

UNIVERSITI PUTRA MALAYSIA

PROPERTIES OF OIL PALM (ELAEIS GUINEENSIS JACQ.) EMPTY FRUIT BUNCH FIBRES-POLYPROPYLENE COMPOSITES

GLORIA A. MANARPAAC

FH 2001 10

PROPERTIES OF OIL PALM (*ELAEIS GUINEENSIS* JACQ.) EMPTY FRUIT BUNCH FIBRES-POLYPROPYLENE COMPOSITES

Ву

GLORIA A. MANARPAAC

Thesis Submitted in Fulfilment of the Requirement for the Degree of Doctor of Philosophy in the Faculty of Forestry Universiti Putra Malaysia

June 2001

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

PROPERTIES OF OIL PALM (*ELAEIS GUINEENSIS* JACQ.) EMPTY FRUIT BUNCH FIBRES-POLYPROPYLENE COMPOSITES

By

GLORIA A. MANARPAAC

June 2001

Chairman: Jalaluddin Harun, Ph. D.

Faculty: Forestry

The technical viability of using oil palm empty fruit bunch (EFB) fibres as fillers and/or reinforcements to polypropylene was investigated. The effects of moisture content (MC), fibre size, fibre loading, concentration of maleated polypropylene (MAPP), modes of electron beam (EB) irradiation, types and concentration of reactive additives (RAs) on the physical, chemical, morphological, mechanical, dimensional stability and thermal properties of EFB-PP composites were investigated.

EFB-PP composites were prepared from thermomechanically pulped EFB fibres and PP by melt-mixing them using a Brabender Plastic Corder PL-2000-6 at 180°C and compressing them in a hot-and-cold press machine. Properties of the composites were tested using ASTM standards. Results were subjected to Analysis of Variance (ANOVA) and Student-Newman-Keuls (S-N-K) multiple comparison of means.

The influence of the initial MC and sizes of EFB fibres on the properties of the EFB-PP composites were not so significant, although, the mixing torque of

blends were affected where higher MC and longer fibres gave higher mixing torque. The effects of different fibre loadings and concentrations of MAPP, however, were noteworthy. The mixing torque increased with increasing fibre loading up to 50% fibres then decreasing at higher loadings. The melt flow rate (MFR) Of the composites reduced extensively with the addition of fibres and no flow was observed above 50% fibres. The density and MC of the composite boards also increased with increasing fibre content. The tensile and flexural strengths of the composites decreased with increasing fibre loading along with elongation at break and hardness while tensile and flexural modulus increased significantly. Their impact strengths increased for notched specimens while it decreased for the unnotched specimens. Water absorption and thickness swelling increased tremendously with the addition of more EFB fibres in the composites. Addition of MAPP caused a reduction in the mixing torque of the composite blends and an increase in the MFR of the composite melts. Two-percent MAPP, the optimum level of coupling agent addition, caused an increase in the density and MC of the boards, reduced fibre breakage during compounding, and improved most of the properties.

EB radiation and addition of RAs caused reduction in the mixing torque of composite blends, increase in gel content and produced better interaction between the PP matrix and EFB fibres. Irradiation caused an increase in MFR while addition of RAs caused reduction in MFR of the composite melts. Among the four techniques of irradiation tested, irradiating PP alone resulted in optimum mechanical properties. Among the RAs tested, trimethylol propane triacrylate (TMPTA) performed the best compared to hexadiol diacrylate (HDDA) and 2-ethylhexyl acrylate (EHA), and conventional additive,

MAPP. One percent of the RA was sufficient to enhance all the properties of the EFB-PP composites evaluated in the study.

Moreover, incorporation of EFB fibres affected the thermal properties of EFB-PP composites. Thermogravimetric analysis (TGA) revealed that the addition of EFB fibres lowered the thermal degradation temperature of the EFB-PP composites with increasing fibre loading. Dynamic mechanical analysis (DMA) showed that the EFB-PP composites with higher fibre loading have higher storage modulus (E') and loss modulus (E''). It was also determined that the E'' obtained from the DMA technique was comparable to the flexural modulus determined by the 3-point bending test. Tan δ curves of the composites indicated that EFB fibres had insignificant effect on the damping properties of the composites. Addition of MAPP enhanced the tan δ values indicating the improvement in the interphase. The tan δ for the irradiated EFB-PP composites with the different RAs decreased with increasing degree of cross linking. The α -peak shifted to higher temperature with increasing functionality of RAs.

