effects. Both methods have been compared in detail in terms of spurious cur-
rents. 3D numerical simulations have been performed and the influence of the capillary
number, as well as the effects of geometry have been highlighted. Inertial effects have
been taken into account and their influence on the pressure drop has been shown to be
non-negligible. Mixing in the liquid slug has also been studied.

Résumé

Cette thèse porte sur l'étude des écoulements de Taylor (ou poche/bouchon) gaz-
liquide en microcanal. Ces écoulements où les effets de tension de surface sont prépondé-
rants ont été étudiées expérimentalement et numériquement pour des géométries rect-
angulaires avec divers rapports d'aspects. Une première partie expérimentale a consisté
à caractériser la formation de bulles (taille, fréquence) en fonction des conditions opéra-
toires, des propriétés des fluides (notamment à travers le nombre capillaire) et du mode
de mise en contact des fluides. La dynamique de l'écoulement établi a par la suite été
étudiée à l'aide du code JADIM. La simulation de ces écoulements dominés par la
tension de surface a nécessité de lever les limitations liées à la prise en compte de la
force capillaire. En effet des courants parasites numériques sont créés à proximité de
l'interface lors de la simulation d'écoulements capillaires. Une méthode Level Set a
été implémentée et comparée à la méthode Volume of Fluid d'origine en termes de
courants parasites. Des simulations numériques 3D ont permis l'étude des effets du
nombre capillaire et de la géométrie sur la dynamique des bulles de Taylor (vitesse,
pression et formes de bulles). Les effets inertiels souvent négligés ont été considérés et
leur influence, notamment sur les sauts de pression à l'interface, a été mise en évidence.
Le mélange dans le bouchon liquide a également été étudié.
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Introduction

General context

The interest of the process industries in microreaction technology for process intensi-
fication has become increasingly important over recent years. Microreaction technology
involves the use of small-scale structured devices that have characteristic dimensions
of the order of several hundreds of microns to 1− 2 millimeters for performing diverse
operations (e.g. mixing, separation, reaction, mass and heat transfer) in the chemical
and related industries. Due to the small-scale characteristic dimensions of microreac-
tion technology, extremely high surface to volume ratios are attained when compared
with conventional equipment, allowing the intensification of heat and mass transfer and
tight control of the temperature within the reactor.

The positive consequences of such intensification and control are a decrease in the
risk of runaway reactions, reactor explosion as well as a decrease in energy consumption
since less cooling (or heating) is required. The use of microstructured devices also
provides the opportunity to carry out reactions in more concentrated conditions, which
not only reduces the reaction time and the amount of solvent used but also increases
the selectivity of reactions which means that separation steps to recover main products
can essentially be eliminated.

Amongst the different process applications, microreactors are particularly interest-
ing for fast and highly exothermic and/or mass transfer limited gas-liquid reactions
since heat and mass transfer are remarkably intensified. Several research studies have
demonstrated that gas-liquid microreactors have unique advantages for various and
some typically dangerous gas-liquid reaction systems, such as gas absorption (Yue et al.
[2007]), direct fluorination (Chambers et al. [2005]), three-phase hydrogenation reac-
tions (Kobayashi et al. [2004]) and photochemical gas-liquid reactions (Ehrich et al.
[2002]). Although microreaction technology is already implemented in industry (Aubin
et al. [2010]), the engineering methodologies and rules for the design and integration
of microreactors, as well as how they should be operated, are still not clearly defined.
The development of such methodologies and rules requires fundamental understanding
of the physical phenomena that control the process operation and the specificities of
equipment design.

This work is part of the project MIGALI (Microreactors for Intensifying Gas-
Liquid Transport Phenomena), funded by the french National Research Agency (ANR
MIGALI-no ANR-09-BLANC-0381-01,2010-2013). This project is an international
project which involves three French laboratories and three Chinese laboratories:

- Laboratoire de Génie Chimique (LGC),

- Laboratoire Optimisation de la Conception en Ingénierie de l'Environnement
(LOCIE),

- Institut de Mécanique des Fluides de Toulouse (IMFT),
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- Microchemical Group, Dalian Institute of Chemical Physics (DICP), Chinese
Academy of Sciences,

- State Key Laboratory of Chemical Engineering, Tianjin University (TU),

- State Key Laboratory of Chemical Engineering, East China University of Science
and Technology (ECUST).

This project aims at gaining fundamental knowledge on the intensification of hydrody-
namics and mass transfer of gas-liquid processes and the dependency of these phenom-
ena on both the operating conditions and the geometrical characteristics of equipment.

Introduction to Taylor flow in microchannel

This part aims at introducing the characteristics of gas-liquid Taylor flow in mi-
crochannels. The literature review relative to each aspect of this work will be presented
as an introduction at the beginning of each chapter. Gas-liquid flows in channels are
encountered in many industrial applications, from small scale processes where capillary
forces are generally dominant (e.g. chemical microreactors for process engineering, fuel
cells, cooling microsystems, coating) to larger scale processes where inertial and grav-
itational effects play a non-negligible role (e.g. petroleum engineering). In this work,
we focus on microscale flows where, as it will be detailed in chapter 1, gravitational
effects can be considered as negligible.

Gas-liquid flows in microchannels can be found in different flow regimes. Indeed, the
topology of the interface depends on the fluid properties, the operating conditions as
well as the geometry of the channel. Much work has been dedicated to the development
of flow pattern maps which define the transition between the following regimes:

- bubbly flow, characterized by a number of tiny bubbles, smaller than the channel
diameter;

- slug or Taylor flow, characterized by bubbles that are longer than the charac-
teristic dimension of the channel and separated from the walls by a thin liquid
film;

- annular flow, characterized by a continuous core of gas surrounded by a thin
liquid film;

- churn flow, which is between annular and bubbly flow, where the gas core breaks
into tiny bubbles.

In microchannels, the transition between flow regimes have been identified in the
literature and a number of flow pattern maps are available. Flow pattern maps are gen-
erally based on the superficial gas and liquid velocities (Triplett et al. [1999], Waelchli
and Von Rohr [2006], Zhang et al. [2011]) as it is shown in figure 1. However, these
maps based on the superficial velocities are only valid for one given pair of fluids. Ak-
bar et al. [2003] generalized these flow pattern maps by gathering data obtained with
different liquids and identified the Weber number as the dimensionless number that
governs the transition between the different regimes in microchannels.

As shown in figure 1, slug flow is generated for a wide range of gas and liquid ve-
locities and the objective of this work is to focus on this flow regime. This gas-liquid
dispersion is very regular, leading to a flow with homogeneous bubble break-up fre-
quencies, volumes, and velocities.

12
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Figure 1: Typical flow pattern map for gas-liquid flow in microchannels (adapted by
Volkel [2009] from Triplett et al. [1999]).

The Taylor flow structure presents many advantages for engineering processes. In
addition to the high interfacial areas and the high regularity of the flow, the residence
time in gas-liquid Taylor flow is well characterized as it is directly related to the velocity
of the bubble since the flow is unidirectional. The bubble velocity therefore governs the
residence time but also the flow pattern in the liquid slug. Indeed, the bubble velocity is
generally greater than the average two-phase velocity UTP and lower than the maximum
velocity on the centerline. Thus, in the frame of reference moving with the bubble, at
the center of the channel, fluid particles flow from the nose of a bubble towards the
previous bubble in the bubble train while fluid particles close to the wall flow in the
other direction. This slip velocity between the bubble and the mean flow generates a
flow recirculation, which is of main interest in mixing and reaction applications. In
addition, this recirculation motion in the liquid slugs occupies a major part of the
channel cross-section, thereby reducing communication between slugs and increasing
plug flow since radial mixing is enhanced by this recirculation motion (Thulasidas et al.
[1997]).

The dynamics of fully-developed Taylor flow at low Reynolds number in microchan-
nels is well characterized (Bretherton [1961], Aussillous and Quéré [2000]) but less at-
tention has been paid to polygonal capillaries and in particular square and rectangular
geometries (Wong et al. [1995a,b], De Lozar et al. [2008]). These geometries are par-
ticularly interesting in microreaction technologies and especially for micro reactor-heat
exchangers since the exchange surface between reaction plates and cooling plates is
enhanced. Although the use of rectangular microchannels of high aspect ratio appear
to be interesting from a heat control point of view, the cost in terms of the energy
needed to drive such flows (i.e. pressure drop) and its performance in terms of mixing
and mass transfer need to be estimated. One objective of this study is to consider the
effects of geometry on Taylor flow.

In flows dominated by surface tension in microchannels, the confinement is crucial
and plays a major role in both the dynamics of the fully developed flow and in the

13
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gas bubble dispersion. Depending on the microchannel geometry and the operating
conditions, the bubble volume and length vary. Indeed, the distribution size will be
mainly governed by the size of the equipment and the flow rates of each phase (Garstecki
et al. [2006]). In addition, the mechanism of bubble break-up in microfluidics devices
like T-shaped junctions (Garstecki et al. [2006]) or cross-junctions (Cubaud et al. [2005])
have been introduced. However, the role of the channel geometry and the effects of
fluid properties are not clear.

This motivates the first part of this work where the bubble dispersion process has
been characterized in a cross-junction by means of experimental visualizations (figure
2(a)). The results and mechanism of break-up have then been compared to other
geometries (different T-shaped junctions illustrated in figures 2(b) and (c)).

(a) cross-junction (b) side-T junction (c) T-junction

Figure 2: Illustration of the junctions studied.

General notation used in this work

The general notations used throughout this study are illustrated in figure 3.

LB

LS

Figure 3: Contacting section: bubble formation. The notation used is: QG,L for gas and
liquid flow rates, LB,S for bubble and slug lengths, δ the liquid film thickness, UB the
bubble velocity and UTP the superficial two-phase velocity. Ach is the cross-sectional
area.

The phase distribution in the microchannel is described using the flow rate ratio or
equivalently the velocity ratio. The superficial velociy of each phase is:

UG,L =
QG,L
Ach

(1)

where Ach is the cross-sectional area of the microchannel and QG,L are the gas and
liquid volumetric flow rates. Thus, according to the volume balance between the two
inlets and an outlet placed in a slug, the averaged velocity in this slug, called two-phase
velocity UTP , is expressed as:

UTP =
QL + QG

Ach
= UL + UG (2)
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Some dimensionless groups are introduced to characterize the flow. The Bond
number compares the gravitational and capillary effects:

Bo =
(ρL − ρG)D2

h g

σ
(3)

where Dh is the hydraulic diameter, σ is the surface tension, ρL and ρG are the liquid
and gas densities. In microchannels, the Bond number is generally low and capillary
forces dominate gravitational forces.

The pioneering works of Taylor [1961] and Bretherton [1961] identified the bubble
capillary number CaB as the dimensionless number that characterizes the dynamics of
the flow:

CaB =
µL UB
σ

(4)

where µL is the liquid dynamic viscosity and UB is the bubble velocity.
The effects of inertia are considered in this study through the dimensionless Reynolds

number, which compares inertial and viscous forces:

ReB =
ρL UB Dh

µL
(5)

Two other dimensionless numbers which can be written as a combination of the
Reynolds and capillary numbers will be mentioned: the Weber number WeB which
compares inertial and capillary effects and the Laplace number La which depends on
the fluid properties and the geometry only:

WeB = ReB × CaB =
ρL U

2
BDh

σ
(6)

La =
ReB
CaB

=
ρL σDh

µ2
L

(7)

Structure of the manuscript

The observations on the advantages of Taylor (or slug) flow in microreaction tech-
nology motivate our work with the following objectives:

- understanding the effects of geometry and fluid properties on the gas bubble
dispersion in the Taylor flow regime;

- characterizing the hydrodynamics of Taylor flow in rectangular microchannels,
i.e. the pressure drop and the bubble velocity that controls the residence time
and the flow structure in the liquid slug;

- investigating mixing and mass transfer in rectangular microchannels.

This study is based on both experiments and numerical simulations. The experiments
have been performed at LGC while the numerical simulations have been carried out
with the JADIM code developed at IMFT. This work is structured around seven chap-
ters.

The first chapter is dedicated to the presentation of the experimental set-up. The
description of the experimental apparatus includes the design of the microchannel, the
flow control equipment, as well as the operating conditions that have been covered.
The imaging methods are described and validated with a reference sequence.
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The chapters 2, 3 and 4 aim at presenting the numerical method, the developments
made during this study and its validations. More specifically, chapter 2 briefly reviews
the numerical methods for the numerical simulation of two-phase flows. The JADIM
code based on a Volume of Fluid (VOF) method to capture the interface is then de-
scribed before our developments. Special care is taken to describe the calculation of the
surface tension force and the transport of the scalar function that defines the interface.
The limitations of the VOF method to deal with the simulation of gas-liquid Taylor
when the capillary forces are dominant lead us to implement another method for con-
sidering the interface transport. The Level Set method is presented and validated in
chapter 3.

Chapter 4 is dedicated to the study of spurious currents arising in numerical simu-
lations which involve capillary effects. Such parasitic flows develop when the capillary
number is decreased. The comparison of the previous VOF formulation and the LS
method implemented is the topic of this chapter which is the subject of a paper that
has been submitted to Computers and Fluids in August 2013. A detailed analysis of
the spurious currents generated in various test cases is given and the interest of the
method for the application to the simulation of Taylor flow is highlighted at the end of
this chapter.

The next chapters concern more specifically the physical results concerning Taylor
bubble flows obtained in this thesis. Chapter 5 investigates the role of the channel
geometry and the fluid properties on the generation of slug flow. The bubble lengths
and frequencies of generation are analyzed through experimental visualizations. This
chapter follows the work carried out during my master thesis that has been published
in Micro�uidics and Nano�uidics (Abadie et al. [2012], appendix C).

Chapter 6 focuses on the dynamics of fully-developed Taylor flow. 3D numerical
simulations of Taylor bubbles have been performed. The dynamics of the Taylor bubble
in terms of velocity and pressure drop are studied and the bubble velocities obtained
in the numerical simulations are compared with the experimental data. The chapter
comprises two main parts: first, the results at low Reynolds number and then the ef-
fects of inertia are presented.

Chapter 7 concerns the charactistic times and volumes of mixing in the slug between
two consecutive bubbles. This chapter has been published in Chemical Engineering
Research and Design in 2013 (Abadie et al. [2013]). The effects of the rectangular
geometry on the mixing in the liquid slug are studied. The results are based on both
numerical simulations and the theoretical velocity profile of single-phase flows that ap-
proximates infinite slug lengths.

Finally, a conclusion presents the main results of this work and outlines some chal-
lenging perspectives such as the simulation of mass transfer from Taylor bubbles to the
liquid slug.
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1.1 Experimental apparatus

1.1 Experimental apparatus

The experimental apparatus detailed in this section and illustrated in figures 1.1-1.2
allows gas-liquid flows to be generated and the bubble dispersion to be studied in terms
of frequency, volume and length, as well as velocity. The experimental rig comprises:

- the microchannel,

- the feeding equipment to provide controlled gas and liquid flow rates,

- the digital imaging equipment.

The experiments are based on shadow-casting, which allows detection of the interface of
the bubbles on every image due to the change in the optical light path where the inter-
face is curved. The flow characteristics, which include bubble size, break-up frequency
and velocity are then extracted using an image processing software.

Figure 1.1: Experimental apparatus - the microchannel is horizontal and the image
sequences are taken with a digital camera placed above.

1.1.1 Microchannel design

Materials

The channels used to study the bubble generation and velocity are square and
rectangular microchannels milled in Polymethyl Methacrylate (PMMA) with a micro-
milling machine at the mechanical workshop at INP Toulouse. This milled microchan-
nel plate is covered with another plate of PMMA as seen in figure 1.3, which is an
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gas

MFC1

MFC2

TI PI

storage vessel

microchannel

syringe pump

Figure 1.2: General illustration of the experimental set-up (MFC: mass flow controllers
(MFC1: flow rates 0 − 1 SCCM and MFC2: flow rates 1 − 20 SCCM) ; PI: pressure
indicator ; TI: temperature indicator).

image of the cross-section of a channel obtained with a scanning electron microscope.
PMMA presents the advantages of being transparent for visualization experiments.

Figure 1.3: Cross-sectional shape of a channel obtained with a scanning electron mi-
croscope. The aspect ratio is α= 2.5 (w = 1000µm and h = 400µm).

Channel dimensions

The channel aspect ratio affects both the hydrodynamics of the fully-developed
Taylor flow and the bubble generation mechanism. To study the effects of the cross-
sectional geometry of the channel, three moderate aspect ratios have been tested
α = [1 ; 2.5 ; 4]. The dimensions of the channels have been chosen in agreement with
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previous experiments conducted in the group and detailed in Volkel [2009], Abadie
et al. [2012] and Zaloha et al. [2012]. The hydraulic diameter has been kept constant
around 550µm and the characteristics of the three geometries are given in table 1.1.

aspect ratio width depth hydraulic diameter
(µm) (µm) (µm)

1 550 550 550

2.5 1000 400 571

4 1400 350 560

Table 1.1: Dimensions of the three microchannels used.

Since the depth of the microchannels varied from 350µm to 550µm, even a default
of a few micrometers would be non-negligible, therefore special care was taken to per-
fect the surface and flatness of both plates using diamond polishing.

In addition to the importance of the flatness relative to the depth of the channel,
it is absolutely necessary to obtain flat plates to avoid leakage between the milled
and cover plates. Bonding tests were performed using chloroform as a solvent but
although this method can be used easily with straight channels or short channels, the
difficulty increases in complex geometries as it is the case in the channels used, which
are 30cm long and present 2 curved bends. Since the flatness of the channels was
carefully ensured, leaks have been prevented by using a number of screws every 1 or 2
centimeters. A drawback of this solution could have been the bending of the PMMA
plates but it will be seen in section 1.3.3 that the cross-sectional area does not change
along the microchannel since the bubble sizes and velocities are constant. A view of
the final microchannel focused on the contacting geometry is shown in figure 1.4.

Figure 1.4: Top view of the microchannel.

Contacting geometries

The geometry of the channel at the gas-liquid contacting point is of main importance
in the bubble formation step. Indeed, it has been observed that bubble volumes and
break-up frequencies in microchannels where capillary effects are dominant are mainly
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governed by the geometrical characteristics of the channel (i.e. width w, channel as-
pect ratio α, gas to liquid inlet width ratio win,g/w) and the operating conditions (gas
to liquid volumetric flow rates ratio QG/QL). In the literature, geometrical models for
predicting bubble size are commonly encountered (Garstecki et al. [2006], Van Steijn
et al. [2007, 2010], Volkel [2009], Abadie et al. [2012]).

To study the effects of the contacting geometry on the bubble generation mecha-
nism, three channels with different contacting modes are considered:

- a side-entering T-junction (figure 1.5(a)), i.e. the two fluids merge at a right
angle. The liquid is flowing in the main channel while the gas is supplied by the
orthogonal channel, which is narrower than the main inlet (wg,in = w/2),

- a T-junction (figure 1.5(b)), i.e. the two fluids merge frontally. The liquid and
gas are flowing in channels that are both orthogonal to the main channel and
both inlets have the same width as the main channel,

- a cross-junction (figure 1.5(c)), i.e. the two fluids merge in a cross where the
gas is flowing in the main channel and the liquid is supplied with two orthogonal
channels, with the same width as the main channel, to squeeze the bubbles.

1.1.2 Flow control

The schematic diagram of the full experimental set-up is given in figure 1.2. Air is
supplied from a pressurized vessel and controlled by two distinct mass-flow controllers
depending on the flow rate:

- one to cover low flow rates with a good accuracy (0− 1SCCM): HORIBA SEC-
7320, which allows flow rates ranging from 0.00 to 1.00mL/min under atmo-
spheric pressure with a minimum regulation of 0.02mL/min,

- one to cover higher flow rates (1−20SCCM): HORIBA SEC-Z500, which allows
flow rates ranging from 0.0 to 20.0mL/min under atmospheric pressure with a
minimum regulation of 0.2mL/min.

Concerning the liquid, the flow control equipment is a syringe pump (HARVARD
Apparatus PHD 2000 ) on which two plastic syringes are placed. Two different sizes of
syringes have been used: syringes containing 20mL of liquid with an inner diameter
of 20.05mm have been used for the lower liquid flow rates (up to 1.6mL/min) and
syringes of diameter 26.594mm containing 60mL for higher liquid flow rates. With
the smaller syringes, the pump can supply flow rates ranging from 0.0500µL/min to
50.000mL/min. Although the maximum flow rate available was not reached with these
syringes, the time needed to empty the syringes was too short with flow rates greater
than 1.6mL/min when compared with the time needed for the flow to develop and the
sequence to be recorded. Therefore syringes with a bigger diameter were used for liquid
flow rates between 2.4mL/min and 12.8mL/min. The maximum flow rate available
with these syringes is about 130.000mL/min.

All the experiments were conducted at room temperature and ambient pressure at
the outlet. For each experiment, the temperature of the gas and liquid phases was
measured by thermocouples just before the two fluids were contacted. The pressure
in the gas phase was also measured before the contacting section so that the mass
flow rates could be converted to volumetric flow rates. The pressure measurements are
detailed in section 1.1.4.
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(a) side T-junction
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Figure 1.5: Illustration of the three contacting sections studied: (a) side T-junction;
(b) T-junction; (c) cross-junction.

1.1.3 Fluid properties and Operating conditions

The initial fluid system is an ethanol-air system, which allows a regular and rel-
atively easy bubble formation (Volkel [2009], Abadie et al. [2012]). In these surface
tension dominated flows, the capillary number has been shown, both experimentally
and theoretically (Taylor [1961], Bretherton [1961]), to be well adapted for the char-
acterization of bubble shapes and velocities. The effects of fluid properties are often
neglected in models that take into account the geometry of the channel and the con-
tacting section, as well as the ratio of gas to liquid flow rates. However, it has also
been observed in other studies that the fluid properties can have a non-negligible role in
the bubble break-up (Christopher et al. [2008], Fu et al. [2010a], Abadie et al. [2012]).
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For this purpose, solutions of ethanol and glycerol have been used to vary the density
and particularly the viscosity and the surface tension. The properties of the fluids
used have been measured and are reported in table 1.2. The percentages indicated for
ethanol/glycerol solutions are volume ratios.

fluid ρL µL σ La Bo
(kg/m3) (Pa · s) (N/m) (−) (−)

air 1.204 1.815 × 10−5 − − −
ethanol (EtOH) 789 1.37 × 10−3 0.0227 5440 0.111

glycerol 15% in EtOH 882 3.3 × 10−3 0.0247 1130 0.114

glycerol 30% in EtOH 957.3 8.08 × 10−3 0.0267 223 0.114

glycerol 60% in EtOH 1065.6 23.59 × 10−3 0.0304 33 0.102

Table 1.2: Fluid properties (under room temperature T = 22− 23 ◦C). The Laplace
and Bond numbers (La and Bo) are calculated using DH = 570µm.

It is important to note that the Bond numbers obtained with these fluid properties
and this microchannel hydraulic diameter are of the order of Bo ∼ 0.1, which suggests
that the effects of the acceleration due to gravity are negligible when compared with
capillary effects. It is then consistent to assume that the shape of the bubble is gov-
erned by capillary effects and remains symmetrical throughout the depth of the channel.

fluid QL ReL CaL WeL
(mL/min)

air-EtOH 0.2 - 12.8 3.62 - 231 6.65× 10−4 - 4.26× 10−2 2.41× 10−3 - 9.87
air-glycerol 0.2 - 12.8 1.66 - 106 1.47× 10−3 - 9.42× 10−2 2.45× 10−3 - 10.0

(15% in EtOH)
air-glycerol 0.2 - 6.4 0.746 - 23.88 3.34× 10−3 - 1.07× 10−1 2.49× 10−3 - 2.56

(30% in EtOH)
air-glycerol 0.1 - 1.6 0.142 - 2.27 4.28× 10−3 - 6.84× 10−2 6.08× 10−4 - 0.155

(60% in EtOH)

Table 1.3: Velocities and dimensionless numbers in the square microchannel (550 ×
550 µm2).

According to these fluid properties and to the available gas and liquid flow rates,
the ranges of dimensionless numbers for the experiments are summarized in table 1.3
and the Reynolds and capillary numbers are illustrated in figure 1.6. The values of the
capillary number (viscosity/capillarity) are very low, thereby indicating that capillary
effects overcome viscous effects. In such conditions, the shape of the bubble is mainly
governed by capillary effects which prevent bubble deformation. However, capillary
numbers of the order of CaL ∼ 0.1 are reached when the liquid velocity is increased
and above this value the bubble is deformed. In addition, the values of the Reynolds
and Weber number indicate that for ethanol, glycerol 15% and glycerol 30% in ethanol
at high velocity, the inertial effects are non-negligible although they are often neglected
in microchannels. These inertial effects are even stronger than the viscous effects and
the capillary forces in these cases, threreby modifying the shape of the bubbles, their
velocities and the pressure drops across the bubbles.
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Figure 1.6: Summary of the experiments performed in a square channel where the fluids
merge at a cross-junction in terms of Reynolds and capillary numbers.
Legend: (�) La = 5440 ; (�) La = 1130 ; (◦) La = 223 ; (.) La = 33.

1.1.4 Pressure measurements

In microscale devices, the pressure drop is enhanced when compared with bigger
channels as it is inversely proportional to the hydraulic diameter. The upstream pres-
sure also increases when viscous liquids are used and when the mean velocity in the
channel is increased. The gas flow rate delivered is a mass flow rate and a digital
manometer (KELLER LEO 2 ) has therefore been placed between the gas inlet channel
and the mass flow controller in order to measure the upstream pressure, i.e. the pres-
sure at the gas inlet. Knowledge of the pressure together with the ideal gas law allows
the mass flow rate to be converted into a volumetric flow rate at the gas inlet:

QG =
QmG

ρG/ρG,atm
=

QmG Patm
Pmanometer

, (1.1)

where QmG is the mass flow rate scaled by the density of the air under atmospheric pres-
sure. Indeed, the volumetric flow rate is needed to characterize the flow parameters
such as the bubble volume as it is equal to the bubble formation time multiplied by
the volumetric gas flow rate. The mean velocity in the channel is also related to the
volumetric flow rates and will be used to study the slip velocity between the bubble
and the mean flow. From the channel length and the fluid properties, the single-phase
pressure drop across the channel has been evaluated to estimate the accuracy and the
pressure range that the manometer needed to cover. This manometer can measure
pressures ranging from 0 to 5 bars while in the experiments, the maximum pressure
measured was 2.3 bars.

Figure 1.7 shows the upstream pressures measured as a function of the gas mass
flow rate. Two extreme cases are shown for a square channel and a cross-junction:

- With ethanol (low viscosity) flowing at a low velocity, the measured pressure
is close to atmospheric pressure and the conversion factor between mass and
volumetric flow rates is close to 1. The upstream pressure increases with both
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the liquid and gas flow rates as the pressure drop increases. However, it is not
greater than 1.5 bar with ethanol.

- With glycerol 60% in ethanol, the same trends as above are observed but they
are enhanced due to the higher viscosity and the upstream pressure can reach up
to 2.3 bars.
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Figure 1.7: Evolution of the upstream pressure as a function of the gas mass flow
rate in the square microchannel with a cross-junction: (a) ethanol; (b) glycerol 60% in
ethanol.
Legend: (+) QL = 0.1mL/min; (B) QL = 0.2mL/min; (C) QL = 0.4mL/min;
(◦) QL = 0.8mL/min; (�) QL = 1.6mL/min; (�) QL = 3.2mL/min; (O) QL =
6.4mL/min; (?) QL = 12.8mL/min.

Figure 1.8 shows the volumetric gas flow rate as a function of the mass flow rate in
these cases. Indeed, the scale factor between the mass flow rate and the volumetric flow
rate is greater in experiments where glycerol is used because of the increased pressure
drop due to the fact that the viscosity of glycerol is greater than the viscosity of ethanol.

1.2 Flow visualization

The visualisation equipment and its position with respect to the microchannel is
represented schematically in figure 1.9. Flow visualisation was conducted with a high-
speed camera (Mikrotron EoSens MC-1362 ), which allows a maximum frame rate of
506fps (frames per second) at full resolution (1280 pix × 1024 pix). Since the flow
studied here is unidirectional, the full resolution was not necessary and the region of
interest was reduced to a window of 1280 pix × 200 pix. In addition, this use of re-
duced resolution allows the maximum frame rate available to be increased. Sequences
of 1024 images were therefore recorded with a maximum frame rate of 2500fps. The
camera was placed at a distance of 35cm from the channel and the lens (Sigma DG
macro 105 mm) was placed at a distance of 17cm. The physical region of interest is
28.2mm× 4.4mm. This means that 1 pixel is 22µm× 22µm in size.
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Figure 1.8: Evolution of the gas volumetric flow rate as a function of the gas mass flow
rate in the square microchannel with a cross-junction: (a) ethanol; (b) glycerol 60% in
ethanol.
Legend: (−) parity line, (+) QL = 0.1mL/min; (B) QL = 0.2mL/min; (C) QL =
0.4mL/min; (◦) QL = 0.8mL/min; (�) QL = 1.6mL/min; (�) QL = 3.2mL/min;
(O) QL = 6.4mL/min; (?) QL = 12.8mL/min.
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Figure 1.9: Schematic representation of the image processing equipment and its inte-
gration in the experimental set-up.
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The shutter time has been set according to two criteria:

- firstly, it must be short enough to visualize a sharp gas-liquid interface. If the
bubble moves more than a few pixels whilst the shutter is open, the interface is
diffuse on the images and it becomes difficult to accurately detect the position of
the bubble caps and thus the bubble lengths,

- secondly, it must be chosen such that enough light is provided during the exposure
time.

A backlight (Rosco LitePad) that is made of a LED panel of dimensions 76.2 ×
152.4 mm2 and of intensity 0.5A is placed underneath the channel. This backlight
is used to provide enough light throughout the exposure time, which has been set to
tshutter = 100µs in the experiments so that bubbles do not cross more than 2 pixels
during this period. In extreme cases, which only concern two sets of experiments out
of approximately 40 in each geometry, the bubbles may cross up to 5 pixels during the
exposure time.

Image sequences were recorded in order to get a representative sample of bubbles
passing through the observation window and to identify the existence of unsteady flow,
which is mainly characterized by a significant deviation in the bubble lengths. Bubble
and slug lengths were evaluated with image processing software that is detailed in the
next section 1.3. Every bubble that enters the observation window is analysed and the
final lengths are an average of approximately 100 bubbles. The frame rate was adjusted
in each experiment in order to record around 100 different bubbles in the sequence of
1024 images. In these sequences, the bubble generation process was recorded in only
about 10 frames. In order to gain insight on the mechanism of bubble formation and
record the different steps of the bubble break-up process with better accuracy, the
frame rate was therefore increased in some experiments. The bubble velocities were
evaluated by determining the time required for gas-liquid interface to travel between
the entrance and the exit of the observation window and averaged arithmetically for
approximately 100 bubbles.

The equipment and settings used for the sequence acquisition are summarized in
table 1.4.

camera Mikrotron EoSens MC-1362
lens Sigma DG macro 105 mm

working distance 17cm

resolution 1280pix× 200pix

field dimensions 27.92mm× 4.36mm

definition 45.84pix/mm

frame rate 10− 2500fps
(−) ∼ 10× fB

shutter time 100µs

opening f/2.8

backlight dimension 76.2× 152.4mm2

backlight intensity 0.5A

Table 1.4: Camera, lens and backlight settings used for the shadow-casting visualisa-
tions.
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1.3 Image processing

1.3 Image processing

The aim of the experiments based on shadow-casting is to characterize the bubble
and slug sizes, the bubble break-up frequencies and the bubble velocities under differ-
ent operating conditions. For this purpose, the processing of the image sequences is
performed with the commercial software MATLAB. The image processing comprises
two main steps:

- the bubble detection that allows to determine its shape, size and position,

- the tracking of the bubbles in order to evaluate their velocities.

These are described in sections 1.3.1 and 1.3.2.

1.3.1 Bubble detection

The sequences recorded with the camera comprise 1024 images with a resolution
1280 × 200 pixels. The images are encoded on 16 bits in gray levels and are saved
with a TIFF format. An image processing software using MATLAB functions has been
implemented to detect the interface of the bubbles and track them during the sequence.
Figure 1.10 shows the main steps of in the image processing routine:

- (a)-(b): raw images are normalized with a reference image of the background
without bubbles to remove noise, the contrast is enhanced and a filtering proce-
dure is applied to smooth the contours,

- (b)-(c): the gray level gradient intensity is calculated after filling the objects so
that the magnitude of the gradient is maximum at the outer front of the interface,

- (c)-(d): a threshold on the gradient intensity is used to detect interfacial pixels
and the objects detected are then filled in order to determine the cross-sectional
area of the bubble.

In addition, it is generally not too difficult to identify the bubbles. Three criteria are
set to remove noisy objects:

- the position of the bubbles: the vertical coordinate of the center of mass can be
restricted to a region of a few pixels around the centerline,

- the bubble size: this work focuses on Taylor bubbles whose sizes are generally
greater than the channel width,

- the orientation of the bubbles: they are generally confined such that the major
axis of the bubbles are oriented horizontally.

These criteria allow identification of whether the objects detected in the first step of the
image processing routine are noisy objects or actual bubbles. It should be mentioned
that the threshold of the criteria were adapted when dealing with slug flow where small
bubbles were generated.

From the final binary images (figure 1.10(d)), it is possible to extract the charac-
teristics of each bubble: the position, the shape, the orientation, the length and the
area which are processed to identify the bubbles and track them.

Figure 1.11 shows the variations in size of 7 different bubbles along the length of
the observation window. Only 7 bubbles are shown but the lengths of the 200 bubbles
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(a) Raw image

(b) Normalized image with contrast enhancement

(c) Gradient intensity

(d) Bubbles detected (binary images)

Figure 1.10: Illustration of the main steps in the processing of raw images to binary
images with the detected bubbles
Operating conditions : glycerol 60% (vol.) in ethanol and air in a square microchannel
with a cross-junction (QL = 0.8mL/min and QG = 0.4mL/min).

of the sequence were estimated within the same range. The detection of the bubbles
is very efficient and it is seen in figure 1.11 that along the channel, the bubble length
varies between 0.85+0.02mm, which corresponds to fluctutations of +1 pixel. This
also shows that the depth of the channel is constant since there is no elongation or
compression of the bubble that would result from the convergence or divergence of the
channel cross-section.

1.3.2 Bubble velocity

The tracking of the bubbles is made easier by the characteristics of the flow, which
is unidirectional. In addition, as previously detailed in section 1.2, the frame rate has
been set so that approximately 10 frames are recorded during the time needed for a
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Figure 1.11: Bubble lengths LB(mm) as a function of their position along the channel.
Each symbol (©,�,♦,B,C,+,×) represents a different bubble. Operating conditions:
glycerol 60% (vol.) in ethanol and air in a square microchannel with a cross-junction
(QL = 0.8mL/min and QG = 0.4mL/min).

bubble to detach from the contacting section. In other words, the frame rate is about
ten times the frequency of break-up. This means that between two consecutive frames,
a bubble will move from approximately one tenth of the distance that separates two
bubbles which renders the tracking straightforward. Indeed, a bubble at a position xtB
will be identified in the next frame as the nearest one within the range of bubbles whose
positions xt+dtB are greater than xtB. The tracking of the bubbles is shown in figure 1.12
where each bubble is assigned a different color with respect to the assigned number.

Figure 1.13 shows the position of bubbles as a function of the time. Each diagonal
set of points corresponds to a different bubble. The bubble velocity can be calculated
at each position by differenciating the positions between two consecutive time steps.
However, as the bubble position evolves linearly with time since the bubble velocity
is very regular, the velocity is deduced by fitting each set of points with a first order
polynomial as it is shown in figure 1.13. In addition, it has been said that Taylor flow
allows the generation of regular bubbles with uniform velocities. It is seen in figure
1.13 that the set of points are parallel, which means that all the bubbles move with the
same velocity.

1.3.3 Flow regularity

The regularity of the Taylor bubble flow is illustrated in figure 1.14, which presents
the length of each bubble thoughout a sequence that comprises approximately 200 bub-
bles in glycerol 60% (vol.) in ethanol flowing in a square microchannel. Gas and liquid
flow rates are QL = 0.8mL/min and QG = 0.4mL/min, respectively, and they merge
in a cross-junction. It is seen that the bubble lengths lie within less than 5% for the
entire sequence.

Similar results are found for the velocity where fluctutations of about 2% are ob-
served. This confirms the high regularity of Taylor flows and the flatness of the channels.
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(a) t0

(b) t0 + ∆t

(c) t0 + 2∆t

Figure 1.12: Position of the color-coded bubbles with respect to the assigned bubble
number at different times.
Operating conditions: glycerol 60% (vol.) in ethanol in a square microchannel with a
cross-junction (QL = 0.8mL/min and QG = 0.4mL/min).
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Figure 1.13: Position of the center of mass of each bubble as a function of the time.
Operating conditions: glycerol 60% (vol.) in ethanol and air in the square microchan-
nel with a cross-junction (QL = 0.8mL/min and QG = 0.4mL/min). Legend: (·)
experimental data; (red line) example of experimental fit.
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Figure 1.14: Bubble lengths LB(mm) as a function of their assigned bubble number.
Operating conditions: glycerol 60% (vol.) in ethanol and air in a square microchannel
with a cross-junction (QL = 0.8mL/min and QG = 0.4mL/min).
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Figure 1.15: Bubble velocities UB(mm) as a function of their index.
Operating conditions: glycerol 60% (vol.) in ethanol and air in a square microchannel
with a cross-junction (QL = 0.8mL/min and QG = 0.4mL/min).

1.4 Summary

Microchannels have been designed to study gas-liquid dispersion through experi-
mental visualizations. Special care has been taken to ensure the flatness of the PMMA
plates as well as the uniformity of the cross-section along the channel. The regularity
of bubble length and velocity throughout a sequence confirms that the flow control
equipment delivers continuous flow rates. The image proccessing software allows to
detect bubbles with a good accuracy. Indeed, the bubble lengths are captured with an
error of approximately +1 pixel.
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2.1 Numerical techniques for multiphase flows with deformable interface

2.1 Numerical techniques for multiphase flows with de-
formable interface

Numerical simulations of industrial processes, as well as fundamental problems
often involve two immiscible fluids. While numerical simulations of two-phase flows
were possible 20 years ago, a number of computational methods have been developed
over the past decade to improve the computation of multiphase flows. The numerical
methods to simulate multiphase flows can be classified into two main groups : the
"Lagrangian" methods and the "Eulerian" methods. This chapter briefly presents the
different numerical techniques to simulate multiphase flows. The JADIM code that is
developed at IMFT is then presented and the methods developed during this study will
be given in chapter 3.

2.1.1 Lagrangian methods

Moving grids

Within lagrangian methods, the interface can be tracked explicitly and used as
a boundary of the moving mesh. It has been used for example to simulate bubble
oscillations with the JADIM code by Blanco [1995] (figure 2.1(a)). Although these
methods are very accurate since there is no approximation of the interface shape and
filtering of capillary forces, they suffer from two main drawbacks: the flow in the gas
phase is not simulated and thereby limiting these methods to cases where the gas
phase has no effect on the interface shape and as the interface moves. In addition, the
computational domain needs to remeshed at every time step, which is computationally
very expensive.

(a) (b)

Figure 2.1: Examples of lagrangian computational methods: (a) moving grid from
Blanco [1995] and (b) schematic illustration of front-tracking technique (image from
Scadovelli and Zaleski [1999]).

Marker and cell (MAC)

Another approach based on a lagrangian representation of the multiphase flow is
to track the interface using lagrangian markers. In Harlow and Welch [1965], the
localization of the interface was deduced from volume markers that were placed in
one phase. However, the accurate location of the interface is not explicit and requires
many markers to be precise, which is also computationally expensive. More recently,
Enright et al. [2002] used volume markers coupled to a Level Set function to combine
the accurate representation of the interface provided by the Level Set function and the
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Chapter 2 : Numerical code JADIM-VOF

good representation of the interface in under-resolved regions thanks to the lagrangian
particles. This hybrid method allows to decrease volume conservation errors which are
inherent to Level Set methods in such under-resolved regions.

Front-tracking

To reduce the computational time required by volume markers, surface markers
were introduced by Unverdi and Tryggvason [1992] (a schematic illustration is given
in figure 2.1(b)). In addition, the interface is explicitly tracked and the calculation of
geometrical properties (the normal of the interface and the curvature) exhibits a high
accuracy. Accurate numerical simulations of bubble free rise, bubble coalescence and
collision were performed. However, the implementation of such methods in 3D is not
straightforward and specific algorithms are required to deal with the distribution of
markers, as well as changes in topology. Popinet and Zaleski [1999] also used a front-
tracking method for the simulation of surface tension dominated flows, they showed
that the front-tracking method coupled to a pressure correction to take into account
the capillary pressure jump at the interface, allowed to give an accurate representation
of the interface and the surface tension contribution. More recently, improvements have
been made using front-tracking without connectivity (Torres and Brackbill [2000], Shin
and Juric [2002]).

2.1.2 Eulerian methods

The second group uses an implicit representation of the phases in each cell with an
additional scalar field. The most common approaches are the Volume of Fluid (VOF)
methods (Hirt and Nichols [1981], Lafaurie et al. [1994], Bonometti and Magnaudet
[2007], Dupont and Legendre [2010]) and the Level Set (LS) methods (Sussman et al.
[1994, 1997], Herrman [2008], Tanguy and Berlemont [2005]). VOF methods are gener-
ally well adapted to conserve the mass of the phases and appear to be a natural choice
in a finite volume framework, while LS methods are known to allow better computation
of the geometrical properties of the interface. Eulerian methods have been shown to be
well adapted to deal with various configurations, including single bubble rising in a liq-
uid (Bonometti and Magnaudet [2007]), jet or drop breakup (Popinet [2009], Renardy
and Renardy [2002]), coalescence (Tanguy and Berlemont [2005]), atomization with a
number of inclusions of different sizes (Fuster et al. [2009]), drop spreading (Legendre
and Maglio [2013]).

