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Abstract
Parkinson’s Disease (PD) is the second most common neurodegenerative disease in

the Western world. It shows a high degree of genetic and phenotypic complexity with

many implicated factors, various disease manifestations but few clear causal links.

Ongoing research has identified a growing number of molecular alterations linked to

the disease.

Dopaminergic neurons in the substantia nigra, specifically their synapses, are the

key-affected region in PD. Therefore, this work focuses on understanding the disease

effects on the synapse, aiming to identify potential genetic triggers and synaptic PD

associated mechanisms. Currently, one of the main challenges in this area is data

quality and accessibility.

In order to study PD, publicly available data were systematically retrieved and

analysed. 418 PD associated genes could be identified, based on mutations and curated

annotations. I curated an up-to-date and complete synaptic proteome map containing a

total of 6,706 proteins. Region specific datasets describing the presynapse, postsynapse

and synaptosome were also delimited. These datasets were analysed, investigating

similarities and differences, including reproducibility and functional interpretations.

The use of Protein-Protein-Interaction Network (PPIN) analysis was chosen to gain

deeper knowledge regarding specific effects of PD on the synapse. Thus I generated

a customised, filtered, human specific Protein-Protein Interaction (PPI) dataset, con-

taining 211,824 direct interactions, from four public databases. Proteomics data and

PPI information allowed the construction of PPINs. These were analysed and a set

of low level statistics, including modularity, clustering coefficient and node degree,

explaining the network’s topology from a mathematical point of view were obtained.

Apart from low-level network statistics, high-level topology of the PPINs was stud-

ied. To identify functional network subgroups, different clustering algorithms were

investigated. In the context of biological networks, the underlying hypothesis is that

proteins in a structural community are more likely to share common functions. There-

fore I attempted to identify PD enriched communities of synaptic proteins. Once iden-

tified, they were compared amongst each other. Three community clusters could be

identified as containing largely overlapping gene sets. These contain 24 PD associ-

ated genes. Apart from the known disease associated genes in these communities, a

total of 322 genes was identified. Each of the three clusters is specifically enriched for

specific biological processes and cellular components, which include neurotransmitter

secretion, positive regulation of synapse assembly, pre- and post-synaptic membrane,
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scaffolding proteins, neuromuscular junction development and complement activation

(classical pathway) amongst others.

The presented approach combined a curated set of PD associated genes, filtered

PPI information and synaptic proteomes. Various small- and large-scale analytical

approaches, including PPIN topology analysis, clustering algorithms and enrichment

studies identified highly PD affected synaptic proteins and subregions. Specific disease

associated functions confirmed known research insights and allowed me to propose a

new list of so far unknown potential disease associated genes. Due to the open design,

this approach can be used to answer similar research questions regarding other complex

diseases amongst others.
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Lay Summary

Parkinson’s Disease is a brain disease with extreme consequences for patients, their

families and carers. Treatment only moderates the symptoms and the number of pa-

tients is growing on a daily basis.

Many research projects identified dysfunctioning intracellular processes mainly lo-

cated in a specific part of brain cells. This part, the synapse, is in charge of transport-

ing information and its dysfunction leads to known disease symptoms such as tremor,

shuffling gait and less known non-motor symptoms such as enhanced sweating. Parkin-

son’s can currently only be diagnosed at a stage when brain-cells are dying, making

it very hard to treat the disease effectively. Another challenge are the very individual

symptoms the disease provokes in patients. A number of dysfunctions are known to

appear in the brain cells of patients, but not all of them can be found in all individuals.

Therefore this thesis aims towards gaining better understanding of specific disease

causes. New knowledge could then help to develop better treatment or even a disease

cure. To work towards this aim different systems biological analytical steps were car-

ried out. 418 genes which have shown to be affected in Parkinson’s Disease patients

were identified. The synapse was analysed and around 6,500 genes were identified in

this brain-cell region.

To understand the disease influence on the synapse, so called large-scale approaches

are required. Protein-Protein-Interaction Networks were used to analyse how proteins

interact and allow to identify gene groups which are in charge of specific synaptic

functions. Parkinson’s Disease associated genes could be located in the network. By

doing so three gene groups with an unexpected, significantly high number of disease

associated genes were identified. Apart from the disease genes these contained a set

of other genes which were analysed in-depth. It was possible to determine their over-

all function which is affected under disease conditions. Amongst others the release of

neurotransmitters, the main component of information exchange between brain cells as

well as structural aspects, guaranteeing protein interactions and their full functionality

could be identified.

The set of around 150 specific genes can now be used to i) set up more targeted

experiments, ii) help to identify different disease types and iii) develop new treatments.

Overall it would not have been possible to obtain these results without the use of large-

scale analytical approaches. Hence this work highlights their potential and promising

application in the research field of complex diseases.
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Chapter 1

Introduction

1.1 Parkinson’s Disease

Parkinson’s Disease (PD) is the second most common neurodegenerative disease in the

Western world (De Lau and Breteler, 2006) and its underlying causes are far from un-

derstood. Due to the growing improvement in the treatment of cancer and other lethal

diseases, neuronal disease is becoming more prevalent and currently about ten million

people worldwide suffer from the condition (European Parkinson’s Disease Associa-

tion1). In the US 0.01% of the population under the age of 45 and 1.2 - 4.38% over

the age of 65 are diagnosed with PD (numbers consider regional variability) (Kowal

et al., 2013). Usually symptoms appear between the age of 62 and 70 (Muangpaisan

et al., 2011). Apart from the impact on personal health and well being the estimated

financial burden in the US in 2010 was around eight million USD medical cost directly

attributed to PD and another 14 million social cost incurred by the PD affected popula-

tion. Additionally about six million USD were associated with reduced employment,

lost work days due to illness, formal care and others (Kowal et al., 2013). Numbers in

Europe are expected to be proportionally similar.

As presented in the World Health Organisation report, “Neurological Disorders:

Public Health Challenges”2 (2006), one of the dangers associated with neurodegener-

ative disease is the lack of communicable conditions and diagnosis. The main known

cause of PD and its symptoms is the degeneration of dopaminergic neurons in the sub-

stantia nigra pars compacta in the midbrain. The progressive degeneration remains

1http://www.epda.eu.com/
2http://www.who.int/mental_health/neurology/neurological_disorders_report_web.

pdf

1

http://www.epda.eu.com/
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2 Chapter 1. Introduction

largely unnoticed by the patient and can not yet be specifically detected. Hence di-

agnosis is only possible at a very advanced disease stage, when neurons are already

irreversibly destroyed.

Recent evidence is accumulating and indicates that synapses play a key role in

the degenerative process (Lüscher and Isaac, 2009). Neuronal connectivity, based on

synapses, was identified to be fundamental for a healthy brain. Hence, the gradual loss

of synapses and deteriorated synaptic plasticity precede neuronal dysfunction and cell

death, implying neurodegeneration (Knight and Verkhratsky, 2010).

This leads to motor and non-motor symptoms. Motor dysfunctions include bradyki-

nesia (decreased movement), rest tremor and rigidity. Non-motor functions are depres-

sion, cognitive impairment sleep disturbances and failure of cognitive abilities such as

memory and decision making (Magrinelli et al., 2016). Overall, disease development

and symptoms are very patient specific and depend highly on underlying causes. A

cure is currently not available and medication only moderates and alleviates symptoms

allowing for improved quality of life (Chen and Pan, 2014; Bredesen et al., 2006).

In order to find better treatment it is crucial to know disease causing dysfunctions

and have a better disease understanding. The following section introduces known de-

tails about the PD pathology.

1.1.1 Pathology

PD is considered a complex disease, with a number of dysfunctions associated with it,

all of which lead to the degeneration of dopaminergic neurons in the substantia nigra,

pars compacta (Dexter and Jenner, 2013). Recent years allowed to identify more and

more molecular alterations significantly associated with the development of PD. These

can be found in different patients and distinct combinations.

The familial (inherited) form of PD (~10% of the cases) made it possible to identify

genetic alterations associated with the disease (Spatola and Wider, 2014). These ex-

plain about 30% of the familial and between 3-5% of sporadically occurring PD cases

(Klein and Westenberger, 2012). Even though these numbers seem relatively small

they are a great source for research (Bonifati, 2014).

Additionally, a large number of non-genetic cases exist. These can occur due to

random genetic variants or other molecular dysfunctions. Figure 1.1 shows the central

dogma of molecular biology, indicating different molecular levels that can be affected

and lead to disease manifestation. Part A shows different cellular units and part B
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describes the union of those. Genetic modifications are reflected on the DNA. Changes

in RNA expression or altered protein levels are noticed on exome, transcriptome or

proteome level. The latter can also lead to disease manifestation but are more difficult

to detect. Since alterations on one level are not always directly propagated to the next

level (e.g. from genome to exome), RNA and protein level changes are not apparent

from genomic information and require alternative detection approaches.

DNA

genome

RNA

proteome

protein

The Central Dogma of Molecular Biology

exome/
transcriptome

GWAS
Pull-Down

Mass Spectronomy
Microarray

transcription translation constitutive 
unit

Data 
Source

A) Biology

C) Experimetal 
Tool

Union of 
units

B) Biology

Figure 1.1: The Central Dogma of Molecular Biology. Individual constitutive units are

visualized (part A) as well as the union of all the units (part B). Part C shows examples

of experimental tools that can be used to study the different levels of information.

As indicated in Figure 1.1 C GWAS studies supply information regarding heritabil-

ity in genetic regions (also not completely correctly referred to as mutations), address-

ing alterations in the genome. Microarray studies identify disease associated changes

in the exome, transcriptome and proteome. These modifications can be detected with

a combination of pull-down analysis and mass spectrometry amongst others.

Compared to more traditionally used techniques, these all cover a large part or

all of the genome, transcriptome or proteome. This is specifically beneficial for un-

covering unsuspected disease associated alterations without targeting them based on

prior knowledge which was often the case in previously available, small-scale studies

focusing on individual proteins.

To gain an overall insight of the disease, large-scale analysis of results covering all

levels of the molecular machinery need to be considered and combined. Generally the

number of large-scale studies is increasing but results are most frequently considered

individually. Combining knowledge covering information describing distinct disease
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aspects is necessary and crucial to shed light over unknown connections amongst dys-

functions and the complete disease picture.

1.1.1.1 Affected Subsystems and Pathways

Even though there has not been any large-scale combinatorial study systematically

analysing similarities and differences between PD related results, individual studies

identified a number of PD affected molecular functions, also referred to as pathways.

All of them can contribute to the PD complexity. Based on current knowledge dys-

functions appear in different combinations, leading to the complex set of PD geno-

and phenotypes (Thenganatt and Jankovic, 2014). A major effort has been made and

a PD map3 was created, being under constant curation and expansion (Fujita et al.,

2014). It presents a great source highlighting affected pathways and Figure 1.2 shows

the published visualization of the interactive tool. Based on this overview and addi-

tional studies the following paragraphs briefly introduce affected systems.

Figure 1.2: The concept of PD map and its visualization (taken from Fujita et al. (2014)).

3http://minerva.uni.lu/MapViewer/

http://minerva.uni.lu/MapViewer/
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Alpha-synuclein misfolding leads to the appearance of Lewy Bodies, a major com-

ponent of PD. Although a lot of research has been carried out, the exact function

of alpha-synuclein remains unknown (Breydo et al., 2012). Previously, links

between the presence of Lewy Bodies and neuronal plasticity responses, en-

zyme regulation, transporters, and neurotransmitter vesicles and others were

established (Uversky, 2008). Overall, Lewy Bodies are found in the major-

ity of PD affected brains (Wakabayashi et al., 2007), but can also be an indi-

cator for other types of Lewy Body dementia. Environmental factors, oxida-

tive stress, mitochondrial dysfunction, genetic factors and dysfunction of the

ubiquitin-proteasome system have been proposed to trigger the misfolding of

alpha-synuclein leading to the Lewy Body formation. Initially it was proposed

that alpha-synuclein and Lewy Bodies are cytotoxic, nevertheless a direct link

with neuronal cell death could not be shown (Wakabayashi et al., 2007). Hence

the real impact of alpha-synuclein misfolding is still elusive even though a link

to PD is widely accepted. Understanding the role of Lewy Bodies in disease

development could help to target them during disease treatment.

Apoptosis is specifically associated with PD in late stages of the disease development.

It has been proposed that a proapoptotic environment in the nigrostriatal region

of PD patients induces neuronal cell death (Lev et al., 2003). Neuronal cell death

has also been classified as an active processed referred to as a programmed cell

death. Compared with induced cell death it seems to involve slightly different

pathways than traditional apoptotic ones. Some affected functions are shared

by both processes, but programmed cell death also requires ATP and shows a

number of associated molecular alterations (Venderova and Park, 2012). Some

of these can explain the link to PD. Hence, more detailed insight into the pro-

cess could help to reduce the speed of neurodegeneration and overall disease

progression.

Calcium homeostasis has been shown to be dysregulated in PD patients. Since cal-

cium plays a ubiquitous role in cells it influences different PD associated path-

ways. Within dopaminergic neurons calcium is related to mitochondrial func-

tionality, oxidative stress and lysosomal activity (Schapira, 2013). Furthermore,

its role is key in the transmission of depolarizing signal and contributes to synap-

tic activity (Calì et al., 2014). All of these effects show major disease links and

further knowledge might help to counteract energy dysregulation.
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Failure of the protein degradation system can be a cause for protein accumulation

within cells. This characteristic is specifically associated with age-related dis-

eases, including PD. Under healthy conditions misfolded or not required pro-

teins are degraded. One of the main systems in charge of such processes is the

ubiquitin-proteasome system (Cook et al., 2012). In cases of disruption, mis-

folded proteins accumulate, potentially leading to cell death. Additionally, a di-

rect link with the accumulation of alpha-synuclein (Martins-Branco et al., 2012)

has been proposed. Unravelling concrete dysfunctions in the system can help to

better understand links to PD.

Mitochondrial dysfunction can influence brain cells in PD patients in different ways.

It can affect the cells through mitochondrion dependent programmed cell death

or necrosis (Perier et al., 2012). Additionally it was possible to link complex 1 of

the mammalian electron transfer chain to the PD pathology (Greenamyre et al.,

2001). Its dysfunction leads to depressed rates of ATP synthesis possibly induc-

ing graded mitochondrial depolarization and causing a decrease in intracellular

ATP/energy levels. This lack of cellular energy will ultimately lead to cell death.

Avoiding these processes could counteract the manifestation of PD.

Neuroinflammation has been linked to PD in several occasions. Distinct triggers for

the inflammatory process are known and range from immunological challenges

through bacterial or viral infections to injury such as stroke and others (Tansey

and Goldberg, 2010). All of these alterations lead to an increase in the blood

brain barrier permeability allowing filtration of lymphocytes and macrophages

into the brain. Identifying substructures related to the immune response in af-

fected brain regions of PD patients is another direct link of neuroinflammation

with neuronal cell death (Hirsch et al., 2012). Such a pathway could be classi-

fied as an “autoimmune” response. A better understanding could help to prevent

emergence of these processes.

Synaptic Vesicle Cycling and recycling has been linked to PD in several occasions.

Failing to transport information, in form of neurotransmitters e.g. to the synaptic

membrane can lead to a lack of information and postsynaptic triggers. This leads

to a synaptic dysfunction inducing cell death (Esposito et al., 2012).

Although it remains questionable whether the presented processes are direct PD causes

or consequences of dopaminergic cell loss, knowing about them can help to identify the
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disease causing ones amongst them. This raises hope to be able to identify and diag-

nose PD in earlier disease stages. Gaining this knowledge might also allow to establish

more specific “disease-subtypes”, depending on dysfunctioning systems, reflecting the

underlying disease pathology. Some of the traditionally known PD subtypes are intro-

duced in the next section.

1.1.1.2 PD-Subtypes

Traditionally PD is divided into a familial and sporadic form. This division depends

mainly on the family history (and possibly traceable mutations) which can provide

evidence for the familial form. Amongst familial cases around 30% are known to

be based on genetic dysfunctions. This number decreases to 3-5% in sporadic cases.

Some of the most well known genetic causes are linked to genes such as LRRK2 and

SNCA (Li et al., 2014; Siddiqui et al., 2016).

Furthermore, classic subtypes are described based on the disease phenotype and

distinguish between either akinetic-rigid or tremor-dominant. Other research identified

differently defined large clusters of symptoms. These specify patients with “old-” ver-

sus “young-age-at-onset” and “rapid-” versus “slow-disease-progression” (van Rooden

et al., 2011; Eggers et al., 2014). Based on the variety of affected pathways further dis-

ease subtypes may emerge in the future.

Additionally, recent findings lead to the hypothesis that PD should be considered

a syndrome rather than a single disease (Caligiore et al., 2016). As such, “PD” cur-

rently describes the “ultimate” disease phenotype, caused by a wide range of affected

underlying subsystems (Fujita et al., 2014). Individually or jointly affected subsystems

could be classified as PD subtypes. Given the diversity of subsystems it is also very

likely that those could be referred to as different diseases, especially when earlier di-

agnosis becomes possible. Hence this reflects additional support for the importance of

identifying, classifying and separating causes which can trigger the disease outbreak

individually. Apart from identifying subtypes this would also allow earlier diagnosis

and more specific treatment.

Overall, many individual PD associated pathways are relatively well understood.

Major efforts have been made to understand these individually. However, few studies

have been carried out to capture the complete disease picture.

Systems biological approaches are the tool of choice to tackle the presented prob-

lem. For best results data quality is of highest importance. The next sections covers

respective details.
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1.2 The Synapse

Synapses are part of neurons. As such they make up a large part of the (mammalian)

brain. The synapse is key to cell-cell communication, allowing to transmit informa-

tion from one cell to another. Chemical synapses (Yuste, 2015) can be split into three

main compartments. These are the presynapse, postsynapse and synaptic cleft (Figure

1.3). More recently glial cells (astrocytes amongst others) are considered as part of the

synapse as well. These surround presynapse, synaptic cleft and postsynapse, generat-

ing a micro-environment. Their specific role is not yet understood, but the concept of

the “tetrapartite synapse” is gaining growing recognition with a large body of litera-

ture showing a role of glial cells in all essential brain functions (Dieterich and Kreutz,

2016). Nevertheless, glial cells are beyond the scope of this study.

Figure 1.3: The tetrapartite synapse of principal neurons, consisting of the pre- and

postsynaptic compartment, synaptic cleft, astrocytic endfeet, and extracellular matrix.

The tightly regulated protein composition in the different regions can be seen. SV

stands for synaptic vesicle (taken from Dieterich and Kreutz (2016)).

Reflected by the anatomical composition of a synapse, signals are transmitted from

the presynapse to the postsynapse. An incoming presynaptic electric signal triggers

synaptic vesicles to locate on the presynaptic membrane. In the following step they
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release specific neurotransmitters and spread these into the synaptic cleft. There, they

bind to receptors, integrated in the postsynaptic membrane of the receiving neuron.

These binding reactions trigger signalling cascades inside the postsynapse, translating

the incoming signal into a variety of processes. This “two-component” interaction has

a vast number of regulatory points (Di Maio, 2008). Many aspects of the information

transmission process can be altered and adjusted, making the synapse a highly adapt-

able system which is reflected in its cell type specificities. Apart from its versatility

this complexity makes the synapse very hard to study and susceptible to disease with

dysfunctions which are hard to identify.

Apart from the purely anatomical description, the term synaptosome is widely used

when considering synapses. This is mainly due to experimental tissue preparation tech-

niques (Laßek et al., 2015) which established the term as the unit of extracted tissue. It

summarises the synapse as introduced earlier as well as additional components in the

presynaptic terminal, such as mitochondria and synaptic vesicles as well as extracellu-

lar matrix proteins (Laßek et al., 2015).

Recent advances in experimental techniques, such as high throughput proteomic

studies, gave access to extended synaptic datasets. The next section describes how to

obtain and and process such datasets.

1.2.1 The Synaptic Proteome

Proteomic studies aim towards identifying all proteins transcribed and translated in a

tissue or region. Thus one of the initial challenges in such an experimental setup is to

obtain the material of interest. Tissue preparation for a synaptic sample is challeng-

ing and initially based on the synaptosome. It is the key structure, isolated from brain

tissue (Sokolow et al., 2012; Dieterich and Kreutz, 2016). A number of experimental

protocols are available to obtain proteomic data, all starting with tissue homogenate

as the raw material. If desired, density centrifugation is used to separate pre- from

postsynaptic material and other cells. Optionally antibodies or other tags can be used

to specifically target proteins from one of the synaptic regions. Once proteins are ex-

tracted, these are purified and mass-spectrometric analysis is used to identify them.

Analytical data analysis is carried out and generates information of the entire analysed

proteome. Depending on centrifugation steps and the purpose of the analysis, some

studies analyse the full synaptosome, consisting of the entire synaptic region (Whit-

taker et al., 1964; Sokolow et al., 2012; Dieterich and Kreutz, 2016) or focus on the



10 Chapter 1. Introduction

presynaptic (Boyken et al., 2013; Grønborg et al., 2010) and/or postsynaptic proteome

(Fernández et al., 2009; Bayés et al., 2012) individually.

One needs to keep in mind that results might not be fully complete and always

only reflect the set of proteins present in the extracted sample at the point of tissue

extraction. Therefore proteomic datasets are specific to a certain developmental state

and time.

Even though experimentally identified units are proteins, it is more convenient to

work with gene identifiers. This facilitates to exchange information coming from dif-

ferent species and avoids bias towards specific protein isoforms. This is specifically

the case since mass spectrometry and analytical steps are not yet detailed enough to

separate protein isoforms with high precision when reading large samples.

1.3 Systems Biology

Systems biology is a still relatively young field, but has been growing rapidly in recent

years. Very often it is associated with large-scale analysis which is not intrinsically

true. In general, systems biology addresses any topic on a “systems level” including

experimental and/or theoretical approaches. The field aims towards gaining a high-

level overview of a given system, considering data availability (Kitano, 2002b,a) and

combining suitable approaches.