The incorporation of untreated EFB fibres to PP generally lowered the properties of the resultant composite, except for modulus, due to the incompatibility of the highly polar EFB fibres and the apolar PP. However, treatments such as addition of MAPP, EB radiation treatment and addition of RAs improved the interfacial strength and thus enhanced properties of the composites as displayed by the mechanical and thermal properties evaluated.

iv

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi untuk ijazah Doktor Falsafah

SIFAT KOMPOSIT GENTIAN DARI TANGKAI KOSONG KELAPA SAWIT (ELAEIS GUINEENSIS JACQ.)-POLIPROPILENA

Oleh

GLORIA A. MANARPAAC

Jun 2001

Pengerusi: Jalaluddin Harun, Ph.D.

Fakulti: Perhutanan

Kesesuaian teknikal dalam penggunaan gentian dari tandan kosong buah kelapa sawit (EFB) sebagai pengisi dan/atau penambah keteguhan kepada polipropilena (PP) telah dikaji. Secara khususnya, kesan kandungan lembapan (MC), saiz gentian, pemuatan gentian, konsentrasi polipropilena malea (MAPP), mod sinaran alur elektron (EB), jenis dan konsentrasi bahan tambahan reaktif (RAs) ke atas sifat fisikal, kimia, morfologi, mekanikal, kestabilan dimensi dan termal bagi komposit EFB-PP juga telah diteliti.

Komposit EFB-PP dihasilkan daripada gentian EFB dan PP melalui proses termomekanikal dengan melarut-campuran mereka menggunakan Brabender Plastic Corder PL-2000-6 pada suhu 180°C dan mampatkan dalam mesin penekan panas-sejuk. Kandungan komposit diuji menggunakan standard ASTM dan BS. Keputusan adalah bergantung kepada perbandingan mean melalui kaedah "Analysis of Variance" dan " Student-Newman-Keuls".

Pengaruh kandungan lembapan awal dan saiz gentian EFB pada sifat komposit EFB-PP didapati tidak ketara, walaupun terdapat kesan pada tork di

mana kandungan lembapan tinggi dan gentian yang panjang menghasilkan tork yang lebih tinggi. Bagaimanapun, kepelbagaian pemuatan gentian dan kandungan MAPP memberikan kesan yang ketara. Tork bertambah dengan penambahan pemuatan gentian sehingga 50% gentian, kemudian menurun apabila pemuatan gentian meningkat. Kadar aluran percampuran (MFR) ketara berkurangan dengan penambahan gentian, dan tiada pengaliran diperhatikan pada pemuatan gentian yang melebihi 50%. Ketumpatan dan kandungan lembapan papan komposit juga bertambah dengan penambahan kandungan gentian. Kekuatan tegangan dan lenturan menurun dengan penambahan pemuatan gentian disertai dengan pemanjangan pada titik kegagalan dan kekerasan. Modulus tegangan dan lenturan bertambah di aras yang tinggi. Kesan kekuatan meningkat pada sampel berlekuk manakala menurun bagi sampel yang tidak berlekuk. Kadar serapan air dan ketebalan pembengkakan meningkat secara langsung apabila gentian EFB ditambah. Penambahan MAPP mengakibatkan pengurangan dalam tork untuk campuran komposit tetapi mengakibatkan peningkatan bagi kadar peleburan komposit MFR. Dengan dua peratus MAPP, ia mengakibatkan kenaikan ketumpatan dan kandungan lembapan pada papan komposit, menurunkan patahan gentian semasa pencampuran, serta memperbaiki kebanyakan sifat yang dikaji; namun begitu penambahan yang berterusan tidak memberikan kesan yang berbeza.

Radiasi EB dan penambahan RAs menyebabkan pengurangan tork bagi campuran komposit, peningkatan kandungan jel dan menghasilkan interaksi yang lebih baik antara matrik PP dan gentian EFB. Sinaran mengakibatkan

vi

peningkatan dalam MFR, manakala penambahan RAs mengakibatkan pengurangan nilai bagi kadar peleburan komposit MFR. Di antara empat teknik sinaran yang dikaji, sinaran terhadap PP menghasilkan sifat mekanikal yang terbaik. Di antara RAs yang dikaji, trimetilol propan triacrilat (TMPTA) menunjukkan prestasi terbaik dibandingkan dengan hexan diol diacrilat (HDDA) dan 2-etilhexil acrilat (EHA) serta bahan tambahan biasa MAPP. Ini disebabkan oleh kadar tindakbalas yang lebih tinggi yang dirangsangkan oleh TMPTA jika di bardingkan dengar RAs yang lain. Kadar ini telah lebih menperkukuhkan pengikatan melintang yang terjadi.