Within this Eulerian representation of two-phase flow, great effort has been ded-
icated to two main features: the transport of the interface and the consideration of
capillary forces.

Volume of Fluid (VOF)

The VOF method is based on an indicator function that is χ(x, t) = 1 in one fluid
and χ(x, t) = 0 in the other. In each computational cell, a volume fraction of one phase
can then be deduced by intergrating this indicator function in the cell:

C =

∫
V
χ(x, t)dV .

Thus, the volume fraction is C = 1 in cells filled with fluid 1, C = 0 in cells filled
with fluid 2 and it takes intermediate values in cells that are cut by the interface. A
representation of the volume fraction in a computational domain is given in figure 2.2.

The position of each phase is then available through their volume fraction in each
cell. An additional advection equation needs to be solved at each time step in order

35



2.1 Numerical techniques for multiphase flows with deformable interface

to determine the position of the interface. In a finite volume framework, the VOF
formulation appears to be a natural choice and the use of a conservative scheme allows
the mass conservation of each fluid. Different approaches have been developed for the
interface transport: VOF with geometrical reconstruction of the interface and VOF
without reconstruction.

VOF with interface reconstruction - Piecewise Linear Interface Calculation (PLIC)

The transport equation can be solved after a reconstruction step where the interface
is approximated in each cell as a segment in 2D or a plane in 3D. Several reconstruction
techniques have been developed (see Scadovelli and Zaleski [1999], Rudman [1997] for
more details) and the most common approach is the PLIC method (Lafaurie et al.
[1994], Gueyffier et al. [1999], Lopez and Hernandez [2008]). The segments or planes
are evaluated from the normal to the interface and the volume fraction in each cell.
Once reconstructed, the interface is advected either by calculating the volume advected
or by transporting the extremities of the segment in a lagrangian way. This method is
very efficient for keeping a sharp interface and for conserving the mass. However, the
reconstruction step is not straightforward in three dimensions. Indeed, many logical
tests are required to cover the wide range of possible geometrical configurations which
depend on the normal to the interface and the volume fraction.

It is interesting to mention the reconstruction method proposed by Renardy and
Renardy [2002] who obtained nice results about spurious currents. A Parabolic Re-
construction of Surface Tension force (PROST), which is based on a quadratic repre-
sentation of the interface, was proposed together with an optimal fit for the interface
curvature whose computational cost is very expensive.

VOF without reconstruction

Another class of methods consists in solving the hyperbolic equation in an im-
plicit way thanks to adapted schemes. The most common schemes used are Flux
Corrected Transport schemes (Zalesak [1979]), Total Variational Diminishing schemes,
and Weighted Essentially Non Oscillatory schemes. However, while these schemes can
conserve the mass of the fluids, if well implemented, and avoid dispersion by keeping
the volume fraction between 0 < C < 1, the diffusion of the interface over a numer-
ical thickness of a few cells remains difficult to control despite recent improvements
(Bonometti and Magnaudet [2007]).

Whatever the VOF method used, the sharp variations of the volume fraction induce
major difficulties for calculating its gradients and the geometrical properties of the
interface.

Level Set (LS)

Due to the difficulty to keep a sharp interface in VOF methods and the inaccuracies
in the geometrical description of the interface, Level Set methods that are based on
a continuous distance function to the interface have been developed. The Level Set
function φ is negative in one fluid and positive in the other, while the interface is
located with the iso-value φ = 0. The use of a scalar field that varies smoothly allows
an accurate calculation of its gradients. In addition, the Level Set function is corrected
at each time step so that it is as close as possible to a distance function with the
magnitude of the gradient being equal to 1. However, the Level Set methods are
known to suffer from mass conservation problems.
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(a) Volume of Fluid (b) Level Set

Figure 2.2: Illustration of (a) the volume fraction field in a VOF framework (b) the
distance function in a LS framework.

Other methods

Other methods can be found in the literature such as Lattice-Boltzmann meth-
ods and Phase-Field methods (Jacqmin [1999], Jamet et al. [2002]). All the methods
presented have their own advantages and drawbacks. To overcome the limitations, a
number of methods have considered coupling two of these methods. We can cite in
particular the coupling between Level Set and VOF CLSVOF (Sussman and Puckett
[2000]), and the coupling between Level Set and Lagrangian techniques (Enright et al.
[2002]).

2.2 The JADIM code - VOF version

2.2.1 One fluid formulation

The numerical code used for this study is the JADIM code, which has been devel-
oped at IMFT. Computational methods have been implemented to simulate dispersed
two-phase flows, including lagrangian particles (Climent [1996]), hydrodynamics and
transfer phenomena around spherical bubbles (Legendre [1996]) and deformable inter-
faces with a VOF technique (Benkenida [1999]). These methods, and in particular the
VOF module for computing moving interfaces on a fixed grid, have been validated and
used to simulate various multiphase flows systems Benkenida [1999], Bonometti and
Magnaudet [2007], Dupont and Legendre [2010], Legendre and Maglio [2013], Abadie
et al. [2012]. The interface is captured by an Eulerian description of each phase on
a fixed grid with variable density and viscosity. Under the assumptions that (i) the
fluids are Newtonian and incompressible, (ii) there is no mass transfer at the interface,
(iii) the flow is isothermal and (iv) the surface tension is constant, the fluid flow can
be described by the classical one fluid formulation of the Navier-Stokes equations:

∇ ·U = 0 (2.1)
∂U

∂t
+ (U · ∇) U = −1

ρ
∇P +

1

ρ
∇ ·Σ + g + Fσ,s (2.2)

where Σ is the viscous stress tensor, g is the acceleration due to gravity, and ρ and µ
are the local density and dynamic viscosity, respectively. Fσ,s is the capillary contri-
bution and its calculation is described in section 2.2.2. The accurate representation of
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2.2 The JADIM code - VOF version

capillary effects is of major importance in the numerical simulations of Taylor flow in
microchannels that are dominated by surface tension effects.

ρ and µ are the local density and dynamic viscosity, which are deduced from the
volume fraction C of one phase by a linear interpolation:

ρ = C ρ1 + ( 1 − C ) ρ2 (2.3)
µ = C µ1 + ( 1 − C )µ2 (2.4)

where the volume fraction is C = 1 (resp. C = 0) in cells filled with fluid 1 (resp.
fluid 2) and 0 < C < 1 in cells cut by the interface. The density is effectively an
extensive property so that equation 2.3 can be applied. However, this is not the case
of the viscosity and another model that consists in using an harmonic interpolation
instead of a linear interpolation to ensure the continuity of the shear stresses at the
interface is discussed in Bonometti [2005]. In the cases studied in the following, no
differences have been observed and equation 2.4 has been used.

An additional transport equation for the volume fraction is solved to capture the
interface between the two phases:

∂C

∂t
+ U · ∇C = 0 (2.5)

2.2.2 Spatial discretization

Equations 2.1, 2.2 and 2.5 are discretized on a staggered grid using a finite volume
method, spatial derivatives being approximated using second-order centered schemes
(Magnaudet et al. [1995]). Each variable has its own control volume of integration.
The positions and the control volumes are illustrated in figure 2.3 in 2D. The extension
to the third dimension is straightforward.

P,C

CV P

U

CV U

V

CV V

Figure 2.3: Staggered grid in 2D with the positions of the pressure P , the volume
fraction C, and the velocity variables U and V on the west and south faces of the cell.
The corresponding control volumes are denoted CV P , CV U and CV V .
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Surface tension force - VOF Classic Continuum Surface Force

The one-fluid formulation of the Navier-Stokes equations involve an additional
source term when compared with single-phase equations, that corresponds to the cap-
illary force at the interface:

Fσ,s = −σ/ρ (∇ · n) nδI (2.6)

where σ is the surface tension, n the normal to the interface and δI is the dirac dis-
tribution localizing the interface. The numerical method used to solve the interfacial
force is the Continuum Surface Force (CSF) proposed by Brackbill et al. [1992]. From
an Eulerian representation involving a scalar function, the geometrical properties of
the interface can be calculated from the successive derivatives of the scalar function.

n δI = ∇C (2.7)

κ = ∇ ·
( ∇C
||∇C||

)
(2.8)

The surface force Fσ,s is then transformed into a volume force Fσ,v by distributing its
effects over grid points in the vicinity of the interface in a region that is a few cells
thick through a non-zero gradient of the volume fraction:

Fσ,v = −σ
ρ
∇ ·
( ∇C
||∇C||

)
∇C. (2.9)

Figure 2.4: Schematic representation of the capillary force with a Continuum Surface
Force model on staggered grids.

In JADIM, the curvature is calculated at the center of the staggered control volume
as illustrated in figure 2.4 and the divergence of the unit normal to the interface is
calculated in a conservative way Benkenida [1999]:

Fσ,v =
−σ
ρV

∫
V
∇ ·
( ∇C
‖∇C‖

)
∇CdV (2.10)

≈ −σ
ρV
∇C

∫
V
∇ ·
( ∇C
‖∇C‖

)
dV (2.11)

=
−σ
ρV
∇C

∫
∂S

( ∇C
‖∇C‖

)
· ncelldS (2.12)
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2.2 The JADIM code - VOF version

where ∇C is the average value of ∇C in the staggered control volume and ρ =
(ρ1 + ρ2)/2 is the mean density since it has been shown to decrease the intensity
of spurious currents (Brackbill et al. [1992]).

Since the volume fraction varies from 0 to 1 over a thickness of 2 to 3 cells, it
has been shown that a smoothing procedure allows a decrease in the errors due to the
discretization of the gradient and divergence operators (Dupont and Legendre [2010]).
For a 2D geometry Ĉ is the smoothed volume fraction as proposed by Brackbill et al.
[1992] to decrease these unphysical spurious currents :

Ĉki,j =
3

4
Ĉk−1
i,j +

1

16

(
Ĉk−1
i+1,j + Ĉk−1

i−1,j + Ĉk−1
i,j+1 + Ĉk−1

i,j−1

)
(2.13)

where k is the number of iterations used to smooth the volume fraction. The smooth-
ing of the volume fraction for the calculation of the curvature and the localization
of the interface can be uncoupled. Indeed, the smoothing of volume fraction allows
minimization of the variations in the curvature of the interface, used to calculate the
capillary pressure jump while it is better to keep a sharp capillary force. In chap-
ter 4, the smoothing step involves 12 and 6 iterations to calculate the curvature and
the normal (localization and orientation of the force), respectively, as recommended
in (Dupont and Legendre [2010]). In chapter 6, the smoothing step has been reduced
to 8 and 4 iterations to avoid spreading of the capillary force throughout the liquid film.

2.2.3 Temporal discretization

The time scheme used to compute the advective terms in the Navier-Stokes equa-
tions is a third-order Runge-Kutta type scheme, while viscous stresses are solved using
a semi-implicit Crank-Nicolson method. The incompressibility is ensured with a pro-
jection method, which consists in splitting the velocity field into two contributions: a
rotational one, which gives a predicted velocity field calculated semi-implicitly, and a
potential one, obtained from a pressure correction solution of a pseudo-Poisson equa-
tion, whose divergence is zero. Since the viscosity contribution is calculated implicitly,
the constraining criterium on the time step due to viscosity is avoided. The capillary
force introduces an additional time step constraint that is based on an advective time
step where the velocity would be the maximum veloctiy of a capillary wave (Brackbill
et al. [1992]). The time step criteria are summarized in table 2.1. In capillary domi-
nated flows, as mostly considered in this study, the limiting time step is given by the
capillarity criteria.

gravitational effects ∆t <

√
∆x

g
→ +∞

advection ∆t <
√

3
∆x

U

viscosity ∆t <
∆x2

ν
→ +∞ (implicit)

capillarity ∆t <

√
(ρ1 + ρ2) ∆x3

8σ

Table 2.1: Time step constraints

To sum-up, the main steps in the time advancement in the calculation of the velocity
and pressure fields are:
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1. update for the color function C: calculation of ρn+1 and µn+1 solving equation
2.5.

2. momentum semi-implicit resolution: a third order Runge-Kutta type scheme is
used for the time advancement. Advective and body terms are calculated ex-
plicitly, while viscous terms are calculated using a semi-implicit Crank-Nicolson
algorithm. This results in the calculation of the predicted velocity field U∗ com-
prising the vorticity of Un+1.

3. capillary contribution: a second predicted velocity field U∗∗ is computed from
U∗ and Fσ,v (eq. 4.1) with C defined in equation 2.13.

4. projection step: pressure field Pn+1 is computed solving a pseudo-Poisson equa-
tion from U∗∗ and Un+1 is calculated (divergence free) with a projection method.

2.2.4 Volume fraction transport: the Flux Corrected Transport scheme

In the JADIM code, the location and thickness of the interface are both controlled
by an accurate algorithm based on Flux-Corrected Transport (FCT) schemes (Zalesak
[1979], Bonometti and Magnaudet [2007]). The transport equation 2.14 can be written
as:

∂C

∂t
+∇ · (CU) = C∇ ·U . (2.14)

While the incompressibility ensures ∇ ·U = 0, the sheme is splitted direction by di-
rection and the velocity field is not divergence free in each direction. Thus, as the
volume fraction is not equal in every sub-step, the scheme is not explicitly conservative
(Bonometti [2005]). In addition, due to the shear normal to the interface, a drawback
of the methods without interface reconstruction is the non-physical spreading of the
interface over a non negligible thickness of cells. To correct this excessive spreading
of the interface, the velocity field is modified so that the volume fraction of all in-
terfacial cells in the direction normal to the interface is advected with the velocity of
the interface represented by the iso-contour C = 0.5. However, the modified velocity
field is generally not divergence free and contributes to a gain or loss of mass of one
of the phases. To solve this problem, an algorithm that redistributes mass in a global
manner is used (Bonometti and Magnaudet [2007]) similarly to what can be done in
LS methods by changing the contour representing the interface (Chang et al. [1996]).
In the next chapter 3, this method is named VOF-FCT-0. It corresponds to the method
developed in JADIM before this work.

Additional cut-off algorithm to the FCT scheme

While these modifications in the Flux Corrected Transport scheme significantly
improve the interface transport (Bonometti and Magnaudet [2007]), the interface still
spreads over more than 3 cells in certain cases, and notably for the simulation of Taylor
bubbles. In addition, due to the slow establishment of the flow at Reynolds numbers of
order of unity and also due to the constraint of stability induced by the capillary force
(Brackbill et al. [1992]), these simulations promote this interface spreading since they
often involve several hundreds thousands iterations. To avoid this unphysical spreading
of the interface that leads to the diffuse variation of physical properties, as well as the
pressure jump at the interface, a rough cut-off algorithm has been implemented and
employed when necessary. This consists in imposing the volume fraction C = 0 (or
C = 1) if the volume fraction takes an intermediate value and the interface does not
cross the cell, thereby neglecting structures thinner than the dimension of the cell. This
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results in local gains/losses of mass in the proximity of the interface and is therefore
applied before the global redistribution of mass. The algorithm is given below in 2D
and the extension in 3D is straightforward.

Cut-off algorithm
if (0 < Ci,j < 1)

if
(
C−i−nc,j > 0 & C−i+nc,j > 0 & C−i,j−nc > 0 & C−i,j+nc > 0

)
if (Ci,j > 0.5) Ci,j = 1
if (Ci,j < 0.5) Ci,j = 0

The notations used are C−i+k,j+l = (Ci,j − 0.5) × (Ci+k,j+l − 0.5) and nc is approxi-
mately half the permitted numerical thickness. In our cases, nc = 1 and 2 have been
tested with the test presented in section 4.6. It has been found that the cut-off al-
gorithm combined with the velocity extension and global mass redistribution do not
significantly change the intensity of the spurious currents and the maximum velocity is
slightly decreased with nc = 2. Thus, the FCT transport scheme with interface veloc-
ity extension, global mass redistribution and nc = 2 seems to be the best compromise
between interface thickness and spurious currents.

In the following, this method is named VOF-FCT. The results obtained with this
cut-off algorithm in the case of a disc in a rotating shear flow (Rider and Kothe [1998],
Bonometti [2005], Tanguy [2004]) will be compared in the next chapter to the results
obtained with the FCT scheme without this cut-off and finally with those obtained
with the Level Set method.

2.3 Conclusion

The numerical schemes and methods available in the JADIM code before this work
have been presented with a particular attention to the transport scheme and the bal-
anced algorithm for the calculation of the surface tension force. Indeed, these two
aspects of computation of multiphase flows will be a central part of the two next chap-
ters. Although the described VOF method allows the simulation of various multiphase
flow systems, we will show that it has some limitations. The implementation of a Level
Set method is the topic of the next chapter 3 and the improved results brought by this
method in the cases of interest for this study will be shown in the chapter 4.
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3.1 Motivation

3.1 Motivation

Taylor flow in microchannels is dominated by surface tension effects and therefore
care needs to be taken in the calculation of the capillary force. Eulerian methods that
are used to capture the interface are well-known to produce a non-physical vorticity
in the vicinity of the interface and spurious currents develop. The intensity of these
spurious currents can be prohibitive when dealing with surface tension driven flows.
Within VOF formulations, the sharp variation of volume fraction across the interface
does not allow the accurate calculation of the geometrical properties at the interface
from the derivatives of the scalar field representing the interface. The Level Set method
(Sussman et al. [1994], Chang et al. [1996]) involves a signed distance function instead
of a volume fraction in each computational cell. This distance function allows the
precise computation of geometrical properties (normal and curvature) of the interface.
This precision is ensured by the smooth transition from one phase to the other and is
enhanced when the Level Set function gradient magnitude is constant in the domain.
An example of spurious currents in a VOF simulation of a static bubble is given in figure
3.1. The velocity should remain zero in the absence of gravity and the pressure in the
bubble should obey the Laplace pressure jump. It is seen that spurious velocities are
generated in the vicinity of the interface, while the Laplace pressure jump seems to be
well estimated. This chapter present the Level Set method that has been implemented
in JADIM during this work. We first describe the transport of the Level Set function
and then, the calculation of the capillary force is given, with respect to the calculation
of the capillary force in the VOF method presented in the previous chapter. The Level
Set method has been developed in order to improve the calculation of flows at low
capillary numbers. A detailed analysis of spurious currents will be provided in the next
chapter which is dedicated to the evaluation of spurious currents and the comparison
of different methods.

Figure 3.1: Spurious currents and pressure field in the case of a static bubble.
The mesh resolution is R0/∆x = 12.8, the bubble is placed at the center of the do-
main that is 2.5 times greater than the diameter of the bubble and no-slip boundary
conditions are used. The Laplace number is La = 12000, the viscosities and densities
of both phases are equal.
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3.2 Advection of the Level Set function

3.2.1 Transport equation

The distance function obeys the same hyperbolic advection equation 2.5 as the VOF
function, which can be written by replacing the volume fraction C by the distance
function φ:

∂φ

∂t
+ U · ∇ (φ) = 0 . (3.1)

In order to limit mass losses that are the major drawback of Level Set methods,
the advective term is generally discretized with a high order scheme. The fifth order
WENO scheme is widely used to solve the Level Set advection equation.

Using the fact that the velocity field is divergence free, equation 3.1 can be written
as:

∂φ

∂t
+∇ · (Uφ) = 0 . (3.2)

In addition, using the conservative form of the transport equation, Couderc [2007]
developed a conservative form of the fifth order WENO scheme following the idea of
applying the coefficients of the WENO scheme on the Level Set function instead of
on its gradients. This conservative formulation allows to take advantage of the finite
volume by calculating fluxes crossing the faces of the control volume. Although the
scheme is conservative, it should be kept in mind that it is the distance function that
is conserved and not the volume fraction. Comparisons between different spatial and
temporal discretization schemes can be found in Tanguy [2004] and for further details,
the reader is referred to this work.

As the densities and viscosities of the fluids are calculated with the volume fraction
of one phase as in the VOF formulation (equations 2.3 and 2.4), a volume fraction is
approximated in each computational cell using a smooth Heaviside function as defined
by equation 3.3.

C = H(φ) =


0 if φ < −ε ,
0.5

(
1 +

φ

ε
+

1

π
sin

(
πφ

ε

))
if |φ| ≤ ε ,

1 if φ > ε .

(3.3)

where ε =
√

2∆x is half the numerical thickness of the interface.

Spatial discretization

Couderc [2007] and Tanguy [2004] have shown that the conservative fifth order
WENO scheme (denotedWENO5c) generally performs better than the original WENO5
scheme and it notably allows better mass conservation after transport. This spatial
scheme has then been chosen and the algorithm to calculate the fluxes is presented
in this section for the x spatial direction with the indice i and the velocity ui. The
extension to the other directions is straightforward.

The discrete form of equation 3.2 is:(
∂φ

∂t

)
+
Fi+ 1

2
− Fi− 1

2

∆x
= 0 (3.4)

with F being the flux that crosses a face of the computational cell.
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Using the upwind formulation, the flux across the cell can be written:

Fi+ 1
2

=

{
ui+ 1

2
φ

+
i−1 if ui+ 1

2
> 0 ,

ui+ 1
2
φ
−
i if ui+ 1

2
< 0 .

(3.5)

By taking φ+
i−1 = φi−1 and φ−i = φi, a first order upwind scheme is recovered.

The high order WENO fluxes compute the values φ
+

i as a weighting of the deriva-
tives calculated with three stencils around the cell face of interest.

φ
+

i = ω
+

0 φ
+

i
0 + ω

+

1 φ
+

i
1 + ω

+

2 φ
+

i
2 (3.6)

The + or − index refers to the preferred upwind direction to build the stencils on
which the derivatives φ

+

i
1,2,3 are calculated:
φ

+0

i+ 1
2

=
1

3
r

+

1 − 7

6
r

+

2 +
11

6
r

+

3

φ
+1

i+ 1
2

= −1

6
r

+

2 +
5

6
r

+

3 +
1

3
r

+

4

φ
+2

i+ 1
2

=
1

3
r

+

3 +
5

6
r

+

4 − 1

6
r

+

5

(3.7)

where r
+

are:

r−1 = φi−2 , r−2 = φi−1 , r−3 = φi , r−4 = φi+1 , r−5 = φi+2 (3.8)
r+

1 = φi+3 , r+
2 = φi+2 , r+

3 = φi+1 , r+
4 = φi , r+

5 = φi−1 (3.9)

The weighting coefficients are calculated:

ω
+

0 =
α

+

0

α
+

0 + α
+

1 + α
+

2

ω
+

1 =
α

+

1

α
+

0 + α
+

1 + α
+

2

ω
+

2 =
α

+

2

α
+

0 + α
+

1 + α
+

2

(3.10)

so that the sum ω
+

0 + ω
+

1 + ω
+

2 = 1 and with:

α
+

0 =
1

10

 1

ε+ IS
+

0

2

α
+

1 =
6

10

 1

ε+ IS
+

1

2

α
+

2 =
3

10

 1

ε+ IS
+

2

2

.

(3.11)

In the simulations, ε is generally fixed at 10−6 to avoid dividing by zero. The IS
+

0,1,2
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represent regularity indicators which are defined as:

IS
+

0 =
13

12

(
r

+

1 − 2 r
+

2 + r
+

3

)2

+
1

4

(
r

+

1 − 4 r
+

2 + 3 r
+

3

)2

IS
+

1 =
13

12

(
r

+

2 − 2 r
+

3 + r
+

4

)2

+
1

4

(
r

+

2 − r
+

4

)2

IS
+

2 =
13

12

(
r

+

3 − 2 r
+

4 + r
+

5

)2

+
1

4

(
3 r

+

3 − 4 r
+

4 + r
+

5

)2

(3.12)

Temporal discretization

Tanguy [2004] compared the efficiency of different time schemes and observed that
an explicit Euler discretization is not sufficient and high order time schemes are re-
quired. The distance function φ is then advanced in time with a third order Runge-

Kutta time scheme, which is written (with the notation
∂φ

∂t
= L(φ)):


φ1 = φn + ∆t L (φn)

φ2 =
3

4
φn +

1

4

(
φ1 + ∆t L

(
φ1
))

φn+1 =
1

3
φn +

2

3

(
φ2 + ∆t L

(
φ2
)) (3.13)

3.2.2 Redistancing equation

Since the velocity normal to the interface is not constant, the distance function can
be stretched or compressed when the Level Set function is transported. This results
in a loss of accuracy when deriving the normal to the interface and the curvature.
This is similar to the difficulty that arises within the VOF without reconstruction
framework where the numerical thickness of the interface tends to be either sharpened
or stretched during long simulations. Different methods are used in the literature to
solve this problem either after the transport with a redistancing algorithm (Sussman
et al. [1997]), the fast-marching method or directly in the advection step by extending
the velocity field of the interface to the cells surrounding the surface. In JADIM, in
order to keep the Level Set function as close as possible to a signed distance function,
a redistancing procedure is applied using equation 3.14 (Sussman et al. [1997]):

∂φ̃

∂τ
+ sgn(φ̃0)

(
|∇φ̃| − 1

)
= 0 , (3.14)

where τ is a fictitious time used to reinitialize the Level Set function. φ is the temporary
Level Set function during the iterative resolution of equation 3.14 with φ̃0 = φ and
φ̃end = φn+1. The sign function sgn is smoothed over the computational mesh:

sgn
(
φ̃
)

=


−1 if φ < −∆x

φ√
φ2 + ∆x2

if |φ| ≤ ∆x

1 if φ > ∆x

(3.15)

Equation 3.14 can be written as:

∂φ̃

∂τ
+

(
sgn (φ)

∇φ̃
|∇φ̃|

)
· ∇φ̃ = sgn(φ) (3.16)

This non-linear hyperbolic equation corresponds to the propagation of the characteris-
tics from the iso-contour φ = 0 in the direction normal to the interface with the speed
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sgn
(
φ0
) ∇φ̃
|∇φ̃|

. Thus, the points near the interface where the Level Set function needs

to be as close as possible to a distance function will be reinitialized first. It should be
mentioned that this redistancing equation converges towards the solution |∇φ̃| = 1 and
the iso-contour φ = 0 is supposed not to be moved.

The discrete form of equation 3.14 (in 2D) is:(
∂φ

∂t

)
= Ĥ

(
D+
x φi,j , D

−
x φi,j , D

+
y φi,j , D

−
y φi,j

)
(3.17)

where Ĥ is the numerical Hamiltonian whose calculation is given in equation 3.21 and
D+
x φi,j , D−x φi,j , D+

y φi,j and D−y φi,j are upwind and downwind spatial derivatives
approximated with a WENO5 scheme whose algorithm is detailed below.

Spatial discretization

The algorithm for determining the high order spatial derivatives is given in one
dimension for simplicity of the notations:

ν−k =
φ̃i−2+k − φ̃i−3+k

∆x

ν+
k =

φ̃i+4−k − φ̃i+3+k

∆x

, with 1 < k < 5. (3.18)

Similarly to the conservative WENO5 scheme, regularity indicators are introduced:

IS
+

0 =
13

12

(
ν

+

1 − 2 ν
+

2 + ν
+

3

)2

+
1

4

(
ν

+

1 − 4 ν
+

2 + 3 ν
+

3

)2

IS
+

1 =
13

12

(
ν

+

2 − 2 ν
+

3 + ν
+

4

)2

+
1

4

(
ν

+

2 − ν
+

4

)2

IS
+

2 =
13

12

(
ν

+

3 − 2 ν
+

4 + ν
+

5

)2

+
1

4

(
3 ν

+

3 − 4 ν
+

4 + ν
+

5

)2

(3.19)

The smoothness indicators IS
+

allow the weighting coefficients to be calculated
with equations 3.10 and 3.11.

Finally, the spatial derivatives are written:

D
+

x φ̃i = ω
+

0

ν +

1

3
− 7ν

+

2

6
+

11ν
+

3

3


+ ω

+

1

−ν +

2

6
− 5ν

+

3

6
+
ν

+

4

3


+ ω

+

2

ν +

3

3
+

5ν
+

4

6
− ν

+

5

6


(3.20)

Once the upwind and downwind derivatives D
+

x,y are known, the numerical Hamil-
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tonian (equation 3.17) is calculated with a Godunov flux (Sussman et al. [1994]):

Ĥ (F1, F2, F3, F4) =



sgn (φ)

(√
max ((F1)− , (F2)+)2 + max ((F3)− , (F4)+)2 − 1

)
if sgn(φ) > 0

sgn (φ)

(√
max ((F1)+ , (F2)−)2 + max ((F3)+ , (F4)−)2 − 1

)
if sgn(φ) < 0

(3.21)
with Fk being the derivatives (for simplicity of notation) and the operators ()+ and ()−

are: {
(Fk)

− = −min (Fk, 0)
(Fk)

+ = max (Fk, 0)
, with 0 < k < 4. (3.22)

Temporal discretization

The temporary Level Set function during the redistancing step is advanced in time
with a third order Runge-Kutta scheme for the temporal discretization. Equation 3.16
indicates that the magnitude of the propagation speed of the characteristics is unity so
the fictitious time step is chosen:

∆τ = 0.5∆x, (3.23)

as recommended in Couderc [2007].
In addition, three iterations are generally enough to reinitialize the distance function

(Tanguy [2004], Couderc [2007]).

3.2.3 Mass redistribution

The mass conservation is a major drawback of Level Set metods. Indeed, although
the use of high order numerical schemes, as well as the use of a conservative WENO5
scheme in the transport equation have been shown to significantly improve the results,
this remains a challenge within Level Set methods. A simple but efficient algorithm
allows the mass to be conserved in a global manner by changing the contour representing
the interface (Chang et al. [1996]). An iterative procedure is applied until the iso-
contour around the interface that allows mass conservation to be respected within the
specified criteria (∆m/m0 ≤ 0.01% in this work) is found. This is also what is done
in the VOF method in JADIM (Bonometti [2005]). The efficiency of this algorithm is
shown in section 3.2.4. However, this method conserves the mass in a global manner
and the simulation of a number of bubbles would still need further improvements.

3.2.4 Validation test: rotation in a shear flow

This section aims at validating the whole transport algorithm. The advection test
chosen is a disc in a rotating shear flow as described in Rider and Kothe [1998]. This
is interesting as it is widely used and it has already been simulated with JADIM
(Bonometti [2005]). The computational domain is a square of width 1 and a disc of
radius R0 = 0.15 is placed at the position [x; y] = [0.5; 0.75]. The velocity field is
imposed and the stream function of this flow is ψ = π−1 (sin(πx))2 (sin(πy))2 . The
disc is stretched until the time t = T = 1 and the flow is then reversed until the disc
comes back to its approximate initial position.
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Redistancing

The necessity of using a redistancing step is shown in figure 3.2. It is seen that
the Level Set function is not a distance function anymore without the redistancing
step when a shear rate is exerted on the interface and the sharpness of the interface
described by the smooth Heaviside function defined in equation 3.3 is not constant. In
addition, it is also observed that the redistancing step is efficient and the iso-contours
of the Level Set function are well redistributed.

(a) without redistancing (b) with redistancing

Figure 3.2: Disc in rotating shear flow at time at its maximum stretching in this test
case (t = T = 1) (a) without the redistancing algorithm ; (b) with the redistancing
algorithm.

Mass conservation

The variation of mass during the simulation is shown in figure 3.3. It is seen that
without the mass conservation, mass variations arise and can be reduced by increasing
the mesh size (solid and dashed black lines). With the mass redistribution algorithm,
the variations of mass remain within the allowed error (+0.01%) with both meshes. In
addition, independently of the mesh used, the mass conservation step remains efficient
(the solid and dashed blue lines cannot be distinguished). This is similar to the results
obtained with the VOF-FCT-0 scheme with mass redistribution (red lines).

Comparison between VOF and LS

The transport schemes are compared in this section in the case of the rotating shear
flow. The transport schemes compared are:

- VOF-FCT-0, which is the scheme that has been developed in Benkenida [1999]
and significantly improved in Bonometti [2005];

- VOF-FCT, which corresponds to the previous scheme with the additional cut-off
algorithm presented in section 2.2.4;

- LS, the Level Set method implemented which is mostly based on the works of
Tanguy [2004], Couderc [2007].
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Figure 3.3: Mass variations.
Legend: (black) LS without mass correction ; (blue) LS with mass correction ; (red)
VOF-FCT-0 ; (solid lines) mesh 64 × 64, i.e. R0/∆x = 9.6 ; (dashed lines) mesh
128× 128, i.e. R0/∆x = 19.2 .

We remind that the scope of this work is to find the best method for the capillary
force in order to reduce spurious currents (see chapter 4). This section shows the vali-
dation of the transport scheme. Figure 3.4 shows the shape of the disc in the rotating
shear flow for the three transport schemes with a resolution R0/∆x = 19.2. Although
the Level Set method consists in advecting a distance function, the results are shown
in terms of volume fractions (estimated with equation 3.3), in order to compare the
three methods with a unique scalar field.

It is seen that the position and the shape of the iso-contour representing the in-
terface C = 0.5 are approximately the same with the three methods. However, the
spreading of the interface over a few cells that is observed in the VOF-FCT-0 scheme is
prevented with the cut-off algorithm (VOF-FCT), as well as with the LS method since
the smooth Heaviside function forces the thickness of the interface to approximately 3
cells, as long as the Level Set function is close to a distance function. The results of
the VOF-FCT and LS schemes are qualitatively similar.

Table 3.1 shows the error norms

E1 =

∑ |C2T
i,j − C0

i,j |∑
C0
i,j

and E2 =

∑ |C2T
i,j − C0

i,j |
2πR∆x

,

where C0
i,j and C2T

i,j are the initial and final volume fraction fields, respectively. The
error E1 represents the relative area of the difference between the initial and final
discs, while the error E2 corresponds to the same difference in the areas but made
dimensionless with interfacial area. This error norm appears to be relevant as the
errors are mainly localized around the interfacial area. It is seen that at low resolution,
the cut-off algorithm 2.2.4 improves the results when compared with the previous VOF-
FCT-0 scheme. As the resolution is increased, it is also seen that the results are similar
with and without the cut-off step since the volume fraction is not spread over enough
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t = 0

t = T

t = 2T
VOF-FCT-0 VOF-FCT LS

Figure 3.4: Disc in rotating shear flow. The lines represent the iso-contours [0.01 ; 0.5
; 0.99].

cells to enter the cut-off algorithm. The FCT scheme with the cut-off algorithm has
then been used in the following. Finally, the Level Set method shows better results for
both error norms from low to high resolutions.

VOF-FCT-0 VOF-FCT LS
R0/∆x E1 E2 E1 E2 E1 E2

9.6 0.1899 0.9116 0.1123 0.5392 0.0522 0.2509
19.2 0.0805 0.7728 0.0346 0.3324 0.0115 0.1104
38.4 0.0198 0.3795 0.0198 0.3795 0.0031 0.0603

Table 3.1: Error norms as a function of the spatial resolution for the 3 transport schemes
considered.

3.3 LS Classic Continuum Surface Force (LS-CCSF)

The LS method has been validated in terms of the transport equation. Concerning
its coupling with the Navier-Stokes equations, the capillary force is not calculated
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exactly in the same way within VOF and LS methods, although the key idea remains
the same, i.e. the spreading of the surface force on a region which is a few cells thick.
In the LS-CCSF method, the same discretization as used in the VOF-CCSF method
(equation 2.12) is employed:

Fσ,v =
−σ
ρV
∇C

∫
∂S

( ∇φ
‖∇φ‖

)
· ncelldS (3.24)

The delta dirac function can be approximated by the derivative of the smooth
Heaviside function and applied directly, while the gradient of the level set function can
be used for the curvature and the orientation of the force. Here, both the localization
and the orientation are deduced from the volume fraction calculated with the Level Set
function, i.e. nδI = ∇C. Indeed, this leads to a balanced surface force scheme since
the volume fraction and the pressure gradients are discretized in the same way at the
center of the staggered control volumes. Therefore, the main difference between the
capillary force calculated in the VOF-FCT-CCSF and in the LS-CCSF method resides
in the calculation of the curvature:

κ = ∇ ·
( ∇φ
|∇φ|

)
(3.25)

Note also that the inverse of the density in the cell is used instead of the inverse
of the mean density as it is the case in the VOF formulation (2.12). It was suggested
that the use of the mean density reduces the spurious currents intensity within a VOF
formulation (Brackbill et al. [1992]) but this has not been observed with the Level Set
method and it appears more appropriate to discretize the capillary forces and pressure
gradient in a consistent way.

3.4 Conclusion

A Level Set method has been implemented and validated through an academic test
case. It has been shown that the results obtained in the case of a rotating shear flow
are in good agreement and even improved when compared with those obtained with
the VOF version of JADIM. The surface tension force is calculated following the same
idea as in the balanced VOF-CSF formulation described in the previous chapter. The
divergence theorem is used to evaluate the curvature at the center of the staggered
control volumes and both the localization and the orientation of the surface tension
force are calculated through the gradient of volume fraction in order to to keep a
consistent discretization between the pressure gradient and the surface tension force.
The coupling between the Level Set transport equation, the surface force calculation
and the Navier-Stokes flow solver are discussed in the next chapter devoted to the
characterization and the reduction of the spurious currents.
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Spurious currents

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Numerical schemes . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 Transport schemes . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 Surface tension force, origin of spurious currents . . . . . 57

4.3.1 VOF Classic Continuum Surface Force (VOF-CCSF) . . . . . 58
4.3.2 VOF Height Function Continuum Surface Force (VOF-HFCSF) 58
4.3.3 LS Classic Continuum Surface Force (LS-CCSF) . . . . . . . 59
4.3.4 LS Height Function Continuum Surface Force (LS-HFCSF) . 59
4.3.5 LS Sharp Surface Force (LS-SSF) . . . . . . . . . . . . . . . . 60

4.4 Origin of spurious currents, vorticity source . . . . . . . . 60
4.5 Static bubble . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.6 Translating bubble . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6.1 Time evolution of spurious currents . . . . . . . . . . . . . . 66
4.6.2 Effects of the Laplace number . . . . . . . . . . . . . . . . . . 67
4.6.3 Convergence with spatial resolution . . . . . . . . . . . . . . 68

4.7 Rotating bubble . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.7.1 Convergence with spatial resolution . . . . . . . . . . . . . . 75

4.8 Summary of static, translating and rotating cases . . . . . 76
4.9 Taylor bubble dynamics . . . . . . . . . . . . . . . . . . . . 79
4.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

55



4.1 Introduction

4.1 Introduction

When dealing with flows where capillary forces are preponderant, such as the sim-
ulation of Taylor flow (or slug flow) in microchannels, care needs to be taken in the
computation of surface tension forces. This suggests that the normal to the interface
and the curvature need to be accurately estimated. This capillary force located on the
interface can be represented in a spatially filtered way using an interface thickness with
the Continuum Surface Force method (Brackbill et al. [1992]) or in a sharp way using
the location of the interface at a sub-cell level, e.g. Ghost Fluid Method (GFM) (Kang
et al. [2000]), the Sharp Surface Force (SSF) (Francois et al. [2006]). Within implicit
representations of the interface, many methods consider the successive derivatives of
the scalar field representing the interface. More recently, Cummins et al. [2005] and
Popinet [2009] have shown that the construction of height functions allows a better
approximation of the interface curvature. Indeed, this method consists in finding the
position of the interface with a good accuracy by adding successive volume fractions
in a column of fluid (see section 4.3.2). Using this height function technique, Popinet
[2009] achieved an exact numerical balance between surface tension forces and pressure
jump with the elimination of spurious currents in the case of a static interface.

However, it was also shown that the coupling between transport schemes, surface
tension force with Navier-Stokes equations and curvature estimation still needs im-
provements since the zero velocity field expected in the frame of reference moving with
the bubble (like for the static case in Popinet [2009]) is not recovered when the inter-
face is translated in a uniform flow. These observations motivated our work. Different
numerical methods implemented in the same flow solver have been compared in terms
of the magnitude of spurious currents and pressure jump evaluation on the basis of
four test cases: the static bubble case for which a number of results are available in the
literature; the translating bubble, which seems more related to physical flows; a bub-
ble in a rotating flow; and the dynamics of Taylor bubble in a circular microchannel.
The translating and rotating test cases have already been used to characterize transport
schemes without solving the Navier-Stokes equations (Benkenida [1999]) but less atten-
tion has been paid to the study of spurious currents generated in these configurations,
whereas these are mainly the consequence of errors in the advection step, as soon as
the bubble is not static (Popinet [2009]). Due to the coupling between the errors in the
bubble shape introduced in the advection step and the parasitic currents, which alter
the theoretical velocity field close to the interface, the effects of fluid properties are
considered by varying the Laplace number and the Weber number. The dynamics of
Taylor bubbles in microchannels appear to be representative of the ability of a partic-
ular method to deal with spurious currents since these flows are dominated by surface
tension (low capillary number and low Weber number) and approach stationary motion
in the frame of reference moving with the bubble. As it will be shown, the development
of spurious currents in such flows can promote the development of non-physical recircu-
lation areas and consequently, erroneous slip velocity between the bubble velocity and
mean velocity in the liquid slug which characterizes the drainage of such capillaries
(Aussillous and Quéré [2000]), residence time and mixing characteristics (Abadie et al.
[2013]), and ultimately heat and mass transfer processes.
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4.2 Numerical schemes

4.2.1 Transport schemes

In this section, we briefly present the transport schemes that have been used to
characterize the spurious currents in the different simulations carried out in this work.

Two different VOF schemes have been used :

- the VOF-FCT scheme that has been presented in chapter 2;

- a geometrical VOF-PLIC scheme in order to compare the effects of the scalar field
transport and and in particular the sharpness of the interface on the spurious
currents;

- the LS method described in chapter 3.

