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Abstract 
 

Chromatin remodelling proteins support a variety of cellular functions and utilise the energy 

from ATP hydrolysis to either reposition or evict nucleosomes. One such protein, Lymphoid 

specific helicase (LSH), regulates DNA methylation in mammalian cells cooperatively with DNA 

Methyltransferase 3B (DNMT3B) through binding of the N-terminal domain of LSH. The correct 

functioning of LSH is essential for heterochromatin formation, with a knockout of LSH causing 

perinatal lethality or severe developmental abnormalities. There is little biochemical data and 

no structural data on LSH. Therefore, we aim to determine the structural characteristics and 

regulatory mechanism of LSH in vitro. 

LSH was expressed in an optimised insect cell system which increased protein yield 25-fold with 

greater than 95% purity. LSH is monomeric with increased thermal stability upon ATP or ADP 

binding. Full length LSH could not be crystallised therefore a core ATPase region of LSH missing 

the N-terminal domain was identified through limited proteolysis. This also provided evidence 

the N-terminal domain of LSH is disordered, which was proven through biophysical 

characterisation of LSH1-176. Expression of the LSH ATPase region was weak and the protein was 

unstable; suggesting the N-terminal domain of LSH is required for LSH stability. Therefore, 

complementary structural methods were used to study LSH. 

Crosslinking mass-spectrometry revealed the N and C termini are in close proximity, suggesting 

flexible linking regions, which was supported by limited proteolysis experiments. Negative 

staining Electron Microscopy defined LSH as a tri-lobal and elongated structure which could 

harbour the ATPase region in the two spherical lobes. 3D modelling of SAXS data obtained of 

LSH was in agreement with EM data.  
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To understand molecular mechanisms of LSH, functional studies investigating LSH:DNA and 

LSH:DNMT3B interactions were performed. LSH had a KD for dsDNA of 0.4 µM in solution. LSH 

does not bind ssDNA nor does it have a greater affinity for methylated dsDNA. LSH was found 

to bind the dsDNA overhangs of nucleosomes but not to core nucleosomes, suggesting LSH 

solely interacts with DNA in chromatin and not histones. A stable complex of LSH:DNMT3B 

could not be achieved in vitro, however, other components for complex formation may have 

been missing.  

This study has improved our understanding of LSH structure, biophysical properties and its 

biochemical interaction with DNA and nucleosomes. This study has laid the foundations for the 

structural investigations of a LSH:nucleosome and potentially a LSH:DNMT3B complex in vitro 

to gain a greater understanding of how functional domains of LSH regulates its enzymatic 

function.  
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Lay summary 

 
In each cell, DNA makes up all our genetic material which if stretched out is two metres long. 

Therefore DNA has to be condensed in order to physically fit inside the nucleus of a cell. This is 

done so by DNA wrapping around histone proteins into ‘bead on a string’ like structures, 

termed nucleosomes which are further condensed into compact chromatin. In order for genes 

to be accessed by regulatory proteins, a family of chromatin remodelling enzymes reposition or 

evict nucleosomes. Therefore chromatin remodelers are critical for cell regulation, with 

mutations or non-functional enzymes resulting in disease or lethality. One such chromatin 

remodelling enzyme named Lymphoid Specific Helicase (LSH) regulates genes through 

cooperation with an enzyme known as DNA methyltransferase 3B (DNMT3B) which mediates 

gene activation and deactivation through the addition of methyl groups to DNA. This study has 

investigated the regulatory mechanisms of LSH and its interactions with DNA, nucleosomes and 

DNMT3B by using structural and biochemical methods.  
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Chapter 1| Introduction 

1.1| Chromatin organisation and structure 

1.1.1| Chromatin organisation and structure 

Chromatin is the topological solution for the packaging of 1.7-2 metres of DNA into a 

eukaryotic nucleus (Kornberg, 1974). The repeating unit of chromatin is a nucleosome core 

particle, which consists of a histone octamer wrapped in 1.65 left-handed super-helical turns 

of 147 bp dsDNA, forming a disc-shaped complex conserved across eukaryotes (Figure 1.1) 

(Kornberg 1974, Luger et al. 1997; Luger & Collins 2001). The negatively charged DNA is 

wound around the basic surface of the histone octamer (Figure 1.1). Interactions between 

the histone octamer and DNA of a nucleosome core particle is through hydrogen bonding 

between the histone octamers main chain amide atoms and the phosphate oxygen atoms of 

the DNA backbone (Luger & Collins 2001). 

 

The histone octamer comprises two H2A/H2B dimers and a (H3/H4)2 tetramer (Luger et al., 

1997; Luger and Collins, 2001). All core histones share a conserved eukaryotic structural 

motif: the histone fold. (Luger et al., 1997; Luger and Collins, 2001). The histone fold is 

necessary for the formation of a tight homo or heterodimer with another histone fold and is 

required for binding ~120 bp of the dsDNA (Luger et al., 1997; Luger and Collins, 2001).   

 

Structured regions outside of the histone fold, known as histone fold extensions, are 

necessary for protein-protein interactions within the histone octamer and occur between the 

H2A-H2B dimer and one half of the H3-H4 tetramer resulting in DNA binding of ~10 bp from 

each H3 histone fold extension (for a total of 20 bp) (Luger et al., 1997; Luger and Collins, 

2001).  

The nucleosome has a symmetry axis at the dyad where the (H3/H4)2 tetramer is located and 

is flanked by the DNA entry and exit site (Figure 1.1) (Kornberg 1974, Luger et al. 1997; Luger 

& Collins 2001, Saha et al, 2006). Flexible histone tails are defined as those parts of the 

histone proteins that extend from the confines of the DNA superhelix and do not form an 

integral part of the histone octamer nor make contact with DNA (Luger et al., 1997; Luger 

and Collins, 2001). Histone tails are the locations of post-translational modifications (PTMs) 

(discussed later). 
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Variants of the core histones have been identified in chromatin and exist predominantly in 

the histone families H2A and H3 (Talbert and Henikoff, 2010a; Weber and Henikoff, 2014). 

The H2A and H3 variants alter the biophysical properties of the nucleosome and confer 

specialised functions regulating transcription (Talbert and Henikoff, 2010a; Weber and 

Henikoff, 2014). For example, the H3 variant Centromere protein A (CenpA) is found at active 

centromeres in mammals and is important for the formation of active centromeres (Niikura 

et al. 2015, Yoda et al. 2000; Warburton et al. 1997). As another example, the H2A variant 

H2A.X is phosphorylated at regions flanking a DNA double-strand break (DSB) to recruit DNA 

repair proteins (Iacovoni et al., 2010, Polo and Jackson, 2011, Bakkenist and Kastan, 2003).  

 

Binding of the linker histone H1 to the nucleosomal dyad and the linker DNA entering and 

exiting the nucleosome core particle forms the chromatosome, a more stable nucleosomal 

structure (Bednar et al. 1998; Hizume et al. 2005; Harshman et al. 2013, Thoma et al. 1979).. 

Linked chromatosomes form 10-11 nm fibres which have been assumed to fold into 30 nm 

fibres which subsequently form interphase nuclei and mitotic nucleosomes (Finch and Klug, 

1976; Maeshima, Hihara and Eltsov, 2010). 30 nm fibres have been identified and studied 

extensively in vitro using several structural techniques including EM (Finch and Klug, 1976), 

cryo EM (Robinson et al., 2006) and SAXS (Paulson and Langmore, 1983). However, 30 nm 

fibres were not identified in studies which used cryo electron microscopy of vitreous sections 

(CEMOVIS), a high resolution imaging technique of cell structures close to the native-state 

which uses unmodified thin sections of vitrified mammalian mitotic cells (McDowall, Smith 

and Dubochet, 1986; Eltsov et al., 2008). Instead, chromosomes had homogeneous grainy 

texture with ~11 nm spacing, which has led to the hypothesis that chromosomes are made 

up of a ‘polymer melt’ in which 10 nm nucleosome fibres form dynamic polymer chains which 

rearrange constantly (McDowall, Smith and Dubochet, 1986; Eltsov et al., 2008; Maeshima 

et al., 2014). Chromatin with an extended and loose arrangement of nucleosome was also 

detected in the nuclei of transcriptionally yeast using polymer modelling and chromosome 

conformation capture (3C) (Dekker, 2008). However In vivo 30 nm fibres have been identfied 

in terminally differentated cells such as chicken erythrocytes in which transcription is almost 

completely silenced (Woodcock, 1994). These studies therefore indicate 30 nm fibres are 

rare inside transcriptionally active cells. How nucleosome fibres behave dynamically in cells 

is an ongoing research topic.   
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The compaction of DNA into chromatin restricts regulatory processes such as replication, 

recombination, transcription and repair by blocking DNA binding sites or because the bent 

DNA is too distorted for binding. Three well-defined processes regulate and organise the 

chromatin environment: histone post-translational modification, DNA cytosine methylation 

and ATP-dependent chromatin remodelling (Ho and Crabtree, 2010). These changes alter the 

recruitment and action of regulatory proteins and are dependent on one another for proper 

regulation of the chromatin environment and therefore the genetic regulation of the cell.  

 

1.1.2| Histone tail modifications 

The core histones have flexible N- and C-terminal tails which extend from the DNA superhelix 

and are sites of PTMs (Luger et al., 1997; Luger and Collins, 2001). A number of PTMs have 

also been found on the histone folds and domains required for histone:DNA and 

histone:histone contacts (Cosgrove, Boeke and Wolberger, 2004; Cosgrove and Wolberger, 

2005). 

The PTMs that have been identified on histones include phosphorylation of serine, threonine, 

tyrosine side-chain oxygens, lysine ubiquitination, lysine sumoylation, lysine acetylation, 

lysine and arginine methylation and ADP-ribosylation (Bannister and Kouzarides, 2011; 

Rothbart and Strahl, 2014).  

PTMs are regulated through different proteins and protein complexes. These include 

‘writers’ to establish the histone PTM and ‘erasers’ to remove the histone PTM. The first 

example of a writer was 55-kDa polypeptide (p55) Histone AcetylTransferase (HAT) and the 

eraser was Histone Deacetylase 1 (HDAC),  both of which are transcription-associated 

proteins (Brownell et al., 1996; Taunton, Hassig and Schreiber, 1996).  

Histone PTMs influence gene regulation through the recruitment of ‘readers’ which 

recognise and bind the modification. Certain chromatin-associated proteins possess domains 

to bind to specific modifications: for example, the bromodomain binds preferentially to 

acetylated lysine (Dhalluin et al., 1999; Bannister and Kouzarides, 2011).  
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Histone PTMs are epigenetic marks and are involved in numerous processes from regulating 

transcription to DNA repair (Rothbart and Strahl, 2014). For example H3 lysine 4 tri-

methylation (H3K4me3) enrichment co-occurs with active transcription, whilst H3K27me3 is 

a dominant mark of repressed transcription (Voigt, Tee and Reinberg, 2013; Rothbart and 

Strahl, 2014). Chromatin acetylation by HATs generates the transcriptionally active 

euchromatin, whilst chromatin deacetylation by HDACs generates transcriptionally 

repressed heterochromatin (Eberharter and Becker, 2002).  

1.1.3| DNA cytosine methylation 

DNA cytosine methylation is the formation of 5-methylcytosine (5mC) through the addition 

of a methyl (CH3) group to the C5 position of the cytosine pyrimidine ring and typically occurs 

at CpG dinucleotides (Razin and Riggs, 1980; Bird, 1986). 60-80% of CpG dinucleotides are 

methylated, however, clusters of the dinucleotides (CpG islands) are typically unmethylated 

(Ehrlich et al., 1982). In mammals DNA methylation is performed by three active DNA 

cytosine methyltransferases (DNMTs). DNMT1 is a maintenance methyltransferase and 

preserves pre-existing methylation patterns through methylation of hemimethylated DNA 

(Stein et al., 1982; Bestor et al., 1988). DNMT3A and DNMT3B are de-novo 

methyltransferases and create new methylation patterns (Okano et al., 1999). DNMTs are 

essential for normal development (Li, Bestor and Jaenisch, 1992; Okano et al., 1999).  

DNA methylation of CpG dinucleotides at promoter regions often results in gene repression 

through the recruitment of methyl-CpG-binding-domain proteins (MBPs). For example 

Methyl-CpG-binding protein 2 (MeCP2) recruits the SIN3 histone deacetylase complex 

resulting in the compaction of chromatin (Jones et al., 1998; Tajima and Suetake, 1998; Bird 

and Wolffe, 1999; Lim and Maher, 2010). DNA methylation regulation is important in 

genomic imprinting (Jaenisch 1997, Bird & Wolffe 1999), X-linked inactivation (Bird, 2002), 

transposable element silencing (Walsh, Chaillet and Bestor, 1998) and cancer (Robertson et 

al. 1999, Hansen et al. 2011).  

The domain architecture and their functions of the de novo DNA methyltransferases 

DNMT3A and DNMT3B are shown and explained in Figure 1.2. 
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DNA cytosine methylation has been shown to occur at the DNA accessible linker regions in 

chromatin as nucleosomes prevent DNA cytosine methylation (Felle et al., 2011). Therefore, 

other enzymes which organise chromatin architecture are essential for the ability of DNMTs 

to methylate specific regions.  

 

 

 

 

 

 

 



Simon Varzandeh  Chapter 1| Introduction 

7 
 

1.1.4| Long non-coding RNAs and Histone chaperones 

Other, additional factors involved in regulating chromatin structure will be described briefly. 

Long non-coding RNAs (lncRNAs) are longer than 200 nucleotides, lack an ORF and are often 

polyadenylated (Fatica and Bozzoni, 2014). Several lncRNAs have been shown to escort 

chromatin modifiers such as the DNA methyltransferase DNMT3A and histone 

methyltransferase complex  PRC2 to genomic loci on chromatin (Rinn et al., 2007; Zhao et 

al., 2008; Guttman and Rinn, 2012; Fatica and Bozzoni, 2014). The lncRNA X-inactive specific 

transcript (XIST) has been found to be directly involved in repressive chromatin formation 

(Fatica and Bozzoni, 2014). 

 

Histone chaperones are proteins that bind to histones to regulate the assembly of 

nucleosomes (Ransom, Dennehey and Tyler, 2010; Burgess and Zhang, 2014). The majority 

of histone chaperones bind to H2A-H2B or H3-H4 and have been categorised into these two 

classes. However, histone chaperones for H3 and H2A variants likely also exist (Tagami et al., 

2004; Burgess and Zhang, 2014). Histone chaperones can participate in nucleosome assembly 

by shuttling synthesized histones from the cytoplasm to the nucleus (Mosammaparast et al., 

2002; Campos et al., 2010); acting as a histone reservoir and regulating histone supply (Groth 

et al., 2007; Cook et al., 2011); bridging histones and histone acetyltransferases (Parthun, 

Widom and Gottschling, 1996; Han et al., 2007); or directing histones onto DNA for 

nucleosome assembly (Tagami et al., 2004).  

 

Chromatin architecture is organised predominantly by ATP-dependent chromatin 

remodelers which are typically recruited to chromatin through binding directly to epigenetic 

marks or through recruitment of epigenetic modification binding proteins, which will be 

discussed further in section 1.2.6.  

1.1.5| ATP-dependent chromatin remodelers 

ATP-dependent chromatin remodelers either individually or as part of a complex hydrolyse 

ATP to alter the structure of chromatin. Chromatin remodelers or remodelling complexes can 

expose DNA through nucleosome sliding, nucleosome eviction or nucleosome unwrapping 

for the access of chromatin modifying proteins. Certain chromatin remodelers are able to 

alter the histone octamer through histone dimer eviction or histone dimer exchange 

(discussed in 1.2.6). These processes are outlined in Figure 1.3 (Clapier & Cairns, 2009).  
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1.2| Structure and function of ATP-dependent chromatin remodelers 

1.2.1| Groupings of ATP-dependent chromatin remodelers 

The majority of chromatin remodelers are genetically non-redundant, with severe 

consequences for embryo development when the encoding genes are mutated (Ho & 

Crabtree 2010).  All chromatin remodelers have shared architectures and functions which 

include: 1) A conserved Sucrose Non Fermentable 2 (SNF2) family ATPase domain which 

couples DNA binding to ATP hydrolysis for DNA translocation. 2) Recognising and coupling to 

nucleosomes. 3) Domains that regulate the ATPase domain. 4) domains that interact with 

other chromatin regulatory proteins (Clapier and Cairns, 2009).   

 

All chromatin remodelers contain a conserved SNF2 family ATPase region, which can be 

located at any site along the protein. The unique domains of ATPase chromatin remodelers 

are at flanking regions or between the SNF2 family ATPase region and confer specialised 

functions with certain PTMs, transcription factors, chromatin modifiers and nucleosomal 

DNA (Clapier & Cairns 2009, Flaus & Owen‐Hughes 2011, Yodh, 2013). 

Chromatin remodelers have been empirically classified into 4 groups based on the similarity 

of domains flanking the conserved ATPase region, which are necessary for conferring specific 

specialisations (Figure 1.4). The four groups include: SWItching defective/Sucrose Non-

Fermenting (SWI/SNF), Imitation SWItch (ISWI), Chromodomain-Helicase-DNA binding (CHD) 

and INOsitol requiring 80 (INO80). However the current empirical categorisation of ATP-

dependent chromatin remodelers does not take into account all the previous subfamilies 

recognised from a phylogenetic comparison of the SNF2 family ATPase region (Figure 1.4) 

(Flaus and Owen-Hughes, 2011).  

 

The subfamilies LSH, ATRX and ALC1 cannot be categorised due to large areas of their flanking 

regions unable to be assigned a function using protein-domain finding tools. The flanking 

regions are unique in sequence and potentially in function therefore the categorisation in 

Figure 1.4 is an oversimplification. (Flaus and Owen-Hughes, 2011). Figure 1.4 is used to 

illustrate the empirical groupings for the illustration of the major characterised chromatin 

remodelers and the position of their unique flanking domains. 
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The application of Improved and specific protein-domain finding tools and structural through 

to biochemical investigations of unique domains are needed for the empirical 

characterisation of chromatin remodelers based on their full-length sequences. 
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1.2.2| SWI/SNF remodelers 

A SWI/SNF remodelling complex was first identified as a MDa complex in yeast (Côté et al., 

1994) and each catalytic remodelling ATPase forms complexes with 8-14 additional proteins 

(Clapier and Cairns, 2009). The catalytic remodelling ATPases of the complexes possess an N-

terminal coiled coil, a central SNF2 ATPase region and a C-terminal bromodomain (Figure 

1.4). Two SWI-SNF remodelling complexes exist in eukaryotes, SWI/SNF and Remodels the 

Structure of Chromatin (RSC) exist in yeast. Brg1 Associated Factors (BAF1) and PolyBromo-

Associated BAF (PBAF) exist in humans (Clapier and Cairns, 2009). SWI/SNF remodelling 

complexes are able to eject or slide nucleosomes at numerous loci to facilitate gene 

regulation, replication, DNA repair and tumour suppression (Mohrmann & Verrijzer 2005, 

Clapier & Cairns 2009). SWI/SNF remodelling complexes have not been found to be involved 

in chromatin assembly (Clapier and Cairns, 2009).  

1.2.3| ISWI remodelers 

The ISWI remodelling complexes contain 2-4 proteins, with Nucleosome Remodelling Factor 

(NURF), CHRomatin Accessibility Complex (CHRAC) and ATP-dependent Chromatin assembly 

and remodelling Factor (ACF) complexes initially identified in Drosophila melanogaster 

(Tsukiyama and Wu, 1995; Ito et al., 1997; Varga-Weisz et al., 1997).The catalytic remodelling 

ATPase of the complex possesses a central SNF2 ATPase region and a C-terminal HSS domain 

necessary for histone tail and DNA binding (Figure 1.4)  The additional subunits of the 

complexes include bromodomains and DNA binding motifs, which contribute to the diversity 

of each complex (Corona and Tamkun, 2004; Clapier and Cairns, 2009). For example, the ACF 

and CHRAC complexes regulate nucleosome spacing using sliding to assemble chromatin for 

transcription repression. In contrast, the NURF complex aids in activating RNA Polymerase II 

(RNAPII) through randomising nucleosome spacing (Stopka and Skoultchi, 2003; Corona and 

Tamkun, 2004; Clapier and Cairns, 2009). ISWI are involved in the regular spacing of 

nucleosomes (Gkikopoulos et al., 2011; Pointner et al., 2012). The ISWI remodelling 

complexes are involved in the replication of heterochromatin (Collins et al., 2002), the 

initiation of replication (Vincent, Kwong and Tsukiyama, 2008) and DNA repair (Erdel and 

Rippe, 2011). 
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1.2.4| CHD remodelers 

The CHD family remodelers can exist as individual monomers or in complex with 1-10 

additional proteins. In higher eukaryotes, there are three CHD subfamilies comprising of 

CHD1-2, CHD3-4 and CHD5-9 (Marfella and Imbalzano 2007). CHD1-9 all possess an N-

terminal tandem chromo domain and a central SNF2 ATPase region (Clapier and Cairns, 2009, 

Ryan et al., 2011) (Figure 1.4). Each subfamily harbours specific flanking domains or motifs. 

CHD1-2 possess a C-terminal DNA binding domain (DBD) (Marfella and Imbalzano 2007). 

CHD3-4 possess a C-terminal Plant Homeo-Domain (PHD), which interacts with methyl-lysine 

on histone tails (Clapier and Cairns, 2009, Marfella and Imbalzano 2007). CHD3-4 form 

common human protein complex containing a CHD is the Nucleosome Remodeling and 

Deacetylase (NuRD) complex (Marfella and Imbalzano, 2007; Clapier and Cairns, 2009). 

Proteins of CHD5-9 contain an C-terminal SANT-SLIDE domain, a DNA binding domain and a 

paired Brahma and Kismet domain (BRK), the function of which is specific to higher 

eukaryotes (Marfella and Imbalzano).  Each CHD subfamily member is required for a specific 

cellular function ranging from transcription activation or repression to development and 

differentiation (Marfella and Imbalzano 2007. Like ISWI, CHD remodelers slide nucleosomes 

for the regular positioning of nucleosomes (Gkikopoulos et al., 2011; Pointner et al., 2012) 

and eject nucleosomes, which is important for promoting transcription (Marfella and 

Imbalzano, 2007; Clapier and Cairns, 2009). CHD complexes such as NuRD (Nucleosome 

Remodeling Deacetylase) contain additional subunits with DNA binding domains and histone 

tail binding domains and methyl-CpG-binding-domain (MBD) and HDAC1/2 necessary for its 

repressive role in gene expression (Marfella & Imbalzano 2007; Clapier & Cairns 2009; 

Reynolds et al. 2012). 

1.2.5| INO80 remodelers  

The INO80 remodelling complexes comprise 10 proteins, and includes the Sick With Rat8 

(SWR1) complexes, first identified in S. cerevisiae (Bao and Shen, 2007; Clapier and Cairns, 

2009). The human complexes include INO80, SNF2 Related CREB-Activator Protein (SRCAP) 

and the transactivator of transcription interactive protein 60 kDa (TIP60) in complex with 

p400. TIP60 is a HAT, whereas p400 is the remodelling ATPase and histone variant exchanger 

(Clapier & Cairns 2009, Gévry et al., 2007; Courilleau et al., 2012). The INO80 catalytic 

remodelling ATPases have an N-terminal HSA domain and a central ATPase domain which 

has a large insertion splitting the ATPase region.  
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This is necessary for binding of the AAA+ATPase helicases RuVB-like 1 and 2 (Rvb1/Rvb2) and 

ARP5 (Jónsson et al., 2004; Bao and Shen, 2007; Clapier and Cairns, 2009). The INO80 

remodelling complex removes H2A.Z:H2B dimers from nucleosomes and replaces with 

H2A:H2B dimers, whereas the SWR1 remodelling complex performs the reverse (Mizuguchi 

et al., 2004; Papamichos-Chronakis et al., 2011). The INO80 remodelling complex is the only 

remodeler possessing ATP-dependent 3'-5' helicase activity. INO80 can slide, evict and 

regularly space nucleosomes (Shen et al., 2000; Udugama, Sabri and Bartholomew, 2011). 

INO80 is involved in transcription (Cai et al., 2007) and replication to ensure proper 

chromosome segregation (Papamichos-Chronakis and Peterson, 2008; Hur et al., 2010) and 

DNA repair, through binding to the DNA damage signal γH2A.X (Van Attikum et al., 2004).  

1.2.6| Recruitment of Chromatin remodelers to chromatin 

 

An in vitro study compared 7 chromatin remodelers (ACF, ISWI, Snf2H, Chd1, Mi-2, Brg1 and 

NURF) on different nucleosomal templates and found that each remodeler repositioned the 

nucleosomes at distinct positions (Rippe et al., 2007). An additional genome wide chromatin 

immunoprecipitation (ChIP) study found the drosophila chromatin remodelers ISWI, NuRD, 

INO80 and (P)BAP each targeted a unique set of genomic targets at distinct positions on 

chromatin (Moshkin et al., 2012).  

The DNA binding motifs on certain chromatin remodelers such as the HSS domain in ISWI or 

the DBD in CHD can influence the outcome of the remodelling reaction (Stockdale et al., 

2006; Partensky and Narlikar, 2009; van Vugt et al., 2009). This was shown by switching 

domains between remodelers to alter the repositioning of nucleosomes (Stockdale et al., 

2006; Partensky and Narlikar, 2009; van Vugt et al., 2009). This is likely due to the different 

affinities of these motifs for DNA before and after repositioning of the nucleosome 

(Manelyte and Längst, 2013). These DNA binding domains also influence internucleosomal 

distances with the remodelers ACF and CHD1 being shown to regularly space nucleosomes 

in vitro (Yang et al., 2006; Jeffrey N McKnight et al., 2011). DNA G-rich repeats which are 

found in telomeres are recognised by the chromatin remodeler ATRX, which preferentially 

binds G-quadruplexes in vitro (Law et al., 2010) which could influence recruitment to these 

regions.  
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Chromatin remodelers on their own do not have domains specific for methylated CpG DNA 

(Manelyte and Längst, 2013). However, the NuRD chromatin remodelling complex contains 

a methyl binding domain protein (MBD2) which recruits NuRD to methylated promoters 

(Zhang et al., 1999). Therefore, epigenetic marks influence recruitment of chromatin 

remodelers.  

Chromatin remodelers and remodelling complexes contain histone tail modification 

interacting domains (discussed in section 1.1.2), allowing them to target specific chromatin 

environments (Manelyte and Längst, 2013). For example, the bromodomains of SWI/SNF 

and RSC interact specifically with tetraacetylated-lysines on H3 tails and possess increased 

affinity for nucleosomes containing these histone modifications (Chatterjee et al., 2011). In 

comparison, the SANT domains of the ISWI family of remodelers interact specifically with 

unmodified H4 tails. Removal of the H4 tail or acetylation of H4K16 has been shown to 

reduce the remodelling activity of ISWI in vitro (Dang, Kagalwala and Bartholomew, 2006). 

 As a further example the PHD domain of CHD4 preferentially binds to H3K4 and H3K9me3 

(Mansfield et al., 2011). Alternative isoforms of NURF with and without its C-terminal 

bromodomain and PHD finger have been found in cells suggesting alternative splicing can 

alter localisation of remodelling complexes in the genome (Kwon et al., 2009). 

Apart from possessing domains which recognise histone modifications, some chromatin 

remodelers also possess specific affinity and activity to histone variants and can exchange 

histone variants with action from DNA and RNA polymerase for histone displacement from 

DNA (Talbert and Henikoff, 2010b; Manelyte and Längst, 2013). A well-studied example is 

how the SWR1 complex exchanges H2A.Z for H2A nucleosomes. ATPase activity is stimulated 

in the presence of nucleosomes containing only H2A, without H2A exchange. The ATPase 

activity of SWR1 is increased upon the presence of H2AZ/H2B dimers, alongside which there 

is exchange of one nucleosomal H2A/H2B dimer for one H2A.X/H2B dimer. A second 

exchange step follows to complete a homotypic H2A.Z nucleosome (Luk et al., 2010). Other 

notable examples of histone variant exchange include ATRX which has been shown to recruit 

death domain associated protein (DAXX) to telomeres where both subunits deposit H3.3 at 

telomeric chromatin (Shechter et al., 2009). H3.3 incorporation in the drosophila male 

pronucleus by CHD1 which enables the paternal genome to participate in zygotic mitosis 

(Konev et al., 2007).  
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The transient interactions of chromatin remodelers with sequence specific DNA binding 

proteins can also provide a method of recruitment which does not require epigenetic binding 

motifs of the remodelers themselves (Manelyte and Längst, 2013). For example the NuRD 

complex is directly recruited to the promoters of target genes by the transcription factors 

NAB2, BCL11B and Ikaros (Murawska and Brehm, 2011). Whilst complexes containing BRG1 

are recruited to two target genes in Schwann cells via the transcription factor Sox10 (Weider 

et al., 2012). In vitro experiments have shown certain transcription factors can also halt the 

remodelling activity of one enzyme (ISWIa) whilst leave another unimpeded (SWI/SNF) (Li et 

al., 2015).   

1.2.7| ATP-dependent chromatin groupings and subfamilies based on 

phylogenetic analysis of the SNF2 family ATPase region 

 

A clearer categorisation of all the known ATP-dependent chromatin remodelers has been 

performed through the characterisation of the conserved SNF2 family ATPase region 

enabling classification into phylogenetic groupings and subfamilies of all known chromatin 

remodelers, which are shown in Figure 1.5.  
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ATP-dependent chromatin remodelers function through the use of the SNF2 ATPase region 

for DNA/nucleosome binding, ATP binding and hydrolysis and DNA translocation as well as 

additional function/s dependent on flanking domains. The conserved structural features of 

the SNF2 family ATPase region will be explained in the next section.   
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1.3| Functional and structural features of chromatin remodelers 

1.3.1| Conserved functional and structural features of ATP-dependent chromatin 

remodelers 

Within the Snf2 family ATPase region are the SNF2_N and Helicase_C domains which both 

contain RecA domain lobes 1 and 2 respectively and are defined by 7 helicase-related 

sequence conserved motifs (Figure 1.6). Although all chromatin remodelers possess these 

motifs they are not legitimate helicases; they are only required for DNA binding and 

translocation, but not for unwinding double-stranded DNA (Dürr et al., 2006). The RecA 

domain lobes are responsible for ATP hydrolysis to produce the energy required for DNA 

translocation and for DNA binding (Singleton, Dillingham and Wigley, 2007).   

The Snf2 family ATPase region of zebrafish RAD54 was the first eukaryotic chromatin 

remodeler to have its crystal structure solved (Thomä et al., 2005). The structure of the 

helical motifs is conserved to the crystal structures of the Plasmid copy reduced A (PcrA) SF1 

helicase with a single strand tailed DNA duplex captured in the transition states of ATP 

hydrolysis (Velankar et al., 1999). Helical motifs are also conserved in the structure of 

Drosophila melanogaster Vasa SF2 helicase in complex with single-stranded RNA and 

AMPPNP (Sengoku et al., 2006).  The PcrA and Vasa structures have been used to suggest 

how ATP hydrolysis is linked to DNA translocation in helicases (Mazin et al., 2010).  

ATP (or AMPPNP) is bound by motif I (Walker A), II (Walker B) and VI (Velankar et al. 1999, 

Sengoku et al. 2006). The magnesium binding site is occupied by the lysine residue of motif I 

in the apo-enzyme. This lysine residue is displaced upon binding of an ATP-Mg2+ complex and 

forms a hydrogen bond with the ATP-β-phosphate. The magnesium ion is coordinated by the 

threonine of motif I and aspartate of motif II, enabling a water molecule that hydrolyses the 

bond between the β and γ- phosphates to be activated by the glutamate of motif II (Velankar 

et al., 1999). This hydrolysis event is sensed by the two arginines of motif VI through binding 

of the phosphate tail of ATP in the ATPase active site and transmits the hydrolysis induced 

conformational changes to the DNA binding site resulting in DNA translocation (Velankar et 

al. 1999, Sengoku et al. 2006).  
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How dsDNA binds to the ATPase region has been elucidated from a crystal structure of the 

SNF2 ATPase region of the Sulfolobus solfactaricus RAD54 homolog in complex with dsDNA 

(Dürr et al., 2005). Firstly dsDNA binds along the cleft between the RecA domain lobes where 

structural changes through ATP hydrolysis could result in translocase activity (Dürr et al., 

2005). Predominant binding of dsDNA occurs on RecA domain lobe 1 through recognition of 

the two phosphate chains along the minor groove (Dürr et al., 2005). The dsDNA has minimal 

contacts with RecA domain lobe 2 which is analogous to other SF2 helicases (Dürr et al., 

2005). Instead of strand separation, a translocation of the dsDNA along the ATPase region 

was proposed, of which the forces generated break histone:DNA contacts which would be 

necessary when sliding nucleosomes (Dürr et al., 2005). This has been supported by 

biochemical data (Ristic et al., 2001) and in other remodelers including RSC (Saha et al. 2002, 

Lia et al. 2006)  and ISWI (Whitehouse et al., 2003a). 

The SNF2 family ATPase region is also defined by 15 conserved boxes which are short amino 

acid sequences (2-19 aa) necessary for stabilising structural features (Figure 1.6) (Flaus et al., 

2006). The major difference between SNF2 family members and SF2 members is the 

extended sequence between the Rec A domain lobes (Flaus and Owen-Hughes, 2001). There 

are between 153-626 residues for SNF2 family members (subfamily dependent) instead of 

the 38-78 residues for SF2 family members (Flaus and Owen-Hughes 2001, Flaus et al. 2006)  

The extended sequence between the spherical RecA domain lobes make up the helical 

protrusions separated by a flexible linker (Figure 1.6A) which are shown on the zebrafish 

RAD54 SNF2 ATPase region crystal structure (Figure 1.6B). The sequences at the bases of the 

protrusions are conserved in boxes H, B, J, C and K and attach the protrusions to the RecA 

domain lobes (Flaus et al. 2006, Flaus & Owen-Hughes 2011). Box B is within the linker region 

which passes between the RecA domain lobes and contains a pair of conserved arginines 

across all subfamilies and are essential for function (Richmond & Peterson 1996, Flaus et al. 

2006, Flaus & Owen-Hughes 2011). Behind the second RecA domain lobe is the major 

insertion region which can be relatively short with 34 residues in RAD54 or long with 280 

residues in INO80 with the long insertion providing a protein binding platform (Flaus et al. 

2006, Flaus & Owen-Hughes 2011) (see section 1.2.5). Boxes M and N are highly conserved 

charged regions which make up the C-terminal brace anchored at the base of protrusion 2 

(Figure 1.6A and Figure 1.6B) (Flaus et al. 2006, Flaus & Owen-Hughes 2011).  
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Protrusions 1 and 2 did not show a function for DNA binding through modelling DNA to the 

RAD54 structure (Flaus and Owen-Hughes, 2011). However the structure of the tandem 

chromodomains and SNF2 family ATPase region of Chd1 from S. cerevisiae (Hauk et al., 2010) 

has provided structural and biochemical evidence that the tandem chromodomains contact 

the protrusions blocking access of the DNA to its binding site on the ATPase region (Figure 

1.7B) (Hauk et al. 2010, Flaus & Owen-Hughes 2011). This finding provided evidence that 

structurally independent domains flanking the ATPase region are inhibitors of DNA-

dependent ATP hydrolysis, thereby preventing DNA translocation. Therefore the allosteric 

movement of the flanking domains is required for activating DNA-dependent ATP hydrolysis, 

resulting in DNA translocation (Hauk & Bowman 2011, Flaus & Owen-Hughes 2011).  

1.3.2| Structures of the ATPase region of eukaryotic ATP-dependent chromatin 

remodelers 

As shown earlier in section 1.2.1 and 1.3.1 the regions flanking the SNF2 family ATPase region 

are important for regulating ATPase activity and DNA translocation or binding regulatory 

proteins, DNA or modified histone tails. The structural diversity of the regions directly 

flanking the SNF2 family ATPase region are very different as shown in the structures of the 

SNF2 ATPase region of RAD54 from D. rerio (Thomä et al., 2005), the chromodomains - SNF2 

ATPase region of Chd1 from S. cerevisiae (Hauk et al., 2010),  and the HSA - SNF2 ATPase 

region from T. thermituga (Xia et al., 2016) (Figure 1.7). For simplification, I have represented 

the two major SNF2 ATPase region lobes as 1 and 2 (1.7A). The flanking N and C-terminal 

domains are also shown (Figure 1.7). 

 

ATPase lobes 1 and 2 are conserved between the three crystal structures (Figure 1.7B). The 

only difference is the orientation of ATPase lobe 2, due to differences in packing as a result 

of the flanking domains. (Figure 1.7B). The N-terminal domain (NTD) of RAD54 is unique 

among its orthologs and is mostly unstructured, which has been shown to contain a region 

necessary for binding RAD51 (Jiang et al., 1996; Golub et al., 1997; Raschle et al., 2004). The 

C-terminal domain (CTD) of RAD54 is unique to other subfamilies of chromatin remodelers 

as it contains a zinc-coordinating motif which is speculated to stabilise the assembly of RAD54 

(Thomä et al. 2005, Mazin et al. 2010). The NTD packs with ATPase lobe 1 and the CTD packs 

with ATPase lobe 2.  
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The recent structure of SNF2 from M. thermophila shows the NTD (a portion of HSA) stacked 

against ATPase lobe 1 only. HSA binds actin-related proteins but has also been shown to bind 

DNA (Dechassa et al., 2012; Schubert et al., 2013). Complementary biochemical studies 

showed that the HSA domain reduces the remodelling activity more than 30 fold, which 

indicates that it decouples ATP hydrolysis from remodelling (Xia et al. 2016). The CTD of SNF2 

is a specific SNF2 ATP coupling (SnAC) domain. The SnAC domain is seen close to the surface 

of ATPase lobe 2, with no contact to ATPase lobe 1 (Xia et al., 2016). The SnAC domain is 

required for coupling ATP hydrolysis to nucleosome remodelling through action as a histone 

anchor (Sen et al., 2011, 2013). SNF2 is kept in an inactive conformation through direct 

interaction with ATPase lobe 1 and lobe 2 which blocks the two arginines of motif VI from 

the ATP binding site (Xia et al. 2016).  It is suggested the NTD and CTD of SNF2 negatively and 

positively couple ATP hydrolysis to remodelling respectively, and likely allosterically alter the 

orientation and interface between ATPase 1 and 2 (Xia et al., 2016).  

In contrast, the NTD (Tandem chromodomain) and CTD (C-term bridge) of CHD1 separate 

ATPase lobe 1 and lobe 2 (Figure 1.7B).  The ATPase lobes are too far apart from one another 

for efficient ATP hydrolysis, as the two arginines of motif VI are not close enough to bind the 

phosphate tail of the ATPγS nucleotide (Figure 1.7B) (Hauk et al., 2010). As explained earlier, 

the tandem chromodomains obstruct DNA from binding to the ATPase region (Hauk et al., 

2010, Flaus & Owen‐Hughes, 2011). A C-term bridge crosses the ATPase lobe 2 and packs 

against the ATPase lobe 1 (Figure 1.7B) and may influence motions of the ATPase lobes during 

DNA binding and translocation, as ATPase lobe 2 would need to swivel 52° to close the ATPase 

cleft for efficient ATP hydrolysis (Hauk et al., 2010). 
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All chromatin remodelers possess functional domains closely flanking the ATPase region 

which allosterically regulate and coordinate ATP hydrolysis and DNA translocation activity 

(Szerlong et al., 2008, Hauk et al., 2010, Flaus & Owen‐Hughes, 2011).  