Often such approaches have proven to be challenging since data are supplied in

different formats and certain analytical tests require very specific information and data

input. Several initiatives have been put in place to assist endeavours towards facilitating

data accessibility, usage and interpretation. One of them is the “FAIR” data-use prin-

cipal (Wilkinson et al., 2016). FAIR stands for: Findable, Accessible, Interoperable

and Reusable and aims towards generating more easily exchangeable data to allow the

whole scientific community to benefit from it.

In the presented study differences in data annotation presented recurring chal-

lenges. Depending on the situation they were solved in different ways, largely working

towards the use of accepted standards. Some of the mapping steps could not be com-

pletely automatised and required additional manual steps. This thorough approach lead

to results following accepted standards, making the data more valuable. Their use in

further experiments, a wide range of analyses, and amongst the research community is

highly beneficial.
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1.4 Protein-Protein-Interaction Networks

Network analysis, also network theory or graph analysis studies structures emerging

in directed or undirected networks. Such networks can be defined as graphs consisting

of “nodes”, also referred to as “vertices”, and “edges” connecting those nodes. Nodes

and edges can have attributes such as names and weights adding further information to

the network. The Euler’s solution to the “Seven Bridges of Koenigsberg problem” is

seen as the first proof in network theory (Newman, 2003). Since then amongst others

physics, computer science, engineering, biology, economics and sociology apply net-

work approaches to unravel insights into e.g. the World Wide Web, social, epistemo-

logical or gene regulatory and metabolic networks through the use of various analytical

approaches.

In this work nodes are proteins and edges their interactions. These are specifically

referred to as Protein-Protein Interactions (PPIs) and a growing amount is available in

publicly accessible databases. A detailed introduction can be found in Chapter 4.

Given a biological context network analysis shows growing impact in a number of

areas. Protein-Protein-Interaction Networks (PPINs) visualize complex biological in-

teraction patterns and aim to identify molecularly similar subgroups (Xia et al., 2014;

Wang et al., 2010; Pizzuti and Rombo, 2014). Neuronal networks (Paliwal and Kumar,

2009) strive towards describing processes such as memory formation and signal trans-

mission. Gene regulatory networks highlight regulatory and control relationships be-

tween proteins and genes or vice versa (Emmert-Streib et al., 2014). Other approaches

are available and more will likely be added in the coming years.

With the increase in data availability the number of analytical approaches is con-

stantly growing. This points towards the power of network analysis, if correctly ap-

plied.

For the purpose of this work the focus is on PPINs. Proteins are the functional

units of cells and synapses. To carry our their functions they need to interact between

each other. Some proteins undergo interactions with many others, whereas others with

very few. This means that a protein can have a central, connective position or play a

highly specific role involved in one function. This is just one example when PPINs are

an attractive analytical tool to unravel and point out such properties.

Various network measures exist to describe distinct network properties. Some of

these cover general measures referring to the entire network, and others focus on node

or edge specific properties, characterising these individually. These can be referred



12 Chapter 1. Introduction

to as low-level statistics. Additionally high-level network statistics address aspects

on a more general network level such as its division into communities. A network’s

structure is often referred to as topology (Davis et al., 2015), reflecting properties of

the presented data. In general, all the presented measures can be used to characterise

and compare networks between each other. The following two sections focus on the

low- and high-level concepts and respective analytical approaches.

1.4.1 Statistical Network Analysis

Different types of low-level network analytical approaches exist. These range from val-

ues describing overall network properties to information specific to individual nodes or

edges (Bliss et al., 2014). Both types have different advantages and disadvantages and

serve distinct purposes. Overall, these measurements give a general idea of the net-

work structure, whereas node or edge specific values can supply information regarding

their individual role in the network.

For a general overview the underlying principles behind the statistical approaches

are introduced:

Clustering Coefficient is a measure describing the degree to which nodes in a net-

work tend to cluster together (Soffer and Vázquez, 2005). This gives a first

insight into the possibility of finding clearly defined network substructures and

reflects a property of the entire network.

(Network) Density “D” is defined as the ratio of the number of edges (“E”) that ap-

pear in the network of interest, compared to the number of possible edges be-

tween all nodes (Pavlopoulos et al., 2011). This measure indicates how densely

connected networks are, pointing towards the connectivity of its components.

Node Degree is a measure describing the number of connections a node has with other

nodes. In other words, it is the number of edges adjacent to a node. Nodes with

a large number of connections (relative to the connectivity in the network and

the total number of nodes) are hubs. In biological networks they often play a

role as key connectors and regulators between different pathways. Hubs are of-

ten multi-domain proteins, likely involved in a versatile set of functions (Patil

et al., 2010). Generally two types of hubs exist, and can appear with different

references in literature. Transient or date hubs participate in single interactions
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at a time whereas obligate or party hubs undergo multiple interactions simulta-

neously (Ran et al., 2013; Han et al., 2004). Depending on the type of hub, their

removal implies different consequences, but overall it leads to crucial changes in

the network structure. Hence hub nodes play important roles and are generally

located very centrally in the network. On the contrary, the low degree nodes

are found in the network periphery and their removal does not normally cause

drastic effects on the network itself.

Apart from identifying prominent positions in the network the node degree dis-

tribution can give insights into the heterogeneity of a network. If the node de-

gree distribution can be fit to a power law distribution the network is considered

“scale-free”. This implies a long tail, power-law distribution of the node de-

gree with few highly connected nodes and an exponentially larger number of

weakly connected nodes. In biological terms this means that the probability of

a substrate to react with x other substrates decays as a power law (Ravasz et al.,

2002; Barabási and Albert, 1999). Based on these properties scale-free analysis

reflects network topology regarding the connectedness between network nodes.

This analysis can help to confirm if a network has a topology generally known

for biological networks.

Betweenness (Centrality) is a centrality measure based on the number of shortest

paths passing through a node (Freeman, 1977; Brandes, 2001). It describes the

control a node has over a network, based on the “amount” of information that

passes through it. This can also be described as the amount of information that

“flows” over a certain node. Higher betweenness scores stand for higher central-

ity, monitoring communications between other nodes in the network. Consider-

ing PPINs such insight is specifically useful, since nodes with a high between-

ness value are highly frequented and can assist in information exchange between

different pathways (Vidal et al., 2011). On the contrary, nodes with a low be-

tweenness score, are also referred to as “bottlenecks” or “gate-keepers” since

information can get “stuck” or is purposefully delayed, by not being forwarded

rapidly to other nodes in the network. Such detail helps to better characterise

individual network nodes.

Using the introduced measures to classify and analyse networks often allows one to

draw further conclusions which are based on certain combinations of the network

statistics. For example, the scale-free nature of many biological networks (Barabási
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and Albert, 1999) refers to properties such as high degree nodes, indicating hubs,

sometimes linked to disease related genes. Overall, most of the measures can be used

to draw biological and functional conclusions and provide tools assisting the compari-

son of networks against each other.

1.4.2 Network Clustering

After having analysed the PPINs as they emerge based on the PPI pattern, further in-

terest lies in identifying network substructures. So called clustering algorithms divide

networks into communities, aiming towards identifying the “best”, most realistic di-

vision of network nodes. To do so, a number of approaches are available, all aiming

towards grouping more closely connected nodes together by separating them from less

closely connected ones. Given a biological context, these communities consist of genes

likely sharing similar functions or being “jointly” affected by the same disease.

Identifying “close connectedness” between a set of genes compared to others is

one of the main challenges in the field of network analysis and the number of available

techniques is constantly growing. Such techniques are referred to as network clus-

tering and use so called clustering algorithms. Some of the approaches are based on

node betweenness scores, the shortest walk between nodes and other measures such

as modularity scores of the network (Brandes et al., 2008). Modularity “Q” is a mea-

sure describing the number of edges falling within a given gene group less than the

expected fraction if genes were allocated at random or alternatively in an equivalent

network (Newman, 2006b; Ravasz et al., 2002).

Apart from the spinglass approach (introduced later on), clustering algorithms used

in this work are modularity based. An overview, as well as underlying computational

principles, can be found in Table 1.1.

1.4.2.1 Analysis of clustered PPINs

Once networks are clustered their structures can be compared. Due to the large datasets

and complex emerging community constellations it remains a major challenge to com-

pare network clustering results amongst each other. This makes it hard to identify the

right or best algorithm to represent a dataset, since it might not even exist. Certain sta-

tistical tests are available to e.g. test for the robustness of a clustering result, supporting

emerging network structures. Overall, it is necessary to be aware of the remaining gaps

and drawbacks PPIN clustering analysis contains.
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Table 1.1: Community clustering algorithms used to divide networks into communities.

Algorithm
Name

Reference Principle Additional Comments

Fast-greedy Clauset et al. (2004) hierarchical agglomerative algorithm with

greedy optimization approach

one of the first algorithms for large networks

with reasonable compute time, vaguely based

on Newman (2004)

Infomap Rosvall and

Bergstrom (2008)

information theory approach - minimizes the

expected description length of a random

walker trajectory

seeks optimal community structure by com-

pressing a descriptive “information flow” be-

tween nodes in the network

Louvain Blondel et al. (2008) heuristic algorithm , based on modularity op-

timization in a hierarchical way

reassigns community to nodes in an iterative

manner, works with very large networks and

short computation times

Spectral Mclean et al. (2016);

Newman and Girvan

(2004)

spectral based modularity clustering with

fine-tuning step

eigenvectors and eigenvalues are used to de-

scribe the network.; only available in C++

and as a cytoscape app; especially powerful

in detecting network communities that are en-

riched in similar biological functions

Spinglass Reichardt and Born-

holdt (2006); Traag

and Bruggeman

(2009)

community detection is equivalent to identi-

fying the ground state of a infinite range spin

glass

minimization of the spin glass with the spin

state representing the community indices; al-

lows to detect overlap and hierarchy in com-

munity structure

Nevertheless, the use of PPINs greatly supports the identification of patterns and

biologically similar subgroups amongst larger datasets. Depending on the research

question, adjustments can be made to fine-tune analytical steps and to best benefit

from the results.

1.5 Functional Gene Set Analysis

Very often genes are not analysed individually, but as a group, since gene sets can show

common properties. To identify these properties, information regarding the property of

interest needs to be available for all genes in the set of interest as well as a background

set.

Gene sets as well as properties of interest can vary largely. Examples include

genes specifically expressed in a tissue or cell type of choice compared to all protein

coding genes in the human genome or a subgroup of expressed genes in a tissue of

interest, compared to all genes expressed in the same. Properties range from previously

identified gene-disease associations, functional descriptions of genes or their spatial

expression within a cell and many others (Fury et al., 2006).

In any given scenario the main question is to identify if a given number of genes

with a certain property found in a gene set of interest is higher than expected by chance.

Such a situation can be described as an over-representation or enrichment of a property
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amongst genes in a set. To calculate this probability a number of factors need to be

taken into account and statistical tests are available to carry out exactly this analysis.

The next section introduces the details.

1.5.1 Testing for Enrichment

To confirm over-representation of genes with a certain property, Fisher’s exact test or a

hypergeometric test are commonly used. Since both are known to be equivalent (Rivals

et al., 2007), a detailed example and description of the hypergeometric enrichment test

is given.

To identify a non-random accumulation of genes associated with a specific property

in a gene set four key numbers need to be considered. These are:

1. The number of genes in a full dataset, also considered as the background dataset,

N. Given the interest in a specific group of proteins, the background could either

contain all human protein coding genes or a specific gene set of interest, e.g.

all genes expressed in the synaptic proteome, also referred to as the synaptic

proteome.

2. The number of genes n in the subset of the full dataset which is tested for enrich-

ment. This is referred to as the “gene set of interest” and could be any subset of

the background set N. Examples are all genes in the presynapse, or a specific set

of proteins expressed in the synapse, e.g. a network community.

3. The number of genes associated with a certain property in the full dataset, T .

This can either be the number of genes associated with a specific disease, func-

tion or spatial component amongst others.

4. The number of genes t which represent a subset of T found in n. This refers

to the number of genes associated with the studied property (T ) that are also

present in the gene list of interest (n).

Based on these numbers a 2×2 contingency table can be constructed and the proba-

bility of encountering the exact number of hits t of interest in a set of genes n associated

with a property T , given a background N, can be calculated. Section 2.3.1 introduces

the formula and further details.

If this probability is less than a certain threshold (e.g. p < 0.05), the dataset is

regarded as enriched for the tested property (Rivals et al., 2007), or alternatively genes
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with the property of interest are considered as over-represented in the gene set of in-

terest.

1.5.2 Functional Annotations

Based on the introduced principle, the property of interest can be a specific function,

a process, a spatial component, a disease, etc. Over recent years large initiatives have

curated functional annotations for human protein coding genes.

The Reactome (Croft et al., 2014; Fabregat et al., 2016) database for example is

a “free, open-source, curated and peer reviewed pathway database”4. It associates

genes to molecular pathways also supplying a full overview of dependencies between

involved proteins.

As previously mentioned, gene-disease association information is of considerable

interest for this study. Several databases such as ClinVar (Landrum et al., 2014) and the

Human Gene Mutation Database (HGMD) (Stenson et al., 2014) amongst others store

such information. Standardised disease identifiers are supplied by the Disease Ontol-

ogy consortium (Schriml et al., 2011) which aims towards developing a “standardized

ontology for human disease with the purpose of providing the biomedical community

with consistent, reusable and sustainable descriptions of human disease terms, pheno-

type characteristics and related medical vocabulary disease concepts”5. Further details

are addressed in Chapter 3. Even though databases exist, in theory any (self-generated)

disease-gene-association dataset can be used as a source of information.

Another initiative is Gene Ontology (GO) focusing on functional terms. Consider-

ing GO (Ashburner et al., 2000), gene associated properties are also referred to as traits.

GO aims towards developing an “up-to-date, comprehensive, computational model of

biological systems”6. Therefore it covers three key areas: (i) Biological Processes

(ii) Molecular Functions and (iii) Cellular Components. Data in all of those ontologies

are publicly accessible and follow a directed acyclic graph (DAG) structure. It means

that terms relate to each other in a tree structure, moving from very generic terms de-

scribing functions such as “metabolic process” (GO:0008152) to more specific ones

like “positive regulation of L-dopa biosynthetic process” (GO:1903197).

Depending on the analytical questions a study can address a specific level of detail

along the annotation tree. Since this information is deposited in publicly available

4http://www.reactome.org/
5http://disease-ontology.org/
6http://www.geneontology.org/

http://www.reactome.org/
http://disease-ontology.org/
http://www.geneontology.org/
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databases, gene annotations of interest can be easily obtained and used for analysis on

a large scale. Their combination with above mentioned enrichment tests can be used

to classify gene sets regarding their overall function.

A number of tools have become available to test for enrichment given a gene and

background as well as trait dataset of interest. The next section introduces two avail-

able tools.

1.5.3 topGO and topONTO

topGO and topONTO are computational environments (both available in R) allowing to

carry out enrichment studies. The first developed topGO package (Alexa et al., 2006)

introduces a way to directly work with gene-trait association information from GO.

Based on this, the R package topONTO (He and Simpson, 2017b) was developed. It

provides a more flexible environment which allows to work with ontologies other than

GO. Both packages facilitate functional enrichment analysis for gene sets of interest

given a self defined background gene set. The Fisher Exact test is used to identify

enrichment and tested traits can be retrieved directly from GO.

To benefit from the hierarchical tree structure of ontologies, topGO implemented a

number of more advanced analytical approaches. For best results specific algorithms,

considering the ontology structure, are put in place. topONTO inherits these algorithms

making them available for the use with other ontologies as well. The next section in-

troduces the technique and specific algorithm which was chosen in the work presented.

1.5.3.1 The topGO elim algorithm

Enrichment results depend on different aspects of available annotation information.

Based on the ontology structure the analysis can be adjusted to a desired level of detail

along the ontology tree. For example, a gene can be tagged with the term “transmission

across chemical synapses” which is a relatively broad description. But more specific

tags such as “trafficking of AMPA receptors” are also available. The higher the term

is located in the hierarchy, the more genes are associated with it. For example, 212

genes are associated with “transmission across chemical synapses”, but only 31 genes

are specifically described as related to “trafficking of AMPA receptors”. Consider-

ing the relationship between those numbers the 31 genes associated with “trafficking

of AMPA receptors” are also amongst the 212 genes specified in the “transmission

across chemical synapses” category. Hence, different levels in annotation detail are an
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important feature to be considered during enrichment analysis.

To retrieve most specific and refined terms among significantly enriched ones, the

elim algorithm proposed by (Alexa et al., 2006) was used. Through consideration of

the ontology tree structure it is possible to target the enrichment analysis towards a

desired information specificity. Since a child term is potentially more interesting than

its more generic ancestors, the elim algorithm computes significance of a term de-

pending on its child terms. More specifically functional enrichment analysis is carried

out starting from the lowest level traits in the ontology tree. If the lowest leaf terms

of a branch are not significantly enriched in the gene set of interest traits on the next

up-stream level are tested. Once the gene set of interest is significantly enriched based

on a certain ontology term, genes associated with the enriched term are deleted from

all gene-trait sets upstream of the enriched one. In other words, genes associated to a

child term of a trait of interest are disregarded in future enrichment tests. Hence, once

a gene trait association contributed to an enriched term of a gene set that gene is no

longer considered for additional contribution to enrichment of a functional parent term.

In summary, this approach guarantees to identify the most specific enriched functional

term for the gene set tested.

It is also advantageous that the elim algorithm keeps track of the number of enrich-

ment tests that are carried out while analysing the whole ontology tree. This informa-

tion is crucial to correct for multiple testing which is explained in the next section.

Before moving on, it should be pointed out that the ONTO-Suite Miner, underly-

ing the topONTO package (He and Simpson, 2017a) is also a great tool to extract e.g.

gene-disease association information retrieved from distinct databases in an automated

manner. Specific disease identifiers (“DOIDs”) can be used to screen loaded datasets

e.g. from Ensembl Variation (EnsVar), Gene Reference into Function (GeneRIF) and

Online Mendelian Inheritance in Man (OMIM), all providing a link between gene al-

terations and disease (see Section 3.2.2 above for more details).

1.5.3.2 Correction for Multiple Testing

A common challenge when carrying out large-scale analytical tests is correction for

multiple testing. The main interest in using such a correction is to ensure that obtained

significance values were not influenced by the number of comparisons made through-

out the repetitive testing process (Shaffer, 1995; Al-Shahrour et al., 2004).

Therefore different, more or less stringent approaches are available. One of the

most traditional and very strict correction approaches is referred to as Bonferroni cor-
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rection (Bonferroni, 1935). It considers the exact number of elements in the tested

dataset to correct the initial p-value.

An alternative less stringent and well studied approach was published by Benjamini

and Yekutieli (Benjamini and Yekutieli, 2001). Instead of considering the exact num-

ber of elements, the number of comparisons, also representing number of “degrees of

freedom” are used for correction. Additionally the method controls for the false discov-

ery rate, describing the expected proportion of false discoveries amongst the rejected

tests. This makes it less stringent than the family-wise error rate, giving increased

sensitive to detect enriched traits.

This work concentrates on the second, less strict approach which was proven to be

sufficient enough to correct initial p-values, without being overly strict and could lead

to the loss of interesting results.

1.6 Objectives

It is of great interest to gain further understanding of the complexity behind PD. Hav-

ing a more detailed overview would be highly beneficial to better diagnose the disease,

identify biomarkers and develop more targeted treatment. Therefore this study in-

cludes data from several sources addressing distinct molecular details. PPINs were

chosen to shed light over the data structure and gain detailed gene specific, as well as

more general, functional insights to the data and disease.

Data quality and an open development of the analytical workflow are of highest im-

portance and propose open approaches to be used to answer similar research questions

in the future.

More specifically, it has been widely suspected that PD, as it is diagnosed today,

can be the result of different causal dysfunctions which might be considered disease

subtypes or even represent individual diseases. Hence dividing affected genes into

groups is of great interest and might represent disease types which are associated with

crucial dysfunctions in distinct cellular regions and affect diverse molecular functions.

Hence the main interest of the presented analysis is to gain more in-depth func-

tional information about genes associated with PD and detect highly affected gene

groups acting together. Since these are often triggering the disease manifestation in

the synapse they indicate likely promising areas for further detailed research in the PD

field. The identification of their overall function can contribute more insight pining

down largely affected functional areas.
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Finally, this work aims towards presenting a set of known and new PD associated

genes, as well as synaptic dysfunctions.

Figure 1.4 shows a general overview of the different pieces of work presented in

the following chapters.
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Figure 1.4: Work presented in this thesis. Blue boxes refer to data, orange boxes

indicates processes, green boxes highlight analytical steps and outcomes are shown in

magenta boxes.





Chapter 2

Methods

This chapter introduces methods of general relevance to the work presented and used

in more than one occasion. Methods used only in a specific chapter are introduced

there.

2.1 General Programming

Most of the analytical work presented in this work was carried out with one of the

programming languages: Python (2.7.13) (van Rossum, 1995)1 or R (3.4.1) (R Core

Team, 2017)2. A number of different packages were used, these are listed in the spe-

cific sections.

2.1.1 Venn Diagrams

Venn diagrams were generated using either the python package matplotlib-venn3

or the R library Vennerable (Swinton, 2013). Most of the four way diagrams were

generated with R, but generally the tool of choice was defined based on where the data

were previously processed and loaded.

1http://www.python.org
2https://www.R-project.org/
3https://github.com/konstantint/matplotlib-venn

23
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2.1.2 Computing Environment

The Edinburgh Compute and Data Facility (ECDF), eddie4 supplies a high-performance

computing facility which was used for computationally heavier processes. It also al-

lowed to parallelise computations if required.

2.2 Annotations and Mappings

Traditionally the discovery of a new gene or protein allowed researchers to name those.

Over the years this lead to genes and proteins with multiple names used in different

publications not always being connected. In 1957 an international committee pub-

lished recommendations for genetics symbols and their nomenclature (Tanaka, 1957).

The Edinburgh Human Genome Meeting formalised those in 1979 publishing “full

guidelines for human genome nomenclature” (HGNC, 1979). Now every known gene

is specifically identified through a name, symbol and ID. Protein nomenclature under-

lies similar efforts and is closely linked to gene nomenclature. Human genes can be

mapped to human proteins and vice versa, allowing the use of one single identifier (ID)

for analysis. Due to variability in gene to protein transcription and translation, map-

pings are not always direct, one-to-one. Hence, one gene can encode several proteins.