VOF-PLIC

The previous VOF-FCT without reconstruction scheme is considered diffusive since
the interface is generally spread over a few cells thickness and therefore a geometri-
cal 2-dimensional VOF-PLIC scheme based on the VOF Tools libraries developed by
Lopez and Hernandez [2008] has been tested to compare the coupling of momentum
equations with accurate surface tension schemes and transport equations within VOF
formulations. The normals used to determine the linear reconstruction are calculated
in the same way as those calculated for the surface tension force (see section 4.3). From
the calculated normals and the given volume fraction, the interface is represented by a
segment in each interfacial cell. The advection scheme is based on the same direction-
split algorithm as the FCT scheme (Rudman [1998]). With staggered grids, the volume
fraction enclosed in the volume advected by each velocity component is fluxed through
the corresponding cell face. Note that a wide variety of PLIC schemes exist in the
literature and the following observations, especially the rates of convergence, could be
modified with another VOF geometrical scheme.

4.3 Surface tension force, origin of spurious currents

The calculation of the capillary force in both a VOF and a LS framework have been
presented in the previous chapters. A brief summary of the methods used and variants
of these methods are introduced in this section and the origin of spurious currents is
discussed. These variants consist in calculating the curvature with a more accurate
method (Height Functions) and another variant consists in imposing a sharp surface
force instead of a continuous surface force (SSF).

The capillary force in the CSF model detailed in section 2.2.2 is written:

Fσ,v = −σ
ρ
κ∇C. (4.1)

where κ is the curvature of the interface and the localization of the interface is available
through a non-zero gradient of the volume fraction.

The approaches considered in this work are mostly variants of the CSF method
(Brackbill et al. [1992]) that differ in the way the curvature is discretized. The manner
in which the capillary surface force is converted into a volume force and is spread over
the finite volume mesh is not affected except in the SSF method. The CSF methods
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4.3 Surface tension force, origin of spurious currents

based on the calculation of the curvature by means of the divergence of normal vectors
or height functions are differenciated by calling them Classic Continuum Surface Force
(CCSF) and Height Function Continuum Surface Force (HFCSF). The Sharp Surface
Force (SSF) (Francois et al. [2006]), which roughly sets the pressure jump between cells
that are cut by the interface, slightly differs from the Continuum Surface Force in that
there is no discretization of a Delta Function to estimate the surface of the interface
that cut the interface. The formulation of Sharp Surface Force (SSF), results in a sharp
pressure jump like that obtained with the Ghost Fluid Method (Kang et al. [2000]) or
the pressure correction proposed in (Popinet and Zaleski [1999]).

4.3.1 VOF Classic Continuum Surface Force (VOF-CCSF)

The VOF-CCSF method which has been developed in JADIM is based on the
implicit representation of the interface that allow the calculation of the normal and the
curvature from the successive derivatives of the scalar function representing te interface:

δIn = ∇C (4.2)

κ = ∇ ·
( ∇C
||∇C||

)
(4.3)

The capillary force is given by (similar to 2.12):

Fσ,v =
−σ
ρV
∇C

∫
∂S

( ∇C
‖∇C‖

)
· ncelldS (4.4)

where ∇C is the average value of ∇C in the staggered control volume and ρ =
(ρ1 + ρ2)/2 is the mean density since it has been shown to decrease the intensity
of spurious currents (Brackbill et al. [1992]). A key point of this method is that the
gradient of volume fraction in equation 4.4 is discretized in the same way as the pressure
gradient in equation 2.2. This consistent discretization results in a balanced surface
tension scheme (Renardy and Renardy [2002], Francois et al. [2006], Popinet [2009])
for iso-density flows whose benefit will be detailed in section 4.4.

4.3.2 VOF Height Function Continuum Surface Force (VOF-HFCSF)

The height function technique (Cummins et al. [2005], Popinet [2009]) allows the
geometrical properties of the interface to be accurately calculated by summing the
volume fractions of fluid columns. When the interface is well resolved, the use of
height functions allows the position of the interface, described by a segment (in 2D) or
a plane (in 3D), to be obtained. The stencils are oriented along the main component of
the normal to the interface and they are adapted in every column until a cell of volume
fraction of 0 is reached in the direction of negative gradient of volume fraction and a
volume fraction of 1 in the positive direction (see figure 4.1.b). Once the position of
the interface is evaluated, the curvature is calculated from the plane curve y = f(x)
via equation 4.5 :

κ =
y′′

(1 + y′2)3/2
. (4.5)

The surface tension force is therefore given by:

Fσ,v =
−σ
ρV
∇C

∫
V

(
y′′

(1 + y′2)3/2
∇C

)
dV (4.6)
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(a) (b) (c)

Figure 4.1: (a) Schematic representation of the capillary force with a Continuum Sur-
face Force model on staggered grids. Adaptive stencil for the construction of height
functions in (b) a Volume of Fluid formulation ; (c) a Level Set formulation. The dashed
line represents the interface while the dash-dotted line represents the iso-contour where
the curvature is calculated in the classic continuum surface force model.

In addition, the local density in the cell ρ is used in VOF-HFCSF instead of the mean
density ρ as in VOF-CCSF (equation 4.4) in order to get a balanced-force algorithm
whatever the density ratio, with a consistent discretization with the pressure gradient
term where the local density is used.

4.3.3 LS Classic Continuum Surface Force (LS-CCSF)

In the LS-CCSF method, the same conservative discretization used in the VOF-
CCSF method is employed.

Fσ,v =
−σ
ρV
∇C

∫
∂S

( ∇φ
‖∇φ‖

)
· ncelldS (4.7)

Note that, like in VOF-HFCSF, the local density in the cell ρ is used in LS-CCSF
instead of the mean density ρ as in VOF-CCSF. The delta dirac function could be
approximated by the derivative of the smooth Heaviside function and applied directly
while the gradient of the Level Set function would be used for the curvature and the
orientation of the force. Here, both the localization and the orientation are deduced
from the volume fraction calculated with the Level Set function, i.e. nδI = −∇C,
since natural equilibrium is reached with this formulation as soon as the curvature is
constant along the interface and both the pressure and volume fraction gradients in
equation 4.9 are discretized in the same way.

4.3.4 LS Height Function Continuum Surface Force (LS-HFCSF)

In a Level Set framework, the position of the interface can be found by linear
interpolation or more accurately using quadratic interpolations with the four cells sur-
rounding the interface (see figure 4.1.c). The procedure to locate the interface is the
same as the one used by Min and Gibou [2007]. In order to improve the stability of
the quadratic interpolations near discontinuities, a minmod operator was introduced
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4.4 Origin of spurious currents, vorticity source

by Min and Gibou [2007] on the second derivatives of the Level Set function calculated
on each side of the interface. The curvature and volume force are also calculated with
equations 4.5 and 4.6 respectively.

4.3.5 LS Sharp Surface Force (LS-SSF)

In the Sharp Surface Force model (Francois et al. [2006]), the surface tension force
is non zero only in the cells crossed by the interface; this is different to the CSF
method, which imposes the Laplace pressure jump continuously along the interface.
The curvature is calculated following the same procedure as the LS-CCSF method.
For the horizontal direction, if the control volume centered on the x-component of the
velocity is crossed by the interface, i.e. φi−1 × φi < 0, the surface tension force is:

Fσ,v = −(σκI)/(ρ∆x), (4.8)

where κI is the curvature interpolated on the interface κI =
|φi|κi−1 + |φi−1|κi
|φi|+ |φi−1|

.

4.4 Origin of spurious currents, vorticity source

In simple cases, such as a static or a translating bubble or drop, the momentum
conservation equation reduces to:

0 = −∇P + σκ∇C, (4.9)

such that, when taking the curl of equation 4.9, the curvature should satisfy:

∇κ×∇C = 0 . (4.10)

Spurious currents are generated when this condition is not satisfied. In the particular
case of a surface with a constant curvature (e.g. a spherical bubble or drop), the
flow will be curl free if the computed curvature is indeed constant. In addition, the
elimination of spurious currents requires the use of balanced-force algorithms (Francois
et al. [2006], Herrman [2008], Popinet [2009]) with consistent discretization of pressure
and capillary forces to satisfy equation 4.9. Curvature gradients as sources of vorticity
are identified when writing the vorticity equation from equation 2.2:

∂ω

∂t
+ (U · ∇)ω + (ω · ∇) U =

µ

ρ
∇2ω − σ

ρ
∇κ×∇C (4.11)

From equation 4.11, it is seen that the surface tension force can contribute as a
source term for vorticity production when condition 4.10 is not satisfied. Equation 4.11
also shows that a steady state can be reached for the spurious currents of magnitude
Uσ. When viscous effects are dominant, the vorticity source term (σ∇κ×∇C ∼ σ/D3)
is balanced by the viscous term (µ∇2ω ∼ µUσ/D3):

Uσ,visc ∼
σ

µ
(4.12)

Thus, the intensity of spurious currents can be written using a characteristic capillary
number (Ca = µUσ,visc/σ ∼ c where c is a constant). This is consistent with previous
works in which the magnitude of spurious currents was related empirically to σ/µ
(Dupont and Legendre [2010], Herrman [2008], Renardy and Renardy [2002]).

When inertia is dominating, the source term is balanced by the inertial term
(ρ (U · ∇)ω ∼ ρU2

σ/D
2) resulting in the characteristic velocity:

Uσ,in =

√
σ

ρD
. (4.13)
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This is the characteristic velocity used in the inviscid problem (Popinet [2009]). These
two characteristic velocities are closely related since

Uσ,visc =
√
La Uσ,in (4.14)

where La =
ρDσ

µ2
is the Laplace number.

In this work, Uσ,visc has been chosen to make the velocities dimensionless since the
simulations have been performed at a finite Laplace number and it is consistent with a
previous study with JADIM (Dupont and Legendre [2010]).

4.5 Static bubble

The first test case that we consider is the 2-dimensional static bubble (Popinet
[2009]). A cylindrical interface is initialized in a continuous phase without gravity and
both fluids have equal density and viscosity. The Laplace number is La = 12000. Only
a quarter of the bubble of radius R0 = 0.4, placed in the bottom left hand side of a
square computational domain of length 1 is simulated. Symmetry boundary conditions
are applied on the left and bottom boundaries while no-slip boundary conditions are
applied on the top and right boundaries. The exact solution of the velocity field should
remain zero in the whole domain and the pressure should obey the Laplace pressure
jump at the interface.

The analysis of the intensity of spurious currents and pressure jumps is based on
the following error norms:

- Umax is the maximum absolute velocity in the whole domain and Camax =
µUmax/σ is its dimensionless form used in the following,

- |∇κ × ∇C| is the norm of the source term in equation 4.11 and will be used to
characterize the vorticity production and the associated spurious currents,

- ∆Ptotal is the pressure jump between the average pressure in the bubble (C ≥ 0.5)
and the average pressure in the continuous phase (C ≤ 0.5),

- ∆Pmax is the pressure jump between the maximum and minimum pressure in the
domain.

The numerical parameters considered correspond to those used by Popinet [2009]
where after transient motion, the bubble shape reached a numerical equilibrium with a
constant curvature estimated along the interface, leading to an exact balance between
surface tension and pressure forces, and the elimination of spurious currents. The time

is made dimensionless with the capillary time scale Tσ =

√
ρD3

σ
.

The relevance of the space discretization between pressure gradient and surface
tension force has firstly been tested by imposing the exact curvature in the whole
domain for the calculation of Fσ,v. The maximum dimensionless velocity in the whole
domain reached Camax ' 5.08×10−18 showing that equation 4.10 is satisfied to machine
accuracy so that the source term in equation 4.11 is negligible and no spurious currents
develop. Thus, the exact balance between the volume fraction and pressure gradients
is verified and the spurious currents observed in the following can be attributed to
the errors in the calculation of the curvature and more precisely, in the gradients of
curvature along the interface due to the resolution of a curved interface on a cartesian
grid.
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4.5 Static bubble

Figure 4.2 shows the velocity field and the intensity of the source term in the
vorticity equation for the different methods. It is clearly seen that the maximum
intensities of velocity and the maximum intensities of the vorticity source are collocated.
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Figure 4.2: Intensity of the source term |∇κ×∇C| in the vorticity equation 4.11 and
velocity field (by decreasing spurious currents from (a) to (f)) for R0/∆x = 12.8 and
La = 12000.

Figure 4.3 shows the evolution of the maximum intensity of the spurious currents
with the different methods. Within a VOF framework, it is clearly seen that the height
function curvature calculation allows the spurious currents to be decreased by approx-
imately six orders of magnitude with the VOF-FCT-HFCSF method when compared
with the standard curvature calculation (VOF-FCT-CCSF) and spurious velocities are
close to machine accuracy with VOF-PLIC-HFCSF, as in Popinet [2009]. In addition
to the accuracy obtained with the height function technique (Cummins et al. [2005],
Popinet [2009]), the curvature calculated is that at the interface while the curvature es-
timated with CCSF methods is that at the center of the control volume as illustrated in
figure 4.1. The error induced by the location of the curvature calculation promotes cur-
vature gradients, which are source of vorticity in the vicinity of the interface (equation
4.11). As expected, the Classic Continuum Surface Force method gives better results
when coupled to a distance function than a volume fraction. Within a LS framework,
figure 4.3 shows that both continuous and sharp methods (LS-CCSF and LS-SSF) are
close in terms of the intensity of spurious currents. These similarities in the results
obtained with LS-CCSF and LS-SSF methods are consistent with the observations of
Francois et al. [2006] who found similar spurious velocities with continuous and sharp
surface tension models.

In a LS context, the height function curvature calculation improves the results by
more than one order of magnitude. However, the exact balance between pressure and
capillary forces that is achieved in a VOF framework, with or without reconstruction,
is not obtained with the LS-HFCSF method. Interestingly, when the redistancing step
in the LS transport scheme is skipped, the spurious currents are significantly decreased
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and it is possible to obtain the exact equilibrium between pressure and capillary forces
with both Sharp Surface Force (LS-SSF) and Height Function Continuum Surface Force
(LS-HFCSF). Indeed, both methods estimate the curvature at the interpolated position
of the interface and the interface oscillates around the position of numerical equilibrium
while the velocities tend towards zero. This balance cannot be reached when the
redistancing step is activated because the position of the interface (represented by the
iso-contour φ = 0) is slightly moved during the redistancing step (Min and Gibou
[2007]), thereby maintaining the spurious currents. Spurious currents are mainly due
to the redistancing step in LS methods when the curvature is calculated on the interface
(LS-SSF and LS-HFCSF). Nevertheless, the redistancing equation will be solved in the
following as it is necessary to maintain the level set function as a distance function.
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Figure 4.3: Evolution of the maximum intensity of the spurious currents in the com-
putational domain over time. Legend : (− −� ) VOF-FCT-CCSF ; (��� ) VOF-FCT-
HFCSF ; (��♦ ) VOF-PLIC-HFCSF ; (− −© ) LS-CCSF ; (��© ) LS-HFCSF ; (� · � ·© )
LS-SSF ; (− −F ) LS-CCSF without redistancing ; (��F ) LS-HFCSF without redistanc-
ing ; (� · � ·F ) LS-SSF without redistancing.

In addition, the temporal evolution of the intensity of vorticity source is reported
in figure 4.4. A good correlation between this source term and the spurious velocities
is observed. Indeed, the curvature gradients and therefore the vorticity source term
almost vanish with the VOF-FCT-HFCSF method and are reduced to 10−12 with the
VOF-PLIC-HFCSF. On the other hand, with the other methods, this vorticity source
does not vanish and is balanced by viscous dissipation (see section 4.4). These trends
are similar to those observed with the maximum intensity of spurious currents.

The balance between pressure jump and surface tension forces observed with both
the VOF-FCT-HFCSF and VOF-PLIC-HFCSF methods has been verified for different
Laplace numbers ranging from 120 to 12000 and different meshes involving between
10 and 50 cells per bubble radius. Convergence of the other methods with mesh re-
finement has been studied and is shown in figure 4.5. As mentioned in Dupont and
Legendre [2010], the spurious currents obtained with the VOF-FCT-CCSF method do
not decrease with grid refinement. Since the number of smoothing steps that spreads
the interface on a given number of cells has been kept constant, the physical length of
smoothing is smaller and the filter is less efficient when the grid spacing is decreased.
Spurious currents with LS-CCSF, LS-SSF and LS-HFCSF decrease with a rate of con-
vergence close to 2.
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Figure 4.4: Evolution of the maximum intensity of the source term |∇κ×∇C| in the
vorticity equation 4.11 over time.
Legend : (− −� ) VOF-FCT-CCSF ; (��� ) VOF-FCT-HFCSF ; (��♦ ) VOF-PLIC-
HFCSF ; (− −© ) LS-CCSF ; (��© ) LS-HFCSF ; (� · � ·© ) LS-SSF.
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Figure 4.5: Convergence with spatial resolution of maximal spurious currents velocities.
Legend : (− −� ) VOF-FCT-CCSF ; (��� ) VOF-FCT-HFCSF ; (��♦ ) VOF-PLIC-
HFCSF ; (− −© ) LS-CCSF ; (��© ) LS-HFCSF ; (� · � ·© ) LS-SSF ; (· · · ) Camax ∼
(R0/∆x)−1 ; (---) Camax ∼ (R0/∆x)−2.
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4.6 Translating bubble

The second test case consists in a uniform flow field that translates the bubble as
proposed in Popinet [2009]. This test allows the precision and robustness of the coupling
between advection schemes, Navier-Stokes solver and capillary term calculation to be
characterized. A uniform horizontal velocity U0 is imposed in the whole domain with
periodic boundary conditions on lateral sides and symmetry boundary conditions on
the top and bottom. Both fluids have equal density and viscosity. The cylindrical
bubble/droplet should move with the external flow at the same velocity U0, the velocity
field in the frame of reference moving with the bubble should ideally be zero and the
pressure field should obey the Laplace pressure jump at the interface.

(u , v) (x, y) = (U0 , 0) (4.15)

p(x, y) =

{ σ

R0
in the bubble

0 outside
(4.16)

In this test case, the time is made dimensionless with the characteristic advection time
t0 = D/U0.
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Figure 4.6: Intensity of the source term |∇κ×∇C| in the vorticity equation 4.11 and
velocity field after the translation of a distance 1.25D in the frame of reference moving
with the bubble (by decreasing spurious currents from (a) to (f)) for R0/∆x = 12.8,
La = 12000 and We = 0.4.

The spurious velocity and the vorticity production fields obtained with the different
methods are shown in figure 4.6. Similarly to the static case, the maximum intensi-
ties of vorticity production and spurious velocity are collocated. It is observed that
the maximum intensity of spurious currents in VOF-FCT-HFCSF simulation does not
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tend towards machine accuracy in this test case and is of the same order of magnitude
than in the VOF-FCT-CCSF simulation. However, while the spurious velocities are
uniformly spread around the interface in the VOF-FCT-CCSF method, the spurious
currents are localized in space when using the height function technique for the curva-
ture calculation. This different behaviour between the different curvature calculation
techniques is also observed with the VOF-PLIC and LS transport schemes. Therefore,
the average intensity of spurious currents is decreased with the height function curva-
ture calculation whereas the maximum intensity of spurious currents is of same order
with both height function and curvature calculation from the divergence of the unit
normal to the interface for a given transport scheme.

4.6.1 Time evolution of spurious currents

The temporal evolution of the maximum velocity of spurious currents is reported
in figure 4.7. For a given transport scheme (VOF-FCT, VOF-PLIC or LS), the esti-
mation of the curvature from the height function (HFCSF) leads to similar intensities
of spurious currents as those obtained with the calculation of the curvature from the
divergence of the unit normal to the interface (CCSF and SSF). The spurious currents
obtained with CCSF and SSF methods are in good agreement with those obtained
in the static case. On the other hand, with the height function curvature calculation
(VOF-FCT-HFCSF, VOF-PLIC-HFCSF, LS-HFCSF), spurious currents are enhanced
in this test case when compared with the static case. The accuracy of the height
function curvature calculation is therefore highlighted since spurious currents are very
sensitive to the errors in the shape that are introduced in the advection step, especially
with VOF-FCT and VOF-PLIC schemes. In this test, it is seen that spurious velocities
are dominated by the method used to capture and advect the interface. Indeed, this
flow configuration shows that VOF-FCT and VOF-PLIC transport schemes generate
almost similar spurious currents, with a stronger intensity than that obtained with a
LS method, whatever the method used to calculate the curvature and the surface force
(continuous or sharp).
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Figure 4.7: Temporal evolution of the maximum spurious currents velocity in the frame
of reference moving with the bubble for R0/∆x = 12.8, La = 12000, We = 0.4.
Legend : (− −� ) VOF-FCT-CCSF ; (��� ) VOF-FCT-HFCSF ; (− −♦ ) VOF-PLIC-
CCSF ; (��♦ ) VOF-PLIC-HFCSF ; (− −© ) LS-CCSF ; (��© ) LS-HFCSF ; (� · � ·© )
LS-SSF.
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4.6.2 Effects of the Laplace number

The effects of fluid properties on the intensity of the spurious currents have first been
considered by varying the Weber number. Our results obtained with the VOF-PLIC-
HFCSF method are close to those obtained with the Gerris collocated finite-volume
code in Popinet [2009] that uses a geometrical VOF transport scheme of the interface
(PLIC) and the CSF method is coupled to the height function curvature calculation.
With most of the methods, the capillary number based on the maximum intensity of
spurious currents does not depend strongly on the Weber number, as mentioned in
Popinet [2009]. Since approximately the same evolution is found with all the methods,
we focused on the effects of the Laplace number on the spurious currents.

The evolution of the spurious velocities, in terms of capillary number, as a func-
tion of the Laplace number is reported in figure 4.8(a), which also includes results
from Popinet [2009]. Note that in Popinet [2009], the velocities are made dimension-
less with the advective velocity U0. To compare these results with the present study
in terms of characteristic capillary number, the velocities from Popinet [2009] have
been adapted (CaPopinet [2009]

max = U
Popinet [2009]
max /U0

√
We0/La). The trend observed in

Popinet [2009] (Umax/U0 ∼ La1/6) then leads to Camax ∼ La−1/3 for a given advective
Weber number We0. Our results obtained with the VOF-PLIC-HFCSF method are in
good agreement with the results from Popinet [2009], despite a slightly lower influence
of the fluid properties (Camax ∼ La−

1
4 ). Whatever the transport scheme, VOF-PLIC,

VOF-FCT or LS, the spurious currents generated with the CCSF method show almost
no dependency with the fluid properties and are close to those obtained in the static
case. The LS-SSF method also gives similar spurious current intensities and trends to
the LS-CCSF method. However, the HFCSF method coupled with either VOF-PLIC,
VOF-FCT or LS shows approximately the same trend, with a decrease in the spurious
capillary number as the Laplace number increases (Camax ∼ La−

1
4 ).

From a general point of view, in the range of Laplace and Weber numbers simulated
in the present work (1.2 < La < 12000 and 0.4 < We < 30) with 12.8 cells per bubble
radius, VOF-FCT-CCSF and VOF-PLIC-CCSF are almost equivalent since the errors
in the advection are smoothed. The spurious currents generated with the VOF-PLIC-
HFCSF are of the same order of magnitude. The height function coupled with the
VOF-FCT transport scheme leads to enhanced spurious currents when compared with
the same curvature calculation coupled with the VOF-PLIC transport scheme and this
is attributed to the slight interface diffusion. Finally, the spurious currents obtained
in a LS framework are reduced by a factor between 2 (La = 1.2 and We = 0.4) and
approximately 100 (La = 12000 and We = 30) when compared with the minimum
ones obtained in a VOF framework. It is also interesting to point out that the intensity
of the spurious currents in this test case is essentially driven by the transport scheme,
i.e. LS schemes give better results than VOF-PLIC and finally VOF-FCT transport
schemes, whereas the tendencies observed when increasing the Laplace number appear
to depend on the method for the curvature calculation, i.e. almost no dependency on
the Laplace number for the curvature derived from the interface normal and a slight
decrease with the height function curvature calculation.

Figure 4.8(b) shows the maximum intensity of the vorticity source term and con-
firms that the vorticity production mainly depends on the transport scheme and the
discretization. Indeed, the vorticity production in LS methods is smaller than in VOF
methods, except with the LS-HFCSF method where strong curvature gradients, which
are localized both in time and space, appear. As expected, the spurious currents pro-
duction for a given method is constant in a first approximation throughout the range of
Laplace numbers considered despite slight variations due to the coupling between spu-
rious velocities, advection errors, curvature gradients and vorticity production. These
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Figure 4.8: Maximum spurious currents capillary number (a) and vorticity production
(b) versus the Laplace number for R0/∆x = 12.8 and We = 0.4.
Legend : (− −� ) VOF-FCT-CCSF ; (��� ) VOF-FCT-HFCSF ; (− −♦ ) VOF-PLIC-
CCSF ; (��♦ ) VOF-PLIC-HFCSF ; (− −© ) LS-CCSF ; (��© ) LS-HFCSF ; (� · � ·© )
LS-SSF ; (· · ·4 ) VOF-PLIC-HFCSF@Gerris (Popinet [2009]) ; (---) Camax ∼ La−1/3.

observations show that the decrease in spurious currents as the Laplace number in-
creases is not related to a decrease in vorticity production. Thus, the development of
the vorticity source term into spurious currents and the balance between them depends
on the Laplace number.

4.6.3 Convergence with spatial resolution

Intensity of spurious currents

The convergence with spatial resolution of the maximum velocity is shown in fig-
ure 4.9 for a given Laplace number (La = 12000) and two different Weber numbers
(We = 0.4 and We = 30). As oberved in Dupont and Legendre [2010] for the static
case, VOF-FCT-CCSF does not converge with spatial resolution and this is also true
for the VOF-PLIC-CCSF method since both methods behave similarly. It is not sur-
prising that a slight increase in spurious currents with increasing the number of nodes is
observed since the number of smoothing iterations is kept constant and thus, the filter-
ing procedure acts over a thinner region. VOF-FCT-HFCSF does not converge either
when the number of nodes is increased and the trend is even worse with the LS-HFCSF
method. VOF-PLIC-HFCSF presents almost a first order convergence rate. These
different behaviours with a given curvature calculation and different transport schemes
show the importance of the errors introduced in the advection step that are captured
with an accurate curvature calculation, such as the height function method. Finally,
LS-CCSF and LS-SSF present near second order convergence rates. The methods show
similar trends within the range of Weber numbers considered. The differences reside
in slightly lower rates of convergence at We = 30 and the spurious velocities obtained
with the VOF-FCT scheme are greater than those at We = 0.4. Since there is no
major difference and the calculation time is found to decrease when the bubble velocity
increases (i.e. for high Weber numbers), all other spatial convergence studies have been
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carried out at We = 30.
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(b) We = 30

Figure 4.9: Maximum spurious currents capillary number as a function of spatial res-
olution for La = 12000.
Legend : (− −� ) VOF-FCT-CCSF ; (��� ) VOF-FCT-HFCSF ; (− −♦ ) VOF-PLIC-
CCSF ; (��♦ ) VOF-PLIC-HFCSF ; (− −© ) LS-CCSF ; (��© ) LS-HFCSF ; (� · � ·© ) LS-
SSF ; (· · ·4 ) VOF-PLIC-HFCSF@Gerris (Popinet [2009]) ; (· · · ) Camax ∼ (R0/∆x)−1

; (---) Camax ∼ (R0/∆x)−2.

Shape errors

It is interesting to note the consistency between the previous observations about
spurious currents and the errors on the shape of the bubble, Emax and its curvature,
E(κ)max after translation. Indeed, it is shown in figure 4.10(a) that the error on the
shape is minimized with the LS method and is maximum with the VOF-FCT transport
scheme. Despite the different shape errors obtained with VOF-FCT-CCSF and VOF-
PLIC-CCSF methods, the errors on the calculated curvature are similar due to the
smoothing procedure used. However, with the height function curvature calculation,
spurious currents arise due to the advection of the interface and it is not surprising to
observe an increase in the curvature errors with the VOF-FCT-HFCSF method when
compared with the VOF-PLIC-HFCSF method, which minimizes the advection errors
in a VOF framework. While the error on the shape decreases with grid refinement with
the LS-HFCSF method, the maximum error on the curvature and the vorticity source
term increase, as it is the case with the maximum spurious velocity. It is observed
with the LS-CCSF that the maximum curvature errors are enhanced when compared
with LS-SSF or VOF-PLIC-HFCSF methods whereas the spurious currents generated
are lower to those obtained with the VOF-PLIC-HFCSF method and similar to those
obtained with the LS-SSF method. This can be due to the fact that the same accuracy
is achieved in the curvature calculation for both the sharp and continuous formulations
but the difference resides in the interpolation of the curvature at the interface in the
sharp formulation. Thus, the LS-CCSF introduces a gradient of curvature normal to
the interface, while the main contribution in the generation of spurious currents comes
from the tangential gradient (see equation 4.10).

69



4.6 Translating bubble

10
1

10
2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

R0/∆x

E
m
a
x

(a) Maximum shape error

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

10
1

R0/∆x

E
(κ

) m
a
x

(b) Maximum curvature error

Figure 4.10: Shape errors (a); curvature errors (b) as a function of spatial resolution
for La = 12000 and We = 30.
Legend : (− −� ) VOF-FCT-CCSF ; (��� ) VOF-FCT-HFCSF ; (− −♦ ) VOF-PLIC-
CCSF ; (��♦ ) VOF-PLIC-HFCSF ; (− −© ) LS-CCSF ; (��© ) LS-HFCSF ; (� · � ·© )
LS-SSF ; (· · · ) E ∼ (R0/∆x)−1 ; (---) E ∼ (R0/∆x)−2.

In addition, the rates of convergence of the maximum curvature error for the differ-
ent methods are close to those obtained for the maximum spurious currents intensity.
Indeed, going back over the dimensional analysis presented in section 4.4 using the
mesh size as the characteristic length rather than the bubble diameter, the rates of
convergence with spatial resolution of the velocity, vorticity production and curvature
can be related. The use of this characteristic length is justified since the present analy-
sis concerns spurious flows where the derivatives in the vorticity equation 4.11 quantify
errors over the mesh (discretization errors, as well as spurious velocity and vorticity
fields gradients) instead of variations due to physical phenomena, which would be re-
lated to physical characteristic lengths (e.g. the bubble diameter). Thus, the vorticity
source term is written as a function of the error in the curvature calculation as follows:

∇κ×∇C ∼ E(κ)

∆x2
(4.17)

In addition, the balance between vorticity production and the viscous term can
then be written as:

µ
ωmax
∆x2

∼ σ∇κ×∇C (4.18)

i.e.
Camax
∆x3

∼ ∇κ×∇C (4.19)

Figure 4.11(a) shows the ratio of vorticity production to curvature error as a func-
tion of the mesh size. Good agreement with equation 4.17 is observed (divergence of
order 2) for all the methods. It is interesting to point out that for a given curvature
error, the vorticity source term is minimized with standard curvature calculations when
compared with height function since the curvature errors are localized in space and the
curvature gradient is enhanced while it is spread along the interface with smoothed
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methods (CCSF). Figure 4.11(b) shows the ratio of maximum spurious currents inten-
sity to the vorticity source term as a function of the spatial resolution. It is seen that
this ratio decreases as the mesh size decreases whereas the rate of convergence is approx-
imately one order lower then the one expected from equation 4.19, i.e. close to second
order convergence instead of third order. This decrease in the rate of convergence is
attributed to non linear effects in the vorticity equation. As a consequence, curvature
errors and maximum spurious currents intensity show similar rates of convergence with
spatial resolution (∼ |∇κ×∇C|∆x2). Finally, note that for a given vorticity produc-
tion, the VOF methods minimize the spurious capillary number when compared with
LS methods (see figure 4.11(b)) except for the LS-HFCSF method where strong oscil-
lations of the curvature and the vorticity source term occur instantaneously and lead
to a decreased ratio of spurious currents intensity to vorticity source term. These ob-
servations allow to conclude that spurious currents, vorticity production and curvature
gradients are closely related. The sensitivity of the vorticity production on the trans-
port scheme and the advection errors is enhanced with the height function curvature
calculation when compared with the smoothed standard curvature calculation.
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Figure 4.11: Ratio of vorticity source term to curvature error (a) and ratio of spurious
currents capillary number to vorticity source term (b) as a function of the spatial res-
olution La = 12000 and We = 30.
Legend : (− −� ) VOF-FCT-CCSF ; (��� ) VOF-FCT-HFCSF ; (− −♦ ) VOF-PLIC-
CCSF ; (��♦ ) VOF-PLIC-HFCSF ; (− −© ) LS-CCSF ; (��© ) LS-HFCSF ; (� · � ·© )
LS-SSF.
(a) (· · · ) (R0/∆x) ; (---) (R0/∆x)2.
(b) (· · · ) (R0/∆x)−1 ; (---) (R0/∆x)−2 ; (- - -) (R0/∆x)−3.

Laplace pressure jump

Another feature of the coupling between the surface tension scheme, the curvature
calculation and the transport scheme is the accuracy in the pressure jump estimation.
The decrease in spurious velocities does not always lead to a better pressure jump
calculation. Indeed, Dupont and Legendre [2010] show that increasing the number
of iterations in the filtering procedure of the volume fraction leads to a decrease in
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4.6 Translating bubble

spurious velocities but the numerical thickness of the pressure jump increases with
filtering and a compromise therefore needs to be found to accurately calculate the
Laplace pressure jump. In the present simulations, the errors in the pressure jump were
generally insensitive to the changes in the Weber number and no explicit tendency was
observed with the Laplace number. Figure 4.12 shows the pressure profile through the
bubble along the horizontal plane of symmetry. It is seen in figure 4.12(a) that the
pressure at the center of the bubble is better calculated within a LS framework (less
than 0.3% error) than in a VOF framework. Although the pressure at the center of the
bubble with the VOF-PLIC-HFCSF method is not so far from the pressure estimated
in the LS simulations, the pressure field has peaks around the interface, whereas it is
much more uniform in a LS framework.
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Figure 4.12: Normalized pressure jump. Close up of (a) the pressure in the bubble ;
(b) the pressure jump at the bubble rear cap.
Legend : (− −� ) VOF-FCT-CCSF ; (��� ) VOF-FCT-HFCSF ; (− −♦ ) VOF-PLIC-
CCSF ; (��♦ ) VOF-PLIC-HFCSF ; (− −© ) LS-CCSF ; (��© ) LS-HFCSF ; (� · � ·© )
LS-SSF.

Figure 4.13(a) reports the maximum pressure jump errors as a function of spatial
resolution. No convergence with grid spacing is observed with any method. The im-
portance of the transport scheme when using the height function curvature calculation
is again highlighted. The VOF-PLIC transport scheme allows the maximum pressure
jump errors to be significantly decreased when compared with the VOF-FCT advection
scheme. However, the errors remain greater than those obtained with either VOF-FCT-
CCSF and VOF-PLIC-CCSF methods, which are again similar. The LS methods and
mainly the LS-CCSF method allows the maximum pressure jump errors in the domain
to be minimized. Finally, the transition region of the pressure jump across the interface
at the bubble rear cap is illustrated in figure 4.12(b) and quantified with the spatial
convergence of the error on the total pressure jump ∆Ptotal/(σ/R0) in figure 4.13(b).
It is seen that compared with the continuous formulation of the surface tension force,
the height function reduces the transition region and especially within a VOF frame-
work since the smoothing procedure applied to reduce spurious currents in the CCSF
methods spreads the pressure jump. However, it is clear that the sharp surface force is
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the most accurate since there is no numerical thickness of the interface. The LS-SSF
method also shows a better rate of convergence (slightly less than 2) than all the other
methods, which all converge with first order.
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Figure 4.13: Pressure errors as a function of spatial resolution for La = 12000 and
We = 30.
Legend : (− −� ) VOF-FCT-CCSF ; (��� ) VOF-FCT-HFCSF ; (− −♦ ) VOF-PLIC-
CCSF ; (��♦ ) VOF-PLIC-HFCSF ; (− −© ) LS-CCSF ; (��© ) LS-HFCSF ; (� · � ·© )
LS-SSF ; (· · · ) (R0/∆x)−1 ; (---) (R0/∆x)−2.

4.7 Rotating bubble

A bubble placed in a rotating flow has been used previously to characterize the
efficiency of the transport scheme Benkenida [1999] but not to study the efficiency of
the coupling between interface advection and the surface tension force. This test is
interesting since the displacement is not uni-directional like in the translating bub-
ble, which moves along the mesh direction. Theoretically, the velocity in the frame
of reference moving with the bubble should be zero, providing there are no spurious
currents. Although the pressure in each phase is not constant due to the advective
terms of the Navier-Stokes equations, which are not null in this case, the pressure jump
at the interface should still obey the Laplace law since no shear is imposed. The the-
oretical velocity and pressure fields are given by equations 4.20-4.21. Images of the
configuration and the spurious currents generated in such a flow after one revolution
are illustrated in figure 4.14.

(u , v) (x, y) = ( U0 × y , −U0 × x) (4.20)

p(x, y) =
ρU2

0

2

(
(x− x0)2 + (y − y0)2

)
+

{ σ

R0
in the bubble

0 outside
(4.21)

The evolution of the maximum intensity of spurious currents with time is reported
in figure 4.15. In this test case, which is slightly more complex, the predominant ef-
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Figure 4.14: Intensity of the source term |∇κ×∇C| in the vorticity equation 4.11 and
velocity field after the translation of a distance 1.25D in the frame of reference moving
with the bubble (by decreasing spurious currents from (a) to (f)) for R0/∆x = 12.8,
La = 12000 and We = 0.4.

fects of the transport scheme on the spurious currents that have been observed with
the translating case are enhanced. Figure 4.15 shows that the spurious currents are
clearly dominated by the transport scheme. Indeed, with both curvature calculations,
the use of the VOF-PLIC scheme leads to decreased spurious currents when compared
with those obtained with the VOF-FCT scheme. This decrease is accentuated when
compared with the translating case. Despite the smoothing procedure, spurious cur-
rents obtained with the VOF-PLIC-CCSF are reduced when compared with the VOF-
FCT-CCSF method. This means that the shape errors introduced by the advection
step are captured in the curvature calculation and overcome the errors associated with
smoothed curvature calculations. Nevertheless, the spurious currents obtained with
the VOF-PLIC transport schemes remain approximately 3 to 4 times greater than
those obtained within a LS framework where both continuous methods (LS-HFCSF
and LS-CCSF) and the sharp method (LS-SSF) give identical spurious velocities.

Similarly to what happens in the translating case, the maximum and mean velocities
generally do not depend on the Weber number. The trends observed for the evolution
of the intensity of spurious currents with the Laplace number are also qualitatively
similar than in the translating case. However, they are more homogeneous than in the
translating case, and the velocity scales approximately as Camax ∼ La−1/4 for most of
the methods, except LS-CCSF and LS-SSF (Camax ∼ La−1/6).
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Figure 4.15: Temporal evolution of the maximum velocity of spurious currents in
the frame of reference moving with the bubble for R0/∆x = 12.8, La = 12000 and
We = 30.
Legend : (− −� ) VOF-FCT-CCSF ; (��� ) VOF-FCT-HFCSF ; (− −♦ ) VOF-PLIC-
CCSF ; (��♦ ) VOF-PLIC-HFCSF ; (− −© ) LS-CCSF ; (��© ) LS-HFCSF ; (� · � ·© )
LS-SSF.

4.7.1 Convergence with spatial resolution

The convergence of the different methods with spatial resolution is presented in
figure 4.16, which shows the capillary number based on the maximum velocity as a
function of the grid resolution. As previously observed with the translating case, with
the VOF-FCT-HFCSF scheme, the intensity of spurious currents is maximum and in-
creases with mesh resolution. Within a VOF without reconstruction framework (VOF-
FCT), the intensity of spurious currents is lower with the CCSF model than with the
HFCSF scheme but the same trend with mesh refinement is observed. Similarly, the
intensity of spurious currents increases as the mesh is refined with the VOF-PLIC-
CCSF. At low resolution, the same intensity of spurious currents is found with the
VOF-PLIC-HFCSF method but it decreases with mesh resolution. However, the rate
of convergence is approximately one third, which is smaller than in the translating case
(close to one). Concerning the LS transport scheme that minimizes spurious currents,
while the LS-CCSF and LS-SSF methods showed a rate of convergence about 1.5 in
the translating case, the magnitude of the spurious currents decreases in this flow con-
figuration as long as the number of cells per bubble radius is lower than 13 but then
stabilizes when refining the mesh further. The LS-HFCSF method shows the same
trend as in the translating case and exhibits no convergence with spatial resolution.

Concerning the pressure errors and their convergence with grid refinement, the
observations do not differ from the translating case, except that the differences be-
tween VOF-FCT and VOF-PLIC transport schemes are again enhanced. As it has
been observed with the spurious velocities, the rate of convergence for the pressure
jump decreases in this test case when compared with the translating one. The LS-
CCSF method allows the maximum pressure jump error to be minimized but none
of the methods converge with spatial resolution. The errors obtained with the VOF-
FCT-HFCSF and LS-HFCSF methods increase when decreasing the cell size. It is
interesting to note a difference with the translating case, although the Sharp Surface
Force formulation still imposes a sharp pressure jump, this method does not appear to
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Figure 4.16: Dimensionless maximum velocity of spurious currents as a function of
spatial resolution for La = 12000 and We = 30.
Legend : (− −� ) VOF-FCT-CCSF ; (��� ) VOF-FCT-HFCSF ; (− −♦ ) VOF-PLIC-
CCSF ; (��♦ ) VOF-PLIC-HFCSF ; (− −© ) LS-CCSF ; (��© ) LS-HFCSF ; (� · � ·© )
LS-SSF ; (· · · ) Camax ∼ (R0/∆x)−1 ; (---) Camax ∼ (R0/∆x)−2.

be superior to the VOF-PLIC-HFCSF, LS-CCSF or LS-HFCSF methods, which give
the best results in this rotating flow regarding the total average pressure jump. Fi-
nally, the LS-CCSF method seems to be a good compromise between spurious currents
intensity and pressure jump calculation. The VOF-PLIC-HFCSF method also shows
good results concerning the pressure jump estimation that are close to those obtained
with the LS-CCSF method.