 

Two structurally-independent flanking domains AutoN and NegC have been identified in S. 

cerevisiae ISW1 and flank the ATPase region at the N and C-termini respectively (Clapier & 

Cairns 2012, Manning & Peterson 2013, Mueller-Planitz et al. 2013). 

The AutoN domain acts as a brake preventing DNA-stimulated ATP hydrolysis without the 

presence of the H4 tail. (Clapier & Cairns 2012, Manning & Peterson 2013). Therefore, the 

AutoN domain likely acts as a negative regulator of DNA-stimulated ATPase activity. 

(Manning & Peterson 2013) 

 

The second allosteric domain, NegC is equivalent to the C-term bridge in the CHD1 structure 

(Figure 1.7) and is required to couple ATP hydrolysis to DNA translocation. Interestingly, a 

‘core’ ATPase region not containing the AutoN, NegC or HSA domains is able to translocate 

DNA and remodel nucleosomes without the H4 tail, extranucleosomal DNA or binding to the 

SHL7 position (Mueller Planitz 2013). These are biochemical characteristics similar to the 

catalytic ATPases of SWI/SNF chromatin remodelers (Clapier & Cairns 2012, Manning & 

Peterson 2013, Mueller-Planitz et al. 2013).  

The chromo-wedge in Chd1 (Figure 1.7B) has also been shown to possess an AutoN-like 

region as it contacts the 2nd ATPase lobe preventing DNA binding, thereby repressing ATPase 

activity (Manning & Peterson, 2013, Hauk et al. 2010, Hauk and Bowman, 2011). When the 

AutoN-like region in Chd1 is removed, the H4 tail is no longer necessary for DNA-stimulated 

ATPase activity (Hauk & Bowman 2011, Hauk et al. 2010, Manning & Peterson 2013). The 

AutoN and NegC domains are not conserved in the SWI-SNF family (Clapier and Cairns, 2012), 

making it specific to a set of remodelers and not all of them. The AutoN, NegC and SnAC 

domains may not be present in other chromatin remodelling families (Clapier & Cairns, 2009, 

Manning & Peterson, 2013). 

Further investigations are required to biochemically and structurally define how the 

independent structural regions of ATP-dependent chromatin remodelers regulate their 

particular function in vivo. Further work is also required to characterise flanking domains 

which do not have any predicted or conserved function. 
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1.4| Lymphoid-specific helicase 
This investigation focuses on the chromatin remodeler lymphoid-specific helicase (LSH), also 

known as; Helicase lymphoid-specific (HELLS), Proliferation Associated SNF2-like Gene 

(PASG) or SWI/SNF related, Matrix associated Actin-dependent Regulator of Chromatin, 

subfamily A, member 6 (SMARCA6) (Briones and Muegge, 2012). Human and mouse LSH are 

well conserved with >95% identical amino acid sequences. The only recognisable difference 

being an additional 16 amino acids presented on the N-terminus of human LSH.  

1.4.1| In vivo functions of LSH 

Murine LSH was first cloned from murine fetal thymus tissue using a degenerative PCR 

technique when searching for a helicase involved in Variable, Diverse and Joining (VDJ) 

recombination in early lymphocyte development (Jarvis et al., 1996). LSH is prominently 

expressed in early thymocytes, T and B cells, hence the name lymphoid-specific helicase 

(Jarvis et al., 1996; Geiman and Muegge, 2000). 

 

Since the initial finding of LSH, the meaning of the name has been shown to be unrelated to 

initially perceived function. LSH is not lymphoid-specific as mRNA has been detected in many 

tissues at low levels. LSH is highly expressed in the embryo and all highly proliferative adult 

tissues (Raabe et al. 2001, Briones & Muegge 2012). LSH is unlikely to possess helicase activity 

as the helicase motifs conserved across the chromatin remodelling families do not enable 

helicase activity (Dürr et al., 2006).  

 

Studies from the Muegge lab have shown that LSH-/- mice die after birth, with multiple 

defects identified including kidney necrosis, early senescence of fibroblasts, premature aging 

and reduced embryonal growth and aberrant gene expression of various genes (Dennis et al., 

2001; Fan et al., 2003; Sun et al., 2004; Xi et al., 2007). 

 

LSH is a nuclear protein associated with chromatin, specifically heterochromatin (Fan et al., 

2003). Microscopy experiments have shown that the recruitment of catalytically inactive 

ATPase LSHK237Q to heterochromatin is not altered when compared to LSH (Lungu et al., 

2015). However, ATPase activity is required for the release of LSH from heterochromatin 

(Lungu et al., 2015). A further study has shown nucleosome density in LSH-/- embryonic stem 

cells can only be recovered to wild-type levels by the re-expression of LSH with a functional 

ATPase, indicating that chromatin remodelling is a primary function of LSH (Ren et al., 2015).  
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LSH-/- cells show 50-70 % reduction in cytosine DNA methylation identified at repeat 

elements; including both major and minor satellites, as well the retroviral elements LINEs 

(Long interspersed Nuclear Elements) and SINEs (Short Interspersed Nuclear Elements). This  

results in increased transcription of these elements by transcription activating histone 

acetylation and H3K4me3 modifications creating genomic instability  (Dennis et al. 2001; Fan 

et al. 2003; Sun et al. 2004; Tao, et al. 2011; Myant et al. 2011).  

 

LSH-/- in mouse embryonic fibroblasts (MEFs) show loss of cytosine methylation at distinct 

genomic sites demonstrating that LSH is necessary for de novo DNA methylation (Myant et 

al., 2011, Tao et al., 2011). Recent studies have shown the ATPase activity of LSH is essential 

for de novo methylation at repeat sequences (Ren et al., 2015; Termanis et al., 2016).  

These findings are supported by the interaction of LSH with DNMT3B from co-

immunoprecipitation and pulldown studies (Zhu et al. 2006, Myant & Stancheva 2008). No 

primary interaction with DNMT1 is seen, suggesting LSH is important for the establishment 

of DNA methylation at genomic sites (Briones & Muegge 2012, Myant & Stancheva 2008). 

Changes in the histone modifications H3K27me3 and H2AK116 ubiquitylation are identified 

in LSH-/- cells suggesting LSH is involved in histone modifier regulation (Xi et al., 2007). This 

has been in part recognised with LSH recruiting DNMTs and HDACs in transcription silencing 

events (Myant & Stancheva, 2008). 

Both LSH and DNMT3B have both been found to interact with the ES cell-specific chromatin 

remodelling complex (esBAF) (Ho et al., 2009), therefore, more work on defining the 

complexes which contain LSH is required to characterise its numerous functions which likely 

change at different stages of development (Briones and Muegge, 2012).   

1.4.2| LSH in cancer 

LSH has been found to be upregulated and overexpressed in a variety of cancers including: 

head and neck squamous cell carcinoma (HNSCC) (Waseem et al., 2010), melanoma (Ryu et 

al., 2007), leukaemia (Lee et al. 2000),  and lung adenocarcinoma cancer (Yano et al., 2004; 

Wang et al., 2015)   
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LSH was found as an important cofactor in Ras-induced senescence bypass and cell 

proliferation, as LSH knockdown in RΔN keratinocytes caused increased senescence and lack 

of maintainable cell proliferation (Keyes et al., 2011).  This study also provided evidence that 

LSH is necessary for senescence bypass in p63 proliferating cells and therefore necessary for 

tumourigenesis in keratinocytes (Keyes et al. 2011).  

 

E2 factor transcription factor 3 (E2F3) is dependent on an interaction with the pRB 

(retinoblastoma) tumour suppressor protein for cell cycle arrest at the G1 checkpoint 

(Burkhart and Sage, 2008; van den Heuvel and Dyson, 2008). Interestingly, LSH expression 

increased in parallel with E2F3 in tumourigenesis and bound to 93% of the transcriptional 

start sites (TSS) bound by E2F3. 86% of these contained H3K4me3, a mark associated with 

active gene transcription, a result of LSH-E2F3 cooperation increasing the production of the 

H3K4 methyltransferase mixed lineage leukaemia 1 (MLL1) production in cancer cells. 

Thereby identifying LSH as an important regulator of E2F3 necessary for cell proliferation in 

cancer, with recent work showing upregulation of LSH is essential for retinoblastoma tumour 

progression through E2F signalling. (von Eyss et al. 2011, Benavente et al. 2014) 

1.3.3| LSH in DNA repair  

Aside from LSH interacting with cancer proliferation proteins, work by Burrage et al (2012) 

has shown LSH to be necessary for the repair of DNA double-strand breaks (DSBs) 

independent of DNA methylation. LSH KD cells failed to repair ~50% more DSB lesions than 

WT cells 8 hrs after irradiation, showing LSH is important for DSBR (Burrage et al. 2012).  

 

DNA damage response (DDR) signalling is initiated by Ataxia Telangiectasia Mutated (ATM) a 

serine protein kinase autophosphorylated at serine 329 in response to DNA damage 

(Bakkenist and Kastan, 2003). ATM binds with the MRN (MRE11, RAD50, NBS1) complex 

which phosphorylates Serine 139 of histone H2AX to γH2AX (Lee and Paull, 2004). 

Phosphorylated H2A.X accumulates at flanking regions megabases away from the DSB 

producing a platform for the recruitment of DNA damage repair and mediator proteins and 

coordinates cell cycle arrest during double-strand break repair (Iacovoni et al. 2010, Polo and 

Jackson, 2011, Bakkenist and Kastan, 2003).  
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Both WT and LSH KD cells which underwent Ionising Radiation (IR) expressed equal levels of 

ATM, however, phosphorylation of the variant histone H2A.X was reduced by <50% in LSH 

knockdown cells compared to WT cells. This caused early and reduced recruitment of DNA 

damage response proteins Mediator of DNA Damage Checkpoint 1 (MDC1) and p53 Binding 

Protein 1 (53BP1) which localise at IR foci to initiate DNA repair. This reinforces the inefficient 

DNA repair and apoptosis in LSH KD cells (Burrage et al. 2012). 

Interestingly, rescuing LSH-/- MEFs with WT LSH produced γH2AX levels and  53BPI to IR foci 

equivalent to WT cells, however, LSHK237Q showed no WT phenotype suggesting that LSH 

ATPase activity is crucial for efficient H2A.X phosphorylation and DSBR (Burrage et al. 2012).  

1.4.4| LSH in disease  

Point mutations in LSH have recently been identified as being causative for 

Immunodeficiency, Centromeric instability Facial anomalies (ICF) syndrome (Thijssen et al., 

2015). ICF is characterised by often fatal chronic gastrointestinal and respiratory infections 

and the facial anomalies of hypotelorism, a flat epicanthus and nasal bridge (Hagleitner et 

al., 2008). CpG hypomethylation of juxtacentromeric satellite types II and III cause 

centromeric instability and is used to diagnose ICF syndrome (Jiang et al., 2005; De Greef et 

al., 2011). 50% of cases are caused by mutations in the MT domain of DNMT3B and 30% of 

cases are caused by mutations in the Zinc-finger and BTB domain containing 24 (ZBTB24) 

(Jiang et al., 2005; De Greef et al., 2011). Four point mutant variants of Cell Division Cycle 

Associated 7 (CDCA7) and 5 point mutant variants of LSH have been identified in unexplained 

cases of ICF syndrome (Thijssen et al., 2015). LSHK128*, LSHK204*, LSHQ699R, LSHS762R (causes 

frameshift deletion) and LSH801del were identified as mutations in patients with ICF (Thijssen 

et al., 2015). Therefore, this study provides evidence of how LSH is required for the 

establishment and potentially the maintenance of CpG methylation at centromeric repeat 

regions, a common process likely shared with DNMT3B,  ZBTB24 and CDCA7 (Zhu et al. 2006, 

Thijssen et al. 2015). 
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1.4.5| LSH domain architecture and function 

A schematic showing the structural and functional domains of M. musculus LSH is shown in 

Figure 1.8. 

The N-terminal domain of LSH has a coiled-coil (CC) region (LSH14-96) but does not share any 

sequence conservation with other chromatin remodelers and no specific functional domains 

are predicted. The region around LSH112 contains a nuclear localisation signal (NLS) (Lee et al. 

2000).  

The CC region may be necessary for protein:protein interactions. The N-terminal domain of 

LSH has been shown to be necessary for protein binding as pulldown experiments and co-

immunoprecipitation experiments identified that the CC domain of LSH binds to E2F3 in vitro 

and in vivo (von Eyss et al. 2012). Co-immunoprecipitation experiments have shown LSH 

binds to DNMT3B (Zhu et al. 2006, Myant & Stancheva 2008) and a pulldown experiment 

showed recombinant GST-LSH1-503 bound to DNMT3B (Myant and Stancheva, 2008).  

LSH200-736 is the Snf2 ATPase region, with features equivalent to all chromatin remodelers in 

the SNF2-like grouping (Figure 1.5) apart from the distance between the conserved boxes B-

C (see figure 1.6). LSH has 110 amino acids and others members in the Snf2-like grouping 

have between 61-65 amino acids, showing protrusion 2 of LSH is ~45 residues longer than in 

most other remodelers, however, the functional influence of the additional ~45 residues in 

LSH is currently unknown (Flaus et al., 2006).  

The mutant LSHK237Q is a catalytically inactive ATPase. LSHK237 is the conserved lysine of 

helicase motif I which has been shown in the SF2 helicase Vasa to occupy the Mg2+ binding 

site and is displaced upon ATP-Mg2+ to form a hydrogen bond with the ATP β-phosphate 

enabling ATP hydrolysis through the 2 arginine residues in motif VI (see section 1.3.1 for more 

details).  Therefore LSHK237Q can no longer form a contact with ATP β-phosphate preventing 

ATP hydrolysis and therefore remodelling activity.  

The C-terminal domain (LSH760-810) also has an unknown function, however, it may bridge the 

ATPase lobes as in CHD1 (Figure 1.7B) or localise at ATPase lobe 2 as in SNF2 (Figure 1.7B).  
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Defective in DNA Methylation 1 (DDM1) the plant homologue of LSH, possess similar 

functions in vivo with a direct role in DNA methylation and DNA repair (Jeddeloh, Stokes and 

Richards, 1999; Saze and Kakutani, 2007; Yao et al., 2012). 

DDM1 has in part been biochemically characterised with the ability to hydrolyse ATP, a 

function enhanced 2-3 fold with free or nucleosomal DNA (Brzeski and Jerzmanowski, 2003). 

DDM1 was also shown to remodel nucleosomes via sliding the nucleosome along a stretch 

of DNA using ATP hydrolysis (Brzeski and Jerzmanowski, 2003). These functions of DDM1 

provide some amenable functions for LSH, notably ATPase activity, DNA binding and 

nucleosome sliding.  

Recombinant LSH expressed in a baculovirus expression system and purified has been shown 

to bind DNA and have ATPase activity which increases 10 fold upon the binding to DNA or 

nucleosomes (Burrage et al 2012). 
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1.5| Aims of the project 
From a review of the literature, it is clear LSH has a critical and unrelated functions in cellular 

processes including DNA repair, cancer progression and regulating de novo methylation at 

repeat elements to adjust transcription. However, how the flanking domains of LSH influence 

the structure of the ATPase domain and the biological function of LSH function is currently 

unknown due to no published structural or biophysical investigations and few results 

describing the biochemical activities of LSH in vitro. Therefore, one of the aims was to 

determine the structural characteristics and regulatory mechanism of LSH in vitro using 

biochemical, biophysical and structural methods.  

LSH has been shown to bind the de-novo methyltransferase DNMT3B through co-

immunoprecipitation and pulldown experiments (Zhu et al. 2006, Myant & Stancheva 2008). 

Therefore, another aim was to test if LSH and DNMT3B interact directly in vitro and what the 

functional role of such how such an interaction may have on LSH and DNMT3B. 
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Chapter 2| Materials & Methods 

2.1| Common Buffers and Reagents 

Buffers and reagents were kept at room temperature unless otherwise stated.                              

PBS                                                                                                                                                        

140 mM NaCl, 3 mM KCl, 2 mM KH2PO4, 10 mM Na2HPO4.   

TBE                                                                                                                                                                

89 mM Tris-HCl pH 8, 89 mM Boric acid, 2 mM EDTA.                        

TGE                                                                                                                                                              

25 mM Tris-HCl pH 8.3, 190 mM Glycine, 1 mM EDTA.                              

TGS                                                                                                                                                                       

25 mM Tris, 250 mM Glycine, 0.1% (w/v) SDS.                                              

TBS                                                                                                                                                             

50 mM Tris-HCl pH 8.0, 150 mM NaCl.                                                          

TAE                                                                                                                                                                         

40 mM Tris, 20 mM glacial Acetic Acid, 1 mM EDTA and pH adjusted to 8.0.    

TE                                                                                                                                                              

10 mM Tris-HCl pH 7.5, 1 mM EDTA pH 8.0.                                                          

SOC media                                                                                                                                                  

20 g/L Difco Bacto tryptone, 5 g/L Difco Bacto yeast extract, 10 mM NaCl, 2.5 mM KCl,       

10 mM MgCl2, 10 mM MgSO4, 20 mM glucose.                                                                             

LB media                                                                                                                                                            

10 g/L Difco Bacto tryptone, 5 g/L Difco Bacto yeast extract, 5 g/L NaCl, pH 7.2.  

LB Agar                                                                                                                                                                 

LB media + 2% Difco Bacto agar. 

2.1.1|Reagents and buffers for the manipulation of DNA 

6x Sucrose loading buffer                                                                                                                    

60 mM Tris-HCl (pH 7.6), 0.25 % (w/v) Bromophenol Blue, 40% (w/v) sucrose, 60 mM EDTA.       

Methylene blue staining solution                                                                                                      

0.0002% (w/v) methylene blue (Sigma) in 0.1x TAE buffer.               

10x IV buffer                                                                                                                                                            

750 mM Tris-HCl pH 8.8, 200 mM Ammonium sulphate, 0.1% Tween 20.  
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EB                                                                                                                                                                          

10 mM Tris-HCl pH 8.5 (20°C).                                                                           

2.1.2| Reagents and buffers for electrophoresis/blotting 

 

4x SDS-PAGE sample buffer                                                                                                                         

200 mM Tris-HCL pH 7, 8% (w/v) SDS, 20% (v/v) Glycerol, a 0.04% (w/v) bromophenol blue. 

The final DTT concentration was adjusted to 100 mM prior to use.                        

SDS-PAGE resolving gel                                                                                                                                                  

8-20% (w/v) 29:1 acrylamide:bis-acrylamide, 0.1% (w/v) SDS, 375 mM Tris-HCl pH 8.8, 0.1% 

(v/v) APS, 0.02% (v/v) TEMED.                                                                

SDS-PAGE stacking gel                                                                                                                                

4% (w/v) 29:1 acrylamide:bis-acrylamide, 0.1% (w/v) SDS, 125 mM Tris-HCl pH 6.8, 0.1% 

APS, 0.02% (v/v) TEMED.                                                                             

SDS-PAGE running buffer                                                                                                                                         

25 mM Tris, 250 mM Glycine, 0.1 % (w/v) SDS.             

Nitrocellulose Western blot transfer buffer                                                                                      

25 mM Tris, 250 mM Glycine.                                                                          

PVDF Western blot transfer buffer                                                                                                        

25 mM Tris, 250 mM Glycine, 20% methanol, 0.1% SDS.             

Ponceau S staining solution                                                                                                                

1% (v/v) glacial acetic acid, 0.5% (w/v) Ponceau S.                  

Coomassie blue staining solution                                                                                                        

40 % (v/v) ethanol, 10% (v/v) glacial acetic acid, 0.05% (w/v) Coomassie brilliant blue R-250.          

Coomassie blue de-staining solution                                                                                            

10% (v/v) glacial acetic acid, 40% ethanol (v/v).                           

Native TBE acrylamide gel                                                                                                                  

89 mM Tris-HCl pH 7.6, 89 mM Boric acid, 2 mM EDTA pH 8, 5-20% (w/v) 29:1 

acrylamide:bis-acrylamide, 0.1% (w/v) APS, 0.1% (v/v) TEMED.     

1x Protease buffer                                                                                                                               

20 mM HEPES pH 7.5, 50 mM NaCl and 10 mM MgSO4. 
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2.2| Bacterial cell work  

2.2.1| Growth of Escherichia coli strains 

All Escherichia coli (E.coli) strains were grown at 37°C in liquid LB media or on solid LB agar 

plates. E. coli strains DH10B or DH5α were used for all cloning and amplification of plasmids. 

The DH10 EMBacY E.coli cells were used for all cloning and amplification of baculoviral 

bacmids. Antibiotics were added to both liquid LB media and solid LB agar at the following 

working concentrations: 

Table 2.1| The working concentrations of antibiotics used in this study 

Antibiotic Working concentration 
Concentration Carbenicillin 100 μg/ml 

Gentamicin 10 μg/ml 

Kanamycin 50 μg/ml 

Streptomycin 25 μg/ml 

Tetracycline 10 μg/ml 

2.2.2| Generation of chemically competent E. coli cells 

TFB1 buffer                                                                                                                                             

30 mM KAc, 100 mM RbCl, 10 mM CaCl2, 50 mM MnCl2, 15% (v/v) Glycerol, pH adjusted to 

5.8 with HOAc and filter sterilised.                           

                           
TFB2 buffer                                                                                                                                                

10 mM MOPS, 75 mM CaCl2, 10 mM RbCl2, 15% (v/v) Glycerol, pH adjusted to 6.5 with KOH 

and filter sterilised. 

 
A single E. coli colony was inoculated into 5 ml liquid LB and grown overnight (~16 hrs). The 

culture was diluted 1:200 into pre-warmed 100 ml liquid LB media containing 20 mM MgSO4 

and grown at 37°C until an OD600 of 0.6 was reached. Cells were then incubated on ice for 10 

mins and pelleted by centrifugation for 5 mins at 5000 rpm and 4°C. The supernatant was 

decanted and cells were re-suspended in 40 ml TFB1 buffer and incubated on ice for 5 mins. 

Cells were pelleted for 10 mins at 3000rpm and 4°C. The supernatant was decanted and cells 

were re-suspended in 4 ml of cold TFB2 buffer and incubated on ice for 30 mins. 100 µl 

aliquots of competent cells were then flash frozen in liquid nitrogen and transferred to -80°C 

for long-term storage.  
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2.2.3| E.coli transformation protocol  

A 100 µl aliquot of chemically competent E. coli cells were thawed on ice and 2-100 ng DNA 

was added, followed by incubation on ice for 30 mins.  Cells were heat shocked for 45 secs 

(all strains) at 42°C and returned to ice for 2-3 mins. 900 µl SOC media was added and cells 

were allowed to recover at 37°C and 220 rpm for 1 hr (DH5α or DH10B strains) or 4-5 hrs 

(EMBacY strain). Recovered cells were plated onto LB agar containing the necessary 

antibiotic/s (and IPTG and X-gal for EMBacY strains) and incubated at 37°C for 16-20 hrs 

(DH5α or DH10B strains) or 24-48 hours (EMBacY strain) to form detectable colonies. 

2.3| DNA manipulation experiments  

2.3.1| PCR amplification of DNA 

Polymerase chain reaction (PCR) amplification of DNA was carried out using the Biometra 

TProfessional Gradient 96 Thermocycler. For cloning purposes, Phusion® High-Fidelity DNA 

Polymerase (NEB) was used with High-Fidelity (HF) buffer according to the manufacturer’s 

instructions. For all other PCRs, homemade Taq (HMT) polymerase was used with the 

following reaction composition: 

Table 2.2| HMT PCR components and volumes for a single reaction 

HMT PCR components Volume 

25mM Mg2+ 6 μl 

10x IV buffer 5 μl 

dNTP’s (10 μM) 1 μl 

DMSO 3.5 μl 

Primers (10 μM) 0.625 μl each 

DNA template (10 ng/μl) 1 μl 

250U/μl HMT polymerase  1 μl 

ddH2O 31 μl 

 

PCR cycling conditions were determined empirically for each primer pair.  

2.3.2| Agarose Gel Electrophoresis (AGE) 

A 1% or 2% (w/v) agarose gel was prepared using UltraPure™ Agarose (Invitrogen) with TAE 

buffer and the addition of 5 μl SafeView Nucleic acid stain (NBS Biologicals) per 100 ml 

agarose. A 1 kb DNA ladder (NEB) or 50 bp DNA ladder (NEB) were used as molecular size 

markers. Gels were typically run at 100 V for 60 mins and visualised by UV illumination using 

auto exposure for intense bands on the GELDOC EZ system (Bio-Rad).  
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2.3.3| Plasmid DNA preparation 

Small scale plasmid DNA extraction and purification was carried out using 5 ml confluent E. 

coli following the QIAprep Spin Miniprep kit (Qiagen) manual. Where more plasmid DNA was 

needed, cultures were scaled up to 200 ml confluent E. coli and a plasmid midiprep kit 

(Qiagen) was used. 

2.3.4| EMBacY blue/white screening 

Agar plates containing carbenicillin, gentamicin and tetracycline were set at room 

temperature and allowed to dry at 37°C for 1 hr. 100 µl of IPTG (Sigma) at 0.1 M in ddH2O 

and 100 µl X-gal (Sigma) at 20 mg/ml in DMSO were spread on the set agar and allowed to 

dry at 37°C for 30 mins before use. Plates were stored at 4°C and protected from light for up 

to 4 weeks. 

2.3.5| Isolating EMBacY Bacmid DNA from E. coli cells 

The buffers used in the QIAprep Spin Miniprep Kit (Qiagen) are also used for isolating and 

purifying EMBacY DNA from E. coli cells. The buffer compositions are written below. 

P1                                                                                                                                                               

50 mM Tris-HCl pH 8, 10 mM EDTA, 100 ug/ml RNase.                 

    

P2                                                                                                                                                          

200 mM NaOH, 1% SDS (w/v). 

 

N3                                                                                                                                                               

4.2 M Gu-HCl, 0.9 M Potassium acetate pH 4.8. 

 

A single E. coli (EMBacY strain) colony was inoculated into 5 ml LB liquid media containing 

relevant antibiotics (carbenicillin, gentamicin and tetracycline) and grown at 37°C and 220 

rpm for 20-22 hrs. All culture was pelleted at 13000 rpm at 4°C for 1 min and supernatant 

discarded. The cells were thoroughly resuspended in 250 µl P1. 250 µl P2 was added and 

mixed by inverting for no more than 5 mins. 350 µl N3 was added and mixed by inverting. 

Cell debris was pelleted by at 13000 rpm for 10 mins. The supernatant was centrifuged for a 

further 10 mins in a new Eppendorf tube. The bacmid DNA containing supernatant was mixed 

with 800 µl isopropanol by inverting. DNA was pelleted at 13000 rpm for 15 mins. All 

supernatant was discarded and the DNA pellet was washed 2 times with 500 µl Ethanol (70%) 

and centrifuged at 13000 rpm for 5 mins. The pellet was air dried for 10 mins and gently re-

suspended in 100 µl EB buffer.  
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The quantity (ng/µl) and the purity of bacmid DNA was measured using UV spectroscopy 

(section 2.4.4). The bacmid DNA was diluted to the transfection concentration of 1 µg/µl. 

Bacmid DNA was verified to contain the ORF of the gene of interest using specific primer 

combinations in the gene as the forward primer and M13R or M13F positioned on the outside 

of the Tn7 integration site as the reverse primer. PCR products corresponding to correct DNA 

lengths confirmed integration.  

2.3.6| PCR product purification 

PCR products were purified using the QIAquick PCR purification kit (Qiagen) according to 

manufacturer’s instructions. The quantity (ng/µl) and the purity of DNA was measured using 

UV spectroscopy (section 2.4.4). 

2.3.7| RE digestion 

RE’s used in this study were from NEB or Fermentas. Reactions were prepared using the 

appropriate reaction buffer following manufacturer’s instructions. 2 units of RE were used 

per 1 µg of DNA and incubated for 30 mins at 37°C. The products of RE digestion were 

analysed by agarose gel electrophoresis.  

2.3.8| DNA extraction from agarose gels 

Digested DNA was size sorted using AGE. DNA fragments were visualised using a Safe 

Imager™ 2.0 Blue Light Transilluminator (Invitrogen) and excised with a clean scalpel. DNA 

was extracted from the excised gel pieces using a QIAquick Gel Extraction Kit (Qiagen-28704) 

according to manufacturer’s instructions.  

2.3.9| DNA Ligation 

Ligation of the gene and plasmid was performed using T4 DNA ligase (NEB) in a 20 μl reaction 

volume following manufacturer’s instructions. A vector:insert ratio of 1:3 was used for all 

ligation reactions using the following formula: 

Insert mass in ng = 3 × [
insert length (bp)

vector length (bp)
]  × vector mass in ng                           Equation (2.1) 

The total mass of DNA used was between 70 ng and 100 ng (vector and insert combined). 

The mixture was incubated for 30 mins at room temperature and 10 μl was transformed into 

100 μl chemically competent DH5α E.coli cells following the transformation protocol. 
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2.3.10| Colony PCR 

Colony PCR was used to verify the presence of the transformed plasmid. Amplification was 

carried out using an insert-specific primer and a vector-specific primer close to the site of 

integration. HMT polymerase PCR reaction mixtures were used (see section 2.3.1) and DNA 

was made available from mixing a selected colony in the PCR reaction mixture.  

2.3.11| DNA Sequencing 

For all sequencing reactions, plasmid DNA was sequenced directly. Sequencing reactions 

were prepared as follows:  

Table 2.3| Sequencing reagents and volumes to use for a single reaction 

Component Volume 

5x sequencing buffer (Applied Biosystems) 2 μl 

5x BIG DYE 3.1 Terminator mix (Applied Biosystems) 2 μl 

3.2 μM sequencing primer (in H2O or TE buffer) 1 μl 

Plasmid DNA (200-500 ng) 1-5 μl 

ddH2O Up to 10 μl total volume 

 

DNA was amplified as follows: 

Table 2.4| PCR cycling conditions 

Step Temperature Time Cycles 

1 95°C 30 secs 

 
              

2 50°C 20 secs 

3 60°C 4 mins 

4 60°C 1 min 15 secs 

5 4°C HOLD 

 

All DNA sequencing was carried out by the GenePool service at Edinburgh University, using 

ABI 3730 capillary sequencers. Sequences were analysed using ClustalW2/Clustal Omega 

software or MEGAlign (DNAstar) software. 

 

 

 

 

 

25 
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2.3.12| Cloning of LSH gene variants for EMBacY bacmid construction  

DNA sequences encoding full-length and/or truncated LSH and/or full-length DNMT3B coding 

sequences were cloned into the MultiBac pFL plasmid before being transposed into the 

EMBacY bacmid via Tn7 transposition (Figure 2.1) (Fitzgerald et al., 2006)(Trowitzsch et al., 

2010). The pFL plasmid contains multiple cloning sites (MCS) downstream of the p10 and 

polH (polyhedrin) promoters (Figure 2.1). Protein tagging and truncations were achieved by 

PCR-based methods. A plasmid containing LSH or DNMT3B was PCR amplified using primers 

with overhangs coding for the tag of interest (6His, StrepII, 6His-TEV, StrepII-TEV or 6His-

StrepII-TEV) and restriction sites to enable restriction-based cloning into the pFL plasmid.  

BamHI and SalI restriction enzymes were used and for all LSH constructs. BamHI and EcoRI 

or NheI and SphI were used for all DNMT3B constructs. Products of the PCR reaction 

performed with primer pairs were analysed by agarose gel electrophoresis and the DNA was 

purified using the PCR product purification protocol (section 2.3.6). The purified PCR product 

(insert) and pFL plasmid (vector) were digested with appropriate restriction enzymes 

followed by PCR product purification protocol, ligation and transformation into DH5α cells 

followed by growth on selective carbenicillin agar plates. Positive colonies were selected by 

colony PCR and the plasmid DNA was purified. After verification of the DNA sequence, the 

plasmid was transformed into DH10 EMBacY E. coli cells, containing the EMBacY bacmid 

(baculovirus genome) and a Tn7 ‘helper plasmid’. The helper plasmid encodes for the Tn7 

transposition complex necessary for integration of the pFL plasmid into the EMBacY bacmid 

via homologous recombination at attTn7 sites. Successful transposition causes disruption of 

the LacZ gene in the EMBacY bacmid (Figure 2.1) allowing positive colonies to be selected by 

blue/white colony screening. Re-streaking of white colonies and PCR were used to confirm 

positive clones. An LSH or DNMT3B sequencing primer and a bacmid specific M13 primer 

were used to test successful T7 transposition of the pFL plasmid into the EMBacY bacmid 

(Figure 2.1). 
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Figure 2.1|LSH and DNMT3B pFL constructs made and used in this study                 

Affinity tagged LSH or DNMT3B sequences were cloned into the pFL plasmid using the 

multiple cloning sites 1 and 2 (MCS1 and MCS2) under control of promoter polH and 

p10 respectively. The pFL plasmid was integrated into the transfective EMBacY 

bacmid following Tn7 transposition. The LoxP site could be used for Cre-Lox 

recombination of another pFL plasmid using Cre recombinase.  
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2.4| Common protein biochemistry methods 

2.4.1| SDS-PAGE 

Gels were cast using the BioRad mini PROTEAN® Tetra Handcast systems. The resolving gel 

was prepared, poured between glass plates (0.75-1.5 mm) and layered with 100% 

Isopropanol. Once set the isopropanol was removed and washed with ddH2O before adding 

the stacking gel.                                                                                                                            

SDS-PAGE gradient gel:  

Equal volumes of 4% stacking and 20% resolving mixtures were pipetted slowly into a 10 ml 

plastic pipette respectively. Three bubbles were drawn up to form a gradient and the mixture 

was pipetted slowly into the gel caster.  

Hand-cast gels were stored at 4°C up to one week. 

Protein samples were prepared in SDS sample buffer and boiled at 90°C for 5 mins before 

loading alongside 3.5 µl of a protein ladder (PageRuler Plus 10-250 kDa - Pierce). Gels were 

run at 250V for 30 to 45 mins or until dye front was near the bottom. For visualisation of 

proteins, the gel was stained with Coomassie stain for 20 minutes with agitation and detained 

in Coomassie de-stain. The gels were scanned on A GELDOC EZ system (Bio-Rad) using the 

Coomassie setting. 

2.4.2| Western blotting 

Proteins were separated on an SDS-PAGE gel. To transfer large proteins, nitrocellulose 

membrane and the wet transfer method with nitrocellulose transfer buffer were used. The 

transfer was performed at 4°C and 400 mA for 1 hr. To transfer histones a PVDF membrane 

was used. PVDF was charged in 100% methanol and the transfer was performed in PVDF 

transfer buffer. Membranes were blocked with 2% (w/v) milk with 0.1% (v/v) Tween20. 

Primary antibody binding was performed overnight at 4°C or for 3 hrs at room temperature 

with the desired antibody. Membranes were washed three times (10 mins) in PBS + 0.1% 

(v/v) Tween20 and blocked again for 30 mins. A secondary antibody was added and 

membranes were incubated at room temperature for at least 1 hr. Membranes were washed 

three times as above (final wash was done with PBS only). An Odyssey scanner (Li-Cor) and 

Image Studio Lite (v3.1) software were used to visualise and quantify bands respectively.  
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Table 2.5| Primary antibodies used for Western blotting 

 

Table 2.6| Secondary antibodies used for Western blotting 

Name Type Catalog number dilution 
factor 

IRDye® 680LT Donkey anti-Rabbit IgG (H + L) LI-COR, 926-68023 1:10000 

IRDye® 800CW Donkey anti-Mouse IgG (H + L) LI-COR, 926-32212 1:10000 

2.4.3| Protein quantification by UV spectroscopy 

Protein concentration was measured on a nanodrop 2000™ using the molecular mass (Mw) 

and molar extinction coefficient (ε) for the protein predicted using the ProtParam tool: 

http://web.expasy.org/protparam/  (Gasteiger et al., 2005). The Mw, ε (assumed all cysteines 

are reduced) and isoelectric point (pI) for each protein tested is below: 

 

 

Name Type Source, catalog number Western blot 
dilution factor 

α-DNMT3b Mouse monoclonal Abcam, ab13604 1:1000 

α-HDAC1 Rabbit polyclonal Santa Cruz, 

sc-7872/D171 

1:500 

α-H4 Rabbit polyclonal Milipore,  07-108 1:500 

α-6His Mouse monoclonal A7058 SIGMA 1:1000 

α-C-LSH Rabbit polyclonal 

Recognises residues 
around 503aa 

HELLS antibody #7998 

Cell signaling 
technology 

1:1000 

α-N-LSH Mouse monoclonal 

Recognises 1-223aa 

LSH antibody (H4) 

Santa Cruz, sc-46665 

1:1000 

α-Strep2 Mouse monoclonal IBA, 2-1507-001 1:1000 

α-Tubulin Mouse monoclonal CRUK 1:1000 

http://web.expasy.org/protparam/
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Table 2.7|Extinction coefficient, Mw and pI of proteins purified  

Protein ε (M-1 cm-1) Mw (Da) pI 

LSH-6His 76320 95948.5 8.2 

LSH176-826-6His 66350 75403.2 8.43 

LSH1-176 9970 20563.3 6.27 

StrepII-6His-TEV-
DNMT3B 

126740 101466.4 8.35 

BSA 43824 66400 4.7 

2.4.4| DNA quantification by UV spectroscopy 

DNA concentration was measured on a nanodrop 2000™ using the default nucleic acid 

setting. 

2.4.5| Protein quantification by BCA assay 

A working solution was prepared by mixing BCA solution (Sigma - B9643) and copper (II) 

sulphate solution (Sigma - C2284) in a 50:1 ratio. 1 µL of the total protein was mixed with 1 

mL of working solution. Samples were incubated at 65°C for 15 mins shaking at 200 rpm. 

After the incubation, samples were chilled on ice briefly and the absorbance at 562 nm was 

measured using a spectrophotometer. The absorbance values were divided by 0.04 to 

calculate the protein concentration. 

2.4.6| Protein quantification by Bradford assay 

Protein Assay Dye Reagent Concentrate (Bio-Rad) or Coomassie protein assay reagent 

(Pierce) were used according to manufacturer’s guidelines. 
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2.5| Insect cell work 

2.5.1| Insect cell culture 

All baculovirus production was carried out using Sf9 insect cells (an ovarian clonal isolate of 

Spodoptera frugiperda – Thermo Fisher). All Sf9 cell culture was done at 27°C and in Sf-900 II 

serum-free medium (Sf-900 II SFM; Gibco). High Five™ cells (a clonal isolate derived from the 

parental Trichopulsia ni cell line – Thermo Fisher) were used only for protein expression. All 

High Five™ cell culture was performed at 27°C and in ExpressFive® SFM (ThermoFisher) 

supplemented with 16 mM L-Glutamine (G8540-Sigma) and 100 µg/L 5000 Mr dextran 

sulphate (31404-Sigma).  