Additionally one protein can be encoded by several genes, which can be explained by

having several copies of the same gene in the genome, all leading to the same protein

product.

Genes and proteins can also be mapped across species. All species tend to follow

a similar annotation structure, and structural and sequential similarities are reflected

in gene and protein names. This allows mapping of e.g. mouse gene IDs to human

gene IDs which is especially beneficial when experiments are carried out in different

species.

It is also possible to use databases such as Ensembl when evolutionary relationship

is not evident. These rely on more advanced methods to ensure gene correspondence

across species (Herrero et al., 2016).

4http://www.ed.ac.uk/information-services/research-support/research-computing/
ecdf/high-performance-computing

http://www.ed.ac.uk/information-services/research-support/research-computing/ecdf/high-performance-computing
http://www.ed.ac.uk/information-services/research-support/research-computing/ecdf/high-performance-computing
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2.2.1 Mapping File Generation

Due to variability in data and experimental procedures not all used sources present re-

sults using the same gene or protein ID. To allow working with unique IDs, a mapping

table was generated to map GeneSymbols (Uniprot Gene IDs) to Entrez Gene IDs

and vice versa. Data to generate the mapping were obtained from UniProt (UniProt

Consortium et al., 2017) and National Center for Biotechnology Information (NCBI)

(NCBI, 2016). Three annotation files were used. The used Uniprot idmapping (se-

lected tab file5 was obtained from the ftp server6 which can be accessed via the “pre-

vious release” repository7 in the moment of writing the thesis. NCBI data were also

downloaded via an ftp server8. Two files were used to include an intermediate mapping

step. The gene2accession file9 supplies a number of mappings, including the “NCBI

protein accession” which is mapped to the “Uniprot Accession” which can be used in

combination with a further mapping file10. Figure 2.1 shows an overview of data, map-

ping steps and the outcome. Inter-species mapping was carried out using NCBI and

UniProt homology mapping flat-files11 12. In the cases where no results were found

homology mappings from the Mouse Genome Database13 were consulted. Homology

mapping was mainly carried out by Colin Mclean.

All three datasets were downloaded on March 24th 2017 and analysis was spe-

cific for human gene taxID (9606) associated genes. For best mapping outcome the

two NCBI mapping files were combined based on the “NCBI protein accession”. The

columns “Entrez ID”, “NCBI Protein Accession”, “EntrezGeneName” and “Unipro-

tAccession” were extracted from the raw files and kept for further analysis. Based

on the NCBI mapping the data were merged with the Uniprot mapping file to obtain

Uniprot IDs. This mapping step was possible through cross-linking the Entrez ID as

well as the Uniprot Accession.

Based on this approach it was possible to map 33,345 Entrez Gene IDs to Uniprot

5idmapping_selected.tab.gz
6ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/

idmapping/
7ftp://ftp.uniprot.org/pub/databases/uniprot/previous_releases/release-2017_

03/knowledgebase/knowledgebase2017_03.tar.gz
8ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/
9gene2accession.gz

10gene_refseq_uniprotkb_collab.gz
11ftp://ftp.ncbi.nlm.nih.gov/pub/homology_maps
12ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/

idmapping/by_organism/
13http://www.informatics.jax.org/downloads/reports/HOM_AllOrganism.rpt

idmapping_selected.tab.gz
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping/
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping/
ftp://ftp.uniprot.org/pub/databases/uniprot/previous_releases/release-2017_03/knowledgebase/knowledgebase2017_03.tar.gz
ftp://ftp.uniprot.org/pub/databases/uniprot/previous_releases/release-2017_03/knowledgebase/knowledgebase2017_03.tar.gz
ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/
gene2accession.gz
gene_refseq_uniprotkb_collab.gz
ftp://ftp.ncbi.nlm.nih.gov/pub/homology_maps
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping/by_organism/
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping/by_organism/
http://www.informatics.jax.org/downloads/reports/HOM_AllOrganism.rpt
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Figure 2.1: Overview of the mapping approach, showing input data and the obtained

output. Dark blue boxes indicate raw data, light blue highlights the columns of interest

in the respective files. Green boxes refer to processes and the magenta box highlights

the outcome. */** highlight the information that was cross-linked between the files.

IDs (also referred to as “Uniprot entry name”). 19,377 Entrez Gene IDs and 32,879

Uniprot IDs are part of that dataset. An additional mapping file was obtained, including

57,606 Entrez Gene IDs, being mapped to 57,557 Entrez gene names.

Depending on the dataset size a manual mapping step followed the automatised

mapping, to identify outstanding hits. Most of these used gene aliases as the reference

gene name and could not be mapped automatically.

For the purpose of this work the Entrez Gene ID is used as the unique gene identi-

fier. It will be referred to as Entrez ID.

2.3 Enrichment Analysis

2.3.1 Hypergeometric Testing

Hypergeometric testing is a statistical approach that calculates the probability of over-

representation of a “trait” of interest in a subgroup of a larger group (Fury et al., 2006).

Thus statistical testing has been extensively used in large-scale studies to identify over-

represented or underrepresented “traits” such as specific genes and/or functions. To be
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able to calculate potential over-representation a background gene set is required. Trait

information for all genes needs to be available. Given the context of this work, the

groups consist of varying numbers of genes. Traits can vary widely from genes previ-

ously associated to a disease, genes associated to a specific biological process, molec-

ular function or cellular component. They can also be manually defined or retrieved

from databases.

A number of different scenarios can require enrichment testing. Understanding

numbers larger than expected at random e.g. disease associated genes in a gene subset

(e.g. in a specific tissue, given a genome background), identifying a significant overlap

between two gene lists or detecting general over-representation of a functional term

amongst genes in a set are just some examples.

The hypergeometric probability h(t;N,n,T ) describes the probability of encounter-

ing the exact number of hits of interest in the data subset, given a defined background

set as well as a set of trait-associated genes.

Four numbers are required to compute the probability:

1. the number of elements in the full dataset, also considered as the background

dataset (“N”),

2. the number of elements in the subset of the full dataset which shall be tested for

enrichment (“n”),

3. the number of elements of interest, e.g. associated with a certain trait, in the full

dataset (“T ”) and

4. the number of elements of interest in the data subset of interest (“t”).

This information allows to compute a probability (p-value) of how likely it is to observe

a given distribution of items. It can be calculated in the following way:

h(t;N,n,T ) =

(T
t

)(N−T
n−t

)
(N

n

) (2.1)

To describe the probability of finding the exact number of items of interest (“t”) in the

subset (“n”) or more, the cumulative hypergeometric probability is used. It is the sum

over the hypergeometric probabilities:

h(t ≤ t;N,n,T ) =
t

∑
x=0

(T
t

)(N−T
n−t

)
(N

n

) (2.2)
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Since one is interested in over-representation of a certain trait, relative to the total

number of of elements of interest the probabilities of seeing between “t” and “T ” hits

needs to be calculated. This is done as follows:

h(t ≤ T ;N,n,T ) =
T

∑
x=t

(T
t

)(N−T
n−t

)
(N

n

) (2.3)

Predefined functions to compute the (cumulative) hypergeometric probability are avail-

able in R. The dhyper function (Johnson et al., 2005) was selected for calculations in

this work. Depending on the research question and analytical setup the one-tailed Fish-

ers exact test is commonly applied. It is known to be equivalent to the hypergeometric

test (Rivals et al., 2007).

2.3.2 Gene Set Enrichment: topGO and topONTO

Functional enrichment analysis is one of the examples where hypergeometric testing

is required. topGO (Alexa et al., 2006) supplies an environment to carry out a number

of enrichment test. Apart from the enrichment testing itself, it contains a range of al-

gorithms guiding the testing approach. Since functional enrichment information used

in these setups relies on data structured in form of directed acyclic graphs enrichment

testing can be adjusted to consider this information. Since topGO is only able to ac-

cess information from the Gene Ontology (GO) database, topONTO (He and Simpson,

2017b) was built to load ontologies and use the tools provided by topGO for the anal-

ysis of other gene-trait information sets. Thus topONTO has been used for the analysis

in this work, also allowing to specify desired GO versions.

The presented work uses the one-tailed Fisher exact test, equivalent to the hyper-

geometric test. Section 1.5.1 explains the underlying test principle and Section 2.3.1

introduces technical details. As outlined in Section 1.5.3.1 the elim algorithm was

used.

For a detailed overview of the full topGO and topONTO analysis, a step by step

protocol is presented.

1. All available trait-gene mappings are retrieved from the source database. In the

presented case, traits were GO terms associated with human Entrez IDs.

2. Once the database content was retrieved, lists of all Entrez IDs with an associ-

ated GO term of the specific subclasses (Biological Process, Molecular Function,

Cellular Component) were generated.
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3. Depending on the defined enrichment background, genes with an associated GO

term were selected.

4. The gene subset to be tested for enrichment was imported and genes present in

the background dataset were identified.

5. Once all data was prepared in the correct format, GO-data objects were gener-

ated. At this stage, the specific GO subclass is defined and according datasets

are used.

6. The generated GO-data object is used to perform desired enrichment testing. At

this stage enrichment test and algorithm are chosen.

7. Results can be accessed and visualized in data tables, as GO-graphs and word

clouds amongst others.

A number of steps require specific data formats, and details can be found in the

topGO14/topONTO15 documentation. These documents also include installation details.

Apart from being a great tool to carry out functional enrichment studies, topONTO

can be used to extract sets of gene associated to terms in the loaded ontology. Hence

genes associated to a specific disease (based on human Disease Ontology Identifiers

(DOIDs)) can be automatically obtained.

2.3.3 Multiple Testing Correction

Different programming languages implement functions to carry out multiple testing

correction. Since topGO/topONTO are run in R the p.adjust function from the R-stats

package was used. Corrected p-values were calculated for all originally obtained ones.

When using the p.adjust function, the correction test type can be selected. The

Benjamini and Yekutieli correction was used (Benjamini and Yekutieli, 2001). Apart

from having medium stringency, it is relatively accessible regarding the specification of

the number of tests that need to be corrected for. Given the use of the elim algorithm,

it was possible to extract that number and integrate it for multiple testing correction.

Other available correction alternatives include the classical, very stringent Bonfer-

roni correction, the Benjamini & Hochberg approach (also referred to as “fdr”/“false

discovery rate detection”) as well as Holms, Hochbergs and Hommels individual meth-

ods.
14https://bioconductor.org/packages/release/bioc/html/topGO.html
15https://github.com/hxin/topOnto

https://bioconductor.org/packages/release/bioc/html/topGO.html
https://github.com/hxin/topOnto
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2.4 Protein-Protein-Interaction Network Analysis

A number of visualization and analysis tools are available to generate and work with

Protein-Protein-Interaction Networks (PPINs). igraph (Csardi and Nepusz, 2006)16

was chosen for network generation, clustering and analysis. This work uses the R im-

plementation of igraph. Some of the final visualizations were obtained with cytoscape

(Shannon et al., 2003)17.

All networks presented in this work are based on Protein-Protein Interaction (PPI)

lists, so called edge-lists or edge-tables. These are generated based on a gene list of

interest and contain information of two interacting genes (using a gene ID of choice).

The curated, direct, human PPIs list (Chapter 4) was used to extract internal PPIs.

This means that interactions are only considered if both interactors are present in the

supplied gene list of interest. The Entrez ID was used as the unique identifier.

The edge list is the minimum requirement to build a network. For further detailed

information a node list or node table can be supplied. This table contains information

regarding (all) nodes (genes) in the network. The additional information can include

gene names, disease association or other values of interest.

Based on this information, igraph can generate PPINs. Additionally, it provides

a number of tools to directly compute statistical network measures. The following

section describes concepts of global and local parameters and statistics which are used

in this work.

Betweenness (Centrality) CB reflects the number of shortest paths passing through

a node. High betweenness centrality scores indicate that a lot of information

passes by and/or is processed by a node (Freeman, 1977; Brandes, 2001). This

highlights a node’s centrality and often means that it is a form of communication

centre between different network regions. To obtain the betweenness centrality

of a node V in a graph G : (V,E) with V nodes and E edges the following steps

need to be taken: (i) the shortest path between each pair of nodes (xy) is com-

puted; (ii) the fraction of shortest paths passing through the node in question (V )

is determined; (iii) the final value is the sum over all the fraction values for all

node pairs. More formally it can be represented as follows:

CB(v) = ∑
s6=v6=t∈V

σxy(v)

σxy
(2.4)

16http://igraph.org
17http://www.cytoscape.org/

http://igraph.org
http://www.cytoscape.org/
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σxy refers to the total number of shortest paths from nodes x to y and σxy(v) is the

number of those passing through node V . The betweenness can be normalised if

required.

Closeness Centrality CC quantifies the normalized average length of the shortest paths

(geodesics) through a given node of interest. It is calculated by dividing the num-

ber of all nodes in the network by the sum of the shortest paths through all nodes

in the network. More formally it is defined as follows:

CC(x) =
N

∑y d(y,x)
(2.5)

d(x,y) is the distance between nodes x and y and N is the total number of nodes in

the graph. This formula applies to large networks, where the difference between

N and N − 1 is inconsequential. Nodes with a low value are separated from

others by short geodesics. This might highlight better access to information or

more direct influence at other vertices.

(Network) Density describes how dense a graph is based on the number of edges that

are appearing in the graph. It is defined as the proportion of edges in the graph

compared to all possible edges between any two nodes in the network. More

formally this means:

Network Density =
actual edges in graph

potential edges in graph
(2.6)

The number of potential edges in the graph is calculated as follows:

Network Density =
n∗ (n−1)

2
(2.7)

n refers to the number of nodes in the network. The measure is proportional to

the maximum amount of all possible edges appearing between any two nodes in

the graph (Wasserman and Faust, 1994).

Diameter describes the longest geodesic in a graph. It is basically the “longest short-

est path” which can be found in the network, connecting two nodes amongst

each other. It is identified through comparison of all geodesics in a graph.
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Global Transitivity/Clustering coefficient are two terms, used equivalently. In an

undirected graph, they describe the ratio of closed triangles appearing in a net-

work, compared to connected triangles in the graph (the direction of the edges is

ignored). In other words, it is a measure of probability that the adjacent vertices

of a vertex are connected (Barrat et al., 2004).

A triangle can be described as a sequence of nodes x,y,z,x which are connected

as follows: (x,y), (y,z) and (z,x). Global Transitivity is then calculated as fol-

lows:

T =
number o f closed triangles

total number o f possible triangles
(2.8)

Node Degree is the number of connections a node shows. In other words it can be

referred to as the number of edges connected to a node. The maximum node

degree is the largest node degree appearing in a network. Generally nodes with

a large degree are referred to as hubs.

Scale Free Network Analysis requires information regarding the node degree of all

nodes in a network. Based on that, an alpha value describing the exponent of

a fitted power-law distribution of the node degree can be obtained. A long tail,

power-law distribution of the node degree points towards a so called scale-free

network which is commonly seen in a biological context (Ravasz et al., 2002;

Barabási and Albert, 1999).

Depending on the required insights different values were computed and analysed. For

further higher-level analysis the next section outlines required steps.

2.4.1 Network Clustering Algorithms

Once PPINs are generated (Section 2.4), clustering algorithms can be applied to divide

the network into communities. Many clustering algorithms are included in igraph.

The ones used in this study include:

• fastgreedy (Clauset et al., 2004),

• infomap (Rosvall and Bergstrom, 2008),

• louvain (Blondel et al., 2008) and

• spinglass (Reichardt and Bornholdt, 2006; Newman and Girvan, 2004; Traag

and Bruggeman, 2009).
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However other algorithms are not implemented and need to be used separately. One of

them is the

• spectral clustering algorithm (Newman, 2006a; Mclean et al., 2016).

A C++ and cytoscape implementation is deposited on sourceforge18 and can be directly

downloaded19. The README files includes installation and usage instructions.

Since most of the above algorithms are based on modularity optimisation the un-

derlying mathematical calculation is introduced. As a measure, describing the number

of edges falling within a given gene group less than the expected fraction if genes

were allocated at random, modularity Q is usually defined via a symmetric modularity

matrix. Elements of this matrix can be represented as follows:

Bi j = Ai j−
kik j

2m
(2.9)

Ai j refers to the number of edges between nodes i and j, ki and k j is the number of

edges of these nodes and m = 1
2 −∑i ki. Based on this the modularity Q is calculated

with the following formula:

Q =
1

4m
sT Bs (2.10)

with s being the column vector of elements si in the matrix which indicates if node i

belongs to group 1 or group 2 under the tested conditions (Newman, 2006b).

18https://sourceforge.net/projects/cdmsuite/
19https://sourceforge.net/projects/cdmsuite/files/CDMSuite_cpp_v1r1/

https://sourceforge.net/projects/cdmsuite/
https://sourceforge.net/projects/cdmsuite/files/CDMSuite_cpp_v1r1/




Chapter 3

Finding a Parkinson’s Disease Core

Dataset

3.1 Objective

Parkinson’s Disease (PD) is considered a complex disease affecting a number of path-

ways and showing large diversity in phenotypes. To gain better understanding of how

PD affects the human cellular machinery, a core dataset covering genes significantly

associated with the disease is needed. This chapter analyses published datasets de-

scribing PD, all of which address different disease aspects. Available sources were

identified to extract PD associated genes and proteins. The raw data included informa-

tion describing i) direct and indirect influences of mutations on genes and ii) effects of

protein expression changes on the cellular machinery.

An additional aim was to understand the impact of a gene or protein alteration on

the disease picture itself. This could help to classify alterations as 1) disease causal or

2) “consequential”. The two aspects can be linked to the disease genotype or pheno-

type. Identifying links between underlying dysfunctions would allow classification of

PD into different types.

Hence, this chapter aims to define a key set of genes associated with PD. An

overview of the workflow including aims, analytical approaches and conclusions can

be seen in Figure 3.1.
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Figure 3.1: Work presented in Chapter 3, focusing on the workflow used to analyse

data and generate a combined PD dataset. Dark blue boxes refer to published data,

light blue boxes are generated datasets, green boxes describe processes and magenta

boxes show outcomes.

3.2 Material

Over the years many researchers dedicated time and effort towards shedding light on

the cause of PD. Significant effort has been put into collecting data which was made

available to the research community mostly via databases. A number of (bioinformat-

ics) approaches were used to retrieve desired information such as genes and proteins

significantly associated with PD.

For the purpose of this study the unique identifier was chosen to be the human

(gene) Entrez ID (further referred to as Entrez ID). In cases where only protein symbols

or alternative identifiers were used, these were mapped to the respective Entrez ID.



3.2. Material 37

3.2.1 Data Types

Figure 1.1 C shows different experimental approaches facilitating insight into distinct

levels of the cellular machinery. These tools are designed to obtain large-scale data

sets. Nevertheless results can also contain false positive hits. Due to our interest in the

effects of PD on the genome as well as the exome, transcriptome (and proteome) data

obtained via the following approaches were used.

Genome Wide Association Study (GWAS) are the most commonly used large-scale

tool to obtain information regarding Single Nucleotide Polymorphisms (SNPs)

associated to e.g. a disease. They are applied to analyse genetic alterations found

in a given population as compared to a reference one. Once SNPs are identified

these can be associated to nearby genes.

Microarray Studies can be used to identify differences in RNA and protein expres-

sion in a specific tissues between samples of interest and control. Statistical

methods are used to define significant changes between the two datasets. Re-

sults include protein expression levels that change significantly under e.g. dis-

ease conditions. This study uses transcriptomic microarray study results as a

data source.

Manually Curated Data Individual publications identify a number of protein- and

gene-disease associations. The experimental objective can vary, but usually a

small number of proteins are addressed. Through the screening of individual

publications a further gene-disease set can be obtained. A number of databases

collect such expert curated information and are publicly available.

3.2.2 Data Sources

The National Center for Biotechnology Information (NCBI) (NCBI, 2016) offers ac-

cess to a large amount of information using publicly available publications and datasets.

For the purpose of identifying PD associated genes a literature search, followed by

manual curation was carried out. Papers published roughly in the last 10 years, based

on personal recommendations and NCBI searches including: “(Parkinson’s Disease

[Title]) AND (“2006/01/01” [Date - Publication] : “2014/01/01” [Date - Publication])”

helped to identify such studies.

Manual publication search also allowed the identification of key studies focusing

on PD associated genes identified based on transcriptomic changes (see the 2nd level of
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detail in Figure 1.1 B). Most of those have deposited raw data in the Gene Expression

Omnibus (GEO). Directly querying GEO helped to identify further deposited studies

of interest.

GEO is a public repository with functional genomics data1, accepting array and se-

quence based results (Edgar et al., 2002). Many publications share their data

by publishing it on a platform such as GEO. Functional genomics data includes

microarray and sequence-based technologies, both high-throughput approaches.

Data can be accessed by specific accession numbers and can be cited in publi-

cations. Publication title, authors and keywords are accepted as search terms to

query the database and obtain studies of interest.

Compared to information based on transcriptomic changes a larger number of re-

sources hosting mutation-based gene-disease alterations are available. These either

associate mutations to diseases and establish a mutation to gene relationship after-

wards or directly associate genes to diseases. The former are widely based on GWAS

or other mutational studies, whereas the latter rely on (manually curated) text anno-

tation. The topONTO R package, allows mutation- and gene-disease information to be

extracted from a number of databases. This highly facilitates their use and accessibility

(more details in Section 1.5.3). The following databases can be queried via topONTO

and were used in this study:

Ensembl Variation (EnsVar) contains information regarding genetic differences be-

tween individuals (Chen et al., 2010)2. Available data describe sequence and

structural variance, including SNPs (specific to one single nucleotide in the

genome), insertions or deletions (of one or several nucleotides) as well as copy

number variations (indicating the in- or decrease in the copy number of a given

genomic region). Mutations are annotated, depending on their position on the

genome. To understand potential links with gene coding or regulatory regions

altered positions are mapped to gene location. EnsVar obtains data for hu-

man genetic information from six different sources (see entries type “variant”

in the table at the online source3). These are: (i) “ClinVar”4 (Landrum et al.,

2014) (ii) “COSMIC”5 (Forbes et al., 2015) (iii) “dbSNP”6 (Sherry et al., 2001)
1https://www.ncbi.nlm.nih.gov/geo/
2http://www.ensembl.org/info/genome/variation/index.html
3http://www.ensembl.org/info/genome/variation/sources_documentation.html
4https://www.ncbi.nlm.nih.gov/clinvar/
5http://cancer.sanger.ac.uk/cosmic
6https://www.ncbi.nlm.nih.gov/SNP/

https://www.ncbi.nlm.nih.gov/geo/
http://www.ensembl.org/info/genome/variation/index.html
http://www.ensembl.org/info/genome/variation/sources_documentation.html
https://www.ncbi.nlm.nih.gov/clinvar/
http://cancer.sanger.ac.uk/cosmic
https://www.ncbi.nlm.nih.gov/SNP/
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(iv) “ESP”7 (Exome Variant Server, 2012) (v) “HGMD-PUBLIC”8 (Stenson

et al., 2014) and (vi) “PhenCode”9 (Giardine et al., 2007). Detailed informa-

tion describing the six reference databases can be found in Table 3.1.