4.8 Summary of static, translating and rotating cases

A summary of the range of spurious currents observed in this study for the different
methods and test cases is reported in figure 4.17 and in table 4.1 through approximate
correlations with the Laplace number and spatial resolution. The superiority of VOF-
PLIC-HFCSF and VOF-FCT-HFCSF methods in the static case show that the accurate
curvature calculation achieved with the height function method is of main importance.
Figures 4.18(a)-(b) show the ratio of maximum spurious currents intensity in dynamic
cases over that obtained in the static case. This ratio is close to one for all the CCSF
methods, as well as the SSF method. This indicates that for these methods, the
errors in the curvature calculation after advection in these cases are of same order of
magnitude than those obtained in a static case. With these methods, although the
transport scheme can play a non negligible role in the generation of spurious currents,
these observations indicate that the main spurious currents magnifiers are the curvature
calculation (and the redistancing step in LS methods) rather than the transport scheme.
On the other hand, with VOF-PLIC-HFCSF and VOF-FCT-HFCSF methods, and to
a lesser extent with LS-HFCSF, the spurious currents are clearly magnified by the
transport errors. Indeed, the difference between the static and dynamic cases highlights
the strong interaction between interface advection and the spurious currents with an
accurate curvature calculation like the height function. From a general point of view,
the dynamic cases show that the curvature errors are dominated by advection errors
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rather than inaccurate curvature calculation and LS methods minimize the spurious
currents.
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Figure 4.17: Range of maximum spurious capillary number generated with the different
methods for 1.2 ≤ La ≤ 12000; 0.4 ≤ We ≤ 30 and 6.4 ≤ R0/x ≤ 51.2. For each
method, the static, translating and rotating cases are reported from left to right. The
symbols represent the average values of spurious velocities obtained within the range
of fluid properties and spatial resolution covered and the error bar corresponds to the
minimum and maximum values of spurious velocities obtained.
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Figure 4.18: Ratio of maximum spurious currents intensity in the translating (a) and
rotating (b) cases over spurious currents intensity in the static case.
Legend : (− −� ) VOF-FCT-CCSF ; (��� ) VOF-FCT-HFCSF ; (− −♦ ) VOF-PLIC-
CCSF ; (��♦ ) VOF-PLIC-HFCSF ; (− −© ) LS-CCSF ; (��© ) LS-HFCSF ; (� · � ·© )
LS-SSF.
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Chapter 4 : Spurious currents

4.9 Taylor bubble dynamics

The present section deals with the numerical simulation of Taylor flow in microchan-
nels, which is of practical interest since it is encountered in many applications � e.g.
lab-on-a-chip devices, flow boiling, film coating, micro chemical reactors, etc. The
motion of Taylor bubbles in microchannels is investigated with particular attention
to the effects of the scalar field representing the interface and the transport scheme
(VOF-FCT and LS) with a given surface tension scheme (CCSF). The LS-CCSF which
appears to be a good compromise between spurious currents generation, convergence
with grid refinement and pressure calculation, is compared with the method initially
implemented in JADIM. This flow configuration appears to be very sensitive to spu-
rious currents since the capillary forces are often predominant (usually Ca << 1 and
We << 1). In addition, the flow tends towards a stationary solution in the frame of
reference moving with the bubble and spurious currents can appear when the flow is
developing. The case considered here is an axisymmetric tube with periodic boundary
conditions in order to simulate a bubble train in a channel filled with a liquid. The
dimensionless radius of the channel is R∗ = 1 and the length is L∗x = 8. A pressure
gradient is imposed across periodic boundary conditions to induce the motion of the
fluids initially at rest. The Laplace number is La = 280 and the capillary and Reynolds
numbers vary with the imposed pressure gradient. For Ca ≥ 0.05, the Laplace num-
ber has been reduced to La = 2.8 so that the Reynolds number remains lower than
10 in the present simulations. In order to correctly resolve the flow, the mesh needs
to be fine enough close to the walls in order to capture the thin liquid film between
the bubble and the channel wall. Furthermore, the bubble caps also need to be well
resolved in order to accurately estimate the pressure jump at the rear and front caps
of the bubble. The characteristics of the meshes that have been tested are summarized
in table 4.2 and the time step constraint due to capillary forces is indicated by making
it dimensionless with the time needed for a bubble (with Ca ∼ 0.005) to cross the
domain. This dimensionless capillary time step constraint then corresponds approx-
imately to the number of iterations that are necessary to complete one cycle in the
periodic domain. The capillary time step constraint is based on the minimum cell size
containing the interface instead of the minimum cell size in the whole domain.

mesh Nx ×Ny ∆yj+1/∆yj ∆ymin (L∗x/UB)/∆tcap,min

M1 128× 32 0.9 3.967× 10−3 739400

M2 128× 64 0.94 1.242× 10−3 2473000

Table 4.2: Different meshes used and corresponding numerical parameters.

As long as the bubble velocity is lower than the maximum velocity in the slug, which
is observed at low capillary numbers, the flow in the liquid slug should be composed
of a recirculation loop and a film flow. When the bubble velocity is close to the mean
flow velocity in the slug, the recirculation loop occupies a major part of the channel
and the film is very thin (Taylor [1961], Abadie et al. [2013]). Although this structure
is observed qualitatively in all the LS-CCSF and the VOF-FCT-CCSF simulations for
Ca ≥ 0.01, at lower capillary numbers, the VOF-FCT-CCSF simulations present an
additional liquid recirculation loop in the vicinity of the bubble nose cap as can be seen
in figure 4.19. This phenomenon is enhanced when the number of smoothing iterations
is decreased. Decreasing the capillary number, i.e. increasing the surface tension effects
when compared to viscous forces, also enhances this phenomenon. These additional lo-
cal recirculation loops are attributed to spurious currents since the vorticity generated
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4.9 Taylor bubble dynamics

numerically looks very similar to the spurious currents generated in the translating
bubble case. The additional recirculation loop that is present in VOF-FCT-CCSF
simulations decreases in size when increasing the capillary number and vanishes for a
capillary number Ca ∼ 0.02, which is in agreement with previous observations and
characterization of spurious currents made with the VOF-FCT-CCSF method devel-
oped in JADIM (Dupont and Legendre [2010], Abadie et al. [2012]). While the authors
did not comment this additional recirculation loop in Taylor flow, it was also present in
Hoang et al. [2013] in which the CCSF method is used coupled to a VOF scheme with
an artificial compression term to keep a sharp interface in a VOF without geometrical
reconstruction framework. On the other hand, with both an accurate curvature cal-
culation based on height function and an accurate VOF-PLIC transport scheme, the
correct flow structure was captured in Afkhami et al. [2011] at low capillary numbers,
down to Ca = 0.005, with the Gerris code.

Figure 4.19: Streamlines and vorticity field in Taylor flow in a microchannel. From top
to bottom : Ca = [0.002; 0.005; 0.025] ; left : VOF-FCT-CCSF, mesh 128× 32 ; right
: LS-CCSF, mesh 128 × 32. The vorticity field of the equivalent single phase flow of
mean velocity UTP has been subtracted.

Although Harvie et al. [2006] were not able to conclude on the effects of spuri-
ous currents on the study of free bubble rise, these effects on the local velocity field
in Taylor flow are clearly illustrated here. Figure 4.20 shows the effects of spurious
currents on the slip velocity between the bubble and the mean velocity in the slug
W = (UB − UTP )/UB, where UTP = UGS + ULS is the sum of the gaz and liquid su-
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perficial velocities. The aptitude of a method to correctly estimate this dimensionless
velocity is evaluated by comparing the values obtained with the correlation proposed by
Aussillous and Quéré [2000] (given in chapter 6, equation 6.5) who extended Brether-
ton's theoretical lubrication analysis (Bretherton [1961]) to higher capillary numbers.
As it was qualitatively observed with the local velocity field in figure 4.19, the difference
between VOF-FCT-CCSF and LS-CCSF simulations is enhanced when the capillary
number decreases. Figure 4.20 shows that the LS method allows the bubble slip velocity
to be accurately predicted in a wide range of capillary numbers, while the VOF-FCT-
CCSF method overestimates the slip velocity and thus, the liquid film thickness since
they are directly related due to the zero velocity in the liquid film surrounding the
bubble. However, with both the VOF-FCT-CCSF and LS methods, the pressure drop
at the nose and rear caps of the bubble estimated from our simulations is in good agree-
ment with the results from Hazel and Heil [2002] who simulated the propagation of a
semi-infinite bubble by solving the free surface Stokes equations with a finite-element
method. The difference between the two methods at the lowest capillary number simu-
lated, which is the most sensitive to spurious currents, is only 2.4% while the difference
in the slip velocity is about 30%. An advantage of the LS method is that no smoothing
needs to be introduced to reduce spurious currents, whereas 12×6 smoothing iterations
were employed for the computation of the curvature and orientation/spreading of the
capillary force, respectively, in VOF-FCT-CCSF method as recommended in Dupont
and Legendre [2010]. As a result, the pressure drop is sharper in the LS simulations
than in the VOF-FCT-CCSF simulations.
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Figure 4.20: (a) Dimensionless slip velocity W versus the capillary number CaB. Leg-
end : (�) VOF-FCT-CCSF ; (◦) LS-CCSF ; (dash-dotted line) Bretherton [1961] ;
(straight line) Aussillous and Quéré [2000] . (b) Pressure drop at the front and rear
caps of the bubble. Legend : (�) VOF-FCT-CCSF ; (◦) LS-CCSF ; (dash-dotted line)
Bretherton [1961] ; (straight line) Hazel and Heil [2002].

It has generally been shown in the static, translating and rotating bubble cases that
the intensity of the spurious currents obtained with the VOF-FCT-CCSF method does
not decrease with spatial resolution. As a result, it is not surprising to see that the
non-physical recirculation loop is not reduced with mesh size, as shown in figure 4.21
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for Ca = 0.005. In fact, the vorticity intensity generated at the front cap of the bubble
actually increases when the mesh is refined in the VOF-FCT-CCSF simulations.

Figure 4.21: Streamlines and vorticity field in Taylor flow in a microchannel (Ca =
0.005) . Top left : VOF-FCT-CCSF, mesh 128 × 32 ; top right : LS-CCSF, mesh
128 × 32 ; bottom left : VOF-FCT-CCSF, mesh 128 × 64 ; bottom right : LS-CCSF,
mesh 128× 64. The vorticity field of the equivalent single phase flow of mean velocity
UTP has been subtracted.

The errors obtained on the dimensionless slip velocity in comparison with Aussillous
& Quéré correlation are given in table 4.3. It is shown that the error for a capillary
number Ca ∼ 0.005 is significant with the VOF-FCT-CCSF simulations and does not
decrease significantly with mesh refinement. However, the results obtained with a LS-
CCSF formulation are satisfactory even with the coarsest mesh and are in very good
agreement with the correlation of reference (Aussillous and Quéré [2000]) when the
number of grid points is increased.

mesh E(W )(VOF-FCT-CCSF) E(W )(LS-CCSF)

M1 20.44% 1.88%

M2 18.71% 0.31%

Table 4.3: Error on the dimensionless slip velocity for a capillary number Ca ∼ 0.005.

Finally, it is expected that the effects of spurious currents on the Taylor bubble
dynamics can also significantly alter computations of heat and mass transfer phenomena
since the non-physical recirculation loop will produce a kind of buffer zone and limit the
transfer from the bubble to the slug when transfer is dominated by convective effects.

4.10 Conclusion

The generation of spurious currents and their effects on the velocity field in mul-
tiphase microfluidics has been investigated through the analysis of several numerical
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methods. A comparison of numerical methods comprising the transport scheme (VOF-
FCT, VOF-PLIC and LS), the surface tension scheme (continuum or sharp surface
force) and the curvature calculation (height function or divergence of the normal to the
interface) with the same flow solver has been carried out. It can be concluded that the
height function curvature calculation is very accurate and is particularly interesting
for the case of static bubbles and near-static bubble or oscillating bubbles (Herrman
[2008], Fuster et al. [2009]). However, since the errors generated during the advection
step are captured while they are smoothed with the convolution method, the height
function method needs to be coupled to an accurate transport scheme, as it has been
shown with the translating and rotating cases in this study. Otherwise, the classic CSF
formulation with a smoothing of the volume fraction gives better results in terms of
maximum spurious currents intensity. Although, when using the Level Set formulation,
the exact balance between pressure and capillary forces reached with the VOF-HFCSF
methods is not achieved due to the redistancing step, it has been shown that the spu-
rious currents are decreased in dynamic cases. Similarly to the VOF-HFCSF methods,
the sharp surface force that interpolates the position of the interface and the height
function technique require accurate transport and redistancing schemes since they also
precisely capture the slight errors created in these steps. Finally, it is shown that these
test cases are well adapted to the characterization of spurious currents in Taylor flow.
The spurious currents generated in VOF-FCT simulations are shown to significantly
modify the structure of the flow by producing an additional recirculation zone. The
LS-CSF method is shown to be able to estimate the bubble slip velocity and the pres-
sure drop across the bubble with good accuracy in a wide range of capillary numbers.
In addition, since only one bubble is simulated, the global mass redistribution allows
mass conservation problems to be avoided. However, cases involving several bubbles
(or drops) still require additional work to resolve this mass conservation problem. Two
possible solutions may be considered in future work: the improvement of the transport
scheme in a VOF framework coupled to height function curvature calculation; and the
coupling between VOF and LS methods (Sussman and Puckett [2000]). An other topic
that should be considered for the simulation of Taylor flows is the (semi-)implicitation
of the surface tension force (Raessi et al. [2009]).

In the following, the VOF-FCT-CCSF method has been used for the simulation of
Taylor flow for Capillary number CaB ≥ 0.08 and the LS-CCSF method has been used
for the simulation of Taylor flow at low capillary numbers CaB < 0.08.
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5.1 State of the art

5.1 State of the art

The generation of Taylor bubble trains has been extensively studied in the literature
and especially experimentally. Much work has been dedicated to the development of
flow pattern maps which define the transition between the regimes presented in figure
1. Slug flow is generated for a wide range of gas and liquid velocities and this gas-
liquid dispersion is very regular, leading to a flow with homogeneous bubble break-up
frequencies, volumes, and velocities. Depending on the operating conditions and the
microchannel geometry, the bubble volume and length vary.

In the literature, many ways to merge the gas and liquid phases exist, including
co-flowing systems, flow-focusing devices through a contraction (Anna et al. [2003],
Ganan-Calvo [2004]), flow-focusing devices in a cross (Cubaud et al. [2005], Fu et al.
[2009]), and T-junctions, where the fluids merge either front to front or with a right
angle (Garstecki et al. [2006], Van Steijn et al. [2007, 2010], Fu et al. [2010b], Abadie
et al. [2012]). Detailed reviews about the different methods to generate droplet or bub-
bles in microfluidic systems and the observed flow regimes can be found in Christopher
and Anna [2007], Zhao and Middleberg [2011], Nunes et al. [2013].

Simple flow focusing devices were first implemented by Anna et al. [2003] and
Ganan-Calvo [2004] to produce small droplets and bubbles, respectively. Two immis-
cible fluids initially flow into separate channels and then both fluids merge and enter a
contraction where a jet is formed. The instability of this jet leads to its rupture and the
formation of droplets or bubbles whose sizes are comparable with the size of the orifice.
Ganan-Calvo [2004] correlated their experimental results (in the range 0.1 < Re < 20
and 40 < We < 1000) with the gas to liquid flow rate ratio:

DB

D
= 1.1

(
QG
QL

)0.4

(5.1)

where DB is the bubble diameter.

5.1.1 Flow focusing devices in a cross-junction

Flow-focusing devices in a cross-junction were introduced by Cubaud et al. [2005].
Experiments and numerical simulations were conducted at the junction of four square
channels. The formation of monodisperse bubbles was achieved and the bubble size
was related to the channel size and the volume fraction of liquid with a linear decrease.
The simple mechanism will be developed in the next section since it is the basis of the
bubble generation mechanism that will be analyzed further in this chapter.

Recently, Fu et al. [2009, 2010a] performed experiments in a cross-junction with
square microchannels. Experimental visualization and µ−PIV measurements were used
to investigate the bubble formation mechanism which was divided into three steps: the
expansion of the gas phase, the squeezing of the gas phase and the rapid collapse or
pinch-off of the gas thread. The effects of gas and liquid flow rates, as well as the effects
of fluid properties on the squeezing of the gas thread and its rapid collapse at the end
of the bubble formation were analyzed. The bubble length was correlated with the gas
to liquid flow rate ratio and the Reynolds number.

Numerical simulations using a Lattice Boltzmann method were carried out to model
the droplet formation in a microfluidic cross-junction at low capillary numbers by Liu
and Zhang [2011]. The droplet length was found to evolve linearly with the gas to liquid
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flow rate ratio in the squeezing regime and both coefficients of the linear relationship
were shown to obey a unique scaling law with the capillary number. The exponent on
the capillary number appeared to vary with both the aspect ratio of the channel and
the gas to liquid entrance width ratio.

5.1.2 T-shaped junctions

Bubble formation in T-shaped junctions has been widely studied over recent years.
Garstecki et al. [2006] investigated the formation of droplets and bubbles in side-
entering T-junctions. A discussion of the forces involved in the mechanism of break-up
at low capillary number was provided. The three main forces acting on the bubble tip
are the surface tension force, the shear stresses and the squeezing pressure. Indeed,
as the dispersed phase obstructs the main channel, the continuous phase flows in the
lubrication film and the pressure upstream the bubble or droplet increases. The estima-
tion of this squeezing pressure is based on the lubrication analysis (Bretherton [1961],
Stone [2005]). The estimation and the balance of these forces under the assumption
that the squeezing pressure dominates the shear stress force lead to a simple scaling
law to estimate the droplet length:

LB
w

= 1 +
win
w

QG
QL

. (5.2)

Bubble and droplet formation present similarities in the squeezing regime and this cor-
relation was compared with experiments in both liquid-liquid and gas-liquid systems.

Van Steijn et al. [2007, 2010] performed µ−PIV measurements of the bubble for-
mation in side-T junctions. They confirmed that the bubble formation depends on the
gas to liquid flow rate ratio and the geometry. They extended this model (equation
5.2) to a wide variety of side-T junctions geometries comprising channel aspect ratio
and gas to liquid inlet width ratio.

Christopher et al. [2008] conducted experiments on the droplet break-up in a T-
junction and studied the transition between the squeezing regime that occurs at very
low capillary number and the dripping regime where the influence of the viscous stresses
cannot be neglected. They present a model for the estimation of the minimum droplet
length (or volume) generated in a T-junction that is based on a similar force balance
than that in Garstecki et al. [2006]. Both the shear stresses and squeezing pressures
are considered and the minimum droplet length is written as a function of the capillary
number: (

1−
Lmindroplet

w

)3

=
Lmindroplet

w
CaL . (5.3)

However, they showed that their model generally underestimates the droplet lengths
obtained experimentally.

Numerous numerical simulations have been carried out using different numerical
techniques to gain insight on the bubble or droplet formation mechanism: VOF method
to study 2D channels (Arias et al. [2011]) and droplet break-up in symmetrical diverging
T-junctions (Afkhami et al. [2011]); Lattice-Boltzmann method (Van der Graaf et al.
[2006], Gupta and Kumar [2010]) to study the effects of capillary number and channel
aspect ratio on the bubble lengths; and phase-field model (De Menech et al. [2008]) to
study the transition between squeezing and dripping regimes in square channels.
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5.2 Flow focusing devices

The aim of this chapter is to characterize the bubble dispersion generated with
three different geometries shown in figure 5.1. We firstly focus on a flow-focusing

(a) cross-junction (b) side-T junction (c) T-junction

Figure 5.1: Illustration of the three junctions studied.

device where the fluids merge in a cross-junction. The mechanism of break-up is briefly
described with respect to the literature for this fluid contacting method. The effects
of fluid properties and aspect ratio (1 ≤ α ≤ 4) are then studied. The gas-liquid flow
generated in this flow-focusing device is then compared with that generated in two
other different T-shaped junctions.

5.2 Flow focusing devices

5.2.1 Bubble generation mechanism

According to the experimental work carried out by Cubaud et al. [2005], at low
capillary numbers, bubble dispersion in flow-focusing devices is controlled by the gas
and liquid flow rates. It is argued that due to the viscosity ratio between both phases,
the resistance of the gas to the liquid flow at the intersection is negligible and the time
necessary for the liquid to pinch the gas finger of width w is inversely proportional to the
liquid flow rate. Thus, this pinching time is estimated as tpinching =

w

UL
. During this

pinching time, the bubble growth can be estimated from the average bubble velocity
as LB = UBtpinching ∼ (UL + UG)tpinching. This leads to the following expression for
the bubble length:

LB
w
∼ 1 +

UG
UL

. (5.4)

Expression 5.4 should be used carefully since the estimation of the average bubble
velocity as UB = UL + UG = UTP is valid at low capillary numbers only. Indeed, the
ratio of the bubble velocity to the average two-phase velocity UTP increases with the
capillary number (Bretherton [1961]).

Similarly to the bubble formation in T-junctions, the bubble generation mechanism
in the cross-junction can be split into two main steps:

- the filling stage where the bubble enters the main channel while the liquid flows
around the bubble until the gas fills a major part of the cross-sectional area of
the channel (figure 5.2(a)-(d)),

- the squeezing stage where the bubble occupies almost the whole cross-section of
the channel and the liquid barely flows around the bubble, which is then squeezed
(figure 5.2(d)-(f)).

A third stage corresponding to the rapid collapse of the gas thread, which was
studied in Fu et al. [2009, 2010a] and Dollet et al. [2008], could be considered but its
characteristic time is much smaller than that of the two other mechanisms and it will
be considered that below a certain distance, the break-up occurs instantaneously in the
experiments.

88



Chapter 5 : Bubble dispersion

(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Bubble generation sequence in a cross-junction.

These steps are deduced from the competition between three forces: the capillary
force prevents the bubble to break while the viscous stress and the squeezing pressure
in the side channels act on the bubble to deform the interface. During the first step,
while the bubble grows in the cross-junction, the pressure increases in the side channels
since the available cross-sectional area for the liquid to flow is reduced. The forces act-
ing on the bubble then grow and finally overcome the capillary force and the squeezing
stage starts. Figure 5.3 shows the position where the neck of the bubble is estimated
and its evolution in time for a fixed liquid velocity and three different gas velocities.
This figure illustrates the two steps where the width of the bubble at the intersection
grows until filling almost the entire section. Once the maximum neck size is reached,
the bubble neck starts to collapse.

The period of bubble generation is then the sum of these two characteristic times:

1

f
= tgrowth = tfilling + tsqueezing (5.5)

It is seen in figure 5.3 that the time needed to reach the maximum neck width is a
function of the gas velocity. Indeed, at fixed liquid velocity, the time of the filling
stage is inversely proportional to the gas velocity. Concerning the squeezing stage, the
duration is constant with the three flow rate ratios, i.e. the time of the squeezing stage
is inversely proportional to the liquid velocity. These characteristic times can then be
estimated from the operating conditions and the geometry:

tgrowth ∼ LB
ugrowth

(5.6)

tfilling ∼
w

ufilling
(5.7)

tsqueezing ∼
wneck

usqueezing
(5.8)

where wneck is the width of the filament of air where the bubble is pinched.
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Figure 5.3: Schematic representation of the bubble formation in a cross-junction and
definition of the neck width. Temporal evolution of the bubble neck size in a cross-
junction for CaL = 0.002 and different flow rates ratio. The channel aspect ratio is
α = 2.5
Legend: (�) UG/UL = 2 ; (◦) UG/UL = 1 ; (�) UG/UL = 0.5.

The three corresponding characteristic velocities are:

ugrowth ∼ QG
Ach

(5.9)

ufilling ∼
QG
Ach

(5.10)

usqueezing ∼
QL
Ach

(5.11)

Finally, from equation 5.5, the bubble length is correlated as:

LB
w
∼ 1 +

wneck
w

QG
QL

(5.12)

Equation reduces to 5.2 with wneck = win. A more general relation is given by the
following expression:

LB
w
∼ λ1 + λ2

QG
QL

(5.13)

where λ1,2 are coefficients that depend on the geometry and the operating conditions,
as will be shown in the next section.

The bubble dispersion is characterized by two asymptotic behaviours:
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-
QG
QL
→ 0 : bubbles are generated with a constant length λ1w and the frequency

of break-up increases with the gas to liquid flow rate ratio,

-
QG
QL
→∞ : bubbles are generated with a fixed frequency and the bubble length

increases with the gas to liquid flow rate ratio with a growth rate λ2.

5.2.2 Effects of operating conditions in a square channel

Bubble lengths

The volume fraction of gas in the system or the ratio of gas to liquid flow rates is
a key parameter for the control of bubble sizes. From the two-step bubble generation
mechanism it is expected that the bubble length is a linear function of the flow rate
ratio. Figure 5.4 shows the bubble length obtained with two liquids of different fluid
properties and in particular different viscosities (ethanol and glycerol 60% (vol.) in
ethanol), as a function of the gas to liquid superficial velocity ratio. The experiments
have been performed by fixing the liquid flow rate and then increasing the gas flow
rate step by step. Each set of points represents a set of experiments where the liquid
flow rate is constant. Based on the relationship 5.13, it is observed that a linear fit of
the experiments (red dashed line on the figure) agrees well with the obtained data. It
is clearly shown that the coefficients of equation 5.13 and the minimum bubble length
in particular appear to be dependent on the liquid velocity and the fluid properties.
Indeed, the value λ1 cannot reproduce all the experimental data presented here and it is
observed that the minimum bubble length that can be produced decreases as the liquid
velocity increases. In addition, it can be seen that for a fixed liquid velocity (i.e. a
given symbol in figures 5.4(a) and (b)), the bubble lengths are greater when the Laplace
number is increased. It should be noted that at high flow rate ratios (UG/UL & 8),
the linear model slightly overestimates the bubble lengths. This has not been further
analyzed since the bubbles are approximately 10 times longer than the channel width
in these cases and the flow structure approaches annular flow.

The effects of operating conditions on the minimum bubble length and the growth
rate of the bubbles λ2 with the gas to liquid flow rate ratio are now analyzed separately.
The squeezing stage is characterized by geometrical parameters only and the operating
conditions are not expected to play a major role. Figure 5.5(a) shows the growth rate
λ2 of the bubble length as a function of the gas to liquid velocity ratio. Only the
squeezing stage is taken into account, i.e. without considering the minimum bubble
length which corresponds to the first expansion stage. Data for the liquids with the
lowest and the highest Laplace numbers are shown (i.e. glycerol 60% (vol.) in ethanol
and pure ethanol, respectively) and it is seen that the data collapse onto a single line.
A constant growth rate can then be fitted giving:

LB
w
− λ1 = 1.6

UG
UL

. (5.14)

It is very interesting to note that the same trends are observed within a very wide
range of dimensionless numbers. Indeed, the liquid capillary numbers vary from ap-
proximately 6×10−4 to 1×10−2 and the liquid Reynolds numbers between 0.1 and 200.
It can then be concluded that the fluid properties and the operating conditions (the
liquid velocity in particular) do not affect the squeezing stage in a square microchannel
with the cross-junction contacting geometry.

The effects of the liquid velocity and the fluid properties on the minimum bubble
length λ1 are shown in figure 5.5(b). The minimum bubble length corresponds to the
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Figure 5.4: Dimensionless bubble lengths as a function of the gas to liquid superficial
velocity ratio.
Legend : (+) UL ' 0.0055m/s ; (B) UL ' 0.011m/s ; (C) UL ' 0.022m/s ; (◦)
UL ' 0.044m/s ; (�) UL ' 0.088m/s ; (�) UL ' 0.176m/s ; (O) UL ' 0.353m/s ;
(dashed red line) experimental fittings (equation 5.13).

length reached during the first stage of the mechanism, i.e. the expansion stage until
the bubble fills a major part of the channel. The minimum bubble length (obtained as
the gas to liquid flow rate ratio vanishes) decreases as the liquid velocity increases. It is
also shown that the bubbles produced with a viscous fluid, e.g. glycerol / ethanol solu-
tions in this case, are smaller than those produced in pure ethanol. This phenomenon
increases as the glycerol concentration of the solution increases, or in other words as
the viscous effects increase when compared with the inertial and capillary effects. Since
the first step of the bubble generation occurs until the pressure and viscous forces over-
come the interfacial force (Garstecki et al. [2006], Christopher et al. [2008]), it can be
expected that when the capillary number is increased, the bubble deformation is easier
and the second step, i.e. the squeezing stage, starts earlier.

Figure 5.6 shows the influence of the liquid capillary number on the minimum
bubble length that can be formed in a square microchannel with a cross junction. As
it has been mentioned earlier, the bubble length decreases with the capillary number.
It is observed that the scaling law given in equation 5.15, which is only based on the
liquid capillary number correctly fits this minimum bubble length.

λ1 =
LminB (UG/UL → 0)

w
=
Ca−0.25

L

2.1
(5.15)

It should be mentioned that the Ca−0.25 exponent describes the experiments at low
Laplace numbers very well while it approaches Ca−0.3 at higher Laplace numbers. Note
that the influence of inertia is negligible since the differences between bubble lengths
obtained at fixed capillary number remain small over the wide range of Reynolds and
Weber numbers that have ben covered (0.1 . ReL . 200 and 6× 10−4 .WeL . 10).
The exponent Ca−0.25

L is very close to the observations of Liu and Zhang [2011] who
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Figure 5.5: (a) Growth rate of the bubble as a function of the gas to liquid velocity
ratio. (b) Minimum bubble length formed as a function of the liquid superficial velocity.
Legend : (�) La = 5440 ; (�) La = 1130 ; (◦) La = 223 ; (B) La = 33 .

found numerically with a Lattice-Boltzmann method that droplet lengths scale with
Ca−0.245

L for droplet formation in a cross-junction and a square channel. The difference
with their observations resides in the squeezing stage; they found that it was accelerated
by increasing the capillary number, i.e. the coefficient of the linear part of the model
was also found to decrease as Ca−0.245

L . However, the effects of the liquid capillary
number on the squeezing stage did not appear to be significant in the experiments in
this work.

The relationship between the minimum bubble length formed and the capillary num-
ber in the symmetrical cross-shaped geometry can also be related to droplet break-up
in symmetrical diverging T-junctions (Leshansky and Pismen [2009], Leshansky et al.
[2012], Afkhami et al. [2011]). Indeed, based on geometrical approximations and the
lubrication theory, Leshansky and Pismen [2009] found that at a given droplet/bubble
capillary number, the transition between non-breaking and breaking drops occurs for
a dimensionless length LB/w ' 1.3Ca−0.21

B . The slight difference in the exponent on
Ca could be due to the droplet or bubble curvatures that differ in our experiment and
symmetrical diverging T-junctions. Indeed, liquid is flowing on one side of the bubble
and there is a lubrication film in the T-junction while the bubble is symmetrical in the
cross-junction. Despite the differences in the microfluidics device, this is still interesting
to relate the break-up phenomena in different microfluidic devices.

Break-up frequencies

Break-up frequency is another important parameter for characterising gas-liquid
slug flow. Indeed, knowledge of the rate of bubble formation allows the prediction
of the volume of the bubbles. While some geometrical approximations enable bubble
volumes and bubble lengths to be related, they are generally valid at very low capillary
numbers where the lubrication film is of negligible thickness. Knowing the bubble
velocity, which is close to the sum of the superficial velocities at low capillary numbers,
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Figure 5.6: Minimum bubble length formed as a function of the liquid capillary number.
Legend : (�) La = 5440 ; (�) La = 1130 ; (◦) La = 223 ; (B) La = 33 ; (red solid line)
Ca−0.25

L /2.1 .

together with the break-up frequency allows the unit cell length and thus the slug
length to be estimated.

In order to better understand the influence of the operating conditions on the bubble
generation mechanism, the rate of bubble formation can be made dimensionless with
the advective time fL = w/UL corresponding to the time needed for a liquid particle
to travel a distance equal to the characteristic channel dimension, i.e. its width. The
characteristic time is expected to be equal to the maximum break-up frequency when
the gas to liquid flow rate ratio is much greater than unity. Indeed, this is the time
needed for the fluid to squeeze a gas finger with a length equal to the width of the
channel. This corresponds to the second stage in the two-step model presented in
section 5.2.1 when the filling time is not considered.

The dimensional and dimensionless bubble detachment frequencies are shown in
figure 5.7 and figure 5.8, respectively, as a function of the gas to liquid flow rate ratio
for two liquids (ethanol and glycerol 60 % (vol.) in ethanol). It is seen that the break-
up frequency increases with the gas to liquid flow rate ratio. Indeed, since for a fixed
liquid velocity, the time needed to squeeze the bubble is expected to be independent
of the gas velocity while the time needed to fill the channel cross-section is decreased
as the gas flow rate increases. In addition, it is seen that the frequencies are higher
when the liquid velocity is increased. For a fixed liquid velocity the frequency also
increases when the ratio of capillary to viscous effects decreases (comparison between
ethanol and glycerol 60% in ethanol at fixed velocity). This is relevant to the results on
bubble lengths, which showed that an increase in the liquid velocity, or more generally,
an increase in the capillary number leads to decreased bubble sizes. Indeed, the time
needed to reach a decreased volume is also reduced, thereby increasing the break-up
frequency.

Figure 5.9 shows that the dimensionless bubble detachment frequency can be roughly
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Figure 5.7: Dimensional bubble detachment frequencies as a function of the gas to
liquid superficial velocities ratio.
Legend : (+) UL ' 0.0055m/s ; (B) UL ' 0.011m/s ; (C) UL ' 0.022m/s ; (◦)
UL ' 0.044m/s ; (�) UL ' 0.088m/s ; (�) UL ' 0.176m/s ; (O) UL ' 0.353m/s .
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Figure 5.8: Dimensionless bubble detachment frequencies as a function of the gas to
liquid superficial velocities ratio.
Legend : (+) UL ' 0.0055m/s ; (B) UL ' 0.011m/s ; (C) UL ' 0.022m/s ; (◦)
UL ' 0.044m/s ; (�) UL ' 0.088m/s ; (�) UL ' 0.176m/s ; (O) UL ' 0.353m/s .

scaled with Ca0.25:

f w

UL
' Ca0.25

L

6

(
UG/UL + (UG/UL)2

)
(

1 + 5UG/UL + 1.25 (UG/UL)2
)
 (5.16)
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This scaling is expected as the flow rate ratio vanishes since the bubble frequency
is inversely proportional to the bubble length which scales approximately as Ca−0.25

L .
However, the influence of the capillary number on the bubble length was not significant
at high flow rate ratios and therefore it may be expected that the maximum frequency
does not depend on the capillary number. The maximum frequency, however, was
not reached as the flow became unstable and sometimes annular. Another possibility
is that the approximation that the frequency is inversely proportional to the bubble
length suggests that the liquid fraction is close to zero, i.e. the bubble occupies the
entire cross section. The scaling could then come from the appropriate relationship for
an infinite gas to liquid flow rate ratio, i.e. f ∼ QG/(ABLB) ∼ UG/((1−W )LB).
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Figure 5.9: Dimensionless bubble break-up frequencies scaled with Ca0.25
L as a function

of the gas to liquid superficial velocity ratio.
Legend : (�) La = 5440 ; (�) La = 1130 ; (◦) La = 223 ; (B) La = 33 ; (red solid line)
equation 5.16.

Unit cell lengths

The bubble and slug lengths are of main importance to characterize the hydro-
dynamics of Taylor flow and especially the pressure drop in the channel as it will be
detailed in section 6.3.5.

Many studies deal with the bubble lengths as mentioned previously but less at-
tention has been paid to the characterization of the unit cell or slug lengths. From a
simple model that neglects the slip velocity and that assumes rectangular bubbles and
no liquid film, the bubble and slug lengths can be related to the flow rates ratio:

LS
LB

=
QL
QG

. (5.17)

Using this, Volkel [2009] suggested a relationship between slug length and liquid to
gas flow rates ratio from equations 5.13 and 5.17:

LS
w
∼ λ2 + λ1

QL
QG

(5.18)
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This means that the bubble length relative to the unit cell length would be equal to
the volume fraction of gas:

LB
LUC

=
UG/UL

1 + UG/UL
(5.19)

Although it has been observed that equation 5.17 can be used to correctly estimate
slug lengths (Volkel [2009], Abadie et al. [2012]), the coefficients obtained from the
bubble lengths (λ1,2) cannot be used without being adapted slightly (Abadie et al.
[2012]).

Figure 5.10 shows the bubble length relative to the unit cell length as a function of
the gas to liquid flow rate ratio. It is very interesting to note that for all capillary and
Reynolds numbers, the bubble length relative to the slug length as a function of the gas
to liquid flow rate ratio follow the same trend. Indeed, all the data collapse following
the form of equation 5.20, evolving linearly with the flow rate ratio at vanishing gas
volume fraction and tends towards unity when the channel is essentially filled with gas:

LB
LUC

=
UG/UL

0.6 + UG/UL
(5.20)

It is not surprising that equation 5.20 is slightly different than equation 5.19 and this
is due to the liquid surrounding the bubble caps and the non-zero liquid film thickness.
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Figure 5.10: Ratio of the bubble length to unit cell length as a function of the gas to
liquid superficial velocity ratio.
Legend : (�) La = 5440 ; (�) La = 1130 ; (◦) La = 223 ; (B) La = 33 ; (red solid line)
equation 5.20.

Figure 5.11 shows the dimensionless unit cell length as a function of the gas to
liquid flow rate ratio. The relationship between the frequency of bubble formation, the
bubble velocity and the unit cell length is:

LUC =
UB
f

(5.21)

At low flow rate ratios, we observe a decrease in the unit cell length with increasing
gas fraction since the bubble lengths are formed with a volume that is almost contant
and the frequency increases. In other words, as the flow rate ratio vanishes, the bubble
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velocity is close to the liquid velocity and the frequency increases with UG/UL. The
opposite trend is found at high flow rate ratios: the bubble frequency tends towards
a maximum and the bubble velocity is close to the gas velocity thereby leading to an
increase in the unit cell length.

In section 5.2.2, it has been shown that the bubble length can be estimated from
the flow rate ratio, the geometry and the liquid capillary number. Thus, the unit cell
length can be deduced from equations 5.14 and 5.20 by:

LUC
w

= λ1 + 0.6× λ2 + λ2
UG
UL

+ 0.6× λ1
1

UG/UL
, (5.22)

where expressing λ1 and λ2, we obtain:

LUC
w

=
1

2.1Ca0.25
L

+ 0.6× 1.6 + 1.6
UG
UL

+
0.6

2.1Ca0.25
L

1

UG/UL
(5.23)

in the square microchannel with a cross-junction.
From the above equation, the flow rate ratio that leads to the minimum unit cell

length can be derived as:

UG
UL

(LminUC ) =

√
0.6

1.6× 2.1Ca0.25
L

(5.24)

The corresponding evolution is reported in figure 5.11.
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Figure 5.11: Dimensionless unit cell lengths as a function of the gas to liquid superficial
velocity ratio.
Legend : (+) CaL ' 0.043 ; (C) CaL ' 0.0086m/s ; (�) CaL ' 0.0684m/s ; (dashed
red lines) equation 5.22 ; (blue solid line) equation 5.24 .

Partial conclusion

The key parameters that characterize the bubble formation in a cross-junction with
a square cross-section have been clearly identified according to the two-step model
which is widely used in T-junctions (Garstecki et al. [2006], Van Steijn et al. [2007,
2010]).
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• The bubble length is found to evolve as LB
w = λ1 + λ2

UG
UL

.

• In addition to the effects of geometry and flow rate ratio, the minimum bubble
size generated has been shown to depend on the liquid capillary number following
the scaling law LminB /w = λ1 =

Ca−0.25
L
2.1 .

• The linear growth rate of the bubble length with the flow rate ratio has been
found to be constant λ2 = 1.6.

• The dimensionless bubble generation frequency and the bubble volume scale with
Ca0.25

L and Ca−0.25
L , respectively.

• The bubble length relative to the unit cell length is a function of the gas to liquid
velocity ratio only and is given by: LB/LUC = UG/UL

0.6+UG/UL

5.2.3 Effects of cross-sectional aspect ratio

Bubble lengths

In channels with moderate aspect ratios, the break-up mechanism is expected to
be similar to that in square microchannels. However, the aspect ratio is known to
have effects on the liquid area fraction (Hazel and Heil [2002], De Lozar et al. [2008])
and also on the pressure drop since the radii of curvatures differ in the height and the
width of the channel. It is therefore expected that the aspect ratio plays a role in the
dynamics of break-up at the junction during the different stages.

As the capillary number has been previously identified as the dimensionless number
that governs the bubble generation mechanism for fixed flow rate ratios, we compare
the geometries at a given capillary number. Figure 5.12(a) shows the bubble lengths as
a function of the gas to liquid flow rate ratio for two different capillary numbers and two
aspect ratios. It is observed that at low capillary numbers, the dimensionless bubble
length increases with the aspect ratio while this trend is inverted when the capillary
number increases (around Ca ' 0.01).