 

 

Cells were maintained as adherent cultures in T-75 flasks and split 1:5 (Sf9) or 1:10 (High 

Five™) when ~90% confluent (every 4-6 days). Suspension cultures were only initiated after 

passage 3 from T-75 flasks and grown in glass baffled flasks with membrane screw cap 

(Duran) or round plastic easy grip bottles (Corning). Suspension cultures were scaled up into 

1 L glass baffled flasks (Duran). A maximum of 400 ml of cell culture was grown in 1 L baffled 

flasks. Suspension cultures were maintained at cell densities between                                                                

1 - 10x106 cells/ml (Sf9) and 1 - 6x106 cells/ml (High Five™).  

Cell densities were measured using a Countess® Automated Cell Counter (Thermo-Fisher) 

using Countess® Cell Counting Chamber Slides (Thermo-Fisher). Cells were not passaged 

more than 30 times and fresh stocks were reanimated if viability dropped below 90%. 

For production of frozen cell stocks, a suspension culture was grown to a cell density of 1x 

106 cells/ml. Cells were pelleted by spinning at 1500 rpm for 3 mins, and re-suspended in 

filter sterilised freezing medium (46.5% conditioned media, 46.5% fresh Sf-900 II SFM, 7% 

DMSO) to a final density of 2 x 107
 cells/ml. 1 ml aliquots in 1.8 ml cryotubes (Nunc) were 

frozen slowly by placing them in a chilled polystyrene box followed by a -80°C freezer for 48-

72 hrs before finally placing in liquid nitrogen storage.  

Insect cells were reanimated by warming to 37°C from frozen and adding a 1 ml aliquot into 

a T-75 flask containing 10 ml Sf-900 II SFM media at 27°C, which was replaced with fresh 

media, 1 hr after attachment.  
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2.5.2| Baculovirus transfection and virus generation 

Bacmid DNA was transfected into Sf9 cells to produce an initial virus stock (V0). Transfections 

were performed using X-tremeGENE HP DNA transfection reagent (Roche). 50 µl of bacmid 

DNA (1 µg/µl) was added to 500 µl Sf-900 II SFM and gently mixed. 20 µl X-tremeGENE HP 

was added directly into the DNA/SFM mixture and incubated at room temperature for 30 

mins before 110 μl was added dropwise to 1-2x106 Sf9 cells (70-90% confluency) in 5 wells of 

a 6 well plate. The last well contained non-transfected Sf9 cells as a negative control. 72 hrs 

after transfection, YFP expression was monitored using fluorescence microscopy via a UV 

fluorescent lamp connected to a Nikon Eclipse TS100 microscope attached with Q-imaging 

recorder using QCapturePro software. 

96 hrs after transfection, media from each well was harvested and pooled as V0. Fresh Sf-900 

II SFM was then added to transfected cells, and protein expression was confirmed by western 

blot following an additional 48 hrs growth in fresh medium. V0 was then used to produce a 

more infective and higher volume V1 virus stock as well as baculovirus infected insect cells 

(BIICs).  

2.5.3| BIICs, V1 and V2 virus generation 

5-10 ml of V0 was added to 200 mL Sf9 suspension culture at 1x106
 cells/ml. After 24 hrs 100 

ml of culture was pelleted at 1500 rpm for 3 mins and frozen at a density of 1x107 cells/ml 

using the cell freezing method in section 2.5.1. The growth of the remaining 100 ml was 

continued and fluorescence monitored via microscopy with peak fluorescence typically seen 

by day 3 or 4. Cells were spun down as before and the cell pellet frozen at -80°C for later 

analysis. V1 containing media was filtered (0.22 µm), protected from light, stored at 4°C and 

used within 2 weeks. For V2 generation 1 ml of BIICs was thawed into 200 ml of Sf9 cells at a 

cell density of 1x106 cells/ml. After 3-4 days peak fluorescence was seen, V2 containing media 

was treated as above.  

2.5.4| 96-well plate BIIC titer assay  

To establish the optimal BIIC:Sf9 cell volume for YFP expression, a 96-well plate BIIC titer 

assay was developed. A black clear bottomed cell culture 96 well plate was used (Thermo-

Fisher 165305.) Sf9 or High Five™ cells were diluted to 0.75x106 cells/ml from suspension 

cultures. BIICs were diluted as indicated below. 
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Table 2.8| Cell concentrations and volume for the 96-well plate BIIC titer assay 

BIIC:Sf9 

cells ratio 

BIIC concentration BIIC volume 

to add 

Volume of Sf9 or High 

Five™ cells (7.5x105/ml) 

Total 

volume 

(µl) 1:5 7.5x105 cells/ml 20 µl 80 µl 100 µl 

1:10 7.5x105 cells/ml 10 µl 90 µl 100 µl 

1:20 7.5x105 cells/ml 5 µl  95 µl 100 µl  

1:50 7.5x105 cells/ml 2 µl 98 µl 100 µl 

1:100 3.75x104 cells/ml 20 µl  80 µl 100 µl 

1:200 3.75x104 cells/ml 10 µl 90 µl  100 µl 

1:500 3.75x104 cells/ml 5 µl 95 µl 100 µl 

1:1000 3.75x104 cells/ml 2 µl 98 µl 100 µl 

1:0 0 cells/ml 0 µl 100 µl 100 µl 

 

Cells were incubated at 27°C for 72 hrs before visualisation. Images were taken as described 

in section 2.5.2. Images were analysed using a macro created by Dr David Kelly in Image-Pro 

plus software (Media Cybernetics) to measure the area of fluorescent vs non-fluorescent 

cells.  

Cell fluorescence was also analysed on a SpectraMax M5 multiplate reader (Molecular 

Devices). The settings used were excitation at 495 nm and emission at 515 nm (cut off 515 

nm) with end point assay and 3 point scanning. All results were analysed in Graphpad Prism 

(Graphpad software Inc.).  

2.5.5| Characterisation of V1 or V2 virus 

Various ratios of baculovirus to Sf9 cells were tested to determine the ratio resulting in the 

best recombinant protein expression. Sf9 cells at 1x106 cells/ml in suspension culture were 

infected with varying volumes of V2 virus. For every 12 hrs following the 1st day after 

inoculation 1.5 ml of cells were pelleted and resuspended in 300 µl of lysis buffer (50 mM 

HEPES pH 7, 500 mM NaCl, 10% (v/v) Glycerol, 1 mM DTT, 0.1% (v/v) Triton X-100) and 

sonicated (3 x 20 secs on/off) on ice using a soniprep 150. Samples were centrifuged at 13000 

rpm for 15 mins and soluble lysate protein concentration was measured using the BCA assay. 

50 µg of each sample were analysed by SDS-PAGE, followed by western blotting with α-LSH 

antibody and α-Tubulin (loading control) with Li-Cor secondary antibodies used for 

quantitative analysis using an Odyssey scanner (Li-Cor) and image studio lite (3.1) software.  
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2.5.6| Large-scale protein production in Insect cells 

Large scale LSH protein expression| 

40 ml of V1 or V2 virus was inoculated into 400 ml of High Five™ cells growing at a density of 

3-4x106 cells/ml, which had been freshly split the day before to 2x106 cells/ml from a stock 

at 4x106 cells/ml. 1 day after inoculation, 1 L of cells was supplemented with 50 ml of filter 

sterilised supplement solution containing 5 g Glucose (Sigma-G7021) 200 mM L-Glutamine 

(Sigma-G8540) and 5 g Hypep Wheat Hydrolysate (Sigma-H6784) mixed in 18.2ꭥ ddH2O. The 

maximum fluorescence was detected 3-4 days after inoculation. Cells were centrifuged at 

4000 rpm for 10 mins and cell pellets flash frozen in liquid nitrogen for long term storage at 

-80°C. 

Large scale DNMT3B protein expression| 

20 ml of V1 or V2 virus was inoculated into 400 ml of Sf9 cells growing at a density of 3-4x106 

cells/ml, which had been freshly split from a 6-8x106 cells/ml stock. The maximum 

fluorescence was detected 3 days after inoculation. Cells were pelleted and frozen as above. 

2.6| Protein purification 

2.6.1| Concentrating proteins 

All proteins were concentrated with 500 µl to 20 ml vivaspin spin concentrators (GE 

Healthcare) with a 10 kDa MWCO. Vivaspin spin concentrators were equilibrated with the 

protein buffer and centrifuged at rpm recommended by the manufacturer. 

2.6.2| SEC of proteins and/or DNA 

All SEC of purified recombinant proteins and DNA were performed on a ӒKTA Purifier 100 

HPLC unit with sample collector. For small volumes (50 µl to 500 µl) a Superdex 200 10/300GL 

24 ml column (GE Healthcare) was used. For large volumes (500 µl to 5 ml) a Hi-load Superdex 

200pg 16/60 120ml column (GE Healthcare) was used. Columns were equilibrated with 2 CV 

of SEC buffer (50 mM HEPES pH 7, 500 mM NaCl, 10% (v/v) Glycerol, 1 mM DTT) before 

manual injection of sample in a 500 µl sample loop (200 10/300GL) or 5 ml sample loop 

(200pg 16/60). Fractions were collected in 0.25 ml or 0.5 ml volumes with a 0.25 CV delayed 

fractionation setting. On-line UV 260 nm and 280 nm was monitored. 

2.6.3| Storage of proteins 

Purified recombinant proteins in SEC buffer were aliquoted into PCR tubes in a maximum 

volume of 50 µl before being flash frozen in liquid nitrogen and stored at -80°C.  
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2.6.4| LSH-6His and LSHK237Q-6His purification  

Unless otherwise stated all protein purifications were performed on ice or at 4-10°C. 

Buffers used for purification: 

Lysis buffer                                                                                                                                             

50 mM HEPES pH 7, 500 mM NaCl, 10% (v/v) Glycerol, 0.5 mM DTT, 2 mM MgCl2, 0.2 mM 

PMSF, 1x cOmplete™ EDTA-free protease inhibitors (Roche).                                    

Ni-NTA wash buffer                                                                                                                             

50 mM HEPES pH 7, 500 mM NaCl, 50 mM Imidazole pH 7, 0.5 mM DTT, 0.2 mM PMSF.             

Ni-NTA high salt wash buffer                                                                                                                     

50 mM HEPES pH 7, 1 M NaCl, 0.5 mM DTT, 0.2 mM PMSF.         

Ni-NTA low salt wash buffer                                                                                                                   

50 mM HEPES pH 7, 100 mM NaCl, 0.5 mM DTT, 0.2 mM PMSF.  

Ni-NTA elution buffer                                                                                                                          

50 mM HEPES pH 7, 100 mM NaCl, 500 mM Imidazole pH 7, 10% (v/v) Glycerol, 0.5 mM 

DTT, 0.2 mM PMSF.                                

P11 buffer                                                                                                                                            

250 mM KPO4 pH 7.4, 1 mM EDTA, 1 mM DTT.                   

PC wash buffer                                                                                                                                           

50 mM HEPES pH 7, 100 mM NaCl, 10% (v/v) Glycerol, 1 mM DTT, 0.2 mM PMSF.         

PC elution buffer                                                                                                                                  

50 mM HEPES pH 7, 500 mM NaCl, 10% (v/v) Glycerol, 1 mM DTT, 0.2 mM PMSF.   

A 10 g cell pellet was resuspended in 50 ml lysis buffer and sonicated with a soniprep 150 

(MSE) on ice (4x for 30 secs on/off) before being passed once through a cell disruptor 

(Constant SystemsLTD) at a pressure of 18 kpsi and 4°C. DNase I (Sigma) was added at a final 

concentration of 1 U/ml lysate and incubated on ice for 30 mins before being centrifuged for 

1 hr at 25000 rpm and 4°C. The clarified lysate was incubated with Ni-NTA resin (GE 

Healthcare) pre-equilibrated with lysis buffer (- 0.5 mM DTT) for 16 hrs (1 ml NiNTA resin per 

100ml lysate). The Ni-NTA resin containing lysate was pelleted at 1500 rpm for 2 mins before 

being manually loaded into a 10 ml polyprep column. The packed resin was washed with 40 

column volumes (CV) of Ni-NTA wash buffer followed by 20 CV of Ni-NTA high salt buffer and 

a final 20 CV of Ni-NTA wash buffer. 10 CV of Ni-NTA low salt wash buffer was applied before 

adding Ni-NTA elution buffer and collecting 1 ml fractions. Fractions were analysed by SDS-

PAGE and Coomassie staining and the elution fractions were pooled. 
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P11 dry fibrous cellulose phosphate (Whatman) was used for phosphocellulose cation 

exchange. P11 cellulose was rehydrated to a ~50% slurry in P11 buffer. To prepare the 

phosphocellulose slurry, 50 g of Whatman P11 was resuspended in 1 L of 0.5 M NaOH and 

stirred for 5 mins using a magnetic stir bar. The mixture was poured into 4 x 250 ml Nalgene 

bottles and centrifuged for 5 mins at 2000 rpm. The supernatant was removed and the 

phosphocellulose matrix was suspended in ddH2O (250 ml in each bottle) and mixed by 

shaking for 5 mins. The bottles were centrifuged for 5 mins at 2000 rpm and ddH2O was 

removed. After five repeated washes the phosphocellulose matrix was suspended in 0.5 M 

HCl (250 ml in each bottle) and mixed by shaking for 5 mins. The bottles were centrifuged for 

5 mins at 2000 rpm and 0.5 M HCl was removed. After a repeat wash in 0.5 M HCl, the 

phosphocellulose matrix was washed 5 times in ddH2O as above.   

The phosphocellulose matrix was washed five times in P11 buffer, all matrix was pooled and 

suspended in 500 ml P11 buffer to make the phosphocellulose slurry. The phosphocellulose 

slurry was degassed for 1 hr before being stored at 4°C.  

Pooled IMAC elutions were applied to ~4 ml hydrated P11 phosphocellulose packed into a 

polyprep 10 ml column which had been equilibrated with 10 CV of PC wash buffer. 40 CV of 

PC wash buffer was applied before eluting 1 ml fractions with PC elution buffer. Fractions 

were analysed using SDS-PAGE and the fractions were pooled and concentrated to 5-10 

mg/ml. SEC was carried out as in section 2.6.2 and protein was stored as in section 2.6.3. 

2.6.5| 6His-TEV-LSH1-176 recombinant protein expression and purification 

(Cloning and optimised expression of 6His-TEV-LSH1-176 was performed by Mari Eltermann, a 

MChem student undertaking her research project in the Richardson lab under my co-

supervision) 

6His-TEV-LSH1-176 was amplified using PCR and cloned into a pET-28a plasmid using restriction 

digestion and ligation into chemically competent DH5α E.coli. The insert was verified by 

sequencing and the plasmid transformed into chemically competent BL21-DE3 E.coli. Cells 

were grown in LB medium containing with 50 µg/ml Kanamycin at 37°C, 250 rpm shaking in 

1/5th the maximum volume of the flask to an OD of 0.8 before being induced with 1mM IPTG. 

Cells were harvested 3 hrs after induction using centrifugation at 6000 rpm for 15 mins, 

media was discarded. Cell pellets were flash frozen in liquid nitrogen and kept at -80°C. 
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Buffers used for purification: 

Lysis buffer                                                                                                                                                      

50 mM HEPES pH 7, 250 mM NaCl, 10% (v/v) Glycerol, 2 mM MgCl2, 0.2 mM PMSF, 1x 

cOmplete™ EDTA-free protease inhibitors (Roche), 0.5mM DTT.                    

Ni-NTA buffer A                                                                                                                                    

50 mM HEPES pH 7, 250 mM NaCl, 0.5 mM DTT, 0.2 mM PMSF.               

Ni-NTA buffer B                                                                                                                                       

50 mM HEPES pH 7, 250 mM NaCl, 500 mM Imidazole pH 7, 0.5 mM DTT, 0.2 mM PMSF.              

Anion buffer A                                                                                                                                          

50 mM HEPES pH 7, 100 mM NaCl, 1 mM DTT, 0.2 mM PMSF.                              

Anion buffer B                                                                                                                                           

50 mM HEPES pH 7, 1 M NaCl, 1 mM DTT, 0.2 mM PMSF.                                      

A 5g cell pellet was resuspended in a total volume of 50 ml lysis buffer and lysozyme was 

added to a final concentration of 0.2 mg/ml. The lysate was passed once through a cell 

disruptor (Constant SystemsLTD) at 25 kpsi and 4°C. DNase I (Sigma) was added to a final 

concentration of 1 U/ml and incubated on ice for 30 mins before centrifugation at 20000 rpm 

for 1 hr at 4°C.  

The supernatant was directly loaded onto a 5 ml Histrap IMAC crude column (GE healthcare) 

pre-equilibrated with 10 CV Ni-NTA buffer A on an ӒKTA Purifier 100 HPLC system. The 

column was washed with 10 CV 15% Ni-NTA buffer B followed by a 30 CV gradient of 0-100% 

Ni-NTA buffer B. 1 ml fractions were collected and analysed by SDS-PAGE and Coomassie 

staining. Elution fractions were pooled and concentration measured using UV spectroscopy 

(section 2.4.3). For 6His cleavage, 1 mg of 6His-TEV protease (gifted by the Sawin and 

Arulanandam labs) was mixed with 25 mg of 6His-TEV-LSH1-176. The mixture was dialysed 

overnight in snakeskin dialysis tubing with a 10 kDa MWCO (Thermo-Fisher) in 1.5 L Ni-NTA 

buffer A. The dialysed material was re-purified following the IMAC purification as above to 

purify LSH1-176. Fractions were analysed by SDS-PAGE and Coomassie staining. Fractions 

containing LSH1-176 were pooled and dialysed into 1.5 L Anion buffer A.  
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LSH1-176 was applied to a 1 ml MonoQ column (GE Healthcare) pre-equilibrated with 10CV of 

Anion buffer A on an ӒKTA HPLC system. A 20 CV gradient of 0-100% Anion Buffer B was 

applied with collection of 0.5 ml fractions. Fractions were analysed via SDS-PAGE and 

Coomassie staining. Fractions containing pure LSH1-176 were pooled and concentrated to 10 

mg/ml. SEC was carried out as in section 2.6.2 and protein stored as in section 2.6.3. 

2.6.6| StrepII-6His-TEV-DNMT3B purification 

Buffers used for the purification: 

Lysis buffer A                                                                                                                                                

50 mM HEPES pH 7, 10% (v/v) Glycerol, 1 mM DTT, 0.2 mM PMSF.           

Lysis buffer B                                                                                                                                          

50 mM HEPES pH 7, 150 mM NaCl, 10% (v/v) Glycerol, 1 mM DTT, 0.2 mM PMSF.              

Lysis buffer C                                                                                                                                         

50 mM HEPES pH 7, 1 M NaCl, 10% (v/v) Glycerol, 0.5 mM DTT, 0.2 mM PMSF, 1x 

cOmplete™ EDTA-free protease inhibitors (Roche).                               

Ni-NTA buffer A                                                                                                                                      

50 mM HEPES pH 7, 1 M NaCl, 0.5 mM DTT, 0.2 mM PMSF.                     

Ni-NTA buffer B                                                                                                                                    

50 mM HEPES pH 7, 1 M NaCl, 500 mM Imidazole pH 7, 0.5 mM DTT, 0.2 mM PMSF.                         

Ni-NTA wash buffer                                                                                                                              

50 mM HEPES pH 7, 1 M NaCl, 60 mM Imidazole pH 7, 0.5 mM DTT, 0.2 mM PMSF.             

Ni-NTA high salt buffer                                                                                                                         

50 mM HEPES pH 7, 2 M NaCl, 0.5 mM DTT, 0.2 mM PMSF.                     

A 10 g cell pellet was resuspended in 40 ml lysis buffer A and sonicated with a soniprep 150 

(MSE) on ice (4x for 30 s on/off) before centrifugation at 5000 rpm for 10 mins. The 

supernatant was discarded and the pelleted material was resuspended in 40 ml lysis buffer 

B and treated as above. The pelleted material was resuspended in lysis buffer C and sonicated 

as above before centrifugation at 20000 rpm for 1 hr. The supernatant was loaded onto a 5 

ml Histrap IMAC crude column (GE Healthcare) pre-equilibrated with 10 CV Lysis buffer A 

(without DTT) on an ӒKTA HPLC system. The loaded column was washed with 10 CV 15% Ni-

NTA buffer B followed by a 30 CV gradient of 0-100% Ni-NTA buffer B. 1 ml fractions were 

collected and analysed by SDS-PAGE and Coomassie staining. 
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In an alternative procedure, the supernatant was incubated with Ni-NTA (GE healthcare) 

resin for 16 hrs (1 ml Ni-NTA resin per 100 ml lysate). The Ni-NTA resin was pelleted at 1500 

rpm for 2 mins before being manually loaded into a polyprep column. The packed Ni-NTA 

resin was washed with 40 CV of Ni-NTA wash buffer followed by 20 CV of Ni-NTA high salt 

buffer and a final 20 CV of Ni-NTA wash buffer before eluting 1 ml fractions with Ni-NTA 

buffer B. Fractions were and analysed by SDS-PAGE and Coomassie staining. 

Pooled elutions were buffer exchanged overnight in 1.5 L SEC buffer using 10 kDa MWCO 

snakeskin dialysis tubing (Thermo-fisher) before concentrating to 4 mg/ml. SEC was carried 

out as in section 2.6.2 and protein stored as in section 2.6.3. 

2.6.7| Limited Proteolysis  

The proteases used were trypsin, elastase, chymotrypsin and subtilisin (Sigma). 1 mg/ml 

stocks of the proteases were made in 1x protease buffer, flash frozen and stored at -80°C for 

long-term use. Three working dilutions were made (0.1, 0.01, 0.001 mg/ml) in 1x protease 

buffer. For initial screening experiments, 10 μl of the protein (0.6 mg/ml) was mixed with 3 

μl of diluted protease. Protein-protease reactions were incubated on ice for 30 mins and 

stopped by adding 5 μl 4x SDS-loading buffer and boiling immediately. Samples were 

analysed on an SDS-PAGE gel. For time course experiments subtilisin (0.001mg/ml) or Trypsin 

(0.01mg/ml) were used as above however every 10 mins for 90 mins samples were taken and 

analysed using SDS-PAGE.  
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2.7| MALDI-ToF Mass Spectrometry 

MALDI-ToF Buffers:  

Buffer A                                                                                                                                                

200 mM ammonium bicarbonate and 50% (v/v) acetonitrile.                           

Buffer B                                                                                                                                                  

200 mM ammonium bicarbonate, 50% (v/v) acetonitrile, 20 mM DTT.                           

Buffer C                                                                                                                                                 

200 mM ammonium bicarbonate, 50% (v/v) acetonitrile, 50 mM iodoacetamide.  

Buffer D                                                                                                                                                         

20 mM ammonium bicarbonate, 50% (v/v) acetonitrile.  

Trypsin digestion buffer                                                                                                                               

50 mM ammonium bicarbonate, 13.3 ug/ml trypsin (Sigma). 

Samples were separated by SDS-PAGE and stained with Coomassie stain. After de-staining, 

bands were cut out with a clean scalpel and then cut into 1 mm cubes and kept in ddH2O 

overnight. The gel pieces were incubated twice with 500 μl Buffer A for 30 mins at room 

temperature to remove SDS. The gel pieces were incubated with 500 µl Buffer B at 30°C to 

reduce the protein. The gel pieces were washed 3 times in 500 μl buffer A. The gel pieces 

were incubated with 500 µl Buffer C for 20 minutes in the dark to alkylate the cysteines. The 

gel pieces were washed 3 times with buffer D and centrifuged at 13000 rpm for 2 mins. The 

gel pieces were washed 3 times in 300 μl acetonitrile. The acetonitrile was removed and gel 

pieces were air dried. 30 μl of trypsin digestion buffer was added for 30 minutes at 4°C until 

the gel pieces swelled. More trypsin digest buffer was added if the gel pieces were not 

completely submerged. Tubes were sealed with parafilm and incubated at 30°C for 16 hrs. 

Samples were sonicated in a sonicator bath for 3 mins and used immediately or kept at -80°C 

for later use.  
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2.7.1| Matrix preparation and analysis 

10 mg CHCA was mixed with 400 μl ddH2O, 100 μl 3% (v/v) TFA and 500 μl acetonitrile. The 

mixture was centrifuged at 5000 rpm for 1 min and 0.5ul supernatant and 0.5ul peptide 

sample were spotted onto a stainless steel 100 sample plate (Applied Biosystems) and 

allowed to air dry. The plate was inserted into the Voyager DE-STR (applied Biosystems) or a 

Bruker UltraflexExtreme MALDI ToF/ToF and data collected as advised by the manufacturer. 

Mass peaks were analysed in Data Explorer software (Applied Biosystems) or DataAnalysis 

software (Bruker). The mass of the fragments was calibrated according to known trypsin 

peaks detected in the sample or from a peptide calibration standard (Bruker). The Mascot 

server (http://www.matrixscience.com/server.html) or the ProteinProspector tool MS-FiT 

(protein identification using MS-FiT) was used to identify the protein fragments and to assign 

a protein based on coverage and unique peptides.  

2.8| Biophysical Methods 

2.8.1| Size Exclusion Chromatography – Multi-Angle Light Scattering (SEC-MALS):  

Size-exclusion chromatography coupled with multi-angle light scattering (SEC-MALS) was 

performed using an ӒKTA micro HPLC with a Superdex 200 10/300 GL column coupled with 

an on-line UV detector, Viscotek MALS-20 scattering detector (Malvern) and refractive index 

detector Viscotek VE3580 (Malvern). The Superdex column was equilibrated with GF buffer 

overnight (0.5 ml/min flow rate). 100 μl BSA at 1 mg/ml was injected and the monomer peak 

(66 kDa) used as a mass calibrant. Samples were injected in 100 µl volumes at concentrations 

varying from 0.5 mg/ml to 10 mg/ml. Analysis of the mass was performed using the OmniSEC 

software package (Malvern). Sample runs and analysis were performed with Dr Martin Wear. 

2.8.2| Thermal Denaturation Assay (TDA) 

A Biorad iQ5 Multicolor Real-Time PCR detection system was used for all thermal 

denaturation assays. The filters were set for excitation at 475 nm and emission at 575 nm, 

optimal for the SYPRO® orange protein gel stain (Life Technologies). The assay was performed 

in polypropylene, clear 96 well iQ Real-Time PCR plates (Bio-Rad) with Microseal® ‘B’ optical 

adhesive seals (Bio-Rad).  The parameters in the iQ5 optimal system software version 2.1 was 

as follows: 

 

http://www.matrixscience.com/server.html
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Table 2.9| Bio-Rad iQ5 optimal system software 2.1 parameters for each TDA run 

Parameter Setting 

Sample volume 50 µl 

Fluorophore SYBR 

Probe/Primer SYBR 

Units copy number 

Seal type film 

Whole plate loading on 

Temperature range 20-80°C with 0.5°C increments 
and a 30 second dwell time 

 

The concentrations of protein used were optimised to identify the best signal to noise ratio. 

Each well contained: testing buffer, protein, 5x SYPRO Orange to a final volume of 50 μl. The 

different testing buffers used in the study are detailed in table 2.10. 

 

Table 2.10| Concentration of protein used and buffers tested in the TDAs 

Protein Concentration (μM) Variables tested 

LSH 1 pH (3-10), Glycerol (0-20% v/v), NaCl (0-500 mM), 
ATP (0-2 mM), ADP (0-2 mM), AMP (0-2 mM), MgCl2 
(0-20 mM), ZnCl2 (0-20 mM), CaCl2 (0-20 mM) DTT 
(1 mM) 

LSHK237Q 1 pH (7), Glycerol (0-10% v/v), NaCl (0-500 mM), ATP 
(0-1 mM), ADP (0-1 mM, AMP (0-2 mM), DTT 
(1mM) 

LSH1-176 1-20 pH (7), Glycerol (10%), NaCl (500 mM), DTT (1 mM) 

 

Results were analysed and interpreted using Microsoft excel and Graphpad Prism (Graphpad 

software Inc.). 
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2.8.3| Dynamic light scattering (DLS) 

Dynamic light scattering (DLS) was performed using a Zetasizer Auto Plate Sampler (Malvern) 

using 384 polypropylene plates (Corning). Protein concentration was typically 1 mg/ml and 

the sample was centrifuged down for 30 mins at 13000 rpm before 60 μl was loaded in a well. 

Protein buffer (50 mM HEPES pH 7, 10% (v/v) Glycerol, 100-500 mM NaCl and 1 mM DTT) 

was used as a blank. Each sample was measured three times following standard operating 

procedures as part of the Zetasizer software. All analysis was performed using Zetasizer 

software. 

2.9| Structural biology methods 

2.9.1| Protein sequence alignment, structural prediction and analysis software 

Protein sequence alignment was performed on protein sequences taken from UNIPROT (find 

these sequences). Clustal Omega was used for sequence alignment with the parameters set 

to Clustal w/o numbers and default settings.  

LSH from Homo sapiens:   Q9NRZ9 
LSH from Mus musculus:   Q60848 
LSH from Danio rerio:   B7ZD98 
LSH from Xenopus laevis:  Q6DD35 
SNF2 from S. cerevisiae:   P22082 
CHD1 from M. musculus:  P40201 
ISWI from Drosophila melanogaster: Q24368 
 
LSH disorder prediction was performed using the IUPred server (http://iupred.enzim.hu/). 

The long disorder setting was chosen and raw data was made into a graph using Graphpad 

Prism (Graphpad software Inc.).  

LSH ab-initio structural predictions were performed using the I-TASSER structural prediction 

server http://zhanglab.ccmb.med.umich.edu/I-TASSER/ (Yang et al., 2015), the Phyre server 

(Kelley et al., 2015), or the SAXSTER server (dos Reis, Aparicio and Zhang, 2011). Chd1 – PDB 

ID: 3MWY. Rad54 – PDB ID: 1Z3I. MtSNF2 – PDB ID: 5hzr.  All 3D structural images were 

generated using the PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC or the 

UCSF Chimera package. Chimera is developed by the Resource for Biocomputing, 

Visualization, and Informatics at the University of California, San Francisco (supported by 

NIGMS P41-GM103311)(Pettersen et al., 2004).  

http://iupred.enzim.hu/
http://zhanglab.ccmb.med.umich.edu/I-TASSER/
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2.9.2| Chemical crosslinking – Mass Spectrometry (XL-MS) 

Crosslinking experiments were carried out using the amine-to-amine crosslinker BS3 (Thermo 

Fisher Scientific). Zero-length crosslinking was carried out with EDC (Thermo Fisher Scientific) 

in the presence of Sulfo-NHS (Thermo Fisher Scientific). 

 

BS3 intramolecular crosslinking experiments: 

BS3 was made at 5 mg/ml concentrations in the reaction buffer: 50mM HEPES pH 7, 10% 

Glycerol (v/v), 500 mM NaCl, 1 mM DTT. LSH was diluted to 1 mg/ml in reaction buffer.  

BS3 was diluted with reaction buffer into a series of concentrations. 10 µl of LSH at 1 mg/ml 

was mixed with 10 µl of BS3 at the different dilutions defined in table 2.11 and incubated on 

ice for 2 hrs. 

 

Table 2.11| BS3 concentrations for incubation with LSH at different weight:weight ratios 

Final BS3 

concentration 

Volume of 

BS3 (5 mg/ml) 

Volume of                    

reaction buffer 

To use for  the                  

weight ratio LSH:BS3 
0.1 mg/ml 5 µl 245 µl 10:1 

0.25 mg/ml 5 µl 95 µl 4:1 

0.5 mg/ml 5 µl 45 µl 2:1 

1 mg/ml 5 µl 20 µl 1:1 

2 mg/ml 10 µl 15 µl 1:2 

3 mg/ml 10 µl 6.67 µl 1:3 

4 mg/ml 10 µl 2.5 µl 1:4 

5 mg/ml 0 µl 0 µl 1:5 

 

After incubation 6 µl of 4x SDS-PAGE loading buffer was added and samples were 

immediately boiled. 5.2 µl of the 26 µl reactions were analysed by SDS-PAGE and Coomassie 

staining.  For scale up for mass spectrometry up to 60 µg of LSH was crosslinked with BS3 

before undergoing trypsin digestion (section 2.7).  
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EDC-NHS crosslinking experiments: 

EDC and NHS were made to 1.5 mg/ml and 3 mg/ml concentrations respectively in the 

reaction buffer: 50 mM MES pH 5.5, 500 mM NaCl, 10% (v/v) Glycerol, 1 mM DTT. LSH was 

used at 1.5 mg/ml. The volumes required for a series of LSH:EDC:Sulfo-NHS weight ratios is 

defined in table 2.12. 

Table 2.12| Volumes for LSH:EDC:Sulfo-NHS weight ratios 

LSH/EDC/Sulfo-NHS ratio 2:1:2 1:1:2 1:2:4 1:3:6 1:5:10 LSH control 

LSH (1.5 µg/µl) 2 µl 2 µl 2 µl 2 µl 2 µl 2 µl 

EDC (1.5 µg/µl) 1 µl 2 µl 4 µl 6 µl 10 µl 0 µl 

Sulfo-NHS (3.0 µg/µl) 1 µl 2 µl 4 µl 6 µl 10 µl 0 µl 

MES reaction buffer 28 µl 26 µl 22 µl 18 µl 10 µl 30 µl 

 

Ammonium bicarbonate (2 µl of 2.7 M) was added to quench the reaction, then 10 µl of 4x 

SDS-PAGE sample buffer was added. Samples were boiled and analysed by SDS-PAGE and 

Coomassie staining. Experiments using the ratios of 1:1:2 and 1:2:4 were scaled up to use 30 

µg of LSH each, before undergoing trypsin digestion (section 2.7). 

Preparation of samples for mass spectrometry: 

The digested peptides were desalted using C18-StageTips (Rappsilber, Ishihama and Mann, 

2003) and analysed on a LTQ Orbitrap Velos mass spectrometer (Thermo Fisher Scientific) by 

Dr Juan Zou (Rappsilber lab). The raw mass spectrometric data files were processed into peak 

lists using MaxQuant (Cox and Mann, 2008a) with default parameters, except for “FTMS top 

peaks per 100 Da” which was set to 100 and “FTMS de-isotoping” was disabled. The peak lists 

were searched against the sequences of the protein using Xi software (Giese, Fischer and 

Rappsilber, 2015) for identification of cross-linked peptides and non-cross-linked linear 

peptides. Search parameters were as follows: MS accuracy - 6 ppm; MS2 accuracy - 20 ppm; 

enzyme - trypsin; specificity - fully tryptic; allowed number of missed cleavages - four; fixed 

modifications - carbamidomethylation on cysteine; variable modifications - oxidation on 

methionine. 46 auto-validated spectra matches with score cut-off of 7.0 to support 33 link 

pairs (Table 5.1). 
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2.9.3| Negative-staining EM 

LSH negative staining EM grids and imaging was performed by Dr Giuseppe Cannone. The 

analysis was co-performed with Dr Giuseppe Cannone. 

LSH at a concentration of 1 mg/ml (9.7 µM) was diluted 1:50 and 1:100 in SEC buffer for 

negative staining on EM grids. Each copper 400 mesh 5 nm carbon grid (AGAR) was charged 

in a SC7620 Sputter Coater (Quorum) for 60 secs. 2 μl of sample was spotted onto the grid 

and left to settle for 2 mins. Filter paper (Whatman 50) was used to remove excess sample. 

The grid was desalted by washing 3 times in ddH2O. The grid was washed 3 times in 2% (w/v) 

Uranyl Acetate, with 5 mins incubation for the last wash. After removal, the grid was air dried 

for 10 mins and stored in the carbon grid box at room temperature. Grids were imaged on a 

FEI F20 or a JEOL-1400 transmission electron microscope. Images were saved as 8-bit images 

using imageJ (Schneider, Rasband and Eliceiri, 2012) and boxes of particles were made using 

EMAN boxer software before 2D class averaging being made in EMAN 2.1 software (Tang et 

al., 2007).  

2.9.4| Small Angle X-ray Scattering (SAXS)  

SAXS data was collected at the European Synchrotron Radiation Facility (ESRF) at the BM29 

BioSAXS beamline (λ = 0.931 Å) on a Pilatus 1M detector (Pernot et al., 2013). The sample to 

detector distance was 2.867 m and scattering data were collected within the momentum 

transfer range (q) of 0.0025-0.5 Å-1. All samples in SEC buffer (50 mM HEPES pH 7, 10% (v/v) 

Glycerol, 500 mM NaCl, 1 mM DTT) were centrifuged down at 13000 rpm for 30 mins. To 

check for concentration dependent effect during sampling serial dilutions of the 10 mg/ml 

stock were made (5, 2.5, 1.25, 0.625 mg/ml) and concentrations were measured using UV 

spectroscopy (section 2.4.3). Ligands were made in SEC buffer at 50 mM concentrations and 

diluted 1-10 mM into protein samples.  
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For LSH:DNA complexes – LSH was mixed with annealed 20 bp dsDNA (SAXS 20 bp dsDNA) in 

SEC buffer (with 100 mM NaCl instead of 500 mM NaCl) to equimolar concentrations of 20.61 

µM. BSA (A7638-Sigma) made fresh in 50 mM HEPES pH 7.5 at 4.25 mg/ml using UV 

spectroscopy (section 2.4.3) was used as the mass standard. Each 50 µl sample was flowed 

(0.1 ml/min) during detection through a 1 mm diameter quartz glass capillary and kept at 4°C 

to avoid radiation damage. The molecular masses of the different LSH proteins and LSH:DNA 

complex were calculated from the extrapolated intensity at zero angle I(0), obtained with 

GNOM, by comparison with the I(0) of BSA (molecular mass 66 kDa). Data were collected in 

multiple 30 sec frames and auto-processed in EDNA (inspected and averaged, normalised to 

the incident beam intensity and the scattering of the buffer subtracted). 

2.9.5| SAXS data analysis and modelling 

SAXS data was analysed using the ATSAS 2.1 suite (Petoukhov et al., 2007, 2012). The SASPlot 

analysis tool was used for Guinier analysis and to determine the P(r) distribution. Low-

resolution structure models were constructed by ab initio modelling by simulated annealing 

using Dammin (Svergun, 1999), Dammif (Franke and Svergun, 2009), GASBOR (Dmitri I 

Svergun, Petoukhov and Koch, 2001) and EOM (Bernado et al., 2007). A representative 

gasbor model was used for representation.  

2.9.5| Protein crystallisation trials 

Manual crystallisation screening was performed using 24 well sitting/hanging drop 

(Molecular Dimensions) or 48 well sitting drop plates (Hampton). Automated crystallisation 

screening was performed in 96-well MRC plates (Molecular Dimensions) using the Gryphon 

robot (Art Robbins) following manufacturer suggestions. Protein concentrations between 4-

10 mg/ml were used for screening. ADP was added to a final concentration of 1 mM from a 

stock of 50 mM in 250 mM HEPES pH 7. Preparations contained 0.1 μl of protein and 0.1 µl 

of well buffer and the well volume was 60 µl. Once pipetting had finished, plates were quickly 

sealed using a XCS-384 pressure sealer (FluidX) and stored at 6°C or 16°C.The commercial 

screens used in this study were as follows: Cations, Nucleix (Qiagen), Index, Natrix, PEG/Ion 

(Hampton), ProPlex, Midas, Structure 1 and 2, JCSG+ and Morpheus (Molecular Dimensions). 

