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Abstract  

The aim of this study was to computationally model, in an unsupervised manner, a manifold of symmetry 

variations in normal brains, such that the learned manifold can be used to segment brain tumors from 

magnetic resonance (MR) images that fail to exhibit symmetry. An unsupervised brain tumor segmentation 

method, named as symmetric driven generative adversarial network (SD-GAN), was proposed. SD-GAN 

model was trained to learn a non-linear mapping between the left and right brain images, and thus being 

able to present the variability of the (symmetry) normal brains. The trained SD-GAN was then used to 

reconstruct normal brains and to segment brain tumors based on higher reconstruction errors arising from 

their being unsymmetrical. SD-GAN was evaluated on two public benchmark datasets (Multi-modal Brain 

Tumor Image Segmentation (BRATS) 2012 and 2018). SD-GAN provided best performance with tumor 

segmentation accuracy superior to the state-of-the-art unsupervised segmentation methods and performed 

comparably (less than 3% lower in Dice score) to the supervised U-Net (the most widely used supervised 

method for medical images). This study demonstrated that symmetric features presenting variations (i.e., 

inherent anatomical variations) can be modelled using unannotated normal MR images and thus be used in 

segmenting tumors. 

Unsupervised Brain Tumor Segmentation using 

a Symmetric-driven Adversarial Network 

Xinheng Wua, Lei Bia,*, Michael Fulhama,b, David Dagan Fenga,c, Luping Zhoue, and Jinman Kima,* 

a School of Computer Science, University of Sydney, NSW, Australia 

b Department of Molecular Imaging, Royal Prince Alfred Hospital, NSW, Australia 

c Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China 

e School of Electrical and Information Engineering, University of Sydney, NSW, Australia 
 

* Corresponding authors: lei.bi@sydney.edu.au and jinman.kim@sydney.edu.au  

mailto:lei.bi@sydney.edu.au
mailto:jinman.kim@sydney.edu.au


> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

2

 

KEYWORDS: Generative Adversarial Network, Symmetry, Unsupervised Anomaly Detection, 

Brain MRI, Deep Learning. 
 

1 INTRODUCTION 

Brain tumor segmentation is fundamental for clinical decision support systems (CDSS) where the 

paradigm is that CDSSs can provide a second opinion to assist image interpretation. In clinical workflows 

the usual approach is to segment tumors manually. Manual segmentation is tedious, time-consuming and 

can be prone to intra- and inter-observer differences [1]. Many investigators have thus developed automated 

segmentation methods. Deep learning (DL) methods are the state-of-the-art for automated brain tumor 

segmentation. This is primarily attributed to the ability of DL to leverage large labelled datasets to derive 

feature representations with high-level semantics. There is a scarcity of annotated brain tumor training data, 

however, due to costs involved in labelling the multiple Magnetic Resonance (MR) imaging scans / 

sequences that are usually carried out. Further, various MRI scanning vendors / manufacturers employ 

different naming conventions for the data acquisitions and there are also differences in how scans are 

performed from site-to-site [2]. In addition, primary brain tumors differ in size, shape, location and degree 

of enhancement after intravenous contrast (see Figure 1). Primary brain tumors comprise approximately 

2% of all malignancies in adults and 20% in children. They are usually separated into low-grade and high 

grade gliomas and in most cases they are unilateral. Low grade gliomas (LGGs) tend to slowly infiltrate 

normal brain tissue whereas high-grade gliomas (HGGs) grow rapidly, destroy normal brain, enhance with 

contrast, have associated vasogenic edema and may be hemorrhagic/necrotic. Hence, without training data 

that include all these variations, DL has difficulty in generating effective feature representations for these 

tumors.  

 We suggest that modeling variations in the normal brain, with constrained anatomical variability (i.e. 

bilateral symmetry), can be used to segment primary brain tumors and may remove the reliance of large 

annotated training data. Our hypothesis is that because the normal brain is generally symmetrical, a 

methodology that identifies asymmetry will be able to detect primary brain tumors. In this study, we 

propose an unsupervised DL method that models variations in symmetry. An unsupervised approach offers 

the advantage that it can exploit the abundant amount of unlabeled data generated during routine clinical 

imaging.   
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Figure 1. Top row: Three transaxial MR image slices at different levels – two are T2-weighted (T2W) 

and one is a T1-post contrast (T1c) from three brains. Bottom row: three transaxial images slices 

showing primary brain tumors (two T2W, one T1c) showing the differences in texture, size and shape. 

1.1 Related Work 

Our work is related to unsupervised brain tumor segmentation methods that can be separated into 2 main 

groups: a) Local based methods [11]–[22], where local features e.g., intensity values, are first calculated 

and then used for classification by an unsupervised classifier. Commonly used features and unsupervised 

classifiers include: thresholding [11], region growing [12], [13], K-means [14], Fuzzy C-means [15]–[18], 

Markov Random Field (MRF) methods [19], [20] and methods where multiple methods are combined [21]–

[22]. Symmetry analysis [5][6][45][46] is a local based method that segments tumors based on their 

extracted symmetry features. b) Image based discriminative methods [23]–[27], where a common approach 

is unsupervised anomaly detection (UAD). UAD assumes that normal data have constrained variability 

whereas abnormal data (e.g. tumors) have diverse appearances and can be differentiated from normal. UAD 

constrains normal variations as a manifold and uses it to detect tumors that cannot be fitted into the ‘learned’ 

manifold. This parallels the human process of tumor detection which can be considered as searching for 
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anomalies compared to prior learned knowledge of what is normal. The aim of UAD is to find a lower 

dimensional embedding of the input data where the distance between anomalies and normal data are large 

[8].  