Another observation is that the minimum bubble length produced at a given liquid
capillary number and scaled by the channel width does not seem to depend signifi-
cantly on the cross-sectional geometry. However, the growth rate during the squeezing
stage, which corresponds to the slope λ2 in the two-step model defined by equation
5.13, seems to evolve with the capillary number. In the square geometry the coefficient
barely varies with the operating conditions however, in the rectangular geometry at
low capillary numbers (CaL ' 0.0042 in figure 5.12) the bubble length increases more
rapidly with the flow rate ratio than in the square geometry, while the opposite trend is
observed at a higher capillary numbers (CaL ' 0.067 in figure 5.12). This is confirmed
in figure 5.12(b), which represents the growth rate of the bubble as a function of the
gas to liquid velocity ratio. The red line is the relationship found for the square geom-
etry. It is seen that at low capillary numbers in the rectangular channel, the increase
in bubble length with the gas velocity is greater than in the square channel. This trend
decreases until the bubble lengths become less dependent on the flow rate ratio than
in the square channel.

A close inspection of the dependency of these two coefficients, i.e. the minimum
bubble length that can be formed and the growth rate with increasing gas volume
fraction, is provided in figures 5.13(a) and (b), respectively.

Figure 5.13(a) shows that the minimum dimensionless bubble length scaled by the
channel width is equal whatever the cross-sectional geometry, i.e. the minimum bubble
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Figure 5.12: (a) Dimensionless bubble lengths as a function of the gas to liquid super-
ficial velocity ratio. (b) Growth rate of the bubble length as a function of the flow rate
ratio.
(a) Legend : (solid line) CaL ' 0.0042 ; (dashed lines) CaL ' 0.067 ; (blue squares)
α = 1 ; (green circles) α = 4.
(b) Legend : (red solid line) square channel LB/w−λ1 = 1.6UG/UL ; (B) CaL ' 0.0004
; (+) CaL ' 0.0026 ; (C) CaL ' 0.0106 ; (◦) CaL ' 0.0211 ; (�) CaL ' 0.0422.

length is: LB = λ1 × w with λ1 independent of the geometry. For a fixed hydraulic
diameter, the width of the channel increasing with the aspect ratio, the minimum di-
mensional bubble length increases with the aspect ratio. Similarly to the observations
made for the square channel, the minimum bubble length is more dependent on the
capillary number when the inertia is increased, as observed when working with ethanol.
This trend is enhanced in the rectangular microchannel with aspect ratio α = 4, where
for the highest liquid capillary number CaL ' 0.025 the bubble length is approximately
half the length of that obtained with a more viscous liquid, e.g. glycerol 60% (vol.)
in ethanol. These differences can be explained by the fact that this corresponds to a
regime that approaches the jetting regime. In addition, the bubbles are formed in pairs
with two main break-up frequencies instead of being generated regularly with the same
period.

Figure 5.13(b) reports the growth rate of bubbles as a function of the capillary
number in rectangular channels. It clearly appears that an increase in the capillary
number leads to a decrease in the linear growth of the bubble lengths for rectangular
microchannels. The blue line indicates the constant results that were obtained in the
square microchannel and the solid black line, the fit used for the minimum bubble
length λ1 ∼ Ca−0.25

L /2.1, is given as an element of comparison. It is interesting to note
that the capillary number at which the dimensionless bubble lengths in the rectangular
channels become smaller than those in the square channel is around CaL ' 0.01. This
also corresponds to the cross point where the liquid area fraction in a rectangular
channel becomes greater than that in a square channel (De Lozar et al. [2008]).
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Figure 5.13: (a) Minimum bubble lengths generated in channels of aspect ratio α =
[1; 2.5; 4] as a function of the liquid capillary number. (b) Linear growth rate of the
bubble length as a function of the capillary number CaL for α = [1; 2.5; 4]..
(a) Legend : (blue) α = 1 ; (red) α = 2.5 ; (green) α = 4 ; (�) La = 5440 ; (�)
La = 1130 ; (◦) La = 223 ; (B) La = 33 ; (black line) Ca−0.25

L /2.1.
(b) Legend : (blue line) α = 1 ; (red) α = 2.5 ; (green) α = 4 ; (�) La = 5440 ; (◦)
La = 223 ; (B) La = 33 ; (black line) Ca−0.25

L /2.1.

Break-up frequencies

Figure 5.14(a) shows the dimensionless bubble generation frequency as a function
of the gas to liquid flow rate ratio for two different capillary numbers and two aspect
ratios. At low capillary number (CaL ' 0.0042 in figure 5.14(a)), the dimensionless
detachment frequency is lower when the aspect ratio is increased while the bubble
length and the bubble volume, which are inversely proportional to the frequency, are
increased. On the other hand, when the capillary number is increased (CaL ' 0.067
in figure 5.14(a)), the bubble deformation is made easier and this leads to an increase
in the frequency while the bubble lengths decrease with the aspect ratio. This increase
of bubble formation rate with the capillary number is enhanced with the aspect ratio.
These observations are in agreement with the observations made on the bubble lengths.
Figure 5.14(b) represents the bubble formation frequency as a function of the capillary
number for different flow rate ratios (UG/UL = [0.25; 0.5; 1; 2]). It confirms the en-
hanced effects of the capillary number on the frequency of bubble formation when the
aspect ratio is increased. In this range of capillary numbers, the same trend is observed
for the liquid area fraction: the bubble slip velocity decreases with the aspect ratio at
capillary numbers up to Ca ' 0.01, above which the opposite trend is found.

Although the dimensionless bubble formation rate scaled with Ca0.25
L provided a

good estimation of the bubble formation frequency in a square channel, it appears to
be no longer valid for the rectangular channels as illustrated in figure 5.15(a). Figure
5.15(b) shows that for the rectangular channel of aspect ratio α = 4, the dimensionless
bubble detachment frequency can be scaled approximately with Ca0.4. It has been
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Figure 5.14: Dimensionless bubble formation frequency as a function of the (a) gas to
liquid superficial velocity ratio ; (b) the capillary number for UG/UL = [0.25; 0.5; 1; 2]
from bottom to the top.
Legend : (solid line) CaL ' 0.0042 ; (dashed lines) CaL ' 0.067 ; (blue squares) α = 1
; (green circles) α = 4.

seen that the linear growth rate of bubble length decreases when the capillary number
is increased in rectangular cross-sections while it was almost constant in the square
channel. Since the bubble formation frequency is inversely proportional to its volume,
it is then not surprising to find an enhanced dependency on the liquid capillary number
in rectangular channels at high gas to liquid flow rate ratio. However, the aspect ratio
was not found to play a major role in the minimum bubble length and its dependency on
the liquid capillary number. Thus, the dependency of the bubble formation frequency
on the capillary number at low gas to liquid flow rate ratio is not yet well explained.

Unit cell lengths

Although the mechanisms of bubble generation in a flow-focusing device are qual-
itatively similar in both square and rectangular channels of various aspect ratios, it
has been observed that the influence of the capillary number is increased as the aspect
ratio increases. However, it is worth noting in figures 5.16(a) and (b) for aspect ratios
α = 2.5 and α = 4 respectively that whatever the geometry and the capillary number,
the bubble length relative to the unit cell length follow the same simple law given by
equation 5.20.

The bubble and the unit cell lengths are related with the same equation whatever
the geometry and depend only on the gas to liquid flow rate ratio. As a consequence,
the observations made for the bubble lengths and the combined effects of aspect ratio
and capillary number remain valid.

Figure 5.17 shows that the unit cell length for the aspect ratio α = 2.5 and α = 4
follow similar trends with the gas to liquid flow rate ratio to that observed for the
square channel. However, although the minimum bubble length at a given capillary
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Figure 5.15: Dimensionless bubble formation frequency in the rectangular channel
α = 4 scaled with (a) Ca0.25 and (b) Ca0.4 as a function of the gas to liquid superficial
velocity ratio.
(a) Legend : (blue) α = 1 ; (red solid line) experimental fit for α = 1 ; (green) α = 4 ;
(b) Legend : (�) La = 5440 ; (◦) La = 223 ; (B) La = 33 ;
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Figure 5.16: Bubble to unit cell length ratio as a function of the gas to liquid superficial
velocities ratio.
Legend : (�) La = 5440 ; (◦) La = 223 ; (B) La = 33 ; (solid line) equation 5.20.

number does not depend on the aspect ratio, the influence of the capillary number on
the growth rate of the bubble length is slightly less clear and the unit cell length has
not been correlated in these geometries. It is still interesting to note that the unit
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cell length always decreases at low flow rate ratios until it reaches a minimum value
for a flow rate ratio of about one and then increases as the bubble velocity increases
and the frequency approaches its maximum value. An estimation of the position of the
minimum unit cell length can be calculated with the assumption that the coefficients
of the linear two-step model (equation 5.13) follow the same dependency on the the
capillary number. This leads to UG/UL

(
LUC = LminUC

)
=
√

0.6. The corresponding
evolution is plotted in figure 5.17 for the two aspect ratios α = 2.5 and α = 4.

(a) Aspect ratio α = 2.5

10
−2

10
−1

10
0

10
1

10
0

10
1

UG/UL

L
U
C
/
w

CaL

(b) Aspect ratio α = 4

Figure 5.17: Dimensionless bubble length as a function of the gas to liquid superficial
velocities ratio.
Legend : (a) (+) CaL ' 0.0032 ; (B) CaL ' 0.0065 ; (C) CaL ' 0.013 ; (◦) CaL '
0.026 ; (red dashed lines) equation 5.20 with LB/w = (1 + UG/UL)Ca−0.25

L /2.1 ; (blue
solid line) equation 5.24.
(b) (+) CaL ' 0.0026 ; (B) CaL ' 0.0053 ; (C) CaL ' 0.0106 ; (◦) CaL ' 0.021 ; (�)
CaL ' 0.042 ; (blue solid line) equation 5.24.

Partial conclusion

The similarities and the differences between the bubble formation in a cross-junction
with a square cross-section and rectangular cross-section have been clearly underlined.

• The minimum bubble size generated scaled by the width of the channel has been
shown to be independent of the aspect ratio, LminB /w = λ1 =

Ca−0.25
L
2.1 .

• The linear growth rate has been found to decrease with the liquid capillary num-
ber in rectangular channels. The dependency on the the capillary number seems
to be enhanced when increasing the aspect ratio.

• The dimensionless bubble generation frequency scales with CamL where m is an
increasing function of the aspect ratio. m = 0.25 for α = 1 and m = 0.4 for
α = 4.

• The bubble length relative to the unit cell length does not depend on the aspect
ratio and is given by: LB/LUC = UG/UL

0.6+UG/UL
.
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5.3 T-shaped junctions

In this section, the aspect ratio of the channel is fixed at α = 2.5 and the effects of
the geometrical shape of the contacting mode on the bubble lengths are studied. Two
different T-shaped junctions are used: a side-T junction (figure 5.18) and a front-T
junction (figure 5.20).

5.3.1 Bubble generation mechanism

Figure 5.18 illustrates the bubble formation in a side-T junction with ethanol as
the continuous phase during one period. During this period, the position where the
bubble neck thickness and its evolution in time are shown in figure 5.19 for one liquid
flow rate and three gas flow rates. As it has been detailed for the cross-junction, the
bubble formation comprises two main stages: the filling stage until the neck reaches a
given thickness and the squeezing stage which depends on the liquid velocity.

For the front-T junction, a sequence is shown in figure 5.20 while the position where
the neck thickness is evaluated and its evolution in time are shown in figure 5.21. The
two-step mechanism of bubble formation appears to be valid in this geometry too.

From figures 5.18 and 5.20 for which the operating conditions are identical, the first
qualitative observation is that the bubbles and the slugs generated in a front-T junction
are longer than the ones produced in a side-T junction. However, under these operating
conditions, the bubbles generated in the front-T junction remain smaller than the ones
generated in the cross-junction (figure 5.2).

(a) (b)

(c) (d)

(e) (f)

Figure 5.18: Bubble generation sequence in a side T-junction.
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Figure 5.19: Schematic representation of the bubble formation in a cross-junction and
definition of the neck width. Temporal evolution of the bubble neck size in a cross-
junction for CaL = 0.002 and different flow rate ratios. The channel aspect ratio is
α = 2.5
Legend: (�) UG/UL = 2 ; (◦) UG/UL = 1 ; (�) UG/UL = 0.5.

5.3.2 Effects of operating conditions in a rectangular channel (α =
2.5)

Bubble lengths

With the previous observations and considering the work from the literature (Garstecki
et al. [2006], Van Steijn et al. [2007, 2010], Christopher et al. [2008], Abadie et al.
[2012]), the bubble lengths can be approximated with the linear relationship 5.13. The
two coefficients λ1 and λ2 have been shown to depend on the capillary number in flow
focusing devices while inertial effects did not play a major role in the bubble generation
process in the regimes studied.

Figure 5.22(a) shows the effects of the liquid capillary number on the minimum
bubble length that can be formed in each contacting geometry and figure 5.22(b) shows
the rate at which the bubble length grows with the gas to liquid velocity ratio as a
function of the liquid capillary number. Whatever the geometry, the minimum bubble
length and the growth rate decrease when the liquid capillary number is increased.
However, although this decrease scales approximately with Ca−0.25

L in the flow focusing
device (red line and symbols), indicating that infinitely long bubbles would be generated
at vanishing capillary number, the bubble length in the T-shaped geometries appear to
tend towards a finite value when the capillary number is decreased that corresponds to
the squeezing regime described by Garstecki et al. [2006], Van Steijn et al. [2007]. This
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(a) (b)

(c) (d)

(e) (f)

Figure 5.20: Bubble generation sequence in a T-junction.
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Figure 5.21: Schematic representation of the bubble formation in a cross-junction and
definition of the neck width. Temporal evolution of the bubble neck size in a cross-
junction for CaL = 0.002 and different flow rate ratios. The channel aspect ratio is
α = 2.5
Legend: (�) UG/UL = 2 ; (◦) UG/UL = 1 ; (�) UG/UL = 0.5.
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is in agreement with the model proposed by Christopher et al. [2008] developed for the
formation of droplets in side-T junctions and described by equation 5.3. This model
underestimates the bubble lengths in their work and it is also the case here (black
dashed line). However, by correcting slightly this model, it agrees relatively well with
the experimental data in the side-T junction. Firstly, since equation 5.3 represents the
inverse problem, an explicit expression of the minimum bubble length LminB /w = λ1

is given. Indeed, as the capillary number CaL tends towards zero, the dimensionless
bubble length tends towards 1. Equation 5.3 then reduces to:

(1− λ1)3 ∼ CaL (5.25)

Thus, at vanishing liquid capillary number, the minimum bubble length in a side T
junction would obey:

λ1 ∼ 1− Ca1/3
L (5.26)

To prevent the bubble length λ1 from being negative above a certain capillary number,
the second member on the right hand side of equation 5.26 should be limited and tend
towards zero at infinite capillary number according to 5.3. In addition, as the model
was found to underestimate the minimum bubble length, a factor slightly greater than
one is introduced and the minimum bubble length can be written:

λ1 ∼ 1.1

(
1− Ca

1/3
L

1 + Ca
1/3
L

)
(5.27)

It is shown in figure 5.22 (black line and symbols) that there is good agreement between
this corrected model and the experimental data in the side-T junction. However, no
simple scaling law was found for the evolution of the linear growth rate λ2 of the bubble
as a function of the liquid capillary number.

The observations that the bubbles are longer in a cross-junction than those formed
in the front-T junction and side-T junctions can be seen in figures 5.22(a) and (b)
since both the minimum bubble length and the growth rate are minimum in the side-T
junction and maximum in the cross-junction. It is interesting to point out that the
differences in bubble lengths and growth rates are mainly observable at low capillary
numbers while the differences between the bubbles lengths generated with different
contacting geometries reduce when the capillary number is increased. This means that
the generation mechanism is governed almost uniquely by geometrical effects at low
capillary numbers and especially in T-shaped junctions where the capillary number
does not seem to affect significantly the bubble lengths below a critical capillary num-
ber. However, when increasing the capillary number, the capillary number governs the
bubble generation mechanism and the effects of the geometrical entrance are reduced.
Indeed, a bubble follows the shape of the channel at low capillary numbers while it
separates from the walls when the capillary number is increased.

5.4 Conclusion and outlooks

The bubble dispersion generated in a cross-junction in channels of different aspect
ratios (α = [1; 2.5; 4]) has been characterized experimentally. The two-step model
which is widely used in T-junctions, has been extended to cross-junctions. The ef-
fects of the liquid capillary number on the two stages of bubble formation mechanism
have been identified. The effects of the liquid capillary number are often neglected in
gas-liquid flow to characterize the bubble formation (Cubaud et al. [2005], Garstecki
et al. [2006], Van Steijn et al. [2007]) although they are taken into account in droplet
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Figure 5.22: (a) Minimum bubble length produced with the different contacting modes
as a function of the liquid capillary number. (b) Linear growth rate with the gas to
liquid flow rate ratio as a function of the liquid capillary number.
Legend: (red symbols) cross-junction ; (blue symbols) front-T junction ; (black sym-
bols) side-T junction ; (�) La = 5440 ; (◦) La = 223 ; (B) La = 33 ; (red line)
equation 5.15 ; (black solid line) equation 5.27 ; (black dashed line) equation 5.3 from
Christopher et al. [2008]

formation Christopher et al. [2008]). The minimum bubble length has been shown to
depend on the capillary number independently of the aspect ratio. The growth rate of
bubble length has been found to decrease when the liquid capillary number is increased
in rectangular microchannels whereas it is constant in a square microchannel. The
bubble formation frequency increases with the gas to liquid flow rate ratio and with
the liquid capillary number. The increase in bubble formation frequency is enhanced
in rectangular channels when the aspect ratio is increased. It has been pointed out
that the bubble to unit cell length ratio follows a unique law as a function of the gas
to liquid flow rate ratio independently of the capillary number, the Reynolds number
and the geometry of the channel.

The gas-liquid flows generated in a cross-junction and two different T-shaped junc-
tions have been compared. Bubble formation in these three geometries can be split
into two main steps but the effects of the capillary number on these steps has been
shown to differ from one contacting section to another. Indeed, the minimum bubble
length at vanishing capillary numbers in a cross-junction would diverge with the pro-
posed scaling law while it seems to tend towards a finite value in T-junctions. The
minimum bubble length in a side-T junction can be evaluated with the model proposed
by Christopher et al. [2008]. It is smaller than the minimum bubble length obtained in
a frontal T-junction and a cross-junction. Similarly, the growth rate of bubble length
is reduced in T junctions when compared with cross-junctions. An interesting point is
that the bubble lengths are less dependent on the geometry at high capillary numbers
where the effects of the walls are reduced.
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It could be interesting to perform numerical simulations of bubble formation in
cross-junction with different aspect ratio to understand the details of the mechanism
and in particular the growth rate for which the effects of the aspect ratio are still not
accurately understood.
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6.1 Introduction

6.1 Introduction

6.1.1 State of the art

In the previous chapter, the bubble generation has been studied under different
operating conditions including liquid capillary and Reynolds numbers, liquid to gas flow
rate ratios, cross-sectional aspect ratios and contacting geometries. Once the bubble
is formed, in straight channels, the bubble and the liquid quickly reach a stationary
motion in the frame of reference moving with the bubble. The dynamics of bubble trains
appear very similar to that of a single bubble moving in a stationary or flowing liquid,
at least when the slug is long enough such that fully developed single phase flow occurs
in the liquid slug. The motion of Taylor bubbles in circular channels have been studied
since the first experiments by Taylor [1961] and the theoretical work by Bretherton
[1961] based on the lubrication approximation. In capillary flows, the bubble with
nearly spherical caps occupies a major part of the cross-sectional area of the channel
and a thin film separates the bubble from the wall. The dimensionless number that
best describes the flow is the capillary number based on the bubble velocity CaB:

CaB =
µLUB
σ

(6.1)

UB is the bubble velocity, µL is the dynamic viscosity of the liquid and σ is the surface
tension.

With the lubrication analysis, Bretherton [1961] estimated the liquid film thickness
between the bubble and the wall at vanishing capillary numbers, as well as the pressure
drops at the bubbles caps (front and rear):

δ

R
= 1.34 Ca

2/3
B (6.2)

∆Pnose =
2σ

R

(
1 + 3.72Ca

2/3
B

)
(6.3)

∆Prear =
2σ

R

(
1− 0.97Ca

2/3
B

)
(6.4)

However, equation 6.2 is only valid at low capillary numbers and diverges as the cap-
illary number increases. More recently, Aussillous and Quéré [2000] extended Brether-
ton's correlation to higher capillary numbers:

δ

R
=

1.34 Ca
2/3
B

1 + 2.5× 1.34 Ca
2/3
B

(6.5)

The coefficient 2.5 in the denominator was found empirically while the general form of
equation 6.5 was found with a simple balance between the Laplace pressure jump at
the cap of the bubble and in the dynamic meniscus.

Less attention has been paid to square and rectangular channel cross-sections even
though these geometries appear interesting when dealing with transport phenomena
and applications related to chemical engineering and multiphase reactors. Wong et al.
[1992, 1995a] also used the lubrication approximation to study the shapes of bubbles
and contact lines in polygonal capillaries for nearly static bubbles as the capillary
number tends towards zero. The pressure drop ahead of the bubble was related to the
capillary number in a square channel of height 2h (Wong et al. [1995b]):

∆Pnose =
σ

h

(
1.8862 + 2.75 Ca

2/3
B

)
(6.6)

∆Prear =
σ

h

(
1.8862− 1.00 Ca

2/3
B

)
for

LB
h

<< Ca−1
B (6.7)
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Semi-inifinite bubbles in square and rectangular capillaries have been studied nu-
merically with a finite-element method that solves the free-surface Stokes equations
(Hazel and Heil [2002], De Lozar et al. [2008]). The effects of cross-sectional geometry
on the liquid area fraction that separates the bubble from the walls and the pressure
drop ahead of the bubble have been highlighted. They also investigated the effects of
gravity on the loss of symmetry of the shape of the bubble and the flow structure.

Eulerian methods have also been used to simulate the dynamics of fully developed
slug flow in 2D or axisymmetrical cases (Gupta et al. [2009, 2010a,b], Afkhami et al.
[2011], Abadie et al. [2012]). The use of eulerian methods to perform three dimen-
sional numerical simulations of Taylor flow in square or rectangular microchannels is
restricted to only a few studies (Oztaskin et al. [2009], Taha and Cui [2006], Liu and
Wang [2008], Abadie et al. [2013]).

In this chapter, we focus on fully developed Taylor flow; the entrance effects are
not considered. The effects of the liquid capillary and cross-sectional geometry will be
discussed in the first part concerning the results at low Reynolds numbers. The effects
of bubble and slug lengths in bubble train flow will then be shown to be of negligible
importance and the effects of the Reynolds numbers for the different geometries studied
will then be considered in terms of bubble velocity, liquid area fraction and pressure
drop.

6.1.2 Circular channels at low Reynolds numbers liquid film thickness
and bubble velocity

Although this chapter mainly focuses on square and rectangular capillaries, the
shape and the velocity of bubbles in a circular channel have been widely studied and
can be well estimated in visco-capillary regimes, i.e. where inertial effects are weak.
The results presented in this chapter are therefore compared to those predicted by the
correlations for Taylor flow in circular channels, which is described below.

Bretherton [1961] considered the capillary driven motion of a bubble in a circular
tube. This theoretical analysis based on the lubrication approximation leads to the
estimation of the liquid film thickness, the bubble velocity and the pressure jumps at
very low capillary numbers. However, this theory is based on the bubble velocity and
its corresponding capillary number so that the hydrodynamic parameters cannot be
deduced from the parameters of control of an experimental set-up, which are generally
the flow rates of each phase. It is therefore interesting to relate the liquid film thickness
and thus the bubble slip and absolute velocity to the two-phase velocity.

A key point of the following analysis relies on the flow in the liquid film. In circular
tubes, the pressure in the bubble is uniform due to the low viscosity of the bubble
and the annular film around the bubble has a constant thickness. As a result, the
pressure in the liquid film is uniform and the velocity is zero. The stagnant film allows
the bubble velocity to be calculated from the two-phase velocity and the liquid film
thickness via a volume balance:

UB
UTP

=
1(

1−
(
δ

R

)2
) (6.8)
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Order 0

In circular tubes, the relations 6.8 and 6.5 indicate that in the limit of small bubble
capillary numbers,

CaB ∼ CaTP ,
where CaB = µLUB

σ and CaTP = µLUTP
σ are the capillary number based on the bubble

and the mean velocities, respectively. A first approximation would therefore consist
in replacing the bubble capillary number CaB by the mean capillary number CaTP in
relation 6.5. This leads to the following dimensionless liquid film thickness:

δ

R
=

1.34 Ca
2/3
TP

1 + 2.5× 1.34 Ca
2/3
TP

(6.9)

This relation is a first approximation and it is seen in figure 6.1 that it is valid in
the limit of small capilary numbers, typically CaTP ≤ 2 × 10−2. It is also seen that
it gives a good approximation as the liquid film thickness tends towards its maximum
value, typically CaTP ≥ 2× 102.

Order 1

At low capillary number, the bubble slip velocity approaches zero, i.e. the bubble
velocity is close to the mean velocity in the liquid slug. We can then write as a first
approximation :

UB = UTP

(
1 + αCaβTP

)
(6.10)

where α and β are constant.
From Bretherton's analysis, the asymptotic solution of the dimensionless liquid film
thickness at vanishing capillary number is :

δ

R
= 1.34Ca

2/3
B (6.11)

From equation 6.10, the film thickness is:

δ

R
= 1.34Ca

2/3
TP

(
1 + αCaβTP

)2/3
(6.12)

∼ 1.34Ca
2/3
TP

(
1 +

2

3
αCaβTP

)
(6.13)

Equations 6.8 and 6.12 allow the bubble velocity to be calculated from the two-phase
velocity and the liquid film thickness:

UB
UTP

∼ 1 + 2
δ

R
(6.14)

∼ 1 + 2× 1.34Ca
2/3
TP

(
1 +

2

3
αCaβTP

)
(6.15)

∼ 1 + 2× 1.34Ca
2/3
TP + 2× 1.34

2

3
αCa

2/3+β
TP (6.16)

By considering low capillary numbers and keeping the leading order terms, we can
then identify α and β from equations 6.10 and 6.16 as follows:

α = 2× 1.34 (6.17)

β =
2

3
(6.18)
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With the values of α and β and as CaB tends towards zero, equation 6.10 then
becomes :

UB
UTP

= 1 + 2× 1.34Ca
2/3
TP (6.19)

and the liquid film thickness is:

δ

R
= 1.34Ca

2/3
TP

(
1 +

4

3
× 1.34Ca

2/3
TP

)
(6.20)

These corrections are valid at low capillary numbers but the liquid film thickness still
needs to be limited when the capillary number increases in order to avoid divergence.
From Aussillous and Quéré [2000], it is known that the dimensionless film thickness
tends toward a maximum at 0.4 so it is possible to restrict the liquid film thickness at
high capillary numbers with the following relation :

δ

R
=

1.34Ca
2/3
TP

(
1 +

4

3
× 1.34Ca

2/3
TP

)
1 + 1.34Ca

2/3
TP

(
1 +

4

3
× 1.34Ca

2/3
TP

) (6.21)

However, it is seen that the evolution of the liquid film thickness at intermediate
and high capillary numbers is not exactly recovered and a slight correction in the
denominator allows a better prediction of the liquid film thickness as a function of the
two-phase capillary number.
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From equations 6.8 and 6.22, the bubble velocity is written as a function of the mean
velocity and the two-phase capillary number:
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(6.23)

Numerical results obtained from 2D axisymmetrical simulations similar to those de-
scribed in chapter 4 are reported in figure 6.1 and agree well with the predicted film
thickness.

Finally, as it is seen in figure 6.2, the bubble velocity in axisymmetric flows can
be well estimated from the operating parameters and the numerical results again show
very good agreement with the proposed correction to estimate the liquid film thickness
and the bubble velocity as a function of the two-phase capillary number.
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Figure 6.1: (a) Evolution of the liquid film thickness in a tube as a function of the two-
phase capillary number CaTP . (b) Log-Log representation of the difference between
δ/R and δ/R (order 0) to reveal the power law.
Legend: (◦) numerical results ; (black solid line) δ/R obtained from CaB with equation
6.5 (Aussillous and Quéré [2000]) ; (black dashed line) δ/R obtained from equation
6.9 (correction order 0) ; (blue dash-dotted line) δ/R obtained from equation 6.20
(correction at low Ca) ; (red dash-dotted line) δ/R obtained from CaTP with equation
6.21.
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Figure 6.2: Evolution of the ratio of the bubble velocity to the two-phase velocity as a
function of the two-phase capillary number CaTP in a tube.
Legend: (◦) numerical results ; (black solid line) UB/UTP from equations 6.5, 6.8
(Aussillous and Quéré [2000]) ; (black dashed line) UB/UTP from equations 6.9, 6.8
(correction order 0) ; (blue dash-dotted line) UB/UTP from equations 6.20, 6.8 (correc-
tion at low Ca) ; (red dash-dotted line) UB/UTP from equations 6.23.
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Chapter 6 : Taylor bubble hydrodynamics

6.2 Numerical set-up

In microchannels, the effects due to gravity can generally be neglected. Indeed,
independently of the operating conditions in terms of mass or volumetric flow rates, the
maximum Bond number achieved in our experiments is much lower than unity (Bo ≤
0.1), which indicates that the effects due to gravity are negligible when compared with
capillary effects. This observation allows a symmetrical bubble shape to be considered
and only a quarter of the channel is simulated throughout this study as shown in figure
6.3. As a consequence, the gravitational force is also set to zero in the simulations.
The effects of the gravitational force on the symmetry of Taylor bubbles in circular
microchannels for Bond number close to unity have been studied in the literature both
experimentally (Leung et al. [2012]) and numerically (Gupta et al. [2013], De Lozar
et al. [2008]).

The bubble is placed in the domain and a pressure gradient along the z−direction
between two periodic boundary conditions is imposed to induce the motion until the
flow reaches steady state (see figure 6.3(a)) . The periodic boundary conditions allow
the simulation of a bubble train with bubbles translating through the boundaries. No-
slip wall conditions are imposed on the planes x = w and y = h and a symmetry
boundary condition is set at x = 0 and y = 0. The grids used consist of 32× 32× 256,
48× 32× 256 and 64× 32× 256 cells in the x−, y− and z−direction for microchannels
with aspect ratios α = 1, 2.5 and 4, respectively. Note that in this part, w represents
half the channel width while it was the total width of the channel in chapter 5. An
example of the mesh for the square cross-section can be seen in figure 6.3(b).

L

(a)

w

h

(b)

Figure 6.3: (a) Illustration of the computational domain and the mesh used in a square
capillary. (b) Close-up view - the bubble interface is shown to reveal the flim thickness.

In order to correctly resolve the thin liquid film between the bubble and the wall
(with a minimum of 5 cells as recommended in Gupta et al. [2009]), these grids are
refined at the walls using a geometric evolution that decreases cell size in the last 32
cells in the x and y directions. In the axial direction, regular grid spacing is used and
the length of the unit cell is L = 17 × h. Depending on the case, the length of the
domain has been varied: as the capillary number increases, the bubble length increases
too and the unit cell length has been doubled. At low capillary numbers Ca ≤ 0.06,
the axial grid spacing has been refined and the unit cell length has been reduced to
L = 8.5× h.
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6.3 Results at low Reynolds numbers

The ratio of liquid to gas viscosities and densities have been set to ρL/ρG = 103 =
µL/µG. The fluid properties have been varied to cover a wide range of capillary and
Reynolds numbers resulting in eight different Laplace numbers:

La =
ρLσDh

µ2
L

= [2.8 ; 28 ; 280 ; 1000 ; 2000 ; 5000 ; 10000 ; 20000].

It should be mentioned that for capillary numbers above Ca = 0.08, the VOF-FCT-
CCSF method has been used while for low capillary numbers where spurious currents
arise and are not negligible when compared with the velocity field around the bubble,
the LS-CCSF method has been used.

6.3 Results at low Reynolds numbers

6.3.1 First observations

Bubble shapes obtained from 3D numerical simulations are reported in figure 6.4.
It is observed that the bubble shape follows the cross-sectional shape of the channel.
Indeed, the bubbles are flattened in the smallest dimension and curved in the greatest
dimension. In addition, it is seen that the bubble caps exhibit different curvatures in
the height and the width of the channel. Figure 6.5 reports the velocity magnitude
relative to the bubble velocity on the interface for the three aspect ratios considered
(α = [1; 2.5; 4]). For all the geometries in this study, the velocity around the caps is
close to the bubble velocity and approaches zero around the bubble body. With this
representation, the confinement in the different directions of the channels is highlighted.
Indeed, the velocity rapidly tends towards zero in the height while the nose and rear
regions are elongated in the width of the channel. This trend is accentuated as the
aspect ratio increases. It is also interesting to point out that the same tendency is
found in the diagonal of the square channel.
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Chapter 6 : Taylor bubble hydrodynamics

(a) α = 1 ; CaB = 0.1 and ReB = 0.28 (b) α = 1 ; CaB = 0.4 and ReB = 1.12

(c) α = 2.5 ; CaB = 0.1 and ReB = 0.28 (d) α = 2.5 ; CaB = 0.4 and ReB = 1.12

(e) α = 4 ; CaB = 0.1 and ReB = 0.28 (f) α = 4 ; CaB = 0.4 and ReB = 1.12

Figure 6.4: Bubble shapes for CaB = 0.1 in the channels of aspect ratio α = [1; 2.5; 4].
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6.3 Results at low Reynolds numbers

(a) α = 1 ; CaB = 0.1 and ReB = 0.28

(b) α = 2.5 ; CaB = 0.1 and ReB = 0.28

(c) α = 4 ; CaB = 0.1 and ReB = 0.28

Figure 6.5: Illustration of the bubble shapes for CaB = 0.1 in the channels of aspect
ratio α = [1; 2.5; 4]. The interface is colored with the magnitude of the dimensionless
velocity U/UB.
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Chapter 6 : Taylor bubble hydrodynamics

6.3.2 Flow field around the bubble

Since the bubble velocity increases with the capillary number, the flow structure
also evolves with the capillary number and the velocity field around the bubble is mod-
ified. The bubble shapes and the flow pattern are illustrated for different capillary
numbers in figures 6.6 and 6.7 for a square channel α = 1 and a rectangular channel
with aspect ratio α = 4, respectively.

For the square channel, the streamlines represented in figure 6.6 in the frame of
reference moving with the bubble indicate that the flow is affected by the bubble in the
vicinity of the interface but the velocity in the slug rapidly tends towards the veloc-
ity profile of a single-phase flow with a mean velocity equal to the two-phase velocity.
Indeed, the flow appears to be fully developed at a distance of approximately one diam-
eter from the bubble caps. As the maximum velocity at the centerline of the channel
is generally greater than the bubble velocity, the relative velocity at the center of the
channel is positive while it decreases when approaching the walls and becomes negative
at a certain distance from the center of the channel. This gives rise to a recirculation
motion in the central zone of the channel and a by-pass flow close to the walls. This
recirculation zone occupies a major part of the channel cross-section at low capillary
numbers and the recirculating volume decreases as the capillary number increases until
if finally vanishes (see figure 6.6(e)). Further details about the characteristics of this
recirculation motion and the by-pass flow are given in chapter 7.

In the channel with aspect ratio α = 4, similar structures are observed: at low cap-
illary number (CaB = 0.02) recirculation motion occurs and at high capillary numbers
complete by-pass flow occurs. However, the evolution of the flow around the bubble
between these two extreme flow structures appear to be more complex in rectangular
channels. It has been observed by De Lozar et al. [2008] that the stagnation point seems
to detach from the bubble surface and moves towards the slug ahead of the bubble. It
is interesting to observe similar behaviour at the rear cap of the bubble, which was not
simulated in the work by De Lozar et al. [2008]. In addition, the other cross-section in
the more confined direction was not shown in their study and it is interesting to point
out that the recirculation pattern is similar to that in square capillaries.

It is also seen in figures 6.6 and 6.7 that the bubble shape changes significantly with
the capillary number as it is the case in circular tubes. Indeed, the liquid film thickens
as the capillary number increases, whatever the geometry. The thickening of the liquid
film is particularly seen in the less confined direction (width) of rectangular channels.
In addition, the length necessary for the liquid film to develop is increased as the aspect
ratio increases. The bubble shape in the square channel presents a nearly constant film
thickness, while it varies along the bubble length in the rectangular channel of aspect
ratio α = 4. The shape of the bubbles in an axial cross-section will be discussed further
in section 6.3.4.

6.3.3 Bubble velocity

Since the experiments of Taylor [1961] and the theoretical analysis of Bretherton
[1961] based on the lubrication approximation, the bubble capillary number has been
identified as the dimensionless number that characterizes confined bubbles in small
channels driven by surface tension effects and where the Reynolds number is gener-
ally very low, i.e. the inertial effects are negligible. Thus, the capillary number has
been chosen to make the velocities dimensionless in order to compare the numerical
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6.3 Results at low Reynolds numbers

(a) CaB = 0.02 and ReB = 0.56

(b) CaB = 0.06 and ReB = 1.68

(c) CaB = 0.1 and ReB = 0.28

(d) CaB = 0.4 and ReB = 1.12

(e) CaB = 1 and ReB = 2.8

Figure 6.6: Bubble shapes and flow structures in the symmetry planes of the channel
of aspect ratio α = 1 for CaB = [0.02; 0.06; 0.1; 0.4; 1].
The line on the bubble surface represents the separation between recirculation and
by-pass zones.

simulations with the experiments. Figure 6.8 shows the bubble capillary number as a
function of the two-phase capillary number based on the mean velocity in the chan-
nel. The results from the correlation of Aussillous and Quéré [2000], which is valid in
tubes, is given as a comparison and in a first approximation, the bubble velocity in
rectangular channels of moderate aspect ratio appears to be close to that in circular
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(a) CaB = 0.02 and ReB = 0.56

(b) CaB = 0.04 and ReB = 1.12

(c) CaB = 0.1 and ReB = 0.28

(d) CaB = 0.6 and ReB = 1.68

Figure 6.7: Bubble shapes and flow structures in the symmetry planes of the channel
of aspect ratio α = 4 for CaB = [0.02; 0.04; 0.1; 0.6].
Left: top view of the channel in the width of the channel ; right: lateral view in the
depth of the channel. The line on the bubble surface represents the separation between
recirculation and by-pass zones.

capillaries. Good agreement between the velocities from the experimental data (filled
symbols) and the velocities obtained from the numerical simulations (open symbols)
is found. It is observed that the bubble capillary number remains greater than the
mean capillary number, which is in agreement with the predictions available in cap-
illary tubes (Bretherton [1961], Aussillous and Quéré [2000]) and with the numerical
results of semi-infinite bubbles in square and rectangular capillaries (Hazel and Heil
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6.3 Results at low Reynolds numbers

[2002], De Lozar et al. [2008]). It is also observed that the ratio of bubble velocity to
mean velocity increases with the capillary number. Indeed, similarly to what happens
in circular channels, the bubble velocity can be well estimated by the mean velocity
in the liquid slug at vanishing capillary numbers. However, the slip velocity between
the bubble and the mean velocities increase with the capillary number and when the
viscous forces dominate the capillary forces, the ratio of bubble to mean velocities tends
towards a constant value (UB/UTP (Ca→∞) ' 2.78 in circular capillaries).
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Figure 6.8: Bubble capillary number CaB as a function of the two-phase capillary
number CaTP .
Legend: (filled symbols) experiments ; (open symbols) numerical simulations ;
(�, blue) α = 1 ; (�, red) α = 2.5 ; (◦, green) α = 4 ; (dashed lines) CaB = CaTP and
CaB = 2.78CaTP ; (solid line) equation 6.23.

Figure 6.9 shows the ratio of bubble velocity to the mean velocity in the liquid
slug as a function of the bubble capillary numbers CaB and CaTP for the three aspect
ratios α = [1; 2.5; 4]. The bubble to two-phase velocity ratio increases with the capillary
number in all the geometries and it is seen that the trends are close to those in a circular
channel. Close inspection of the ratio of bubble velocity to mean velocity shows that
at a given bubble capillary number greater than approximately CaB = 0.01, this ratio
increases, i.e. the slip velocity between the bubble and the mean velocity increases
with the aspect ratio. Both the experimental and numerical data are in very good
agreement with the numerical results from De Lozar et al. [2008] in the range of capillary
numbers covered. De Lozar et al. [2008] further showed that below this capillary number
CaB = 0.01, the liquid area fraction and thus, the bubble velocity decreases when the
aspect ratio increases. This was not possible in the current numerical simulations due
to the computational effort needed to compute the very thin liquid film between the
bubble and the walls (see appendix B for details on the required computational times).
As it has been discussed in section 6.1.2, it is interesting to report the bubble to mean
velocity ratio as a function of the two-phase capillary number CaTP as shown in 6.9(b).
The observations are similar to the bubble to mean velocity ratio as a function of the
two-phase capillary number. Indeed, at low capillary numbers, the bubble velocity
tends towards the mean velocity and the increase in bubble velocity becomes sharper
with this representation as the bubble to two-phase velocity increases.
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Figure 6.9: Ratio of the bubble velocity to the mean velocity UB/UTP as a function of
(a) the bubble capillary number CaB ; (b) the two-phase capillary number CaTP .
Legend: (�, blue) α = 1 ; (�, red) α = 2.5 ; (◦, green) α = 4 ; (blue dashed line) α = 1
De Lozar et al. [2008] ; (green dash-dotted line) α = 4 De Lozar et al. [2008] ; (solid
line) equation 6.23.