Automated imaging was performed on a CrysCam XY stage imaging system (Art Robbins). 

Manual imaging was performed using a Nikon Stereomicroscope (Nikon). 
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2.10| Preparation of nucleosomes 

2.10.1| Annealing oligonucleotides 

All oligonucleotides were ordered from Integrated DNA Technologies and resuspended in 

ddH2O to a 1 mM stock before being checked using UV spectroscopy (section 2.4.4) and the 

concentration was adjusted to 0.5 mM. Equal volumes of complementary oligonucleotides 

were mixed gently with equal volumes of 2x TEN buffer (20 mM Tris pH 7.5, 100 mM NaCl, 2 

mM EDTA). The mixture was heated to 90°C for 10 mins in a heat block, with a hot block 

covering the Eppendorf lids to prevent condensation. The heat block was turned off and 

blocks were removed with slow cooling to room temperature for ~4 hrs. The annealed 

oligonucleotides were analysed using native PAGE and stained with methylene blue stain for 

30 mins followed by destaining in ddH2O until background stain was no longer visible. 

Scanning was performed on A GELDOC EZ system (Bio-Rad) under the Coomassie setting. If 

the DNA was IR700 labelled the gel was scanned on an Odyssey scanner (Li-Cor).  

2.10.2| Histone octamer formation 

Buffers used for histone octamer formation: 

Unfolding buffer                                                                                                                                      

7 M guanidine-HCl, 20 mM Tris pH 7.5, 10 mM DTT.                     

Refolding Buffer                                                                                                                                   

10 mM Tris pH 8, 2 M NaCl, 1 mM EDTA, 5 mM -mercaptoethanol.   

Reconstitution buffer                                                                                                                          

10 mM Tris, 0.5 mM EDTA.  

Core histone proteins (H2A, H2B, H3 and H4) were expressed and purified from E.coli (gifted 

by the Voigt lab). The histones were purified from inclusion bodies under denaturing 

conditions by ion exchange chromatography. Purified core histone proteins were mixed in 

equimolar amounts in unfolding buffer on ice, before dialysis against 1 L refolding buffer at 

4C overnight. After centrifugation for 20 mins at 13000 rpm and 4C, 250 µl of 2 mg mixed 

histones was injected into a pre-equilibrated Superdex 200 10/300GL column (GE Healthcare) 

attached to a ӒKTA HPLC system. 0.5 ml fractions were collected and analysed using SDS-

PAGE and Coomassie staining. Protein concentration was determined by Bradford assay and 

UV spectroscopy.  
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2.10.3| Nucleosome DNA preparation 

DNA fragments were amplified from a PBS601 plasmid (gifted from the Voigt lab) using 

primers to make DNA fragments with differing overhangs from the 147 bp core widom 

histone octamer binding sequence. The forward primer contained a 5` IR700 fluorophore for 

EMSA experiments. DNA was amplified using Phusion® High-Fidelity DNA Polymerase (NEB) 

to amplify a small amount of DNA according to manufacturer’s protocol using the following 

PCR cycling conditions: 

Table 2.13| PCR cycling conditions for amplifying nucleosome DNA 

Step Temperature Time  

 

        x35  

1 98°C 30 secs 

2 98°C 20 secs 

3 48°C 30 secs 

4 70°C 30 secs 

5 70°C 3 mins 

6 4°C Pause 

 

Product size was estimated with 2% AGE by comparison with a 50 bp DNA ladder. The PCR 

product was used a template for scale-up with HMT polymerase typically in 100 µl reaction 

volumes for each PCR reaction (see 2.3.2). 96-well plates were used and typically generated 

150-200 µg of DNA after purification. The PCR products were purified using the PCR product 

purification protocol (section 2.3.6). One spin column was used for 0.5 ml of PCR reaction 

because the QIAGEN spin columns only have a 10 µg binding capacity. 

2.10.4| Nucleosome reconstitution 

1 µg of DNA was mixed with varying amounts of histone octamers (1, 2, 3 or 4 µg) in a total 

volume of 100 µl refolding buffer. 5 M NaCl was added to keep the ionic strength of the 

mixture at 2 M NaCl. Dialysis was performed using slide-a-lyzer 10 kDa MWCO units (Life 

Technologies) floating on 200 ml of refolding buffer with 800 ml reconstitution buffer added 

slowly (1 ml/min) overnight at 4°C. The next morning fresh dialysis in 200 ml reconstitution 

buffer was performed for 2 hrs. Samples were analysed on a 6% TBE gel acrylamide gel and 

either visualised using an Odyssey scanner (Li-Cor) or the gel was incubated for 15 mins in 

SYBR Safe (Life Technologies) following the manufacturer’s suggestions and scanned on the 

GELDOC EZ (Biorad) using the SYBR Safe setting. 
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2.10.5| DNA EMSA 

Buffers used for the EMSA: 

Binding buffer                                                                                                                                       

50 mM HEPES pH 7, 100 mM NaCl, 10% Glycerol, 1 mM DTT.                          

1x Tris-CAPS buffer                                                                                                                               

60 mM Tris, 40 mM CAPS.  

DNA or Nucleosomes with a 5' IR700 dye were used for all EMSA experiments. Reaction 

volumes were 20 µl. DNA or reconstituted nucleosomes (5 nM-1 µM final concentration) 

were mixed in binding buffer, before the addition of LSH at increasing concentrations (5 nM-

10 µM) for 30 mins in ice. For analysis of DNA binding by LSH a 2% agarose gel made in 1x 

Tris-CAPS buffer was used. For analysis of nucleosome binding by LSH a 0.5% agarose gel 

made in 1x Tris-CAPS buffer was used.  All 20 µl of sample was loaded and gels were run at 

80 V for 60 mins at 6°C. Gels were immediately visualised on an Odyssey scanner (Li-Cor) at 

a wavelength of 700 nm and intensity necessary to prevent saturation of signal (varied 

between 0.5-7). Quantitative analysis was performed in Image studio lite (3.1) and graphs 

made in Graphpad Prism. Nucleosome competition experiments with LSH and DNMT3B were 

carried out using the conditions described above. Reconstituted nucleosomes (5 nM) were 

incubated primarily with 160 nM LSH at 4°C, before incubation with increasing 

concentrations of DNMT3B (5-160 nM) for 30 mins at 4°C or vice versa before being analysed 

by AGE as above. 

2.10.6| Multiprotein AGE 

This method is adapted from Kim, 2011. This method uses the same buffers from section 

2.10.5. For analysis of LSH-6His and StrepII-6His-DNMT3B or LSH1-176 and StrepII-6His-

DNMT3B complex formation a 0.5% agarose gel made in 1x Tris-CAPS buffer was used.  

Proteins were mixed in binding buffer, each to a final concentration of 1 µM in 10 µl and 

incubated for 30 minutes on ice. All 20 µl of the sample were loaded and the gels were run 

at 80 V for 60 mins at 6°C. For visualisation of proteins, gels were Coomassie stained and 

scanned on A GELDOC EZ system (Bio-Rad) using the Coomassie setting. 
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2.10.7| Fluorescence polarisation (FP) DNA binding assay 

All samples were analysed using a SpectraMax M5 multiplate reader (Molecular Devices). 

Sample volumes of 100 µl were used in black opaque polystyrene 96-well plates (Corning). 

50 nM 5'6FAM labelled 12 bp dsDNA was used as this gave good signal without saturating 

the detector. Excitation was set at 493 nm and emission at 521 nm wavelengths for 6FAM 

DNA. A titration of LSH was performed from 50 nM-10 µM in binding buffer (50 mM HEPES, 

10-50 mM NaCl, 10% Glycerol, 1 mM MgCl2, 1 mM DTT). Mixtures were incubated on ice for 

15 mins before being scanned. Buffer only readings were used to subtract background. 

Fluorescence anisotropy was measured. For competition assays, non-labelled 36 bp dsDNA 

was added into the reaction at a concentration of 10 µM until anisotropy decreased back to 

DNA only levels. The analysis was performed using Graphpad Prism (Graphpad software Inc.). 

The anisotropy is calculated using the following set of equations: 

KD =
LF x (RT−B)

B
                                                                                                   Equation (2.2) 

KD = Dissociation constant                                                                                                                          
LF = unbound ligand concentration                                                                                                                                       
B = Receptor: Ligand complex concentration                                                                                                                                                                        
RT = Total receptor concentration                                                                                                          
RT-B = Free receptor concentration 

B =
RT x (LT−B)

KD+(LT−B)
                                                                                                     Equation (2.3) 

The quadratic is used to solve B in the following equation: 

B =
(LT+KD+RT)− √(RT+KD+LT)2−4LT x RT

2
                                                 Equation (2.4) 

When the anisotropy values are used directly the following equation is used: 

B = LT x 
A−Af

Ab−Af
                                                                                     Equation (2.5) 

LT = Total free ligand                                                                                                                                       
A = Anisotropy                                                                                                                                                  
Af = Anisotropy of the free ligand                                                                                                          
Ab = Anisotropy of the bound ligand 
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When calculating anisotropy the formula to rearranged to: 

𝐴 = 𝐴0 + (𝐴𝑏 − 𝐴0)(𝐾𝐷 + [𝐿]𝑡 + [𝑃]𝑡) −  
√(𝐾𝐷+[𝐿]𝑡+[𝑃]𝑡)2−4[𝐿]𝑡[𝑃]𝑡 

2[𝐿]𝑡
        Equation (2.6) 

A0 = Anisotropy of free 12 bp 5'6FAM dsDNA                                                                                                                                      
Ab = Anisotropy of 12 bp 5'6FAM dsDNA bound to LSH-6His                                                                                                                                                                                                                                                                                       
[L]t = Total 12 bp 5'6FAM dsDNA concentration                                                                                                          
[P]t = Total LSH-6His concentration                                                                                                        
The KD is defined as the concentration of the protein at which 50% is bound to the ligand 

Equation 2.5 is used by the plate reader software when the plate reader measures the 

anisotropy. 

2.11| Primers, Plasmids and oligonucleotides 
Table 2.14| A List of primers used in this study. IRD700 stands for IR700 dye 

PRIMER (5'- 3') SEQUENCE 

OSV-F-BamHI-6His-TEV LSH TTTAGGATCCATGCACCATCACCATCACCACGAGAACCT                                    
ATATTTCCAAGGTATGGCCGAACAAACGGAGCCTGCG 

OSV-F-BamHI-6His LSH TTTAGGATCCATGCACCATCACCATCACCACATGGCCGAA
CAAACGGAGCCTGCG 

OSV-F-BamHI-6His-TEV LSH200-821 TTTAGGATCCATGCACCATCACCATCACCACGAGAACCTA
TATTTCCAAGGTAAGCATTTCACAGGAGGAGTAATG 

OSV-F-BamHI-6His LSH200-821 TTTAGGATCCATGCACCATCACCATCACCACAAGCATTTC
ACAGGAGGAGTAATG 

OSV-F-BamHI-LSH200-821 CGTTGGATCCATGTTCACAGGAGGAGTAATGAGG 
OSV-R-SalI-6His-LSH200-821 CGTTGTCGACTCAGTGGTGATGGTGATGGTGAAATAAAC

ATTCAGCACTGGAATC 

OSV-F-BamHI-LSH CGTTGGATCCATGGCCGAACAAACGG 

OSV-F-BamHI-LSH146-821 CGTTGGATCCATGTCTTCCACTACGAGTCTTTGTG 
OSV-F-BamHI-LSH162-821 CGTTGGATCCATGTCAAATAGTATGATTAAAGATAGATT

GTC 

OSV-F-BamHI-LSH176-821 CGTTGGATCCATGCAGAACTCTAAATTCTTTTTTGACCCA 

OSV-F-BamHI-LSH178-821 CGTTGGATCCATGTCTAAATTCTTTTTTGACCCAG 

OSV-F-BamHI-LSH184-821 CGTTGGATCCATGCCAGTTCGGAAATGTAACGG 

OSV-F-BamHI-LSH193-821 CTTAGGATCCATGGTACCCTTTCAACAACCAAAGC 

OSV-F-BamHI-LSH196-821 GTTAGGATCCATGCAACAACCAAAGCATTTCACAGG 
OSV-F-BamHI-LSH209-821 GCTTGGATCCATGCATTTCACAGGAGGAGTAATG 

OSV-F-BamHI-LSH219-821  GCTTGGATCCATGCTTTGGGAAAATGGAATT 

OSV-F-BamHI-LSH226-821 GTTAGGATCCATGAATGGCATTTTAGCAGATGAAATGGG 
OSV-R-SalI-LSH GCTCGTCGACCTACTGCCTAACAGTTTGAGAC 
OSV-R-SalI-6His-LSH GCTCGTCGACCTAATGGTGATGATGGTGATGCTGCCTAA

CAGTTTGAGAC 

OSV-F-seq-LSH-0 GTATCGATTCGCGACCTACTC 

OSV-F-seq-LSH-1 GGATTATTCATACCGTCCCACC 



Simon Varzandeh  Chapter 2| Materials and Methods 

65 
 

OSV-F-seq-LSH-2 GACCCAGTTCGGAAATGTAAC 

OSV-F-seq-LSH-3 CTTGAAAAGCTTTGAGTCTTGG 

OSV-F-seq-LSH-4 GGACATCTTGATGGATTATTGCC 

OSV-R-seq-LSH CTCTAGATTCGAAAGCGGCC 

M13 reverse  CAGGAAACAGCTATGAC 

M13 forward CCCAGTCACGACGTTGTAAAACG 
OSV-F-BamHI-StrepII-GAGA-6His-
TEV-DNMT3B-1        (1st PCR step) 

GGAGCTCATCACCACCATCACCACGAAAACGTCGAGCTG
CAGGGAATGAAGGGAGACAGCAGACATC 

OSV-F-BamHI-StrepII-GAGA-6His-
TEV-DNMT3B-2       (2nd PCR step) 

GCATGGATCCATATGTGGTCCCACCCACAATTTGAGAAG
GGAGCTGGAGCTCATCACCACCATCAC 

OSV-R-EcoRI-DNMT3B GCTAGAATTCCTAAGCGTAATCTGGTACGTCG 

OSV-F-Nhe1-StrepII-TEV-DNMT3B GCTTGCTAGCATGTGGAGCCATCCGCAATTTGAAAAAGA
AAACCTGTACTTCCAGGGAAAGGGAGACAGCAGACATCT
G 

OSV-R-SphI-DNMT3B TACGACGTACCAGATTACGCTTAGGCATGCTTGC 

OSV-F-seq-DNMT3B-1 CACTCGACGAAGACTTGATCAC 

OSV-F-seq-DNMT3B-2 CATCAGTTGACTTGAGCCAGG 

OSV-F-seq-DNMT3B-3 GCTTCTGAAGTCACCAACAAC 
OSV-F-seq-DNMT3B-4 GATCTCTCTAACGTCAATCCTGC 

OSV-F-IR700-25-Nuc /5IRD700/GACCCAAGCGAACACCGG 

OSV-F-IR700-12-Nuc /5IRD700/ACCGGCACTGGGACAGGATG 

OSV-F-IR700-6-Nuc /5IRD700/ACTGGGACAGGATGTATATATGTGAC 

OSV-F-IR700-0-Nuc /5IRD700/ACAGGATGTATATATGTGACACG 
OSV-F-IR700-26-Nuc GCTTCACCTCGTGACCC 
OSV-R-Nuc-26  CGATCTAGACCATGATGC 
OSV-R-Nuc-0 CTGGAGAATCCCGGTGCC 
 

Table 2.15| A list of plasmids used in this study 

VECTOR PLASMID NAME 

MSCV MSCVh-DNMT3B  

pAM pAMm-LSH (mouse synthetic LSH orf) 

pAM pAMm-LSHK237Q 

pFL pFL-LSH-6His 

pFL pFL-LSHK237Q-6His 

pFL pFL-6His-TEV-LSH 

pFL pFL-6His-LSH 

pFL pFL-6His-TEV-LSH200-821 

pFL pFL-6His-LSH200-821 

pFL pFL-LSH146-821-6His 
p pFL pFL-LSH162-821-6His 
 pFL pFL-LSH176-821-6His 
 pFL pFL-LSH178-821-6His 
 pFL pFL-LSH184-821-6His 
 pFL pFL-LSH193-821-6His 
 pFL pFL-LSH196-821-6His 
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pFL pFL-LSH200-821-6His 
 pFL pFL-LSH209-821-6His 
 pFL pFL-LSH219-821-6His 
 pFL pFL-LSH226-821-6His 
 pFL pFL-polH-StrepII-6His-GAGA-TEV-DNMT3B 

pFL pFL-p10-StrepII-TEV-DNMT3B 

pFL pFL-p10-StrepII-DNMT3B-polH-LSH-6His 

pET-28a 6His-TEV-LSH1-176 

pUC pUC-601 

 

Table 2.16| A list of oligonucleotides used in this study. IRD700 represents IR700 dye. 6-

FAM represents Fluorescein. Me represents a methyl group attached to C. 

Oligonucleotide Sequence 

12mer-R AACGCACGCAGC 

12mer-F GCTGCGTGCGTT 

12mer-F-IR700 /5IRD700/GCTGCGTGCGTT 

12mer-F-6FAM /56-FAM/GCTGCGTGCGTT 

12mer-non-hairpin-IR700 /5IRD700/GTTGCGTGCTTT 

Methylated-12mer-R AACMeGCACMeGCAGC 

Methylated-12mer-F-6FAM /56-FAM/GCTGCMeGTGCMeGTT 

Methylated-12mer-F-IR700 /5IRD700/GCTGCMeGTGCMeGTT 

 
20mer IR700 F /5IRD700/GTGGACTGCGTGCGTTAGTG 

16mer IR700 F /5IRD700/GGACTGCGTGCGTTAG 

20mer R CACTAACGCACGCAGTCCAC 

16mer R CTAACGCACGCAGTCC 

X-LSH 20 mer R (CGend) CGACGAACGCACGCAGCTCA 

X-LSH 20 mer F (CGend) CGTGAGCTGCGTGCGTTCGT 

X-LSH 16 mer R (CGend) CGTAACGCACGCAGCT 

X-LSH 16 mer F (CGend) CGAGCTGCGTGCGTTA 
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Chapter 3| Cloning, expression and purification of LSH 

3.1| Introduction  
In order to study the mechanism by which LSH function is regulated and what role its N-

terminal domain has in regulating enzymatic function a large amount (several mg) of folded 

protein that is more than 95% pure is required for structural and biochemical investigation 

(Graslund, 2008; Almo et al., 2013). LSH has been overexpressed in bacteria (personal 

communication), however, the protein was insoluble and refolding attempts were 

unsuccessful, potentially due to LSH being a multi-domain 96 kDa protein. Soluble, active LSH 

was successfully expressed using an insect cell system (Burrage et al., 2012). Recombinant 

protein expression in insect cells involves a Baculovirus Expression Vector system (BEVs). 

Recombinant baculovirus is acquired from Autographa californica multinuclear 

polyhedrovirus (AcMNPV) to infect lepidopteron cells derived from Spodoptera frugiperda 

(isolates Sf9/Sf21) or Tricloplusia ni (HighFive™) (Almo et al., 2013). LSH was cloned using the 

Bac-to-Bac insect cell expression system, expressed and purified on a small scale yielding less 

than 80% pure LSH (Burrage et al., 2012). A higher homogeneity of protein sample would be 

required for biophysical characterisation, structural studies and biochemical assays. 

I decided to use the MultiBac baculoviral expression system, developed by Imre Berger and 

colleagues (Fitzgerald et al., 2006) instead of the Bac-to-Bac® baculovirus expression system 

adopted by Burrage et al. 2012. The MultiBac baculoviral expression system has the added 

advantage over the Bac-to-Bac system of expressing a yellow fluorescent protein (YFP) gene 

upstream of a polH promoter, allowing baculovirus infected insect cells to be monitored 

using fluorescent microscopy enabling visualisation of positively infected Sf9 cells (Fitzgerald 

et al., 2006; Trowitzsch et al., 2010). The MultiBac system also allows for cloning of binding 

partner proteins (e.g. DNMT3B) for multiprotein complex expression within a single 

transfective baculovirus through integratable transfer vectors which cannot be done with the 

Bac-to-Bac® system. Multiple genes of interest are cloned into transfer vectors, followed by 

integration into the baculoviral EMBacY Bacmid via Tn7 transposition using E.coli (Figure 3.1) 

(Fitzgerald et al., 2006; Trowitzsch et al., 2010). Transfection of the EMBacY bacmid in Sf9 

insect cells causes virus production and recombinant protein expression under the 

polyhedron promoters p10 and polH (Figure 3.1) (Fitzgerald et al., 2006).  Figure 3.1 explains 

how the MultiBac system works. 
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First, I decided to use the MultiBac system to express LSH alone. I decided to clone full-length 

LSH and the ATPase region LSH200-821 as this region has been crystallised successfully for 

RAD54, CHD1 and SNF2. It would enable structural and biochemical functional studies to be 

tested with and without the N-terminal domain which would shed light on how this domain 

regulates the ATPase regions of LSH.  

3.2| Results and Discussion 

3.2.1| Cloning and Expression of LSH and LSH200-821 

Initially, full-length LSH and a truncated form LSH200-821 comprising the core ATPase domain 

were cloned separately into a pFL plasmid (using restriction-based cloning) also encoding a 

6His tag with or without a TEV cleavage site upstream of the LSH gene (under the control of 

the polH promoter) (Figure 2.1).  The four variants of LSH bacmids were then transfected into 

Sf9 cells for generation of recombinant viruses and virus amplification. The EMBacY bacmid 

contains a YFP ORF upstream of a polH promoter (Figure 2.1). Although LSH and YFP are 

expressed under separate polH promoters, expression from both is presumed to be 

equivalent (Fitzgerald et al., 2006). YFP expression can be monitored in live cells by 

fluorescence microscopy, enabling successful transfections to be identified and the extent of 

viral infection to be measured over time (Figure 3.2A).  

Following transfection of all LSH bacmid variants into Sf9 cells, YFP expression from a small 

number of cells was seen after 2 days. After 3 and 4 days post-infection YFP signal increased 

significantly, indicating that the majority of cells were infected with baculovirus and 

overexpressing proteins from the viral polH promoters (Figure 3.2A). The baculovirus after 4 

days defined as V0 was collected and the growth of infected cells was continued with fresh 

media. The majority of cells showed YFP overexpression 5 days post-transfection and were 

used to verify LSH expression in Sf9 cells by Western blot analysis of extracted proteins.  

LSH has an NLS in the N-terminal domain in the region around LSH112  to allow transport into 

the nucleus (Lee et al. 2000, Yan et al. 2003). The NLS is not present in the two LSH200-821 

variants. Therefore nuclear and cytoplasmic extracts were collected from all four LSH variants 

expressed in Sf9 cells to determine if the NLS domain was functional.  
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Western blots were performed using primary antibodies against LSH (Figure 3.2B) and the 

6Histag (Figure 3.2C). Secondary antibodies coupled with an infrared dye were used for 

visualisation. A greater accumulation of LSH in the nuclear extract (lanes 2 and 3) compared 

to the cytoplasmic extract (lanes 7 and 8) of the two LSH variants was expected and can be 

seen on the anti-LSH and anti-6His Western blots (Figure 3.2B and C). The signal on the anti-

His Western blot was weaker than that on the anti-LSH western blot, likely due to weaker 

antibody binding. 

As the LSH200-821 variants do not contain the NLS the band intensity appeared equivalent in 

nuclear and cytoplasmic fractions on the anti-LSH Western blot (Figure 3.2B). The expression 

of both LSH200-821 variants was considerably weaker than full-length variants on the anti-LSH 

Western blot (Figure 3.2B), with no detection seen on the anti-6His Western blot (Figure 

3.2C). 

To establish if the 6Histag was accessible for binding to Ni-NTA lysates containing the 

6HisTEV-LSH and 6HisTEV-LSH200-821 proteins underwent IMAC purification (Figure 3.2D). 

Unbound material was washed away with 10mM imidazole, and bound material was eluted 

with 1 M Imidazole. The presence of 6HisTEV-LSH in the eluted fractions confirmed that the 

6histag was available for binding (Figure 3.2D).  

The absence of a band at ~70 kDa in elutions from the 6HisTEV-LSH200-821 IMAC purification 

suggested that the 6Histag is inaccessible or not present (Figure 3.2D).  LSH200-821 was 

temporarily abandoned due to weak expression and no evidence of a 6Histag whereas 

6HisTEV-LSH was carried forward and provides the potential production of a native LSH by 

cleavage of the 6Histag.  
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3.2.2| Amplification of baculovirus and V2 characterisation 

In order to scale up 6HisTEV-LSH expression, the V0 baculovirus had to be amplified to larger 

volumes through sequential infection of larger volumes of Sf9 cells. Initial V0 virus stock of 

6HisTEV-LSH was used to generate a V1 stock by infecting 50ml of Sf9 cells with V0. After 3 

days of incubation, supernatant containing virus was used to generate V2 stock by infecting 

200 ml of Sf9 cells with V1 baculovirus. Supernatant containing virus was collected after 3 

days of incubation. The V2 stock was to be used for large scale 6HisTEV-LSH expression; 

therefore, the volume of V2 virus needed and length of incubation with Sf9 cells necessary 

for optimal 6HisTEV-LSH expression needed to be determined. To characterise the V2 stock, 

four baculovirus dilutions were used in separate 60 ml Sf9 cell cultures at V2:Sf9 cell volume  

ratios: 1:50, 1:100, 1:150 and 1:200. For each ratio, 1.5 ml of cells were taken at 1, 2, 2.5, 3, 

3.5, 4, 4.5 and 5 days post-infection and imaged using fluorescence microscopy to identify 

YFP expression (a marker for polH overexpression) before being pelleted and frozen.  

YFP expression peaks at ~3-3.5 days post-infection for all V2:Sf9 cell volume ratios tested 

(Figure 3.3A). However, as the density of cells between images is variable, it is difficult to 

determine the optimal expression of YFP (Figure 3.3A). Therefore, I quantified LSH expression 

by Western blot analysis from each frozen cell pellet (Figure 3.2B). The anti-LSH antibody was 

used to detect LSH expression and anti-Tubulin antibody was used as a loading control for 

normalisation of each sample. The intensity of LSH protein peaked at ~3-4 days post-

infection, with a modest decrease in intensity thereafter until day 5, establishing that protein 

expression is stable for at least ~1.5 days (Figure 3.3B and Figure 3.3C). Normalisation was 

relative as each protein was measured at different wavelengths (Figure 3.3B). From Figure 

3.3C the LSH band intensity begins to plateau for all V2: Sf9 cell volume ratios at day 3. 

Optimal expression appears between 4-4.5 days post-infection for all V2:Sf9 cell volume 

ratios. Therefore I concluded that the optimum conditions for 6HisTEV-LSH expression were 

using a V2:Sf9 cell volume of 1:100 or 1:150 and harvesting the Sf9 cells 4 or 4.5 days post 

infection. 
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3.2.3| Comparing purification of LSH protein constructs with an N or C-terminal 

6Histag. 

                                             To purify LSH a primary step of phosphocellulose cation exchange chromatography followed 

by a secondary IMAC step was used. The phosphocellulose cation exchange step has been 

used to purify DNA binding proteins from DNA and was also used due to its large protein 

binding capacity (50-100 mg/ml phosphocellulose slurry) (Rossi & Taylor 2011). Therefore, 

phosphocellulose was chosen as a primary purification step before the IMAC step to purify 

LSH from DNA and proteins with each step respectively.   

Purification of 6HisTEV-LSH proved problematic due to weak binding to IMAC resin and 

elution of the protein in the wash steps (data not shown). One potential reason for this could 

be cleavage of the 6Histag via proteases. To test this hypothesis a Western blot of fractions 

from the IMAC purification was performed (Figure 3.4A). Primary antibodies for anti-LSH and 

anti-6His were used. LSH was present in the flow through and early washes of the anti-LSH 

Western blot, whilst the 6Histag was detected only in the elution’s in the anti-6Histag 

Western blot (Figure 3.4A). This suggests degradation of the 6His-tag by proteases or that an 

untagged and tagged LSH proteins were being expressed. More protease inhibitors were 

added (2 times more) and during the dialysis 0.2 mM PMSF was added to the buffer to 

prevent proteolysis of LSH, however this did not solve the problem (data not shown). 

A new construct of LSH was cloned with a C-terminal non-cleavable 6Histag (LSH-6His). 

LSH200-821 was also cloned with a C-terminal 6Histag (LSH200-821-6his) to test if the expression 

could be improved. Expression of LSH-6His was comparable to 6HisTEV-LSH (Figure 3.3B). 

However expression of LSH200-821-6His was reduced compared to LSH-6His (Figure 3.4B) as 

seen previously (Figure 3.2B), suggesting instability of this construct, therefore purification 

of this protein was not continued in this study. 
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A comparison of the purification of 6HisTEV-LSH and LSH-6His was performed by purifying 

separately using phosphocellulose cation exchange chromatography followed by IMAC 

(Figure 3.5). LSH-6His eluted with greater yield and purity from the phosphocellulose cation 

exchange column than 6HisTEV-LSH (Figure 3.4C and 3.4A respectively). Furthermore, LSH-

6His was purer after the IMAC step, in comparison to 6HisTEV-LSH (Figure 3.5D and 3.5B 

respectively). Importantly, more LSH-6His bound to the IMAC resin, as less was seen in the 

unbound fraction in comparison to 6HisTEV-LSH (Figure 3.5D and 3.5B respectively). As LSH-

6His appeared less prone to degradation and was purer after two rounds of purification, it 

was selected as a better candidate to pursue for a large-scale expression and purification.   
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3.2.4| Large scale LSH expression and purification scale up 

Expression of LSH-6His was scaled up to 4 litres of Sf9 culture at 1x106 cells/ml and infected 

with 40 ml V2 virus. Purification was performed in three steps: phosphocellulose cation 

exchange chromatography, IMAC and SEC. The phosphocellulose step was minimally 

successful at purifying LSH from major contaminants (Figure 3.6A). The IMAC purification of 

the pooled phosphocellulose elutions was successful in removing major contaminants during 

washes with 15 mM imidazole, with the major protein being LSH-6His (Figure 3.6B). The 

pooled IMAC elutions were buffer exchanged for imidazole removal and underwent SEC using 

an ӒKTA HPLC with online UV detection at 260 nm and 280 nm. A broad peak with two 

shoulders eluting at 7-12 ml was determined to be unwanted contaminants through 

visualisation with silver staining SDS-PAGE (Figure 3.6D). A symmetrical peak eluting at 13 ml 

was identified as LSH-6His by mass using silver staining SDS-PAGE (Figure 3.6D). The UV ratio 

(260/280 nm) was ~0.6 indicative of negligible DNA contamination. Therefore, LSH had been 

purified to a quality sufficient for structural biology. MALDI-ToF was used to confirm if the 

100 kDa protein was LSH (Figure S3.1). A coverage of 40% LSH was measured with MALDI-

ToF and a Mascot score of 227 (Figure S3.1). A protein with a Mascot score of 70 is recognised 

as having a 95% probability that the match is not random (Figure S3.1). Considering that LSH 

had a score nearly 4 times that of 70 it is highly unlikely that the protein band analysed is 

anything other than LSH.  

However, the total yield of purified LSH expressed from 4 litres of Sf9 cells was 200 μg, 

precluding structural biology experiments. Therefore. methods to increase the yield of LSH-

6His reproducibly using the baculoviral/insect cell system were sought.  
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3.2.5| Improving LSH expression in insect cells 

Quick and cost-effective solutions to enhance protein expression in insect cells were 

investigated initially. First, the insect cell line used for protein expression was changed to 

HighFive™ which possesses  superior expression for various proteins when compared to Sf9 

insect cells (Wilde et al., 2014). LSH expression in Sf9 and HighFive™ cells was quantified 

through Western blotting with anti-LSH and anti-Tubulin antibodies (Figure 3.7A) as 

described previously (Section 3.2). LSH expression was ~3 fold higher in HighFive™ cells than 

in Sf9 cells (Figure 3.7B). 

 

Therefore, HighFive cells were adopted as the cell line for LSH-6His expression in all 

subsequent experiments. The HighFive cell line also displays a fast doubling rate (18-24 hrs) 

compared to the Sf9 cell line (48-72 hrs), allowing faster cell culture scale up.  

However, I observed aggressive cell clumping in HighFive suspension cell cultures which 

could not be remedied using the suppliers (Life Technologies) recommendation of heparin 

addition. Previously dextran sulphate (Mr 5000) was reported to be a rapid and effective 

method to prevent cell clumping without diminishing baculoviral infection (Dee, Shuler and 

Wood, 1997). This method minimised cell clumping during LSH expression and was adopted. 

A second disadvantage is HighFive cells have a 100 fold lower baculoviral generation than in 

Sf9 cells (Wilde et al., 2014). Therefore, Sf9 cells were used for baculovirus propagation and 

HighFive cells used for protein expression. 
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The designers of the Multibac system suggest that the optimal cell density is 1-2x106 cells/ml 

due to higher cell densities exhausting nutrients (Reuveny et al., 1993; Fitzgerald et al., 2006). 

HighFive cells at 2-3x106 cells/ml in Express Five medium deplete glucose and glutamine 72 

hrs post infection, limiting these major components in such media (Rhiel et al. 1997). 

Yeastolate hydrolysate has also been shown to be rapidly depleted in high-density insect cells 

(Drews et al. 1995). 

Supplementing high-density insect cell cultures such as Sf9 or HighFive with glucose, 

glutamine, hydrolysates and lipids was proposed as a cost effective solution to improving 

overall volumetric yield (Schlaeger 1996). Supplementation and/or media exchange allows 

recombinant protein yield per cell in high-density cell cultures to be equivalent or higher than 

in low-density cell cultures were nutrients are not a limiting factor in Sf9 cells (Reuveny et al., 

1993; Bédard et al., 1994; Ikonomou, Schneider and Agathos, 2003; Ohki et al., 2012) and 

HighFive cells (Ikonomou et al., 2004; Rausch, Pörtner and Knäblein, 2013). 

Therefore I designed a 10x supplementation cocktail based on insect cell medium design and 

supplementation (Bédard et al., 1994; Schlaeger, 1996; Ikonomou, Schneider and Agathos, 

2003)  The cocktail contained glucose (50 g/L), glutamine (100 mM), yeastolate ultrafiltrate 

(40 g/L) and 1000x lipid mixture (diluted to 10x) added to a final 1x concentration in insect 

cell culture. I decided to test HighFive cell cultures at 3-4x106 cells/ml as they were still in 

exponential growth phase. HighFive cultures with or without media exchange were infected 

with 1:25 V2 baculovirus:HighFive cell volume. The ratio was decreased 4x from 1:100 as 

determined in section 3.2.2 due to a 4 times increase in cell density. I tested the 

supplementation cocktail in culture with or without media exchange 1 day after V2 

baculoviral infection.  

The cell density for media-exchanged cultures was 5-5.5x106 cells/ml, nearly 2 times greater 

than those without media exchange at 3x106 cells/ml 2 days post infection (Figure 3.8A). The 

lack of growth arrest in media-exchanged cultures suggests incomplete baculoviral infection, 

however, the variability of cell density in media-exchanged and supplemented cultures 

suggest anomalies in cell counts (Figure 3.8A).  
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The cell viability was measured with trypan blue staining. A drop by 10-30% in cell viability 5 

days post infection between conditions did not vary enough with any statistical significance 

based on overlapping standard deviation values (figure 3.8B). The cell viability typically 

dropped due to viral cell lysis (data not shown). Overall viability for all conditions 5 days post 

infection was high, with the lowest mean viability of 82% for the + supplement cultures 

(Figure 3.8B).  

LSH expression was quantified through Western blotting with anti-LSH and anti-tubulin 

antibodies as performed previously (Figure 3.3). When the media was not changed the 

largest amount of LSH-6His was produced 4 and 5 days post-infection, with + 

supplementation producing the highest yield at day 4 which was statistically significant 

compared without supplementation (Figure 3.8C and 3.8E). However, at day 5 the LSH-6His 

yield of cultures without supplementation had increased within the error of + 

supplementation at days 4 and 5 (Figure 3.8C and 3.8E).  For media exchanged cultures, LSH-

6His expression was also greatest at days 4 and 5 post-infection (Figure 3.8D and 3.8F), but 

the difference in LSH expression with or without supplementation was not statistically 

significant due to the large error between repeats (Figure 3.8F). 



Simon Varzandeh                                    Chapter 3| Cloning, expression and purification of LSH 

82 
 

 

 

 



Simon Varzandeh                                    Chapter 3| Cloning, expression and purification of LSH 

83 
 

The lack of a noticeably increased yield from supplementation in media exchanged cultures 

could have been due to media not being a limiting factor for cell growth and protein 

expression. However, the experiment did provide evidence that expression was stable 5 days 

post infection with overall cell viability >80% (Figure 3.8B, 3.8E and 3.8F).  

Accumulation of lactate and glutamate, the by-products of glucose and glutamine hydrolysis 

respectively are known to be detrimental to cell viability (Gorfien et al. 2003; Drugmand et 

al. 2005). However, my data suggests supplementation was not toxic to the HighFive™ cells. 

My results also provide evidence that media exchange can allow the HighFive cell density to 

reach expected stationary phase levels of 6x106 cells/ml and still give expression levels 

equivalent to lower cell densities, thereby increasing volumetric yield (Figure 3.8A, E and F). 

However, whether this is economically worthwhile is difficult to determine as protein 

expression in non-media exchanged cells would have to be compared at equal cell densities. 

Given that the cost of supplementation is ~10% that of media exchange, it is worth using 

even if the enhancement is negligible. At least it is a safeguard to prevent nutrient 

deprivation at cell densities greater than 3x106cells/ml. 

A further adaption to the expression protocol was the use of glass baffled flasks with 

membrane screw caps (Duran) instead of the 2L roller bottles used upright (Corning). This 

was more economical and the conical shape and baffles were expected to improve 

oxygenation. However, protein expression was not compared between these flasks. 

Respiration increases in insect cells upon baculoviral infection, with a decrease in oxygen rate 

indicative of exhausted glucose and glutamine in the media (Wong et al., 1994; Kamen et al., 

1996). Therefore inadequate oxygen supply hinders recombinant protein production in Sf9 

cells (Wang, Kwong and Bentley, 1993; Wong et al., 1994; Kamen et al., 1996; Palomares, 

López and Ramírez, 2004) and HighFive cells (Rhiel, Mitchell-Logean and Murhammer, 1997). 
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A final influencing factor was the reproducibility of baculovirus infection. Reduced infection 

of insect cells was observed with V2 baculovirus more than 2 weeks old, possibly due to 

baculovirus aggregation (Jorio, Tran and Kamen, 2006). Cryo-freezing V1 baculovirus infected 

Sf9 cells 24 hrs post infection at cell densities of 1x107cells/ml has been shown to maintain 

the baculovirus inside infected Sf9 cells (Wasilko et al., 2009) and is termed baculovirus 

infected insect cells (BIICs). Thawing BIIC’s into Sf9 cells (1x106cells/ml) produces a V2 

baculovirus stock by viral spread to fresh uninfected cells (Wasilko et al., 2009). This allows 

for V2 virus to be made as and when needed, with reproducible titer (Wasilko et al., 2009). 