The elements that directy relate to our method are anomaly detection and symmetry analysis. The UAD 

approach we used is based on the approach used by An and Cho [8]. The current  UAD methods used in 

brain tumor segmentation are auto-encoder (AE) methods [23], [24], [38], [39], [40]. Baur et al. [23] 

investigated deep spatial auto-encoding (SAE) models on 2D whole brain MR images at an image level by 

comparing the input to the reconstructed image. Chen and Konukoglu [24] argued that the high variability 

across brain MR images, i.e., different slices of 3D brain volume, can cause a situation where the 

dissimilarity between two normal images could be larger than the dissimilarity between an abnormal brain 

and its ‘normal’ version. So, they enhanced the representative ability of an auto-encoder based model by 

imposing a consistency in the latent space to constrain the encoder to find a latent space where the 

projections of the input image and the reconstructed image are close to each other. Zimmerer et al. [43] 

used a variational auto-encoder with the Kullback-Leibler divergence to measure reconstruction errors. The 

AEs are able to simulate non-linear transformations from the latent space to input data, and then to detect 

anomalies as a deviation from the transforms by measuring the reconstruction error. The reliance on AEs 

means that these methods may not have sufficient feature representation to describe the brain regions. AEs 

also tend to reconstruct blurred images for the hand-engineering measurement of similarity between the 

reconstructions and the inputs, e.g., element-wise L1 or L2 distance [27]. UAD has also been applied to 

detect abnormalities with other medical imaging modalities using GANs [27], [9]. Schlegl et al. proposed 

AnoGAN [25] and f-AnoGAN [26] to model a latent space on normal 2D optical coherence tomography 

(OCT) samples. Unlike AEs, GANs can produce detailed images as, rather than predefining a similarity 

measurement, a GAN learns an objective function by itself via the adversarial training process.  

With respect to symmetry analysis, human brains are relatively symmetric. The brain is constrained by 

the bony skull so that any mass lesion in the brain, such as a primary brain tumor, results in asymmetry 

because it displaces normal brain tissue. Thus, many existing algorithms capture the asymmetry induced 

by brain tumors. These algorithms combine symmetry analysis with traditional supervised methods such as 

Support Vector Machine (SVM) [49][50], AdaBoost [48], Fuzzy [51], decision forest [3][7]. Anthony et al. 

[3] estimated the mid-sagittal plane (MSP) by locating symmetric interest points as proposed by Yu et al. 

[4]. Then, they calculated symmetric texture and symmetric intensity features to measure the difference 

between the regions reflected across the MSP. Consequently, they incorporated these hand-crafted 

symmetric features to improve the performance of a traditional decision forest classifier. In unsupervised 

brain tumor segmentation, investigators segment tumors based on an asymmetry score, or symmetry map 
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calculated from their estimation of the distance between hemispheres. Manu et al. [5] implemented a 

registration plus a simple intensity extraction between flipped brains to calculate asymmetrical areas as 

candidate tumor regions for further unsupervised region growing segmentation. Zhao et al., [53] conducted 

a 3D registration [54] on two hemispheres before detecting asymmetric areas. Saha et al. [45] used the 

Bhattacharya coefficient, which was calculated based on intensity values, to measure the difference between 

symmetrical brains to detect tumors. Erihov et al. [46] detected tumor regions as a salient object which were 

distinctive locally and across its symmetrical region. Hassan et al. [6] estimated the MSP to locate 

symmetrical areas based on intensity features and then used a deformation model and spatial relations 

between the tumor and other tissues to segment the brain tumor.  

In summary, all the works referred to above first estimated the MSP or registered the brains to mitigate 

asymmetry introduced by motion. Asymmetrical candidate regions were detected based on hand-crafted 

symmetry features (e.g., intensity). Then, classical supervised or unsupervised classifiers were further 

applied to refine the segmentation. However, symmetry property in normal human brain is a high-level 

semantic concept measuring the visual similarity between two hesmihperes. Therefore, the reliance on using 

hand-crafted features means that these methods have limited representative capacity of capturing symmetry.  

1.2 Contributions 

We propose a symmetry driven GAN (SD-GAN) for the unsupervised segmentation of brain tumors. We 

model symmetry variations as normal brain patterns and then use them to differentiate tumors. We use a 

conditional GAN (cGAN) [42] to model the transformation between the normal left and right hemispheres, 

where the normal symmetry variations are embedded in our learning model. Our method, compared to 

existing methods, contributes the following: a) It tolerates large normal variations e.g., alignment and 

movement; consequently, it eliminates reliance on annotated training data. b) It provides detailed and 

realistic brain volumes that resemble the input images; the reconstructed images are conditioned by a latent 

space of symmetry variations that is learned through the symmetric transformation training. The capacity 

for generating detailed and realistic brain volumes enables segment brain tumors to show asymmetry. c) 

We leverage a cGAN to iteratively learn the normal brain appearance in an end-to-end manner by 

incorporating the symmetry analysis into our voxel-wise classifier. In addition, different from the existing 

symmetry-based methods [5][6][7][53] which rely on additional registration steps or estimating the MSP, 

our SD-GAN learns the symmetry only according to the middle vertical line. Thus, our method removes 

the reliance on applying additional registration steps and estimating the MSP. 
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Figure 2. Two MR examples (HGG top row, LGG bottom row) from the 2018 BraTs dataset showing 

all the MR sequences. Two example tumors (top and bottom rows) with the annotated ground truth 

(right), where red arrows indicate edema, orange arrows indicate necrosis and non-enhancing core and, 

blue arrows indicate gadolinium-enhancing tumor.  

 

2 METHODS 

2.1 Materials 

We used the public Brain Tumor Segmentation Challenge Datasets (BraTSs) from 2012 and 2018 that 

included LLGs and HGGs. The BraTS 2012 dataset had 20 HGGs, 10 LGGs and 50 synthesized brain 

images that were HGGs or LGGs [37]. The 2018 dataset [35], [36] had 285 patients with LGGs and HGGs 

from 19 institutions where different protocols were used to acquire the MR data. Each sample, however, 

had T1 (T1), T1W+contrast (T1c), T2-weighted (T2W) and FLAIR images. These two datasets were used 

because the brain tumors were segmented manually by neuroradiologists identifying the tumor, the contrast 

enhancement and any surrounding vasogenic edema. For each subject, four MR sequences (T1, T2w, T1c, 

flair) have been co-registered (using “VersorRigid3DTransform” [55] in ITK) to the T1c MRI. However, 

we note that these data were not registered (i.e., spatial normalization) to be symmetrical, as stated in [35], 

that no attempt was made to put the individual patients onto a common reference space. We used the T2W 

images which were annotated to include the entire tumor volume to evaluate our method [35]. We used 

two-fold cross-validation, that is, 143 were used for training and the rest 142 subjects were for testing, and 

vice versa. The testing dataset had images that were not included for training. In BraTS 2012 dataset, we 
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constructed training dataset from the synthesized images and part of the clinical images following [3], [6]. 