Tambahan lagi, pangabungan gentian EFB juga mempengaruhi ujikaji sifat termal komposit EFB-PP. Penambahan gentian EFB mengurangkan suhu kemerosotan termal komposit EFB-PP secara langsung dengan peningkatan muatan gentian. Analisa mekanical dinamik (DMA) menunjukkan komposit EFB-PP yang mengandungi pemuatan gentian EFB yang lebih tinggi mempunyai penyimpanan dan kehilangan modulus yang lebih tinggi. Kajian juga menunjukkan, modulus penyimpanan yang diukur dengan menggunakan teknik DMA juga didapati setaraf dengan modulus lenturan yang diukur dengan ujian lentur 3 titik. Lengkungan tan δ komposit menunjukkan gentian EFB tidak memberi kesan ketara kepada sifat "damping" komposit. Penambahan MAPP meninggikan nilai tan δ mengambarkan pembaikan dalam "antara fasa". Tan δ bagi komposit EFB-PP yang telah disinarkan yang mempunyai kandungan RAs yang berbeza berkurangan dengan peningkatan tahap pengikatan melintang. Kemuncak α berpindah ke suhu yang lebih tinggi berikutan peningkatan tahap fungsi RAs.

Vİİ

Penambahan gentian EFB yang tidak dirawat ke PP biasanya mengurangkan sifat komposit yang dihasilkan. Ini adalah keran gentian EFB yang berpolar tinggi adalah tidak secocok dengan PP yang tidak berpolar. Rawatan seperti penambahan MAPP, EB dan penambahan RAs boleh memperbaiki kekuatan antarafasa dan mempertingkatkan sifat-sifat mekanikal dan termal komposit yang dihasilkan.

ACKNOWLEDGMENTS

The author wishes to express her gratitude to the members of her supervisory committee, Dr. Jalaluddin Harun (Chairman), Dr. Paridah Md Tahir, Prof. Dr. Wan Zin Wan Yunus, Dr. Mohd Nor Mohd Yusoff and Dr. Khairul Dahlan Zaman for their guidance, suggestions, comments and assistance during the study. Heartfelt thanks are also due to Dr. Mohd Ariff Jamaludin, the chairman of her examination committee, and to Prof. Roger M. Rowell, her independent examiner, for taking their time to go through the manuscript and gave constructive comments and suggestions.

Grateful acknowledgments are due to the Malaysian Institute of Nuclear Technology (MINT) Research for their accommodating attitude in the use of their facilities in the preparation and testing of composite samples, to the Forest Research Institute Malaysia (FRIM) for their facilities in the preparation of TMP fibres, to the Universiti Teknologi Mara (UTM) and to the University Putra Malaysia (UPM) Chemistry and Wood Chemistry Laboratories for some sample testings. Words are not enough to thank Mr. Wan, Mr. Two, Kamarulzamman, and Chantara of MINT, to Jamal of UTM, Harmaen of UPM and Mr. Yong of FRIM for their assistance during the conduct of the experiments.

Special gratitude is due to the Mindanao State University, Philippines and her colleagues at the MSU-College of Forestry and Environmental Studies for granting her study leave and to the Malaysian Government for financial support through an IRPA project.

Sincere thanks to the Filipino community in UPM, to Ging-ging, Meoux & Ate Eva, Edward & Hazel, Dondi, Adelle and Zach, Barbie and En-en, Manny, Emil, Ate Glo and Linda who in one way or another extend their helping hands during her stay in Malaysia.

Her heartfelt gratitude to her friends Liew and Wong who were always ready to listen to her numerous complains and ever ready to extend helping hands in whatever and whenever need is necessary; to Ai Lean and Ben who always tried to push her through; to Noridah, Astinah, John Keen and Meme who were always around for her; and to Ee Ding who encourage her to go on especially when things seemed to be out of hand.

Special thanks is due to Sister Lydia and EVB for editing the manuscript, to Nelia, Alona and Glenn who were her sources of encouragement, to GP and Jet who were her inspirations, to her numerous "friends without faces" all over the world who were always there giving her breaks during boring and trying hours.