However, the volume of BIICs required for complete infection of Sf9 cells needed to be 

assayed. Two common methods for determining baculoviral titer are the plaque assay 

(Brown and Faulkner, 1977; King, 2012) and quantitative real-time PCR (Hitchman et al., 

2007). However, the plaque assay is labour intensive and time consuming (> 1 week) and 

tests infectivity of cells on an agarose plate rather than in media, making an accurate 

comparison difficult. The qPCR method determines the titer through total viral RNA, and not 

the infectivity of the baculovirus, which needs to be determined via the plaque assay 

alongside.  

Therefore I designed a 96-well plate baculovirus titer assay which took the advantage of YFP 

expression which can be monitored by fluorescence microscopy based on a protocol 

described previously (Hopkins and Esposito, 2009). As LSH and YFP are expressed under 

separate polH promoters, expression of both is presumed to be equivalent (Fitzgerald et al. 

2006). YFP expression could be monitored by fluorescence microscopy as done previously 

(Figure 3.2A and Figure 3.3A).  
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Serial dilutions of BIICs to a constant Sf9 cell density were made in a black transparent 

bottomed 96 well plate. 3 days post infection wells were imaged at x400 magnification using 

a fluorescent microscope with a camera attached (figure 3.9A). By eye the 1:10 ratio BIIC:Sf9 

samples contained the most fluorescence 3 days post infection. The 1:5 ratio displayed 

weaker fluorescence than 1:10 or 1:20 ratios, likely due to cell death from over infection. For 

quantitative comparison, images were analysed using a macro from Image Pro plus software 

written by Dr David Kelly to determine the area of fluorescence in each image which was 

represented in graph form (Figure 3.9B). The 1:10 condition had the greatest fluorescence at 

day 3 post infection, with 1:20 having approximately half the fluorescence of 1:10 (figure 

3.9B). To speed up quantitative analysis time I used a multiplate reader with emission and 

excitation in the range of YFP – 495 nm and 515 nm respectively (Figure 3.9C). These data 

show intensities very similar to the total area of fluorescence measured by the microscope 

(Figure 3.9B), making the plate reader method robust enough for repeated use. Taken 

together the data in Figure 3.9 shows that a 1 ml BIIC (1x107 cells/ml) was necessary to 

completely infect 100ml of Sf9 cells (1x106 cells/ml) 3 days post-addition to create V2 

baculovirus.  
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To summarise the optimised method involved making fresh V2 baculovirus with BIICs which 

was then used within one week. HighFive™ cells were freshly split to a density of 

4x106cells/ml and infected 1:10 (V2 baculovirus:HighFive™ cells) with V2 virus. Two days after 

infection, HighFive™ cells were supplemented with the glucose, glutamine, hydrolysate and 

lipid cocktail. Pellets were collected between 3 and 4 days post-infection. 
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3.2.6| Optimising LSH purification 

LSH-6his was expressed in 1L HighFive™ cells. The purification strategy was changed to 

recover more protein. HighFive cells were lysed in a stronger ionic buffer (500 mM NaCl 

instead of 100 mM NaCl) to allow lysis of both the cytoplasmic and nuclear cell fractions using 

a cell disruptor. The order of chromatography steps was reversed. Thus, IMAC was used as 

the primary purification method, with an overnight incubation of lysate with Ni-NTA resin, to 

enhance binding. IMAC wash steps included a 1M NaCl wash to remove DNA by breaking 

electrostatic protein:DNA contacts. The IMAC elutions contained 100 mM NaCl for direct 

loading onto phosphocellulose cation exchange resin. Buffer exchange to remove imidazole 

was performed on the phosphocellulose column during the 100 mM NaCl wash steps. 

Phosphocellulose elutions were pooled, concentrated and a final size exclusion 

chromatography step used to remove contaminants and aggregates. 

8 mg of ~75% pure LSH-6His eluted from the primary IMAC step (Figure 3.10A). This was likely 

due to increased LSH-6His expression, with LSH-6His being clearly visible in the lysate fraction 

(Figure 3.10A). The phosphocellulose step produced an estimated 90% pure LSH-6His, 

particularly in the later elution fractions (E4 onwards) (Figure 3.10B). However, some LSH-

6His was detected in the unbound fraction suggestive of incomplete binding or because it 

was bound to DNA tightly (Figure 3.10B). The unbound LSH-6His sample was used in a new 

phosphocellulose purification with more LSH-6His binding and eluting (data not shown). 

However, not all LSH-6His bound suggestive of protein denaturation and/or protein 

aggregation. The chromatogram of the final SEC step separated LSH-6His into a void peak 

(labelled 1), an oligomerisation peak (labelled 2 - 11.4 ml) and a symmetrical peak (labelled 

3 - 13 ml) (Figure 3.10C and 3.10D). Most LSH-6His eluted between 12-14 ml as seen 

previously (Figure 3.6C and 3.10D). LSH-6His was estimated to be greater than 95% pure with 

some degradation products seen in overloaded lanes (Figure 3.10D).  
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The overall yield of purified LSH from 1L of HighFive™ culture was ~5 mg. This was a 25 fold 

improvement in yield, solely aided by expression and purification optimisation. Given the 

large yield of LSH, the alternative methods for improving expression of codon optimisation 

and leader sequence addition were not pursued further. Expression and purification was 

reproducible on more than 3 occasions throughout this study.  
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The expression and purification method was also used to express the LSH ATPase inactive 

mutant LSHK237Q, which had been cloned with a C-terminal 6Histag. A symmetrical peak of 

LSHK237Q-6His eluting at a peak elution volume of 13 ml which was equivalent to LSH-6His was 

observed during SEC purification (3.11). 

 

LSH-6His could now be reproducibly expressed with 5 mg of greater than 95% purity from 1L 

of HighFive cell culture. However, if protein expression had not increased through the use of 

HIghFive cells, high-density culture supplementation and reproducible infection using BIICs, 

the other optimisation methods of codon optimisation and enhancer sequences were 

contemplated as secondary options.  

The DNA code is degenerate and dependent on the organism, certain synonymous codons 

are preferred. Using synonymous codons suited to the expression organism, without 

changing the protein sequence has been shown to increase the yield for heterologous protein 

expression (Zolotukhin 1996). One study observed up to a 7-fold increase in protein 

expression in Sf9 cells with codon optimisation but for some constructs there was minimal 

change (Fath et al., 2011). Insertion of a 21 bp lobster tropomyosin cDNA leader sequence 

upstream of the polH promoter can increase luciferase expression 7-fold (Sano et al., 2002). 

Such a leader sequence could have been cloned into a pFL plasmid with a codon optimised 

LSH ORF with the hope of enhanced expression from both methods.  
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However, given both methods would require LSH to be re-cloned; this would only be used if 

the already tested optimisation methods failed to provide an adequate improvement in LSH 

yield.  

3.3| Conclusion 
I used the MultiBac system to express full-length LSH and LSH200-821 separately. LSH and 

LSH200-821 were initially cloned with a hexahistidine (6His) tag linked to the N-terminus via a 

Tobacco etch virus (TEV) cleavage site.  Successful expression of both LSH and LSH200-821 was 

observed, however, the LSH200-821 variant had reduced expression compared to LSH indicating 

instability of this protein. Furthermore, degradation of the N-terminal sequence was 

observed, so LSH was cloned with a C-terminal 6His tag. C-terminal tagged LSH had reduced 

degradation and better binding to IMAC resin instead of the N-terminal tagged LSH. Low 

yields of pure LSH were obtained therefore improvements in expression were sought. Using 

a HighFive™ insect cell line, enhanced LSH expression was achieved through infection of cells 

at high density and supplementing with nutrients. A 96-well plate viral titer assay was 

designed to determine accurately the amount of virus needed for reproducible infection 

using BIICs. Moreover, a purification strategy was designed to optimise LSH-6His and the 

ATPase inactive mutant LSHK237Q-6His recovery and purity to achieve 5 mg from 1L of 

HighFive™ cell culture with greater than 95% purity enabling the biochemical, biophysical 

and structural investigations of LSH.   
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Chapter 4| Biophysical characterisation of LSH for structural biology, 

crystallisation trials and defining stable domains  

4.1| Introduction  
There are relatively few results describing the biochemical activities of LSH in vitro and no 

structural data. The major aim of this project was to biochemically characterise and solve the 

structure of LSH to study how its flanking domains regulate enzymatic function. The 

reproducible expression and high-yield purification of LSH-6His made this feasible. 

Biochemical and biophysical protein characterisation aids in determining if a protein is a good 

crystallisation target and can provide information to improve the chances of success. To this 

end I used a thermal denaturation assay (TDA), dynamic light scattering (DLS) and SEC 

coupled to multi-angle lights scattering (SEC-MALS) to determine the homogeneity, 

oligomeric state and buffer conditions for the optimal stability of LSH-6His.  

4.2| Results  

4.2.1| Thermal stability of LSH-6His 

Protein stability over extended periods and after freeze/thawing is required for structural 

and biochemical investigations. The addition of functional ligands may improve protein 

stability and optimal buffers can reduce aggregation and denaturation of the protein. To 

determine the optimal buffer conditions for LSH-6His I used a thermal denaturation assay 

(TDA) to measure the thermal stability of LSH-6His. The TDA uses the environmentally 

sensitive dye SYPRO orange, which becomes highly fluorescent upon binding to hydrophobic 

patches on unfolding proteins (Niesen, Berglund and Vedadi, 2007). As a protein unfolds due 

to increasing temperature, more hydrophobic amino acids become exposed, thereby 

increasing dye binding and fluorescence at 575 nm (Niesen, Berglund and Vedadi, 2007). A 

quantitative PCR machine is used to both increase temperature and measure fluorescence 

(Niesen, Berglund and Vedadi, 2007).  The melting temperature (Tm) of the protein is 

calculated as the minimum of the negative derivative of fluorescence change using the Bio-

Rad QPCR software.  
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First, I used the TDA to measure the Tm of LSH-6His at three different concentrations: 0.5, 1 

and 2 µM (Figure 4.1). I wanted to establish the lowest concentration necessary for good 

signal-to-noise where greater signal provides greater accuracy of the Tm (Figure 4.1). A single 

transition curve was measured for each concentration; however, the initial fluorescence (at 

20 °C) for all concentrations of LSH-6His was greater than the buffer only sample, suggesting 

partial unfolding or aggregation of LSH-6His or that LSH has hydrophobic patches (Figure 

4.1A). Higher LSH-6His concentrations coincided with increased thermal stability of 42.8°C 

for 2 µM LSH-6His in comparison to 38.7°C for 0.5 µM LSH-6His (Figure 4.1B and Figure 4.1C). 

An increase of 4.1°C in Tm from 0.5 µM to 2 µM of LSH-6His was measured. However, at 

0.5µM LSH-6His there is a poor signal-to-noise ratio whereas at 1 and 2 µM signal-to-noise 

ratio is higher. Therefore, using LSH-6His at higher concentrations is more accurate and 

further TDA experiments were performed using 1 µM LSH.  
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I decided to test a range of buffers in the pH range 3-10 to determine the pH at which LSH-

6His was optimally thermally stable. Thermal denaturation of LSH-6His in buffers ranging 

from pH 3-5 produced a maximum fluorescence at 20°C indicating aggregated LSH-6His. The 

Tm of LSH-6His in each buffer ranging from pH 5-10 was subtracted from the Tm of LSH-6His 

in 50 mM Tris pH 7 buffer (Figure 4.2A). The Tm of LSH-6His increased by +0.5 – 3.5°C in buffers 

in the pH range of 7-7.5 and 8.5-9. The Tm of LSH-6His was greater by +1.5°C in sodium citrate 

pH 5.5, however the curve had high initial fluorescence, suggesting a partially unfolded 

protein. LSH-6His in buffers in the pH range 6-7 and 9-10 had a lower Tm of -0.5 - 8°C when 

compared to the Tris pH 7 buffer, however the melt curves were similar in profile suggesting 

the protein was still properly folded but less stable.  

To find the optimal buffer, the buffers in the pH range 7-7.5 and 8.5-9, in which LSH-6His was 

most stable, were re-tested in triplicate (figure 4.2B). Of the buffers tested sodium malonate 

pH 7 (43.3°C) and HEPES pH 7.25 (42.7°C) produced the highest Tm for LSH-6His, however the 

large experimental error made it difficult to discern which buffer gave LSH-6His the highest 

Tm. The HEPES pH 7.25 buffer was chosen because it is in the middle of the pH buffering range 

of HEPES (6.8-8.2) whilst sodium malonate pH 7 buffer is at the upper limit of the pH buffering 

range of sodium malonate (4-7). This makes the sodium malonate pH 7 buffer less suitable 

for buffering additional components which are greater than pH 7.  



Simon Varzandeh                                                  Chapter 5| A low resolution structure of LSH 

94 
 

 

The thermal stability of LSH-6His in 50 mM HEPES pH 7.25 was measured with differing 

concentrations of the additional buffer components, NaCl, glycerol or MgCl2 (Figure 4.3). The 

Tm of LSH-6His in NaCl concentrations as low as 10 mM or as high as 500 mM was 38-38.5°C, 

therefore LSH-6His is equally stable in a range of 10-500 mM NaCl concentrations (Figure 

4.3A and Figure 4.3B). 
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Glycerol can stabilise proteins by forming a amphiphilic layer between the hydrophobic 

patches on the protein surface and the polar solvent (Vagenende, Yap and Trout, 2009). The 

addition of 10% glycerol in buffers is used during LSH-6His purification to reduce aggregation 

and during cryo-freezing to reduce water crystal formation, which can damage the protein. 

Increasing the concentration of glycerol in the buffer increased LSH-6His thermal stability, 

with 10% glycerol raising the Tm of LSH-6His by 3.2°C to 42.2°C, and 20% glycerol by 5.7°C to 

44.7°C when compared to no glycerol (Figure 4.3C and Figure 4.3D). However, the presence 

of 20% glycerol is too viscous for many downstream applications including crystallisation, 

therefore 10% glycerol was the best compromise.  

LSH has ATP and Mg2+ binding site at helicase motifs I and II as conserved for all chromatin 

remodelers and helicases (Richmond and Peterson, 1996b; Dürr et al., 2006). I tested if the 

cofactor Mg2+ might have an effect on LSH stability. There was no significant change in the 

Tm of LSH-6His up to a concentration of 20 mM MgCl2 (Figure 4.3E and Figure 4.3F).  
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As stated above LSH has ATP binding motifs, and has been shown to have ATPase activity 

(Burrage et al., 2012). This confirms LSH binds ATP which could be used as a specific stabilising 

factor for LSH. Therefore I measured the thermal stability of LSH-6His with ATP, the non-

hydrolysable ATP analogue AMP-PNP, and the products of ATP hydrolysis ADP and AMP 

(Figure 4.4A and Figure 4.4B). ATP and AMP-PNP increased the Tm of LSH-6His by 2.6°C and 

2.3°C respectively (Figure 4.4A and Figure 4.4B), whereas ADP and AMP increased the Tm of 

LSH by 5.6°C and 2°C respectively (Figure 4.4A and Figure 4.4B). When ADP - a product of ATP 

hydrolysis is present, the Tm of LSH increases by 3°C more than when ATP – the substrate is 

present. The greater increase in stability from ADP indicates the product of ATP hydrolysis 

may compact the nucleotide binding region more than ATP. 

 

TDA experiments have shown LSH is folded with a thermostability increase upon ATP binding 

indicating LSH binds ATP indicating it is likely a functional protein. Based on the TDA results, 

LSH-6His is most stable in a buffer comprising 50 mM HEPES pH 7.25, 100-500 mM NaCl, 10% 

Glycerol, 1 mM DTT and 1 mM ADP. 
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4.2.2| LSH-6His is homogeneous in low and high ionic strength buffer  

In any biochemical or structural studies, protein polydispersity and aggregation is a common 

cause of reduced activity, uninterpretable data or failed crystallisation trials. Therefore, DLS 

was chosen to assess protein homogeneity and aggregation. 

Dynamic light scattering applies monochromatic light to a sample of particles. The particles 

scatter the light in all directions (Rayleigh scattering) which constantly changes due to 

constructive and destructive interference as a result of time and Brownian motion. The 

environmental factors of temperature and solution viscosity influence the level of particle 

scattering. Particle size also influences scattering with severe scattering detected with larger 

particles. If the particle is homogenous, the hydrodynamic radius can be used to calculate 

the mass of the particle using the model of an ideal sphere. DLS is a fast, non-destructive 

method which requires a small sample volume at low concentrations (60µl at 0.5 mg/ml). 

I used DLS to test thawed LSH-6His at 0.6 mg/ml (6.25 µM) for aggregation after the SEC 

purification and cryo-freezing. LSH-6His is a DNA binding protein and a 500 mM NaCl 

condition would break protein:DNA contacts which is unsuitable for studying LSH:DNA 

interactions, therefore a buffer containing 100 mM NaCl which should not disrupt DNA 

binding of LSH-6His and 500 mM NaCl were tested (Figure 4.5). A peak with ~ 1% intensity 

and a 0.5 nm diameter was detected for LSH-6His in both 100 mM NaCl and 500 mM NaCl 

buffers (Figure 4.5A and Figure 4.5B), probably due to the scattering of glycerol, which has a 

diameter of 5-6 Å. This is the most abundant small molecule in the solution at 1.37 M (Figure 

4.5A and Figure 4.5B). LSH-6His was homogenous with a symmetrical peak with a diameter 

of 10.56 nm in 100 mM NaCl buffer and 10.77 nm in 500 mM NaCl buffer (Figure 4.5A and 

Figure 4.5B). Particles averaging a diameter of 300 nm were also present in the 500 mM NaCl 

LSH-6His sample (Figure 4.5B). This was likely a small percentage of aggregates as it is only 

4% the intensity of the LSH-6His, making it insignificant.   
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However, the LSH-6His has an estimated Mw of 157 kDa (100 mM NaCl buffer) or 177 kDa 

(500 mM NaCl) calculated from the hydrodynamic radius of the second peaks which is in-

between the mass of a LSH monomer (96 kDa) or a LSH dimer (192 kDa). Two potential 

hypotheses exist for the oligomeric nature of LSH-6His drawn from the DLS data. The first 

hypothesis is the protein is a mixture of dimer and monomer. This is unlikely as the SEC of 

LSH-6His is a symmetrical peak at 13 ml suggests one Mw species. The second hypothesis is 

LSH-6His is a monomer due to the estimated masses being less than that predicted for a 

dimer. However, as the molecular mass is estimated based on the protein forming a sphere, 

the mass can be overestimated if the actual shape is a prolate spheroid or an oblate spheroid.  

Therefore, size exclusion chromatography coupled with multi angle light scattering (SEC-

MALS) was used to accurately measure the oligomeric nature of LSH-6His.  

4.2.3| LSH-6His is a monomer in low and high ionic strength buffer 

SEC separates molecules based on their hydrodynamic size. Calculating the mass of a protein 

using SEC with protein standards is inaccurate, because the calculated mass is dependent on 

the protein having a similar shape to the globular protein standards. For example, if a protein 

is partially globular and elongated it will elute earlier than expected from the SEC column and 

the mass is overestimated.  
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SEC-MALS uses SEC to separate a protein based on its hydrodynamic size and MALS to 

determine its mass. When light from an incident beam is absorbed by a protein it is scattered 

in all directions. In general larger proteins scatter light more strongly than smaller proteins 

do. The ratio of scattered light intensity to incident light intensity at the measurement angle 

defines the Rayleigh ratio. The Rayleigh ratio is measured at 20 different angles to the 

incident beam. An accurate concentration of the protein is measured using UV and refractive 

index (RI) during a SEC-MALS measurement. With all these parameters known an accurate 

molecular mass can be calculated using the Rayleigh equation:  

KC

Rθ
= ( 1

𝑀𝑤
+ 2𝐴2𝐶)

1

Pθ
                                                                      Equation (3.1) 

C = sample concentration                                                                                                                       
θ = measurement angle                                                                                                                           
Rθ = Rayleigh ratio (ratio of scattered light intensity to incident light intensity) at the 
measurement angle (θ)                                                                                                                                
Mw = molecular weight                                                                                                                                 
A2 = second virial coefficient                                                                                                                 
Pθ = A term defining angular dependence                                                                                               
K = A constant, which is system, solvent and sample dependent 

K is defined in the equation below: 

K =
4𝜋2

𝜆0 4𝑁𝐴
 (𝑛0

𝑑𝑛
𝑑𝑐

)2                                                                    Equation (3.2) 

λ = laser wavelength in a vacuum                                                                                                                         

NA = Avogadro’s number                                                                                                                      

n0 = refractive index of the solvent                                                                                                                 
dn/dc = difference in refractive index between the sample and the solvent          

I performed SEC-MALS of LSH-6His in the 100 mM NaCl and 500 mM NaCl buffers tested using 

DLS (Figure 4.6A and Figure 4.6B respectively). The average molecular mass from triplicate 

SEC-MALS runs of LSH-6His in the 100 mM NaCl buffer was 96.9 kDa and 90.9 kDa in the 500 

mM NaCl buffer (table 4.1). The predicted mass of LSH is 95.8 kDa therefore LSH-6His is a 

monomer in 100 mM and 500 mM NaCl buffers. Interestingly, in the 100mM buffer LSH-6His 

might be taking a different conformation than LSH in 500 mM NaCl due to the difference in 

average mass. However, as the elution volume is the same this is negligible, and when 

factoring in the standard deviation it is within error of the instrument which is ± 5%. The mass 

changes across the peak are due to peak broadening, a result of the 10% glycerol present in 

the buffer which causes drift on the baseline. 
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Table 4.1| The peak elution volume and calculated molecular mass of LSH-6His at 2 

mg/ml in 100 mM NaCl or 500 mM NaCl buffer using SEC-MALS 

Buffer ionic 
strength 

Elution volume 
(ml) 

Average 
Molecular 
Mass (kDa) 

Std deviation        
of Molecular 
mass (kDa) 

100 mM NaCl 13.1 96.9 2.7 

500 mM NaCl 13.1 90.8 3.1 

 

As LSH-6His was expressed in insect cells, PTMs such as the addition of N-linked glycans can 

be added during translation which may alter protein function (Palomares, Estrada-Mondaca 

and Ramírez, 2004). Therefore, an intact mass of LSH-6His was measured using ESI-Mass 

spectrometry. The Intact mass of LSH-6His measured by ESI-MS was 95.857 kDa, and the 

predicted mass of LSH-6His is 95.817 kDa (data not shown). The actual mass is 40 Da more 

than the predicted, which indicates no glycosylation as this would add at least 200 Da or more 

to the LSH mass, indicating there could only be small PTMs such as methylation (14 Da), which 

may be added during expression in eukaryotic cells. An investigation into LSH PTMs was not 

taken forward, as it was not an aim of this project. 

4.2.4| LSH-6His and LSHK237Q is monomeric at 3mg/ml or 22 mg/ml 

Protein concentration can affect the oligomeric state of protein and can influence 

crystallisation strategies. Therefore, I used SEC to assess if protein concentration affected the 

elution volume (and hence the oligomeric state/shape) of LSH-6His at two different 

concentrations: 3 mg/ml (3.1 µM) and a 22 mg/ml (22.9 µM) (Figure 4.7A). The elution 

volume for both samples was 13.06 ml, indicating LSH-6His is monomeric at both 

concentrations (Figure 4.7A).  

I also compared the elution volume of the ATPase inactive mutant LSHK237Q-6His, with LSH-

6His (Figure 4.7B).The LSHK237Q point mutant is an inactive ATPase which perturbs LSH 

function with phenotypes similar to LSH knockdown cells (Burrage et al., 2012; Lungu et al., 

2015). LSHK237Q-6His and LSH-6His both eluted at 13.08 ml indicating LSHK237Q-6His is also a 

monomer, indicating that the mutation does not influence the oligomeric state of the 

protein. (Figure 4.7B).  
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4.2.5| Crystallisation trials 

I have shown that LSH-6His is homogenous and monomeric in low and high ionic strength 

buffer and at concentrations of 10-100 µM. LSH-6His is stabilised upon ATP or ADP binding. 

The main aim of this project was to solve a 3D structure of LSH to an atomic resolution of 3Å 

or less in order to further understand its function. X-ray crystallography was chosen for LSH-

6His because it is too large for NMR (should be less than 50 kDa) and too small for cryo-EM 

(should be greater than 150 kDa).  

LSH-6His concentrations of 20-120 µM were trialled with over 1500 different crystallisation 

conditions in commercially available screens (See section 2.9.5).  However, I could not obtain 

crystals of LSH-6His, either on its own or in the presence of the stabilising ligands ATP or ADP. 

As LSH is a multidomain protein, there might be disordered domains and flexibility between 

domains which could cause the formation of multiple conformations of LSH-6His which may 

prevent adequate protein stacking for crystal formation.  The only chromatin remodelers 

with crystal structures of the conserved ATPase portions are CHD1, RAD54 (Thomä et al., 

2005; Hauk et al., 2010) and SNF2 (Xi et al., 2016). Given the ATPase portions are globular I 

decided to reinvestigate the cloning and expression of the ATPase portion of LSH. 
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I previously cloned a core LSH ATPase defined as LSH200-821 into the Multibac system (section 

3.2). However, weak expression and absence of the 6His tag for purification prevented the 

use of this construct for structural studies (Section 3.2).  

CHD1 and LSH are in the SNF2 subfamily, making both proteins more phylogenetically similar 

than LSH to RAD54 (Flaus et al., 2006). Therefore, I aligned LSH with CHD1 and two other 

characterised SNF2 subfamily chromatin remodelers ISWI and SNF2 to identify the conserved 

regions of the chromatin remodelers (Figure 4.8). The N-terminal portions of LSH (residues 

1-210) share no similarity to the other remodelers (Figure 4.8). The ATPase lobes 1 and 2 and 

the C-terminal bridge defined in the crystal structure of CHD1 are conserved in LSH, ISWI and 

SNF2 chromatin remodelers (Figure 4.8). LSH has a unique stretch of residues from 476-530 

which might add greater length and/or flexibility to protrusion 2 between the linker and recA 

domain lobe as seen in Figure 1.6B. The alignment shows the region of LSH210-821 is conserved 

between the remodelers and is mostly the ATPase region which is structured and therefore 

potentially a good construct for crystallisation. 
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4.2.6| The N-terminal domain of LSH is predicted to be disordered. 

I used the disorder prediction software IUPred to identify disordered regions in LSH 

(Dosztanyi et al. 2005). During folding, entropy loss is overcome by the stabilising energy 

provided from inter-residue contacts in globular proteins (Dosztanyi et al. 2005). Intrinsically 

unstructured proteins (IUPs) or domains do not have inter-residue interactions due to more 

hydrophilic residues and a higher net charge (Uversky et al. 2000; Dosztanyi et al. 2005). 

IUPred estimates the potential of polypeptides to form the stabilizing contacts using known 

structures of globular and disordered proteins (Dosztanyi et al. 2005; Dosztanyi et al. 2005). 

IUPred predicted LSH1-195 to be disordered (Figure 4.9). This was expected as there is a CC 

domain in this region. LSH485-500 was also predicted to be disordered and falls within LSH481-

530 which is the region between conserved boxes B and C in which LSH has an extra 50 

residues compared to CHD1, ISWI or SNF2. This indicates the linker or protrusion 2 of LSH 

have added length part of which might be unstructured. 

 

The secondary structure elements of LSH were predicted using PSIpred software (Jones, 

1999), which identifies evolutionary related proteins through a BLAST search of the input 

amino acid sequence and uses this information to predict secondary structure (Jones, 1999). 

LSH1-200 is more than 80% helical as predicted by PSIpred (see Appendix - Figure A1). 
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The half-life of a protein is in part dictated by its N-terminal amino acid, as according to the 

N-end rule (Bachmair, Finley and Varshavsky, 1986). Studies with a eukaryotic system 

identified three groups of primary destabilising N-terminal amino acids: basic (R,K,H) bulky 

hydrophobic (F,L,W,Y) and small uncharged (A,S,T) (Gonda et al., 1989). Therefore, these 

amino acids were avoided when selecting the N-terminal amino acid for expression of an LSH 

core ATPase domain.  

I chose LSH193-821, LSH196-821, LSH209-821 and LSH219-821 sequences for cloning based on protein 

disorder, secondary structure prediction and the N-end rule. I also chose LSH226-821 as this was 

previously cloned and expressed in mammalian cells in a luciferase reporter assay to study 

LSH as a transcriptional repressor (Myant and Stancheva, 2008). 

4.2.7| Expression of the core ATPase domain of LSH  

The five ΔN LSH sequences were each cloned with a C-terminal 6Histag and expressed in 

insect cells as described previously (section 3.2.1). Western blotting was used to compare 

expression of the five ΔN LSH proteins to LSH-6His (Figure 4.10). Expression of all ΔN LSH-

6His proteins was ~10-fold weaker than LSH-6His (Figure 4.10). The best expressing ΔN 

protein, LSH226-821-6His had 9.5 times lower expression than LSH-6His (Figure 4.10B). The 

weak expression of the five ΔN LSH constructs was similar to LSH200-821-6His (section 3.2.1), 

indicating the LSH193-226 region is important for the stable expression of LSH. Therefore, these 

constructs were not taken further in this study. 
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4.2.8| A core LSH ATPase domain is defined by limited proteolysis 

Limited proteolysis followed by mass-spectrometry was used to determine stable domains 

of LSH that could be better targets for improved expression of a stable truncated LSH and 

which could be more amenable for crystallisation trials (Gao et al., 2005). During limited 

proteolysis low concentrations of protease are used to digest flexible loops, creating protein 

fragments (Fontana et al., 2004). The protein fragments are separated by size using SDS-

PAGE and the protein region that the fragment of digested protein originated from can be 

identified by MALDI-ToF (Fontana et al., 2004). I decided to digest LSH-6His using the broadly 

specific endopeptidases subtilisin and elastase (Figure 4.11).  

Elastase and subtilsin digested LSH-6His into a product with a mass of ~70 kDa as estimated 

by SDS-PAGE (Figure 4.11A). MALDI-ToF mass spectrometry confirmed this fragment was 

LSH178-821-6His with coverage of 75% (data not shown), which has a predicted mass of 76 kDa 

which is in agreement with the SDS-PAGE size (Figure 4.11B). The MALDI-ToF MS result 

indicates the region preceding LSH178 is a disordered region linked to the globular SNF2 

ATPase domain. This could explain why all previous ΔN LSH constructs were weakly 

expressed, as they were likely positioned in the folded region of a globular domain. 

Therefore, I decided to clone the core ATPase domain of LSH starting around the region 

LSH178. 
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ΔN LSH constructs were designed to start close to the limited proteolysis product LSH178-821, 

whilst also factoring in the N-end rule, secondary structure prediction and hydrophobic 

cluster analysis (HCA). HCA is based on the statistical studies of 3D structures which identified 

that hydrophobic amino acids gathered into clusters are likely secondary structures in a 

globular region (Woodcock, Mornon and Henrissat, 1992; Callebaut et al., 1997). Five ΔN LSH 

constructs were designed:  LSH146-821, LSH162-821, LSH176-821, LSH178-821 and LSH184-821. 

4.2.9| The N-terminal domain of LSH is required for stability 

The five ΔN constructs were all cloned and expressed as in section 4.2.7. Western blotting 

was used to compare expression of the five ΔN LSH proteins to LSH-6His (Figure 4.12). 

Expression of all ΔN LSH-6His constructs was weaker than LSH-6His (Figure 4.12). The best 

expressing ΔN construct, LSH176-821-6His had a 1.5 times lower expression than LSH-6His 

(Figure 4.12B). However LSH-6His expression was 5 times weaker than LSH-6His expressed 

previously (Figure 4.10).  
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This result made it difficult to confirm whether expression of the new ΔN LSH-6His constructs 

(Figure 4.12) was as weak as the old ΔN LSH-6His constructs (Figure 4.10) or expression of all 

the new ΔN LSH-6His constructs and LSH-6His was weak due to poor transfection.  

 

LSH176-821-6His was the best expressing ΔN LSH protein, therefore expression was scaled up 

to 1L of HighFive™ cells and the protein was purified by IMAC and phosphocellulose steps, as 

described for LSH-6His (Section 2.6.4). LSH176-821-6His could be partially purified to ~60% 

purity after the IMAC and phosphocellulose purifications, however the protein degraded 

during and after purification, diminishing the protein yield to less than 100 µg before a SEC 

purification step (Data not shown). The insufficient yield and instability of LSH176-821-6His 

made it an unsuitable construct to use. 11 different ΔN LSH proteins were unstable with weak 

expression making them unsuitable for structural studies. Therefore, an alternative method 

termed in situ limited proteolysis was chosen to be used for crystallisation trials.   
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4.2.10| In situ proteolysis of LSH-6His with subtilisin indicates proteolytic digestion 

of the LSH C-terminus first requires proteolytic cleavage of LSH1-178  

In situ limited proteolysis is the addition of trace amounts of protease to the protein before 

crystallisation (Dong et al., 2007). 270 proteins that could not be crystallised or which formed 

crystals with poor diffraction were used in a large trial of in situ limited proteolysis 

(Wernimont and Edwards, 2009). 34 of the 270 protein formed crystals which diffracted to 

2.8 Å (Wernimont and Edwards, 2009). Therefore, I decided to use this method and trialled 

subtilisin, as 10 times less of it was required for digestion of the LSH-6His N-terminal domain 

compared to elastase (Figure 4.11B). Before setting up crystallisation trials, I tested 

proteolysis with three subtilisin:LSH-6His ratios (w/w) of 1:50000, 1:10000 and 1:5000 at 

room temperature following the published method (Wernimont & Edwards 2009). However, 

cloudy precipitate occurred within 1 hr and LSH-6His was completely digested to fragments 

smaller than 15 kDa at all ratios (data not shown). Therefore, I tested the same ratios at 6°C 

to find the condition which digested LSH-6His into the LSH178-821-6His fragment after 1 day or 

longer to provide time for crystallisation without over digestion (Figure 4.13A). A 

subtilisin:LSH-6His ratio of 1:50000 digested ~50% of LSH178-821-6His after 5 days. As LSH-6His 

was not fully digested into LSH178-821-6His it was not optimal to use in crystallisation trials 

(Figure 4.13A). The 1:10000 and 1:5000 ratios of subtilisin:LSH-6His digested more than 95% 

of LSH-6His after 1 day into LSH178-821-6His and a smaller ~60 kDa digestion product as 

estimated by SDS-PAGE (Figure 4.13A). MALDI-ToF mass spectrometry  of the ~60 kDa 

polypeptide had a coverage of 60% in the LSH178-704 region, which would have a predicted 

mass of 61 kDa which is in agreement with the size estimated by SDS-PAGE (Figure 4.13A and 

Figure 4.13B and S4.4). LSH178-704 is the ‘core’ ATPase portion of LSH-6His and suggests the N 

and C-terminal regions are connected to the ATPase region with disordered linkers and 

possibly flexible linkers. A ~20 kDa digestion product produced in all ratios of subtilisin:LSH-

6His was defined as the N-terminal domain. However, establishing the exact sequence was 

problematic due to the large numbers of lysine residues in this region but based on size, it 

was probably a LSH1-178 digestion product (Figure 4.13A and Figure 4.13B).  

LSH In situ proteolysis was performed with a subtilisin:LSH ratio of 1:10000 with commercial 

screens, however only amorphous precipitate was visualised.  
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LSH178-704 which is the ‘core’ ATPase portion and does not contain the flexible N and C-termini 

might provide better expression and would be a better crystallisation target than the LSH176-

821-6His which was unstable. However, due to time constraints I could not do this.  
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LSH1-178 was a probable product of LSH-6His limited proteolysis with subtilisin and is unique 

to LSH with no sequence conservation in the closely related chromatin remodelling 

subfamilies; CHD1, SNF2 and ISWI (Figure 4.13A and Figure 4.8). However, the N-terminal 

domain of LSH is conserved across higher eukaryotes indicating its functional importance 

(Figure 4.14).  Functionally, the LSH N-terminal domain is required for the nuclear localisation 

of LSH to the nucleus, and binding to DNMT3B in vitro (Myant & Stancheva 2008; Lee et al. 

2000; Yan et al. 2003). Studying the structure and biochemistry of this domain would provide 

insights into its role in LSH function.  
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4.2.12| Expression and purification of LSH1-176 

LSH1-176 was chosen for cloning and expression as its C-terminal amino acid was in an 

unstructured region based on PSIpred secondary structure prediction and HCA prediction 

(Appendix S4.2).  Mari Eltermann, a MChem student, successfully cloned LSH1-176 with an N-

terminal TEV cleavable 6His tag and expressed soluble 6His-TEV-LSH1-176 in E. coli (Mari 

Eltermann, 2015). An optimised purification protocol was developed with an initial IMAC step 

followed by 6His tag cleavage using TEV protease (Figure 4.14A-C). An anion exchange 

column did not bind LSH1-176 but DNA contaminants and protein contaminants between 55-

250 kDa bound and eluted during a 1 M NaCl gradient (Figure 4.14D and Figure 4.14E). The 

LSH1-176 which flowed-through this resin was greater than 95% pure and underwent SEC to 

remove aggregates. LSH1-176 eluted as a single asymmetric peak at 12.85 ml during SEC (Figure 

4.14F and Figure 4.14G). This is 0.2 ml earlier than LSH-6His (Figure 4.8) indicating that LSH1-

176 has a similar hydrodynamic radius as full-length LSH-6His. This could be due to it adopting 

an elongated conformation or forming dimers or higher order oligomers. Therefore SEC-

MALS was used to assess the oligomeric state of LSH1-176 at four different concentrations (10, 

5, 2.5 and 1.25 mg/ml). 
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4.2.13| LSH1-176 is a monomer and takes different concentration-dependent 

conformations. 

LSH1-176 injected at a concentration of 1.25 mg/ml eluted at a peak volume of 14.6 ml, 0.8 ml 

later than LSH1-176 injected at a concentration of 10 mg/ml which eluted at a peak volume of 

13.8 ml (Table 4.2).  

The intact mass (using ESI-MS) and predicted mass of LSH1-176 was 20.649 kDa and 20.650 kDa 

respectively, indicating no PTMs on the protein (Appendix S4.1). The estimated mass of LSH1-

176 injected at a concentration of 10 mg/ml was 23.4 kDa, close to the intact and predicted 

mass, therefore it can be concluded that LSH1-176 is a monomer. The estimated mass of LSH1-

176 injected at a concentration 1.25 mg/ml was 1.3 kDa lighter than LSH1-176 injected at a 

concentration 10 mg/ml.  

The later elution time and heavier mass of LSH1-176 at higher concentrations indicates     LSH1-

176 molecules have flexible movement which could be taking the form of a more compact 

molecule at higher concentrations.   