6.3.4 Liquid area fraction

In circular tubes, the pressure in the bubble is uniform due to the low viscosity of
the bubble and the annular film around the bubble has a constant thickness; as a result
the pressure in the liquid film is uniform and the velocity is zero. Figure 6.5 illustrates
that the absolute velocity on the interface along the bubble body is zero. Athough
surface tension usually forces the interfaces to be spherical in three dimensions, the
shape of the bubble is not cylindrical and approaches the shape of the channel at low
capillary numbers in polygonal capillaries due to the confinement (Wong et al. [1992,
1995a]). Thus, due to the non-uniform radius of curvature in a cross-section, the pres-
sure jumps differ from one direction to another. Indeed, close to the walls, the interface
is flattened and the pressure jump is reduced while the curvature is maintained in the
corners and in the less confined direction (if α 6= 1) thereby leading to a pressure drop
between the walls and the corners. The liquid film between the bubble and the walls
is then drained towards the corners or the greatest dimension where the pressure is
lower. An example of drainage flow is shown in figure 6.10 for a rectangular channel
of aspect ratio α = 4. It is seen that the maximum axial velocity is about 0.035× UB
and the velocity in a cross-section can reach around 5% of the bubble velocity. Wong
et al. [1995a] suggested that in the case of gas fingers or semi-infinite bubbles at low
capillary numbers, an axial flow persists in the corners and the bubble shape evolves
in the axial direction. Hazel and Heil [2002] and De Lozar et al. [2008] also observed
this draining flow in rectangular shaped channels but they estimated that this flow
becomes negligible after a distance that is approximately four times the aspect ratio of
the channel.

In this work, we focus on bubble trains with finite bubble and slug lengths. It is
shown in figure 6.11 that the liquid flow rate is equal to the two-phase flow rate in the
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­0.035 ­0.03 ­0.025 ­0.02 ­0.015 ­0.01 ­0.005 0 0.005 0.01

0.2

Figure 6.10: Drainage flow in a cross-section for CaB = 0.1 in a rectangular channel
(α = 4) at a distance 1.8α from the nose, where the liquid flow rate is minimum.
Legend: The reference vector represents a velocity 0.2UB. The axial velocity field is
reported in color.

liquid slug and decreases at the nose of the bubble until reaching less than 1% of the
total flow rate along the bubble body. It is observed that even if the bubble is not
much longer than the channel width and the bubble shape does not attain a uniform
film thickness, the liquid flow rate decreases from the bubble nose to a position that is
approximately at a distance of one width from the rear bubble cap. As the liquid flow
rate vanishes at a certain position in the case of finite bubble lengths, a mass balance
allows the liquid area fraction to be related to the bubble and mean velocities as in
circular channels despite the draining flow in polygonal capillaries.

The liquid flow rate vanishes at a distance from the bubble nose that depends on
the capillary number and its length. The cross-sectional shape of the bubble has been
reported at this position since this would be the cross-sectional shape along the body
of a developed bubble and it corresponds to the quantity of liquid that would remain
on the walls of the channel in the case of a longer bubble emptying the channel. Figure
6.12(a) and (c) show the cross-sectional shape of bubbles in square and rectangular
channels depending on the capillary number. The bubble shapes approach the shape
of the channel when the capillary number is very low. In a square channel, the liquid
film thickness increases with the capillary number and it increases more rapidly across
the diagonal since the cross-section of the bubble becomes circular (see figures 6.12(a)-
(b)). The bubble radius in a square channel is shown in figure 6.12(b) and confirms
that the shape is not circular at low capillary numbers where the radius across the
diagonal can be greater than the height of the channel. For capillary numbers around
CaB = 0.1, the bubble body becomes cylindrical. It is interesting to note that the
radius of the bubble in these cases can be fitted with a sinusoidal function where the
amplitude corresponds to the difference between the radii in the horizontal (rwallB ) and
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Figure 6.11: Liquid flow rate as a function of the axial position in a channel of aspect
ratio α = 4 for differetent capillary numbers.
Legend: (black solid line) CaB = 0.02 ; (blue dashed line) CaB = 0.04 ; (green dash-
dotted line) CaB = 0.1 ; (red solid line) CaB = 0.6.

the diagonal (rdiagB ) directions:

rB(θ) =
rwallB + rdiagB

2
+
rwallB − rdiagB

2
cos (4θ) (6.24)

with [rdiagB ; rwallB ] = [1.07; 0.973] for CaB = 0.02 and [rdiagB ; rwallB ] = [0.979; 0.942] for
CaB = 0.04. However, this is yet to be confirmed at lower capillary numbers. In a
rectangular channel, the bubble shape is more complex. It is seen that the liquid film
thickness is greater in the less confined direction. It is interesting to point out that
the bubble does not have an elliptical cross-section or a flat shape in the center part
with two circular caps on the sides. In addition the film thickness is not minimal in the
plane x = 0 but it decreases slightly until a distance from the symmetry plane that is
approximately the maximum bubble radius minus the height of the channel.

The slip velocities between the bubble and the mean flow in the slug (or the liquid
area fraction W = 1 − UTP /UB as defined in Bretherton [1961] and De Lozar et al.
[2008]) obtained from the numerical simulations at low Reynolds numbers are shown in
figure 6.13 where the numerical results from De Lozar et al. [2008] are also reported. It
has been qualitatively observed and it is confirmed here that an increase in the capillary
number leads to an increase in the liquid area fraction. In addition, for CaB & 0.01, the
liquid area fraction increases with the aspect ratio. However, the opposite trend is found
at lower capillary numbers as we can see with the results from De Lozar et al. [2008].
The agreement between our results and the results for semi-infinite bubbles is very
good. Slight deviations can be observed at high capillary numbers but this corresponds
to cases where the Reynolds numbers were greater than 5 since the Laplace number is
fixed and ReB = La × CaB. These differences can then be attributed to the inertial
effects that were not taken into account in the simulations of De Lozar et al. [2008].
Since the liquid area fraction is directly related to the velocities, the results are similar
to those in section 6.3.3.
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Figure 6.12: Cross-sectional shape of bubbles in (a) a square and (c) a rectangular
channel of aspect ratio α = 4. Cross-sectional bubble radii as a function of the angle
formed with the vertical for (b) a square channel and (d) a rectangular channel of
aspect ratio α = 4
Legend: (a)-(b) (black, solid line and +) CaB = 0.02 ; (blue dashed line and ◦)
CaB = 0.04 ; (green dash-dotted line and �) CaB = 0.1 ; (red solid line and �)
CaB = 1. Legend: (c)-(d) (black, solid line and +) CaB = 0.02 ; (blue dashed line
and ◦) CaB = 0.04 ; (green dash-dotted line and �) CaB = 0.1 ; (red solid line and �)
CaB = 0.6.
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Figure 6.13: Slip velocity or liquid area fraction W = 1−UTP /UB as a function of the
bubble capillary number CaB for aspect ratios α = [1; 2.5; 4] at low Reynolds number.
Legend: (�, blue) α = 1 ; (�, red) α = 2.5 ; (◦, green) α = 4 ; (blue dashed line) α = 1
De Lozar et al. [2008] ; (green dash-dotted line) α = 4 De Lozar et al. [2008] ; (solid
line) W deduced from equation 6.23.

6.3.5 Pressure drop

Bubble pressure drop

The evolution of the bubble shapes and notably the liquid area fraction are related
to the bubble velocity, while the evolution of the shape of the bubble caps is related
to the Laplace pressure jumps at the interface. Indeed, figures 6.6 and 6.7 show that
the bubble nose is elongated as the capillary number increases and the rear bubble
cap is flattened. The pressure drop across the bubble caps and the total pressure drop
are shown in figure 6.14 as a function of the bubble capillary number CaB. As the
surface tension forces are preponderant, the pressure drop is made dimensionless with
a capillary pressure based on the minimum characteristic dimension of the channel
pcap = σ/h (De Lozar et al. [2008]), which is the asymptotic pressure drop at low
capillary number in a plane flow. The asymptotic values of both pressure jumps at
vanishing capillary numbers in a square channel is 2, which is the value obtained with
a sphere of diameter equal to the height of the channel. The pressure drop at the front
cap of the bubble increases with the capillary number while the pressure drop at the
rear cap decreases when the capillary number is increased. This is in agreement with
the observations made previously about the bubble shapes, where the bubble nose had
been seen to elongate (i.e. the front curvature increases) while the rear cap flattens
(i.e. the rear curvature decreases). The total pressure jump then increases with the
capillary number as the difference between the pressure jumps at the front cap and the
rear cap increases. The relations 6.6 and 6.7 that have been built on the lubrication
approximation at vanishing capillary numbers appear to give a correct estimation of the
pressure drop at very low capillary numbers, however the variations with the capillary
number are underestimated. Indeed, it underestimates the pressure jump at the front
cap when the capillary number increases and overestimates the pressure drop at the
rear cap. The pressure jumps obtained in a square channel are again in good agreement
with the results of De Lozar et al. [2008] despite a slight overestimation of the pressure
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6.3 Results at low Reynolds numbers

jump at the front cap. The aspect ratio decreases both pressure drops at the front and
rear caps. Indeed, as the channel width is not considered in the capillary pressure, due
to the less confined direction in which the radius of curvature of the bubble is increased,
the absolute value of the pressure drops decreases. This difference in the curvatures
is clearly seen in figure 6.7(d). Indeed, in the depth of the channel, the bubble is flat
while in the width of the channel, the rear shape remains circular.
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Figure 6.14: (a) Laplace pressure differences at bubble caps as a function of the capillary
number for aspect ratios α = [1; 2.5; 4]. (b) Total pressure drop across the bubble as a
function of the capillary number for aspect ratios α = [1; 2.5; 4].
Legend: (open symbols) front cap ; (filled symbols) rear caps ;
(�, blue) α = 1 ; (�, red) α = 2.5 ; (◦, green) α = 4 ; (dashed lines) α = 1 (Wong et al.
[1995b]) : (solid line) α = 1 (De Lozar et al. [2008]).

The effects of the rectangular shape of the channel can be taken into account by
considering a capillary pressure where the two main curvatures are the height and the
width of the channel:

p∗cap = σ [1/(2h) + 1/(2w)] = pcap [1/2 + 1/(2α)] . (6.25)

Figure 6.15 presents the pressure drops as a function of the capillary number. With
this representation, all the results resported in figure 6.15 almost collapse. It is seen
that an increase in the aspect ratio leads to a slight increase in the pressure drop at
the front cap of the bubble and a slight decrease at the rear cap.

The pressure drop across bubble caps depends strongly on the capillary number and
it therefore appears relevant to compare it with capillary pressures, as it has been done
in figures 6.14 and 6.15. However, the characterization of the whole flow also comprises
the pressure drop in the slug.

Unit cell pressure drop

It is seen in figure 6.16 that the pressure drop in the slug is linear. It can be
modified close to the bubble caps but it does not appear to be significant, at least at
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Figure 6.15: (a) Laplace pressure differences at bubble caps as a function of the capillary
number for aspect ratios α = [1; 2.5; 4]. (b) Total pressure drop across the bubble as a
function of the capillary number for aspect ratios α = [1; 2.5; 4].
Legend: (open symbols) front cap ; (filled symbols) rear caps ;
(�, blue) α = 1 ; (�, red) α = 2.5 ; (◦, green) α = 4 ; (dashed lines) α = 1 (Wong et al.
[1995b]) : (solid line) α = 1 (De Lozar et al. [2008]).

low Reynolds number. The linear pressure drop in a single-phase flow in rectangular
channels has been studied and a correlation that estimates the friction factor as a
function of the Reynolds number and the aspect ratio exists in the literature (see
appendix A). Simulations of single-phase flows have been carried out to check the
applicability of the correlation in the cases studied here in terms of channel aspect
ratios and Reynolds numbers. This indicates that the pressure drop in the slug is:

∆Pslug =

(
dP

dz

)1−phase
=
λρU2

TP

2Dh
× LS (6.26)

where λ is the friction factor estimated from the correlation given by equation A.4. In
the geometries considered here, the friction factor is:

λReTP =


56.9 for α = 1
65.5 for α = 2.5
72.9 for α = 4

(6.27)

As the pressure in the bubble is uniform and the pressure drop across the bubble
does not depend on its length once it is confined, the pressure drop across a unit cell
with a fixed length that contains one bubble and one slug will decrease as the bubble
length increases (see figure 6.16). Indeed, it is seen that very long bubbles allow the
pressure drop to decrease significantly (figure 6.16(a)) when compared with single-
phase flow. When the bubble length is decreased, the total pressure drop increases
until reaching the equivalent pressure drop of single-phase flow (figure 6.16(c)). By
decreasing further the bubble length, the presence of the bubble enhances the pressure
drop when compared with a single-phase flow.
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Figure 6.16: Evolution of the pressure on the centerline along a square channel for
varying bubble lengths and void fractions. The capillary number is CaB = 0.04 and
the Reynolds number is Re = 1.12.
Legend: (solid black line) pressure in the two-phase flow (DNS) ; (dashed red lines)
pressure in a single-phase flow.

To summarize, assuming that the transition region between bubble caps and devel-
oped linear pressure drop is negligible, the pressure drop at low Reynolds number in
Taylor flow can be expressed by a first approximation:

∆PUC =

(
dP

dz

)1−phase
× LS +∆PB (6.28)

∆PUC =
λρU2

TP

2Dh
× LS +∆PB (6.29)
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where λ is the friction factor that depends on the two-phase Reynolds number and the
aspect ratio.

Finally, the equivalent pressure gradient in Taylor flow is estimated as:(
dP

dz

)TF
=
λρU2

TP

2Dh
× LUC − LB

LUC
+ ∆PB

1

LUC
(6.30)

In the previous case, the void fraction in the channel is not fixed and it seems
normal that an increase in the void fraction leads to a decrease in the pressure drop.
However, it is clearly seen that for a given void fraction and fixed channel length, the
pressure drop across the channel will be greater with a number of small bubbles than
in the case of a few long bubbles. The pressure gradient is shown as a function of the
void fraction in figure 6.17 for different bubble lengths. Figure 6.17 represents the case
of a square channel for capillary numbers CaB = 0.04 and CaB = 1.
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Figure 6.17: Left: Equivalent pressure gradient across a unit cell with 4 different
bubble length LB/h = [1.75; 3; 4; 8]. Right: Pressure on the centerline of the channel
for CaB = 1 (top) and CaB = 0.04 (bottom) in the case where ∆PB balances the
single-phase pressure drop.
Left legend: (dashed black lines) CaB = 0.04 ; (solid blue lines) CaB = 1 . Right
legend : (solid black line) pressure in the two-phase flow (DNS) ; (dashed red lines)
pressure in a single-phase flow ; (dash dotted lines) bubble caps.

It is observed in figure 6.17 that the pressure gradient tends towards the pressure
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6.3 Results at low Reynolds numbers

gradient of the single-phase flow as the void fraction vanishes. As the volume fraction
of gas in the channel increases, the influence of the pressure drop across the bubble
increases. Again, for long bubbles, the equivalent pressure gradient across a unit cell is
lower than that for small bubbles. In the cases presented in figure 6.17, is is shown that
the bubble lengths that would balance the single-phase pressure drop are approximately
L∗B = 3 × h and L∗B = 1.75 × h for capillary numbers CaB = 0.04 and CaB = 1,
respectively. It is not intuitive since the pressure drop increases with the capillary
number and it is expected that the bubble length necessary to balance the single-phase
flow increases with the capillary number. However, as the capillary number increases,
the velocity in the channel increases too and the single-phase pressure gradient then
increases. This linear pressure drop increases faster than the capillary pressure drop
across the bubble and this explains the tendency observed.

From equation 6.30, it is possible to estimate the theoretical bubble length that
would balance the single-phase flows across its length.

L∗B = ∆PB
2Dh

λρU2
TP

(6.31)

These theoretical bubble lengths are reported in figure 6.18 as a function of the bubble
capillary number for the three aspect ratios considered. It is observed that an increase
in the capillary number leads to a decrease in the bubble length that balances the single-
phase pressure drop. This means that as the capillary number increases, the resistance
to the flow induced by the bubbles when compared with the pressure drop in the slug
is reduced. It is also seen that at fixed hydraulic diameter, the bubble lengths do not
depend significantly on the aspect ratio although the dimensionless bubble lengths for
aspect ratio α = 4 appear to be slightly smaller. However, it is not always possible
to generate Taylor bubbles of this length or the bubble could be not confined and the
pressure drop at its caps could differ, thereby limiting the range of validity of equation
6.34.
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Figure 6.18: Dimensionless bubble lengths whose equivalent pressure drop balances the
single-phase flow pressure drop.
Legend: (�, blue) α = 1 ; (�, red) α = 2.5 ; (◦, green) α = 4 ;
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Chapter 6 : Taylor bubble hydrodynamics

6.4 Effects of bubble and slug lengths

For the aspect ratio α = 2.5, 5 different bubble sizes have been simulated to study
the influence of the bubble length or volume as well as the slug length on the dynamics
of the bubble. It is shown that for this geometry and this capillary number Ca = 0.1,
the bubble length is of negligible influence as long as the bubble is confined in both
directions. This result, which is valid in 2D and axisymmetric cases due to the stagnant
film around the bubble, is not obvious in 3D due to the flow in the corners. Indeed,
Wong et al. [1995a] mentioned a film rearrangement along the bubble with an axial
flow in the corners and a drainage flow from the walls to the corners. However, in our
simulations, these flows are only about a few percents of the total flow rate and vanish
when approaching the bubble rear cap. Above a certain length or volume, the liquid
flow rate decreases until it reaches less than 1% of the total flow rate and reaches zero
at a certain distance from the rear cap (see figure 6.11).

Figure 6.19 shows the evolution of the liquid area fraction as a function of the
bubble volume. This volume is made dimensionless with the reference volume 4/3πh3

which corresponds to a bubble of diameter equal to the height of the channel.
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Figure 6.19: Liquid area fraction as a function of the bubble volume.
Legend: (open 4) α = 2.5 and Ca = 0.08 ; (open ◦) α = 2.5 and Ca = 0.1 ; (filled ◦)
α = 4 and Ca = 0.1 ; the squares represent value of the single-phase velocity on the
centerline of the channel W (VB → 0) = [0.4801; 0.4362] for α = [2.5; 4] respectively,
corresponding to the asymptotic value in the limit VB = 0.

We can see in figure 6.19 that the slip velocity of the bubbles decrease when the
volume increases until reaching a constant value. Indeed, for these aspect ratios, when
the volume of the bubble approaches five times the reference volume of a sphere with a
diameter equal to the height of the channel, the liquid area fraction becomes indepen-
dent of the bubble volume and length. A decrease in the bubble volume would lead to
an increase in bubble velocity until reaching an infinitely small bubble that acts like a
tracer with a velocity equal to the maximum velocity in the liquid slug (which depends
on the geometry). However, in some cases, the velocity of a long bubble can overcome
the maximum velocity in the liquid slug and thus, the opposite trend is expected: a
decrease in bubble volume would lead to a decrease in velocity until reaching the ve-
locity on the centerline of the channel in the slug.
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6.4 Effects of bubble and slug lengths

The shapes of four of the bubbles that have been considered to study the effects of
bubble length are shown in figure 6.20 and the interface is colored with the magnitude of
the velocity. It is seen that except for the first tiny bubble, the velocity on the interface
of the other ones is close to zero all around the bubble which means that there is almost
no liquid flow. Finally, as long as the bubble is confined in both directions, its velocity
does not depend on its volume (or length).

Figure 6.20: Illustration of the bubble shapes of different volumes for α = 2.5, CaB =
0.1 and La = 280. The interface is colored with the magnitude of the dimensionless
velocity U/UB.
(red) bubble velocity ; (blue) zero.
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6.5 Effects of inertia

6.5.1 First observations

The effects of inertia on the hydrodynamics of Taylor flow in microchannels are
often neglected through numerical simulations of Stokes flow, for example Hazel and
Heil [2002], De Lozar et al. [2008]. However, in micrometric and millimetric channels,
the Laplace number for water flowing in a channel of diameter 100µm is approximately
La = 7000. This means that for a capillary number of CaB ' 0.01 that is commonly
encountered in experiments (see section 5), the Reynolds number would be ReB ' 70.
Although laminar, the flow and notably the bubble are subject to inertial effects that
cannot be neglected. This section aims at understanding the effects of inertia on the
hydrodynamics of Taylor flow. The same steps that have been used to characterize slug
flow at low Reynolds numbers in the previous section are followed.

A summary of the ranges of Reynolds and capillary numbers that have been covered
through 3D numerical simulations is given in figure 6.21. The capillary number which
governs the bubble shapes and velocities has been varied from CaB ' 0.02 to CaB ' 3
and the Reynolds has been varied from RB ' 0.5 to ReB ' 1000. The different symbols
represent a Laplace number that depends only on the geometry and the fluid properties.

10
−2

10
−1

10
0

10
1

10
−1

10
0

10
1

10
2

10
3

CaB

R
e
B

 

 

(a) α = 1

10
−2

10
−1

10
0

10
−1

10
0

10
1

10
2

10
3

CaB

R
e
B

 

 

(b) α = 4

Figure 6.21: Summary of the numerical simulations performed in (a) a square channel
and (b) a rectangular channel (α = 4) in terms of Reynolds and capillary numbers.
Legend: (�) La = 2.8 ; (◦) La = 28 ; (.) La = 280 ; (�) La = 1000 ; (?) La = 2000 ;
(4) La = 5000 ; (+) La = 10000 ; (/) La = 20000 .

The filled symbols in figure 6.21 represent the flows in which bubbles break at the
rear cap. It is seen that the maximum capillary number that has been simulated is
lower at high Laplace numbers. Indeed, at high Laplace numbers and fixed capillary
number, the Weber numberWeB = La×Ca2

B is increased. The surface tension force is
less dominant and is not sufficient to maintain the bubble shape. The rear bubble cap
is dug out at the center of the channel and thin structure elongates close to the walls
until it breaks. It is interesting to point out that the rupture is different depending on
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6.5 Effects of inertia

the Laplace number. In the case of the low Laplace number, droplets are formed from
a viscous jet at the rear of the bubble and travel across the bubble, while in the case
of high Laplace number, bubbles detach at the rear cap and coalesce with the initial
bubble. In these cases, as the pressure drop is fixed across the channel and the number
of inclusions and their shapes change, the mean velocity of the gas phase varies over
time. However, bubble rupture is very difficult to predict numerically, this phenomenon
is often dependent on the mesh and it is difficult to ensure if the break-up is indepen-
dent of the numerical parameters. These simulations have been repeated with a refined
mesh (64 × 64 × 960) and bubble rupture has been observed. While the simulations
performed give a first idea on transition points towards different regimes, this would
need to be further investigated with more refined meshes. It should also be verified that
bubble and/or slug lengths do not affect this mechanism. Such particular regime where
drops travel inside the bubble at low Reynolds number and high capillary number has
been observed in tubes with the numerical simulations of Dupont et al. [2007] and in
the experiments of Nelissen et al. [2007], but also in porous media Olbricht [1996]. In
addition, at low Reynolds number, the critical value of the capillary number where the
break-up of the bubble occurs is in good agreement with previous studies, Ca ∼ O(1).

(a) Present simulation (CaB = 4 and ReB = 11.2)

(b) Nelissen et al. [2007]

(c) Dupont et al. [2007] (CaB = 5.3 and ReB = 2.12)

Figure 6.22: Droplet detachment at the bubble rear cap.

A map of the bubbles observed in a square channel is given in figure 6.23 to illustrate
the different shapes that can occur. Figure 6.23 shows the influence of the capillary
number (already discussed in the previous section) and the Laplace number that is
equivalent to the Reynolds number at a given capillary number as ReB = La × CaB.
It is clear that the shape of the bubble is also influenced by inertial effects.

Indeed, at a given capillary number, an increase in the Laplace number induces an
elongation of the nose and the bubble evolves much less rapidly towards an equilibrium
shape in a cross-section of the channel in the axial direction. The effects of inertia on
the transition length between the nose and the film region are particularly significant at
CaB = 0.1 and La = 10000, i.e. ReB = 1000. At low capillary numbers, CaB ≤ 0.06
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Chapter 6 : Taylor bubble hydrodynamics

approximately, waves on the interface near the rear bubble cap are observed at high
Reynolds numbers as we can see in figure 6.23 for CaB = 0.04 and La = 10000, i.e.
ReB = 400. In addition, for capillary numbers lower than CaB = 0.06, the bubble
starts to oscillate. This phenomena is related to the waves on the interface that appear
around ReB = 400, The bubble length therefore evolves in time as well as the curvatures
of the bubble caps. These shape oscillations are mainly observed at the rear bubble
cap while pressure jump at the front cap and the bubble velocity vary only slightly.
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Chapter 6 : Taylor bubble hydrodynamics

La = 10000

La = 1000

La = 280

La = 28

La = 2.8

CaB = 0.04 CaB = 0.1 CaB = 0.4

Figure 6.24: Illustration of the cross-sectional shapes of the bubbles obtained in a
rectangular channel (α = 4) for various capillary numbers and Laplace numbers. The
Laplace La = ReB/CaB number increases from the bottom to the top and the capillary
number increases from the left to the right.
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6.5.2 Bubble velocity

The first observations when visualizing the flow indicate that the inertia of the
liquid can play a non-negligible role in the dynamics of Taylor bubbles. The velocity
of the bubble as a function of the mean velocity in the slug is shown in figures 6.25(a)-
(b) in terms of capillary numbers for a square channel and a channel of aspect ratio
α = 4, respectively. It has been shown previously that the relationship between the
bubble velocity and the two-phase velocity in the case of a circular tube gives a correct
estimation of the bubble velocity in the rectangular capillaries considered here. This is
still the case in the presence of inertia and particularly at low capillary numbers with
both geometries. Indeed, it is seen around CaTP = 0.04 that the data collapse despite
the Reynolds number being increased by over three orders of magnitude (0.5 < ReTP <
2000). Indeed, at low capillary numbers, the liquid film is very thin and despite a high
Reynolds number based on the channel diameter, the inertia is not so strong in the
liquid film, which has a characteristic dimension that is much smaller than the channel
hydraulic diameter. This reinforces that the capillary number is the dimensionless
number that governs the flow structure. As the capillary number increases, slight
deviations can be observed between the different Laplace numbers. This means that
inertia influences the bubble velocity and particularly as both the capillary number and
the liquid film thickness increase.
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Figure 6.25: Bubble capillary number CaB as a function of the two-phase capillary
number CaTP .
Legend: (black solid line) axisymmetric case (equation 6.36) ; (dashed lines) CaB =
CaTP and CaB = 2.78 CaTP ; (�) La = 2.8 ; (◦) La = 28 ; (.) La = 280 ; (�)
La = 1000 ; (+) La = 10000.

Figure 6.26 shows the ratio of bubble velocity to the mean velocity for the square
and the rectangular channels as a function of the capillary number. Numerical results
are reported only for Reynolds numbers up to ReB = 100. The bubble slip velocity
increases with the capillary number, whatever the Laplace number. As the Laplace
number increases, we observe a decrease in the bubble to the mean velocity ratio. In
other words, at a given two-phase capillary number, an increase in inertia, i.e. in the
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Chapter 6 : Taylor bubble hydrodynamics

Reynolds number, leads to a decrease in the bubble velocity. The same trend is observed
in both square and rectangular microchannels. This is in contradiction with the results
obtained by Aussillous and Quéré [2000] and Han and Shikazono [2009] who mentioned
a thicknening of the liquid film as the inertia is increased via the Weber number.
Similarly, Han and Shikazono [2009] proposed a correlation in which increasing inertia
leads to a thickening of the liquid film.
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(b) α = 4

Figure 6.26: Bubble to mean velocity ratio as a function of the two-phase capillary
number for ReTP ≤ 100 in (a) a square channel and (b) a rectangular channel (α = 4).
Legend: (black solid line) axisymmetric case (equations 6.36) ; (dashed blue line) α = 1,
ReB = 0 (De Lozar et al. [2008]) ; (dash-dotted green line) α = 4, ReB = 0 (De Lozar
et al. [2008]) ; (�) La = 2.8 ; (◦) La = 28 ; (.) La = 280 ; (�) La = 1000 .

Further investigation indicates that the evolution of the liquid film thickness and
thus the ratio of bubble to slug velocity is not monotonic (Giavedoni and Saita [1997],
Kreutzer et al. [2005] for the plane and axisymmetric cases). Figure 6.27 shows the bub-
ble to mean velocity ratio as a function of the Reynolds number for different capillary
numbers. It is interesting to note that the variations in the bubble velocity with the
Reynolds number remain moderate, although the bubble shape changes significantly
with inertia, as shown in figures 6.23 and 6.24. However, inertia promotes bubble defor-
mation and break-up mainly at the rear cap while the front cap elongates slightly. This
means that the rear bubble cap does not play a major role in the dynamics of Taylor
bubbles even though it is important to characterize the pressure drop at the bubble tail
as well as the velocity field to better understand transport phenomena. It is thought
that such changes in the shape of the interface would disturb the flow in the wake of the
bubble thereby modifying the velocity and pressure fields ahead of the next bubble in
bubble train flow but it has been shown that the velocity does not change significantly
as long as the slug length is greater than the characteristic dimension of the channel.
We can see in figures 6.27(a) and (b) for the square and rectangular capillaries respec-
tively that the bubble velocity decreases until ReTP ∼ 100− 200 where a minimum is
reached before increasing again. This is mainly seen in figures 6.27(c)-(d) at high cap-
illary numbers while the variations at low capillary numbers, scaled by the slip velocity
in Stokes flow, are weak up to ReTP ' 200. At high Reynolds number, the velocity can
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6.5 Effects of inertia

be greater than the bubble velocity in Stokes flow (e.g. CaTP = 0.04 and ReTP & 400
in figure 6.27). Even if higher Reynolds numbers cannot easily be reached in microchan-
nels, the asymptotic behaviour at infinite Reynolds numbers can help in understanding
the transition between the two observed regimes around ReTP ' 100 − 200. In addi-
tion, the slip velocities obtained with a fine mesh (64 × 64 × 512) for Ca = 0.1 in a
square channel are also reported in figures 6.27(a) and (c) and justify the use of the
first mesh (32× 32× 256), the difference being less than 2%.
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Figure 6.27: Bubble to mean velocity ratio UB/UTP as a function of the two-phase
Reynolds number ReTP in (a) a square channel and (b) a rectangular channel (α = 4).
Slip velocity UB/UTP scaled with the slip velocity in Stokes flow (ReB = 0) as a
function of the two-phase Reynolds number ReTP in (c) a square channel and (d) a
rectangular channel (α = 4).
Legend: (?) CaB = 0.02 ; (+) CaB = 0.04 ; (4) CaB = 0.06 ; (◦) CaB = 0.1 ; (•)
CaB = 0.1 (mesh 64× 64× 512) ; (�) CaB = 0.2 ; (�) CaB = 0.4.
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Chapter 6 : Taylor bubble hydrodynamics

The velocity magnitude on the bubble interface at different bubble Reynolds num-
bers are shown in figure 6.28. It is seen that the bubble nose is elongated in the whole
range of ReB simulated and at ReB = 500, there is no stagnant film anymore. Also,
the velocity across the diagonal is increased as the inertia increases and CaB is fixed.

From figure 6.29 where the geometries are compared in terms of bubble velocities
as a function of the Reynolds number, it is shown that increasing the aspect ratio
enhances the effects of inertia on the bubble velocity. Indeed, the minimum ratio of
bubble to mean velocity decreases when the aspect ratio is increased. In rectangular
channels, the shear stress is less important in the less confined direction and inertial
effects can therefore develop more easily and mainly affect the bubble shape in this
direction.

6.5.3 Pressure drop

Since the effects of inertia have a great influence on the shape of the bubble, it
appears relevant to look at the pressure drop that is directly related to the curvature
of the bubble caps.

The Laplace pressure jumps and the total pressure jump are shown in figures 6.30
and 6.31 as a function of the two-phase Reynolds number for fixed capillary numbers.
While a non-monotonic behaviour was reported for the bubble velocity, the pressure
jump at the front cap increases with the Reynolds number throughout the range of
Reynolds numbers covered and the pressure jump at the rear decreases monotonically.
The changes in the pressure drop across the bubble are particularly impressive at high
capillary numbers. This was expected since the main variations in the shape of the
bubble were observed at high capillary numbers in figures 6.23 and 6.24. These respec-
tive increase and decrease in the front and rear pressure jumps lead to an increased
total pressure drop across the bubble with the Reynolds number as it is shown in fig-
ures 6.31(a) and (b). For each capillary number, scaling the total pressure jump by
the pressure jump at low Reynolds number allows the relative variations of the total
pressure drop at a given capillary number as a function of the Reynolds number to be
compared. It is shown that the pressure drop across the bubble evolves linearly with
the Reynolds number:

∆PB
(∆PB)Stokes

= 1 +
ReTP
200

(6.32)

Although the data collapse quite well, the greatest variations are observed at high
capillary numbers in the square microchannel. The coefficient 1/200 could be adapted
and its dependency on the capillary number could be an improvement but the relation
6.32 is already satisfactory. Under the assumption that the flows ahead of and in the
rear of the bubble develop over a short length when compared with the slug length,
equations 6.30 and 6.32 can be combined to consider the effects of inertia on the total
pressure drop across a unit cell:(

dP

dz

)TF
=
λρU2

TP

2Dh
× LUC − LB

LUC
+

(∆PB)Stokes
LUC

(
1 +

ReTP
200

)
(6.33)

Similarly to the estimation made at low Reynolds number, the theoretical bubble
length that would balance the single-phase flows across its length is:

L∗B = (∆PB)Stokes

(
1 +

ReTP
200

)
2Dh

λρU2
TP

(6.34)
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6.5 Effects of inertia

(a) α = 1 ; CaB = 0.1 and ReB = 0.28

(b) α = 1 ; CaB = 0.1 and ReB = 28

(c) α = 1 ; CaB = 0.1 and ReB = 100

(d) α = 1 ; CaB = 0.1 and ReB = 200

(e) α = 1 ; CaB = 0.1 and ReB = 500

Figure 6.28: Illustration of the bubble shapes for CaB = 0.1 in the square channel
channels for ReB = [0.28; 28; 100; 200; 500]. The interface is colored with the magnitude
of the dimensionless velocity U/UB.
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Figure 6.29: Ratio of slip velocity UB/UTP to the slip velocity in Stokes flow (ReB = 0)
as a function of the two-phase Reynolds number ReTP for aspect ratios α = [1; 2.5; 4].
Legend: (blue) α = 1 ; (red) α = 2.5 ; (green) α = 4 ; Legend: (+) CaB = 0.04 ; (◦)
CaB = 0.1 ; (�) CaB = 0.4.

6.6 Conclusion

In this chapter, a correction has been made to the correlation of Aussillous and
Quéré [2000] to allow the direct prediction of the liquid film thickness in circular tubes
as a function of the two-phase capillary number CaTP instead of the bubble capillary
number CaB, which is not known a priori when starting an experiment or a process.
Results of the slip velocity and the pressure drop at the front cap at low Reynolds
number have been compared with the results from De Lozar et al. [2008] and it has
been shown that the liquid flow rate vanishes around the bubble even if the bubble is
not much longer than the width of the channel. New insights on the rear bubble cap
and the decrease in the pressure drop with the capillary number have been given. This
resulted in a comparison between two-phase and single-phase pressure drop where it has
been shown that for a given bubble length, the pressure gradient evolves linearly with
the void fraction. However, it has been seen that the coefficient of the linear evolution
depends on the bubble pressure drop as well as the bubble length: long bubbles allow
the pressure drop in the channel to decrease while small bubbles can lead to an increase
in the pressure drop. It has also been shown that the bubble length that balances the
single-phase linear pressure drop along the bubble length decreases with the capillary
number and the aspect ratio of the channel.

The effects of inertia on the bubble dynamics have been highlighted. Inertia has
been observed to promote bubble break-up at the rear cap. Also, although the effects
of inertia on the bubble velocity are not very significant, the bubble slip velocity has
been shown to follow a non-monotonic trend with the Reynolds number. The slight
changes in the bubble velocities are related to the fact that inertial effects do not play
a major role ahead of the bubble. However, inertial effects in the wake of the bubble
modify its shape and thus the pressure drop thereby increasing the resistance to the
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(c) α = 1

10
−1

10
0

10
1

10
2

10
3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

ReT P

∆
P

r
e
a
r
/

(σ
[1
/
(2

h
)
+

1
/
(2

w
)]
)

 

 

(d) α = 4

Figure 6.30: Dimensionless Laplace pressure jumps at the front and rear caps as a
function of the two-phase capillary number in (a)-(c) a square channel and (b)-(d) a
rectangular channel (α = 4).
Legend: (?) CaB = 0.02 ; (+) CaB = 0.04 ; (4) CaB = 0.06 ; (◦) CaB = 0.1 ; (�)
CaB = 0.2 ; (�) CaB = 0.4.

flow linearly with the Reynolds number:

∆PB
(∆PB)Stokes

= 1 +
ReTP
200

(6.35)

Finally, the aspect ratio has been shown to enhance inertial effects on the bubble
slip velocity. For all the cases considered, we have shown that the bubble velocity can
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(c) α = 1
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(d) α = 4

Figure 6.31: Bubble pressure drop as a function of the two-phase Reynolds number
in (a) a square channel and (b) a rectangular channel (α = 4). Bubble pressure drop
scaled by the pressure drop in Stokes flow as a function of the two-phase Reynolds
number in (c) a square channel and (d) a rectangular channel (α = 4)
Legend: (?) CaB = 0.02 ; (+) CaB = 0.04 ; (4) CaB = 0.06 ; (◦) CaB = 0.1 ; (�)
CaB = 0.2 ; (�) CaB = 0.4 ; (red line) equation 6.32.

be described using:

UB = UTP

1 −

 1.34Ca
2/3
TP

(
1 +

4

3
× 1.34Ca

2/3
TP

)
1 + 1.34Ca

2/3
TP

(
1.2 +

4

3
× 1.34Ca

2/3
TP

)


2

−1

(6.36)
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7.1 Introduction

7.1 Introduction

Over the last decade, micro-reaction technology has become of much interest to
both academics and the process industries for the intensification of chemical processes.
Taylor or slug flow is a commonly encountered flow regime for gas-liquid microchannel
flows and has the advantage of providing high interfacial area and good liquid mixing in
the liquid slug, thereby enhancing transport processes. These features of microreactors
are particularly interesting for fast and highly exothermic gas-liquid reactions � amongst
other applications � and allow an increase in reaction performance whilst working under
safe operating conditions (Hessel et al. [2005], Kashid and Kiwi-Minsker [2009]). A
number of studies have focused on the understanding of hydrodynamics as well as
heat and mass transfer enhancement in these flows (see reviews Kreutzer et al. [2005],
Shao et al. [2009], Gupta et al. [2010b]) but often independently. Indeed the transport
efficiency appears to be closely related to the recirculation in the liquid phase, which
depends on the operating conditions, fluid properties and reactor geometry.

A major feature of gas-liquid Taylor flow is the recirculation flow pattern generated
in the liquid slug in the moving frame of reference as shown in Figure 7.1 and detailed
by Taylor [1961]. The recirculating flow pattern is characterized by the position of
the center of the circulation loop [x0, y0], and the position of the streamline separating
the recirculation zone and the liquid film at the channel wall [x1, y1]. As the bubble
velocity increases, both the loop center and the outer streamline of the recirculation
zone move towards the center of the channel (Thulasidas et al. [1997]). This leads to
a reduction of the volume of the recirculating zone and an increase in the volume of
liquid in the film region until complete bypass flow occurs at UB ≥ Umax. Studies on
the recirculating flow in circular and square capillaries have been conducted previously
(Taylor [1961],Thulasidas et al. [1997]), however little information on the characteristics
of the recirculation zone in rectangular channels is available. Recently, it has been
shown theoretically (Kececi et al. [2009]) that the cross-sectional area occupied by the
recirculation zone in the liquid slug is generally smaller for rectangular channels than
for circular channels due to the increased film thickness in the channel corners.

The recirculation time in the liquid slug in Taylor flow is defined as the time re-
quired for an element of fluid to complete one revolution in the recirculating slug. This
characteristic time is particularly relevant for transport processes occurring in the sys-
tem, such as mass transfer between the bubble and slug or wall and slug, and heat
transfer with the channel wall. The rate of flow recirculation can be calculated via the
surface integration of the relative velocity profile across the microchannel cross-section,
similarly to what is done in conventional stirred tanks to calculate circulation induced
by the mechanical impeller Jaworski et al. [1996]. The recirculation flow rate through
the microchannel can be divided into three parts (illustrated in Figure 7.1) :

- a positive flow rate, Q0, in the main flow direction at central core of the mi-
crochannel occupying a volume V0 with a cross-sectional area A0,

- a negative flow rate, Q1, with a volume V1 and a cross-sectional area A1 that
corresponds to the recirculating liquid in the slug,

- a negative flow rate, Q2 of volume V2 in area A2, that is close to the channel wall
and contributes to axial mixing between slugs instead of radial mixing within the
slug.

The recirculation time is then defined as trc = Vrc/Qrc, where the recirculating
volume Vrc corresponds to the volume of liquid within the limit of the separating
streamline and Qrc is the recirculation flow rate equal to Q0 (and |Q1|). trc can be
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made non dimensional by dividing it by the time taken for the bubble to travel a
distance equal to the slug length : τrc = trc/(LS/UB).

In our previous work we have explored the effects of fluid properties, operating
conditions and microchannel geometry on the size of Taylor bubbles (Abadie et al.
[2012]) and the flow patterns in the liquid slug using micro Particle Image Velocimetry
(µ−PIV ) (Zaloha et al. [2012]). The objective of this work is to explore the effects of
operating parameters (capillary, CaB, and Reynolds numbers, ReB) and microchannel
aspect ratio (α = w/h = [1; 2.5; 4]) on the mixing and recirculation characteristics of
the liquid slug in gas-liquid Taylor flow in microchannels. To do this, 3-dimensional
VOF simulations of gas-liquid Taylor flow in microchannels have been performed. Using
an approach that is analogous to the determination of circulation rate in stirred tanks,
the recirculation rate in the liquid slug, as well as the size of the recirculating zone have
been evaluated from the 3-dimensional numerical data. An attempt has been made to
relate these characteristics of the recirculating liquid slug to the enhanced transport
phenomena observed in Taylor flow in microreactors. Finally, recommendations on the
design and operation of microreactors employing Taylor flow are given.