Six studies in the BraTS 2012 dataset were manually rotated to correct the movement. 

 

2.2 Conditional Generative Adversarial Network (cGAN) 

A traditional conditional GAN [28] architecture has two adversarial trained networks:  a generator and 

a discriminator. The generator network learns a mapping from a noise vector z and an image x (in the 

context of an image translation task) to an output image similar to the ground truth y to ‘fool’ the 

discriminator network. The learned mapping can be formulated as 퐺: {푥, 푧} → 푦. Such conditioning on the 

input image makes cGAN suitable for image-to-image translation tasks [9]. The generator network is 

typically a version of a fully convolutional network (FCN) [29] that has down- and up-sampling 

components. The down-sampling component has convolutional layers to extract high-level abstract 

information [30]. The up-sampling component contains deconvolutional layers [29] that decode the feature 

maps to the output image. Unlike the traditional FCN networks, used for image segmentation tasks that 

output masks, the generator network in the GAN generates an image similar to the ground truth image. To 

generate a realistic image, the generator network uses intensity based L1 or L2 loss [31], [32] rather than 

the SoftMax loss [33] used in traditional FCN architectures. The L1 distance and L2 distance are defined 

as: 

 

                           ℒ (퐺) = [‖풚 − 퐺(풙,풛)‖ ]                                                                   (1) 

 

                       ℒ (퐺) = [‖풚 − 퐺(풙, 풛)‖ ]                                                                   (2) 

 

where n is the number of voxels in an image, y is the ground truth image, G is the generator network. ‖∙‖  

is the sum of voxel-wise residuals and ‖∙‖  is the sum of squared voxel-wise residuals of intensity value. 

L1 and L2 distance measure the similarity between the ground truth and the generated image 퐺(푥, 푧).  

The discriminator network is a classical CNN classifier that contains successive convolutional layers and 

a fully connected layer. The discriminator network takes the input image and the generated image or the 

ground truth image as input, and outputs a scaler as the posterior probability to distinguish the real and the 

generated images. These two networks are designed to play a ‘min-max game’ to obtain a powerful G to 

generate realistic images. The adversarial loss and the final objective functions are defined as: 
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      ℒ (퐺,퐷) =  퐸 , [log(퐷(풙,풚)] + 퐸 , [log(1 −퐷(푥,퐺(풙,풛))]                                                  (3) 

 

               퐺∗ = 푎푟푔푚푖푛 푚푎푥  ℒ (퐺,퐷) + 휆 ℒ (퐺)                                                  (4) 

 

where D is the discriminator network that maximizes the posterior probability of allocating real examples, 

the “real” label and generated samples 퐺(풙, 풛) the “fake” label. The generator network G is simultaneously 

trained to fool D via minimizing [푙표푔(1− 퐷(푥,퐺(풙,풛))], which is equivalent to maximizing 퐷(푥,퐺(풙,풛)). 

The first term in equation 4 (i.e., the GAN objective) represents the adversarial learning which learns itself 

an objective function that serves to force the generative model to produce a realistic image 퐺(풙,풛) at a high 

level of abstract, that is by asking whether the generated image  퐺(풙,풛)  is real or fake.  

 

 

Figure 3. Overview of the SD-GAN framework. (a) shows a schematic of the data flow and the generator 

and discriminator networks; paired horizontal symmetrical patches train the SD-GAN separately. (b) the 

SD-GAN at testing phase, showing the source image (transaxial T2W image of a LGG) with generation of 
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the reconctructed image and the residual. The red and blue dash lines in the generator networks represent 

skip connections (i.e., the concatenation operations between the encoder and the decoder layers). The red 

and blue colors represent the right-to-left and left-to-right translation data streams. 

 

2.3 Modeling Symmetry Variations 

An overview of our proposed network is illustrated in Figure 3. We trained two cGAN [42] branches to 

learn non-linear mapping functions between the left and the right hemisphere images that present the 

variability of the (symmetry) training images only based on the set of unlabeled images. We denote  the 

normal training dataset as  푰푵 = {푥, 푦}, where N is the number of normal pairs, and {푥 , 푦 } , with 푖 =

1, 2,⋯ ,푁, denotes a pair of normal symmetrical brain patches. For each left-to-right and right-to-left 

branch, the generator network produces a synthesized corresponding symmetrical brain patch  푦  from the 

input volume 푥 . The discriminator network subsequently takes a pair of images as input, i.e., {푥 ,푦 }  and 

{푥 ,푦 }, and aims to distinguish between the real and synthetic pairs. During this training processes, the 

generator 퐺 ,퐺  and the discriminator  퐷 , 퐷  are simultaneously optimized. Here, the generators learn to 

generate images of the training distribution that captures the symmetry variability. The discriminators 

estimate the fit of synthesized images to the distribution of training images  푰푵. The trained generators are 

used with fixed weights for tumor segmentation in Section 2.4. For testing process, we have  푰푴 = {푥,푦, 푙}, 

where M is the number of unseen brain volumes during training, 푙  with 푖 = 1, 2,⋯ ,푀, is the annotation 

used for statistical evaluation. A description of the process is as follows. 

1）Data preprocessing. Our method models the variations in symmetry in normal brains via learning a 

transformation mapping between symmetric brain patches in each hemipshere. We did not apply any 

additional pre-processing steps (e.g., spatial transformations) to register the brains so that they are prefectly 

symmetrical. The training dataset was generated as follows. The images were normalized to range from 0 

to 1 and the brain objects were extracted from 3D volumes and then placed in the center of the images (see 

Figure 2). Paired patches, size of 32×32×32, were then generated from each 3D brain volume with a stride 

of 24. From these normalized and paired volumes, we then eliminated patches that contained < 20% non-

zero voxels to stabilize the training process. After that, 2,281 paired healthy patches were used to compose 

the training dataset, denoted as  푰푵 = {푥, 푦} and N = 2281. No lesion voxels were selected as the input for 

the training process. During the training process, we did not flip the patches but instead, we let the model 

learn to flip the patches. The testing dataset comprised patches with normal and lesion-containing voxels 

from the subjects that were not included in the training set. The voxel-wise annotations of lesions from the 
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BraTS dataset were only used for statistical evaluation but were not fed into the network during training or 

test phases. 