 

 

 

 

 



Simon Varzandeh                                                  Chapter 5| A low resolution structure of LSH 

118 
 

Table 4.2| The peak elution volume and estimated molecular mass of LSH1-176 at 10, 5, 2.5 

and 1.25 mg/ml using SEC-MALS 

Concentration 

(mg/ml) 

Elution  

volume  

(ml) 

Molecular 

mass 

(kDa) 

10 13.8 23.4 

5 14.2 22.7 

2.5 14.5 22.5 

1.25 14.6 22.1 

 

NMR and CD experiments performed by Mari Eltermann indicated that LSH1-176 has helical 

secondary structure and no tertiary structure indicating the protein was disordered (Mari 

Eltermann, 2015). Crystallisation trials of LSH1-176 with 400 commercial conditions were 

performed, however no crystals formed, likely due to unstructured nature of the protein 

(Mari Eltermann, 2015). As LSH1-176 is helical and unstructured, it would likely have dynamic 

flexibility with open and closed conformations based upon concentration and intermolecular 

interactions. 
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4.3| Discussion  
The major aim of this work was to gain further insights into the LSH structure and how its 

flanking domain regulates enzymatic function. In this chapter I have biophysically 

characterised LSH and identified unstructured and structured domains of LSH.  

LSH-6His was determined to be a monomer using SEC-MALS and did not show 

oligomerisation when LSH was injected into a SEC column at 230 µM (Figure 4.6 and Figure 

4.7). This indicates the CC region of the LSH N-terminal domain does not cause self-

dimerisation or self-oligomerisation as witnessed in other coiled-coil domain containing 

proteins (Lupas and Gruber, 2005). Native LSH from nuclear extracts of human cells which 

underwent SEC was calculated as a monomer from elution volumes which is in agreement 

with my data (Myant and Stancheva, 2008). This indicates LSH is likely biologically functional 

as a monomer.  

Although LSH-6His is folded, binds ATP and is homogenous, crystals of LSH-6His could not be 

obtained using more than 1500 crystal screens. Lack of crystal growth was predicted to be 

because of unstructured regions located at the N-terminal domain and in the extended 

linker-protrusion 2 region (Figure 4.9).  The first 177 residues of the N-terminal domain of 

LSH are cleaved in limited proteolysis using broadly specific proteases showing that the 

region around LSH178 is unstructured (Figure 4.11 and Figure 4.13). A longer proteolysis time 

led to cleavage of LSH178-821 into LSH178-704 (Figure 4.13) indicating the first 177 residues of the 

N-terminal domain could be linked to the ATPase region via a flexible linker and may contact 

and cover the region at LSH704 which encompasses the ATPase region without the C-terminal 

brace (Figure 1.6).  

The majority of the LSH ATPase region (LSH178-704) is globular and compact as it was not 

digested with subtilisin or elastase proteases at low concentrations (Figure 4.11 and 4.13). 

LSH1-176 is unstructured, elongated and has intrinsic flexibility as determined from SEC-MALS 

(Figure 4.15) and previous studies using CD and NMR methods (Mari Eltermann,. 2015). This 

is in agreement with the biochemical data suggesting LSH1-176 may form contacts along the 

length of ATPase lobe 1 and 2. 
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Given the LSH N-terminal domain (LSH1-215) sequence is unique to LSH (Figure 4.8) it is difficult 

to draw any comparisons with other chromatin remodelers whose structure has been solved. 

In order to dissect the molecular function of the unique N-terminal domain of LSH to the 

ATPase region and C-terminal domain expression of a ΔN-LSH protein was tested (Figure 4.10 

and Figure 4.12). 11 different ΔN-LSH constructs were expressed but all expressed weakly 

and showed instability (Figure 4.10 and Figure 4.12). Purifying the greatest expressing ΔN LSH 

construct (LSH176-821-6His) was problematic due to extensive degradation and less than a      

100 µg yield of less than 60% pure protein from 1 L of insect cells (data not shown). This 

indicated the N-terminal domain is critical for stabilising the ATPase domain of LSH. The 

chromatin remodeler RAD54 also has an unstructured N-terminal domain as defined through 

limited proteolysis experiments (Raschle et al., 2004), but shares no sequence similarity with 

LSH. The N-terminal region of RAD54 is required for RAD51 binding, but acts independently 

of the ATPase region (Raschle et al., 2004). The N-terminal domain of LSH is required for E2F3 

binding with its CC region and potentially DNMT3B (von Eyss et al. 2012, Myant & Stancheva 

2008). As with LSH, a ΔN-RAD54 protein degraded significantly, however several ion 

exchange steps enabled the purification of pure non-degraded protein (1mg yield from 24 L 

of E. coli cells) (Raschle et al., 2004).  

If the N-terminal domain interacts with a binding partner such as E2F3 or DNMT3B it may 

regulate ATPase activity by allosteric movement or may function independently of the 

ATPase region as seen with RAD54 (Raschle et al., 2004). In order to study this, purification 

of the core ATPase domain from the N-terminal domain would be necessary. Since cloning 

and expression of 11 different LSH N-terminal truncation constructs failed due to protein 

instability I tried purifying LSH178-821-6His after subtilisin digestion. I used an IMAC step to bind 

LSH178-821-6His and remove LSH1-178 with imidazole washing; however, both fragments co-

eluted indicating the N-terminal domain has hydrogen contacts or electrostatic interactions 

with LSH178-821-6His (data not shown). 

Therefore, a purification protocol would need to be optimised as for RAD54 and large scale 

expression (greater than 10 L insect cells used) of LSH176-821 is required to study the ATPase 

region only. Time constraints prevented this. 
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The structure and domain interactions of LSH could be studied in more detail using limited 

proteolysis with a specific protease such as trypsin, which cleaves the carboxyl side of lysine 

or arginine except when either is bound to a C-terminal proline. This has been used to define 

domain boundaries of an intrinsically disordered protein (Adams et al., 2007). Limited 

proteolysis could be monitored with LSH bound to ligands (ATP or ADP) and DNA to monitor 

what conformational changes are made to the domains in the protein, as performed with 

ISWI (Mueller-Planitz et al., 2013). If proteolysis in the region of LSH178 is slower, faster or 

abolished upon DNA binding then the N-terminal domain would be regulating ATP hydrolysis 

through DNA binding. A lack of time meant these experiments could not be performed.   

ADP-BeF has been used as a transition state mimic to trap ATPases and more specifically 

chromatin remodelling ATPases such as ACF (Racki et al., 2009) or Chd1 as two examples 

(Sundaramoorthy et al., 2017). Therefore ADP-BeF could be used for trapping LSH in a 

transition state which could provide a better condition for LSH crystallisation. A more 

accurate mass determination by SEC-MALS could be possible following the removal of the 

10% glycerol in the sample through dialysis. This would enable a flatter and more stable 

baseline lessening mass fluctuations when the mass is calculated. As seen in figure 4.11 

elastase digested LSH into a major truncated species spanning LSH176-821. This could prove 

an alternative and more promising method for generating LSH with its core ATPase and if 

time allowed this would have been pursued. 

To investigate how the N-terminal domain and C-terminal domain of LSH interacts with its 

ATPase region complementary structural biology methods were used and are addressed in 

the next chapter. 
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Chapter 5| A low resolution structure of LSH 

5.1| Introduction  
One of the main aims of this study was to investigate the molecular function of LSH by 

studying its structure. Hybrid structural methods were implemented to study a LSH structure. 

In this chapter, I have determined LSH has an elongated tri-lobal structure using the 

combined methods of negative staining electron microscopy and Small Angle X-ray scattering 

(SAXS). I have also used crosslinking mass spectrometry to show the N-terminal domain of 

LSH is proximal to the C-terminal domain.  

5.2| Results 

5.2.1| Intramolecular crosslinking and mass spectrometry of LSH-6His 

In the last decade crosslinking mass spectrometry (XL-MS) of proteins or multi-protein 

complexes has become a complementary tool for high resolution structural methods (NMR, 

crystallography, cryo-EM) and low resolution methods (negative stain EM, SAXS). 

Intramolecular contacts between the domains of an individual protein or intermolecular 

crosslinks between proteins (or protein subunits) in a complex can be crosslinked natively in 

solution and detected using MS (Rappsilber, 2011; Leitner et al., 2016).  

XL-MS involves incubating a purified protein or protein complex in its native state with a 

chemical crosslinking reagent, which forms covalent bonds to reactive exposed amino acid 

side chains (typically amino groups or thiols) (Rappsilber, 2011; Leitner et al., 2016). Trypsin 

digestion of the crosslinked protein/protein complex results in crosslinked peptides, which 

are enriched and then analysed by liquid chromatography tandem MS (LC-MS/MS), a non-

crosslinked trypsin digested protein sample is used as a control. Raw mass spectra are 

processed into peak lists using MaxQuant software (Cox and Mann, 2008b). The peak lists 

are searched against the protein or protein complex sequence/s for the identification of 

cross-linked peptides and non-crosslinked linear peptides using computational software (Xi-

software - ERI Edinburgh) (Rappsilber, 2011; Leitner et al., 2016). This information can be 

used to determine domain-domain interactions, the orientation of the subunits and the 

maximum distance constraint (based on the spacer arm of the crosslinking reagent) between 

the peptides for molecular modelling purposes (Rappsilber, 2011; Leitner et al., 2016).  



Simon Varzandeh                                                  Chapter 5| A low resolution structure of LSH 

123 
 

One of the most commonly used crosslinking reagents is bis(sulfosuccinimidyl) suberate 

(BS3), an amine-to-amine homobifunctional crosslinker, which couples to the -amine- group 

on lysine (Leitner et al., 2016). The BS3 crosslinker has a spacer arm length of 11.4 Å plus the 

5 Å distance between the reactive amine groups, making a total distance of 22.4 Å. LSH has 

75 lysine residues, therefore, BS3 was a good crosslinking reagent to study LSH-6His structure 

by measuring intramolecular crosslinks.  

Initially crosslinking of LSH-6His with BS3 crosslinker at eight LSH-6His:BS3 w/w ratios was 

performed on a small scale (10 ug of LSH) to optimise conditions (Figure 5.1A). Crosslinked 

LSH-6His was resolved by SDS-PAGE into monomeric crosslinked species and higher-order 

crosslinked species (Figure 5.1A). Monomeric crosslinked LSH-6His species at a LSH-6His:BS3 

w/w ratio of 1:3 was considered optimal for producing the greatest number of crosslinks.  

For mass spectrometry analysis 80 µg of LSH-6His was crosslinked at a LSH-6His:BS3 w/w ratio 

of 1:3, SDS-PAGE performed, the monomeric crosslinked LSH-6His species band cut from the 

gel, trypsin digested and strong cation exchange performed for peptide enrichment (Figure 

5.1B). The mass of the enriched peptides and analysis of data for crosslinks was performed 

by Dr Juan Zou. 46 auto-validated spectra matches with score cut-off of 7.0 to support 33 link 

pairs (Appendix Table A1). 
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Intramolecular LSH-6His lysine-lysine crosslinks are shown as arcs along its domain 

architecture in Figure 5.1C. A cluster of 12 crosslinks (red arcs) between lysines within the N-

terminal domain, and 5 crosslinks (blue arcs) within the ATPase lobe 2 or C-terminal domain 

were measured (Figure 5.1C). Due to the crosslinks covering short distances, some of the 

crosslinks might be intrapeptide links along the same domain also known as loop-links, 

indicating these regions could be helical/unstructured and exposed to nucleophilic attack by 

the BS3 crosslinker (Maiolica et al., 2007). This data is in agreement with the limited 

proteolysis experiments where the non-specific protease subtilisin which cleaves in 

unstructured regions digested LSH-6His firstly at LSH178 and then LSH704, which are in the 

same region where the crosslinks were measured.  

There are 9 cross-links (black arcs) between lysines in the N-terminal domain and in the 

ATPase lobe 2/C-terminal domain region (Figure 5.1C). This indicates the N-terminal domain 

of LSH is in the proximity of the C-terminal in the ATPase region (LSH634-794). 7 of the 9 links 

are between lysines in LSH97-179 and LSH698-736, suggesting these residues are surface 

accessible and are separated by less than 22.4 Å. This indicates the LSH N-terminal domain is 

within the proximity of the C-terminal region of the ATPase region, in particular, the C-

terminal domain.  

There are 7 (grey) crosslinks, 5 of which link the C-terminus of ATPase lobe 2 or the C-terminal 

domain to the ATPase lobes and the region between them (Figure 5.1C). This indicates the C-

terminal domain is within 22.4 Å of the linker between the ATPase lobes 1 to ATPase lobe 2 

and regions of each ATPase lobe.  

 



Simon Varzandeh                                                  Chapter 5| A low resolution structure of LSH 

125 
 

 

 

 

 

 



Simon Varzandeh                                                  Chapter 5| A low resolution structure of LSH 

126 
 

5.2.2| Negative staining EM of LSH-6His 

To analyse the general shape of LSH-6His, negative-staining electron microscopy (negative 

staining EM) was used in collaboration with Dr Laura Spagnolo and Dr Giuseppe Cannone.  

Negative staining EM involves placing the protein solution (LSH-6His) onto a charged carbon 

copper to fix proteins molecules to the surface. Fixed LSH-6His particles are then embedded 

in a layer of heavy metal staining solution (uranyl acetate) which is dried by gentle blotting 

and evaporation. This was performed by Dr Giuseppe Cannone.  

Negative staining generates high contrast during imaging with electron microscopy and is 

useful for studying proteins and protein complexes (Ohi et al., 2004; Booth, Avila-Sakar and 

Cheng, 2011; Rames, Yu and Ren, 2014). The resolution of negative staining EM is limited to 

~20 Å due to the microcrystals of heavy metal stain formed during embedding of the sample. 

Negative staining EM is typically performed with proteins larger than 100 kDa, however, 

proteins smaller than 50 kDa have been visualised, with a clear contrast to distinguish protein 

domains (Ohi et al., 2004; Rames, Yu and Ren, 2014).  

Individual particles of LSH-6His with minimal aggregation were visualised clearly with uranyl 

acetate staining (Figure 5.2A). Due to signal to noise ratio being low on certain micrographs, 

an automated particle picking was not performed due to a risk of selecting false positive LSH-

6His particles. Therefore, 10 049 particles were selected manually by myself and 2D class 

averaging of the particles was performed by Dr Giuseppe Cannone by selecting for 10 2D 

classes based on the view and shape of the particle using statistical analysis with EMAN 2.1 

software (Tang et al., 2007) (Figure 5.2B). The 2D class averages show LSH-6His has a tri-lobal 

architecture with an elongated arc shape, with a length of ~140 Å and a maximum width of 

~90 Å (Figure 5.2B).  
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Generating a 3D map from the 10049 particles was possible however it was not tried firstly 

because 3D maps calculated with this method alone often shown deformations and 

distortions in the EM map due to particle flattening and incomplete stain embedding (Ohi et 

al., 2004). Therefore, a greater number of particles would be required and a random tilt 

method is used to image particles at a greater number of angles and therefore views for 

greater statistical significance (Ohi et al., 2004). Given there is no known high-resolution 

structure available for LSH it is impossible to assign symmetry to its 3D reconstruction or even 

which domain to fit into the space. If a shape for LSH1-176 could be measured or calculated it 

could be fit to the full-length protein, however, as the protein is 20.5 kDa as a monomer it is 

too small to be used in negative staining EM to gain any noticeable structural information.  
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Therefore the complementary structural biology method; small angle X-ray scattering (SAXS) 

was used to obtain independent confirmation of the LSH-6His structure from the negative 

staining EM 2D class averages. SAXS would also be used to model a 3D structure of LSH-6His 

and LSH1-176 in solution. 

5.2.3| Small Angle X-ray Scattering of LSH-6His 

SAXS is a complementary structural method to negative staining EM, X-ray crystallography, 

NMR and XL-MS. SAXS gives the molecular dimensions, the radius of gyration (Rg) and is a 

method to accurately establish the oligomerisation state of a protein. SAXS can provide a low 

resolution (typically 10-50 Å) solution structure of biomolecules of sizes in the range of 

several kDa to several MDa, which cannot be achieved using NMR or EM (Jacques & 

Trewhella 2010; Svergun & Koch 2002; Skou et al. 2014). SAXS measures the solution 

structure of a protein, which is physiological and provides a more accurate representation of 

the protein structure compared to negative staining EM where proteins are orientated on a 

grid or X-ray crystallography where proteins are in a tightly packed crystal lattice. SAXS can 

also be used to measure conformational changes with complex formation and movement of 

flexible domains  (Rambo and Tainer, 2011; Ando et al., 2012; Skou, Gillilan and Ando, 2014).  

A general setup of a SAXS experiment is illustrated and explained in Figure 5.3.  
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The intensity plot, I(q) versus q and the Fourier transform of the intensity plot (an interatomic 

distance distribution (P(r)) can be used to calculate several pieces of information about the 

sample including: molecular weight (Mw), disorder and flexibility, radius of gyration (Rg) and 

maximum interatomic distance (Dmax) (Jacques & Trewhella 2010, Mertens & Svergun 2010).   
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From high-quality scattering data, the zero angle scattered intensity I(0) and Rg can be 

calculated and provide the molecular mass and shape information of the protein respectively 

(Jacques & Trewhella 2010, Mertens & Svergun 2010). The beam stop prevents the zero angle 

(2θ = 0°) from being measured, therefore I(0) is an extrapolation of the radiation intensity 

scattered through the zero angle. I(0) is related to the particle volume (V) and contrast (Δp) 

which is the mean difference of the scattering density between the particle and the solvent 

(Jacques & Trewhella 2010, Mertens & Svergun 2010).     

Rg is the average of square centre-of-mass distances in the molecule weighted by the 

scattering length density and measures the overall size of the molecule (Jacques & Trewhella 

2010, Mertens & Svergun 2010).     

I(0) and Rg can be estimated quickly using Guinier analysis at small values of q: 

𝐼(𝑞) = 𝐼(0)𝑒
−𝑞2𝑅𝑔

2

3
                                                                                         Equation (5.1) 

Therefore I(0) and Rg can be calculated from the y-intercept and slope respectively from a 

linear fit of ln[(I)q] versus q2 (Guinier 1938).  This relationship is true only when qRg < 1.3 Å; 

this limitation ensures the estimated parameters are within 10% of the true value (Jacques 

and Trewhella, 2010). Deviations from a linear plot indicate interparticle interference 

(downturn at low q) or aggregation (upturn at low q) (Jacques & Trewhella 2010, Mertens & 

Svergun 2010).     

A more accurate I(0) and Rg can be calculated by using the entire scattering profile with the 

P(r) distribution function, where Rg is the second moment of P(r): 

𝑅𝑔
2 =

∫ 𝑃(𝑟)𝑟2𝑑𝑟

2 ∫ 𝑃(𝑟)𝑑𝑟
                                                                                                                         Equation (5.2) 

I(0) is the zeroth moment of P(r): 

𝐼(0) = 4𝜋 ∫ 𝑃(𝑟)𝑑𝑟
𝐷𝑚𝑎𝑥

0
                                                                                               Equation (5.3) 

P(r) distribution can also provide the Dmax as explained in Figure 5.3.  
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The relationship between I(0) and the particles volume through extrapolation can provide a 

Mw for the molecule (Jacques and Trewhella, 2010). 

𝑀𝑤 =
𝐼(0).𝑁A

𝐶(∆𝑝.𝑉)2
                                                                                                                            Equation (5.4) 

Using a scattering standard such as BSA to calibrate I(0) enables the molecular mass and 

volume of the scattering particle to be calculated when an accurate concentration is known.  

If the inside of a particle has uniform electron density, a hydrated particle volume (Vp) can 

be estimated on a relative scale, which avoids an accurate concentration measurement being 

required, and therefore errors in concentration will not influence the estimated Mw. Vp is 

estimated using Porod’s equation (Porod, 1982): 

𝑉𝑝 = (2𝜋^2 𝐼(0))/𝑄                                                                             Equation (5.5)    

Where Q is the Porod invariant: Q = (∫ 𝑞2∞

0
𝐼(𝑞). 𝑑𝑞                                                                            

The electron density is not uniform for macromolecules; however, a reasonable estimate can 

be calculated for macromolecules larger than 30 kDa by subtracting a constant from 

scattering data generating an approximation to the scattering of the corresponding 

homogeneous body (Mertens and Svergun, 2010). For a globular protein, the Vp (in nm3) can 

be divided by 2 or 1.5 to give an estimated range the molecular mass (in kDa) of the particle 

(Mertens and Svergun, 2010).  

SAXS of LSH-6His and LSHK237Q-6His were performed to identify if there were any structural 

differences between the inactive ATPase mutant and wild-type LSH and to corroborate the 

EM results of a tri-lobal architecture. 
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The intensity plot of LSH-6His at 5.6mg/ml has no sharp down scattering close to 0 indicating 

there was no aggregation of LSH-6His at this concentration (Figure 5.4A), consistent with DLS 

data (Chapter 4, section 4.2.2). A linear Guinier plot with negligible upturn or downturn 

confirms the sample is free of aggregation (Figure 5.4B). The P(r) distribution was calculated 

using scattering data from 0-0.37 Å-1 as scattering data from q= 0.37-0.5 Å-1 had a too high 

signal-to-noise ratio to fit a Dmax accurately (Figure 5.4C). The P(r) distribution shows multiple 

shoulders after 80 Å until 138 Å when the Dmax is reached (Figure 5.4C) indicative of a 

multidomained protein (Putnam et al., 2007). Back calculating a scattering curve from the 

modelled P(r) distribution fits well to the actual scattering data (Figure 5.4D).  
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SAXS plots of LSH-6His at a series of concentrations were measured. If the oligomerisation 

state does not change across a range of protein concentrations, the I(0) and Rg should remain 

constant; an increase in both parameters as protein concentration increases indicates 

aggregation or oligomerisation. Conversely a decrease in both parameters as concentration 

increases indicates interparticle interference. 

The SAXS parameters Mw, Rg, Dmax and Porod volume of LSH-6His are shown in table 5.1. The 

I(0) does not change significantly with concentration (5.9 µM – 58.3 µM) with a difference of 

1.78 kDa between the smallest (53.56 kDa – 5.9 µM) and largest values (55.34 kDa – 28.3 

µM), indicating there is no concentration dependent aggregation or oligomerisation (Table 

5.1). However, the mass calculated is less than that for a LSH-6His monomer (95.8 kDa), 

indicating the concentration measured by UV spectroscopy was an overestimation. The 

measurement may have been influenced by oxidation of DTT in the buffer (Jacques and 

Trewhella, 2010).  

The problem encountered in determining the protein concentration for Mw determination 

by SAXS could be resolved by dialysis to remove the oxidised DTT, or measuring the protein 

concentration through peptide bond absorbance at 216 nm (this would require buffer 

exchange to an alternative buffer such as NaP pH 7.5 or Tris pH 7.5 as HEPES absorbs strongly 

at 216 nm).   

The molecular mass calculated from the Porod volume for all concentrations tested (5.9 µM 

– 58.3 µM) was between 83 – 120 kDa which is in the range of LSH-6His being a monomer in 

solution (Table 5.1). This result is in agreement with measurements from SEC-MALS (Chapter 

4, section 4.2.3). The Rg values calculated either by Guinier fitting or from the P(r) distribution 

are in agreement (Table 5.1). The Rg decreases slightly as LSH-6His concentration decreases, 

however, the error between the lowest (37.7 Å) and highest (39.8 Å) measurements is ± 0.6 

Å. This indicates there is negligible interparticle interference of LSH-6His particles at different 

concentrations. The Dmax ranges from 130.1 – 138.6 Å and is close to the maximum length of 

LSH-6His of ~140 Å measured from the 2D class averages by negative staining EM (Figure 

5.2).  
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Table 5.1| SAXS parameters of LSH-6His along a concentration series 

LSH-6His 

concentration 

I(0) 

Mw (kDa) 

 

MM (kDa) 
estimated from 
Porod volume 

Guinier 
fitting 

Rg (Å) 

P(r) 

Rg (Å) 

Dmax 

(Å) 

5.6 mg/ml (58.3 µM) 54.12 ± 0.07 90-120 39.6 ± 1.9 39.8 138.6 

2.72 mg/ml (28.3 µM) 54.91 ± 0.11 88-117 38.8 ± 1.8 38.6 130.1 

1.24 mg/ml (12.9 µM) 55.34 ± 0.11 86-114 38.6 ± 1.6 38.9 133.7 

0.57 mg/ml (5.9 µM) 53.56 ± 0.11 83-111 37.8 ± 1.3 37.7 132.1 

Average 54.47 - 38.7 38.8 133.6 

Standard deviation 0.69 - 0.6 0.8 3.1 

 

SAXS measurements can also be used to establish the flexibility of the protein. A Kratky plot 

of q2I(q) against q is used to qualitatively distinguish disordered and flexible proteins from 

globular compact proteins. The scattering intensity of a globular protein decays at high angles 

as I(q) ~ Iq4 producing a bell shaped curve (in a Kratky plot) with a well-defined maximum, 

which falls close to a q2I(q) of 0 (Receveur-Brechot and Durand, 2012; Kikhney and Svergun, 

2015). However, a Gaussian coil (unstructured protein) plateaus at large q values because 

1/q2 is asymptotic of I(q). To compare the folded state and flexibility of different proteins the 

data is normalised so that I(0)=1 and q is multiplied by Rg creating a dimensionless Kratky plot 

(Receveur-Brechot and Durand, 2012; Kikhney and Svergun, 2015).  

The dimensionless Kratky plot of globular proteins shows a maximum of 1.104 for a qRg of 

√3 = 1.73, independent of protein concentration, composition or size. For an unstructured 

protein, the curve rises with increasing angle and plateaus at a maximum between 1.5-2 with 

another increase observed over the qRg range 2-3 Å-1 if the protein is disordered and 

extended (Receveur-Brechot and Durand, 2012). Partly disordered proteins have 

intermediate values between a globular and unfolded protein (Receveur-Brechot and 

Durand, 2012).  
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A dimensionless Kratky plot of LSH-6His indicates the protein is asymmetric because the peak 

maxima is 1.25 at a qRg of 2.05 instead of 1.1 at a qRg of 1.73 seen for a globular protein 

(Figure 5.5).  

The Kratky plot of LSH-6His follows the shape of a bell curve often seen with globular proteins 

(Figure 5.5) (Receveur-Brechot and Durand, 2012; Kikhney and Svergun, 2015). Instead of 

going back to 0 the peak slopes off, reaching a minima of 0.28 at a qRg of 8, with a continual 

raising slope after this (Figure 5.5). This indicates LSH has an asymmetric shape with flexible 

regions, which is common with a multidomain protein (Receveur-Brechot and Durand, 2012; 

Kikhney and Svergun, 2015).   

 

LSH-6His flexibility was not influenced by the protein concentration, with negligible 

difference in normalised Kratky plots between different LSH concentrations (data not 

shown). LSHK237Q-6His SAXS measurements were similar to LSH-6His (data not shown). 

The addition of ADP to LSH-6His increased the thermal stability (Chapter 4, section 4.2.1). To 

investigate if this was due to structural changes, SAXS with ADP was performed.  ADP was 

added to LSH-6His (2.5 mg/ml or 26 µM) to final concentrations of 1, 2, 5 or 10 mM. The 

addition of ADP at concentrations ranging from 1-10 mM did not change I(0), molecular mass 

estimated from Porod volume, Rg or Dmax from values measured for LSH without ADP with 
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any significance (Table 5.2). This indicates the addition of ADP did not cause aggregation, 

interparticle interference or oligomerisation of LSH-6His. Similar results were obtained for 

LSHK237Q-6His (data not shown).  
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Table 5.2| The effect of varying concentrations of ADP on the SAXS parameters of LSH-

6His at 2.5 mg/ml. 

ADP concentration I(0) Mw 

(kDa) 

MM (kDa) 
estimated from 
Porod volume 

Guinier 
fitting 

Rg (Å) 

P(r)  

Rg (Å) 

Dmax 

(Å) 

0 mM 57.86 ± 
0.08 

91 – 121  41.5 ± 1.1 41.3 145.2 

1 mM 58.46 ± 
0.08 

90 – 120  40.8 ± 0.9 41.0 143.0 

2 mM 59.67 ± 
0.08 

87 – 116  41.3 ± 1.3 41.0
  

144.6 

5 mM  58.43 ± 
0.07 

89 – 118  39.9 ± 1.0 40.4 139.6 

10 mM  57.41 ± 
0.08 

89 – 118  40.4 ± 0.8 40.7 141.4 

Average 58.37 - 40.8 40.9 142.8 

Standard deviation 0.85 - 0.7 0.3 2.3 

 

Although there were no changes in parameters, ADP binding might have affected the 

compactness of LSH by reducing the flexibility of the protein. To measure this effect a 

dimensionless Kratky plot of LSH-6His with or without 10 mM ADP was made (Figure 5.6). 

The Kratky plots overlap almost completely with negligible differences around the peak 

maxima (Figure 5.6). This indicates ADP binding did not cause any significant structural 

changes by influencing protein compactness or flexibility. All concentrations of ADP tested 

showed overlapping Kratky plots to LSH-6His (data not shown). As the ATPase lobes require 

DNA for allosteric movement into a ‘closed state’ for ATPase activity, the structural changes 

might be local to the ATP binding pocket and therefore not cause major structural changes, 

which SAXS does not have the resolution to measure for.   
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5.2.4| SAXS of LSH1-176 

SAXS of LSH1-176 was performed with the aim of determining its structural characteristics in 

solution and using the data for modelling into a SAXS envelope of LSH-6His, defining where 

the N-terminal domain fits in relation to full-length LSH. The intensity plot of LSH1-176 at 

10.01mg/ml has no sharp down scattering close to 0 indicating there was no aggregation of 

LSH-6His (Figure 5.7A). A linear Guinier plot with negligible upturn or downturn confirms the 

sample was free of aggregation (Figure 5.7B). The P(r) distribution was fit using scattering 

data from 0-0.37 q(Å-1) as scattering data from 0.37-0.5 had a signal-to-noise too high to fit a 

Dmax accurately (Figure 5.4C). The P(r) distribution shows a broad shoulder from 60 Å until 

130 Å, followed by a shallow slope to the Dmax of 168 Å (Figure 5.7C). This is observed with 

unstructured proteins which typically have long sloping shoulders until the Dmax (Putnam et 

al., 2007). Back calculating a scattering curve from the modelled P(r) distribution fits well to 

the  actual scattering data (Figure 5.7D).  

 



Simon Varzandeh                                                  Chapter 5| A low resolution structure of LSH 

140 
 

 



Simon Varzandeh                                                  Chapter 5| A low resolution structure of LSH 

141 
 

As with LSH-6His, SAXS of LSH1-176 were measured over a range of concentrations (from 0.63 

mg/ml to 10.01 mg/ml) (Table 5.3).  

Based on sequence the monomeric mass of LSH1-176 is 20.5 kDa. Guinier analysis of SAXS data 

indicate from I(0)) that LSH1-176 is a monomer at 0.63 mg/ml, and a dimer at 5.18 mg/ml. The 

average molecular mass calculated from I(0) for samples at 1.24 mg/ml and 2.37 mg/ml is 

27.32 and 34.17 kDa respectively, intermediate between a monomer and dimer. This 

indicates LSH1-176 is in equilibrium between a monomer and dimer from 0.63 mg/ml until 5.18 

mg/ml, forming predominantly monomers at the lowest concentration measured and dimers 

at the highest concentration. However, if the concentrations measured are inaccurate and 

overestimated as was done for LSH-6His (Table 5.1 and Table 5.2) then this indicates LSH1-176 

is going from a dimer to a hexamer as measured by the porod volume rather than the 

monomer to dimer measured by I(0). At 0.63 mg/ml LSH1-176 is a monomer (23.31 kDa) 

according to I(0) and a dimer (38-50 kDa) according to the MM from the Porod volume. 

However at 10.01 mg/ml LSH1-176 is a dimer (39.68 kDa) according to I(0) and a hexamer (113-

151 kDa) according to the MM calculated from the porod volume. Given SEC-MALS indicates 

LSH1-176 is in a monomer-dimer equilibrium, at concentrations ranging from 1.25-10 mg/ml 

(Chapter 4, section 4.2.13), it provides confidence the monomer-dimer equilibrium 

calculated from I(0) is correct.  

The Rg values calculated by Guinier analysis range from 46.1 Å to 51.5 Å, but these differences 

are within the error of the measurement. There is an increase in Rg at 2.37 mg/ml and 5.18 

mg/ml, however, the increases are within a 5 % error, indicating negligible differences in Rg 

data. The Rg values calculated from the P(r) distribution is higher than the Guinier fitting data 

for all concentrations, indicating the Guinier fitting is underestimating the Rg, or the P(r) is 

overestimating the Rg or the calibration is off. However, it is within the 5% error for all 

concentrations of LSH1-176 indicating the differences are negligible. This indicates LSH1-176 

dimer formation is not compacting the protein complex any more than a LSH1-176 monomer. 

The Dmax ranges from 161.3 Å to 180.1 Å, which is within error (± 4%).  
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Table 5.3|SAXS parameters of LSH1-176 along a concentration series 

LSH1-176  

concentration 

I(0) Mw 

kDa 

MM (kDa) 
estimated from 
Porod volume 

Guinier 
fitting 

Rg (Å) 

P(r)  

Rg 
(Å) 

Dmax 

(Å) 

10.01 mg/ml (487.9 
µM) 

39.68 ± 
0.03 

113 – 151 48.1 ± 0.5 49.8 168.4 

5.18 mg/ml (252.7 µM) 38.37 ± 
0.05 

116 – 154 50.5 ± 0.5 52.3 176.8 

2.37 mg/ml (115.6 µM) 34.17 ± 
0.06 

63 – 84 51.5 ± 1.7 52.4 180.1 

1.24 mg/ml (60.5 µM) 27.32 ± 
0.18 

50 – 66 47.7 ± 0.7 49.4 165.5 

0.63 mg/ml (30.7 µM) 23.31 ± 
0.28 

38 - 50 46.1 ± 1.0 47.2 161.3 

Average 32.57 - 48.8 50.2 170.4 

Standard deviation 
6.33 

- 
2.0 2.0 

7.0     
(± 4%) 

 

A dimensionless Kratky plot of LSH1-176 at different concentrations was calculated (Figure 5.8). 

LSH1-176 at 10.01 mg/ml shows a peak maxima of 1.24 at a qRg of 2.4, followed by a continuous 

plateau (Figure 5.8). This indicates the protein is disordered but not completely unstructured 

as the peak maxima would be between 1.5-2 instead of 1.24. However, as protein 

concentration decreases there is no peak maxima with a rising plateau increasing to a 

maximum between 1.5-2 indicating LSH1-176 is unstructured as a monomer and becomes 

slightly more structured when it dimerizes (Figure 5.8).   
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The Rg and Dmax do not change significantly between LSH1-176 as a monomer or dimer (Table 

5.3) and shows some structural compaction upon dimerization as observed from the 

dimensionless Kratky analysis (Figure 4.8). This indicates LSH1-176 forms a dimer through 

contact along a surface area which does not drastically compact the protein nor reduce 

flexibility significantly.  

The aim was to use SAXS data of LSH1-176 to fit this domain into the SAXS envelope of LSH-

6His by modelling. As LSH1-176 is a unique portion of LSH with no homologous proteins with a 

known structure, structure prediction software such as Phyre and I-TASSER cannot use 

homology modelling to predict a structure. Instead, ab-initio modelling based on the 

predicted secondary structure of the N-terminal domain is used. Using Phyre or I-TASSER to 

predict a structure of LSH works well for the ATPase region as the LSH sequence is conserved 

with an 80% homology to the known structures of the chromatin remodelers; RAD54, CHD1 

and SNF2.  
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However, the predicted N-terminal domain structure varies dependent on which prediction 

software is used as the structure is predicted solely from a predicted secondary structure 

because of no sequence homology. Phyre represents LSH1-176 as an elongated helix with 

structured regions at each end, whereas I-TASSER predicts LSH1-176 as a helical bundle (Figure 

5.9). The Phyre model is in closer agreement with the LSH1-176 SAXS data as it is not compacted 

and has a Dmax of 120 Å closer to the experimental 170 Å (Figure 5.9). Whereas the I-TASSER 

model is more compact with a Dmax of 68 Å which is significantly shorter than the SAXS 

experimental Dmax value (Figure 5.9).  

 

LSH1-176 is in a monomer-dimer equilibrium where the dimer dominates at a concentration at 

or greater than 5 mg/ml, is disordered and has a Dmax 30 Å larger than LSH-6His which is a 

monomer across all concentrations tested and mostly structured. This indicates LSH1-176 folds 

into a more compact and less flexible domain as part of the full-length LSH-6His, which is 

supported by XL-MS data which shows the N-terminal domain is close to ATPase lobe 2 and 

the C-terminal domain LSH (Figure 5.1) This makes it impossible to use SAXS data of LSH1-176 

for fitting to the LSH1-176 density of LSH-6His. 
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Therefore I decided to model a SAXS envelope of LSH-6His using GASBOR and predict a 

structure of LSH using the SAXSTER program, which uses SAXS data as a major constraint for 

protein structure, as structure prediction from LSH sequence alone is unreliable in regions 

with unique sequences such as the N-terminal domain. 

5.2.5| A low-resolution structure of LSH-6His  

When modelling a structured domain or protein from SAXS the Mw, Rg and Dmax provide 

structural information which is essential for ab initio modelling a 3D molecular structure. A 

common ab initio bead modelling program is Dummy Atom Model Minimisation (DAMMIN) 

(Svergun, 1999; Mertens and Svergun, 2010). This modelling method uses densely packed 

beads (5 Å in diameter) in a sphere which is larger in diameter than the Dmax of the particles. 

Shape reconstruction is performed in the sphere of beads by simulated annealing, in which 

one bead is changed, creating a new model until a final model of compact and connected 

beads which fit the experimental data is reached (Svergun, 1999; Mertens and Svergun, 

2010). Another ab initio bead modelling program known as GASBOR which is similar to 

DAMMIN can be used and has several advantages over DAMMIN. Firstly GASBOR defines 

each amino acid of the protein as a bead which has its centre 3.8 Å away from the adjacent 

bead and must anneal as a chain to simulate a polypeptide chain (Putnam et al. 2007, Svergun 

et al. 2001). Therefore GASBOR can create more realistic models of multidomain proteins as 

it can factor in linker or hinge regions (Putnam et al. 2007, Svergun et al. 2001). GASBOR also 

uses more accurate penalties which constrain shape and do not prohibit the generation of 

anisotropic shapes such as cavities, when the number of residues is known for the protein 

sample (Putnam et al. 2007, Svergun et al. 2001).  

Therefore I used GASBOR to generate an ab initio model of LSH-6His from the SAXS data. 

Given I do not have a crystal structure of LSH and the N-terminal domain of LSH is modelled 

only from the secondary structure, I decided to use the SAXS assisted protein fold recognition 

(SAXSTER) software to model a high-resolution protein structure (dos Reis, Aparicio and 

Zhang, 2011). Firstly the best 10 template structures matching the input protein sequence 

are selected from the PDB library (dos Reis, Aparicio and Zhang, 2011). The template which 

fits the SAXS data the best is used as the template for modelling a high-resolution protein 

structure with SAXS structural parameters as constraints using MODELLER (dos Reis, Aparicio 

and Zhang, 2011).  
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A representative GASBOR model of LSH-6His fit the SAXS data with a 2 value of 1.22 showing 

high confidence in the model produced. The GASBOR model itself is elongated in shape, with 

three regions encompassing an elongated flanking region, a central spherical lobe structure 

and a smaller lobe structure next to it (Figure 5.9A). This model has a similar shape and tri-

lobal features observed from 2D class averages of negative staining EM of LSH-6His (Figure 

5.2).  