Table 3.1: Databases which EnsVar retrieves its data from.

Database - full name Database -
abbreviation

Data Description Reference

Catalogue Of Somatic

Mutations in Cancer

ClinVar aggregates information about genomic varia-

tion and its relationship to human health; fo-

cus on medically important variants and phe-

notypes

Landrum et al. (2014)

Catalogue Of Somatic

Mutations in Cancer

COSMIC information about somatic mutations in human

cancer

Forbes et al. (2015)

Database of Short Ge-

netic Variations

dbSNP hosted by NCBI; contains small genetic varia-

tions < 50 base pairs (bp)

Sherry et al. (2001)

NHLBI Exome

Sequencing Project

ESP focus on heart, lung and blood disorders; next-

generation sequencing data of human pro-

tein coding regions is used to discover novel

gene/mechanism-disease associations

Exome Variant Server

(2012)

Human Gene Muta-

tion Database

HGMD-
PUBLIC

free and public version (slightly less up-to-

date); supplies information about (published)

gene lesions underlying and/or causing human

inherited disease

Stenson et al. (2014)

PhenCode PhenCode aims towards better understanding of relation-

ships between genotype and phenotype in hu-

mans, specifically focusing on clinical data;

information combination from various locus-

specific mutation databases with genome se-

quence data and evolutionary history

Giardine et al. (2007)

Gene Reference into Function (GeneRIF) (Jimeno-Yepes et al., 2013)10 provides a

simple mechanism for researchers to integrate functional annotations of genes

to genes listed in the NCBI EntrezGene “Gene” database (Maglott et al., 2005).

Thereby it enriches available information, through e.g. functional terms or dis-

ease association. It is based around an open system where scientists can submit

information for the wider community. A peer-reviewed publication is required to

support any description which requires experimental and not only computational

evidence. Additional information can be accessed with, e.g., text mining tools to

7http://evs.gs.washington.edu/EVS/
8http://www.hgmd.cf.ac.uk/ac/index.php
9http://phencode.bx.psu.edu/

10https://www.ncbi.nlm.nih.gov/gene/about-generif

http://evs.gs.washington.edu/EVS/
http://www.hgmd.cf.ac.uk/ac/index.php
http://phencode.bx.psu.edu/
https://www.ncbi.nlm.nih.gov/gene/about-generif
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obtain genes with descriptions of interest.

Online Mendelian Inheritance in Man (OMIM) , the Online Catalogue of Human

Genes and Genetic Disorders11 (McKusick, 1998; Amberger et al., 2009) con-

tains text based annotations regarding all known Mendelian disorders for more

than 15,000 human genes. OMIM focuses on the relationship between pheno-

type and genotype. Text-mining approaches can be used to extract information

such as gene-disease links of interest.

Raw data containing information about PD associated genes is supplied as digital sup-

plementary material (folder: “PD-associated-data”, the README file contains de-

tailed information about the individual files).

3.3 Results

3.3.1 PD associated genes studied in literature

To obtain an overview of existing PD research, a manually curated dataset of genes

associated with the disease was generated. A representative, rather than exhaustive

list of publications, based on recommended papers and references, was gathered (see

NCBI search as specified in Section 3.2.2). Publications were considered individually

and a set of 52 Entrez IDs were extracted, several of them appearing in more than one

publication. The identified genes of interest are: ACMSD, ADORA2A, APP, ATP13A2,

BST1, CACNA1D, CALB1, CALM1, CALR, CCDC62, CCL5, CDH8, DGKQ, EIF4G1,

GAK, FGF20, GBA, GIGYF2, GPR37, HIP1R, HSPA4, HTRA2, ICAM1, ITGA8, MCC,

LAMP2, LAMP3, LRRK2, MAPT, MCCC1, NOS2, NR4A2, NSF, PANK2, PPARGC1A,

PARK2, PARK7, PARK12, PARK16, PINK1, RAB25, SLC25A48, SLCO3A1, SNCA,

SNCAIP, STK39, SYT11, TMEM163, UCHL1, UNC13B, VPS35, WNT3. Appendix

Table A.1 presents an overview, including human Entrez IDs and reference sources.

This set represents the in-house generated set of PD associated genes.

3.3.2 PD associated genes based on expression data

Altered gene expression, which is detected as changes in level of expression at the

transcriptome or exome level, may have a direct impact on the proteome or interfere

11https://www.omim.org/

https://www.omim.org/
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in intracellular regulatory processes. Such changes can influence both disease devel-

opment as well as the overall disease picture which are both of considerable interest to

the research community.

A first PD microarray meta-analysis was published by Chandrasekaran and Bonchev

(2013). Raw data is available via the GEO. Two years later a second statistical meta-

analysis of human brain transcriptome data by Glaab and Schneider (2015) analysed

a larger number of public microarray gene expression datasets to identify significantly

affected pathways in PD patients.

Three original case-control studies, as well as the first meta-analysis were consid-

ered as references for this work and details of the original studies can be seen in Table

3.2.

Table 3.2: Four gene expression microarray studies, used to obtain PD associated dif-

ferently expressed genes. “Publication” refers to the study, “Brain Region” describes the

tissue that was analysed, “Array Type” gives information about the array (all Affymetrix

human GeneChips covering the whole human genome). The significance threshold

shows p-value and fold-change information applied during original data analysis. “As-

sociated Genes” shows the number of genes identified in the study, “Additional Infor-

mation” contains further details, “Mapped Genes to Entrez ID” refers to the number of

genes which were extracted from the study and successfully mapped to a unique En-

trez ID and “Sample Size” refers to the number of samples (PD cases/controls) tested

in the study.

Publication Brain Region Array
Type

Significance
Threshold

Associated genes Additional Information Mapped
genes to
Entrez ID

Sample
Size
(PD/
control)

Chandrasekaran and
Bonchev (2013)

post-mortem

brain samples

UI33A,

UI33B

p-value < 0.01 267 Entrez IDs and Gene Symbols full gene list was supplied

after contacting the author

267 30/24

Moran et al. (2006) post-mortem me-

dial and Lateral

Substantia Nigra

U133A,

U133B

fold change > 1 -

fold

570 differentially expressed genes - top 21

differently expressed genes, also confirmed in

a second study; top 25 records based on gene

sequences and mapping to regions of estab-

lished PD linkage were supplied

data (Gene Symbols) man-

ually copied from publica-

tion

43 32/15

Simunovic et al.
(2009)

post-mortem (iso-

lated) Substantia

Nigra dopamine

neurons

U133A p-value < 0.005;

50 top records:

fold-change > 3;

375 genes fold-

change > 1.5

1048 records in total - filtered for top scoring

ones

data (Gene Symbols) man-

ually copied from supple-

mentary file

335 11/11

Zhang et al. (2005) post-mortem

Broadmann's

Area 9, Putamen,

Substantia Nigra

U133A p-value < 0.05;

fold-change was

> 1

published top 50 records for each brain area

and combined top changed genes list

data (Uni Gene IDs and

Gene Symbols) manually

copied from supplemen-

tary Table II

85 15/15

All samples were post mortem, and information regarding the tested brain region

from which human tissue was obtained, the used microarray chip (all Affymetrix hu-

man GeneChips covering the whole genome) as well as a summary of the findings are
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presented. The number of significantly differently expressed genes associated with PD

per study can be found in column “Mapped Genes to Entrez IDs”.

Based on the four studies, 667 unique genes (based on Entrez IDs) were identified

to be significantly differently expressed in PD patient’s brains compared to healthy

controls. As visualized in Figure 3.2 the majority of genes is only associated with PD

in one study. None of the records could be replicated in all four studies, and only 57

genes (~8.5% of all genes detected via microarray studies) are found in at least two

datasets.

Figure 3.2: Venn Diagram showing the overlap of genes significantly associated with

PD (based on Entrez ID count). The different coloured ellipses represent Entrez IDs

that have been associated with PD based on a microarray expression study. The four

compared studies are: Chandrasekaran and Bonchev (2013) (red), Simunovic et al.

(2009) (green), Zhang et al. (2005) (blue) and Moran et al. (2006) (turquoise). Numbers

in overlapping regions indicate genes found in one or more studies.
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3.3.3 PD associated genes with genetic and/or manually curated

evidence

The genome of many PD patients shows alterations. As outlined in Section 1.5.3,

topONTO was the tool of choice to retrieve PD associated genes. This decision was

based on the principle of retrieving reviewed, curated and high quality disease-gene

association data. The ability to retrieve information from several databases as well as

meta-data allowed for best possible data screening, filtering and curation. The coming

paragraphs explain required steps.

The Disease Ontology (DO)12 was developed to associate unique identifiers to hu-

man diseases (Schriml et al., 2012; Kibbe et al., 2014), referred to as Disease Ontology

Identifiers (DOIDs), and was used to obtain a list of genes associated with PD. The

unique DOID for PD is “14330”. It describes PD as a “synucleinopathy” which is

classified as a “neurodegenerative disease”. Seven child terms are associated to PD

and can be seen in Figure 3.3.

  

Parkinson’s Disease
(DOID:14330)

Synucleinopathy

Lewy Body Dementia

autosomal recessive 
juvenile PD2 

(DOID:0060368)

autosomal dominant 
PD 1

(DOID:0060367)

early onset 
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(DOID:0060369) autosomal recessive
early-onset PD 7 
(DOID:0060370)

autosomal dominant
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(DOID:0060371)
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early-onset PD 15
(DOID:0060372)

Kufor-Rakeb syndrome
synonym for: autosomal recessive PD 9

(DOID:0060556)

Multiple system atrophy

Neurodegenerative disease

Figure 3.3: DO graph showing PD with its parent and child terms. DOIDs indicated in

brackets are the official disease identifiers, used to extract associated genes. PD as

well as all subtypes, indicated in boxes with blue borders are used in the analysis.

12http://disease-ontology.org/

http://disease-ontology.org/
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Since topONTO queries data from different sources: (i) EnsVar (ii) GeneRIF and

(iii) OMIM, these were considered separately and jointly. Depending on the source,

gene-disease associations are only made if the exact DOID is associated with the gene,

but not the parent term. This means that some genes associated with a disease subtype

are not associated with the parent disease term (PD) itself. To obtain a full gene set

individual searches were carried out for all PD subtype DOIDs, as identified in the DO

tree.

After obtaining the results, data was manually checked. A number of irregularities

were spotted. E.g. it was not possible to directly map the Entrez ID 401884 to a gene

symbol. Closer analysis showed that it refers to a discontinued NCBI entry which is

now Entrez ID: 147081 and included in the dataset. Therefore the discontinued record

was deleted from the list. All other entries identified by topONTO could be confirmed

and Table 3.3 shows that 635 genes were associated with at least one of the DOIDs.

Source database specific information is shown in different columns. As indicated by

the numbers in brackets, only two disease subtypes show genes specifically associated

with them, but not directly to PD. In both cases, autosomal recessive juvenile PD 2

and autosomal recessive early onset PD 7, all hits were retrieved from the GeneRIF

database.

Table 3.3: Number of genes associated with PD based on the topONTO query. Columns

refer to the different source databases and “Disease (Subtype)” refers to the different

PD subtypes (see Figure 3.3). Numbers in brackets refer to the number of genes asso-

ciated with only the disease subtype but not PD itself.

Disease (Subtype) Ensembl Variation GeneRIF OMIM All Sources (joint)

PD 290 372 19 620

autosomal dominant PD 1 0 5 0 5

autosomal recessive juvenile PD 2 0 22 (14) 0 22

early onset PD 6 0 3 1 3

autosomal recessive early onset PD 15 0 2 0 2

autosomal recessive early onset PD 7 0 7 (2) 1 7

autosomal dominant PD 8 0 3 0 3

Kufor Rakeb syndrome 0 0 0 0

All Disease Types (joint) 290 388 21 635

Databases follow distinct annotation approaches for generating the different gene

sets. To identify the overlap between PD associated genes depending on the reference

source which detected them, Figure 3.4 shows their overlap.

As illustrated, the number of genes appearing in all three databases is rather small,
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Figure 3.4: Venn Diagram showing the overlap of genes significantly associated with

PD based on data retrieved with topONTO; PD subtype term results are included.

containing only 18 records. This phenomena can be explained by the differences in na-

ture of the annotation mechanisms of the databases and distinct focus on the reference

data.

As outlined in the Section 3.2.2, OMIM is based on text information regarding

Mendelian disorders. OMIM genes are directly associated with PD or its respective

subtypes. Due to well curated expert annotation information the data is of highest

quality. With 21 PD associated genes based on OMIM data, this group makes the

smallest part of topONTO queried results. All identified genes are also found in at least

one of the other two databases, confirming the high annotation quality.

GeneRIF is also based on an open system, describing genes in terms of function

and gene-disease association. A total of 388 genes are associated with PD based on the

GeneRIF database. Compared to OMIM, annotation terms vary more widely. GeneRIF

uses the following “term_names” to retrieve PD associated genes: “park1”, “park15”,

“park2”, “park6”, “park7”, “park8”, “parkinson disease”, “parkinson disease (parkin-

son’s disease)” and “parkinson’s disease”. Manual curation showed that the “park-x”

terms refer more likely to the PARK genes and are often analysed in a different context.

In several cases text containing a “park-x” associated genes describes associations to

e.g. a cancer risk factor. For best data quality all genes associated with PD based on a

“park-x” term were excluded from the GeneRIF gene set. Additionally one discontin-

ued entry was identified (Entrez ID 23707) and removed. This reduces the GeneRIF

dataset from 388 to 372 genes, all of which are associated with either “parkinson dis-

ease” or “parkinson’s disease”.

As Figure 3.8 illustrates, those 15 “park-x” associated entries were only present in
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the GeneRIF database.

Overall, PD is a well defined term. Since it represents an unambiguous concept

text-mining approaches tend to be highly reliable, and errors are unlikely. Additionally

the above filtering step makes GeneRIF data more concise by only targeting PD as a

disease and not genes associated by name. Nevertheless negative associations can

be part of the descriptions. For example a text annotation such as: “gene A is NOT

related to PD” or “there is NO association of gene A to PD”. Hence GeneRIFs text

annotations were manually filtered, by reviewing all entries containing either “NOT”

or “NO”. Based on manual inspection of the descriptions, 10 genes were excluded due

to only negative association to PD (Entrez IDs: C1QA, C1QB, DRD4, GSTA4, HCRT,

HFE, IL10, PSMC1, STX6 and TLR9. All those were only referenced in the GeneRIF

database. Some more negative associations were identified, but they all showed at least

one positive association based on a different reference and were kept in the disease-

gene datasets.

This filtering step leaves a total of 362 genes retrieved from the GeneRIF data base.

The overlap with the other datasets and final numbers are addressed later on (Figure

3.8).

EnsVar is based on identifying genetic alteration, such as SNPs. In this case,

topONTO extracts SNP-disease associations. Based on the SNP location disease as-

sociated genes are identified.

This approach is required due to the raw data EnsVar supplies. Associating SNPs

to genes is not an easy task and topONTO uses a relatively straight forward approach.

EnsVar supplies the position of a SNP on the genome. That information is compared

with gene locations (gene coding sequences (CDSs)) were retrieved from Ensembl

gene, via biomart). Genes associated with a SNP are (i) overlapping with the SNP

position, (ii) the closest upstream or (iii) the closest downstream gene relative to the

SNP location. Figure 3.5 illustrates the three situations.

  

5’ 3’

Coding DNA strand
GENE

downstream
SNP

upstream
SNP

overlapping
SNP

Figure 3.5: SNP-gene association classification of SNPs extracted from the EnsVar

database, based on their position on the genome relative to the gene.
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Figure 3.6 shows that around one third of all previously identified genes contain at

least one SNP that is overlapping with the CDS (“overlapping SNP”). Another third of

the genes is associated with PD by virtue of being either the closest up- or downstream

one (“upstream SNP”, “downstream SNP”’). Four genes are identified with an over-

lapping as well as up- and downstream SNP linked to the them. These are: LRRK2:

leucine-rich repeat kinase 2 (120892), CRHR1: corticotropin releasing hormone recep-

tor 1 (1394), TMEM175: transmembrane protein 17 (84286) and MAPT: microtubule

associated protein tau (4137), all very well known to be associated with PD. Observing

three different SNPs associated with those genes might confirm their high impact on

the disease, meaning that distinct genetic alterations impact on the same gene.

72 96
5

95

11 7
4

overlapping SNP upstream SNP

downstream SNP

Figure 3.6: Venn diagram showing genes associated with PD based on a SNP (derived

from EnsVar). The different circles indicate the relative position of the SNP to the gene

(Figure 3.5). Numbers refer to gene numbers and one gene can be affected by several

SNPs.

Spatial information of the SNP relative to the gene is of interest since it can con-

tain more details about the potential effect on the affected gene. Figure 3.7 shows a

more detailed gene overview, visualizing the CDS. Based on the Ensembl glossary

definition the CDS only consists of protein coding sequences, exons. Nevertheless the

spatial comparison only considers start and stop position of the CDS meaning that an

overlapping SNP can also be located in an intronic, 5’ or 3’ UTR (untranslated) region.

The exact SNP location determines the effect on the protein. A genetic variant

(SNP) in an exon can directly affect the protein, through alteration of its DNA sequence
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and the produced protein. Alterations in an intronic or 5’ and 3’ UTR do not always

have to show a direct effect, but most likely do so. Overall SNPs lying in a gene coding

region are relatively well studied and their effect on the protein can be analysed more

easily compared to SNPs located elsewhere. In fact, it is almost impossible to screen

the effect of SNPs not overlapping with exons in the CDSs in an automated manner.

Mutations allocated in an intron might not show a direct effect on the protein but can

do so, e.g. through the generation of additional splicing sites, and hence modify the

gene product and transcribed protein. SNPs in the 5’ and 3’ UTR are more likely to

show effects on the gene expression regulation if at all.
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Figure 3.7: Schematic illustration of gene components, highlighting the gene coding

sequence.

SNPs that are located up- or downstream of the associated gene can show a different

level of influence, or not influence the currently associated genes at all. Due to the

complexity of the genetic code it is possible that the up- and downstream regions of

a gene contain sensitive regulatory regions. If these are affected by the SNP, gene

expression levels can be influenced. This is true if e.g. the transcription factor binding

sites, such as a TATA-/CCAAT-box is affected (Figure 3.7). Since such details are

not widely annotated, they were not considered for further data filtering, but can be

considered in individual cases.

Based on this knowledge it was decided to currently only consider genes showing

mutations with at least one overlapping SNP for further studies. This means that 198

PD associated genes based on non-overlapping SNPs are excluded.

After analysing gene-disease associations separately, highly trustable datasets were

combined. These are:

• all 21 positive entries from the OMIM search,

• all 92 genes associated with overlapping SNPs (EnsVar) and

• the filtered list of 362 GeneRIF results.



3.3. Results 49

The joint set is constituted of a total of 418 genes. The core PD associated gene

set is highlighted in Figure 3.8. Numbers labelled with a * belong to the set of 418

genes. This will be the reference set of PD associated genes based on best possible

data curation methods and highest data quality.
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Figure 3.8: Venn diagram summarising all the filtering steps of the data retrieved with

topONTO. Gene numbers with a star refer to gene sets that are part of the final PD

associated gene set.

3.3.4 Meta-analysis

After having identified, verified and cleaned all PD associated gene sets the overlap

between the datasets was analysed. Three gene sets were considered:

• the manually curated literature list with 52 PD associated genes (Section 3.3.1),

• the full list of 667 PD associated genes based on microarray studies (Section

3.3.2) and

• the fully filtered list of 418 genes associated with PD based on a filtered topONTO

query result (Section 3.3.3).

A total of 1055 unique genes were identified. As Figure 3.9 shows, different sources

lead to different results, showing a very small overlap between the datasets.

Only 10 genes appear in all three sources. These are: APP, ATP13A2, HTRA2,

MAPT, NSF, PARK7, PINK1, SNCA, UCHL1, WNT3. Table 3.4 shows an overview
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Figure 3.9: Venn diagram showing the overlap of PD associated gene sets retrieved

from different sources.

of these with additional detailed information. Regarding the genetic evidence, all but

one gene are found in EnsVar, with an overlapping SNP. APP is the one gene not

to be found in EnsVar, but showing a very strong disease link based on its GeneRIF

annotation. Four genes are also found in the OMIM database, further confirming the

high disease association and genetic link.

Genes associated with PD based on expression differences show that NSF was

found in three out of the four considered studies. Seven records were found by Simunovic

et al. (2009) and four by Chandrasekaran and Bonchev (2013). Genes MAPT, SNCA,

PARK7 and PINK1 have also been identified in more than one manually annotated

study.

11 genes appear only in the PD literature dataset. These are (in alphabetical or-

der of gene name): ACMSD (reference pubmed ID: 22438815, 21812969), CACNA1D

(23771339), CALR (23771339), HIP1R (22438815, 22786590), ICAM1 (18044695),

MCC (22438815), RAB25 (22438815), PANK2 (22806825), SLCO3A1 (21812969),

SLC25A48 (21812969), TMEM163 (22438815). Another two PD literature based as-

sociated genes only overlapped with genes showing PD association based on altered

transcription. These are: CALM1 (23771339) and CDH8 (21812969).