2）Generator network with skips. Our generator and discriminator architectures were motivated by the 

work of Isola et al. [9]. Unlike the traditional cGAN [28] where the random noise were sampled from a 

prior distribution, we incorporated the random noise z by applying dropout on every layer of our generator 

at training and testing stages (inspired by  [9]). Modules of the form convolution-InstanceNorm-ReLu were 

used in the generator and discriminator. For the generator network, we followed the 5-layer 3D U-Net of 

Cicek et al.  [34] with skip connections between encoder and decoder layers that enable the low-level 

information to pass across the network directly. We employed 3D convolutional kernels (i.e., 4×4×4) along 

with a stride of 2. The negative slope of leaky ReLu was set to 0.2. The connections and layers of the 

generator network are provided in Table 1.  

3）Discriminator network with consistent feature representation. The discriminator network takes a pair 

of input images i.e., {푥 ,푦 } and {푥 ,푦 }, and aims to distinguish between the real and synthetic image pairs. 

By doing so both the discriminator network and the generator network are conditioning on the input original 

patch 푥 . There is variability in normal brain MR images. The difference between two normal brain images 

might be larger than the distance between an image with lesion and its contralateral normal hemisphere 

(intra-subject asymmetry). That is to say, inter-subject variability could be larger than intra-subject 

asymmetry in human brain data. Chen et al. [24] minimized the inter-subject variability by adding a 

regularization term ‖ 푧 −  푧 ‖  to enforce consistency in the latent space, where 푧 ,  푧  are the 

projections of the healthy image 푋  and 푋 . Rather than modelling inter-subject variability, we trained our 

model to learn intra-subject variability in asymmetry. The discriminator network, in the original cGAN 

model, outputs a scalar to force the generator network to produce realistic images. Our approach is to 

generate realistic images and model the variations in normal asymmetry.  Symmetry is a high-level semantic 

feature and it requires the discriminator network to focus on high-frequency structure. Hence, we regard 

the discriminator network as a feature extractor to produce the embedding of the input images and the 

synthesized images. Hence, we propose a feature level (FL) loss, which is defined as: 

 

                   ℒ (퐺) = ∑‖ 푓(푥)− 푓(퐺(푥, z))‖                                                              (5) 

 

where G is generator network and 푓(∙)  is the third down-sampling layer of the discriminator network used 

as a feature extractor. The FL loss can be propagated back to G and encourages it to produce consistency 

in a lower dimensional feature space where the distance of the embedding of the input symmetrical normal 

brain patches are minimized. Consequently, the G is trained to ‘fool’ the discriminator, based on a scalar, 
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and to generate data that have similar feature representations to the input data at a high level of abstraction. 

We set the receptive field of this layer to 10, so that the FL loss evaluates 10×10×10 patches. The final 

objective loss function is thus: 

 

      퐺∗ =  푎푟푔푚푖푛푚푎푥ℒ (퐺,퐷) + 휆 ℒ (퐺)                                                           (6) 

                                                                                                          + 휆 ℒ (퐺)                                

 

where ℒ  is the traditional cGAN loss from scalar output, ℒ (퐺) is the original L1 loss of G, and thus 

λ  serves to generating realistic images in a L1 sense;  휆  serves to control the similarities of the images so 

that their projections are closer in a common feature space. The selection process of λ  and λ  is described 

in Section 5. The connections and layers of the discriminator network are provided in Table 1.  

 

Table 1. Network architecture used in the generator network and discriminator network. 
 

Generator 
Layer Details Size 
Input Left brain patch 32×32×32×1 

Conv3d_1 4×4×4, 2, 1 LeakyReLU 16×16×16×64 
Conv3d_2 4×4×4, 2, 1, InstanceNorm, LeakyReLU 8×8×8×128 
Conv3d_3 4×4×4, 2, 1, InstanceNorm, LeakyReLU 4×4×4×256 
Conv3d_4 4×4×4, 2, 1, InstanceNorm, LeakyReLU 2×2×2×512 
Conv3d_5 4×4×4, 2, 1, ReLU, BatchNorm 1×1×1×512 

ConvTranspose3d_1 4×4×4, 2, 1, BatchNorm, ReLU 2×2×2×512 
ConvTranspose3d_2 4×4×4, 2, 1, InstanceNorm, ReLU 4×4×4256 
ConvTranspose3d_3 4×4×4, 2, 1, InstanceNorm, ReLU 8×8×8×128 
ConvTranspose3d_4 4×4×4, 2, 1, InstanceNorm, ReLU 16×16×16×64 
ConvTranspose3d_5 4×4×4, 2, 1, Than() 32×32×1 

 
Discriminator 

Layer Details Size 
Input Left brain patch, right brain patch, synthesized right brain patch 32×32×32×2 

Conv3d_1 4×4×4, 2, 1, LeakyReLU 16×16×16×64 
Conv3d_2 4×4×4, 2, 1, InstanceNorm, LeakyReLU 8×8×8×128 
Conv3d_3 4×4×4, 2, 1, InstanceNorm, LeakyReLU 4×4×4×256 
Conv3d_4 4×4×4, 1, 0 1×1×1 
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2.4 Brain Tumor Segmentation 

Normal brains are generally symmetrical when compared to brains with structural abnormalties (e.g. a 

tumor) and so a well reconstructed normal brain patch should have much smaller reconstruction errors when 

compared to a brain patch containing a tumor. Therefore, during brain tumor segmentation (Figure 3) a new 

3D brain MR volume was dispatched to symmetrical patches and then passed to the trained generators to 

output reconstructed brain patches. These reconstructed patches were included in a whole 3D brain MR 

volume for comparison to the original image volumes to obtain residual volumes. The residual volumes 

were simply obtained by the reconstruction errors ‖ 푦 −  퐺 (푥, 푧)‖ . We applied a simple 3×3×3 median 

filter to smooth the raw residual volume and then conducted tresholding to obtain a binary segmentation. 

No other post-processing steps were adopted. The threshold was empirically set at the value corresponding 

to the 1% voxels with the highest reconstruction errors.  