Unfathomable thanks to her brothers and sisters in Christ, both in Malaysia and in Philippines, to Pastor KK Sinnadurai & Family, to the Kajang Assembly of God (KAOG) church, to the Country Height's Cell Group, to her Friday Bible Study Group and to the KAOG Student Fellowship who constantly prayed and interceded for her. And above all, to JESUS CHRIST, her Lord and Saviour, who made all things possible.

I certify that an Examination Committee met on 8th June 2001 to conduct the final examination of Gloria A. Manarpaac on her Doctor of Philosophy thesis entitled "Properties of Oil Palm (*Elaeis guineensis* Jacq.) Empty Fruit Bunch Fibres-Polypropylene Composites" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

MOHD ARIFF JAMALUDIN, Ph. D. Lecturer Faculty of Forestry Universiti Putra Malaysia (Chairman)

JALALUDDIN HARUN, Ph.D. Lecturer Faculty of Forestry Universiti Putra Malaysia (Member)

PARIDAH MD TAHIR, Ph.D. Lecturer Faculty of Forestry Universiti Putra Malaysia (Member)

WAN ZIN WAN YUNUS, Ph.D. Professor/Dean Faculty of Environmental Science Universiti Putra Malaysia (Member)

MOHD NOR MOHD YUSOFF, Ph.D. Director Chemistry Division Chief Forest Research Institute of Malaysia (Member)

KHAIRUL DAHLAN ZAMAN, Ph.D. Director Radiation Division Malaysian Institute of Nuclear Technology Research (Member)

ROGER M. ROWELL, Ph. D. Professor/Project Leader Modified Lignocellulosic Materials Forest Products Laboratory Forest Service, USDA Madison, Wisconsin, USA (Independent Examiner)

MOHD GHAZALI MOHAYIDIN, Ph.D. Professor Deputy Dean of Graduate School Universiti Putra Malaysia

Date:

This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy.

2

AINI IDERIŠ, Ph.D. Professor Dean of Graduate School Universiti Putra Malaysia

Date: 12 JUL 2001

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Putra Malaysia or other institutions.

and Vm GLORIA A. MANARPAAC

Date: 12 June 2001

TABLE OF CONTENTS

ABS ACK APP DEC LIST LIST	ROVA LARA OF T OF F	LEDGMI L SHEE TION FO ABLES IGURES	ETS DRM	Page ii v ix xi xiii xviii xviii xx xxvi
CHA	PTER	2		
1	1.1	Objecti	TON ound of the Study ves of the Study sation Chapters	1 1 5 6
2	LITEF 2.1		REVIEW ial Production and Applications of Natural	9
		Fibre-F	Plastic Composites	9
			oplastic Matrix	11
	2.3		l Fibres	13
		2.3.1	Sources and Availability Strength Properties	13
		2.3.2	Strength Properties	15
			Fibre Geometry	15
		2.3.4 2.3.5	Fibre Surface	17
	2.4		Moisture Content (MC) of Fibres	18 19
	2.4	2.4.1	•	19
		2.4.1		20
		2.4.2		20
		2.4.0	and Processing Aids	23
		2.4.4	Radiation Processing	24
	2.5		es of Natural Fibre-Plastic Composites (NFPC)	33
		2.5.1	Some Factors Affecting the Mechanical Properties	
			of NFPC	33
		2.5.2	Dimensional Stability of NFPC	40
		2.5.3	Thermal Properties of NFPC	41
	2.6	Summa	ary of Literature Review	43
3	CHA	RACTER	RISATION OF EFB FIBRES	46
	3.1	Charac	cterisation Techniques	46
		3 .1. 1	Determination of Fibre Geometry and Structures	47
		3.1.2	Chemical Composition	49
		3.1.3	Thermal Analysis	52