Due to the large differences between the PD associated gene sets the significance

of their overlap was analysed. A hypergeometric test was used to identify significance

in the overlap of PD associated genes based on the filtered topONTO query, compared

to the PD associated genes based on the four microarray studies. A p-value was calcu-

lated, as described in Section 2.3.1. The background dataset contained 20,000 genes
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Table 3.4: PD associated genes referenced in all three sources (ordered numerically

by Entrez ID). “Genetic Evidence” can be “E” for EnsVar, “G” for GeneRIF or “O” for

OMIM“; “Microarray Study” is “C’ (Chandrasekaran and Bonchev, 2013), “M” (Moran

et al., 2006), “S” (Simunovic et al., 2009) or “Z” (Zhang et al., 2005). “Literature Refer-

ence” lists the pubmedID of the paper(s) where the PD link was recorded.

Entrez ID Gene Symbol Genetic Evidence Microarray Study Literature Reference

351 APP G S 22438815

4137 MAPT E, G, O S 22438815, 22806825

4905 NSF E M, S, Z 21812969

6622 SNCA E, G, O C, S 23380027, 20495568, 22438815, 21812969, 22786590,
21412835

7345 UCHL1 E, G, O S 23380027

7473 WNT3 E C 21812969

11315 PARK7 E, G S 23418303, 23380027, 20495568, 22581678, 21812969

23400 ATP13A2 E, G C, M 23380027

27429 HTRA2 E, G, O C 20495568

65018 PINK1 E, G S 23380027, 20495568, 22581678, 21812969

(all human protein coding genes, (Ezkurdia et al., 2014)) and the dataset of interest

with 418 PD associated genes (core PD associated gene list). The sub-sample consid-

ered contains 667 PD associated genes based on microarray studies. 37 genes were

found in both datasets. The hypergeometric test showed that the probability of finding

37 successes or more in the sub-sample given the indicated background and dataset

size is: P(X >= 37) = 2.30∗10−08. This is a highly significant overlap, indicating that

the PD associated datasets are not unspecific, but potentially cover different disease

aspects.

3.3.5 Summary

Important differences in the PD associated datasets, obtained depending on input data

and applied methods, were identified. A decision regarding which datasets to take

forward as a reference was needed. As stated previously, the objective of this part of

the study was to obtain the most concise PD gene set possible.

The results presented highlight the differences between available datasets. This

variety reflects the complexity of PD and confirms what was outlined in the Central

Dogma of Molecular Biology (Figure 1.1 A).

Since the datasets presented may cover distinct disease aspects, disease states, dis-

ease types or others a core PD datasets of interest needed to be selected. Genomic al-

terations are generally associated with underlying disease causes and triggers, whereas

changes in the transcriptome and subsequently proteome most likely reflect the dis-
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ease phenotype. Additionally, manually reviewed and annotated data is more secure

and linked to a direct disease association. Based on this understanding, the most reli-

able dataset describing directly disease associated PD genes was selected.

The PD associated genes based on literature search nicely coincide with parts of

the other datasets, with a tendency towards genes retrieved through the topONTO query.

Eleven genes have not been identified in other studies. This gives an interesting insight

and shows that several individually identified genes seem to have a disease link that

has not yet been discovered in any large-scale study. This phenomena might be ex-

plained by the very detailed focus of experimental studies addressing pathways very

specifically. Such studies are also able to detect genes/proteins with a rather minimal

influence on the disease which can not be picked up in more generic settings.

Raw data from microarray studies was available, but time was too short to repro-

duce the published findings and confirm consistency in significance of the detection

levels. Due to the variability in the published results, especially regarding the signifi-

cance thresholds (Table 3.2), it was decided to use this dataset as a “wider” description

of the disease picture, with a tendency towards capturing the disease phenotype and

pathology. The fact that its overlap with the genes obtained via topONTO is signifi-

cant, based on hypergeometric testing, proves a clear link of both datasets with PD.

Hence, the possible indirect relationship between the two datasets that might emerge

based on molecular regulatory mechanisms, adds great comparative value to the gene

set obtained through microarray experiments. It could be considered a great source for

comparison with new hypothesized PD associated genes later on in this study. Fur-

thermore the minimal overlap of results between datasets was surprising. This finding

can be caused by different aspects. Tissue extraction, preparation, experimental setups,

and data analysis can be some of them. Additionally the results might cover different

disease types or stages. Therefore all identified genes might play a role in PD but more

studies are required to confirm these links. To maintain a general focus on disease

causative genes and given the low coverage for most of the records identified in the

microarray studies, this dataset was excluded from the key PD associated genes.

In summary, the key PD associated gene set includes PD associated genes deposited

in curated databases and the ones with an overlapping SNP in their CDS. Regarding

data retrieved from EnsVar, GeneRIF and OMIM (all obtained via topONTO a number

of filtering steps were taken to obtain the “best possible” dataset (Section 3.3.3)). This

leads to a core gene set which will be considered for further analysis in the following

chapters. The “key PD associated gene set” contains 418 PD associated genes. 37
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and 12 genes in the set overlap with the PD microarray evidence dataset and the PD

literature dataset respectively. 10 genes can be found in all three datasets (Figure 3.9).

For comparative purposes, the set of 1055 PD associated genes is relatively broad

but of good value to be used to gain a more general PD overview. It also represents

a valuable reference source, especially with regard to the microarray records. These

might likely capture PD associated genes having the potential to explaining the disease

“phenotype”, supporting functional conclusions at a later stage of this study.

3.4 Discussion

A lot of effort has been put into identifying and understanding underlying causes of PD.

A growing number of publications use large-scale approaches to gain wide understand-

ing of this complex, neurodegenerative disease. Experimentalists mainly ask specific

questions and analyse individual candidate processes in detail. This study aimed to

identify a key set of genes describing the genetic and molecular PD complexity on a

large scale. The endeavour was addressed through integration of PD associated data

from different databases, covering specific disease aspects.

Data was retrieved and filtered to obtain the most concise and comprehensive

dataset covering different aspects of the disease. Even though datasets seem quite dif-

ferent a small, but significant overlap between datasets capturing PD associated genes

based on genetic and curated information versus gene expression alterations was iden-

tified. This indicates that datasets are specifically describing common aspects of the

disease, but very likely mutations are not directly reflected on the gene expression level.

Different approaches are possibly capturing distinct disease aspects and are biased to-

wards the detection sensitivity they have towards a certain set of disease associated

genes.

Different insights can also emerge due to differences in experimental material and

analysed tissue. Extraction, preparation and further conditions such as post-mortem

tissue processing, biopsy techniques and the use of specific tissue parts can highly

influence results. This can also be considered a positive point, since it might capture

a wide range of PD subtypes covering a large variety of factors to be considered to

capture the full disease picture. Nevertheless this means that current datasets can show

biased results, depending on their strengths and weaknesses of the underlying detection

approach, leading to the encountered differences.

Overall differences between topONTO and microarray results are likely to reflect
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the influence of the genes on the PD genotype and phenotype.

The literature based dataset only supplies very superficial insights and one would

suspect a bias towards genes and proteins that are more easily studied and experimen-

tally analysed. They might also show a longer detection history and/or well known

disease links. This dataset is far from complete but shows higher overlap with genes

with a genetic and manually curated link to PD. It is difficult to judge if genes are anal-

ysed based on previous experimental findings, their appearance in large GWAS studies

or based on therapeutic potential. In any case this approach gave a good first insight to

the field and could suggest experimental approaches, mostly addressing genes showing

mutations and possibly triggering the disease without directly influencing the disease

phenotype.

Considering the vast differences between the results obtained in the different mi-

croarray studies, obtaining experimental material is a crucial step to ensure data qual-

ity. When working with human brain tissue, this is specifically challenging, since it

involves collecting post-mortem samples. Depending on tissue extraction procedures

and timing, certain intracellular degradation processes might have become active in

brain cells and influence the results. Nevertheless this is a phenomena that affects all

studies of this type and can be counteracted by guaranteeing a maximum time between

death and obtaining the tissue. Differences in the dataset size reported in the distinct

studies can be partly explained by individual significance thresholds, the material, de-

tection and analytical sensitivity. Further aspects influencing microarray expression

study analysis are analytical procedures and thresholds. Since these highly influence

the results they introduce bias and complicate cross comparison of results amongst

studies. Sample and data quality differences can emerge at various levels also consid-

ering technical setups. The selection of test samples and controls is specifically chal-

lenging considering complex diseases, such as PD. The joint consideration of patients

with potentially distinct disease types might lead to confusion of disease associated

gene expression differences. Similar effects can happen in case controls are affected

by undetectable alterations highly specific to individuals and modifying significance in

obtained results.

All these challenges represent limitations of the use of microarray expression study

results in other projects, not diminishing the information it can contribute to the dis-

ease understanding as an additional reference and/or as support to distinct research

questions. They reflect an additional point why this data was excluded in the final PD

associated gene set
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In the curated datasets, the annotation specificity of GeneRIF adds an additional

level of information, but also a source of error. Human annotation and interpretation

error can lead to false positive records in databases. Mapping genes only to PD sub-

types but not to the parent PD term might lead to their exclusion. This is also reflects

the properties of the GeneRIF database, where associations between gene and diseases

are not automatically propagated to parent nodes in the ontology tree. Nevertheless,

in-depth detailed insight and associations considering disease subtypes can be very

valuable and need to be considered when carrying out large-scale studies. To counter-

act these phenomena the presented study explicitly included information covering all

disease subtypes.

Using data with a genetic link retrieved from EnsVar is the most secure approach to

use when drawing conclusions regarding the PD genotype. The further filtering step,

screening results for genes with CDS overlapping SNPs additionally support this link

and should be considered before drawing conclusive decisions. For further certainty a

number of other aspects could be considered. The aforementioned (in-) direct effect of

SNPs and their effect on the affected gene, apart from the SNP position, can be influ-

enced by the number of alterations found in one gene. This number would also need to

be interpreted depending on the gene length. This is just one additional example of the

drawbacks in using relatively direct gene-disease association approaches. A number of

approaches are being developed to describe the effect of genetic alterations on a gene

in a score based system. Such an approach can further support gene-disease links and

improve data quality which could be considered in future studies.

As far as can be ascertained, this is the first study directly comparing disease as-

sociated data retrieved from different sources and capturing distinct PD aspects on a

large scale and in this level of detail.

The PD map (Fujita et al., 2014)13 is a joint effort addressing a similar question

and trying to build a set of “all” genes associated with PD. The data is publicly avail-

able and accessible in a very interactive way. Nevertheless included genes are not all

evidence based, or evidence is not shared with the user, making it very hard to under-

stand the strength of a gene-PD link in depth. As this chapter shows, such information

can have a large influence in the reproducibility of results and likely the type of gene-

disease-link. Therefore the presented manually curated gene set was preferred for the

available details.

The findings also illustrate that in the case of PD, as probably with any other com-

13http://minerva.uni.lu/MapViewer/

http://minerva.uni.lu/MapViewer/
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plex neurodegenerative disease, datasets should be treated individually when required

(which is not possible in the case of the PD map). Doing so will avoid wrong con-

clusions being drawn, and allows detection of “real patterns”, focusing on e.g. the

genotype or phenotype of a disease.

Overall, a key advance presented in this chapter is the combination and thorough

analysis of data from multiple data sources and different levels in the biological ma-

chinery, defining the disease picture. More importantly manual curation steps were

performed to confirm and/or discard initially detected gene associations to PD, leading

to a high quality set of PD associated genes.

Even though a gene set was obtained, further detailed disease insights are missing.

The complex disease pattern suggests that a range of different PD subsystems are af-

fected by several genes in the dataset. Those are very likely to be connected and/or

influencing each other, making the picture even more complex. Since individual gene

analysis does not allow such links to be detected, these need to be analysed and under-

stood on a large scale. For this purpose Protein-Protein Interactions are of most inter-

est, as they allow cross-links to be established between affected genes, likely involved

in the disease. The coming chapter introduces the concepts behind such an approach

and following chapters introduce their effective use in Protein-Protein-Interaction Net-

works and draw first conclusions regarding the PD complexity.



Chapter 4

Protein-Protein Interaction Data

4.1 Objective

Even though an increasing number of databases supply Protein-Protein Interaction

(PPI) information in a standardised format, most researchers obtain their PPI data

from just one of the available ones, running the risk of ignoring crucial information

deposited in other repositories. In order to avoid such loss of information this chap-

ter merges content from multiple databases. This endeavour allows differences and

similarities among datasets used, to be identified. These insights can then be used to

set adequate filters to obtain a clean, human-only unified reference PPI dataset. Pro-

cesses such as mapping of gene and protein identifiers as well as joining datasets are

performed using available bioinformatics tools and methods.

Hence, this effort aims towards obtaining a clean, curated, human-only PPI set,

which is a valuable source for further analysis, guaranteeing highest quality of results

and bridging the gap between data deposited in different databases. Figure 4.1 shows

an overview of sources, techniques and the outcomes of this chapter.

57
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Figure 4.1: Overview of work presented in Chapter 4. Input databases are shown

in dark blue boxes (turquoise represents a special case addressed in the text and ex-

cluded in the final PPI set). Light blue stands for newly generated and curated datasets.

A yellow box refers to processes, leading to an analytical result (pink boxes). Green

boxes represent outputs of this chapters analysis or future results.

4.2 Introduction and Data Processing

4.2.1 Protein-Protein Interactions

Interactions of proteins as well as interactions between proteins and other biomolecules,

are crucial for any process happening within and between cells. Only interactions can

trigger signals, initiate enzymatic processes and release interaction cascades, through

activation, inhibition, or other processes. Some of the most common ones appear be-

tween e.g. enzyme and inhibitor or antibody and antigen but a large number of other

interactions are required for cells to fully function.

Two types of PPI interactions can be easily distinguished: transient or stable ones

(Perkins et al., 2010). Transient interactions lead to specific effects in a short time

width, whereas stable ones usually lead to more permanent multiprotein complex for-
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mation. For example, the formation of a clathrin cage, involved in endocytosis, as well

as most reactions in signalling pathways are transient interactions (Ozbabacan et al.,

2011). In the clathrin case cages build up, carry out their function and disassemble.

Since this is not a permanent state, interactions are considered as transient. In contrast

the ribosome, a large macromolecular complex and the gamma-aminobutyric acid type

A receptor (GABAA) rely on highly stable and permanent PPIs. In both cases it is the

joint protein complex that carries out a function and can only do so as a fully assem-

bled union. Such complexes can vary in size and most often act as molecular machines

in living systems. Their constitution is referred to as quaternary structure, describing

interacting domains and structural relationships between individual proteins (Yu et al.,

2006).

The transition between the two types is difficult to define and it is relatively hard

to experimentally identify the interaction type. Nevertheless depending on detection

approach used, physical interactions between protein pairs can be classified based on

standardised interaction types. This point is addressed and discussed later on in this

chapter (Section 4.3.1).

An additional challenge is the specific identification of binary interactions, based

on only two elements, as opposed to the presence of two elements in one complex, not

undergoing a direct interaction. Some databases maintain information including this

distinction, but the majority do not. Often, if experiments supply data based on com-

plexes these are “spoke expanded”, meaning that all possible protein pairs in a complex

are considered as PPIs (Gingras and Raught, 2012). In particular this is specifically

the case when retrieving data through so-called pull-down experiments. This practice

might not be the best approach but is widely accepted and frequently used on a large

scale.

Various high-throughput techniques exist to extract PPIs on a large scale. Amongst

these are yeast-two-hybrid, pull-down and co-localization studies (Berggård et al.,

2007). Experiments can be carried out with proteins from different species and even

cross species, meaning that for example human proteins are expressed in a mouse cell

line (in-vitro). Different approaches are more suited to identify certain types of PPIs.

An exhaustive, recent review explains the different techniques (Wetie et al., 2013).

Additionally, computational approaches can predict human PPIs based on structural

similarities or occurrence in other species such as mouse and rat. These rely on ho-

mology and interolog mapping (Folador et al., 2014).

Nowadays most published PPI studies submit their data to at least one of the major
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databases, or databases identify new publications and include PPIs in their repositories.

To combine data from multiple sources additional analysis is required. The following

section explains the most commonly used, current standard format put in place to store

data and facilitate its analysis.

4.2.2 Data Format

The mitab25 format (following PSI-MI standards) allows researchers to access pub-

lished PPI data in an easy and automated way, allowing direct integration into work-

flows. HUPO, the Proteomics Standards Initiative introduced the PSI-MI TAB format

for data storage and interchange in a tab delimited format (Hermjakob et al., 2004a;

Kerrien et al., 2007)12. As such it is under constant review to serve the scientific

community as required. To follow the format’s standards a minimum of 15 standard

columns are required with each of them containing predefined content. An overview

is given in Table 4.1. Further columns can be added but are not required.

Table 4.1: 15 standard mitab columns together with their content, including an example

(randomly selected, not consistent between different columns).

Column Content Example

1 & 2 interactors entrez gene/locuslink:84665; uniprotkb:P49418

3 & 4 alternative IDs biogrid:124185; entrez gene/locuslink:MYPN; intact:EBI-

7121510; uniprotkb:Q75MK5; intact:MINT-109264

5 & 6 interactor aliases entrez gene/locuslink:CMD1DD(gene name synonym);

psi-mi:amph_human(display_long); uniprotkb:AMPH(gene

name); psi-mi:synj1_human(display_long); uniprotkb:Synaptic

inositol 1,4,5-trisphosphate 5-phosphatase 1(gene name

synonym)

7 interaction detection method psi-mi:"MI:0018"(two hybrid); psi-mi:"MI:0084"(phage dis-

play)

8 first author, reference publication "Bang ML (2001)"; Cestra et al. (1999)

9 publication identifier pubmed:11309420; mint:MINT-5211933

10 & 11 taxon ID of interactors taxid:9606; taxid:9606(human); taxid:9606(Homo sapiens)

12 interaction type psi-mi:"MI:0407"(direct interaction)

13 source database psi-mi:"MI:0463"(biogrid); psi-mi:"MI:0471"(MINT)

14 interaction identifier biogrid:117; intact:EBI-7121552; mint:MINT-16056

15 confidence score (if available) -; intact-miscore:0.56

Some of the meta-data can be standardised through the use of MI-IDs. MI-IDs

1http://www.psidev.info/molecular-interactions
2https://psicquic.github.io/MITAB25Format.html

http://www.psidev.info/molecular-interactions
https://psicquic.github.io/MITAB25Format.html
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are widely used identifiers, defined in different ontologies, specific to the column con-

tent and available for information supplied in mitab25 file columns 7 and 12-14. The

“source database” for example can be referred to with a (standardised) name or an MI-

ID. Many of such mappings can be retrieved from the Ontology lookup service3 (Jupp

et al., 2015).

This meta-data can be used to filter interactions based on their properties which can

lead to a more specific set of PPIs of interest. Based on the standard mitab25 format

these filtering steps can extract interactions, which are e.g.

(i) detected in one specific species (through the use of taxIDs, columns 10 and 11),

(ii) obtained via the use of a specific experimental approach (defined by interaction

detection method, column 7),

(iii) described with a specific interaction type (specified in column 12) and/or

(iv) extracted from a specific source database (listed in column 13).

These steps allow the level of data “cleanliness” and “certainty” to be increased and

enable users to set personal PPI data filters based on their needs and research purpose.

4.2.3 Databases

Based on the growing amount of data, major databases gather published PPIs and make

the data accessible. Five major PPI databases are, in alphabetical order (i) BioGRID

(Stark et al., 2006; Chatr-aryamontri et al., 2016) (ii) Database of Interacting Proteins

(DIP) (Xenarios et al., 2000; Salwinski et al., 2004) (iii) HIPPIE (Schaefer et al., 2012;

Alanis-Lobato et al., 2016) (iv) Human Protein Reference Database (HPRD) (Prasad

et al., 2009) and (v) IntAct (Hermjakob et al., 2004b; Orchard et al., 2013). Table

4.2 introduces them in more detail, including references, primary protein identifiers

and first and most recent release dates. It can be seen that all sources, apart from

HPRD supply data following mitab25 standards (see above) (Hermjakob et al., 2004a;

Kerrien et al., 2007). Unfortunately the HPRD data format is incompatible with the

mitab25 standards. Furthermore the last release was updated in 2010, meaning that the

information contain is outdated and all entries are now most likely covered by other

databases. HIPPIE lacks two mitab25 standard columns (describing the “interaction

type” and “interaction identifiers”) but the data can still be combined with the other

sources.
3http://www.ebi.ac.uk/ols/index

http://www.ebi.ac.uk/ols/index
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Table 4.2: Five of the most commonly used PPI databases. “Main Identifier” refers

to the identifier used for the interactors (given in columns one and two of the psimi25

standard format files). Most recent release refers to the point of writing (May 2017).

Database
Name

Reference First available Most recent
release

Main Identifier (data format)

BioGRID Stark et al. (2006); Chatr-

aryamontri et al. (2016)

2002 (monthly

release)

May 2017 Entrez ID (mitab 25 format)

DIP Xenarios et al. (2000);

Salwinski et al. (2004)

1999 (irregular

releases)

February

2017

Uniprot ID / Uniprot Accession

ID (mitab 25 format)

HIPPIE Schaefer et al. (2012);

Alanis-Lobato et al.

(2016)

2011 (irregular

releases)

June 2016 Entrez ID (mitab 25, but missing

two columns: “Interaction Type”

and “Interaction Identifiers”)

HPRD Prasad et al. (2009) 2003 (irregular

releases)

April 2010 Uniprot ID / Entrez ID (tab de-

limited xml format)

IntAct Hermjakob et al. (2004b);

Orchard et al. (2013)

2002 (monthly

release)

April 2017 Uniprot ID / Uniprot Accession

ID (mitab 25 format)

Hence for the purpose of this study HPRD was excluded. Based on the selected

databases Table 4.3 shows the exact data releases that were used in this work. Links

to the online data repositories, specifying the datasets and releases used are listed. To

analyse the development of database content and its consistency, data belonging to

two different releases was considered. Data were downloaded directly from the online

repositories, and are accessible via FTP servers. Since the previous HIPPIE release

was published more than 18 months earlier only one HIPPIE dataset was considered.