 

2.5 Experimental Design  

The generator network G and the discriminator network D are trained alternately. We iteratively trained 

one gradient step on D and then trained another on G. All networks were trained with Adam solver and a 

batch size of 1 for 100 epochs. The learning rate was set to 0.0002 for the first 50 epochs and then linearly 

decayed to 0 for the next 50 epochs. We implemented our method in PyTorch; all experiments were done 

on an NVIDIA GeForce GTX 2080 Ti GPU with 11 GB memory. We evaluated our method with the 

commonly accepted evaluation metrics for brain tumor segmentation -  including Dice score (Dice), 

sensitivity (Sens.) and precision (Prec.). These terms are defined as follows: 

 

퐷푖푐푒 = ∗| ⋂ |
| |

                                                             (7) 

푆푒푛푠. = | |
| |

                                                                 (9) 

푃푟푒푐. = | |
| |

                                                                (10) 

 

The ground truth annotation of brain tumors provided in the BraTS datasets is GT; PM is the predicted 

mask of the tumor by our method and the comparison methods;  TPs are the true positive tumor voxels; 

FPs the false positive tumor voxels; FNs are the false negative background voxels and TNs are the true 

negative background voxels.  
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For the BraTS 2018 dataset, we compared our method to the state-of-the-art UAD methods for brain 

tumor segmentation that included: (a) AAE [44] – auto encoder using adversarial training to find latent 

space; (b) VAE [44]  – variational auto encoder; (c) AE-GAN [23] – autoencoder using GAN to reconstruct 

the image; (d) VAEGAN [23]  – variational autoencoder using GAN to reconstruct normal brain images ; 

(e) f-AnoGAN [26] – WGAN [41] that uses an auxiliary encoder where the encoder encodes a latent space 

from the input images for further reconstruction via GAN. We reimplemented above UAD methods on 

BraTS datasets. The training dataset only consists of healthy brain slices without tumor annotations and the 

testing dataset consists of brain slices which were excluded from the training set. It is worth to note that 

unlike existing UAD methods which were globally trained on normal brain images, our SD-GAN was 

trained between the symmetrical brain hemispheres to learn the constrained intra-subject asymmetry 

variations.  

We compared our method to a very simple heuristic method where we flipped the MR images and 

conducted the subtraction to examining the differences between the two hemispheres. We also compared 

our method to supervised symmetry analysis methods and DL methods: (a) Sym-ST – a supervised spatial 

tree method incorporating a context rich symmetry feature using the BraTS 2012 dataset [6], (b) Sym-T – 

a supervised tree method with symmetric intensity and texture features using the BraTS 2012 dataset [3], 

and (c) the supervised 3D U-Net [34], which is an established network optimized for volumetric medical 

images, using the BraTS 2018 dataset. 

We evaluated the performance of our method at individual stages, where we investigated the utilization 

of the proposed FL losson BraTS 2012 and 2018 datasets. Further, we evaluated our methods on studies 

with high normal asymmetry variability. Among BraTS 2018 dataset, we identified the top 10% samples 

(28 patients) that had highest level of asymmetry score on normal slices based on the approach used by 

Zhao et al. [53]. We measured the local symmetry on normal brain slices by 퐴푠푦푚(푝) =

 푚푖푛 ∈ ( ) 퐼(푝)−  퐼 (푞) , 푝 is pixel(s) of original image 퐼, 푁(푝) is the neighborhood of 푝, and  퐼  

is the flipped image. 

To analyse the effectiveness of the 3D cGAN model, we made comparison to 2D variant of our model 

using 2D convolutional layers. We noted that the 2D model used the normal brain slices as inputs while 3D 

model used image patches instead. For the 2D model, the training data consisted of 2D normal brain slices 

(7509 slices) without lesions. To study the proposed architecture of two networks, we conducted an 

additional experiment using a “lighter” architecture which only has a single network. Specifically, we 

trained a unique network to learn to reconstruct patches either from left-to-right or right-to-left at a 

probability of 0.5.  
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3 RESULTS 

In Table 2 we present the evaluation metrics of our method when compared to the state-of-the-art UAD 

methods and the 3D U-Net. Our approach had the best in Dice at 61.9%, and Sensitivity at 61.3%. Our 

method was competitive when compared to the supervised 3D U-Net with a Dice of 61.9% versus 64.9%). 

Our result of AAE using BraTS dataset was 1.5% lower in Dice Score than those reported in the referenced 

paper [44] (our AAE: 39.5%, AAE [44]: 41%). Our result of VAE using BraTS dataset is 0.9% higher in 

Dice Score than those reported in the seminal paper [44] (our VAE: 42.9%, VAE [44]: 42%). Our 

reimplemented AE-GAN [23] and VAEGAN [23] got notably lower results in Dice Score on the BraTS 

dataset (our AE-GAN: 44.9%, AE-GAN [23]: 52.6%; our VAEGAN: 49.0%, VAEGAN [23]: 60%). The 

reproduced f-AnoGAN achieved a Dice Score of 52.4%. We also reimplemented AnoGAN but only 

generated unrealistic brain MR images (in Figure 5 Left) which is consistent with the paper [43] where they 

obtained a notably lower result of 37.4% in Dice Score. In Table 3 we show the comparison results of our 

method with supervised symmetry driven methods (i.e., Sym-T, Sym-ST). Our method was competitive to 

supervised symmetry methods with a Dice of 64.6% versus 68% and 69%.  

In Table 4 we present the component analysis on using FL loss where it improved Dice (58.1% vs 61.9%, 

61.3% vs 64.6%) on BraTS datasets. Further, when we assessed the FL loss on the identified top 10% 

asymmetry studies, our method achieved higher sensitivity of 62.8%, and a higher Dice of 59.2%, compared 

with not using the FL loss at 57.2% and 57.0%.   

We evaluated the differences between the two brain hemispheres. The results show that our learned model 

outperformed the simple subtraction method (61.9% vs 35.5% for Dice, 61.3% vs 44.3% for Sensitivity). 