3.1.4Bulk Density Determination523.1.5Moisture Content Determination53

	3.2	Materia	als and Methods	53
		3.2.1		53
		3.2.2	Fibre Size Fractionation	54
		3.2.3	Fibre Dimensions	54
		3.2.4	Scanning Electron Microscopy	55
		3.2.5	Proximate Chemical Analysis of EFB Fibres	55
		3.2.6	FTIR Spectroscopy	56
		3.2.7	Thermal Analysis	56
		3.2.8	Bulk Density Determination	57
		3.2.9	Moisture Content (MC) Determinations	57
	3.3	Result	ts and Discussions	57
		3.3.1	Geometry and Structures of EFB Fibres	58
		3.3.2		67
		3.3.3		73
		3.3.4		75
		3.3.5	Moisture Content (MC) of TMP EFB Fibres	76
	3.4	Summa	ary of EFB Fibre Characteristics	77
4	CH		RISATION OF EFB-PP COMPOSITES	79
	4.1	Charac	cterisation Techniques	79
		4.1.1	Blend Analysis	79
		4.1.2	Density Determination	80
		4.1.3	Moisture Content Determination	80
		4.1.4	Surface Appearance of Composites	81
		4.1.5	Fractured Surface Analysis	81
		4.1.6	FTIR Spectroscopy Analysis	81
		4.1.7	Gel Fraction Analysis	82
		4.1.8	Fibre Breakage/Damage Analysis	83
	4.2	Materia	Is and Methods	84
		4.2.1	Polypropylene Matrix	84
		4.2.2		84
		4.2.3		86
		4.2.4		87
		4.2.5		88
		4.2.6	Board MC Determination	89
		4.2.7	Fractured Surface Analysis	89
		4.2.8	FTIR Spectroscopy	89
		4.2.9	Xylene Extraction of Fibres	90
		4.2.10	Gel Fraction Determination	90
		4.2.11	Fibre Breakage/Damage Determination	91
	4.3		and Discussions	92
		4.3.1	Blend Properties	92
		4.3.2	Density of EFB-PP Composites	100
		4.3.3	Moisture Content of EFB-PP Composites	103
		4.3.4	External Appearance of Composites	104
		4.3.5	Morphology of Composites' Fractured Surfaces	109
		4.3.6	FTIR Spectra of EFB-PP Composites	112
		4.3.7	Gel Fraction	116
	A 4	4.3.8	Fibre Breakage and Damage	119
	4.4	Summa	ary of the Characteristics of EFB-PP Composites	127

5			AL AND DIMENSIONAL STABILITY PROPERTIES	
	OF I	EFB-PP	COMPOSITES	130
	5.1	Proper	ties of Natural Fibre Plastic Composites (NFPC)	130
			Tensile Properties of NFPC	131
		5.1.2	Flexural Properties	132
		5.1.3	Impact Strength	133
		5.1.4	Hardness	134
		5.1.5	Dimensional Stability Properties	134
	5.2		als and Methods	135
			EFB Fibres and PP Matrix	135
			Compounding and Composite Board Preparation	135
		5.2.3	o 1	136
			Test Conditions	139
			Data Analysis	139
	5.3		s and Discussions	141
		5.3.1		
		500	of EFB-PP Composites	141
		5.3.2	-	4.47
		5 00	EFB-PP Composites	147
		5.3.3		455
		5.3.4	EFB-PP Composites	155
		5.5.4	Effects of MAPP on the Properties of EFB-PP Composites	168
	5.4	Summe	ary of the Mechanical and Dimensional Stability	100
	5.4		ties of EFB-PP Composites	177
		Порег		177
6	ELEC	TRON-E	BEAM RADIATION PROCESSING OF EFB-PP	
	COMF	POSITES	S	179
	6.1	Charac	cterisation Techniques	179
			Blend Characteristics	179
		6.1.2	Fractured Surface Analysis	180
		6.1.3	Gel Fraction Determination	180
		6.1.4	Mechanical and Dimensional Stability Properties	180
	6.2		als and Methods	181
		6.2.1	The Fibres	181
		6.2.2	The Matrix	181
		6.2.3	Irradiation	181
		6.2.4	Mixing, Compounding and Preparation of	
			Composite Samples	182
		6.2.5	Modes of Irradiation	182
		6.2.6	Reactive Additives	183
		6.2.7	Blend Characterisation	184
		6.2.8	Fractured Surface Analysis	184
		6.2.9 6.2.10	Gel Fraction Determination	184
			Determination of Properties	184 184