In summary, a number of PPI databases gather protein interaction information and

make it publicly available to the wider research community. The use of a uniform data

format allows information to be compared and combined, while maintaining highest

quality.

Based on those efforts it became easier to access and use the data in a solitary and

joint manner. Nevertheless content in different repositories still varies. Cross analysis

and strict filtering can help to obtain the most concise PPI dataset possible. Based on

available resources and including only a minimum of false positive interactions, this

chapter aims to obtain such a dataset. Details regarding the data cleaning and joining

process can be found in the next section.
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Table 4.3: Overview of the four databases of choice. All supply data in the mitab25

format. Two different, recent releases, per database are listed together with the data-

file names.

Database URL Reference Dataset/File name Version (release date)

BioGRID https://thebiogrid.org/

download.php

BIOGRID-ALL-3.4.139.mitab.zip 2016/08

BIOGRID-ALL-3.4.147.mitab.zip 2017/03

DIP http://dip.mbi.ucla.edu/

dip/download?mst=1:2:

1&tbs=0:0

dip20160731.txt.gz 2016/07/31

dip20170205.txt.gz 2017/02/05

HIPPIE http://cbdm-01.zdv.

uni-mainz.de/~mschaefer/

hippie/HIPPIE-current.

mitab.txt

releasev2.0 2016/06/24

releasev2.0 2016/06/24

IntAct ftp://ftp.ebi.ac.uk/pub/

databases/intact

psimitab/intact.zip 2016/08/01

psimitab/intact.zip 2017/03/02

4.2.4 Data Curation

The use of datasets from different sources made it necessary to merge information.

One of the key challenges was the mapping between gene and protein IDs that were

used as primary identifiers by the different databases (see Table 4.2). This discrepancy

might be one of the main reasons why most other researchers limit themselves to using

data retrieved from only one of the listed resources. Nevertheless using information

from all different sources broadens the insight and allows a more complete dataset to

be obtained.

Therefore a number of mapping and merging approaches were carried out. Bi-

oGRID and HIPPIE use Entrez IDs as their primary interactor identifier, but DIP and

IntAct base their primary interactor identifiers on Uniprot IDs or Uniprot Accession

IDs. To obtain consistency, the following steps were taken after having downloaded

the data:

1. Raw data files from each database were considered individually. All files were

read and headers were checked to confirm the mitab25 format. Data were filtered

for the taxID of interest (“9606” for human). 15 standard mitab25 columns were

printed in database specific output files, using official mitab25 headers. This step

was also used to extract some statistical insights (e.g. the percentage of human

https://thebiogrid.org/download.php
https://thebiogrid.org/download.php
BIOGRID-ALL-3.4.139.mitab.zip
BIOGRID-ALL-3.4.147.mitab.zip
http://dip.mbi.ucla.edu/dip/download?mst=1:2:1&tbs=0:0
http://dip.mbi.ucla.edu/dip/download?mst=1:2:1&tbs=0:0
http://dip.mbi.ucla.edu/dip/download?mst=1:2:1&tbs=0:0
dip20160731.txt.gz
dip20170205.txt.gz
http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/HIPPIE-current.mitab.txt
http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/HIPPIE-current.mitab.txt
http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/HIPPIE-current.mitab.txt
http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/HIPPIE-current.mitab.txt
release v2.0
release v2.0
ftp://ftp.ebi.ac.uk/pub/databases/intact
ftp://ftp.ebi.ac.uk/pub/databases/intact
psimitab/intact.zip
psimitab/intact.zip
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PPIs compared to the full dataset).

2. Each of the preprocessed files was considered individually. Columns 1 and 2,

containing the interactors, were read. Columns were checked individually. If

the column content was identified as an Entrez ID, it was kept (based on an

internal comparison with the mapping table, see Section 2.2.1 for more details).

If the supplied interactor was not an Entrez ID it was first checked against a

list of UniprotIDs. In case of successful mapping, the Entrez ID was obtained

and used. Alternatively the supplied interactor ID was checked against Uniprot

Accession IDs and mapped to the corresponding Entrez ID (for mapping tables

see Section 2.2.1). In some cases a UniprotID mapped to a number of different

human Entrez IDs, meaning that the same protein is encoded by different genes.

In those cases all possible Entrez IDs were added to the PPI set. This phenomena

can influence the number of total PPIs before and after the mapping step.

In case one of the two, or both, interactor identifiers could not be mapped to an

Entrez ID the interaction was not included. If mapping was required, the “origi-

nal” identifier was moved to columns 3 or 4 (“alternative IDs”) respectively.

In an additional step, other columns were processed simultaneously to reflect the

following standards:

(a) Columns 7 and 12, the “interaction detection method” and “interaction

type” were standardised to identifiers in the “MI:number” format.

(b) Columns 9, 10 and 11, containing pubmed IDs as well as taxIDs of both

interactors were cleaned to contain only respective numeric identifiers.

(c) Column 13, containing information about the source database was trans-

lated to the database’s MI-ID. Database name to ID mappings were ob-

tained from the Ontology lookup service (Jupp et al., 2015) and an overview

table can be seen in Appendix Table B.2.

Depending on the database additional filtering steps were applied and will be

introduced in more detail later on, since these are based on intermediate results.

In summary, this step generated database specific mitab25 files with unified iden-

tifiers, Entrez IDs, and standardised column content. In columns with multiple

entries, the pipe (“|”) separator was used as a divider. If protein IDs were used

and mapped to several Entrez IDs these were added to the dataset as new rows,
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maintaining information in the additional columns. These data can be used to

identify similarities and differences between the repositories, and allow for fur-

ther data processing.

3. Having translated all data to unique identifiers, data from different sets were

joined. During this data merge interactors were first kept in the original column

order, but later sorted by ascending Entrez ID (Entrez ID interactor 1 < Entrez ID

interactor 2). Where an interaction occurred multiple times information in any

of the other columns was joined and separated by “|”. Ordering of the identifiers

results in a file with unique PPIs, excluding mirrored duplicates (a-b and b-a are

merged to one interaction, where “ID-a < ID-b”).

4. Based on further intermediate results, other filtering steps were undertaken. These

addressed certain columns and extracted full rows depending on the filtering cri-

teria. Details are covered in the Results section (Section 4.3).

The joint dataset was analysed to understand and identify similarities and differences

between data sources and to detect potential bias and underlying patterns in the data.

4.3 Results

To gain a deeper understanding of published PPIs, individual datasets obtained from

four distinct databases (Section 4.2.3) were processed and analysed. Through specific

data filtering a joint set was obtained. This chapter shows intermediate results, outlines

filter settings and introduces the “final” PPI set further used in this study. Statistical

analysis is also presented.

4.3.1 Data Analysis and Cross-Comparison

Individual datasets were analysed regarding the number of PPIs they contain. A first

filter was set to consider only human PPIs. Two different data releases were consid-

ered to track development over time. Table 4.4 and Table 4.5 show source-specific

overviews regarding the number of PPIs contained in the different databases. Table

4.4 refers to the most up-to-date data as of August 2016, whereas Table 4.5 presents

most up-to-date datasets available in May 2017. Numbers increase slightly with the

newer release, but relative proportions of data in the different databases remain the
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same. Overall both tables show that the number of deposited PPIs varies widely be-

tween databases. If not further specified this chapter refers to numbers based on the

most up-to-date data in March 2017 (Table 4.5).

In terms of numbers, BioGRID contains the largest amount of total entries: ~1.4

million. It is followed by IntAct with ~0.7 million entries, HIPPIE with ~ 0.27 million

PPIs and DIP with ~76 thousand interactions.

Table 4.4: Overview of PPIs obtained from four databases (August 2016). Numbers

represent PPI counts based on the row count in the file. Some PPIs may occur multiple

times and duplicates such as (a-b and b-a are counted separately). “Human” means

that both interactors were associated with the human taxid (9606). “Unique” PPIs rep-

resents the unique number of PPIs (filtered for mirrored duplicates). Direct interactions

were obtained by filtering for direct-only interaction types.

BioGRID DIP HIPPIE IntAct

Rows in file (PPIs) 1,030,500 76,796 273,927 650,097

Human PPIs 298,823 5,537 273,927 122,049

+ 49,005 (unassigned pubmedID - rows)

+ 73,999 (spoke expansion - rows)

Percent human PPIs 28.99 7.21 100 18.77

PPIs mapped to human Entrez ID 298,745 6,010 272,431 117,571

Unique PPIs mapped to human Entrez ID 216,887 5,967 271,815 61,627

Unique, direct PPIs mapped to human Entrez ID 184,648 5,957 0 60,959

Table 4.5: Overview of PPIs obtained from four databases (March 2017). See caption

Table 4.4.

BioGRID DIP HIPPIE IntAct

Rows in file (PPIs) 1,381,962 76,881 273,927 718,180

Human PPIs 305,924 5,569 273,927 125,147

+ 81,256 (unassigned pubmedID - rows)

+ 76,939 (spoke expansion - rows)

Percent human PPIs 22.13 7.24 100 17.42

PPIs mapped to human Entrez ID 305,847 6,041 272,431 120,224

Unique PPIs mapped to human Entrez ID 221,419 5,998 271,815 62,136

Unique, direct PPIs mapped to human Entrez ID 188,945 5,988 0 61,458

After filtering the data for human-only interactions, with both interactors associ-

ated with the human taxID (9606), it was confirmed that HIPPIE only contains human

specific interactions. Considering the other databases (see Table 4.5), BioGRID con-

tains the highest proportion of human-only PPIs (~22%), followed by IntAct (~17.5%)

and DIP (~7%). The number of human IntAct PPIs splits up into: (i) 81,256 inter-

actions which lack an associated pubmed ID, (ii) 67,939 spoke expanded interaction,
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leaving (iii) 125,147 interactions following this study’s requirements. Studies without

a pubmed ID referenced an IMEx4 number instead. It is a joint effort across molecular

data databases to provide curated information, e.g. from PPI databases. All 81,256

interactions were retrieved from two studies. These were published in 2016 and 2017

with IMexx identifiers “IM-25054” and primary pubmedID “unassigned1312”5 as well

as “IM-25472” and “unassigned1304”6 respectively. It was surprising that the PPI

records did not show an associated pubmedID. Detailed investigation showed that the

study published in 2016 was associated with a pubmedID (27173435) (Boldt et al.,

2016), based on the data description qualifier “see-also”. Such a link was not available

for the study published in 2017. To maintain reproducibility, consistency and allow for

automated and controlled data curation, PPIs retrieved from those references were not

considered.

Furthermore, spoke expanded PPIs are likely to include a high percentage of false

positive entries. These were identified and excluded from the PPI set to maintain best

possible data quality. After identifying those “special” cases IntAct data were filtered

accordingly.

In the next step, and to obtain comparable datasets all “interactor identifiers” were

mapped to human Entrez IDs. BioGRID and HIPPIE entries were already supplied as

such. Nevertheless all entries were compared with records in the mapping file and only

kept if both interactor Entrez IDs could be confirmed. In the case of IntAct and DIP,

Uniprot IDs or Uniprot Accession IDs were mapped to Entrez IDs. As Table 4.4 and

Table 4.5 illustrate most of the entries could be mapped to human Entrez IDs. Consid-

ering data in DIP it can be seen that the number of “PPIs mapped to human Entrez IDs”

is higher than the number of “human PPIs”. This is due to multiple mappings of single

UniprotIDs to several Entrez IDs. One example is uniprotkb Q13748, representing the

Tubulin alpha-3C/D chain, which maps to two Entrez IDs: 7278 (tubulin alpha 3c),

and 113457 (tubulin alpha 3d). Similarly uniprotkb P86479, proline-rich protein 20C

maps to six different Entrez IDs, all being different forms of the proline rich 20 genes.

This intermediate step allowed further analysis carried out in subsequent steps.

Directionality in PPIs is very hard to measure and will not be considered in this

work. Some PPIs are listed in both directions (a-b and b-a). In some cases this is

caused by diverging meta-data associated with the entries. To obtain unique PPI counts

4http://www.imexconsortium.org
5http://www.ebi.ac.uk/intact/interaction/EBI-11901113
6http://www.ebi.ac.uk/intact/interaction/EBI-13150962

http://www.imexconsortium.org
http://www.ebi.ac.uk/intact/interaction/EBI-11901113
http://www.ebi.ac.uk/intact/interaction/EBI-13150962
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so called “mirrored duplicates” were filtered and equal PPIs were joined, keeping all

meta-data. Table 4.4 and Table 4.5 show the consequences on PPI numbers after this

filtering step. Remaining PPIs are referred to as “unique”. All further statistical anal-

ysis reflects only uni-directional (“unique”) interactions.

A further crucial aspect when considering PPIs and using information for data anal-

ysis is the fact that interactions can be direct or indirect. Considering the use of PPI

information in this study, and since most analytical approaches rely on physical protein

interactions, these should be direct. Therefore direct experimental evidence is crucial

to guarantee a minimum certainty of an interaction happening under in vivo condi-

tions. To obtain such information the “interaction type” was considered (column 12 of

the psimi25 PPI file). Figure 4.2 shows details about interaction types associated with

PPIs in the joint dataset and retrieved from any of the four source databases.
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Figure 4.2: PPIs based on a certain “interaction type”. Data from all four source

databases, not filtered for direct interactions is visualized (“unique PPIs mapped to

human IDs” in Table 4.5). The x-axis shows the interaction type in alphabetical order.

It can be seen that a number of PPIs are considered interactions, based on protein

‘colocalization” as well as “genetic interaction”. These interaction types, classified
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as non-physical, contain a high probability of not being direct, instead proteins were

detected in a shared cellular location or via “genetic interaction”. Therefore these

classifiers were considered as “non-direct” interactions.

After having excluded these two interaction terms an interaction type ontology

(Jupp et al., 2015) was used to identify a set of “direct” interaction type identifiers.

Figure 4.3 shows an overview of interaction types part of the ontology tree. This

confirmed that “colocalization” (MI:0403), “genetic interaction” (MI:0208) (including

“suppression” (MI:0796) and “synthetic” (MI:0794) amongst others) and “predicted

interaction” (MI:1110) were classified as being very likely to refer to non-direct inter-

action sets. Hence interactions only based on such evidence were excluded from the

final PPI set.

  

Genetic Interaction 
(MI:0208)

Covalent Binding  (MI:0195)

Interaction Type (MI:0190)

Colocalization
(MI:0403)

Predicted Interaction
(MI:1110)

Molecular Association 
(MI:2232)

Association
(MI:0914)

Physical Association
(MI:0915)

Direct Interaction
(MI:0407)

Enzymatic Reaction (MI:0414)

Putative Self Intearction (MI:1127)

Self Intearction (MI:1126)

physical interaction
(MI:0218)
obsolete

Total of 63 children terms

Figure 4.3: Tree structure of the interaction type ontology branch and respective MI-ID.

The term “molecular association” (MI:2232) was considered as indicating direct

interactions and addressed in more detail. With respect to the ontology it is followed

by the interaction types “association” (MI:0914), “physical association” (“MI:0915”)

and “direct interaction” (“MI:0407”). The “direct interaction” term contains 63 spe-

cific child-terms, all indicating different subtypes of direct interactions. It was also

discovered that some of the source data references the obsolete interaction type “phys-

ical interaction” (MI:0218), which was updated to “association” and “physical asso-

ciation”. After checking all the individual child terms referring to specific “direct

interaction” types it was decided to include them all to the final list classifying direct
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interactions. Hence a final set of 67 MI-IDs specifically describing direct PPI inter-

action types was obtained and used to filter PPI data for direct interactions only. An

overview of the direct MI-IDs can be seen in Appendix Table B.1 and was used to filter

the database-specific PPI sets.

Remaining PPI numbers can be seen in the last row of Table 4.4 and Table 4.5

(“unique, direct PPIs mapped to human EnterzIDs”). Hence the number of unique,

direct, human PPIs which are deposited in the databases and could be mapped to En-

trez IDs are 188,945 (BioGRID), 61,458 (IntAct) and 5,998 (DIP). Due to a lack of

information none of the interactions retrieved from the HIPPIE database remained part

of the set. Numbers are based on data from May 2017 (Table 4.5).

The datasets obtained were re-analysed regarding the distribution of different inter-

action types. An overview can be seen in Figure 4.4. “Physical association” remains

the main type, followed by “direct interaction” and “association”. “Phosphorylation

reactions” are the fourth most common type. Another 25 terms appear describing at

least one of the direct PPIs in the final set.
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Figure 4.4: PPIs in the dataset based on a certain “interaction type”. Data from all

four source databases filtered for direct interactions is visualized. The x-axis shows the

interaction type in alphabetical order.

Since the HIPPIE database does not supply information regarding the “interaction
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type”, the overlap of unique PPIs deposited in HIPPIE and the other databases was

investigated. Figure 4.5 shows that 44,547 out of 271,815 PPIs are only found in

HIPPIE. On the contrary, the remaining ~84% (227,268) of the HIPPIE PPIs appear

in at least one of the other databases. Hence interaction type information and other

meta-data can be obtained from there. Given the interest of eliminating as many false

positive PPIs as possible it is preferred to not consider PPI records without “interaction

type” information. This lead to the exclusion of PPIs unique to the HIPPIE database.

Figure 4.5: Overlap of PPIs supplied by the different databases.

To understand the development of available data, two of the most recent releases

for each database were compared. Table 4.4 and Table 4.5 show that all databases

but HIPPIE exhibit an increase in the number of stored PPIs. HIPPIE data were not

updated between August 2016 and March 2017. Since the data were not included in the

final dataset this was not further investigated. Numbers of PPIs obtained from other

sources increased by varying numbers of interactions, depending on the annotation

methods used by the source databases. This insight highlights the need of constant

data-updating to maintain best data quality.
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4.3.2 The final, joint, human PPI dataset

Based on the above insights a final PPI dataset was generated and can be found in the

digital supplementary material (folder: “PPI-data”). Examples showing the raw data

format as well as the final, human, unique, direct PPI lists and a README file are

available. Table 4.6 shows a total of 353,294 PPIs, available with Entrez IDs. 288,958

of those are unique, and again, 211,824 are unique and direct. A number of other

statistics are included in the table.

Table 4.6: PPI count depending on different filter settings.

Joint PPI set number of PPIs (August 2016) number of PPIs (May 2017)

Human PPIs 347,898 353,294

Human unique PPIs 284,169 288,958

Human unique direct PPIs 207,175 211,824

Number of pubmed-id references 31,386 32,271

Number of interaction detection methods 160 161

Number of interaction types 32 33

Number of source types 14 14

Hence, after applying all outlined filtering steps, the final PPI set only contains

interactions with a pubmed reference and, when information was available, excludes

any spoke expanded interactions. As far as can be ascertained this is the currently

in existence most concise and complete PPI dataset excluding as many false positive

records as possible, with a low removal rate of real PPIs. This is a major step forward

towards highest data quality. The dataset was further analysed and the results are as

follows.

Figure 4.6 shows the overlap of PPIs appearing in the three remaining sources.

This figure also highlights the data diversity in the different databases, with only 1,264

PPIs appearing in all three source databases.

Based on that insight information listed in the “source database(s)” column of the

final PPI dataset was analysed. All original sources are shown in Figure 4.7, with

BioGRID and IntAct as the main references. Mint, DIP and the Uniprot knowledge

base follow, together with 9 additional sources appearing with small numbers of PPIs

associated with them. These additional PPI databases are mostly smaller efforts con-

centrating on subsets of available data. They were not considered individually since

the selected databases integrate information deposited in those smaller ones. A poten-

tial explanation for the high numbers of PPIs provided by BioGRID is their relabelling

of the data source to “biogrid” independently of the original data source.
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Figure 4.6: Overlap of PPIs between the three main databases that were kept to retrieve

the final (human, unique, direct PPI dataset).

Based on this insight Figure 4.8 shows in how many “source database(s)” a PPI

appears. The majority, almost 170,000 (~80%) PPIs are only listed in one source

database, with a maximum of six (out of 14 possible databases, see Figure 4.7).

To further test PPI detection coverage, PPIs are checked for the number of different

publications they appear in. As indicated in Table 4.6, 32,271 different pubmed IDs

describe 211,824 PPIs. Figure 4.9 highlights that most of the PPIs are found in only

one publication (~190,000 PPIs, corresponding to ~90%), with the remaining ~10%

confirmed in two or more. This percentage is higher when considering PPIs that ap-

pear in multiple source databases. Around 20% of the PPIs appear in two databases or

more, showing that databases pick up interactions from the same publications. Regard-

ing the coverage based on publications, a maximum of 389 references for one single

PPI can be detected. The interaction between MDM2, the MDM2 proto-oncogene (En-

trez ID: 4139) and TP53, tumor protein p53 (Entrez ID: 7157), has been described in

389 publications. This might highlighting a key role and ubiquitous presence of the

interaction, but also points towards a very highly studied interaction, leading to the

high, observed value.
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Figure 4.7: Human, unique, direct PPIs found in different source databases (based on

information in the “source database” column of the mitab25 files). The x-axis shows the

source database in alphabetical order.

In conclusion, the analysis presented leads to a high confidence dataset which can

be used for future studies. Source and interaction type of PPIs offer a good understand-

ing of data quality. Furthermore additional filtering can be applied depending on the

user’s needs and requirements.
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on “source database” count).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 54 56 57 59 65 66 67 68 74 81 83 84 38
9

PubmedID coverage

100

101

102

103

104

105

PP
Is

PPIs and their pubmedID coverage

Figure 4.9: Human, unique, direct PPI coverage in different publications (based on

“publication identifier” count).
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4.4 Discussion

A growing number of databases supply PPI information. However their content varies

widely and most often individual studies use data from only one resource.

Based on the use of the accepted PSI-MI XML 2.5 standard, the mitab25 for-

mat allows combination and comparison of data from different sources. Nevertheless

databases use different primary identifiers for interactors. The human Entrez ID was

chosen as the main identifier in this study and two mapping files (Entrez IDs to Uniprot

IDs as well as Entrez ID to Uniprot Accession IDs) were used to make the mapping

process as complete as possible. Checking all Entrez IDs for their presence in the

mapping file guaranteed the exclusion of outdated or replaced records.