Two high-resolution LSH structures were predicted using I-TASSER or SAXSTER. I-TASSER and 

SAXSTER predict different secondary structures for the N-terminal domain: the I-TASSER 

model of this domain is predominantly helical and the SAXSTER predicts coils (Figure 5.9B). 

Each structure was overlaid manually onto the LSH-6His GASBOR model to help provide an 

idea of where the domains of LSH might lie (Figure 5.10B). ATPase lobes 1, 2 and the C-

terminal domain of the SAXSTER and I-TASSER models appear to fit in the space of the two 

spherical lobe regions in the GASBOR model (Figure 5.10B). The N-terminal domain of the 

SAXSTER model is elongated and may fit the SAXS envelope if angled in a different 

orientation. By contrast, the N-terminal domain of the I-TASSER model is too compact to fill 

the SAXS envelope (Figure 5.9B). Density in the left area of the spherical central part of the 

SAXS envelope is unoccupied for both the SAXSTER and I-TASSER models (Figure 5.9B).  
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Due to the lack of a high-resolution 3D structure of LSH, it is difficult to model accurately 

where the N-terminal domain of LSH is in relation to the ATPase lobes and how it fits along 

the SAXS and EM maps. However, given there is extra density from both EM and SAXS maps 

after fitting both lobes of the LSH ATPase region, it is likely the N-terminal domain occupies 

this space. However, if this is the case then the C-terminal domain must be within ~30Å of 

the N-terminal as detected from XL-MS, which neither model has factored in. Therefore, 

modelling the orientation of domain from these tools alone is currently limited due to 

software available for modelling and high resolution structural information missing. This will 

be discussed in more detail later. Further work would need to be performed to determine 

how the N-terminal domain of LSH interacts with the ATPase region and how it may function 

to regulate ATPase and chromatin remodelling activity.   

5.3| Discussion 
 

The ATPase region of ATP-dependent chromatin remodelers is conserved and is necessary 

for ATP hydrolysis, DNA binding and translocation (Clapier and Cairns, 2009, Dürr et al., 2006, 

Flaue and Owen-Hughes, 2011, Yodh, 2013). The ATPase lobes 1 and 2 of the ATP-dependent 

chromatin remodeler CHD1 are connected by the N-terminal chromodomain and the C-

terminal domain, holding the enzyme in an inactive conformation (Figure 1.7) (Hauk et al., 

2010). However, the ATPase lobes of the ATP-dependent chromatin remodeler SNF2 are 

braced together through the C-terminal helix and the disordered region of ATPase lobe 2 

(Figure 1.7) (Xia et al., 2016). The N-terminal HSA domain is connected only to ATPase lobe 1 

(Figure 1.7) (Xia et al., 2016). Due to the ATPase region flanking domains being different 

between different families of chromatin remodelers it is difficult to accurately define how 

ATPase region flanking domains of LSH are structurally and functionally acting on its ATPase 

region. The C-terminal domain of LSH, which has sequence similarity with the C-terminal 

domains of CHD1, ISWI and SNF2 (Figure 4.8), may bridge or brace the ATPase lobes as seen 

in the CHD1 crystal structure (Hauk et al., 2010).  
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The N-terminal domain of LSH is unique in sequence with functions including nuclear 

localisation and binding with DNMT3B (Lee et al. 2000, Myant & Stancheva 2008). The N-

terminus of LSH (1-200 aa) has a maximum of 5% sequence similarity to other proteins from 

a BLAST search. Structural characterisation of the N-terminal domain of LSH using NMR and 

CD has confirmed the prediction that the domain is disordered (Mari Eltermann., 2015). SAXS 

of LSH1-176 also shows it is disordered, elongated and flexible (Figure 5.7 and Figure 5.8). LSH1-

176 also dimerises at concentrations from 60 µM to 250 µM (Table 5.3). As LSH-6His is 

monomeric, it is unlikely the dimerisation of LSH1-176 observation is physiological in the 

context of a full-length protein, and interactions of the N-terminal domain with the other 

domains of LSH block its dimerisation. The ability of the N-terminal domain to dimerise 

indicates that the domain could bind to other proteins such as DNMT3B, potentially through 

the use of the predicted coiled-coil (LSH14-96) (Myant and Stancheva, 2008). Given the Dmax of 

LSH-6His (~140 Å) is 20-30 Å shorter than that of LSH1-176 (Dmax of 165-180 Å), LSH1-176 likely 

forms contacts with the ATPase region which compact and reduce the flexibility of this 

domain (Table 5.1 and Figure 5.4). Ideally, a SAXS model of LSH177-821 would be needed to 

determine how LSH1-176 may interact with the ATPase region of LSH. However, due to LSH177-

821 being unstable this could not be performed.  

From SAXS and EM data alone I cannot determine whether the N-terminal domain of LSH is 

connected to ATPase lobe 1 only or ATPase lobes 1 and 2 (Figure 5.2 and Figure 5.9).  

However, XL-MS data has shown the N-terminal domain LSH97-179 is within 22.4 Å contact of 

LSH698-736 indicating the N-terminal domain likely forms contacts with ATPase lobe 1 and is 

within 22.4 Å from the C-terminal end of ATPase lobe 2 and the C-terminal domain (Figure 

5.1). Limited proteolysis with subtilisin cleaves LSH into LSH1-176 and LSH178-821-6His and then 

into LSH178-704 (Chapter 4, section 4.2.10). Thus, the N-terminal domain may occlude the 

region around LSH704 (C-terminal end of ATPase lobe 2) protecting it from proteolysis, or 

cleavage of the N-terminal domain causes allosteric changes in the ATPase region making the 

LSH704 region accessible for protease cleavage. Furthermore, the N-terminal domain of LSH is 

required for stability of the ATPase region (LSH200-821) which is unstable and weakly expressed 

without the N-terminal domain (Chapter 4, section 4.2.9). Therefore, it is likely the N-

terminal domain forms contacts along parts of the ATPase region.  
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An alternative approach to modelling protein structures to fit within the SAXS volume would 

be to use BUNCH (Petoukhov and Svergun, 2005). Ab initio and rigid modelling are used to 

determine the 3D domain structure of a multi-domained protein based on multiple scattering 

data sets from deletion mutants when the high resolution structures of the individual 

domains are known (Petoukhov and Svergun, 2005). Dummy residue chains in place of the 

domains which do not have a high resolution structure to fit the experimental scattering data 

(Petoukhov and Svergun, 2005). However, the issue here is there is only a crystal structure 

of the CHD1 SNF2 ATPase region which is most closely related to LSH which can be used. As 

there in no high-resolution structure of the N-terminal domain of LSH it may be difficult to 

gain further structural information of this region with ab initio predicted structures only.  

Further experiments are required to define how the N-terminal region might influence the 

action of the ATPase region structurally. Firstly determining spatially where the N and C-

terminal domains of LSH are in relation to the EM averages and SAXS envelope can be 

performed by tagging or coupling the N or C-terminus with GFP or MBP to define the location 

of the respective domain (Ciferri et al., 2012; Dambacher and Lander, 2015).  

2D class averages of ~10000 LSH-6His particles showed a tri-lobal and elongated shape 

(Figure 5.2). SAXS data could be used as a template for 3D reconstruction of the negative 

staining EM particles with a, however, a greater number of particles for each 2D class would 

allow a better 3D model to be generated (greater than 20000 particles). Greater contrast and 

therefore resolution (down to 15 Å) for smaller proteins has been achieved by using uranyl 

formate instead of uranyl acetate to stain grids as it produces smaller sized grains (Ohi et al., 

2004; Rames, Yu and Ren, 2014). This method could be used for greater resolution of LSH-

6His negative staining EM particles.  

Revisiting XL-MS for more distance information between domains could be used for adding 

constraints for modelling the N-terminal domain and the ATPase region. The zero length (0 

Å spacer arm) chemical crosslinker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide 

hydrochloride (EDC) activates carboxylic acids (aspartate and glutamate) to crosslink with 

amines (lysine). EDC is coupled with sulfo-N-hydroxysuccinimide (sulfo-NHS) to improve 

efficiency and create a stable amine-reactive intermediate.  EDC-sulfo NHS can provide a 

greater number of crosslinks which are 11.4 Å shorter than BS3. Therefore, comparing the 

EDC-sulfo NHS crosslinking with BS3 crosslinking of LSH could be used for distance modelling 

constraints.  
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A major limitation of using crosslinking mass spectrometry is it is undemocratic as a method 

in that specific regions of the protein may provide greater crosslinks than others and this may 

alter the conformation of the protein potentially inhibiting the movement of flexible regions 

and fixing them in one conformation biasing the protein structure to one state from a pool 

of physiological states (Maiolica et al., 2007; Rappsilber, 2011; Fischer, Chen and Rappsilber, 

2013).  

Combining the complementary structural methods of XL-MS, EM and SAXS could enable to 

obtain a detailed structure of LSH in different conditions and potentially with substrates such 

as DNA, nucleosomes or protein binding partners such as DNMT3B.  Combining the XL-MS, 

negative staining EM and SAXS data could provide certain information about the protein 

structure and domain interactions, however, the tools are not yet developed enough to 

model a structure using the parameters from the data for all methods combined.  

Significant advancements have been made in Cryo-EM technology in the last 5 years enabling 

the near atomic resolution structures of large protein complexes to be solved (Cheng, 2015; 

Doerr, 2015). Recently a 3.8 Å structure of a 93 kDa protein was achieved, making even 

proteins less than the expected cut off 150 kDa achievable using cryo-EM (Merk et al., 2016). 

As the LSH-6His sample is 96 kDa, greater than 95 % pure and monodisperse, a cryo-EM 

structure is achievable and would be the best technique to use to obtain a high resolution 

structure of LSH. 

 

 

 

 

 

 

 



Simon Varzandeh                                                  Chapter 5| A low resolution structure of LSH 

152 
 

5.4| Conclusion 

To summarise I have determined through XL-MS studies of LSH-6His with BS3 that the N-

terminal region (LSH97-179) is within a 22.4 Å distance of the C-terminal region (LSH698-736) 

indicating an interaction of the LSH N-terminal domain along portions of the ATPase region. 

SAXS of the LSH N-terminal domain (LSH1-176) showed this domain is disordered and in a 

monomer-dimer equilibrium, indicating this domain is capable of protein binding. The 

maximum dimensions of LSH1-176 are 30 Å more than of LSH-6His, indicating it must be in 

contact with the ATPase region in the context of full length LSH. Dimensionless Kratky 

analysis has shown LSH-6His is mostly globular with some flexibility indicating the N-terminal 

domain is compacted in the full length LSH.  Negative staining EM 2D class averaged particles 

and the SAXS envelope of LSH-6His are in agreement that LSH is a monomer with an 

elongated trilobal shape with a Dmax of ~140 Å.  

A GASBOR model of LSH-6His fits the ATPase region of a predicted LSH-6His structure in an 

inactive state, with the N-terminal domain likely occupying the rest of the density. To 

complement the structural studies of LSH, the next step would be to study how LSH interacts 

with DNA and nucleosomes and its binding partner DNMT3B using biochemical assays.  
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Chapter 6| LSH interactions with DNA and nucleosomes        

6.1| Introduction  
The function of the conserved ATPase region of chromatin remodelers is to bind and 

translocate dsDNA using the energy from ATP hydrolysis. This translocating action results in 

the breakage of DNA-nucleosome contacts causing the sliding or unwinding of nucleosomes 

making previously inaccessible dsDNA regions available for transcription factors and DNA 

modifying enzymes (Clapier and Cairns, 2009; Ho and Crabtree, 2010).  

In a previous study recombinant LSH was shown to bind dsDNA and hydrolyse ATP in vitro 

(Burrage et al., 2012). The aim of this chapter was to further characterise the interaction of 

recombinant LSH with DNA and nucleosomes in vitro using biochemical assays in order to 

gain further insights into the molecular function of LSH.  

6.2| Results 

6.2.1| Detecting a LSH-6His:dsDNA interaction   

 

The electrophoretic mobility shift assay (EMSA), also known as a band shift assay, is used to 

detect protein:nucleic acid interactions. A polyacrylamide or agarose gel is used to separate 

free DNA and a protein:DNA complex using electrophoresis under non-denaturing conditions 

(Fried and Crothers, 1981; Garner and Revzin, 1981). A decrease in the mobility of a 

protein:nucleic acid complex compared to nucleic acid alone is detected by staining for 

nucleic acid or using radiolabelled or fluorophore-labelled nucleic acid (Fried and Crothers, 

1981; Garner and Revzin, 1981; Rye et al., 1993; Hellman and Fried, 2009). The EMSA is a 

rapid assay (1-3 hrs) and sensitive enough for quantitative analysis of the interaction  (Rye et 

al., 1993; Hellman and Fried, 2009).  

Previous experiments, using the systematic evolution of dsDNA ligands by exponential 

enrichment (SELEX) with a library of random dsDNA sequences, showed that LSH had no 

preference for a specific DNA sequence (Myant – unpublished data). However, there is a 

preference for GC-rich sequences (Myant – unpublished data).  
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EMSA experiments were first carried out on 5% TBE polyacrylamide gels, in an attempt to 

measure binding of increasing concentrations of LSH-6His to either 12 bp or 56 bp GC-rich 

dsDNA -labelled at the 5' end with the fluorophore IR700. The 56 nt DNA was a random library 

of sequences. The 12 nt DNA sequence used was GCTGCGTGCGTT (Chapter 2, section 2.11, 

table 2.16). Whilst LSH-6His shifted the dsDNA, smeary undefined bands with complexes 

stuck in the loading wells were consistently visualised (data not shown). Changing the 

polyacrylamide concentration, between 4-10%, the temperature (6°C or 20°C) and voltage 

(50V, 75V, or 100V) of electrophoresis, showed no improvement (data not shown).  

Therefore an agarose matrix, which has larger pores  was used instead (Hellman and Fried, 

2009; Stellwagen, 2009). Shifting of a 12 bp dsDNA by LSH-6His was observed on a 2% (w/v) 

horizontal agarose gel EMSA in TBE (pH 7.5) buffer and there was reduced band smearing 

compared to the acrylamide EMSA. However, LSH-6His:dsDNA complexes were still present 

in the wells (data not shown).  

The binding buffer was kept physiological (pH 7.25) and would keep the protein positively 

charged and the DNA negatively charged.  A range of buffers with different pH capacity (pH 

7.5 to 10.3) was tested in both polyacrylamide and agarose EMSAs (McLellan, 1982) to test 

an optimal buffer to stabilise a LSH:DNA complex whilst enabling migration into the gel. Tris-

CAPS buffer (pH 9.3) in an agarose gel was found to be optimal, as LSH-6His shifted a 12 bp 

DNA duplex which migrated into the gel (data not shown).  

The formation of 12 bp 5'IR700 DNA duplex was confirmed as it migrated more slowly than the 

non-annealed 12 bp 5'IR700 ssDNA (Figure 6.1A) on a polyacrylamide gel due to its larger size. 

LSH-6His shifted a 12 bp DNA duplex, with complexes entering the wells (Figure 6.1B). To 

confirm that the LSH:dsDNA complex was not an artefact resulting from the C-terminal 6His 

tag a 6His tagged cytosolic protein, Cyclophilin A (CypA) was used in an EMSA alongside LSH-

6His (Figure 6.1B). The lack of any noticeable shift of the dsDNA with CypA, whilst a clear shift 

with LSH at equivalent molar concentrations was observed, indicated a true LSH-6His:dsDNA 

binding event independent on the 6His tag (Figure 6.1B).  
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6.2.2| LSH-6His has a KD of 1.2 µM for dsDNA based on EMSA  

The intensity of the bound DNA band in the EMSA was measured to estimate a KD of the 12 

bp dsDNA for LSH-6His over a fine range of LSH-6His concentrations between 0.2 µM and 4 

µM (Figure. 6.2A and Figure 6.2B). The KD is defined as the concentration of the receptor at 

which 50% occupancy is achieved. From three separate EMSAs the estimated KD was 0.87 µM 

± 0.02 µM (Figure 6.2B). 
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Because the EMSA is a gel-based assay, complex formation might be artificially stabilised 

compared to what it would be in solution, also the agarose gel and running buffer were at a 

non-physiological pH of 9.3. Therefore, a fluorescence polarisation assay was used to 

quantify the KD of a LSH-6His:12 bp dsDNA complex in solution, as a complementary approach 

to validate this finding. 
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6.2.3| Fluorescence Polarisation assay measures a KD of 0.38 µM for a LSH-

6His:dsDNA complex 

Fluorescence polarisation (FP) is a non-disruptive method to measure the association of a 

fluorescent ligand, commonly DNA, a peptide or a drug, with a larger receptor such as a 

protein (Rossi and Taylor, 2011b). FP measures the light emitted from the fluorescent ligand 

that has been excited with vertically polarised light. Anisotropy is calculated using the 

intensities of the light detected in the vertical (parallel) and horizontal planes (perpendicular) 

with respect to the excitation light using the following formula:                                                                                                                                

A =
I−I⊥

I+2I⊥
                                                                                          Equation (4.1)  

A = Fluorescence anisotropy                                                                                                                              
I = Intensity from parallel polariser                                                                                                                  

I⊥ = Intensity from perpendicular polariser 

A typical FP assay is shown schematically in Figure 6.3. 
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Fluorescein is typically used for labelling the ligand because the fluorescence lifetime (4ns) is 

long enough to measure an anisotropy change when the protein is bound. A range of protein 

concentrations below and above the ligand concentration are used and anisotropy is plotted 

against protein concentration to determine a KD. 
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The formation of 12 bp 5'6FAM DNA duplex was confirmed as it migrated more slowly than the 

non-annealed 12 bp 5'6FAM ssDNA (Figure 6.4A) on a polyacrylamide gel due to its larger size. 

The FP assay is suitable for quantifying LSH-6His binding to the 12 bp 5'6FAM dsDNA because 

the ligand (12 bp 5'6FAM dsDNA) is 10 times smaller than the protein (LSH-6His) which enables 

a greater change in anisotropy to be detected (Rossi & Taylor 2011).  

The highest fluorescence signal without saturating the detector (data not shown) was 

achieved with 50 nM 12 bp 5'6FAM dsDNA.  Initially, buffer conditions of 100 mM, 50 mM and 

10 mM NaCl were tested in the FP assay to measure the effect of ionic strength on LSH-6His 

dsDNA binding (Figure 6.4B). In the buffer containing 100 mM NaCl there was no change in 

anisotropy, indicating that no DNA binding occurs (Figure 6.4B). The 50 mM and 10 mM NaCl 

buffer conditions resulted in an increase in anisotropy with increasing LSH-6His 

concentration with a peak in anisotropy at 2 µM (Figure 6.4B). The anisotropy change for the 

10 mM buffer condition was 2.6 times greater than the 50 mM NaCl buffer condition 

indicating that dsDNA binds LSH-6His with a slower off rate in the 10 mM NaCl buffer (Figure 

6.4B). An accurate KD could not be accurately determined with the 50 mM NaCl buffer 

condition due to small anisotropy changes, however, the curve was similar to the 10 mM 

NaCl buffer condition indicating the affinity of LSH-6His for 12 bp dsDNA in 50 mM NaCl and 

10 mM NaCl are similar. The FP assay with 10 mM NaCl buffer condition was performed in 

triplicate for calculating a KD with greater confidence and accurate error (Figure 6.4C).  The 

calculated KD from the line of best fit was 0.45 µM (± 0.1 µM). 
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There are several differences between the EMSA and FP assay results. Firstly, a clear binding 

event between LSH-6His and the 12 bp dsDNA occurs in EMSA in buffer containing 100 mM 

NaCl, whereas in the FP assay this does not occur. The FP assay was performed in 

physiological pH buffer (50 mM HEPES pH 7.25, 10% Glycerol, 1mM DTT and different NaCl 

concentrations - 10, 50 or 100 mM NaCl). However, as the EMSA agarose gel and running 

buffer do not contain NaCl, when the mixture in undergoing electrophoresis, NaCl is being 

diluted lowering local ionic strength allowing the formation of a LSH-6His:12 bp dsDNA 

complex.  

The KD of 0.45 µM calculated from the FP assay is 0.32 µM less than the KD calculated from 

the EMSA of 0.87 µM. However, the KD values cannot be directly compared because the 

concentrations of the dsDNA were 50 nM for the FP assay and 1 µM for the EMSA assay, 

therefore, if I wanted to directly compare the KD values, I would need to use 50 nM 12 bp 

dsDNA in the EMSA. However, due to time constraints, this experiment could not be 

performed.  

Next, I wanted to investigate if LSH-6His is able to bind ssDNA as this has not been tested in 

vitro. The ATPase core of Sulfolobus solfataricus RAD54 binds to ssDNA with a 100 fold lower 

affinity than dsDNA and can only hydrolyse ATP with dsDNA (Dürr et al. 2005, Mazin et al. 

2010; Bugreev et al. 2006). SsoRad54cd strongly prefers dsDNA (Kd = 0.10 ± 0.02 µM) over 

ssDNA (Kd =11 ± 5 µM), consistent with the dsDNA- but not ssDNA-stimulated ATPase 

activity. The conserved ATPase region of chromatin remodelers cannot bind to ssDNA as 

efficiently as the SF1 ATP-dependent helicase because it does not have a single-stranded DNA 

binding domain to firmly grab onto the nucleotides of ssDNA (Dürr et al., 2005). Therefore I 

hypothesise LSH-6His has low or no affinity for ssDNA. 

6.2.4| LSH-6His has negligible binding to ssDNA 

A variant of the 12bp dsDNA used in EMSA and FP assays, because the sequence used (Figure 

6.1) could form hairpin structures with a Tm of 27°C which LSH-6His could bind to (data not 

shown). Therefore the sequence was designed preventing the formation of hairpin structures 

at temperatures greater than 6°C (GCTGCGTGCGTT into GTTGCGTGCTTT).   

 

 



Simon Varzandeh                                 Chapter 6| LSH interactions with DNA and nucleosomes 

162 
 

An EMSA of LSH-6His with 12 bp 5'IR700 dsDNA used for Figure 6.1 and 6.2 was run alongside 

the EMSA of LSH-6His with the 12 nt 5'IR700 ssDNA (Figure 6.5A and Figure 6.5B). The EMSA 

with the 12 bp 5'IR700 dsDNA shifted with LSH-6His (Figure 6.5A), but there was negligible 

binding of LSH-6His with 12 nt 5'IR700 ssDNA at LSH-6His concentration of 4 µM, indicating 

that LSH-6His does not possess an affinity for ssDNA (Figure 6.5B), in agreement with the 

hypothesis.    

 

6.2.4| LSH-6His has similar affinity for unmethylated and cytosine methylated 

duplex DNA 

Next, I investigated the ability of LSH-6His to bind cytosine methylated dsDNA. LSH-/-  mouse 

embryonic fibroblasts (MEFs) show a 50-70% reduction in cytosine DNA methylation at 

repeat elements at distinct genomic sites, demonstrating that LSH is necessary for de novo 

DNA methylation (Dennis et al., 2001, Tao et al., 2011, Myant et al., 2011, Sun et al., 2004, 

Huang et al., 2004).  

This finding is supported by the interaction of LSH with the de novo DNA methyltransferase 

DNMT3B from co-immunoprecipitation studies, indicating LSH is a primary regulator of de 

novo DNA methylation through recruitment of DNMT3B to genomic sites as a result of LSH 

chromatin remodelling activity (Myant and Stancheva, 2008). 

Therefore, unmethylated GC-rich dsDNA might direct where on chromatin LSH localises to in 

order to regulate DNA methylation. It was hypothesised that LSH has a greater affinity for 

unmethylated DNA than methylated DNA due to the significant loss of methylation in these 

parts in LSH-/- cells.  
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To this end, I compared LSH-6His binding to methylated dsDNA and unmethylated dsDNA in 

vitro (Figure 6.6). CpG methylation at two sites in the 12 bp 5'IR700 dsDNA and on both strands 

of the duplex was used with LSH-6His in an EMSA alongside unmodified 12 bp 5'IR700 dsDNA 

as a positive control (Figure 6.6).  The formation of 12 bp 5'IR700 methylated dsDNA post-

annealing was confirmed as it migrated slower due to a larger size when compared to the 

non-annealed 12 nt 5'IR700 methylated ssDNA (Figure 6.6A). LSH-6His appeared to bind the 

methylated and non-methylated dsDNA with similar affinity as the band shifts for methylated 

dsDNA and dsDNA were too similar to see any significant difference (Figure 6.6B and Figure 

6.6C).    
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Although no clear difference for LSH-6His binding to methylated or non-methylated dsDNA 

was detected by EMSA, a more sensitive assay such as the FP assay would be a useful as a 

next step to confirm if LSH-6His affinity for dsDNA is not affected by cytosine methylation. 

As LSH-6His is a putative chromatin remodeler, we sought to test LSH-6His binding to 

nucleosomes, which is a more native chromatin component than dsDNA. 

6.2.5| The reconstitution of mononucleosomes 

LSH has been shown to localise to the condensed form of chromatin – heterochromatin and 

more specifically pericentromeric heterochromatin (Lungu et al. 2015, Yan et al. 2003). It is 

not known whether LSH binds to DNA linking nucleosomes, to histone tails of nucleosomes 

or the DNA wrapped around the nucleosome, therefore, I reconstituted mononucleosomes 

both with and without flanking dsDNA (Figure 6.7).  

The recombinant core histones (H2A, H2B, H3 and H4) of X. laevis origin were expressed in 

E. coli and purified from inclusion bodies in unfolding buffer. Equimolar ratios of the core 

histones were dialysed into 2M NaCl buffer for histone octamer formation. SEC was 

performed on dialysed core histones to purify a homogeneous population of histone 

octamers, observed as peak 1 (Figure 6.7A and Figure 6.7B). The Widom 601 DNA sequence 

that binds to histone octamers for nucleosome formation was PCR amplified from the pUC-

601 plasmid. A forward primer with a 5'IR700 fluorescent probe was used to amplify a 

nucleosome binding sequence (5'IR700  147 bp dsDNA) or a nucleosome binding sequence with 

or without the 26 bp symmetrical overhanging DNA (Figure 6.7C). For mononucleosome 

reconstitution, the DNA was dialysed with histone octamers with increasing w/w ratios. A 

w/w ratio of DNA:histone octamer of 1:4 and 1:2.5 was optimal for complete reconstitution 

of a core mononucleosome (147 bp) and a mononucleosome with linkers (200 bp) 

respectively (Figure 6.7D and Figure 6.7E).  
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6.2.6| LSH-6His binds only to flanking DNA on mononucleosomes 

An EMSA was performed to detect LSH-6His binding to the mononucleosomes with and 

without linkers (200 and 147bp). Because of the larger size of nucleosomes compared to 12 

bp dsDNA, 0.5% agarose was used instead of 2% to increase the separating resolution (Figure 

6.8). LSH-6His does not bind to the core mononucleosome, however, it does completely bind 

the free dsDNA which is present as a result of incomplete nucleosome reconstitution (Figure 

6.8A). LSH-6His binds to a mononucleosome with 26 bp overhangs with a KD of 28.4 nM (±6 

nM) (Figure 6.8B and Figure 6.8C). This result indicates LSH-6His is only able to bind to the 

DNA that links nucleosomes and cannot bind histone tails or DNA wrapped around the 

histone octamer.  
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The KD of LSH-6His for the mononucleosome with 26 bp overhangs is 31 times stronger than 

the KD calculated for 12 bp dsDNA (28 nM vs 870 nM). However, the two KD values cannot be 

directly compared as the concentration of substrate was 1 µM for the dsDNA EMSA and 5 

nM for the nucleosome EMSA. However, the KD calculated for a LSH-6His: 12 bp dsDNA 

complex from the FP assay was 450 nM which is ~16 times weaker than 28 nM KD for the 

complex of LSH-6His:mononucleosome with 26 bp overhangs. This indicates the EMSA is 

likely overestimating the KD, which could be due to a number of factors including the agarose 

gel matrix stabilising the complexes through a ‘caging effect’, the low ionic strength of the 

running buffer and gel matrix as well as electrophoresis causing an increase in local 

concentration of the protein and DNA. Therefore, this experiment should be repeated again 

and using an in-solution method to measure the KD of an LSH-6His: mononucleosome in a 

more native environment. An FP assay would not be suitable here because a 

mononucleosome with 26 bp flanking dsDNA is ~240 kDa, and for anisotropy change to be 

detected the receptor should be 10 times larger, which LSH is not. An alternative method 

that could be used is MicroScale Thermophoresis, which would quantitatively detect complex 

formation of LSH to mononucleosomes.  

 

To summarise I have optimised an EMSA which shows LSH-6His binds dsDNA and not ssDNA 

in vitro. LSH-6His binds dsDNA in solution with 50 mM NaCl or less, with an affinity of 0.45 

µM in a 10 mM NaCl buffer. LSH-6His binds to cytosine methylated dsDNA with a similar 

affinity to dsDNA and LSH-6His is able to bind to mononucleosomes with linker DNA but not 

core mononucleosomes lacking linker DNA.  
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6.3| Discussion 

The main aim of this chapter was to characterise the biochemical interactions of recombinant 

LSH with DNA and nucleosomes.  I optimised an EMSA to analyse/quantify the binding of LSH-

6His with 12 bp dsDNA by using an agarose gel and running buffer with Tris-CAPS pH 9.3 

buffer. These conditions enabled the migration and subsequent visualisation of a LSH:DNA 

complex within the gel (Figure 6.1).  LSH-6His has a KD of 0.87 µM for 12 bp dsDNA. To analyse 

the interaction in physiological conditions an in-solution FP assay was developed: at pH 7.2 

LSH-6His has a KD of 0.45 µM for 12 bp dsDNA; binding occurs in low ionic buffer conditions, 

between 10-50 mM NaCl, but not in 100 mM NaCl (Figure 6.3).  

The physiological monovalent salt concentration in a mammalian cell is ~150 mM  (12 mM 

Na+ 139 mM K+ ions) (Lodish, Berk and Zipursky, 2000). Therefore, LSH binds in vitro to DNA 

at an NaCl concentration at least 3 times lower than physiological concentrations.   

Early EM-based structural studies found chromatin fragments form different structures 

dependent on NaCl concentration (Huang and Cole, 1984):  aggregates formed  in 150 mM 

NaCl, solenoidal chromatin formed at 100 mM NaCl, compacted chromatin  forms at 50 mM 

NaCl and at 10 mM NaCl chromatin is extended (Huang and Cole, 1984). My finding that LSH 

interacts in vitro with dsDNA between 10-50 mM NaCl, suggests that LSH may bind to 

compacted and extended chromatin, in vivo which is related well to heterochromatin. 

The affinity of LSH to dsDNA in vitro is difficult to compare directly with other chromatin 

remodelers for several reasons, which will be discussed. Other chromatin remodelers have 

accessory dsDNA-binding domains, such as the HSS domains, whereas LSH only possesses the 

DNA binding motifs in the SNF2 ATPase region.  

 

In contrast to LSH, two well-studied chromatin remodelers, CHD and ISWI, are both unable 

to bind dsDNA less than 15 bp (ISWI) or 30 bp (CHD2). Optimal DNA binding requires more 

than 40 bp for both ISWI and CHD1 (Whitehouse et al., 2003b; Liu, Ferreira and Yusufzai, 

2015). The ATPase activity of RSC,  RAD54, ISWI and CHD2 increases with increasing DNA 

duplex longer than 25 bp (Liu et al. 2015, Mazina & Mazin 2004; Saha et al. 2002, Whitehouse 

et al. 2003). However, the RAD54 ATPase domain structure indicates 12 bp dsDNA is the 

minimal required for binding (Dürr et al., 2006), which matches my observations that LSH is 

also able to bind the minimal length of 12 bp dsDNA required for binding.  
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The affinity of certain chromatin remodelers for dsDNA is length dependent. For example, 

ISWI has a reported KD of 18 nm for 20 bp dsDNA (± 2 nm) (Al-Ani et al., 2014), whilst CHD2 

has a reported KD of 160 nm for 40 bp dsDNA (Liu, Ferreira and Yusufzai, 2015). Therefore 

quantifying the affinity of LSH for different lengths of dsDNA and how its ATPase activity 

changes would enable a direct comparison to be made with other ATP-dependent chromatin 

remodelers. 

LSH did not show any binding to 12 nt ssDNA (Figure 6.5), which was expected given S. 

solfactaricus RAD54 has a 100 fold lower affinity for ssDNA than dsDNA (Dürr et al., 2006). In 

comparison, the chromatin remodelers and remodelling complexes RAD54, RSC, SWI/SNF 

and ISWI can bind ssDNA, and possess ATPase activity in the presence of ssDNA. In these 

experiments the ssDNA used was 40 nt or circular ssDNA over  1000 nt in length (Cairns et 

al., 1994, 1996; Petukhova, Stratton and Sung, 1998; Whitehouse et al., 2003b). Therefore 

hairpin secondary structures may have formed, mimicking dsDNA. Therefore testing if LSH 

can bind to longer ssDNA, which may form secondary structures would identify if LSH has a 

similar affinity to other chromatin remodelers shown to bind longer ssDNA.  

The chromatin remodeler RAD54, which is involved in double-strand break repair (DSBR) 

binds to holiday junction-like branched DNA structures with a 200-fold higher affinity than 

ssDNA or dsDNA alone, consistent with its function in late stage homologous recombination 

(Bugreev, Mazina and Mazin, 2006). The ATPase activity of LSH is necessary for efficient H2AX 

phosphorylation and repair of DNA damage in irradiated cells (Burrage et al., 2012). One 

hypothesis is that LSH could act locally at double-strand breaks (DSBs) that occur in the 

vicinity of chromatin-bound LSH (Burrage et al. 2012). Therefore it would interesting to study 

if LSH has a greater affinity for branched DNA structures over dsDNA alone, which would aid 

in determining the function of LSH in DSBR.  

LSH bound to both methylated or unmethylated 12 bp dsDNA with similar affinity (Figure 

6.6). LSH is necessary for de novo methylation at repeat sequences, therefore it was 

hypothesised that LSH has a greater affinity for unmethylated DNA due to the significant loss 

of methylation in these regions in LSH-/- cells. However, a clear difference in affinity would 

need to be determined first using a lower concentration of DNA (5 nM instead of 1 µM) used 

in this study, as there may be nanomolar differences in affinity of LSH for methylated dsDNA 

compared to dsDNA.   
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The discrete complex formed with DNA is a suitable candidate for crystallisation. 

Crystallisation of LSH with dsDNA (12, 16 or 20 bp in length) was trialled with and without 

ADP with 400 crystallisation conditions (for each DNA length), however no hits were 

detected. If more time allowed further crystallisation trials of LSH with DNA and different 

NTP’s to assimilate a transitions state (e.g. ADP-beryllium fluoride) would have been tested.  

Recombinant LSH-6His was tested for ATPase activity through use of a colorimetric ATPase 

assay (PiColorLock – Innova Biosciences) or a luminescent ATPase assay (ADP-Glo – Promega) 

(Data not shown). The assay was performed with LSH-6His in the presence of ATP or ATP with 

dsDNA at differing LSH-6His, dsDNA and NaCl concentrations (Data not shown). However, no 

ATPase activity was detected from two separate batches of purified LSH-6His (Data not 

shown). Recombinant LSH purified with an N-terminal 6His-tag by Kevin Myant was shown 

to show ATPase activity, with increased activity with dsDNA or mononucleosomes, the 

LSHK237Q ATPase mutant was used as a negative control (Burrage et al., 2012). A radioactive 

32P-ɣATP TLC ATPase assay was used, therefore this should be tested for LSH-6His. The major 

difference between the two studies is the location of the 6His-tag which is on the C-terminus 

for LSH in my study and on the N-terminus for Kevin’s study. This could influence activity of 

LSH, and the comparing the activity of 6His-LSH and LSH-6His is required.  

I observed that LSH-6His binds only to mononucleosomes that have flanking dsDNA 

extending from the core 147 bp DNA, which make contacts with the histone octamer (Figure 

6.8). This indicates LSH-6His does not bind to the dsDNA in contact with the histone octamer 

either through the DNA binding ATPase or the flanking domains. It also suggests the flanking 

domains of LSH do not bind to the histone tails of nucleosomes. 

 The ATPase region of ISWI, CHD1 and SNF2 have all been shown to bind SHL2 on a 

nucleosome, 20 bp away from the dyad (Zofall et al., 2006; Jeffrey N. McKnight et al., 2011). 

LSH does not bind to this region as indicated by it not binding to a 147 bp mononucleosome 

(Figure 6.8). Potentially the N-terminal domain, C-terminal domain or extended linker-

protrusion 2 of LSH might be preventing the binding of the ATPase cleft to nucleosome-bound 

DNA but not free DNA. To visualise this, a high-resolution structure of LSH in complex with a 

200 bp nucleosome using cryo-EM would be required. This would definitively explain what 

portions of LSH might be preventing the ATPase cleft to bind DNA at SHL2 seen with the other 

chromatin remodeler.  
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It has been found that the plant LSH homolog, DDM1 is required at heterochromatic 

sequences for DNA methylation and this is dependent on the linker histone H1 (Zemach et 

al., 2013). Therefore it can be speculated that LSH might require both dsDNA and linker 

histone H1 for localisation to heterochromatin and thus provide DNA methyltransferases 

access to H1-containing heterochromatin. Therefore future experiments would be to 

quantify binding of LSH to nucleosomes with the linker histone H1. Further experiments could 

investigate the affinity and activity of LSH on nucleosomes with or without H1 using ATPase 

assays and nucleosome remodelling assays. In addition, structural investigations of LSH with 

chromatin in different structural states mediated by NaCl concentration between 10 mM and 

100 mM NaCl would aid in understanding a relationship between chromatin structure and 

LSH enzymatic function. If time allowed it would be interesting to determine if LSH in an 

active (ATP) or inactive transition state (ADP-BeF) had a different affinity for nucleosomes. 
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Chapter 7| Investigating LSH-DNMT3B complex formation     

in vitro 

7.1| Introduction  
LSH is a putative chromatin remodelling protein but is also an important regulator of DNA 

methylation. LSH-/- mouse embryonic fibroblasts (MEFs) show loss of cytosine methylation at 

distinct genomic sites demonstrating that LSH is necessary for de novo DNA methylation 

(Myant et al., 2011; Tao, Xi, Shan, Maunakea, Che, Briones, Eunice Y Lee, et al., 2011). This 

finding is supported by immunoprecipitation of LSH with the de novo DNA 

methyltransferases DNMT3A and DNMT3B (Zhu et al., 2006). Co-immunoprecipitation and 

pull-down assays demonstrated a direct interaction of the LSH N-terminus (1-503) with  

DNMT3B (Myant and Stancheva, 2008). To further our understanding of LSH interactions 

with DNMT3B, we aimed to biochemically study if LSH and DNMT3B interact directly in vitro.  

7.2| Results 

7.2.1| Cloning of DNMT3B for simultaneous expression of LSH and DNMT3B using 

the MultiBac system. 