	6.3		s and Discussions	185
		6.3.1	Mixing Torque of Irradiated EFB-PP Composite Blends	185
		6.3.2	Melt Flow Rate of the Irradiated EFB-PP	400
		622	Composite Melts	188
		6.3.3	Morphology of the Fractured Surfaces of the Irradiated EFB-PP Composites	190
		6.3.4	Gel Content of the Irradiated EFB-PP Composites	190
		6.3.5		190
			Composites	199
	6.4		ary on the Effects of EB-Radiation on the	
		Charac	teristics and Properties of EFB-PP Composites	222
7	THE	RMAL P	ROPERTIES OF EFB-PP COMPOSITES	225
	7.1	Therma	al Analysis Techniques	226
		7.1.1	Thermogravimetric Analysis (TGA)	227
		7.1.2		228
	7.2		als and Methods	231
		7.2.1		231
		7.2.2		232
	7.3		and Discussions	234
			Thermal Degradation and Stability	235
		7.3.2		237
	7.4		ary of the Thermal Properties of EFB-PP	
		Compo	sites	254
8			INS AND RECOMMENDATIONS FOR	
	FUF	THER S	TUDIES	256
	8.1	Conclu	isions	256
	8.2	Recor	nmendations for Further Studies	260
REF	EREN	ICES		263
VITA				

LIST OF TABLES

Table		Page
3.1	Average Length, Width and Aspect Ratio of the Fibres from the Different Size Fractions	62
3.2	Chemical Composition of TMP and Crude EFB Fibres	68
3.3	Characteristic IR Peaks for EFB TMP Fibres	71
3.4	Weight Loss of EFB Fibres at Various Temperatures	74
3.5	Moisture Content Attained by the EFB Fibres When Exposed to Different Conditions	77
4.1	Average Lengths, Widths and Aspect Ratios of EFB Fibres Extracted from Composites with Different Fibre Loading and Initial Fibre Sizes	119
4.2	Fibre Length Distribution Index	120
5.1	Physical and Mechanical Properties of EFB-PP Composites with Fibres of Different Moisture Content	142
5.2	Summaries of the ANOVA on the Properties of EFB-PP Composites with Fibres of Different Moisture Content	143
5.3	Physical and Mechanical Properties of EFB-PP Composites with Fibres of Different Initial Sizes	148
5.4	Summaries of the ANOVA on the Properties of EFB-PP Composites with Fibres of Different Sizes	149
5.5	Properties of EFB-PP Composites with Different Fibre Loadings	156
5.6	Summaries of the ANOVA on the Properties of EFB-PP Composites Prepared with Different Fibre Loadings	158
5.7	Properties of EFB-PP Composites with Different Concentrations of MAPP	169
5.8	Summaries of the ANOVA on the Properties of EFB-PP Composites with Different Concentrations of MAPP	170
6.1	Modes of Irradiation Used in the Study	182
6.2	List of Reactive Additives Used in the Study	183
6.3	Properties of the EFB-PP Composites Prepared Using Different Modes of Irradiation	200

6.4	Summary of the ANOVA on the Properties of the EFB-PP Composites Prepared Using Different Modes of Irradiation	201
6.5	Properties of EFB-PP Composites with Different RAs and MAPP of Different Concentrations	208
6.6	Summary of the ANOVA on the Properties of EFB-PP Composites with Monomers and MAPP of Different Concentrations	209
6.7	Summary of the ANOVA on the Properties of EFB-PP Composites with RAs of Different Concentrations	215
7.1	Percentage Weight Losses in the EFB-PP Composites at Different Temperatures	236
7.2	Dynamic and Static Modulus of EFB-PP Composites at 27°C	241

LIST OF FIGURES

Figure		Page
2.1	Reaction Mechanism of MAPP with the Surface of the Lignocellulosic Fibre	22
2.2	Cellulose Chain Structure Showing Two β-D Glucopyranose Units	26
2.3	Modes od Free Radical Generation Into Irradiated Cellulosic Fibre: (a) Hydrogen and Hydroxyl Abstraction, (b) Cycle Opening or (c) Chain Scission	27
3.1	(a) Fresh Oil Palm Empty Fruit Bunches, (b) EFB Fibre Strands, (c) Individual Fibre Strand	59
3.2	Percent Recovery for the Different Fibre Size Fractions	60
3.3	Relative Sizes of EFB Individual and Fibre Bundles from the Different Fractions: (a) 0.5-1 mm, (b) 1-2mm, and (c) >2 mm (Magnification: 20x taken Using Image Analyser)	61
3.4	Length and Aspect Ratio Distributions of the Different EFB Fibre Fractions: (a & b) 0.5-1 mm, (c & d) 1-2mm, and (e & f) >2 mm	63
3.5	SEM Micrographs: (a) Crude EFB Fibre Bundles, (b) TMP EFB Fibre Bundles (Magnification: 20x)	65
3.6	Surface Topography of EFB Fibres: (a) Crude Fibre and (b) TMP Fibre (Magnifications: 150x)	66
3.7	The FTIR Absorption Spectra of (A) Crude EFB Fibre, (B) TMP EFB Fibre, (C) Lignin, (D) Holocellulose and, (E) α -cellulose	70
3.8	TGA/DTA/DTG Curves for EFB Fibres	70 73
3.9	Bulk Density of TMP EFB Fibres and Fibre Bundles	76
4.1	Typical Torque versus Time Curve	93
4.2	Average Torque Values for EFB-PP Composite Blends with Different Fibre Loading	95
4.3	Average Torque Values for EFB-PP Composites Blends with Fibres of Different Moisture Content	96
4.4	Average Torque Values for Composite Blends with Fibres of Different Initial Sizes	97