Channel width
x1 x0

Channel depth

y1 y0

Figure 7.1: Streamline pattern in the frame of reference moving with the bubble (CaB =
0.06 and ReB = 16.8). The flow is directed from the left to the right. The positive
part of the recirculating pattern of volume V0 is delimited by the coordinates [x0, y0]
in the channel width and depth; the negative part of the recirculating zone of volume
V1 = Vrc − V0 is located between [x0, y0] and [x1, y1]; and the film region of volume
V2 = Vslug − Vrc is located between [x1, y1] and the walls.

7.2 Methodology

7.2.1 Theoretical developed velocity profile in rectangular capillaries

In the limit of infinite slug length, the analytical solution of the velocity profile
in a cross-section of a rectangular capillary can be derived. The velocity profile in
a rectangular capillary is given in appendix A. This theoretical velocity profile has
been used to evaluate the effects of aspect ratio and dimensionless bubble velocity on
characteristic parameters of recirculation motion in gas-liquid Taylor flow: recirculating
volumes and recirculation times. Under the assumption that the slug is long when
compared with development lengths of velocity profile at the rear and the nose caps of
the bubbles, the recirculation volume can be approximated by the cross-sectional area
of the recirculating zone multiplied by the slug length: V0,1 ∼ A0,1 × LS .

Numerical integration of the velocity profile (equations A.1 and A.2) for aspect ra-
tios α = [1; 2.5; 4] have been performed on fine uniform grids of 400×400, 1000×400 and
1600× 400, respectively, to calculate the area A0 where the velocity in the moving co-
ordinate system is positive. Following this, an iterative integration of A1 (cross-section
of the negative part of the recirculating liquid) has been performed until the flow rates
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in the positive and negative parts of the recirculating zone are balanced. Integration
of these profiles allows the prediction of recirculating volumes and recirculation times
as a function of the aspect ratio and the dimensionless velocity W = (UB − UTP )/UB
assuming long liquid slugs.

7.2.2 Numerical simulations

The numerical code has been presented in chapter 2 and 3 and the numerical set-up
has been detailed in section 6.2.
The parameters considered in this study have been chosen so that the Laplace number
La = ReB/CaB = ρLDhσ

µ2
is constant in all the geometries and equal to La = 280

while it was varied in chapter 6. An illustration of the bubble shape and velocity field
obtained in the 3D numerical simulations is given in figure 7.1.

7.3 Results and Discussion

In this section, the results concerning global observations about recirculation pat-
terns, shapes of the recirculation zone in a cross-section of the slug, recirculating vol-
umes, as well as recirculation times are given. As shown theoretically in circular chan-
nels (Thulasidas et al. [1997]), the recirculation characteristics of infinite slugs can be
related to one parameter, which is the slip velocityW = (UB−UTP )/UB. Many studies
dealing with the dynamics of gas-liquid Taylor flow relate W to the capillary number
(Bretherton [1961], Aussillous and Quéré [2000]). In this study, the flow conditions
were modified by varying the capillary number in the range 0.04 ≤ CaB ≤ 0.5 and the
corresponding Reynolds number in the range 11.2 ≤ ReB ≤ 140 whilst keeping the gas
void fraction constant at 31%.
To study the effects of slug length on the recirculation characteristics, the geometry
with an aspect ratio α = 2.5 has been considered and the capillary number has been
set to CaB = 0.1 + / − 0.0005 that leads to W = 0.3303 + / − 0.0021. Five different
cases have been simulated by varying slug length from 2.90 × h to 20.06 × h and the
corresponding volume fraction of gas phase ranges from 50% to 12.5%.

7.3.1 Recirculation pattern and local velocity field

The recirculation patterns in a rectangular channel with aspect ratio α = 2.5 with
varying capillary numbers are shown in Figure 7.2. The local velocity field is shown
in terms of local liquid Péclet number Pel = Re × Sc = |Ul|Dh

DL
where |Ul| is the local

velocity magnitude in the frame of reference moving with the bubble, DL is the mass
diffusivity in the liquid and Sc is the Schmidt number and is set to 1.
It can be seen in Figure 7.2 that the maximum value of the local Péclet number is found
in the liquid film between the bubble rear cap and the wall. Whatever the capillary
number, the maximum value of the local Péclet number in the liquid slug is found close
to the wall, decreases to zero at the center of the recirculation loop and then increases
whilst approaching the center of the channel. Furthermore, as the Reynolds number
increases, the boundary layer close to the bubble caps (where the Péclet number is
very low) decreases in size. It can also be seen that recirculation loops through both
the channel width and depth are formed. However, as the capillary number increases,
the recirculation pattern in the less confined direction (channel width) diminishes until
the closed loop is entirely lost. These changes in the streamline patterns are mainly
observable in the wake of the bubble where the flow is particularly disturbed and
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Channel width

(a)

(b)

(c)

(d)

Channel depth

Figure 7.2: Local liquid Péclet numbers and streamlines through the channel width and
depth for channel aspect ratio of 2.5. (a) CaB = 0.06, ReB = 16.8 ; (b) CaB = 0.1,
ReB = 28 ; (c) CaB = 0.2, ReB = 56 ; (d) CaB = 0.4, ReB = 112. The bold
line represents a Péclet number of 2 for (a)-(c) and 10 for (d) where CaB = 0.4 and
ReB = 112.

the streamlines do not follow the shape of the rear of the bubble in the less confined
direction.

These observations also depend strongly on the cross-sectional shape of the channel
and it can be seen in Figure 7.3 that the detachment of the streamlines is enhanced when
the aspect ratio increases. Indeed, although the recirculation loop in the square ge-
ometry seems qualitatively similar to that in a circular geometry, strong 3-dimensional
effects of the rectangular geometry on the velocity field in the wake of the bubble are
observed. In addition to the streamline pattern in the wake of the bubble, the same
phenomenon is observed at the front cap of the bubble in the very wide shallow channel
(aspect ratio α = 4). This is in agreement with previous works on semi-infinite bubbles
at low Reynolds numbers (Hazel and Heil [2002]) in rectangular channels.

The effects of the capillary number and the aspect ratio on the dimensionless veloc-
ity at the channel centerline is illustrated in Figure 7.4 and Figure 7.5 respectively. It is
seen that close to the bubble caps, the velocity at the channel centerline increases from
the bubble velocity to the maximum velocity expected in the liquid slug that depends
on the mean velocity (from equations A.1 and A.2, Umax ∼ [2.10 ; 1.92 ; 1.77]× UTP
for channel cross-sections of aspect ratios α = [1 ; 2.5 ; 4]). It is also observed (Fig-
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Channel width
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(b)

(c)

Channel depth

Figure 7.3: Local liquid Péclet numbers and streamlines through the channel width
and depth for CaB = 0.1 and ReB = 28. (a) α = 1 ; (b) α = 2.5 ; (c) α = 4. The bold
line represents a Péclet number of 2.

ures 7.4 and 7.5) that as the capillary number increases or the aspect ratio increases,
there is a region in the wake of the bubble where the liquid velocity is greater than the
maximum velocity of a laminar single-phase flow close to the bubbles caps.
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Figure 7.4: Dimensionless liquid velocity along the centerline of the channel between
two bubbles for an aspect ratio of 2.5 and various capillary numbers. Legend : (�)
Ucenterline/UB ; (−−) Umax/UB evaluated from UTP and equations A.1 and A.2 ;
(black) CaB = 0.06 ; (gray) CaB = 0.1 ; (light gray) CaB = 0.2.

These observation suggest that the recirculation characteristics are not only gov-
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Figure 7.5: Dimensionless liquid velocity along the centerline of the channel between
two bubbles for CaB = 0.1 and for aspect ratios 1, 2.5 and 4. Legend : (�)
Ucenterline/UB ; (−−) Umax/UB evaluated from UTP and equations A.1 and A.2 ;
(black) α = 1 ; (gray) α = 2.5 ; (light gray) α = 4.

erned by the dimensionless slip velocity W but also by the slug length and this will be
discussed in detail in section 7.3.3 and 7.3.4. The influence of slug length is expected
when the development lengths at the rear and front caps of the bubbles are non negli-
gible in comparison with the slug length, as illustrated with the streamlines and local
Péclet numbers in Figures 7.2 and 7.3.

7.3.2 Shape of the recirculation zone

The cross-sectional area occupied by the recirculation zones as approximated by the
theoretical fully-developed velocity profile (see section 7.2.1) has been calculated and
is shown in Figure 7.6 for the three aspect ratios : α = [1; 2.5; 4]. It can be seen that
the recirculation areas follow the shape of the channel for low dimensionless velocities
and reduce to circular and elliptical shapes as the velocity (or CaB) increases.

When the channel aspect ratio increases, the aspect ratio of the recirculation zone
also increases. Furthermore, the center of the recirculation loop and the separating
streamline both move faster towards the center of the channel in the less confined
direction. As a result, the slug film thickness is greater in the width of the microchannel
than in the height.

Mass transfer between the film and the recirculating regions will occur by molecular
diffusion through the interface separating these regions. In a 2-dimensional representa-
tion through the channel cross-section, the perimeter that separates the recirculating
and film regions can be used to understand transport processes between the recircu-
lating and film regions. Figure 7.7 shows the evolution of the perimeter that separates
the recirculating and film regions in Figure 7.6 as a function of the dimensionless slip
velocity. To compare the three aspect ratios with circular channels, the perimeters are
normalised by the perimeter of a circular channel with an equivalent hydraulic diame-
ter Dh. It is clearly seen that the perimeter that links the recirculation zone and the
film region is greater in square channels than in circular channels. As the aspect ratio
increases, the perimeter that separates the recirculating and film regions also increases
until a certain velocity W above which the opposite trend is observed. The velocity at
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Figure 7.6: Cross-sectional shape of the recirculating zone for aspect ratios α =
[1; 2.5; 4] for different slip velocities W . Legend : (�) center of the recirculating loop;
(−−) streamline separating the circulation loop and the film. From the walls to the
center (green ; blue ; red ; black) : W = [0.1; 0.2; 0.3; 0.42].

which the transition occurs decreases as the aspect ratio increases. As a consequence,
it is expected that when dealing with wall to slug mass transfer, channels with a high
aspect ratio will typically provide better mass transfer than channels with square or
circular cross-section. However, mass transfer from the recirculation zone to the film
will also depend on the time needed for a fluid element to travel the slug distance and
more generally, mixing efficiency will depend on the total recirculation time, as well as
the size of the recirculating volume.

7.3.3 Characteristic recirculating volumes

A characteristic parameter of the recirculation motion in Taylor flow is the volume
of fluid recirculating in the slug. Unlike in cylindrical tubes where the volumes of
positive flow and negative flow of the recirculation region are equal, it is not the case
in square and rectangular ducts. Indeed, in the channel cross-section the ratio of total
recirculation area over positive recirculation area increases with the aspect ratio and
tends to

√
3 for the asymptotic behavior of an infinite aspect ratio. In addition, for

a fixed geometry, the ratio of recirculation areas also varies with the dimensionless
velocity W .

The size of the recirculation area at the center of the slugs for channel aspect
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Figure 7.7: Perimeter of the recirculation zone through the channel cross-section (as
depicted by dashed lines in Figure 7.6) normalised by the perimeter of a circular channel
with an equivalent hydraulic diameter Dh in a cross-section of the slug as a function of
the dimensionless velocity W . Legend : (gray) circular channels ; (red) α = 1 ; (black)
α = 2.5 ; (blue) α = 4.
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Figure 7.8: Dimensionless cross-section of the recirculating areas at the center of the
slug versus the dimensionless bubble velocity. Legend : (�) A0/Ach, infinite slug
legnth assumption ; (−−) Arc/Ach, infinite slug length assumption ; (gray) circular
channels ; (light gray) 2D channels ; (filled symbols) A0/Ach ; (open symbols) Arc/Ach
; (�, red) α = 1, numerical ; (., black) α = 2.5, numerical ; (�, blue) α = 4, numerical

ratios [1; 2.5; 4] are shown in Figure 7.8. Arc (cross-section of the reciculating liquid)
and A0 (cross-section of the positive part of the reciculating liquid) are normalised by
the channel cross-section area Ach. The results integrated from the analytical velocity
profile corresponding to infinite slug length and the results obtained from the numerical
simulations with finite slug length are compared and very good agreement between the
computational and theoretical results is observed, as long as the liquid velocity profile
is fully-developed at the center of the slug. The computations that show a slight
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deviation from the theory correspond to cases where the velocity profile is not entirely
fully-developed at the center of the slug. For short slugs, the laminar velocity profile
is not fully-developed and the region where the flow is disturbed by the bubble is not
negligible; therefore the recirculating volumes and times cannot be approximated by
the theoretical velocity profile. In such cases, the recirculating volume is obtained from
direct numerical simulations by integrating small slices of recirculating zones along the
slug.
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Figure 7.9: Dimensionless recirculation volumes as a function of dimensionless slug
length. Legend : (filled symbols) V0/Vslug ; (open symbols) Vrc/Vslug.

Figure 7.9 shows the influence of the slug length on the recirculating volume Vrc
and the positive part of the recirculating volume V0 normalised by the slug volume
Vslug. In every simulation, care has been taken that the bubble is long enough and the
dimensionless bubble velocity is constant whatever the slug and bubble lengths. From
these data, it is clear that the regions close to bubble caps do not affect the ratio of
recirculating volume over slug volume significantly.

Figure 7.10 shows the ratio of the recirculating volumes V0 and Vrc over total slug
volume Vslug as a function of the capillary number for the three rectangular microchan-
nel geometries. The recirculating volume for the infinite aspect ratio and axisymmet-
rical cases are also given using the relation W = f(CaB) from Aussillous and Quéré
[2000] for the tubes and Abadie et al. [2012] for 2D cases; both assume long liquid slug
in order to neglect the changes in the flow close to the bubble caps. It should also be
kept in mind that axisymmetrical and planar cases are given as an indication only since
the relations W = f(CaB) for these cases are valid for negligible inertia, which is not
the case in the present work since ReB ≥ 10. Experimental data obtained by µ−PIV
in Zaloha et al. [2012] (obtained for a Laplace number La = ReB/CaB ∼ 1000) are
also presented. As expected, the recirculating volumes are close to the slug volume at
low capillary numbers (CaBB ∼ 10−3) due to the fact that the bypass flow is negligible
compared with the total flow rate. In other words, almost all the liquid contributes
to the recirculation motion. Then, as the capillary number increases, the recirculat-
ing volume significantly decreases in all the geometries. Although the volume of the
positive recirculating flow is hardly dependent on the geometry, the total recirculating
volume decreases as the aspect ratio increases.
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Figure 7.10: Dimensionless recirculating volume as a function of the capillary number.
Legend : (�) V0/Vslug, infinite slug length assumption ; (−−) Vrc/Vslug, infinite slug
length assumption ; (gray) circular channels ; (light gray) 2D channels ; (filled symbols)
V0/Vslug ; (open symbols) Vrc/Vslug ; (/, black) α = 2.5, experimental Zaloha et al.
[2012] ; (�, red) α = 1, numerical ; (., black) α = 2.5, numerical ; (�, blue) α = 4,
numerical

7.3.4 Characteristic recirculation times

The characteristic recirculation times τ0 for the positive recirculation flow, τ1 for
the negative flow and τrc for the total recirculation as a function of the dimensionless
velocity are plotted in Figure 7.11 in comparison with the infinite slug length assump-
tion. The effects of slug length on positive (τ0) and total (τrc) recirculation times are
represented in Figure 7.12 and the recirculation times as a function of the capillary
number are then plotted in Figure 7.13.

Although the recirculation areas show very good agreement with the theoretical
predictions, the recirculation times τrc are greater than those determined using the
infinite slug assumption (Figure 7.11), and mainly for aspect ratios 1 and 2.5 at low
capillary numbers. Indeed, close to bubble caps where the flow is disturbed, the axial
flow rate is reduced and the recirculation time is increased. However, as the capillary
number or the aspect ratio increase, the velocity in the wake of the bubble increases (see
Figures 7.4 and 7.5) and balances the lower velocities in the vicinity of the interface. It
can be seen in Figure 7.11 that the recirculation time for the channel with aspect ratio
of 4 (represented with diamonds in blue) is lower in our calculations compared with
the inifinite slug assumption. The trends observed for all geometries are qualitatively
similar and an increase in the aspect ratio leads to an increase in both the positive and
negative recirculation times and thus in the total recirculation time until divergence
when complete by-pass flow is attained.

Although the recirculating volume only depends on the dimensionless velocity W ,
it is shown in Figure 7.12(a) that the dimensionless recirculating times vary with the
slug length. Indeed, whilst the disturbed flow around the bubble does not change the
recirculating volume, it does cause an increase in the recirculation time when the slug
length decreases, as mentioned in the previous paragraph. As expected, the recircula-
tion times tend towards the value evaluated from the theoretical laminar single-phase
flow representing the case of an infinite slug length. For the shortest slug considered
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Figure 7.11: (a) Dimensionless recirculation times τ0 and τ1 versus the dimensionless
bubble velocity. Legend : (�) τ0, infinite slug length assumption ; (−.−) τ1, infi-
nite slug length assumption ; (light gray) 2D channels ; (filled symbols) τ0, numerical
(�, red) α = 1 ; (., black) α = 2.5 ; (�, blue) α = 4 (b) Dimensionless total recircu-
lation time τrc versus the dimensionless bubble velocity. Legend : (−−) τrc, infinite
slug length assumption ; (light gray) 2D channels ; (open symbols) τrc, numerical ;
(�, red) α = 1 ; (., black) α = 2.5 ; (�, blue) α = 4

here, the total recirculation time is 20% longer than the asymptotic value. Leung et al.
[2010] studied the effect of slug length on the Nusselt number with a constant heat
flux on the wall of a circular tube and found an increase in the Nusselt number as the
slug length decreases. Indeed, fluid elements will refresh the interface separating the
recirculating and film regions more frequently in short slugs. The evolution of the mean
time for a fluid element to complete a cycle can be represented in a dimensional form
to illustrate this decrease in recirculation time as the slug length decreases. It is seen
in Figure 7.12(b) that although the recirculation time is slightly underestimated with
the infinite slug length assumption due to the increased time taken for a fluid element
to travel the development length close to bubble caps, the recirculation time decreases
as the slug length decreases.

In the cases presenting a recirculation motion in the liquid slug, the bubble velocity
is lower than the liquid velocity at the centerline of the channel. Thus, around the
bubble caps, there is a region where the velocity on the channel centerline decreases
to the bubble velocity, as shown in Figures 7.4 and 7.5. This explains the increase
in recirculation time when the slug length decreases since the ratio of development
length over slug length increases. Here, it has been observed that in the development
region close to the bubble caps, the centerline velocity can be greater than the expected
velocity on the axis (e.g. Umax = 1.92×UTP for the 2.5 aspect ratio channel, Figure 7.4
for CaB ≥ 0.1) before stabilizing if the slug is long enough. This local increase in the
velocity can lead to a decrease in the recirculation time as the slug length decreases.
This phenomenon is accentuated as the aspect ratio increases and it can be seen in
Figure 7.11 that recirculation times evaluated in the numerical simulations are lower
than that for an infinite slug length with the aspect ratio 4 and W > 0.3.

Figure 7.13 reports the evolution of the recirculation times as a function of the
capillary number. It is shown that an increase in the capillary number also leads to
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Figure 7.12: (a) Dimensionless recirculation times as a function of dimensionless slug
length. Legend : (−−) asymptotic values τ0 and τrc ; (filled symbols) τ0 ; (open sym-
bols) τrc. (b) Dimensional recirculation times t0 and trc (with Dh = 571µm and UB =
0.5m/s) as a function of the time taken for a bubble to travel the slug length LS/UB.
Legend : (−−) asymptotic values t0 and trc ; (filled symbols) t0 ; (open symbols) trc
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Figure 7.13: Dimensionless recirculation times versus the capillary number. Legend :
(�) τ0, infinite slug length assumption ; (−−) τrc, infinite slug length assumption ;
(gray) circular channels ; (light gray) 2D channels ; (filled symbols) τ0; (open symbols)
τrc ; (/, black) α = 2.5, experimental Zaloha et al. [2012] ; (�, red) α = 1 ; (., black) α =
2.5 ; (�, blue) α = 4, numerical.

an increase in the recirculation time for all the geometries considered. Thus, when the
capillary number increases, the volume involved in the recirculation motion is reduced
but the dimensionless time needed for a fluid element to travel the slug length is in-
creased. It is also observed that the 2D theory is not a good approximation for high
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aspect ratios. In addition, it can be seen that even if the recirculating volume shows
a weak dependency on the channel geometry, the effect observed on the recirculation
time is more significant. Indeed, at fixed operating conditions (CaB, ReB and LS), an
increase in the aspect ratio leads to significantly longer recirculation times.

7.4 Concluding remarks

Direct numerical simulations of gas-liquid Taylor flow in microchannels have been
performed. The effects of channel cross-section and operating conditions on mixing and
recirculation in the liquid slug have been investigated. The results of the numerical
simulations have been compared with theoretical approximations for the case of infi-
nite slug length in terms of cross-sectional recirculation area, recirculating volume and
recirculation times. It has been shown that as long as the slug is long, the recirculation
area in the slug can be well predicted using the fully-developed velocity profile. What-
ever the geometry, increasing the capillary number leads to a decrease in recirculating
volume and an increase in recirculation time, which means that transport processes
will be hindered. Radial mixing is then reduced while axial dispersion is enhanced
with increasing the capillary number. It has been shown that when the aspect ratio
increases for a given capillary number, the recirculating volume decreases slightly and
the recirculation time increases while the exchange surface between film and recircu-
lating regions is enhanced at low slip velocities, which is the case for capillary numbers
lower than approximately CaB ∼ 0.1. Indeed, high aspect ratio channels may appear
attractive for heat transfer in plate microreactors, however the decrease in the recir-
culation rate and effective recirculation volume is disadvantageous for both heat and
mass transfer operations. It is therefore expected that some intermediate aspect ratio
geometry would be most effective. This would require a systematic study that inves-
tigates the effects of process parameters (aspect ratio, void fraction, capillary number,
Reynolds number) on the efficiency of the gas-liquid system that could be expressed by
a cost-function integrating global parameters (pressure drop, circulation volumes and
times, mass transfer, heat transfer).
The disturbed flow close to the bubble caps has shown to generally increase recircula-
tion time. It has also been shown that for certain cases in rectangular channels, the
bubble wake causes a local increase in the velocity at the center of the channel and this
phenomenon is enhanced in high aspect ratio channels and high capillary number flows.
Although this increase in the axial velocity can lead to a slight decrease in the recircu-
lation time, these wake effects do not balance geometrical effects and the recirculation
times in wide shallow channels remain greater than the ones obtained in channels of
lower aspect ratio.
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Conclusion

In order to contribute to the development of microstructured devices, this work
has focused on obtaining fundamental knowledge of gas-liquid Taylor flow using both
experimental and numerical approaches.

The first part of this work has aimed at contributing to the fundamental knowledge
of bubble generation and controlling bubble lengths. Microchannels have been designed
and visualization experiments have been conducted to investigate the role of the channel
geometry and the effects of fluid properties on the bubble generation mechanism. The
bubble dispersion generated in a cross-junction in channels of different aspect ratios
(α = [1; 2.5; 4]) has been characterized. The two-step model, which is widely used in
T-junctions, has been extended to cross-junctions and the effects of the liquid capillary
number on the two stages of bubble formation mechanism have been identified. The
minimum bubble length has been shown to depend on the capillary number indepen-
dently of the aspect ratio. The growth rate of bubble length has been found to decrease
when the liquid capillary number is increased in rectangular microchannels whereas it
is constant in a square microchannel. The bubble formation frequency increases with
the gas to liquid flow rate ratio and with the liquid capillary number. The increase
in bubble formation frequency is enhanced in rectangular channels when the aspect
ratio is increased. It has also been pointed out that the bubble to unit cell length ratio
follows a unique law as a function of the gas to liquid flow rate ratio, independently of
the capillary number, the Reynolds number and the geometry of the channel.

The gas-liquid flows generated in a cross-junction and two different T-shaped junc-
tions have been compared. Bubble formation in these three geometries can be split
into two main steps but the effects of the capillary number on these steps has been
shown to differ from one contacting section to another. Indeed, the minimum bubble
length at vanishing capillary numbers in a cross-junction diverges with the proposed
scaling while it tends towards a finite value in T-junctions. Similarly, the growth rate
of bubble length is reduced in T-junctions when compared with cross-junctions. An
interesting point is that the bubble lengths are less dependent on the geometry at high
capillary numbers where the effects of the walls are reduced.

It has been shown that some limitations in the computational method of JADIM
did not allow the accurate simulation of Taylor flow at low capillary numbers. Spurious
currents arise in such simulations and it has been necessary to reduce their intensity
to correctly simulate low capillary number flows. This part has consisted in two steps:
the implementation of a Level Set method to capture the interface (chapter 3) and
the characterization of its ability to perform the simulations at low capillary number.
Chapter 4 has been dedicated to the analysis of spurious currents and it is demon-
strated that the technique implemented is very well adapted to low capillary number
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simulations and reduces spurious currents by approximately one order of magnitude in
dynamic cases.

The third part of this work focused on the hydrodynamics of fully developed Taylor
flow. Three dimensional numerical simulations have been carried out in different ge-
ometries. Firstly, results at low Reynolds numbers have been compared with data from
the literature (Wong et al. [1995a,b], De Lozar et al. [2008]) and extended through an
analysis of the pressure drop in microchannels as a function of the bubble length, the
capillary number and the channel aspect ratio.

The transition to intermediate and high Reynolds number has then been investi-
gated. It has been shown that an increase in the Reynolds number promotes bubble
rupture at the rear cap. The bubble shape is significantly modified as the Reynolds
number increases. However, it has also been shown that the available correlation for
low Reynolds numbers in a circular channel gives a very good estimation of the bubble
velocity in the aspect ratios considered here. A close inspection of the slip velocity be-
tween the bubble and the mean velocity has however shown some deviations between
the results obtained with different aspect ratios. In addition, the slip velocity follows a
non-monotonic behaviour as the Reynolds numbers increases. The pressure drop across
the bubble has been characterized and follows a linear law with the two-phase Reynolds
number.

Finally, the velocity field in the liquid slug has been analysed to characterize the
mixing characteristics in the slug. Indeed, the effects of the capillary number and
geometry on mean recirculation times in the liquid slug have been estimated from nu-
merical simulations and compared with the case of infinite slug lengths obtained from
the single-phase velocity profile in a rectangular duct. It has been shown that an in-
crease in the capillary number leads to an increase in the recirculation time. This means
that radial mixing is reduced. In addition, the by-pass flow is increased as the capillary
number increases, therefore increasing the axial dispersion. It has been shown that
although high aspect ratio channels increase the exchange surface for reactor-heat ex-
changer systems, the recirculation time is increased thereby reducing the radial mixing
in a microchannel. This may indeed have negative effects on the heat transfer process.

From the above, it can be seen that this work has contributed to three key aspects
of Taylor flow: bubble dispersion, dynamics of the fully-developed flow and mixing.
However, much work still remains and the outlooks for future work are various and
promising.

Future work

The direct outlooks of this work concerning the bubble generation are to deter-
mine the relationship between the capillary effects and the geometrical effects in a
cross-junction geometry more accurately. This could be done by means of numerical
simulations, which would also give the possibility to accurately control wettability of
the channel walls. Another outlook is to scale-up such microchannel geometries in mul-
tichannel structures. This work has already been started at LOCIE in the framework
of the project MIGALI. However, due to different pressure drops in every channel, the
control of bubble dispersion remains very difficult.

Concerning the hydrodynamics of fully developed Taylor flow, the points that have
been adressed but not clearly explained up to now need to be further analysed. This
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concerns in particular the non-monotonic behaviour of the slip velocity as a function
of the Reynolds number. Another point of interest for future work is the transition to
flow regimes where droplet form at the rear of the bubble and cross the bubble. In
addition, the extension of the current work to other geometries, as shown below, would
be interesting. Indeed, the effects of the serpentine channel on the dynamics of the
bubble and mixing in the slug play an important role in transport processes and still
need to be thoroughly characterized.

Figure 7.14: Illustration of bubbles in serpentine channel of square cross-section. Bub-
bles are colored by the y−component of the velocity.

Although mixing in the slug has been characterized, it is necessary to relate the
characteristic times and volumes to mass and heat transfer processes. Some preliminary
work on this subject has already been started in this PhD. Mass transfer within the
VOF formulation developed by Haroun and Legendre [2010] has been validated in the
case of bubble rising in a liquid and the results have been compared with data from
the literature (Figueroa-Espinoza and Legendre [2010], see figure 7.15).

The agreement is very good and simulations of mass transfer from the bubble to the
liquid slug are currently under way. In the first step, the concentration in the bubble
is fixed and some preliminary results are shown in figure 7.16.

Finally, concerning the numerical developments in the JADIM code, the method
implemented currently is very well adapted to the simulations of Taylor flow but still
suffers from mass conservation problems. Although this can be easily solved for a
single bubble, it remains a drawback when simulating a large number of inclusions
(e.g. bubble swarms, atomization). It would be therefore very interesting to couple
VOF and Level Set methods in a VOF without reconstruction framework. The use of
Height Functions coupled to more accurate transport schemes is also a possibility. The
time step constraint introduced by the capillary force in the Navier-Stokes equations
is very limiting. An idea to pursue would be to make implicit the resolution of the
surface tension force (Raessi et al. [2009]). Another option would be to decrease the
time needed per iteration with the use of adaptive mesh refinement techniques which
are available in the literature (Popinet [2009]).
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Figure 7.15: (a) Bubble rise and mass transfer in a liquid at Re ' 60 and Sc = 100.
(b) Sherwood number as a function of the Reynolds number for Schmidt numbers
Sc = [1; 10; 100].
Legend: (�) Sc = 100 ; (4) Sc = 10 ; (◦) Sc = 1 ; (lines) see Figueroa-Espinoza and
Legendre [2010] for more details on the available correlations.
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Figure 7.16: Illustration of mass transfer through the depth of a square microchannel.
The resistance of the bubble to mass transfer is negligible, Ca = 0.1 ; Re = 28 ;
Pe = 1400.
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Appendix A

Single phase flow in rectangular
ducts

A.1 Velocity profile

The velocity profile in a single-phase flow in a rectangular duct of width w and
height h is written (Shah and London [1978]):

u(x, y) = −16c1w
2

π3

∞∑
n=1,3,...

−1
(n−1)

2

n3

[
1− cosh

(
nπh
2w

)
cosh

(
nπh
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)] cos(nπx
2w

)
(A.1)

um = −c1w
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π5
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) (A.2)

A.2 Pressure drop

The pressure drop in a channel can be written as a function of a friction factor λ:

∆p

L
=
λρu2

m

2Dh
. (A.3)

The friction factor may be approximated by the following equation (Shah and Lon-
don [1978]):

λ =
96

Re

(
1− 1.3553α−1 + 1.9467α−2 − 1.7012α−3 + 0.9564α−4 − 0.2537α−5

)
, (A.4)

with α = w/h, the aspect ratio of the channel.
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A.2 Pressure drop
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Figure A.1: Friction factor λRe as a function of the aspect ratio α.
Legend: (solid line) equation A.4 ; (�) α = 1 ; (◦) α = 2.5 ; (�) α = 4.
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Appendix B

Computational time - Parallel
scaling

The parallel scaling analysis for the 3D simulations of Taylor flow has been per-
formed for the cases presented in chapter 6.6 (Ca = 0.1 and La = 280). The numerical
setup is described in section 6.2 and two meshes have been used: 32 × 32 × 256 and
64 × 64 × 512. The computations have been performed on the Hyperion (Altix Ice
8200) computational system at CALMIP and the time required for 10 iterations with
both meshes and with both the VOF-FCT and LS methods presented in this thesis are
reported in figure B.1.
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Figure B.1: Parallel scaling for 2 meshes with both VOF-FCT and LS interface cap-
turing techniques.
Legend: (blue squares) VOF-FCT ; (red circles) LS ; (open symbols) mesh 32×32×256
; (filled symbols) mesh 64× 64× 512 ; (straight line) 1/(n processors).

With the first mesh (32 × 32 × 256), a good scaling is obtained with both VOF-
FCT and LS methods up to 16 processors, which corresponds to subdomains of size
32 × 32 × 16 for which the communication time between processors becomes non-
negligible when compared to the total computational time. Above 16 processors, the
gain in the computational time is not very significant. It is seen with the second mesh
that a good scaling is obtained up to 64 processors, which corresponds to approximately
the same subdomain decomposition.
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In addition, it is interesting to note that the same speed-up is obtained with both
VOF-FCT and LS methods. The computational times of LS simulations are slightly
longer than those required in VOF-FCT simulations (between 5% and 15%) and tend
towards the same value as the number of processors increases.

Finally, most of the simulations have been run on 8 processors with the mesh 32×
32× 256. The computational time for 10 iterations is about 15 seconds and depending
on the Reynolds and capillary numbers, between 100000 iterations (for relatively large
Ca and Re) and 2000000 iterations (for low Ca and Re) were required, which means
computational times between 2 days and approximately one month.

With the second mesh 64 × 64 × 512, the number of processors can be increased
to 64 with a good speed-up but the computational time can exceed one month since
the time step is reduced, thereby leading to an increase in the number of iterations
required until reaching a fully-developed flow.
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Microfluidics and Nanofluidics
(Abadie et al. [2012])
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Abstract The effect of fluid properties and operating

conditions on the generation of gas–liquid Taylor flow in

microchannels has been investigated experimentally and

numerically. Visualisation experiments and 2D numerical

simulations have been performed to study bubble and slug

lengths, liquid film hold-up and bubble velocities. The

results show that the bubble and slug lengths increase as a

function of the gas and liquid flow rate ratios. The bubble

and slug lengths follow the model developed by Garstecki

et al. (Lab chip 6:437–446, 2006) and van Steijn et al.

(Chem Eng Sci 62:7505–7514, 2007), however, the model

coefficients appear to be dependent on the liquid properties

and flow conditions in some cases. The ratio of the bubble

velocity to superficial two-phase velocity is close to unity,

which confirms a thin liquid film under the assumption of a

stagnant liquid film. Numerical simulations confirm the

hypothesis of a stagnant liquid film and provide informa-

tion on the thickness of the liquid film.

Keywords Microchannel � Gas–liquid Taylor flow �
Microreactor � Visualisation experiments �
Numerical simulation
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l1;1 norms in the spurious currents evaluation (m/s)

L Length (m)

m Constant (-)

n Normal to the interface (-)
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Q Flow rate (m3/s)

r Radius (m)
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w Width (m)

x, y Axis in 2D simulations (-)
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a Volume fraction (-)

b1,2 Constant (-)

d Liquid film thickness (m)

dI Dirac distribution (interface) (-)

e Fraction of area (-)

k1,2 Constant (-)
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h Hydraulic

in Gas inlet

L Liquid phase

S Slug

SC Spurious currents

TP Two-phase

Dimensionless numbers

BoTP Bond number Bo ¼ ðqL�qGÞd2
h
g

r

CaTP Capillary number Ca ¼ lLUTP

r

ReTP Reynolds number Re ¼ qLUTPdh

lL

WeTP Weber number We ¼ qLU2
TPdh

r

1 Introduction

The interest of the process industries in microreaction

technology for process intensification has become

increasingly important over the recent years. Amongst the

different applications, microreactors are particularly inter-

esting for fast highly exothermic and/or mass transfer

limited gas–liquid reactions since heat and mass transfer

are remarkably intensified. Although miniaturized devices

are already implemented in industry, the engineering

methodologies for the design and integration of microre-

actors in existing processes are still not clearly defined. The

development of such methodologies requires fundamental

understanding of the physical phenomena that control the

process operation and the specificities of equipment design.

To date, research on gas–liquid flow in microchannels

has mainly been dedicated to the study of flow patterns in a

range of microchannel geometries and the development of

flow pattern maps based on superficial gas and liquid

velocities (e.g. Triplett et al. 1999; Waelchli et al. 2006;

Yue et al. 2007, 2008) or superficial Weber numbers

(Akbar et al. 2003). Slug or Taylor flow is the flow con-

figuration that occurs for a large range of flow conditions,

from low to average superficial gas and liquid velocities.

Taylor flow is characterized by regular sized bubbles that

are longer than the microchannel width or diameter and

separated by slugs of liquid. The bubbles fill almost all the

entire cross-section of the channel and are separated from

the wall by a thin liquid layer. Taylor flow in microreactors

is an interesting flow regime because it intensifies both

mass and heat transfer due to the fluid recirculation gen-

erated in the liquid slug (Gupta et al. 2010; Leung et al.

2010; Sobieszuk et al. 2008; Yue et al. 2007, 2008).

However, controlling the flow regime and the characteristic

size of the gas–liquid dispersion remains a difficult task.

These characteristics depend not only on the physical

properties of the fluids but also on the operating conditions,

the microchannel geometry and material of fabrication.

T-junction geometries are relatively popular for the pro-

duction of bubbles in microchannels (Garstecki et al. 2006;

van Steijn et al. 2007; Yue et al. 2008; Yun et al. 2010) and

the correlation of bubble sizes as a function of the superficial

gas and liquid flow rates generated in these geometries has

been the subject of several works (Garstecki et al. 2006; van

Steijn et al. 2007; Yue et al. 2008; Yun et al. 2010). Few

studies, however, have dealt with the effects of fluid prop-

erties, such as viscosity and surface tension, on bubble

generation (Garstecki et al. 2006; Qian and Lawal 2006;

Pohorecki and Kula 2008). Under the flow conditions in

these studies, bubble size has been shown to be slightly

dependent or not at all on viscosity and surface tension.

The liquid film hold-up around Taylor bubbles is also of

main importance for heat and mass transfer in microchan-

nels. The knowledge of the amount of liquid surrounding

bubbles in small tubes has been studied for a long time

(Aussillous and Quéré 2000; Bretherton 1961; Giavedoni

and Saita 1997; Han and Shikazono 2009a), since the first

experiments in 1961 by Taylor in circular capillaries, and

more recently in microchannels of different cross sections

(Han and Shikazono 2009b; Kreutzer et al. 2005a, b; Wong

et al. 1995; Yun et al. 2010) where correlations of liquid film

thickness as a function of various dimensionless numbers

have been developed. Nevertheless, the exact relationships

between the microsystem parameters (e.g. geometry and

fluid properties) and the characteristics of the gas–liquid flow

(e.g. bubble velocity, bubble and slug lengths, and liquid film

thickness) are still not clear.

The present work aims at improving the fundamental

understanding of gas–liquid Taylor flow in microchannels,

which will contribute to the design and development of

microreactors for the chemical process industries. In par-

ticular, the objective of this study is to investigate the

effects of the physical properties of the fluids and the flow

rates on the characteristics of the Taylor dispersion gen-

erated in a T-junction microchannel. Visualisation experi-

ments and direct numerical simulations have been

performed to obtain information on the bubble generation

mechanism, bubble velocity, bubble and slug lengths, as

well as the liquid film surrounding the bubble body.

2 Experimental setup

2.1 Microchannel characteristics

Rectangular cross-section microchannels have been etched

through a silicon wafer plate using the deep reactive ionic

etching (DRIE) technique, sandwiched between glass

wafers and bonded using anodic bonding. The gas and

liquid are contacted using a side-entering T-junction as

shown in Fig. 1 and the main channel has a meandering

356 Microfluid Nanofluid (2012) 12:355–369
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topology with curved bends for reasons of compactness.

The liquid is flowing in the main channel while the gas is

supplied perpendicularly via a narrower channel. The width

of the main channel and the gas inlet are w = 1 mm and

wg;in ¼ 525 lm; respectively. The ratio of the widths of the

gas and liquid inlets corresponds to the lower limit rec-

ommended by Garstecki et al. (2006) for generating Taylor

flow via the squeezing mechanism. The depth of the mi-

crochannel is fixed by the thickness of the silicon wafer,

h ¼ 400 lm and the total length is approximately 1–3 cm.

These dimensions lead to a hydraulic diameter dh ¼
571 lm and an aspect ratio w/h = 2.5.

2.2 Flow control equipment

Several liquids have been tested to cover a wide range of

dimensionless numbers with the feeding equipment avail-

able and air has been used as the gas phase for all of the

experiments. Air is supplied from a pressurized vessel and

controlled by a mass-flow controller (HORIBA SEC 7320),

which allows a volumetric flow rate ranging from 0.00 to

1.00 mL/min with a precision of 0.02 mL/min. Liquid flow

is controlled using a syringe pump, which allows flow rates

in the range of 0.000–1.000 mL/min with a precision of

0.002 mL/min. All experiments were conducted under

room temperature and pressure. The temperature of the gas

and liquid phases was monitored by thermocouples that are

inserted in to the feeding tubes just before the micro-

channel inlets. The fluid properties are evaluated according

to the temperatures measured in each experiment.

2.3 Measurement method

High speed imaging has been used to obtain characteristic

information on the gas–liquid Taylor flow. Images have

been recorded with a high-speed camera (CCD HCC-1000,

VDS Vossmuller GmbH) with frame rates up to 462 fps at

full resolution (1024 pix� 1024 pix) and a shutter time

short enough to obtain a distinct gas–liquid interface (about

1 ms in our experiments). A backlight was employed to

provide enough light throughout the exposure period. A

significant number of image sequences were recorded to

get a representative sample of bubbles passing through the

observation window and to identify unsteady flow situa-

tions, which were characterized by irregular bubble

lengths.