I used the MultiBac system, which enables cloning of multiple genes of interest for 

simultaneous expression of all genes from one transfective EMBacY bacmid (Fitzgerald et al., 

2006). Previously, DNMT3B with an N-terminal 6His tag has been expressed in an insect cell 

system, purified and shown to be active (Suetake et al., 2003). As LSH was expressed with a 

C-terminal 6His tag, I needed to use a differential tagging method for DNMT3B for use in 

pulldowns with LSH-6His. I cloned a DNMT3B gene encoding a StrepII tag linked to the N-

terminus via a TEV-cleavable sequence (named StrepII-DNMT3B) under the control of the 

p10 promoter into a pFL plasmid containing LSH with a C-terminal 6His tag sequence under 

control of the polH promoter (Figure 7.1). 
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7.2.2| Small-scale expression and co-purification of StrepII-DNMT3B and LSH-6His 

The EMBacY bacmid containing StrepII-DNMT3B and LSH-6His ORFs (pFL-p10-StrepII-

DNMT3B-polH-LSH-6His) was transfected into Sf9 cells. BIICs were generated from V1 

baculovirus and a 200 ml culture of Sf9 cells at 2x10 6cells/ml was infected with a volume 

ratio 1:20 (V1 baculovirus:Sf9 cells)  and pelleted 4 days post infection.  

Cells were lysed in 100 mM NaCl and treated with benzonase to digest DNA and RNA. To test 

if StrepII-DNMT3B co-purified with LSH-6His I first immobilised the LSH-6His on IMAC resin. 

IMAC purification was performed with 100 mM NaCl or 500 mM NaCl to test if low or high 

ionic buffers disrupted a LSH-DNMT3B complex (Figure 7.2A and Figure 7.2C). LSH-6His, but 

not StrepII-DNMT3B was visible on a coomassie stained SDS-PAGE (Figure 7.2A and Figure 

7.2C). Western blotting was performed with anti-LSH and anti-StrepII antibodies to detect 

LSH-6His and StrepII-DNMT3B (Figure 7.2B and Figure 7.2D). Both LSH-6His and StrepII-

DNMT3B are present in fractions eluted in 100 mM NaCl. The anti-LSH signal intensity is low 

in the flowthrough fraction, indicating successful immobilisation of LSH-6His, whereas anti-

StrepII signal does not change from the lysate to the flowthrough suggesting some StrepII-

DNMT3B remains unbound (Figure 7.2B). LSH and StrepII-DNMT3B also appear in the 

fractions eluted in 500 mM NaCl buffer (Figure 7.2D) albeit with reduced anti-StrepII signal 

compared to the 100 mM NaCl purification (Figure 7.2B). Moreover, StrepII-DNMT3B is 

washed out in W2, when the 500 mM NaCl buffer is used (Figure 7.2D), indicating that high 

salt concentration disrupts DNMT3B-LSH contacts. 
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First, purification of StrepII-DNMT3B on Streptactin sepharose (StrepTrap column) was 

attempted using desthiobiotin to elute the immobilised StrepII tagged protein. StrepII-

DNMT3B was barely visible in elution fractions on a coomassie stained SDS-PAGE (Figure 

7.2E).  An anti-StrepII Western blot confirmed StrepII-TEV-DNMT3B was in both the elution 

and the unbound fractions (Figure 7.2F), suggestive of inefficient binding to Streptactin 

sepharose, therefore, an alternative procedure was sought.  

Overall less StrepII-TEV-DNMT3B eluted than LSH-6His during the IMAC step in both buffer 

conditions and could not be successfully purified using Streptactin purification. Therefore, 

reforming a DNMT3B-LSH complex after purifying the proteins separately was decided as an 

improved strategy.  
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7.2.3| Improving DNMT3B expression and purification 

Since IMAC media has a higher binding capacity than Streptactin resin, a 6His tag was added 

to the StrepII-DNMT3B construct to allow primary purification by IMAC followed by capture 

on Streptactin resin. 

In previous studies DNMT3B with an N-terminal 6His tag was expressed and purified with 

greater than 85% purity, but low yield (7%) after an IMAC purification (Suetake et al., 2003). 

This was due to the occlusion of the tag since the N-terminal region is important for strong 

binding to nucleosomes (Jeong et al., 2009) thereby likely making the N-terminal tags of 

nucleosome-bound DNMT3B inaccessible. Therefore, I decided to add a flexible linker 

between DNMT3B and both affinity tags to enhance binding to the resin. 

I cloned DNMT3B with a multiple N-terminal tag comprising a 6His tag and GAGA linker 

between the StrepII tag and TEV cleavage site making the plasmid pFL-StrepII-6His-GAGA-

TEV-DNMT3B (named StrepII-6His-DNMT3B for the rest of the study). Constructs encoding 

only DNMT3B were used to remove any decrease in expression due to co-expression of LSH. 

Expression of StrepII-DNMT3B under the control of the p10 promoter (Figure 7.3A) and of 

StrepII-6His-GAGA-TEV-DNMT3B under the control of the polH promoter (Figure 7.3B) were 

compared and quantified with Western blotting with anti-StrepII and anti-Tubulin antibodies 

(Figure 7.2C). StrepII-6His-DNMT3B expression was 6-fold higher under the control of the 

polH promoter than StrepII-DNMT3B under the control of the p10 promoter. The large 

difference was unexpected as both promoters are late stage and expected to have similar 

expression levels (Fitzgerald et al., 2006). This may be due to the separation between the 

start codon and the promoter affecting expression. Therefore, StrepII-6His-DNMT3B under 

the control of the polH promoter was used for the rest of the study.  
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StrepII-6His-DNMT3B was expressed using optimised insect cell expression methods (as 

detailed in Chapter 3 section 3.2.5), but in Sf9 cells at high cell density (4x106 cells/ml) were 

used instead of HighFive cells as this yielded the best protein expression (data not shown). 

StrepII-6His-DNMT3B expression was confirmed by the presence of a band at ~120 kDa in 

lysed infected cells that was not present in uninfected cells (Figure 7.4A). A small-scale 

purification from 100 ml of cells was performed using IMAC followed by StrepII affinity 

chromatography (Figure 7.4). StrepII-6His-DNMT3B was detected in the unbound and eluted 

fractions along with contaminants (Figure 7.4A). To check if unbound DNMT3B retained the 

tags I performed anti-6His Western blotting of the IMAC purification fractions (Figure 7.4B).  
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The 6Histag was detected in the unbound and elution fractions ruling out tag cleavage by 

proteases. Therefore, the 6His tag on some StrepII-6His-DNMT3B molecules may be 

inaccessible, thus precluding binding to affinity resin, as noticed previously (Figure 7.2F). 

Therefore, the GAGA flexible linker did not improve affinity tag accessibility. 

The eluted StrepII-6His-DNMT3B (Figure 7.4A and Figure 7.4B) was further purified by 

Streptactin affinity chromatography and StrepII-6His-DNMT3B eluted with greater than 80% 

purity (Figure 7.4C).  However, as with the IMAC purification, more than 90% of StrepII-6His-

DNMT3B was in the unbound fraction. Cloning DNMT3B with a C-terminal StrepII and 6His 

tag was not performed due to time constraints and it potentially hindering the methylase 

activity of the C-terminal domain (Figure 1.2 Domain organisation of DNMT3B). Therefore, 

non-affinity based purification methods were investigated to improve recovery and purity of 

StrepII-6His-DNMT3B.  
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In previous studies DNMT3B and other DNMT proteins with N-terminal 6His tags were 

extracted from whole cell extracts with non-ionic detergent and the nuclear fraction 

(DNMT3B bound to chromatin) separated from the cytoplasmic fractions (Yokochi and 

Robertson, 2002; Suetake et al., 2003). Non-ionic detergents above the critical micelle 

concentration (CMC) disrupt cell membranes thereby removing lipid-protein contacts, aiding 

in cell lysis. Therefore, I wanted to test if isolating the nuclear fraction and purifying StrepII-

6His-DNMT3B with 1% (v/v) NP40 detergent improved recovery and purity after IMAC 

purification.  

I lysed StrepII-6His-DNMT3B containing cells with or without 1% NP40 in 100 mM NaCl buffer 

and pelleted the nuclear fractions. The cytoplasmic fractions with or without 1% NP40 lysis 

did not contain StrepII-6His-DNMT3B (Figure 7.5A).  The nuclear fractions were lysed in 500 

mM NaCl buffer (with or without 1% NP40) and centrifuged. The supernatant of both samples 

contained StrepII-6His-DNMT3B (Figure 7.5A) and so a small scale IMAC purification was 

performed. StrepII-6His-DNMT3B was present in the unbound fraction and eluted with 

similar intensity with or without 1% NP40 treatment (Figure 7.5A), therefore 1% NP40 was 

an unnecessary additive.  

Separating the nuclear and cytoplasmic fractions was a useful primary step in reducing lysate 

contaminants. Therefore, I performed a step-wise salt extraction cell lysis in the low ionic 

strength buffer, followed by pelleting the nuclear fraction, repeated consecutively with a 

buffer of increasing ionic strength. The supernatant from each lysis step was analysed by SDS-

PAGE (Figure 7.5B). StrepII-6His-DNMT3B begins to dissociate from chromatin in buffer 

composed of more than 200 mM NaCl (Figure 7.5B). StrepII-6His-DNMT3B was present in 1 

M NaCl buffer extractions (Figure 7.5B), indicating that StrepII-6His-DNMT3B is bound tightly 

to chromatin and 1 M NaCl recovers the majority of StrepII-6His-DNMT3B. Therefore 150 mM 

NaCl was chosen as the optimal buffer for solubilising proteins whilst leaving StrepII-6HIs-

DNMT3B bound to chromatin.  
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Alongside the step-wise salt extraction I decided to test if ammonium sulphate precipitation 

could also be used as a native protein purification method to remove contaminants before 

IMAC. For this reason, an ammonium sulphate (w/v) gradient was performed on StrepII-6His-

DNMT3B lysate (Figure 7.5C). Coomassie staining of an SDS-PAGE of the ammonium sulphate 

supernatant gradient fractions was not sensitive enough to visualise StrepII-6His-DNMT3B 

(Figure 7.5C), therefore anti-6His Western blotting was performed (Figure 7.5D).  

StrepII-6His-DNMT3B was completely precipitated in 30% (w/v) ammonium sulphate with 

minimal precipitation at 20% (w/v) ammonium sulphate (Figure 7.5D). At the same time the 

majority of contaminants were retained in the 30% (w/v) ammonium sulphate supernatant. 

Therefore, I tried a stepwise salt extraction followed by ammonium sulphate precipitation to 

purify DNMT3B. 

A stepwise salt extraction with two rounds of lysis with 150 mM NaCl to remove the majority 

cytoplasmic proteins and a 1 M NaCl treatment of the nuclear pellet to dissociate StrepII-

6His-DNMT3B from chromatin was performed (Figure 7.5E). The 1 M NaCl StrepII-6His-

DNMT3B lysate was precipitated with 30% (w/v) ammonium sulphate and both the pellet 

and supernatant after centrifugation were analysed by SDS-PAGE (Figure 7.5E). The 

ammonium sulphate precipitation had a resulted in the loss of a large 30 kDa contaminant 

(Figure 7.5E). However, only 80% of the precipitated StrepII-6His-DNMT3B could be 

resuspended after ammonium sulphate precipitation and was considered a disadvantageous 

step. 

Ion exchange was contemplated however the NaCl concentration would need to be less than 

150 mM which caused more than 50% of StrepII-6His-DNMT3B to precipitate (data not 

shown) making the method impractical. I concluded that a stepwise salt extraction followed 

by IMAC purification of StrepII-6His-DNMT3B was the optimal purification procedure.  
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7.2.4| Large-scale expression and purification of DNMT3B 

Expression of StrepII-6His-DNMT3B was scaled up to 2 litres of Sf9 cells. Cells were lysed by 

stepwise salt extraction (as described in 7.2.3) and StrepII-6His-DNMT3B, the dominant 

protein in the lysate (Figure 7.6A) was captured on an IMAC column. Three peaks eluted along 

the Imidazole gradient (Figure 7.6B). SDS-PAGE showed fractions 1 to 7 and fractions 8 to 11 

were contaminant proteins (Figure 7.6B and Figure 7.6C), whereas the third peak eluting at 

200 mM Imidazole was StrepII-6His-DNMT3B. The purity was estimated to be greater than 

80% (Figure 7.6B and Figure 7.6C). The UV ratio (260/280 nm) was ~0.8 indicative of the 

presence of DNA. In total 2 mg of StrepII-6His-DNMT3B were purified after IMAC as measured 

by UV spectroscopy. As before (section 7.22), the unbound IMAC fraction contained StrepII-

6His-DNMT3B, decreasing the overall obtainable protein yield. After buffer exchange, the 

pooled IMAC peak 3 fractions were further purified by SEC (Figure 7.6D). A symmetrical peak 

(1) eluting in the void volume (47 ml) contained StrepII-6His-DNMT3B and low molecular 

weight contaminants (Figure 7.6D and Figure 7.6E). The UV ratio (260/280 nm) of 1.2 

indicated DNA contamination. However, a broader and smaller peak eluting later at 61 ml 

also containing StrepII-6His-DNMT3B with greater than 90% purity (Figure 7.6D and Figure 

7.6E) had negligible DNA contamination (UV ratio 260/280 nm = 0.65). The total yield of pure, 

DNA-free StrepII-6His-DNMT3B was 200 µg, with the other 1.8 mg eluting with DNA and the 

low MW contaminants as measured by UV spectroscopy.  
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It was hypothesised that the low MW contaminants in peak 2 (Figure 7.7A) might be histones 

due to their migration on SDS-PAGE (Figure 7.7B). Anti-H3 Western blotting confirmed the 

presence of Histone H3 in peak 1 as well as StrepII-6His-DNMT3B (Figure 7.7C). As peak 1 also 

contains DNA, it was hypothesised StrepII-6His-DNMT3B was bound to chromatin and was 

eluting as a large complex. To test the presence and size of DNA, peak 1 fractions were 

treated with proteinase K to digest proteins, thus dissociating DNA (Figure 7.7D) and analysed 

by AGE. DNA in the range of 350-1350 bp was detected after proteinase K treatment (Figure 

7.7E). This could suggest a large oligomeric complex or aggregation of StrepII-6His-DNMT3B 

with chromatin. Binding of DNMT3B to H3 tails (Zhang et al., 2010) could maintain histone-

DNA contacts in high ionic strength buffers (1 M NaCl). The DNA-free sample of StrepII-6His-

DNMT3B (peak 2) was used to test DNA and nucleosome binding activity and in attempts to 

reconstitute an LSH-DNMT3B complex in vitro. 
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7.2.5| StrepII-6His-DNMT3B nucleosome binding 

To establish if StrepII-6His-DNMT3B is functional I tested if it could bind nucleosomes using 

an EMSA performed with symmetric mononucleosomes with or without 25 bp overhangs 

(Figure 7.8).  StrepII-6His-DNMT3B shifted both types of mononucleosomes (Figure 7.8), 

suggesting that overhangs are not required for binding. Free DNA binding is also evident, as 

the residual free DNA migration below the nucleosome band in samples without DNMT3B 

disappears in the presence of 20 nM StrepII-6His-DNMT3B (Figure 7.8A and Figure 7.8B). 

Therefore StrepII-6His-DNMT3B may bind to histone octamer bound DNA and/or the H3 tail 

of the core mononucleosome via the ADD and PWWP domains (H3 binding) and the MT 

domain (DNA and SAM binding) (Cheng 2014; Cheng & Blumenthal 2008, Gowher et al. 2005). 

The KD of DNMT3B interaction with 147 bp mononucleosomes was ~80 nM and ~20 nM for 

200 bp mononucleosomes, however, a direct comparison was difficult given nucleosome 

concentrations were not accurately measured. A previous study found DNMT3B binds to DNA 

with a KD of 183 nM  (Van Emburgh and Robertson, 2011). This is a weaker KD than my results, 

however, they did not purify a homogenous sample using SEC, therefore activity cannot be 

accurately compared.   



Simon Varzandeh                                   Chapter 7| Investigating LSH-DNMT3B complex in vitro 

189 
 

  



Simon Varzandeh                                   Chapter 7| Investigating LSH-DNMT3B complex in vitro 

190 
 

7.2.6| Reconstituting DNMT3B-LSH complex in vitro in a Streptactin pull-down 

assay 

In the previous section, StrepII-6His-DNMT3B was shown to bind DNA and nucleosomes. 

Next, I wanted to test if DNMT3B-LSH complex could be formed in vitro. I used a pull-down 

assay with StrepII-6His-DNMT3B as the bait protein immobilised on Streptactin agarose 

beads. Low ionic strength buffer containing 50 mM Hepes pH 7.0, 100 mM NaCl, 10% (v/v) 

glycerol, 1 mM DTT was used as this was successful for the complex stability of co-expressed 

LSH and DNMT3B (Figure 7.2). 

StrepII-6His-DNMT3B (2 µg in 50 µl volume) did not elute in 10 mM desthiobiotin bound to 

Streptactin agarose beads (Figure 7.9), which might be due DNMT3B aggregation in the low 

ionic strength buffer or StrepII-6His-DNMT3B binding to the agarose beads with high affinity. 

LSH (2 µg in 50 µl) did not bind to the beads as the majority of protein was in the flowthrough 

and wash fractions, with minor amounts visible on the Streptactin agarose beads (Figure 7.9).  

Alternative elution methods, including increasing dethiobiotin to 50 mM or using Streptactin 

recharging buffer containing Glycine (pH 3) were tested but did not improve the elution of 

DNMT3B (data not shown). Therefore, I performed SDS-PAGE of the Streptactin agarose 

beads to analyse potential complexes. 
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A streptactin agarose pulldown assay with 2 µg of StrepII-6His-DNMT3B as the immobilised 

bait protein was performed with 2 µg of LSH-6His with a 30-minute mixing incubation at 6°C.  

LSH1-176 was also tested as this region was previously shown to be necessary for DNMT3B 

binding to LSH (Myant and Stancheva, 2008). As a negative control I used StrepII-tagged 

MicroTubule Organiser 1 (StrepII-Mto1, a gift from the Sawin lab) expressed in insect cells. 

This yeast cytoplasmic protein was unlikely to bind LSH-6His or LSH1-176 as these are nuclear 

proteins.   

After incubation and washing steps (5 times with 500 µl buffer) LSH was present on 

Streptactin agarose beads baited with StrepII-6His-DNMT3B or StrepII-Mto1 or not baited 

(Figure 7.10A). However, because of the non-specific binding of LSH-6His to Streptactin 

agarose, the results are inconclusive. The result was the same for the LSH1-176 pulldown and 

in 3 repeats (Figure 7.10B). To reduce or abolish LSH-6His and LSH1-176 non-specific binding to 

Streptactin agarose beads, BSA or Triton X-100 were added to the buffer, however, this did 

not block binding (data not shown).  
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As an alternative strategy I wanted to perform a Ni-NTA pull-down with DNMT3B using LSH-

6His as the immobilised bait protein. In order to do so, the 6His tag of StrepII-6His-DNMT3B 

had to be cleaved, but it could not be removed with TEV cleavage, likely due to TEV 

inaccessibility (data not shown). Alternatively, the Ni-NTA pull-down could be performed 

using StrepII-6His-DNMT3B as the immobilised bait protein. However, LSH-6His did not have 

a TEV cleavage site, so LSH-6His could not be used. On the other hand, LSH1-176 did have the 

6His tag successfully removed by TEV cleavage, therefore Ni-NTA pulldown with StrepII-6His-

DNMT3B as the immobilised bait protein and LSH1-176 could be attempted.  

7.2.7| Reconstituting a DNMT3B-LSH complex in a Ni-NTA pulldown assay 

A Ni-NTA pulldown assay with StrepII-6His-DNMT3B immobilised via the 6His tag was 

performed with LSH1-176 (6His cleaved) under low ionic strength buffer conditions used in the 

streptactin agarose pulldown (Section 7.2.6). The LSH-6His was used as a negative control as 

it was unlikely to form a heterodimer with LSH1-176. StrepII-6His-DNMT3B could be eluted 

from the NTA beads with 500 mM Imidazole giving an advantage over streptactin agarose 

beads.  

LSH1-176 was present in elutions from Ni-NTA agarose beads baited with StrepII-6His-DNMT3B 

or LSH-6His or not baited (Figure 7.11A).  An anti-6His and anti-NLSH Western blot was 

performed to measure the intensity of proteins in the elution fractions (Figure 7.11B). The 

strongest signal for LSH1-176 was seen in the Ni-NTA agarose-beads-only elution (Figure 

7.11B). Therefore, there was no definitive evidence of complex formation between StrepII-

6His-DNMT3B and LSH1-176 under the conditions tested. 

However, the assays have several limitations. Firstly a pulldown assay tethers the bait 

protein. In this study immobilising the N-terminus of StrepII-6His-DNMT3B might block 

access to the N-terminal domain which could be necessary for the interaction with LSH or 

LSH1-176. Secondly, in the pulldown assays, 2 µg of each protein were used and each wash 

volume was 500 µl, this makes a concentration of 0.01 mg/ml. This is 100 nM LSH-6His or 500 

nM LSH1-176 and if the KD of the complex is weaker than 100 nM, a complex cannot form and 

would not be detected with the pulldown assay. Furthermore, sequentially diluting a 

complex 5 times in 500 µl wash buffer would allow LSH-6His to dissociate each time reducing 

the concentration of the complex each time. Therefore, an alternative assay which does not 

tether a protein and allows protein concentrations in the µM range to be used was 

investigated.  
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7.2.8| Native AGE of StrepII-6His-DNMT3B and LSH 

A native AGE method used for multiprotein complexes was chosen because of the small 

sample volumes, quick assay time (Kim, 2011) and no complications from tethering proteins 

to beads. Moreover, the protein concentrations used in this assay can be in low µM range 

(rather than low nM used in the pulldown assays). For native AGE, sample wells are in the 

centre of a thin horizontal agarose gel (Kim, 2011). Proteins with a pI lower than the running 

buffer migrate to the anode due to a net negative charge, whilst proteins with a pI higher 

than the running buffer migrate to the cathode due to a net positive charge (Kim, 2011). As 

it is a native assay, protein mass also influences migration (speed of movement) through the 

gel (Kim, 2011). If an interaction between two proteins occurs, the overall charge and 

migration of the complex are different to that of individual proteins (Kim, 2011). Proteins are 

visualised by Coomassie staining. A 0.5% agarose gel was used for LSH-6His and StrepII-6His-

DNMT3B which are both ~100 kDa to allow the greatest migration. The pH of the agarose gel 

and running buffers tested ranged from 6.1 to 9.4. Tris-CAPS buffer at pH 9.4 enabled the 

proteins to migrate far enough to visualise a difference between LSH-6His and StrepII-6His-

DNMT3B (Figure 7.12). This buffer was chosen to test complex formation of LSH-6His or LSH1-

176 with StrepII-6His-DNMT3B (Figure 7.12). A single band migrating inbetween the individual 

StrepII-His-DNMT3B and LSH-6His proteins was seen (Figure 7.12), suggesting that a LSH-6His 

and StrepII-6His-DNMT3B complex may have formed. However, the resolution of the native 

AGE made it difficult to confirm a clear shift. Increasing gel running time to enhance 

separation of each protein created undefined smears. Given the predicted pI’s of DNMT3B 

and LSH are similar (8.2 and 8.35 respectively) this method would not enable a shift of the 

individual proteins great enough to define complex formation.  
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7.3| Discussion and future work  

 

Recently the crystal structure of the DNMT3B PWWP domain in complex with H3K36me3 

was been solved (Rondelet et al., 2016). This work has enabled a proposed model in which 

DNMT3B may be directed to genomic sites of DNA for methylation. In the model, the 

PWWP domain binds H3K36me3, which in turn enables the ADD domain to bind H3K4 

which prevents the inhibition of the catalytic C-terminal domain which is free to methylate 

DNA (Rondelet et al., 2016).  

CHIP based experiments have shown that in ES cells, LSH promotes DNMT3B association at 

Oct4 and Nanog promoters (Xi et al., 2009). Co-immunoprecipitation and pulldown 

experiments have shown LSH binds to DNMT3B, suggesting LSH recruits DNMT3B directly to 

chromatin targets (Zhu et al. 2006, Myant & Stancheva 2008). More recent CHIP 

experiments have shown LSH with an active ATPase domain is essential for de novo 

methylation and recruiting DNMT3B at minor satellite sequences, retroviral repeat 

sequence (IAP) and LINES (Ren et al., 2015). This suggests the chromatin remodelling 

activity of LSH is required for the DNMT3B association to repeat elements, in which LSH 

may also act as a scaffolding protein (Ren et al., 2015).  

It could be speculated that LSH may remodel chromatin for a favourable environment in 

which PWWP and ADD domains of DNMT3B bind to their respective substrates activating 

the catalytic methyltransferase domain or may interact directly with DNMT3B.  
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The pulldown and CHIP experiments describing the localisation of LSH and DNMT3B at the 

same genomic locations provide evidence to support LSH and DNMT3B could interact 

directly. We aimed to study if LSH and DNMT3B interact directly in vitro using purified 

recombinantly expressed LSH and DNMT3B from a baculoviral system. From the current work 

performed there is no evidence to support a direct interaction between recombinant LSH 

and DNMT3B, however not all experiments were tested due to time constraints.   

Both proteins could be co-expressed but could not be co-purified with equivalent 

concentrations (section 7.22). The expression and purification of both proteins separately 

was successful, although yields of StrepII-6His-DNMT3B were low due to loss during the 

purification steps.  Formation of a DNMT3B-LSH complex in vitro did not occur with LSH-6His 

or LSH1-176 using a pulldown assay or native AGE. If more time allowed I would perform the 

following experiments: 

1| Co-expression and purification of LSH and DNMT3B. 

A stable LSH-DNMT3B complex might only form in the nucleus of a cell with other interacting 

partners, therefore co-expression of both proteins could be revisited. Co-infection of LSH-

6His and StrepII-6His-DNMT3B bacmids in insect cells and IMAC purification could be used to 

purify both proteins.  

2| Studying a LSH-DNMT3B complex in vitro. 

Analytical SEC of LSH and DNMT3B to test for the formation of a LSH-DNMT3B complex using 

small volumes resulting in low dilutions allowing protein concentrations in the µM range 

should be carried out. Once a complex is confirmed In vitro then Isothermal titration 

calorimetry can be used to determine a KD for a LSH-DNMT3B complex.  

DNMT3B recovery was low during affinity purification steps (section 7.23 and 7.24). For 

structural and biochemical studies of DNMT3B in complex with LSH, greater yields of more 

than 1 mg of pure DNMT3B would be required.  
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Cloning DNMT3B with a large cleavable tag such as Glutathione S-Transferase (GST) may 

improve recovery as it is larger (26 kDa) than a 6His tag (~1 kDa) and is unlikely to be occluded 

within the protein. Contaminating DNA was also an issue with DNMT3B purification, 

therefore lowering the NaCl concentration to a concentration which prevents DNMT3B 

precipitation and test the separation of DNA from DNMT3B via a heparin column purification 

which may compete away the DNA from DNMT3B due to the anionic sulphate groups which 

mimic the polyanionic nature of nucleic acid. Alternatively, given DNMT3B is only soluble in 

relatively high NaCl concentrations Hydrophobic interaction chromatography (HIC) could be 

used as an alternative purification strategy to purify the protein and remove DNA 

contamination. Given DNMT3B precipitates in ≥ 30% saturated ammonium sulphate keeping 

DNMT3B soluble in 20% saturated ammonium sulphate (0.82 M) and performing HIC along a 

reducing ammonium sulphate gradient could be a useful purification strategy. 

3| Revisit pulldown experiments of LSH-DNMT3B 

Previous evidence to support a direct LSH-DNMT3B interaction was a GST-LSH1-503 pulldown 

with DNMT3B (Myant and Stancheva, 2008). However, LSH503 lies between ATPase lobes 1 

and 2 (Figure 1.8) and therefore might not be folded or functional. Therefore it would be 

useful to test if LSH1-503 is actually folded and can bind DNMT3B using the same pulldown 

assay as performed (Myant and Stancheva, 2008). A direct comparison with LSH-6His or 

LSH1-176 would be necessary to determine if DNMT3B can bind full-length LSH and if the N-

terminal domain is necessary for the interaction.   

Other evidence to support an LSH-DNMT3B complex was LSH co-immunoprecipitation of 

DNMT3B (Zhu et al., 2006; Myant and Stancheva, 2008) from nuclear lysate and therefore 

other interacting partners could have influenced binding. Affinity purification of a Flag-LSH 

or Strep-LSH expressed in embryonic stem cells (ESC) could be performed to pull down 

interacting proteins and Mass spectrometry could be used to identify them. This experiment 

would indicate what proteins may interact with LSH and some of them may be required for 

a LSH-DNMT3B interaction. 
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7.4| Conclusion 

In order to study a LSH-DNMT3B complex in vitro, StrepII-DNMT3B was successfully co-

expressed with LSH-6His using the MultiBac system. A DNMT3B-LSH complex failed to co-

purify, therefore the reconstitution of a complex was attempted after purifying both proteins 

separately. StrepII-DNMT3B was cloned with an N-terminal 6His tag to aid purification. 

Expression of StrepII-6His-DNMT3B was increased 6-fold under the control of the polH 

promoter. A stepwise salt extraction removing cytoplasmic proteins improved the 

purification procedure of StrepII-6His-DNMT3B. Pure StrepII-6His-DNMT3B could bind DNA 

and core nucleosomes. A LSH-DNMT3B complex could not be detected using a pulldown 

assay or native AGE assay, suggesting complex formation occurs in µM concentrations or is 

mediated by other proteins. 
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Chapter 8| Conclusion and future outlook 
 

There is little biochemical and no structural data on how LSH functions. The main aim of this 

work was to determine the structural characteristics and to elucidate the role N and C 

terminal domains have in regulating LSH enzymatic activity in vitro using biochemical, 

biophysical and structural methods.  

Optimised expression and purification enabled a 25-fold increase in LSH-6His protein from 

0.2 mg/L cells to 5 mg/L cells. Purified LSH-6His was homogeneous and a monomer which is 

in agreement with native LSH purified from HeLa cells eluting as a monomer from SEC (Myant 

& Stancheva 2008). The N-terminal domain (LSH1-178) was found to be hinged on an 

unstructured region to LSH178-821 and SAXS has shown LSH1-176 is disordered and elongated, 

yet takes a more compact shape in full length LSH. In order to dissect how the N-terminal 

domain may positively or negatively regulate the ATPase domain, the ATPase region was 

cloned. However the ATPase domain was poorly expressed and unstable preventing further 

study to be undertaken. LSH has a tri-lobal and elongated shape as determined by SAXS and 

negative staining EM. XL-MS suggest the N-terminal domain is in contact with ATPase lobe 1 

and the region between ATPase lobe 2 and the C-terminal domain.   

 

In LSH-/- cells the re-expression of wild-type LSH is required for restoring nucleosome and is 

dependent on functional ATP binding (Ren et al., 2015). Chromatin remodelling by LSH is 

suggested to promote de novo DNA methylation at repeat elements, which has been 

indicated through the direct interaction of LSH with DNMT3B (Myant and Stancheva, 2008). 

Therefore the primary function of LSH is to remodel chromatin. LSH-6His can bind DNA and 

nucleosomes in vitro, with negligible binding to ssDNA, indicating the recombinant protein is 

active. Under the conditions tested LSH does not show any difference in affinity for 

methylated or un-methylated DNA suggesting the DNA methylation status of DNA is not 

important for recruiting LSH to particular regions on chromatin. LSH DNA binding occurs in 

solution only in physiological NaCl concentrations providing an important pre-requisite for 

the further study of LSH with nucleosomes. 
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However, it is unknown if LSH can remodel chromatin on its own, and how the N and C-

terminal domains influence its activity. Therefore future work is required to determine if LSH 

alone can remodel chromatin in vitro using nucleosome sliding assays. ATPase activity assays 

and chromatin remodelling assays with and without its N and/or C terminal domain would 

allow us to determine if these domains are involved in enzymatic activity.  

The second aim of this work was to test if LSH and DNMT3B interact directly in vitro and what 

effect such an interaction may have on LSH and on de novo DNA methylation by DNMT3B. 

Co-expression of LSH and DNMT3B in a baculoviral expression system was successful, 

however, DNMT3B expression was weak and purification methods could have been 

disrupting an interaction. Therefore DNMT3B expression and purification was optimised 

independently of LSH. No interaction between LSH or LSH1-176 with DNMT3B could be 

observed with pulldown assays, therefore other accessory proteins and/or DNA binding may 

be required for complex formation.  

Further work is required to establish which protein complexes LSH is involved with. Defining 

which proteins or protein complexes can be pulled down with LSH and using mass 

spectrometry to identify them could provide insight into how LSH might be targeted to 

specific sites in chromatin. This could improve our understanding of LSH involvement in de 

novo DNA methylation and other regulatory roles of LSH. 

Structural studies with LSH with nucleosomes and/or interacting proteins would provide 

insight into how the protein functions as a chromatin remodeler. I propose using high 

resolution cryo-EM and complementary methods (SAXS and XL-MS) to achieve this. 

This work has provided important preliminary studies and a foundation into understanding 

how LSH functions at a molecular level through separate study of LSH structure, its 

interactions with DNA, nucleosomes and DNMT3B.  
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Table A1| Auto-validated (cut-off of 7) intramolecular BS3 crosslinks of LSH 

 

Protein1 PepPos1 PepSeq1 Protein2 PepPos2 PepSeq2 Score AutoVal

LSH_mouse 65 FLLTKMEQQQLEEQK LSH_mouse 52 LQHLLEKSNIYSK 11.93 TRUE

LSH_mouse 52 LQHLLEKSNIYSK LSH_mouse 31 KMLEEAQK 11.637 TRUE

LSH_mouse 65 FLLTKMEQQQLEEQK LSH_mouse 52 LQHLLEKSNIYSK 11.076 TRUE

LSH_mouse 694 IGQTKPVVVYR LSH_mouse 161 DSNSMIKDR 10.929 TRUE

LSH_mouse 114 GREDESYNISEVMSKEEILSVAK LSH_mouse 52 LQHLLEKSNIYSK 10.464 TRUE

LSH_mouse 176 QNSKFFFDPVRK LSH_mouse 90 SLKLTEGK 10.287 TRUE

LSH_mouse 728 LIIHKNHFK LSH_mouse 342 IKNMK 10.021 TRUE

LSH_mouse 435 LKSDVALEVPPK LSH_mouse 694 IGQTKPVVVYR 9.87 TRUE

LSH_mouse 694 IGQTKPVVVYR LSH_mouse 159 NKDSNSMIK 9.801 TRUE

LSH_mouse 31 KMLEEAQK LSH_mouse 352 ELKR 9.791 TRUE

LSH_mouse 176 QNSKFFFDPVRK LSH_mouse 90 SLKLTEGK 9.591 TRUE

LSH_mouse 705 LVTANTIDQKIVER LSH_mouse 694 IGQTKPVVVYR 9.542 TRUE

LSH_mouse 114 GREDESYNISEVMSKEEILSVAK LSH_mouse 90 SLKLTEGK 9.537 TRUE

LSH_mouse 733 NHFKGGQSGLSQSK LSH_mouse 176 QNSKFFFDPVR 9.498 TRUE

LSH_mouse 747 NFLDAKELMELLK LSH_mouse 705 LVTANTIDQKIVER 9.471 TRUE

LSH_mouse 694 IGQTKPVVVYR LSH_mouse 161 DSNSMIKDR 9.334 TRUE

LSH_mouse 90 SLKLTEGK LSH_mouse 161 DSNSMIKDR 9.314 TRUE

LSH_mouse 694 IGQTKPVVVYR LSH_mouse 90 SLKLTEGK 9.259 TRUE

LSH_mouse 90 SLKLTEGK LSH_mouse 82 EKLEK 9.173 TRUE

LSH_mouse 176 QNSKFFFDPVR LSH_mouse 90 SLKLTEGK 9.149 TRUE

LSH_mouse 733 NHFKGGQSGLSQSK LSH_mouse 90 SLKLTEGK 9.065 TRUE

LSH_mouse 52 LQHLLEKSNIYSK LSH_mouse 159 NKDSNSMIKDR 9.057 TRUE

LSH_mouse 705 LVTANTIDQKIVER LSH_mouse 694 IGQTKPVVVYR 9.034 TRUE

LSH_mouse 161 DSNSMIKDR LSH_mouse 628 LDGSMSYSER 8.983 TRUE

LSH_mouse 772 EKVISDEDLELLLDR LSH_mouse 787 SDLIDQMKASRPIK 8.946 TRUE

LSH_mouse 705 LVTANTIDQKIVER LSH_mouse 694 IGQTKPVVVYR 8.853 TRUE

LSH_mouse 724 KLEKLIIHK LSH_mouse 719 AAAKR 8.788 TRUE

LSH_mouse 52 LQHLLEKSNIYSK LSH_mouse 159 NKDSNSMIK 8.714 TRUE

LSH_mouse 470 TIANMFGSCEK LSH_mouse 694 IGQTKPVVVYR 8.658 TRUE

LSH_mouse 705 LVTANTIDQKIVER LSH_mouse 435 LKSDVALEVPPKR 8.545 TRUE

LSH_mouse 176 QNSKFFFDPVRK LSH_mouse 90 SLKLTEGK 8.504 TRUE

LSH_mouse 705 LVTANTIDQKIVER LSH_mouse 176 QNSKFFFDPVR 8.141 TRUE

LSH_mouse 90 SLKLTEGK LSH_mouse 159 NKDSNSMIK 8.076 TRUE

LSH_mouse 527 TVVEGNIPIESEVNLKLR LSH_mouse 753 ELMELLKSR 7.892 TRUE

LSH_mouse 90 SLKLTEGK LSH_mouse 161 DSNSMIKDR 7.891 TRUE

LSH_mouse 129 EEILSVAKK LSH_mouse 90 SLKLTEGK 7.871 TRUE

LSH_mouse 129 EEILSVAKK LSH_mouse 159 NKDSNSMIK 7.845 TRUE

LSH_mouse 161 DSNSMIKDR LSH_mouse 90 SLKLTEGK 7.78 TRUE

LSH_mouse 90 SLKLTEGK LSH_mouse 159 NKDSNSMIK 7.722 TRUE

LSH_mouse 176 QNSKFFFDPVR LSH_mouse 628 LDGSMSYSER 7.689 TRUE

LSH_mouse 705 LVTANTIDQKIVER LSH_mouse 694 IGQTKPVVVYR 7.633 TRUE

LSH_mouse 787 SDLIDQMKASRPIK LSH_mouse 176 QNSKFFFDPVR 7.594 TRUE

LSH_mouse 176 QNSKFFFDPVR LSH_mouse 159 NKDSNSMIKDR 7.561 TRUE

LSH_mouse 772 EKVISDEDLELLLDR LSH_mouse 705 LVTANTIDQKIVER 7.475 TRUE

LSH_mouse 208 WYQVEGMEWLR LSH_mouse 435 LKSDVALEVPPKR 7.228 TRUE

LSH_mouse 159 NKDSNSMIK LSH_mouse 176 QNSKFFFDPVR 7.085 TRUE
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