The use of Entrez IDs unique to genes is debatable, since it does not reflect post-

translational modifications such as splicing and other events. These can lead to protein

isoforms which are not reflected in Entrez IDs. Nevertheless they were considered the

best option guaranteeing consistency and avoiding divergent results due to different

protein isoforms. Detecting specific PPIs based on exact protein variants is almost

impossible given current technologies. For consistency between data and annotation

methods the use of gene IDs seemed to be more precise and avoided biases towards

more easily detectable transcription variants of a protein.

Considering the PPI type and defining a set of direct interaction types reduced

the number of total interactions, generating the final, best possible interaction dataset,

given the defined interests. Depending on data use, this step seems crucial and avoids

including too many false negative records, possibly leading to wrong conclusions.

The large differences between data deposited in different databases demands atten-

tion. Therefore combining information from distinct sources is important and allows

complete PPI datasets to be assembled to the best of current knowledge. It also exposes

how different data gathering, extraction and annotation strategies used by the different

databases are, none of which can be considered as the only right or wrong approach.

The information combination hence enriches the final PPI dataset, a more complete

one, compared to ones considering only single sources.

These are just some aspects highlighting the improved quality of the presented

dataset. Considering and including as much (high-quality) data as possible allows

for optimal and most reliable results. Since the presented dataset is straight-forward

to generate and shared with the scientific community it could help other researchers to

easily benefit from the full range of available PPI data for their studies , without having
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to personally join information from different sources.

A similar effort was made by the IMEx consortium (Orchard et al., 2012). It aims

to supply a non-redundant PPI set spanning a range of organisms. In some cases data

are still repetitive and a number of primary resources have not yet been integrated. Fur-

thermore BioGRID data are not included and contain a large part of the analysed data,

since it does not overlap with information available via DIP and IntAct. Additionally

psicquic, which is compatible with IMEx supplies a data query interface which allows

to retrieve interactions from IMEx associated databases. An R package supplying an

interface to psicquic is available via bioconductor7 and linked to the HUPO Proteomics

Standard Initiative (HUPO-PSI). A list of linked PPI databases can be found online8.

During the exploration of options of this project, there were times when some of the

advertised linked source databases were not reachable via psicquic. Furthermore com-

putation times to obtain the desired datasets were very long, given the large size of the

full human PPI set. Additionally it was preferred to have direct access to the meta-data

instead of having the psicquic tool act as the intermediate filter. Working with raw

data also allowed its in-depth analysis, such as cleaning and standardising meta-data.

This highlights the increased quality and interoperability of the presented PPI dataset.

Nevertheless psicquic is a good tool, especially when working with smaller datasets.

It allows researchers to obtain PPI information deposited in different sources making

their datasets more complete.

Overall the implemented approach allowed for higher flexibility in updating data,

obtaining statistics and being able to access all meta-data at any point. It was possible

to generate the best possible and most up-to-date PPI dataset for human, unique, direct

interactions. The ease of rerunning the data extraction and combination pipeline al-

lows constant use of most up-to-date data, directly supplying statistics describing most

recent changes to the database content. This again illustrates the quality of the dataset

as well as its maintain- and traceability including all available meta-data. Extending or

modifying existing studies based on updated PPI data gets easier since the presented

process is more transparent and PPI source relationships can be easily obtained, which

is not the case using for example the psicquic tool. Furthermore the flexibility of fil-

tering options and ease of use makes the pipeline and PPI set a valuable source for the

wider research community.

As more studies become available it seems that not all PPIs have been discov-

7https://bioconductor.org/packages/release/bioc/html/PSICQUIC.html
8http://www.ebi.ac.uk/Tools/webservices/psicquic/view/main.xhtml

https://bioconductor.org/packages/release/bioc/html/PSICQUIC.html
http://www.ebi.ac.uk/Tools/webservices/psicquic/view/main.xhtml
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ered yet. Coverage is still low with new studies identifying additional PPIs instead

of rediscovering already known ones. Hence the (human) PPI set still appears to be

incomplete. The increase in PPIs between August 2016 and May 2017 confirms this

phenomenon. Future studies will show if the total number of PPIs stagnates, indicating

a saturated PPI dataset. More targeted PPI analysis could also show that the full set of

interactions occurring in certain cell types or tissues, at specific developmental stages

is already completely understood, but remains challenging to be identified.

When using PPI data, given a specific background, it has to constantly be consid-

ered that none of the databases supply information regarding the tissue, cell type, cell

compartment, or developmental stage in which an interaction occurs or was recorded.

In addition many interactions have been detected based on experiments carried out

under artificial, experimental conditions, using varying setups. Even though human

proteins were used, interactions might have been discovered in-vitro and not in-vivo,

and partially in cells derived from different organisms (Rao et al., 2014). Other chal-

lenges are presented when considering the definition of a direct interaction and the

way they can be identified in experiments. For example pull-down experiments do not

only detect direct interactions, but include first and second order interactors if they

are part of interaction complexes (Zhang et al., 2008). First order interactions are di-

rect whereas second order interactions are indirect, with additional proteins between

the two proteins identified. Only the IntAct database includes information of those so

called “spoke expanded” interactions. Other databases do not supply such information

but include PPIs derived from pull-down experiments. Excluding all records retrieved

from pull-down experiments seemed too strict, since they represent a reliable, well

studied and high quality source. Nevertheless specifically labelled records (from the

IntAct database) were excluded to maintain data quality. New technologies may be

able to produce and confirm this information in the future, allowing for more precise

filtering and leading to even more concise PPI datasets.

Notwithstanding the uncertainty of confirming the presence of an interaction in a

given tissue, or during a specific developmental stage, the use of proteomic data are of

high value. Knowing the set of expressed genes in a tissue of interest allows a more

precise PPI set to be generated. This does still not eliminate the problem of temporal

expression patterns, but excludes proteins and their interactions that are not expected to

occur in the tissue at all. With improving proteomic experimental setups this challenge

might be counteracted and data could be retrieved capturing different developmental

stages, enabling the comparison between the proteomes as well as their interaction
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patterns e.g. at different developmental stages. Some first efforts have been made,

including multi-scale modelling. However to gain confidence in the results, detection

limits for proteomics still need to improve.

The growing availability of PPI data also led to an increase in analytical tools for

large-scale study. The potential of PPI data, is to unravel patterns among connected

proteins on a large scale, which is of high value and part of an expanding field.

Therefore the next two chapters focus on the identification of a proteomic dataset

and the use of PPI data. Chapter 5 identifies and introduces the proteomic datasets of

interest and Chapter 6 combines the proteomes with PPIs and uses network analysis

approaches, including clustering techniques, to gain a deeper insight into the data. This

can help to find answers to various scientific questions. This work focuses specifically

on the effects of Parkinson’s Disease (PD) in the synapse.





Chapter 5

The Synaptic Proteome and

Parkinson’s Disease

This chapter covers work that was part of a joint project. All analytical results pre-

sented in this chapter were obtained by myself. Screening and annotating of published

synaptic proteomic studies was carried out by Colin Mclean and Oksana Sorokina,

both from Douglas Armstrong’s research group at the University of Edinburgh. This

work is currently in preparation to be published with above mentioned co-authors and

will be submitted shortly.

5.1 Objective

This chapter aims to identify the most up-to-date proteomic datasets describing the

presynapse, postsynapse, synaptosome and the entire synapse. Once required mapping

steps were carried out, individual datasets were joined to generate “regional” synaptic

reference proteomes, specific to the presynapse, postsynapse, synaptosome as well as

the synapse. Extracted data were compared to identify reference datasets containing

all expressed proteins in the synapse.

Since the regional datasets emerged through data-fusion, based on different publi-

cations, protein detection coverage relative to the year of first detection is presented.

This helped to determine data quality and allowed to carry out meta-analysis of the

final proteomic datasets. In this way similarities and differences between protein-sets

expressed in distinct synaptic regions were identified.

To understand synaptic region specific and overall functions, enrichment analy-

sis was used. Through the use of gene-trait annotation information it aims to identify

81
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over-represented specific traits in a subset of a given dataset. These traits can be molec-

ular functions, biological processes and cellular components common amongst genes

uniquely expressed in a region of choice. This approach helps to gain region specific

insights as well as identify common synaptic specific functions.

Furthermore Parkinson’s Disease (PD) associated genes were compared with the

synaptic proteome. By doing so a set of synaptic PD associated genes was identi-

fied. Consequentially this also leads to a set of PD associated genes not expressed in

the synapse. It was of interest to extract common properties of genes in the two PD

gene lists, as this new knowledge can then help identify main disease-affected cellular

functions, pathways and components in the synapse and other tissues.

Figure 5.1 shows an overview of described approaches, including data input, ap-

plied processes and outputs of this chapter.
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Figure 5.1: Overview of used data, analytical processes and outcomes of Chapter 5.

Dark blue boxes refer to published data, light blue boxes are generated datasets, yellow

boxes refer to analytical steps, green boxes describe processes and magenta boxes

show outcomes.
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5.2 Introduction and Material

A cell’s phenotype and characteristics are defined by the expressed genes and conse-

quently transcribed proteins. The set of expressed proteins in a cell is referred to as

its proteome (Figure 1.1 B). In recent years a number of tissue and cell type specific

proteomes have been identified, analysed and published. Thanks to the increase in

large-scale experimental approaches the number of published studies rises constantly.

This leads to larger, very likely more complete proteomic datasets resulting in higher

statistical power to draw significant data-based conclusions.

Since the synapse is thought to be the main cellular region affected by PD, hosting

disease-causing alterations it was addressed in this study. These alterations can pro-

voke a number of dysfunctions, ultimately triggering the degeneration of dopaminergic

neurons leading to the disease manifestation.

5.2.1 Proteomic Studies

The selection of proteomic studies was carried out in a joint effort and based on the

research groups expertise in the field. Individual publications were studied and sup-

plied protein identifiers were retrieved. Therefore data were extracted from a variety

of file-types, such as .txt, .csv and .pdf. To obtain consistent identifiers these needed

to be mapped between the different species mouse, rat and human. Mappings between

protein and gene or gene and gene identifiers were carried out as specified in Section

2.2.1.

5.3 Results

5.3.1 Synaptic Proteome Datasets

Nine presynaptic, 22 postsynaptic and six synaptosome proteomic studies were iden-

tified. Two studies contain two datasets each: Distler et al. (2014) in the postsynaptic

set and Cohen et al. (2013) in the synaptosome set. These were considered separately,

leading to 23 postsynaptic and seven synaptosome datasets.

Data were extracted and all identified genes were mapped to human Entrez IDs.

Homology information from published annotation files was used and verified through

manual checks. If an entry could not be mapped it was discarded. For all the studies,
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Table 5.1 contains further information such as the organism the data were obtained

from as well as the number of identified genes (mapped to human Entrez IDs).

Table 5.1: Synpatic proteome publications and respective datasets used in this study.

“# genes” refers to the number of proteins, mapped to human Entrez IDs identified in

the study. Studies are sorted based on presynapse, postsynapse, synaptosome and

ascending depending on the year of publication. Studies highlighted with * contain two

datasets. More details can be found in the Appendices C.1, C.2, C.3.

Study Year Reference Region Species # genes
MORCIANO 2005 Morciano et al. (2005) presynapse rat 85

BURRE 2006 Burré et al. (2006) presynapse rat 157

MORCIANO 2009 Morciano et al. (2009) presynapse rat 308

GORINI 2010 Gorini et al. (2010) presynapse mouse 49

GRONBORG 2010 Grønborg et al. (2010) presynapse rat 613

BOYKEN 2013 Boyken et al. (2013) presynapse rat 414

WILHELM 2014 Wilhelm et al. (2014) presynapse rat 1158

BRINKMALM 2014 Brinkmalm et al. (2014) presynapse mouse 68

WEINGARTEN 2014 Weingarten et al. (2014) presynapse mouse 467

WALIKONIS 2000 Walikonis et al. (2000) postsynapse rat 29

PENG 2004 Peng et al. (2004) postsynapse rat 325

SATOH 2002 Satoh et al. (2002) postsynapse mouse 45

YOSHIMURA 2004 Yoshimura et al. (2004) postsynapse rat 435

FARR 2004 Farr et al. (2004) postsynapse rat 71

JORDAN 2004 Jordan et al. (2004) postsynapse mouse and rat 390

LI 2004 wan Li et al. (2003) postsynapse rat 137

TRINIDAD 2005 Trinidad et al. (2005) postsynapse mouse 234

CHENG 2006 Cheng et al. (2006) postsynapse rat 288

COLLINS 2006 Collins et al. (2006) postsynapse mouse 717

DOSEMESI 2006 Dosemeci et al. (2006) postsynapse rat 113

DOSEMESI 2007 Dosemeci et al. (2007) postsynapse rat 548

TRINIDAD 2008 Trinidad et al. (2008) postsynapse mouse 2150

SELIMI 2009 Selimi et al. (2009) postsynapse mouse 61

FERNANDEZ 2009 Fernández et al. (2009) postsynapse mouse 292

BAYES 2010 Bayés et al. (2011) postsynapse human 1441

BAYES 2012 Bayés et al. (2012) postsynapse mouse 1545

SCHWENK 2012 Schwenk et al. (2012) postsynapse unknown 34

DISTLER PSD1* 2014 Distler et al. (2014) postsynapse mouse 3545

DISTLER PSD2* 2014 Distler et al. (2014) postsynapse mouse 2092

BAYES 2014 Bayés et al. (2014) postsynapse human 1141

UEZU 2016 Uezu et al. (2016) postsynapse mouse 1111

FOCKING 2016 Föcking et al. (2016) postsynapse human 2026

FILIOU 2010 Filiou et al. (2010) synaptosome mouse 2778

DAHLHAUS 2011 Dahlhaus et al. (2011) synaptosome mouse 638

ZIV synapse* 2013 Cohen et al. (2013) synaptosome rat 185

ZIV full* 2013 Cohen et al. (2013) synaptosome rat 2447

BIESEMANN 2014 Biesemann et al. (2014) synaptosome mouse 157

CHANG 2015 Chang et al. (2015) synaptosome human 2076

DISTLER 2014 Distler et al. (2014) synaptosome mouse 4475

Further details, including an extended description of the datasets, can be seen in
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Appendices C.1 (presynapse), C.2 (postsynapse) and C.3 (synaptosome). The ap-

pendix tables also include details regarding experimental approaches used in the orig-

inal studies. Distler et al. (2014) is the only study supplying data for more than one

region. The publication contains data describing the synaptosome as well as the post-

synapse.

Data was retrieved from the individual publications and can be found in the digital

supplementary material (folder: “synaptic-proteome-data”). It contains one file for

the presynaptic, postsynaptic and synaptosome proteome. These specify the different

studies and respective proteins in the set.

Having a unique identifier (human Entrez IDs) for all genes is of great value and

allows efficient comparison of datasets amongst each other. Based on the growing

number of available studies, the increase in detected proteins was analysed. Figure 5.2

visualizes the increase in identified presynaptic (5.2a), postsynaptic (5.2c) and synap-

tosome (5.2b) proteins over the time since the first proteomic study was published.

Those different datasets will be referred to as region specific synaptic datasets or pro-

teomes. Figure 5.2d shows the dataset growth considering the union of all proteins

in the three regional datasets. This dataset will be referred to as the joint synaptic

proteome.

All four plots show an increase in the number of proteins. Presynaptic data started

to be published in the early 2000’s and show three peaks in protein numbers, one when

first published (2004), a second around 2010 and an additional increase in recent years,

leading to a current total of 1,867 presynaptic proteins (Figure 5.2a). Studies address-

ing the synaptosome have only been published starting from around 2010. Based on

available experimental approaches, those already contained more than 2,500 proteins.

By 2016 the number of identified synaptosome proteins grew to 5,862 proteins (Figure

5.2b).

The postsynaptic proteome in comparison has been studied for almost 20 years.

Initially smaller datasets were identified and a first significant increase in identified

protein numbers can be seen in the early 2000’s. This is followed by another peak

leading to around 2,500 identified proteins which stabilises nicely around 2010. More

recent studies lead to another rise in protein numbers leading to a current total of 5,053

postsynaptic proteins (Figure 5.2c).

Considering the synaptosome as an individual unit might be subject to discussion,

since, by definition, it contains all presynaptic and postsynaptic proteins. Hence the

union of all three datasets was also considered. It shows constant data growth up to the
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Figure 5.2: Increase in unique synaptic proteins, identified in different studies over the

indicated years. Years without a bar reflect that no new data were added in those years.

current number of 6,706 proteins. The increase in identified proteins follows roughly

the steps indicated for the postsynaptic proteome (increasing in the early 2000’s, 2010’s

and in recent years (Figure 5.2d).

The time-frames of dataset growth are similar in all cases. The clear steps might

reflect advances in experimental setups and analytical approaches which allowed de-

tection of by then undiscovered proteins.

The postsynaptic and synaptic datasets show relatively clear plateaus in protein

growth. This stagnation might indicate that the full datasets for those regions are al-

most identified. Regarding the presynapse and synaptosome no plateaus can be ob-

served. Hence it is likely that an additional number of proteins, possibly already in-

cluded in the current synaptic proteome will be associated with the presynapse based

on future studies.

The next section addresses the presence of proteins found in different studies as



5.3. Results 87

well as their functions.

5.3.2 Protein Coverage and Data Consistency

To test whether newer studies lead to a stabilization of total protein numbers in the

regional sets their coverage amongst different studies was analysed. Due to improved

experimental setups, it is suspected that newer studies re-detect proteins which had

already been identified in previous analysis. Such findings would confirm synaptic

proteome sets quality and consistency. Coverage is referred to as the number of studies

in which a specific protein has been detected.

Figure 5.3 shows the number of genes detected with a certain coverage (blue bars).

Since the number of studies varies among different datasets, total numbers can be

misleading. Therefore Figure 5.3 also visualizes the coverage on a proportional scale

(red bars). Both visualizations show that the majority of proteins have a coverage of

1 (for all four datasets: presynapse, postsynapse, synaptosome and the total synapse).

This phenomenon is prominent in the presynaptic and synaptosome datasets, showing

a steep dip of protein numbers associated with coverage 1 and 2.

When considering the percentage bars a slightly different impression can be ob-

tained. The postsynaptic, as well as the joint synaptic dataset, contain a larger pro-

portion of proteins identified in two studies or more: 68% and 75% respectively. This

leaves 32% and 25% of the proteins identified in a single study. Considering the presy-

napse and synaptosome, slightly more than 60% and almost 45% of the proteins are

found in one study only which is likely due to the lower number of total published

studies addressing those regions.

Overall this approach does not consider the moment of first detection of a protein.

Figures 5.4, 5.5, 5.6 and 5.7 reflect this fact, as well as protein detection coverage in

studies published after first detection. Proteins are only associated with a year if they

were newly detected. Each protein is represented once and multiple detections in other

studies are visualized based on the coverage colour code. For example a postsynaptic

protein detected in 2004 is one of almost 800 others first detected in 2004 (Figure

5.5). It was detected in at least one of five studies (see Figure 5.5, “studies” in x-axis

label). Total studies indicates how many studies were published in the given year (here

2004) and thereafter (until 2016). Assuming the scenario that the protein of interest

was detected in two studies published in 2004 and another five thereafter it is one of

the proteins counted towards the “coverage seven” colour code in the barplot.
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Figure 5.3: Number of proteins found in the regional proteomic studies and their cover-

age in a specific number of studies (blue bar). The red bar indicates the percentage of

proteins identified with the respective coverage relative to the studied dataset.

This approach helps to highlight proteins detected for the first time at a later point,

possibly due to advances in experimental technologies and not “penalising” their later

detection through lower coverage, compared to “long standing single coverage” pro-

teins that have not been re-detected in a large number of follow-up studies. An example

could be the almost 100 presynaptic proteins first published in 2009 (see lowest, com-

pletely transparent part of the bar, Figure 5.4). These have not been re-detected in any

of the following six studies published thereafter, whereas the remaining approximately

120 proteins were found in at least one more future study.

Hence Figures 5.4, 5.5, 5.6 and 5.7 confirm the peaks in dataset growth, indicat-

ing an increase in protein numbers in 2004, around 2010 and 2014. This supports

the hypothesis that more advanced, fine-grained experimental techniques lead to the

discovery of until then undetected proteins. Improvements might have occurred at sev-
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Figure 5.4: Coverage of presynaptic proteins, relative to year of first detection. X-axis

label contains the year, number of studies published in that year (“studies”) and the

number of studies published in the year and all coming years (“total studies”).
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Figure 5.5: Coverage of postsynaptic proteins, relative to year of first detection. X-axis

label contains the year, number of studies published in that year (“studies”) and the

number of studies published in the year and all coming years (“total studies”).



90 Chapter 5. The Synaptic Proteome and Parkinson’s Disease

2
0
1
0

st
u
d
ie

s 
1

to
ta

l 
st

u
d
ie

s:
 7

2
0
1
1

st
u
d
ie

s 
1

to
ta

l 
st

u
d
ie

s:
 6

2
0
1
3

st
u
d
ie

s 
2

to
ta

l 
st

u
d
ie

s:
 5

2
0
1
4

st
u
d
ie

s 
2

to
ta

l 
st

u
d
ie

s:
 3

2
0
1
5

st
u
d
ie

s 
1

to
ta

l 
st

u
d
ie

s:
 1

0

500

1000

1500

2000

2500

Coverage 1

Coverage 2

Coverage 3

Coverage 4

Coverage 5

Coverage 6

Coverage 7

Figure 5.6: Coverage of synaptosome proteins, relative to year of first detection. X-axis

label contains the year, number of studies published in that year (“studies”) and the

number of studies published in the year and all coming years (“total studies”).
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Figure 5.7: Coverage of joint synaptic proteome proteins, relative to year of first detec-

tion. X-axis label contains the year, number of studies published in that year (“studies”)

and the number of studies published in the year and all coming years (“total studies”).
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eral levels of the experimental pipeline, ranging from tissue extraction and preparation

(meaning the extraction of proteins) to mass-spectrometry accuracy and data analysis.