For the measurement of bubble and slug lengths and

bubble velocities, images have been taken in a straight

section between two bends and approximately halfway

along the length of the channel defined by the rectangular

zone shown in Fig. 1. As shown in Fig. 2, the bubble

length is evaluated between the extremities of a bubble

while the slug length is calculated as the average of the

slugs immediately before and after the bubble. From the

simulations, the liquid film thickness between the bubble

and the walls is characterized by the averaged value along

the bulk of the bubble d, i.e. not including the bubble nose

and rear end.

Mean bubble and slug lengths were determined using

between 20 and 100 bubbles depending on the flow.

Average bubble velocities were evaluated by following the

gas–liquid interface at the bubble tip between the entrance

and the exit of the observation window, averaging the data

of 20–100 bubbles.

2.4 Fluid properties and operating conditions

Reference experiments were carried out using an ethanol-

air system, which allows a regular and relatively easy

bubble formation in the silicon-glass microchannel (Völkel

2009). The effects of surface tension on bubble generation

and hydrodynamics have been studied using water and an

ethanol/water solution. Sugarcane syrup solutions (SCS)

Fig. 1 Side entering T-junction, Meandering microchannel with

curved bends, wL,in = 1 mm = w, wG,in = 525 lm, h = 400 lm, dh = 571 lm,

1–30 cm

Fig. 2 Contacting section: bubble formation. The notations used are:

QG,L for gas and liquid flow rates, LB,S for bubble and slug lengths, d
the liquid film thickness, UB the bubble velocity and UTP the

superficial two-phase velocity (UTP = UL ? UG)
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have been tested to change the viscosity of the carrier fluid.

The properties of the fluids used have been measured and

are reported in Table 1. The percentages indicated for

ethanol/water and sugarcane syrup/water solutions are

volume ratios.

Table 2 summarises the ranges of velocities and

dimensionless numbers explored in the experiments. The

two-phase dimensionless numbers are based on the physi-

cal properties of the liquid and the two-phase velocity,

which is the sum of gas and liquid superficial velocities.

The superficial velocity is defined as the ratio of the phase

flow rate to the channel cross-sectional area, i.e. UL,G =

QL,G/Ach.

In terms of dimensionless numbers, the values of the

capillary number (ratio of the viscous effects to capillary

effects) and the Weber number (ratio of the inertial effects

to capillary effects) used in this study indicate that the

dominant force in these flows is the capillary force. The

Reynolds numbers show that for ethanol, water, ethanol/

water and diluted sugarcane syrup, the inertial term dom-

inates the viscous term, howerver this trend is inverted

when sugarcane syrup is used. Finally, the Bond number

(ratio of the gravitational effects to capillary effects) is less

than unity (Bomax ¼ 0:11) for all cases and, therefore, the

surface tension dominates the gravitational effects. Under

these dimensionless flow conditions, and despite the low

velocities used, Taylor flow is, therefore, expected since

Akbar et al.’s (2003) universal criterion WeLS 6 3 and

WeGS 6 0:11We0:315
LS is respected.

3 Numerical simulations

3.1 Governing equations and numerical schemes

The numerical code used for this study is the JADIM code

(Dupont and Legendre 2010), which has been developed to

simulate dispersed two-phase flows. The interface captur-

ing technique implemented in this code is the volume of

fluid method (VOF), which consists of a Eulerian

description of each phase on a fixed grid. Under the

assumptions that (1) the fluids are Newtonian and incom-

pressible, (2) there is no mass transfer at the interface, (3)

the flow is isothermal and (4) the surface tension is con-

stant, the fluid flow can be described by the classical one

fluid formulation of the Navier–Stokes equations:

r � U ¼ 0 ð1Þ

q
oU

ot
þ U � rð ÞU

� �
¼ �rPþr � Rþ qgþ Fr;s ð2Þ

where R is the viscous stress tensor (R ¼ lðrUþrUTÞ),
g is the acceleration due to gravity, Fr;s ¼ �r r � nð ÞndI is

the capillary contribution whose calculation is described

below, r is the surface tension, n the normal to the interface,

dI is the Dirac distribution localizing the interface, and

q and l are the local density and dynamic viscosity,

respectively. The density and viscosity are deduced from

the volume fraction of one phase (or colour function) C by a

linear interpolation:

q ¼ Cq1 þ ð1� CÞq2 ð3Þ
l ¼ Cl1 þ ð1� CÞl2 ð4Þ

where the volume fraction is C ¼ 1 in cells filled with

fluid 1, C ¼ 0 in cells filled with fluid 2 and 0 \ C \ 1

in cells that are cut by the interface. Additionally, the

transport equation of the colour function is solved to

capture the interface between the phases:

oC

ot
þ U � rC ¼ 0 ð5Þ

In many VOF methods employed to capture the interface, a

reconstruction technique step is used to control the thickness

Table 1 Fluid properties (at room temperature T = 22–23� C)

Fluid qL (kg/m3) lLðPa � s) r (N/m)

Air 1.204 1.815 9 10-5 –

Water 998 1.34 9 10-3 0.068

Ethanol 795 1.15 9 10-3 0.022

Diluted ethanol (33%) 930 2.4 9 10-3 0.037

Sugarcane syrup 1,318 1.4 9 10-1 0.085

Diluted sugarcane

syrup (50%)

1,163 4.6 9 10-3 0.076

Table 2 Velocities and dimensionless numbers of the fluids used in the experiments

Fluids QL (mL/min) QG (mL/min) UL (10-2 m/s) UG (10-2 m/s) ReTP CaTP 10-3 WeTP 10-2 Bo

Air–ethanol 0.2–1 0.04–1 0.83–4.2 0.17–4.2 4–32.9 0.52–4.35 0.21–14 0.115

Air–ethanol (33%) 0.3–1 0.06–1 0.83–4.2 0.17–4.2 3.3–18.5 0.97– 5.4 0.32–10 0.080

Air–water 0.2–1 0.04–1 0.83–4.2 0.17–4.2 10.6–35.5 0.49–1.64 0.52–5.8 0.047

Air-sugarcane syrup 0.002– 0.2 0.05–1 0.0083–0.83 0.213–4.2 0.03–0.07 10–21 0.035–0.14 0.050

Air-sugarcane syrup (50%) 1 0.2–1 4.2 0.83–4.2 7.2–12 3.03–5.04 2.2–6 0.049
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of the interface. In JADIM, the interface location and

thickness are both controlled by an accurate algorithm

based on Flux-Corrected Transport schemes (Bonometti and

Magnaudet 2007).

The equations are discretized on a staggered grid using

a finite volume method and all spatial derivatives are

approximated using second-order centered schemes. The

time scheme used to compute the advective terms in the

Navier–Stokes equations is a third-order Runge–Kutta type

scheme, while the viscous stresses are solved using a semi-

implicit Crank–Nicolson method. The incompressibility is

ensured using a projection method, which consists in

splitting the velocity field into two contributions: a rota-

tional one, which gives a predicted velocity field calculated

semi-implicitely, and a potential one, which is obtained

from a pressure correction solution of a pseudo-Poisson

equation whose divergence is null.

3.2 Capillarity contribution

3.2.1 Continuum surface force method

The capillary contribution Fr;s is of main importance in

flows controlled by capillarity as is the case in micro-

channels. The numerical method used to solve the inter-

facial force is the continuum surface force (CSF) proposed

by Brackbill et al. (1992). The localization of the interface

is available through a non-zero gradient of volume fraction

and the curvature is calculated from the volume fraction

gradient. Thus, the surface force Fr;s is transformed into a

volume force Fr;v by distributing its effects over grid points

in the vicinity of the interface in a region of thickness of

few cells where rC 6¼ 0:

Fr;v ¼ �rr � rC

krCk

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

curvature

rC|{z}
localization=orientation

ð6Þ

The discretization of the capillary force (Eq. 6) is well

known to produce artificial vorticity in the vicinity of the

interface and unphysical streams called ‘spurious currents’.

Following the method of Brackbill et al. (1992), a

smoothing step on C is introduced to decrease the varia-

tions in the curvature and reduce spurious currents.

3.2.2 Characterization of spurious currents

The objective of this section is to characterize the spurious

currents for microchannel geometries. The spurious veloci-

ties generated by the calculation of the capillary term are

measured using two norms as introduced by Renardy and

Renardy (2002) and Francois et al. (2006) corresponding to

the maximum spurious velocity (l1) and the averaged spu-

rious velocities in the domain (l1), respectively:

l1 ¼ max
i;j;k
kUi;j;kk
� �

ð7Þ

l1 ¼
1

NxNyNz

X
i;j;k

kUi;j;kk ð8Þ

To characterize the intensity of these spurious currents,

a simple configuration has first been analysed (Francois

et al. 2006; Dupont and Legendre 2010). A circular drop of

radius R0 = 1 mm is placed at equilibrium at the center of

a gas domain lx 9 ly = 4 9 4 mm2. The computational

domain is divided regularly in the x- and y-directions into

96 meshes which corresponds to a uniform spacing in both

directions of Dx ¼ Dy ¼ lx=96� 0:042 mm: The condition

imposed at the boundaries is zero velocity and the initial

condition on the velocity field is zero. The fluid properties

for this test are qL = 103 kg/m3, qG = 1 kg/m3 for the

liquid and gas densities, lL ¼ 10�2 Pa � s; lG ¼ 10�5 Pa � s
for the liquid and gas viscosities and r = 0.072 N/m for

the surface tension.

Secondary tests have been performed for the geometry,

fluid properties and boundary conditions corresponding to

the microchannel flows considered in this study. Half of a

2D Taylor bubble lB;x ¼ 0:72 mm and lB;y ¼ 0:16 mm is

placed at equilibrium at the center of the domain

lx 9 ly = 2 9 0.2 mm. A regular mesh is used in both

directions nx 9 ny = 250 9 50 that leads to a grid spacing

Dx ¼ 8 lm and Dy ¼ 4 lm: The conditions imposed at the

boundaries are zero velocity on the north face, symmetry

on the south face and periodicity on east and west faces.

The fluid properties for this test are qL = 103 kg/m3,

qG = 1.204 kg/m3 for the liquid and gas densities, lL ¼
10�1Pa � s; lG ¼ 1:815� 10�5Pa � s for the liquid and gas

viscosities and r = 0.07 N/m for the surface tension.

Table 3 reports the stable spurious velocities obtained

after a significant number of iterations for the different test

cases. The spurious velocities, based on the norm l1; have

been found to be proportional to:

uSC � 0:01
r
lL

i.e. CaSC� 0:01: ð9Þ

This magnitude is comparable to the simulations reported

by Lafaurie et al. (1994) (* 0.01 r/lL) and Dupont and

Legendre (2010) (*0.005 r/lL). The spurious velocities

thus appear at capillary numbers CaSC� 0:01 indicating

that error-free numerical simulations can only be per-

formed for Ca [ CaSC.

3.3 Mesh and boundary conditions

Two-dimensional numerical simulations that simulate flow

in an infinitely wide channel were performed in a plane

200 lm high to simulate half the height of the micro-

channel. Every 2D simulation is performed using the same
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boundary conditions and the same fluid properties that

were used to characterize the spurious currents. A pressure

gradient is imposed between the two periodic boundaries to

generate fluid flow. Two domains of simulation have been

used: a short one (Domain 1: lx ¼ 2 mm) that allows

bubble lengths about 1 mm to be simulated and a longer

one (Domain 2: lx = 5 mm) for the simulation of bubbles

that are a few millimeters long. For each domain, simula-

tions have been performed by varying the volume fraction

of air at the initialization stage and by varying the pressure

gradient across the domain.

Domain 1 is the computational domain described in the

spurious currents characterization section and comprises

12,500 nodes. Since there were only about five grid cells in

the liquid film, which is the lower limit for the correct sim-

ulation of the film (Gupta et al. 2009), the convergence has

been tested with a second, finer mesh. This second grid is

coarser in the bubble region and finer in the liquid film area

compared with the first mesh, however, the total number of

nodes (12,500) remained unchanged. This refined mesh

consists in a uniform grid spacing along the channel

(nx ¼ 250;Dx ¼ 8 lm) and a non-uniform grid spacing

across the width of the channel: ny = 50 with a regular

spacing for y\115 lm (16 nodes) and irregular mesh with a

factor 0.92 for 115 lm\y (34 nodes). Thus, the grid spacing

across the channel width varies between Dymax ¼
7:20 lm and Dymin ¼ 0:46 lm: The simulations with both

grids converged to the same velocity field, however, the

number of iterations needed to converge is almost 20 times

greater for the non-uniform mesh than for the regular mesh.

The regular mesh is, therefore, considered adequate for the

simulation of these flows and allows a much larger time step

than the non-uniform mesh does. Domain 2 is meshed in the

same way as domain 1, such that there are at least 5 grid cells

in the liquid film and a regular mesh is used in both directions

nx 9 ny = 500 9 40 (i.e. 20,000 nodes), which leads to a

grid spacing Dx ¼ 10 lm and Dy ¼ 5 lm:

4 Results and discussion

Figure 3a summarises the numerical and physical experi-

ments performed in this study to characterize the bubble

lengths, shapes and velocities of gas–liquid Taylor flow in

rectangular microchannels as a function of the Reynolds

and capillary numbers. The numerical simulations were

carried out with fluid properties such that the spurious

velocities were lower than the physical velocities of the

flow.

4.1 Bubble generation

Figure 4 shows the bubble generation mechanism for the

ethanol-air system. This mechanism can be divided into

several steps: (a to b) the bubble starts growing in the side

channel, perpendicularly to the direction of the liquid flow

in the main channel; (b to d) as the bubble grows, the gas–

liquid interface is distorted by the liquid in main channel

and the radius of curvature upstream of the leading bubble

cap increases; (d) during this time, the interface detaches

from the upstream wall of the gas inlet and the contact line

starts moving into the gas inlet; (d to e) the air fills the main

channel and the bubble occupies the width of the main

channel; (e to f) the gas–liquid interface coming from the

gas inlet is pushed downstream until pinching off occurs

and the bubble is formed.

In the majority of ethanol-air experiments, bubbles are

pinched off at the T-junction and regular bubble trains are

observed, as shown in Fig. 4. For these experiments, the

Table 3 Spurious velocities evaluated from a confined bubble at rest

Test case l1 ðm=sÞ l1 (m/s) r/lL (m/s) Dt ð�10�6 sÞ Iterations

2D circular bubble (R0 = lx/4) 0.0409 0.000239 7.2 1 20,000

2D long bubble 1 (lB,x/lB,y = 4.5) 0.00542 0.000123 0.7 0.25 200,000

2D long bubble 1 0.00702 0.000162 1.4 0.20 250,000

2D long bubble 1 0.00353 0.0000983 0.35 0.25 200,000

2D long bubble 2 (lB,x/lB,y = 12) 0.00459 0.000969 0.7 0.25 200,000

Fig. 3 Reynolds and capillary numbers of the experiments and

numerical simulations performed. Dash dot dash line minimum

capillary number available numerically to neglect spurious currents
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standard deviation of the average bubble size is less than 5

%. In general, the fluctuations in the bubble velocities are

only about 1–2% of the average value. Fig. 5 shows the

generation of air bubbles in water and sugarcane syrup. For

both the air–water and air-sugarcane syrup systems, an

iterative break-up mechanism is observed. For the most

part, the bubble generation occurs in the main channel, well

after the T-junction. However, after the generation of

several bubbles in the main channel far from the T-junc-

tion, a bubble is then pinched off at the T-junction before

bubble break-up occurs in the main channel again. It is

interesting to point out that for air-sugarcane syrup, this

break-up mechanism results in a rather periodic structure,

which is not so obvious with the air–water system. Nev-

ertheless, for both the water and sugarcane syrup systems,

these flows result in irregular bubble lengths with a stan-

dard deviation greater than 10% of the average length.

Once the bubble train is established, the bubble velocities

are constant. Similar irregular flows were also found to

occur with ethanol/water solutions at low liquid flow rates.

We distinguish these two processes of bubble generation

by naming the regular bubble flow as the squeezing regime

(Garstecki et al. 2006) and the irregular bubble flow (with

bubble generation in the main channel) as the leakage

regime. The leakage regime described here looks similar to

the parallel liquid–liquid flow that breaks in the micro-

channel to form droplets as observed by Guillot and Colin

(2005). However, the flow conditions required for the

transition between the squeezing regime and unstable

parallel flow pinching in the channel remain unclear.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 4 Bubble generation in air–ethanol flows. UL ¼ 0:021 m=s

and UG ¼ 0:0105 m=s; evolution of Taylor flow during a period where

bubbles are generated every tperiod ¼ 0:125 s; i.e. with a frequency of

formation about 8 Hz

Fig. 5 Bubble generation and interface rupture in the main channel

with a air–water system UL ¼ 0:021 m=s and UG ¼ 0:0105 m=s;
bubble pinch-off occurs at the gas inlet every tperiod = 1.16 s, i.e.

with a frequency about 0.86 Hz; b air-sugarcane syrup system, UL ¼
0:042 m=s and UG ¼ 0:021 m=s bubble pinch-off occurs at the gas

inlet every tperiod = 0.97 s, i.e. with a frequency about 1 Hz
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According to Akbar et al.’s (2003) criteria, bubble or slug

flow is expected for all of the flow conditions studied here.

However, the unstable leakage regime is observed for both

viscous liquids (i.e. sugarcane syrup solutions), as well as

low viscosity liquids (i.e. water). It is, therefore, thought

that the wettability of the microchannel material by the

liquids also plays an important role in the bubble genera-

tion process.

In addition, for equal gas and liquid flow rates, a

decrease in the frequency of bubble formation was

observed with air-diluted ethanol system when compared

with the pure ethanol system. However, in both cases the

bubble nose and rear are the same shape, which is in

agreement with the corresponding values of the capillary

and Weber numbers; under these conditions, the stabilizing

effect of the capillary force is dominant and minimizes the

bubble surface.

4.2 Bubble and slug lengths

Figure 6 shows the evolution of the dimensionless bubble

lengths as a function of the Weber number for the air–ethanol

systems. For a fixed flow rate ratio UG/UL, the bubble and

slug lengths decrease slightly when the superficial two-

phase velocity increases. This decrease in bubble and slug

size can be explained by the increase in energy input to the

system; similar observations have been made for drop

formation in micromixers (Haverkamp et al. 1999). Thus,

for a given gas hold-up, the frequency of bubble formation

f �UB=ðLB þ LSÞ increases with inertia. Similar phenom-

ena are observed for other fluid pairs, however, for fixed

flow conditions, the bubble/slug period is shorter with

ethanol than it is with the ethanol solution (33%), which is

shorter than the bubble/slug periods for water alone. This is

primarily due to the higher surface tension of water com-

pared with ethanol.

Figure 7 shows the evolution of dimensionless bubble

and slug lengths as a function of the flow rate ratios for

different fluid pairs. The experiments were conducted by

varying the gas flow rate at a fixed liquid flow rate

(UL = 0.021 m/s). For each fluid system, the bubble and

slug lengths increase linearly with the gas-to-liquid and

liquid-to-gas velocity ratios, respectively. It can be seen

that the bubble and slug lengths are greater with water than

they are with ethanol for the same flow rate conditions.

Again, this shows that for a fixed flow rate ratio, the bubble

and slug lengths decrease and the frequency of bubble

break-up increases when the Weber number increases. It

should be pointed out that for the results presented in

Fig. 7a,b, the flow for the ethanol and diluted ethanol

(33%) systems was regular and bubbles were formed via

the squeezing mechanism, whilst the air–water flow was

irregular (as suggested by the error bars) with bubble for-

mation in the main channel (leakage regime).

The linear evolution of the bubble and slug lengths with

the flow rate ratios is in agreement with the model pro-

posed by Garstecki et al. (2006) for the estimation of drop

and bubble lengths. According to the Garstecki model, the

lengths of bubbles (and drops) generated in side-entering

T-junction microchannels with rectangular cross-section

can be determined from the continuous and dispersed phase

flow rates. The model was developed using data obtained in

microchannels with characteristic dimensions on the order

of 100 lm at low capillary (CaTP \ 10-2) and Reynolds

numbers (ReTP \ 1). Under these conditions, the effects of

shear stress dominate the inertial effects and both are

negligible compared with the interfacial stresses and

pressure gradients. Garstecki et al. (2006) postulate that the

dynamics of drop and bubble break-up is dominated by the

pressure balance between the dispersed and continuous

phases due to the interfacial stresses and the pressure drop

generated by the resistance of the flow induced by the

bubble or drop. The authors identified four stages of the

break-up process for their model: (1) the tip of the bubble

enters the main channel, (2) the filling stage where the

Fig. 6 Bubble and slug lengths versus the Weber number WeTP in

air–ethanol system for volumetric flow rate ratios UG=UL ¼ ½2; 1; 0:5;
0:2�
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bubble occupies almost all the cross-section, (3) the

squeezing stage where the radius of curvature of the

interface increases and the interface at the gas inlet is

squeezed, (4) the break-up stage where the Laplace pres-

sure reaches a maximum as the radius of curvature tends to

infinity and the discontinuous phase pinches off. Following

this, they suggest that the bubble or drop generation pro-

cess can be divided into two main steps and that

the time for bubble or drop formation tgrowth is the sum of

the filling and squeezing times. The scaling relation they

proposed is tgrowth ¼ tfilling þ tsqueezing where tgrowth ¼
LB=ugrowth; tfilling ¼ w=ufilling and tsqueezing ¼ dneck=usqueezing;

where dneck is the characteristic dimension of the neck of

the bubble at the beginning of the squeezing stage. If the

filling and squeezing stages are independent, it can be

assumed that dneck * win. The characteristic velocities of

the different stages can be expressed as a function of the

dispersed and continuous phase flow rates: ugrowth ¼ QG=Ach;

ufilling ¼ QG=Ach and usqueezing ¼ QL=Ach: Accordingly, the

bubble length is given by:

LB

w
� 1þ win

w

QG

QL

: ð10Þ

However, in microchannels of rectangular cross-section,

liquid flows around the dispersed phase during the

squeezing stage thereby increasing the squeezing time.

Van Steijn et al. (2007) improved the Garstecki model by

taking this leakage flow into account and estimated the

bubble length as:

LB

w
¼ k1 þ k2

UG

UL

; ð11Þ

where k1 = 1.5 and k2 = 1.5 win/w. Völkel (2009)

suggested that the length of the liquid slug should follow

a scaling law similar to the gas phase:

LS

w
¼ k2 þ k1

UL

UG

: ð12Þ

Pohorecki and Kula (2008) also proposed a ‘switching’

mechanism to predict bubble lengths in Y-junction

microchannels and presented a simple model: LB=w�
e�1

L ; i.e. LB=w� 1þ UG=UL: This model is almost identical

to that proposed by Garstecki et al. (2006) with the

difference that the gas-to-liquid inlet width ratio is not

explicitly taken into account since the gas and liquid inlets

used by Pohorecki and Kula (2008) were the same size. It is

interesting to note that their experimental results, which

were obtained in microchannels of square and circular

cross sections as well as different materials, agree

relatively well with this model. It is interesting to note

that according to both Garstecki et al.’s (2006) and

Pohorecki and Kula’s (2008) models, the bubble lengths

only depend on the continuous and dispersed phase flow

rates and the microchannel dimensions; there appears to be

no dependency on the physical properties of the fluids.

Recently, Leclerc et al. (2010) also proposed a unique

scaling law for bubble generation in various T-junction

geometries. Again, it enables bubble lengths to be

predicted from flow rates and microchannel dimensions

only. It should be pointed out, however, that the effects of

fluid and material properties on bubble generation were not

investigated.

The results in Fig. 7 show that when UG � UL, the

minimum bubble length is greater than the width of the

microchannel w and appears to depend on the liquid phase

properties. In fact, as shown in Fig. 4, the squeezing stage

can start even if the bubble is not completely filling the

cross-section area, which results in bubble lengths LB [ w.

In this case, it appears that the same scaling relation can

still be applied, however, the coefficients k1 and k2 may be

Fig. 7 a Dimensionless bubble lengths and b dimensionless slug

lengths for varying gas phase velocities and a fixed liquid phase

velocity UL = 0.021 m/s for water, WeL = 0.43 (open diamond);

diluted ethanol (33%), WeL = 0.30 (open square); and ethanol,

WeL = 0.18 (open circle). Error bars represent the standard deviation

for the water-air system; the standard deviation on bubble and slug

lengths for the ethanol and the diluted ethanol (33%) systems was

negligible with this liquid velocity. Dash dot dash line experimental

fitting
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slightly different to the values found by van Steijn et al.

(2007). It can also be pointed out that although Garstecki

et al. (2006) presented their model for the estimation of

both drop and bubble lengths, it only correctly estimates

bubble lengths under certain operating conditions. In fact,

although the bubble/drop generation process is apparently

independent of fluid properties (i.e. viscosity, density and

surface tension) under the conditions studied by Garstecki

et al. (2006), a close inspection of their results suggests

that other properties of the carrier liquid (e.g. wettability)

play a non-negligible role in the generation process. As a

result, it is not clear that all fluid pairs follow a single

scaling law.

It also can be seen in Fig. 7 that the length of the liquid

slug increases with UL/UG, as suggested by Völkel (2009).

However, the coefficients k1 and k2 appear to depend on

both the fluid properties and the liquid velocity, and do not

appear to have the same value as the coefficients of

Eq. (11). Indeed, the coefficients for ethanol are close to

1.5 in the squeezing regime but they appear to increase

when the break-up mechanism changes and tends towards

the leakage regime (Figs. 7, 8).

Qian and Lawal (2006) carried out 2D simulations of

the break-up of Taylor bubbles in T-junctions and side-

entering T-junctions. They proposed a correlation for

the prediction of bubble lengths (LB=w ¼ 1:637e0:107
G

ð1� eGÞ�1:05Re�0:075
TP Ca�0:0687

TP ), which underlines the pre-

dominant contribution of the flow rate ratio and only a

slight effect of surface tension and viscosity. Although a

few points remain unclear in Qian and Lawal’s (2006)

study - they used a coarse grid that was inadequate to

correctly detect the liquid film and no details on the surface

tension conditions that determine bubble break-up - it is

interesting to point out that the bubble lengths obtained in

this study for the air–ethanol systems at various Weber

numbers (Fig. 6) agree with the Qian and Lawal (2006)

correlation. However, when water or sugarcane syrup are

used as the carrier fluid, the squeezing mechanism does not

occur. Instead, parallel flow develops before bubble gen-

eration occurs in the main channel and in this case the data

do not agree with the Qian and Lawal (2006) correlation.

Indeed, the dependency of the bubble lengths on the fluid

properties has shown to be much more significant here than

ever shown in previous studies. The transition from the

squeezing regime to the leakage regime is difficult to detect

based solely on the competition of capillary, viscous and

inertial effects; it is thought that the wettability of micro-

channel by the liquid really plays a non-negligible role.

Figure 8 shows the evolution of the bubble and slug

lengths as a function of the the flow rate ratios for the air-

diluted ethanol (33%) system at fixed superficial liquid

velocities. This figure highlights the linear evolution of the

bubble and slug lengths with the gas-to-liquid and liquid-to-

gas velocity ratios respectively, which is in agreement with

Eqs. (11) and (12). The coefficients k1 and k2 of the linear

scaling law for this fluid pair decrease when the liquid

velocity increases. It was observed that regular bubble sizes

were generated at a high frequency with high liquid flow

rates, whereas a decrease in the liquid flow rate leads to

irregular flows of longer bubbles and slugs at a lower fre-

quency. This transition from squeezing to leakage regime is

also visible with water for which a similar linear evolution is

also found. However, for the pure air–ethanol experiments,

where the bubble generation was generally very regular, the

bubble and slug lengths are not so dependent on the liquid

velocities. Figure 8 also shows that for a fixed gas fraction,

the bubble lengths decrease as the liquid velocity increases

and the energy input into the system increases. Thus, the

bubble and slug lengths, as well as the frequency of bubble

generation, appear to be governed mainly by the competition

between gas and liquid velocities, as well as the competition

between inertial and capillary effects.

Fig. 8 Bubble and slug lengths versus ratio of air and liquid

velocities UG/UL (a), and UL/UG (b) in ethanol 33%/air system for

given liquid velocities: UL ¼ ½0:008; 0:021; 0:042� m=s: Dash dot
dash line experimental fitting
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Interestingly, when the bubble length relative to the total

length of a bubble/slug unit is plotted as a function of the

flow rate ratio, as shown in Fig. 9, the squeezing and

leakage regimes observed seem to collapse; slight differ-

ences can be accounted for by the varying effects of cap-

illarity, inertia and viscosity. This suggests that the relative

quantity of liquid surrounding the bubble (in the liquid film

and around the caps) is almost the same for the different

fluid pairs at a given gas hold-up, whatever the bubble

break-up frequency.

The difference between the experimental points and the

curve for the relative bubble length in the case of zero

liquid film shows that the quantity of liquid surrounding the

bubble increases with UG/UL, reaches a maximum around

UG/UL = 1 and then decreases slightly. Results from

numerical simulations are also reported in this figure and

their agreement with the experimental data is good despite

their 2D nature.

4.3 Liquid film

The liquid film between the bubble and the microchannel

wall has been evaluated with 2D simulations. This 2D

representation is a simplified approach to the problem and

does not take into account the liquid film in the corners of

the channel. However, de Lózar et al. (2008) have shown

that the liquid flow from the film to the corners is weak and

does not significantly deform the gas–liquid interface.

Although the 2D simulations do not provide detailed

information on the varying liquid film thickness around the

bubble and the 3D bubble shape, they nevertheless provide

a useful information. The qualitative trends observed in 2D

representation are expected to be similar to 3D cases.

Indeed, Sarrazin et al. (2006) studied velocity field and

mixing in liquid–liquid microsystems and they observed

similar hydrodynamic flow structures in 2D and 3D rect-

angular cases (with an aspect ratio close to unity). Fur-

thermore, the information obtained through these 2D

simulations is also expected to be valid for high aspect ratio

rectangular microchannels. In the following, the liquid film

hold-up around a Taylor bubble is considered and defined

as eL ¼ AL=Ach where AL is the area occupied by the liquid.

In the literature, the bubble velocity is often related to this

liquid film hold-up (see Völkel 2009 for an overview).

Under several conditions, such as constant surface tension

and a flat annular liquid film, there is no pressure gradient

along the bubble and the velocity in the liquid film is

assumed to be zero. Thus, using the mass conservation

relationship, the bubble velocity can be related to the liquid

film hold-up and the two-phase velocity: UB=UTP ¼
1=ð1� eLÞ:

Since the liquid film hold-up is typically very low in

Taylor flow, the bubble velocities can be expected to be

close to the sum of the gas and liquid superficial velocities.

Although the linear plots of the bubble lengths given in

Figs. 7 and 8 suggest information on the leakage flow

around the bubble at the T-junction contacting section, the

measurement of the liquid film thickness around Taylor

bubbles is not straightforward experimentally. However, it

can be quite easily obtained with correctly performed

numerical simulations. Figure 10a shows the dimensionless

liquid film thickness around the Taylor bubble obtained

numerically as a function of the capillary number based on

the bubble velocity, as suggested in the first studies of

Taylor (1961) and Bretherton (1961). In this latter work, a

correlation assuming the ‘lubrication approximation’ is

proposed for the determination of the liquid film thickness

from the capillary number in tubes or 2D planar geome-

tries. This correlation is valid for flows where CaB � 1

and the inertial effects are negligible compared with the

surface tension and viscous effects: d/rh = 1.34 CaB
2/3,

where d is the liquid film thickness, rh is the hydraulic

radius and CaB is the Taylor bubble capillary number based

on the bubble velocity.

Aussillous and Quéré (2000) extended Bretherton’s

(1961) correlation to high capillary numbers in capillary

tubes:

d
rh

¼ 1:34Ca
2=3
B

1þ k � 1:34Ca
2=3
B

: ð13Þ

The coefficient 1.34 was derived by Bretherton (1961)

and the coefficient k = 2.5 was found empirically

(Aussillous and Quéré 2000). Thus, the liquid film

thickness tends toward a maximum value of 1/2.5 * 0.4

as the capillary number increases.

Fig. 9 Dimensionless bubble length versus ratio air/liquid flow rates.

Dotted line relative bubble length in the case of a zero liquid film

thickness. Straight line Experimental fitting from averaged values of

coefficients k1 and k2 using the van Steijn representation (Eq. 11).

Dash dot dash line deviation of 5% from the experimental fitting
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In Fig. 10a, it can be seen that the liquid film thickness

obtained by the 2D axisymmetrical simulations is correctly

described by Eq. (13). In the 2D geometry, the liquid film

thickness increases with increasing capillary number,

however the asymptotic value at large capillary numbers is

higher than that obtained in tubes (1./2.2 * 0.455).

Therefore, an equation similar to Eq. (13) can be proposed

for 2D geometries, whereby the coefficient k = 2.2. This

equation, with corresponding coefficient k, shows that

Bretherton’s (1961) correlation is found as the asymptotic

behaviour for low capillary numbers, while at higher cap-

illary numbers the liquid film thickness tends towards a

maximum value depending on the geometry. In square and

rectangular microchannels, the film thickness around the

bubble body varies due to the presence of the channel

corners (Han and Shikazono 2009b; Hazel and Heil 2002;

Liu and Wang 2008; Taha and Cui 2006; Wong et al.

1995). However, although the 3D aspects of the bubble

shapes are not considered in these 2D simulations, the

asymptotic behaviour of the liquid film is expected to be

the same and particularly in channels with a high aspect

ratio (i.e. wide shallow microchannels) where the shear rate

along the channel width is negligible compared with the

shear rate along the depth of the channel. These results are

in very good agreement with the theory and allow bubble

shapes to be roughly estimated so that the mesh for 3D

simulations, which are much more computationally

expensive, can be adapted to correctly capture the liquid

film in Taylor flow.

In addition to the increase in the liquid film thickness, a

flattening of the rear of the bubble and an elongation of the

nose of the bubble can be seen with increasing capillary

number in the simulated results as shown in Fig. 11a–c.

Such a loss of symmetry was also observed in the experi-

ments with sugarcane syrup solutions where the capillary

number is of the order of 10-2 and the liquid film is visibly

thick. Figure 11d shows the pressure field in the liquid film

and there is indeed no pressure gradient along the bulk of

the bubble, which statisfies the hypothesis of the stagnant

film.

The changes in the shape of the bubbles rear and nose

have also been observed in several other studies, including

planar cases (Giavedoni and Saita 1997), circular

Fig. 10 a Dimensionless liquid film thickness determined from

numerical simulations as a function of the capillary number. b Dimen-

sionless bubble velocities W = (UB - UTP)/UB versus the capillary

number

Fig. 11 Bubbles shapes obtained numerically under different condi-

tions: a CaB = 0.055, b CaB = 0.293, c CaB = 1.47, gas hold-up is

fixed aG * 0.25. d pressure field in the liquid film corresponding to

case (a): P decreases linearly from P0 ? 1000 (Pa), capillary pressure

jump, P remains constant along the bulk of the bubble, capillary

pressure jump, P decreases linearly to P0. Domain: lx 9 ly = 5 9 0.2

mm. Blue air, red liquid; the interface is distributed over about 3–4

meshes at the maximum elongation (tail and nose)
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capillaries (Fouilland et al. 2010; Gupta et al. 2009; Triplett

et al. 1999) and square channels (Liu and Wang 2008; Taha

and Cui 2006). This phenomenon can be understood from

the pressure drop across the bubble caps. In Bretherton’s

work (1961), the asymptotic behaviour of the pressure drop

at vanishing Ca was studied. It was found that the pressure

drop at the front cap of an axisymmetrical bubble is

Dpfront ¼ 2r
rh

1þ 3:72Ca
2=3
B

� �
and the pressure drop at the

rear cap is Dprear ¼ 2r
rh

1� 0:97Ca
2=3
B

� �
: From these rela-

tionships, it can be seen that the pressure drop at the front

cap increases with the capillary number while it decreases at

the rear cap. Even if this asymptotic behaviour can not be

used at higher capillary numbers (CaB [ 10-2), Giavedoni

and Saita (1997) and Hazel and Heil (2002) found similar

trends in 2D and rectangular channels, respectively, where

the pressure drop across the front tip of the bubble increases

with CaB.

4.4 Bubble velocities

Since the liquid film thickness obtained by the numerical

simulations in the visco-capillary regime is correctly

described by Eq. (13), the dimensionless bubble velocity W

can be deduced as the following, respecting the stagnant

film hypothesis:

W ¼ UB � UTP

UB

¼ 1� 1� d
rh

� �m

; ð14Þ

where m = 1 for 2D cases and m = 2 for tubes. Figure 10b

shows that both the 2D and axisymmetrical simulations are

in good agreement with the scaling laws obtained from the

liquid film thickness. The relationship for the evaluation of

bubble velocity, as first proposed by Bretherton (1961), is

also found at low capillary numbers (CaB \ 0.01) where

the liquid film is very thin: W = m 9 1.34 CaB
2/3.

In this work, the experiments were performed for a range

of low capillary numbers (CaB \ 0.01) and moderate Rey-

nolds numbers (1 \ ReB \ 100). Under these conditions,

the effects of inertia are not negligible compared with

our numerical simulations and the conditions studied by

Aussillous and Quéré (2000), which were both carried out in

the visco-capillary regimes (CaB [ 0.01 and ReB \ 1).

Since the Weber numbers of the experiments in this study are

much larger than those of the simulations and a simple model

like relation (13) is not applicable to such conditions, the

bubble velocity has been plotted versus the two-phase

superficial velocities. Figure 12a shows a linear increase in

the experimental bubble velocities with increasing two-

phase superficial velocity for the air–ethanol system. This

means that the liquid film is of more or less constant thick-

ness along the bubble body in our experiments, which is in

agreement with the results of Taha and Cui (2006) in square

capillaries at low capillary numbers (CaB � 1). The ratio of

the bubble velocity to the two-phase velocity is slightly

greater than unity, which is coherent with the stagnant film

hypothesis and suggests a thin liquid film. Similar results

about bubble velocities were reported in Yun et al.’s (2010)

study. Indeed, the liquid film between the bubble and the

microchannel walls in these experiments was indistin-

guishable. Figure 12b shows a similar graph, which com-

bines all of the bubble velocities measured experimentally

with those obtained by the 2D simulations. The results of the

2D numerical simulations appear to agree relatively well

with the experiments, although the bubble velocities increase

slightly faster than experimental bubble velocities. In addi-

tion to the fact that different effects dominate in the experi-

ments and the numerical simulations, this discrepancy is

certainly due to the fact that the lateral walls of the micro-

channel were not taken into account in the simulations.

Indeed, the lateral walls contribute to an increase in flow

resistance and dissipation, which results in a reduction of the

bubble velocity. 3D simulations are, therefore, necessary for

a more accurate comparison with the experiments.

Fig. 12 a Bubble velocity versus two-phase velocity for ethanol.

b Bubble velocity versus two-sphase velocity. Straight line UB = UTP

and Dash dot dash line UB ¼ 1:3� UTP
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It can also be pointed out that although the cross-sectional

area occupied by the liquid film should increase with

increasing capillary number (Bretherton 1961; Aussillous

and Quéré 2000), the capillary numbers in the experiments

were typically very low (CaB \ 0.01) and, therefore, the

bubble velocity should be approximately equal to the two-

phase superficial velocity. However, inertia is assumed to be

negligible in Bretherton’s (1961) and Aussillous and Quéré’s

(2000) works, which is not the case in our experiments at

moderate Reynolds numbers. It is, therefore, possible that the

Weber number has some effect on the liquid film thickness

and thus, the dimensionless bubble velocity. This was also

mentioned by Aussillous and Quéré (2000) for conditions in

the visco-inertial regimes. Even if the effective dependency

of the liquid film thickness or bubble velocity upon the

Weber number is not clear at present, these results highlight

its possible effects on the hydrodynamics of Taylor bubbles

in capillary-inertial regimes.

5 Conclusions

This study has focused on the generation and characteris-

tics of gas–liquid Taylor flow formed in T-junction mi-

crochannels. Visualisation experiments using a high speed

camera and 2D Volume of Fluid simulations have been

performed to study the effects of fluid properties and flow

conditions on bubble and slug lengths, liquid film hold-up

and bubble velocities. As earlier described by Garstecki

et al. (2006) and then by van Steijn et al. (2007), the

bubble generation process can be partitioned into several

steps and the bubble and slug lengths are a function of the

gas and liquid flow rates and independent of fluid proper-

ties such as the viscosity and surface tension. This study

shows however that a single scaling law for all gas–liquid

flows generated in the T-junction is not always possible.

The bubble and slug lengths are shown not to depend solely

on the gas and liquid flow rates and suggest that the liquid

properties (such as wettability) and velocities are also

important under certain conditions. This work highlights

the effects of the competition between inertial forces and

capillarity on the leakage flow and thus on the bubble

break-up frequency, which have been negligible in previ-

ous studies in the literature due to the low Reynolds

numbers employed. Indeed, increasing the inertia of the

fluid system results in increased leakage flow and conse-

quently to a decreased frequency of bubble formation.

Bubble and slug lengths are, therefore, increased. The

results of numerical simulations were found to be in rela-

tively good agreement with the experiments despite their

2D nature. They allow the dimensionless bubble lengths to

be predicted relatively well and provide a good estimation

of the liquid film thickness in the case of high aspect ratio

microchannels, which is difficult to measure experimen-

tally. Furthermore, the 2D simulations allow the stagnant

film hypothesis used in modelling to be confirmed. 3D

simulations are underway, however, these are very com-

putationally expensive. They will allow a more accurate

comparison with the experimental results since the effect of

the lateral wall of the microchannel is suspected to con-

tribute to the bubble dynamics. They will also provide

more detailed information on the liquid film thickness

around the bubbles.
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