We further investigated the utilization of the proposed 3D cGAN model and the results show that our 3D 

model achieved higher performance when compared to 2D variant of our method (61.9% vs 40.5% for 

Dice, 61.3% vs 47.4% for Sensitivity). When we study the architecture of using one single network, such 

“lighter” architecture resulted in a 10.8% drop in Dice Score (51.1% vs 61.9%) when compared to our 

results of training two networks.  

In Figure 4 we show the segmentation results from four brain tumor examples with our reconstructed 

images, the intermediary segmentation results, the residual image and, the GT. There is strong 

correspondence between our results and the GT; in row 1 and row 4, our tumor segments are visually 

slightly smaller than the GT at the edge of the tumor regions; in row 2 our result has an inconsistent surface 

in tumor edema where shows relative smaller differences to normal regions. We notice that the residual 

volumes (i.e., differences between the input volumes and the generated volumes) would indicate the tumor 

regions with higher positive errors (and higher negative errors in the contralateral regions). This is because, 
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SD-GAN was trained on normal paired patches which are symmetrical. During the testing process, the 

trained “normal” model assumes a symmetrical pair of inputs and generates a symmetrical contralateral 

patch for an input patch (regardless of the presence of tumor regions). As a result, the reconstruction errors 

would only present smaller absolute values (i.e., close to zero) when the input pairs do not contain tumors 

(i.e., showing symmetry).  

 In Figure 5 (left) we show an example of a normal brain and the reconstructed synthesized images from 

our method and comparison methods. Our produced images are pixelated but have the strongest 

correspondence to the source image whereas other methods produced blurry (AAE and f-AnoGAN) or 

unrealistic (f-AnoGAN-part) images. In Figure 5 (right) we outline the comparison results between our 

method using FL loss and without. In row 1, the absence of the FL loss resulted in false detections of tumor 

regions (indicated by the red arrow); in row 2 the removal of the FL loss caused an undersegmented results 

with missing tumor regions (indicated by the blue arrow). In Figure 6 (a) the distribution of the 

reconstruction errors of normal patches compared to patches that contain tumors is shown. The distribution 

of the reconstruction errors over the normal patches (blue lines) had smaller means and variances compared 

to abnormal patches (red lines). This is consistent with the fact that brains have restricted asymmetry 

variations and constrained anatomy compared with brain patches containing tumors which show asymmetry 

and vary in its anatomical appearance.   

In Figure 6 (b) the probability distribution function (PDF) and the cumulative distribution function 

(CDF) of the voxel-wise reconstruction errors on normal brains are shown. The errors were normally 

distributed and achieved over 98% of the errors after 0.10. The segmentation results with varying 

thresholding values from 0.10 to 0.15 are stable, as shown in Figure 6 (c). Additional segmentation results 

on asymmetry cases are included in the supplementary materials.  

In Figure 7, we present two failed cases from using our method.  
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Table 2. Metrics of our SD-GAN compared to UAD methods and supervised 3D u-Net on BraTS 2018 
dataset. 

Models 

Metrics 

Dice Sens. Prec. 

AAE [44] 0.395  0.492 0.305 
VAE [44] 0.429 0.491 0.347 
AE-GAN [23] 0.449  0.493 0.401 
VAEGAN [23] 0.490 0.517 0.503 
f-AnoGAN [26] 0.524 0.548 0.560 
Ours 0.619 0.613 0.735 
3D U-Net (supervised) 0.649 0.771 0.791 

 
Table 3. Comparison with symmetry driven methods on BraTS 2012 dataset. 

Methods 
Metrics 

Dice Sens. Prec. 

Simple-Subtraction 0.355 0.443 0.298 

Sym-ST [6] (supervised) 0.68 - - 

Sym-T [3] (supervised) 0.69 - - 

Ours 0.646 0.802 0.701 

 
Table 4. Component analysis on FL. 

Methods 
Metrics 

Dice Sens. Prec. 

BraTS 

2018 

Without FL 0.581 0.657 0.719 

Ours 0.619 0.613 0.735 

BraTS 

2012 

Without FL 0.613 0.713 0.683 

Ours 0.646 0.802 0.701 
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Figure 4. Four brain tumor examples in T2W images with LGG in the top two rows and HGG in the bottom 

two rows. The columns show the segmentation results and the intermediary stages. Column 2 shows the 

reconstructed brain volumes with our method; column 3 shows the residual images obtained from the 

reconstruction errors; column 4 shows the segmentation results with our method and, column 5 shows the 

ground truth from the BraTS datasets. 
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Figure 5. Left: a visual comparison of reconstructed images from a normal brain example between our 

method and other UAD methods. Right: comparison of segmentation results from our method with and 

without the FL loss . The red arrow indicates the falsely positives while the blue arrow indicates the false 

negatives.  

 

 
Figure 6. (a) Patch-wise reconstruction error distribution in normal and abnormal brains; (b) Voxel wise 

reconstruction error on normal brains, (c) Ablation study on different thresholding values on BraTS 2018 

dataset (top) and 2012 dataset (bottom).  
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Figure 7. Examples of two failed cases. Row 1: a failed case where the tumor was located adjacent to the 

midline. Row 2: an example of HGG when the tumor involves and deforms the left lateral ventrical. The 

red arrow indicates that normal asymmetrical lateral ventrical was falsely detected as tumor regions. 
 

4 DISCUSSION  

Our main findings are that our SD-GAN: a) outperformed comparative deep UAD brain tumor 

segmentation methods; b) perform competitively to supervised DL method and symmetry analysis methods; 

c) tolerated most normal aymmetry variations thus improving segmentation.  

 

4.1 Comparison with brain tumor segmentation methods 

Our method achieved the best result compared with other UAD methods on brain tumor segmentation. 