4.5	Average Torque Values for EFB-PP Composite Blends with Different Concentrations of MAPP	98
4.6	Melt Flow Rate of EFB-PP Composites with Different Fibre Loadings	99
4.7	MFR of EFB-MAPP-PP (50:x:50-x %w/w) Composites with Different Concentrations of MAPP	100
4.8	Densities of EFB-PP Composites with Different Fibre Loadings	101
4.9	Density of EFB-PP Composites with Different Concentrations of MAPP	102
4.10	Moisture Content of EFB-PP Composites with Different Fibre Loadings	103
4.11	Moisture Content of EFB-MAPP-PP (50:x:50-x %w/w) Composites with Different Concentrations of MAPP	104
4.12	Surface Appearance of EFB-PP Composites: (a) 50% Fibre Loading with Continuous Matrix and (b) 80% Fibre Loading with Discontinuous Matrix (Magnifications: 100x)	105
4.13	External Appearance of EFB-PP Composites with Different Fibre Loading: (a) 20% Fibres, (b) 40% Fibres, (c) 60% Fibres and (d) 80% Fibres	107
4.14	EFB-PP Composite (a) 50% Fibre Loading Without MAPP and (b) 50% Fibre Loading With 2% MAPP	108
4.15	Fractured Surfaces of Untreated EFB-PP Composites: (a, b & c) Fibre Pull-out, Holes and Fibre Ends and (d) Embedded EFB Fibre in the PP Matrix (Magnifications: a, b & c - 100x, d- 200x)	109
4.16	(a) Fractured Surface of an EFB-PP Composite with 2% MAPP and (b) an Embedded EFB Fibre in the Composite (Magnification: a - 100x and b - 400x)	111
4.17	FTIR Spectra of (A) TMP EFB Fibre, (B) Unfilled PP, (c) Synthesised Spectrum of PP and EFB Fibres, and (D) EFB-PP Composite	112
4.18	FTIR Spectra of (A) TMP EFB Fibres, (B) Unfilled PP, (C) EFB- PP (50:50 %w/w) Composite Without MAPP, (D) MAPP and (E) EFB-PP (50:50 %w/w) Composite with MAPP	114
4.19	Targeted and Actual Fibre Content of the EFB-PP Composites	117

4.20	Gel Fraction of the EFB-PP Composites with Different Concentrations of MAPP	118
4.21	Fibre Length Distributions of the Original 0.5-1 mm EFB Fibres and the Extracted Fibres from the Resultant EFB-PP Composites with Different Fibre Loadings: (a) Original Fibre, (b) 20%, (c) 40%, (d) 50%, (e) 60% and (f) 80% Fibre Loading	122
4.22	Fibre Length Distributions of the Original 1-2 mm EFB Fibres and the Extracted Fibres from the Resultant EFB-PP Composites with Different Fibre Loadings: (a) Original Fibre, (b) 20%, (c) 40%, (d) 50%, (e) 60% and (f) 80% Fibre Loading	123
4.23	Fibre Length Distribution for Original >2 mm EFB Fibres and the Extracted Fibres from the Resultant EFB-PP Composites with Different Fibre Loadings: (a) Original Fibre, (b) 20%, (c) 40%, (d) 50%, (e) 60% and (f) 80% Fibre Loading	124
4.24	Fibre Length Distributions of the (a) Original 1-2 mm EFB Fibres and Fibres in EFB-PP Composites (b) with 2% MAPP and (c) without MAPP	125
4.25	EFB Fibres Embedded in the EFB-PP Composites showing: (a) intact fibre at 50% fibre loading, (b) severely damaged fibre at 80% fibre loading,(c) and (d) defibrillated fibres (Magnification: $a\&b - 100x$, $c\&d - 1000x$)	126
5.1	Tensile Modulus of EFB-PP Composites with Fibres of Different Moisture Content	144
5.2	Elongation at Break of the EFB-PP Composites with Fibres of Different Moisture Content	145
5.3	Water Absorption of EFB-PP Composites with Fibres of Different Moisture Content	146
5.4	Flexural Strength of EFB-PP Composites Prepared from Fibres of Different Sizes	150
5.5	Flexural Modulus of EFB-PP Composites Prepared from Fibres of Different Sizes	151
5.6	Hardness of EFB-PP Composites Prepared from Fibres of Different Sizes	152
5.7	Water Absorption of EFB-PP Composites Prepared from Fibres of Different Sizes	153
5.8	Flexural and Tensile Strengths of EFB-PP Composites with Different Fibre Loadings	158