When compared to GAN based methods, we found that AE based methods (e.g., AAE, VAE) had limited 

generative capacity and tended to produce blurry images. As a consequence, variations in normal brains 

were more likely to be detected as anomalies, resulting in lower performances on Dice scores (AAE: 39.5%, 

VAE: 42.9%). However, AE based methods with GAN for training, e.g., the re-implemented AE-GAN, 
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and VAEGAN improved performances, 44.9% and 49.0%, respectively, on Dice scores. This is as expected 

since GAN training adds improved reconstruction capacity compared to simple AEs. We note that, when 

compared to the reference paper [23], our reimplemented AE-GAN and VAEGAN had notably lower 

results (our AE-GAN: 44.9%, AE-GAN [23]: 52.6%; our VAEGAN: 49.0%, VAEGAN [23]: 60%) in Dice 

Score. The lower performance on BraTS dataset is likely attributed to the fact that their methods were 

optimized to the private dataset e.g., hyper-parameters and heavily post-processing steps. Consequently, 

these methods have limited generalizability to the BraTS dataset, which has a different data distribution 

(i.e., image characteristics) and data acquisition protocols. Apart from AE based methods, we investigated 

f-AnoGAN [26]. f-AnoGAN improved over AE based methods and performed competitively with AE-

GAN [23]. We also investigated f-AnoGAN-part by taking out of the auxiliary encoder used in f-AnoGAN. 

The experimental results showed that the generated images were less realistic. This indicated that the 

auxiliary encoder used in f-AnoGAN was trained to simulate a conditional probability distribution on the 

input brains and hence improve the reconstruction. Without using the auxiliary encoder, our method further 

improved upon the f-AnoGAN (Dice Scores:61.9% vs 52.4%, Sens.: 61.3% vs 54.8%) by imposing 

symmetry information via one-stage conditional GAN [42]. This is because, due to the large normal 

variability in human brains, existing UAD methods (e.g., f-AnoGAN) cannot identify tumors when they 

have mildest differences to normal vairiations thus resulting a lower sensitivity of 54.8%. Our method also 

outperformed another unsupervised AE method using KL proposed by Zimmerer et al. [43] where they 

trained ther model on additional 1000 healthy brains and obtained a 44% of Dice Score on the BraTS 2017 

dataset. We attribute the superiority of our symmetric driven GAN model to segment abnormalities (i.e., 

tumors) by learning a restricted intra-subject asymmetry variability between brain hemispheres.  

We note that another unsupervised asymmetry-based methods proposed by Erihov et al. [46] achieved 

75% Dice score on 20 patients from BraTS 2014. This method, however, was designed by measuring the 

distinctness and smoothness of brain patches on four modalities. Although we designed our algorithm to 

work with a single modality, i.e., T2w, we anticipate that other modalities can contribute complementary 

information to further improve the segmentation results. We discuss the potential in using additional 

modalities as part of our limitation and future work in Section 4.4. In addition, Erihov used L1 and L2 

distance measures which have difficuilties in the detection of tumors with lower contrast to the background, 

i.e., segmentation results of < 20% Dice score for patients with larger edema regions. In contrast, our 

method is not limited by the contrast differences and is consistent in segmentation performance to tumors 

with various appearances. 

 When compared to supervised DL method and supervised symmetry analysis methods, the results showed 

that our method obtained competitive performance (within 3% and 4% lower in Dice score). The higher 
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performance from the supervised methods are expected since the manual expert annotations can guide the 

model to learn the discriminative features between tumors and normal regions in a supervised way. In our 

method, the models were learnt in an unsupervised end-to-end manner and outperformed other 

unsupervised deep learning methods.  

As an unsupervised DL method, our method can be trained to better model the normal anatomical 

variabilities with large datasets and hence discriminating tumors. To exemplify our method’s ability to 

improve from additional unannotated data, we added 100 human connectome project (HCP) [52] normal 

brain data into the BraTS2018 training set. The additional data resulted in 1.2% improvement in Dice 

(63.1%) by improving the modelling of the larger normal variations between the brain images. 

 

4.2 Tumor segmentation based on modelling normal variations  

Our method showed its ability to reconstruct normal brains with the cGAN models, and the regions with 

higher reconstruction errors were detected as brain tumors because they were not symmetrical. The small 

overlapped regions between the two distributions in Figure 6 (a) indicates that our method was able to 

separate tumors from normal variations. Our method reconstructed normal brain images with realistic 

appearance and low reconstruction errors. In the normal brain cases, the generated images resembled the 

input images based on the symmetry of the normal brains (See Figure 4 Left). We attribute this to the 

reconstructed images which were conditionally obtained from a learned latent space which represents the 

symmetry of the human brains. In the cases of brain patches containing tumors, when compared to the input 

images, the normal regions resembled the input images because of the symmetry, whereas the tumor regions 

were reconstructed (‘flipped’) in the contralateral hemisphere (See Figure 5 first two columns). This is 

because the cGAN models were trained on normal brain hemispheres, and normal brain hemispheres are 

symmetrical. Therefore, tumor regions have higher reconstruction errors in their residual images when 

compare to normal tissues.  

The results obtained by the simple subtraction method (Dice: 35.5%, Sens. 44.3%) are notably lower than 

our learning model. We attribute the large differences to the fact that the human brains are not perfectly 

symmetrical and there are large variations e.g., symmetry variations, exist between the two hemispheres. 

Consequently, it’s difficult to use simple subtraction to separate tumor regions from the normal tissues. In 

contrast, our method leveraged UAD to model the symmetry variations as a high level of abstraction. 

Therefore, the learned residual maps (i.e., differences between the reconstructed MR image and the input 

MR image) were constrained to highlighting the tumor regions while tolerating the reconstruction errors in 

normal regions showing asymmetry.  
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The results from 2D experiments (Dice:40.5%, Sens.47.4%) are notably lower than our 3D method 

(61.9%, 61.3%). This shows that the 2D model failed to learn sufficient normal symmetrical variations, as 

it can falsely detect asymmetrical normal structure as tumors. Moreover, the 2D model can get incoherent 

masks between slices, which increased false detections. This is because brain and brain tumors are in 3D 

by nature and our 3D method segments the tumors by modelling normal symmetrical variations that are 

related to the 3D structures in MRIs. We attribute our better performance to the proposed 3D GAN model 

which can capture the spatially structural ‘symmetry’ via minimizing the feature disparity between paired 

3D patches.  

 

4.3 Ablation study  

We evaluated the segmentation results with varying thresholding values from 0.10 to 0.15 with the results 

depicted in Figure 6 (c). The evaluation performance measures were stable with only the specificity being 

slightly decreased along with the ascending thresholding values. This was expected, where a lowered 

thresholding value means that the model would always classify more voxels as the tumor. However, the 

stable Dice score indicates that the higher specificity was aligned with higher false positives. Thus, for the 

segmentation task, Dice score was found to be a more indicative metric. In this situation, our method was 

more consistent with various thresholding values. 