5.9	Flexural and Tensile Modulus of EFB-PP Composites with Different Fibre Loading	161
5.10	Notched and Unnotched Impact Strengths of EFB-PP Composites with Different Fibre Loadings	163
5.11	Hardness of EFB-PP Composites with Different Fibre Loadings	165
5.12	Elongation at Break of EFB-PP Composites with Different Fibre Loadings	166
5.13	Thickness Swelling and Water Absorption of EFB-PP Composites with Different Fibre Loadings	168
5.14	Flexural and Tensile Strengths of EFB-PP Composites with Different Concentrations of MAPP	171
5.15	Flexural and Tensile Moduli of EFB-PP Composites with Different Concentrations of MAPP	172
5.16	Notched and Unnotched Izod Impact Strengths of EFB-PP Composites with Different Concentrations of MAPP	173
5.17	Thickness Swelling and Water Absorption of EFB-PP Composite with Different Concentrations of MAPP	174
6.1	Average Torque Values for Composite Blends Irradiated Through Different Modes	186
6.2	Average Torque Values for EFB-PP Composite Blends Treated with EB Radiation and Reactive Additives	187
6.3	MFR of EFB-PP Composites Treated with EB Radiation Through Different Modes	189
6.4	MFR of Irradiated EFB-PP Melts with Different RAs	190
6.5	Fractured Surfaces of EFB-PP Composites Treated with EB Radiation Using Different Modes: (a) No Radiation, (b) with Irradiated PP, (c) with Irradiated EFB Fibres and, (d) with Both PP&EFB Fibres Irradiated (Magnifications: 150x to 160x)	191
6.6	Fractured Surface of Irradiated EFB-PP Composite with 2% Monomer RAs: (a) EHA, (b) HDDA, and (c) TMPTA (Magnifications: 200x)	194
6.7	Gel Content of EFB-PP (50:50 %w/w) Composites Irradiated Through Different Modes	195

6.8	Gel Content of Irradiated EFB-PP (50:50 %w/w) Composites with Different RAs of Different Concentrations	197
6.9	Flexural and Tensile Strengths of EFB-PP Composites Irradiated Through Different Modes	202
6.10	Tensile Modulus of EFB-PP Composites Irradiated Through Different Modes	203
6.11	Hardness of EFB-PP Composites Irradiated Through Different Modes	204
6.12	Impact Strength of EFB-PP Composites Irradiated Through Different Modes	205
6.13	Thickness Swelling and Water Absorption of EFB-PP Composites Irradiated Through Different Modes	206
6.14	Tensile Strength of EFB-PP Composites with Different Monomers of Different Concentrations	210
6.15	Flexural Modulus of EFB-PP Composites with Different Monomers of Different Concentrations	211
6.16	Tensile Modulus of EFB-PP Composites with RAs of Different Concentrations	211
6.17	Elongation at Break of EFB-PP Composites with RAs of Different Concentrations	212
6.18	Hardness of EFB-PP Composites with RAs of Different Concentrations	213
6.19	Water Absorption of EFB-PP Composites with RAs of Different Concentrations	214
6.20	Tensile Strength of EFB-PP Composites with Different Concentrations of Monomers	216
6.21	Tensile Modulus of EFB-PP Composites with Different Concentrations of Monomers	217
6.22	Elongation at Break of EFB-PP Composites with Different Concentrations of Monomers	218
6.23	Hardness of EFB-PP Composites with Different Concentrations of Monomers	219
6.24	Impact Strength of EFB-PP Composites with Different Concentrations of Monomers	220