We studied our architecture at individual stages. We found that the FL loss ensured that our GAN model 

was able to produce consistent segmentation results on asymmetrical cases. In the 28 highly asymmetrical 

samples, our method achieved higher Sens. (62.8%) and Dice score (59.2%) using FL loss compared with 

not using FL (57.2% and 57.0%). Figure 5 (right) indicates that the use of FL loss can improve the modelling 

of normal asymmetry variations (indicated by red circles), and thus reducing false detections. We attribute 

our superiority of using FL loss to measure symmetry in a high level of abstract, thus intensity differences 

caused by normal asymmetry variations in human brains will not hurt the performance. We included the 

example segmentation results on asymmetry cases in Figure 1 in the supplementary materials.  

Further, the results obtained by using an unique network caused a 10.8% drop in Dice Score, when 

compared to our architecture of training two networks. We attribute the better performance to the fact that 

training two networks allows to separately model the left-to-right and right-to-left translations, which 

enables to learn subtle variations across the left and right hemispheres within the dataset. In addition, the 

training of two networks can be considered as a form of ensemble mechanism, which allows to produce 

more stable segmentation results when compared with a single network architecture. Furthermore, we note 

that even with such a lighter network, we outperformed the other UAD methods in Dice Score (single 
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network: 51.1%, VAEGAN: 49.0%, AE-GAN: 44.9%). These results further indicate the superiority of 

learning the constrained symmetry variations for unsupervised brain tumor segmentation. 

 

4.4 Limitations and Future Work 

Figure 7 shows examples of two failed results. In row 1, the tumor was located in the midline, involving 

the corpus callosum with virtually identical involvement of both medical frontal lobes. The blue arrow 

indicates a detected asymmetrical tumor region but missing the symmetrical regions. This failure was 

expected because the undetected tumor region is symmetrical in texture, and therefore the tumor was missed 

by our method. The inability to work on tumors located in the midline is a known limitation among all 

symmetry driven methods [3][6]. To overcome this limitation, as part of our future work, we will explore 

post-processing with e.g., unsupervised region growing algorithm [12], where we will use the falsely 

detected region as an initialization to refine the segmentation. Moreover, the red arrow in Figure 7 row 2 

marks a false detected tumor region which is an unsymmetrical region between the bodies of lateral 

ventricle. This asymmetry is caused by a tumor involving and deforming the left lateral ventricle in another 

hemisphere. In such a case, we suggest using a different MR sequence, e.g., T1c which could be used to 

identify the tumor and separate it from the normal ventricular system.  

 

5 Model Variants and Fine-tunining 

5.1 Model variants  

We conducted additional experiments on three smaller model variants. The detailed model configurations 

and the segmentation results are provided in Table 5. The “small” and “medium” models are variants in 

which fewer channels were adopted in the generator networks (with using the same discriminator network 

of a size of 2.9M). The other medium network (“medium-2”) is a variant when we only use a 4-layer U-

Net in the generator network. The medium sized network obtained a slightly decrease in dice score (61.3% 

and 60.7% vs 61.9%) whereas the small network had a 5.1% reduction (56.8% vs 61.9%) when compared 

to the current network. To evaluate the risk of overfitting, we also evaluate the overall mean and variance  

on a 5-fold and 10-fold cross validation setting. As expected, segmentation performance across different 

models was consistently improved with a larger number of folds and the variance was decreased. For 

example, our large network obtained a 1.1% increase in dice score on a 10-fold setting over a 2-fold setting 

and the variance had been largely reduced. These results suggest that our method can further benefit from 

a larger training dataset. Although a large network tends to overfit to a relatively small dataset, through 
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these experiments, we identified that a relatively large model is still essential in obtaining the optimal brain 

tumor segmentation performance over the risk of overfitting.  

 
Table 5. Performance (Dice.) of model variants using k-fold cross validation.  

Model Variants Channel  Params. Layers 2-fold 5-fold 10-fold 

Mean Var. Mean Var. Mean Var. 

Ours-Small 16 4M 5 0.568 6.5E-04 0.570 5.57E-05 0.571 5.28E-05 

Ours-medium 32 19M 5 0.613 4.3E-04 0.618 5.70E-05 0.619 1.53E-05 

Ours-medium-2 64 16M 4 0.607 4.0E-04 0.610 5.78E-05 0.612 1.60E-05 

Ours-Large 64 66M 5 0.619 4.2E-04 0.628 5.65E-05 0.630 1.55E-05 

 

 
Figure 8. Performance on BraTS 2018 trained with different hyperparameters. The green line presents the 

results of tuning 휆  on a range of  {0, 1, 10, 100}. The red line is the results of tuning 휆  over {0, 1, 10}. 

 
5.2 Fine-tuning 

To select the optimal hyperparameters, we firstly tuned 휆  on a range of {0, 1, 10, 100} while keeping 

휆  equal to zero. The optimal result was obtained when 휆  = 10. We then started tuning 휆  on a same basis 

of tenfold, (e.g., 0, 1, 10, …) while keeping 휆  equal to 10. The optimal performance was found when 휆  

= 1. The experimental results are shown in Figure 8. We notice that the model only using the cGAN loss 

(휆 =0 and 휆 =0) had the worst performance. This is as expected as using cGAN loss alone is known to 

produce artifacts in the image reconstruction tasks such as in image generation and image translation [9] 

[57]. The optimal performance was achieved when both 퐿  loss and feature level loss were added (휆 =10, 

휆  = 1). This is because using 퐿  and cGAN loss (휆 =10), which help the model to produce realistic brain 

images. Moreover, an additional constrain on the feature level disparity (when set 휆  = 1) further improved 

the model’s capacity of learning symmetry of human brains.  
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6 CONCLUSIONS 

We present our findings using an unsupervised symmetric-driven adversarial network method for 

segmentation of brain tumors. The novelty was in the modelling of a manifold of symmetry variations on 

normal brains that can be used to detect tumors based on their fitness to the modelled manifold. Our results 

on public brain tumor datasets show that our method achieved the best unsupervised segmentation 

performance and performed competitively to the supervised methods. 
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