Hence 2008 seems to be a key year when first larger scale experiments were published.

Figure 5.5 shows more than 1,200 newly identified proteins and Figure 5.4 around 700

in 2009 and 2010. Further evidence for advanced technologies is the first large dataset

describing the synaptosome which contains more than 2,500 proteins (Figure 5.6).

Considering the plateau interpretation mentioned earlier and initially pointing to-

wards having identified all proteins specific to any of the regions it can be seen that

specifically studies in 2014 uncovered a number of new proteins for all the datasets.

It is therefore questionable if the total numbers of proteins expressed in the different

synaptic regions are already saturated or not.

The ongoing detection of additional synaptic proteins seems to reflect the contin-

uing growth and refinement of the synaptic proteome. It may be that a number of

presynaptic proteins remaining to be discovered, and/or rediscovered in future stud-

ies. Considering the synaptosome it seems reasonable to focus on the joint dataset

including more studies. Even though higher coverage is seen in postsynaptic proteins,

the joint synaptic proteome reflects the biological definition of the synaptosome and

summarises all currently available knowledge, ensuring best possible data quality.

This analysis allows to draw first conclusions considering protein coverage, relative

to the first detection of proteins. This is of considerable interest, since higher coverage

increases the probability that a protein is really expressed in a region of interest. This

adds certainty to a dataset, making it more credible. It also gives the opportunity to

delete false positive records amongst the data. Setting a fixed filter should nevertheless

consider when a protein was first discovered, allowing a certain number of equally po-

tent studies (considering experimental approaches) to re-discover the protein of interest

before excluding it from the set based on a fixed coverage threshold. Therefore having

a “relative” coverage measure would allow to set flexible filters to reflect experimental

advances and to obtain the best possible synaptic proteome datasets. Since there are

no clear cut-offs yet, this chapter assumes the risk of having false positive records in

the data, compared to discarding any of the real records.

Coverage information was subsequently used to gain insights into the functional

roles of key proteins in the regional datasets.
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5.3.3 Top Coverage Genes

Coverage does not only guarantee data quality, but can also give first hints towards cen-

tral proteins in a dataset. In contrary to low coverage, high coverage can point towards

highly expressed proteins, which are widely and easily detectable. These might have

key roles in the respective tissues, even though this is not guaranteed simply due to high

coverage. A list of these records can highlight similarities and differences between the

regional datasets. Therefore proteins with maximum coverage in the different datasets

were identified. The maximum coverage of proteins varies depending on the number

of available studies.

Table 5.2, Table 5.3 and Table 5.4 show the top coverage records in the presynapse,

postsynapse and synaptosome (second top coverage is included if only one top cover-

age record was found). Table 5.5 shows the top eleven proteins from the joint synaptic

dataset. These overlap partly with top coverage genes in regional proteomes. The

results do not consider the first detection year of proteins.

A close look at the top coverage genes in the joint synaptic proteome shows that

one presynaptic gene appears in the joint synaptic top records. This number increases

when considering postsynaptic and synaptosome top-coverage genes, with five and six

genes present among the top-coverage genes in the joint synaptic dataset. In three cases

synaptic top coverage genes are also amongst the top records in both, the postsynapse

and synaptosome. Only two of the joint synaptic top records are not amongst the top

coverage genes in any of the regional datasets.

The next paragraphs highlight some of the functions of the top coverage genes.

Such insight presents a first biological interpretation of likely dominating functions in

the distinct synaptic regions.

Three genes show top coverage in the presynaptic dataset (Table 5.2). The VAMP2

protein confirms the importance of presynaptic vesicle to membrane fusion which is

crucial for synaptic information transmission. ATP1A3 and GNAO1 might not intu-

itively associate to the presynapse, but are consistently detected. ATP1A, a sodium-

potassium-pump (member of the P-type cation transport ATPases), plays a role in

maintaining electrochemical concentration gradients. This is important for all neuron

related regions and other sources have confirmed associations between ATP1A and the

axon and synapse (Blom et al., 2016). Additionally links to PD have been previously

postulated (Blanco-Arias et al., 2009). GNA01 is a member of the signal-transducing

guanine nucleotide-binding (G) protein family (Murtagh et al., 1991) and was shown
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to be implicated in ion channel regulation. This functionality might be more likely

associated with the postsynapse but also contributes to maintain ion gradients across

the whole synapse.

Table 5.2: Genes detected with top coverage in the presynaptic proteome (ordered by

coverage and alphabetically by gene name).

Gene Name Gene Name long Entrez ID Coverage

ATP1A3 ATPase Na+/K+ transporting subunit alpha 3 478 9

GNAO1 G protein subunit alpha o1 2775 9

VAMP2 vesicle associated membrane protein 2 6844 9

Overall the three presynaptic top-coverage genes are involved in key functions in

the synapse. The mainly postsynaptic G-protein associated functionality as well as

the sodium-potassium-pump properties associated with the presynapse could highlight

the ubiquitous presence of some synaptic proteins amongst the different regions. This

is specifically true for GNA01 which is also amongst the top-coverage genes in the

joint synaptic dataset. Alternatively the detection of intuitively postsynaptic genes in

the presynaptic proteome highlights the difficulty of extracting tissue specific to either

the pre- or postsynapse. Nevertheless the identified results are of great interest, but

it should be considered that presynaptic and postsynaptic expression specificity might

diffuse between the synaptic regions.

In 22 out of the 23 postsynaptic datasets DLG4, a scaffolding protein was detected

(Table 5.3). This highlights the complex structure of the postsynapse and the neces-

sity to hold proteins in place and finely position them. Scaffolding proteins such as

DLG4 make this possible. Another six proteins have been identified in 21 datasets.

Two of them are the well studied CAMK2A and CAMK2B, both members of the ser-

ine/threonine protein kinase family as well as its Ca2+/calmodulin-dependent protein

kinase subfamily (Coultrap and Bayer, 2014). Calcium signalling is crucial for plas-

ticity, specifically in glutamatergic synapses and significantly linked to memory and

its formation including long-term potentiation (LTP) (Voglis and Tavernarakis, 2006).

This can explain the central role of those proteins in the (post-)synapse. Addition-

ally SYNII plays a role in synaptogenesis and neurotransmitter disease modulation

(Cruceanu et al., 2012). This gene might be more naturally associated with the presy-

napse. Nevertheless it seems to play a central role in the postsynapse or likely amongst

the whole synapse. This again underlines the hypothesis that tissue separation between

the pre- and postsynapse remains very challenging.
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Table 5.3: Genes detected with top coverage in the postsynaptic proteome (ordered by

coverage and alphabetically by gene name).

Gene Name Gene Name long Entrez ID Coverage

DLG4 discs large MAGUK scaffold protein 4 1742 22

CAMK2A calcium/calmodulin dependent protein kinase II alpha 815 21

CAMK2B calcium/calmodulin dependent protein kinase II beta 816 21

GAPDH glyceraldehyde-3-phosphate dehydrogenase 2597 21

INA internexin neuronal intermediate filament protein alpha 9118 21

SPTBN1 spectrin beta, non-erythrocytic 1 6711 21

SYN2 synapsin II 6854 21

Considering the synaptosome (Table 5.4), calcium related processes as well as vesi-

cle and synapse specific proteins are detected with a high coverage.

19 genes show the top coverage of seven in the synaptosome. CAMK2A and

CAMK2B are amongst the top coverage hits, as they are in the postsynapse. Similarly

DLG4 as well as DLG2 are found, confirming the necessity of distinct scaffolding pro-

teins. A number of the proteins seem to appear in pairs. This indicates that different

variants of the proteins are identified with a high coverage. Such a finding might high-

light that those form part of one complex, requiring both genes to be expressed for full

functionality. STXBP1 and STXBP5 are one example. Both of them are involved in the

synaptic vesicle cycle, specifically vesicle-membrane fusion and carry out their full

functionality by interacting with other proteins such as STX1. STXBP5 plays a (nega-

tive) regulatory role in exocytosis and neurotransmitter release (Joshi and Whiteheart,

2017) and STXBP1 might determine intracellular fusion specificity (Archbold et al.,

2014). It has been proposed that both proteins compete for STX1 binding1. SV2B

and SV2A are members of the synaptic vesicle proteins 2 family (SV2) associated with

the regulation of vesicle trafficking and exocytosis. Additionally SV2A interacts with

SYT1, enhancing low frequency neurotransmission in quiescent neurons (Bartholome

et al., 2017). Overall this shows the centrality of synaptic vesicle cycling which fea-

tures a prominent role in the synaptosome as well as the presynapse.

With regard to protein pairs these are either functionally dependent from each other

or reflect two protein variants. These may carry out similar functions in distinct brain

regions or cell types or actively compete with each other. Overall top coverage genes

detected in the synaptosome are involved in central synaptic processes. Similar find-

ings can be made in the joint synaptic proteome and are addressed below.

1http://www.uniprot.org/uniprot/Q5T5C0

http://www.uniprot.org/uniprot/Q5T5C0
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Table 5.4: Genes detected with top coverage in the synaptosome proteome (ordered

by coverage and alphabetically by gene name).

Gene Name Gene Name long Entrez ID Coverage

AP2M1 adaptor related protein complex 2 mu 1 subunit 1173 7

ATP6V1A ATPase H+ transporting V1 subunit A 523 7

CADPS calcium dependent secretion activator 8618 7

CAMK2A calcium/calmodulin dependent protein kinase II alpha 815 7

CAMK2B calcium/calmodulin dependent protein kinase II beta 816 7

CTNNA2 catenin alpha 2 1496 7

DLG4 discs large MAGUK scaffold protein 4 1742 7

DLG2 discs large MAGUK scaffold protein 2 1740 7

NSF N-ethylmaleimide sensitive factor, vesicle fusing ATPase 4905 7

PPFIA3 PTPRF interacting protein alpha 3 8541 7

SH3GL2 SH3 domain containing GRB2 like, endophilin A1 6456 7

SNAP25 synaptosome associated protein 25 6616 7

STXBP1 syntaxin binding protein 1 6812 7

STXBP5 syntaxin binding protein 5 34957 7

SV2A synaptic vesicle glycoprotein 2A 9900 7

SV2B synaptic vesicle glycoprotein 2B 9899 7

SYNGR3 synaptogyrin 3 9143 7

SYP synaptophysin 6855 7

SYT1 synaptotagmin 1 6857 7

The 11 top coverage proteins in the joint synaptic proteome are listed in Table 5.5.

The maximum coverage is 35 (out of 38 datasets) and more proteins are found with

a coverage of 32 and 31. The first six records in particular overlap with top coverage

proteins in the postsynapse or synaptosome. These proteins cover calcium/calmodulin

related functions as well as vesicle cycling and fusion related roles. SYN1 and SEPT5

are not amongst the top coverage genes in any of the regional datasets, but appears in

the joint synapse.

SYN1 forms part of synaptic vesicles. It has been shown to be involved in neu-

ral development, synaptic neurotransmission as well as plasticity (Fassio et al., 2011).

Its coverage in the regional datasets is relatively high, but is not amongst the top hits

(8, 26 and 6 in the presynapse, postsynapse and synaptosome). SYN1 together with

SYN2 additionally appear to be part of another protein pair encoding neuronal phos-

phoproteins, associated with the synaptic vesicle surface. Interactions between the two

proteins have been identified and point towards their complex formation (Hosaka and

Südhof, 1999). This finding can also be used to expand the identification of key genes,
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Table 5.5: Genes with top coverage, detected in the joint synaptic proteome (ordered

by coverage and alphabetically by gene name). “pre”, “post” and “synapt” refer to the

presynapse, postsynapse and synaptosome proteomes respectively.

Gene
Name

Gene Name long Entrez ID Coverage top enriched in other
dataset(s)

CAMK2A calcium/calmodulin dependent protein kinase II alpha 815 35 post, synapt

INA internexin neuronal intermediate filament protein alpha 9118 33 post

NSF N-ethylmaleimide sensitive factor, vesicle fusing ATPase 4905 33 synapt

SYN2 synapsin II 6854 32 post

SYT1 synaptotagmin 1 6857 32 synapt

DLG4 discs large MAGUK scaffold protein 4 1742 32 post, synapt

SYN1 synapsin I 6853 32 -

STXBP1 syntaxin binding protein 1 6812 31 synapt

GNAO1 G protein subunit alpha o1 2775 31 pre

CAMK2B calcium/calmodulin dependent protein kinase II beta 816 31 post, synapt

SEPT5 septin 5 5413 31 -

based on other proteins, likely forming part of the same reaction complex.

In general this illustrates how dataset comparison can confirm known principles

and lead to new insights of key genes in large datasets. The presented results show

that top coverage genes might not always be as region specific as expected, based

on their role, but give a notion of overall important and dominating functions in the

synapse and its specific regions. Therefore individual analysis and interpretation of

protein functions within the synapse can help to pin down central functions of synaptic

regions. This analysis considered all protein in the respective datasets. To understand

region specific properties the regional datasets were compared.

5.3.4 Regional Synaptic Properties

After having analysed the individual datasets as well as the joint synaptic proteome,

these were compared with each other. Figure 5.8 visualizes the overlap in terms of

common genes. A total of 6,706 synaptic proteins were identified in at least one study

(mapped to a human Entrez ID). This represents the size of the synaptic proteome as

introduced earlier (Section 5.3.1).

The intersection of the three sets contains 1,478 proteins, being 22% of all iden-

tified proteins. These are present in all three datasets and likely carrying out general

cellular functions.

Overall it can be seen that the synaptosome contains most of the proteins (5,862),

including almost all genes expressed in either the presynapse or postsynapse. Only
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Figure 5.8: Overlap of unique, human Entrez IDs of the genes identified in the presy-

napse, postsynapse and synaptosome proteome. All genes are included (minimum

coverage = 1).

844 of the total number of synaptic proteins were not found in the synaptosome (~12%

of the joint synaptic set).

The postsynapse is the second largest set with 5,053 proteins in total, followed by

the presynapse, containing 1,867 proteins. The number of proteins uniquely expressed

in each of the three regions is relatively small. 1,296 (22%), 571 (11%) and 240 (12%)

proteins are specifically expressed in the synaptosome, postsynapse and presynapse

respectively (percentages are relative to the total number of proteins in the regional

dataset).

Since protein coverage in the different datasets may reflect data quality (Section

5.3.2) it was of interest to consider changes in overlap when only considering proteins

found in a minimum of two or three studies. Figures 5.9a and 5.9b show the respective

venn diagrams and Table 5.6 shows a numeric overview. It can be seen that remov-

ing low coverage genes does not automatically remove all region specific records. It

reduces the parts specific to the presynapse and synaptosome, whereas the postsynap-

tic proportion rises. This is due to the fact that far less presynapse and synaptosome

specific studies were available compared to postsynaptic ones. This phenomena re-

confirms that higher detection coverage can increase data quality and consistency, but

previously explained first-detection times should to be considered.

Even though region specific unique gene sets are small, they very likely contain
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Figure 5.9: Overlap of unique human Entrez IDs of the genes identified in the presy-

napse, postsynapse and synaptosome proteomes (minimum coverage of considered

proteins as indicated above).

Table 5.6: Number of genes in the synaptic regional proteomes, filtered for coverage.

Coverage Presynapse Postsynapse Synaptosome Joint synaptic set

1 1,867 5,053 5,862 6,706

2 696 3,439 3,266 5,452

3 361 2,346 1,997 2,850

genes associated primarily to functions, typical to the different synaptic regions. To

identify those, functional enrichment analysis was carried out. Gene Ontology (GO)

annotation terms were used to test gene sets uniquely expressed in the presynapse,

postsynapse, synaptosome and amongst all three datasets. Enrichment was carried out

for Biological Process, Molecular Function and Cellular Component associated terms

(retrieved from the GO database). The Fisher exact test, the topGO elim algorithm

and Benjamini and Yekutieli multiple testing correction were used. Results based on

different background datasets were compared and using the full synaptic proteome

as a reference background turned out to give most representative results which are

presented in this chapter.

Few functional terms were enriched for region-unique datasets. Table 5.7 sum-

marises the results and the following paragraphs interpret the findings.

Regarding uniquely presynaptic proteins “neurotransmitter biosynthetic process”

(GO:0042136) stands out as the one enriched Biological Process. Considering Molecu-
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Table 5.7: Significantly enriched functional GO terms of the gene sets specifically ex-

pressed in only one of the three regional synaptic proteome datasets. The gene sets

of interest were enriched compared to all genes expressed in the synapse. Results

were obtained using the Fisher exact test, elim algorithm and Benjamini and Yekutieli

multiple testing correction; significance p-value threshold was set to 0.05.

Gene Ontology Type Presynapse (p-value) Postsynapse (p-value) Synaptosome (p-value)

Biological Process neurotransmitter biosynthetic

process (4.40x10−02)

negative regulation of

interleukin-10 production

(4.90x10−03)

mRNA splicing, via spliceo-

some (6.2x10−03)

Molecular Function serine-type endopeptidase ac-

tivity (3.34x10−02)

protein heterodimerization ac-

tivity (3.30x10−02)

-

Cellular Component transcription elongation factor

complex (1.10x10−02)

integral component of peroxi-

somal membrane (5.51x10−03)

nucleoplasm (1.5x10−03)

lar Function terms, “serine-type endopeptidase activity” (GO:0004252) was identified,

and “transcription elongation factor complex” (GO:0008023) is the enriched Cellular

Component. All these terms overlap with well known presynaptic functions. Neu-

rotransmitters are crucial for cell-cell communication and as the top-coverage genes

indicate their transport in vesicles is also a highly central presynaptic function (Sec-

tion 5.3.2). Regarding the Molecular Function “serine-type endopeptidase activity” is a

specific form of a catalytic activity, assisting to initiate other interactions. This mostly

happens through the modification of a protein, converting it into its active form. Iden-

tifying the “transcription elongation factor complex” indicates the high activity of the

presynaptic region, requiring large amounts of newly generated protein to maintain its

functionality. The elevated need of proteins such as neurotransmitters and transport

related factors could explain the enrichment of proteins supporting protein production

specifically in the presynapse.

With regard to the postsynapse specific genes (Table 5.7), a common Biological

Process is “negative regulation of interleukin-10 production” (GO:0032693). Inter-

leukin-10 (IP-10), also referred to as C-X-C motif chemokine 10 (CXCL10) and is a

small cytokine belonging to the CXC chemokine family. Its expression is usually trig-

gered by IFN-gamma as a response to pathogens. Since this does not seem to be a brain

specific functionality, the expression pattern of IP-10 was reviewed. It could be seen

that IP-10 is highly expressed in the fetal brain2 which might explain its enriched ap-

pearance in the postsynapse. Another explanation is around the theory that pathogens

tend to affect synaptic vesicles or cytokines to enhance the pathogens reproduction.

2http://biogps.org/#goto=genereport&id=3627

http://biogps.org/#goto=genereport&id=3627
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Therefore a range of (synaptic) vesicle proteins are associated to pathogenic and vi-

ral terms which appear amongst enrichment analysis results (Franco and Shuman,

2012). Regarding prominent Molecular Function, “protein heterodimerization activ-

ity” (GO:0046982) stands out. The dimerization of heterodimers is closely connected

with G-protein coupled receptors (GPCRs) which communicate external postsynaptic

signals into the cell to trigger downstream actions. The full functionality of a range

of GPCRs is only given when two of them dimerize which makes the heterodimeriza-

tion activity a crucial postsynaptic process. Furthermore the “integral component of

peroxisomal membrane” (GO:0005779) is the enriched cellular component amongst

proteins uniquely expressed in the postsynapse. Peroxisomes are cell organelles, in-

volved in the fatty acid catabolism and hosting highly important enzymes, participat-

ing in the energy metabolism (Wanders and Waterham, 2006). Additionally they have

been shown to synthesize ether phospholipids which are critical for normal mammalian

brain function. This role could explain their over-representation in the postsynapse.

The last region specific gene set describes the synaptosome. As Table 5.7 shows,

“mRNA splicing via spliceosome” (GO:0000398) stands out as the enriched Biological

Process. Splicing is crucial to generate mature mRNA which is consequentially trans-

lated into a protein. Through alternative splicing it can also lead to different mature

mRNA products. Since the synapse is a highly active region hosting many processes at

the same time, it requires well functioning protein production activity. Additionally it

might indicate that different synapses produce distinct protein splice variants, requir-

ing high spliceosome activity. No Molecular Function was identified as significantly

enriched and the “nucleoplasm” (GO:0005654) is the enriched Cellular Component

for the synaptosome specific proteins. The nucleoplasm comprises all nuclear proteins

other than the chromosomes. Again this could point towards highly elevated protein

production in the synapse which requires transcription of DNA as well as their trans-

port through the nuclear membrane. These are functions covered by proteins in the

nucleoplasm.

Alternatively to the established hypotheses the discovered terms might be artefacts

occurring due to contamination of analysed samples. Experimental spot-checks as well

as additional studies might help to find additional proof for the association or help to

discard it.

Apart from the dataset specific functions, common functions covered by all three

datasets were investigated. The 1,477 genes expressed in all three synaptic regions

were analysed. Figure 5.10 displays the enriched terms. Compared to the region unique
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datasets, the number of enriched terms is higher. This might be due to the fact that this

dataset is larger as well as an increase in processes specific to the synapse itself.

(a) Biological Process (b) Molecular Function

(c) Cellular Component

Figure 5.10: GO enrichment of the set of genes expressed in all three datasets (presy-

napse, postsynapse and synaptosome). Enrichment was tested compared to the whole

synapse as a background. Results for different GO ontologies are shown. Fisher test,

the elim algorithm and Benjamini and Yekutieli multiple testing correction were used.

Colour gradient (violet to blue) and size (small to large) reflect significance of the terms.

Some of the significantly enriched Biological Processes are “mitochondrial respira-

tory chain complex I assembly” (GO:0032981), “glutamate secretion” (GO:0014047),
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“neurotransmitter secretion” (GO:0007269) as well as “synaptic vesicle endocytosis”

(GO:0048488) and “synaptic vesicle exocytosis” (GO:0016079) (Figure 5.10a). Mito-

chondria generate intracellular energy which is ubiquitously required in the synapse.

The central role of energy production has been seen in several studies and links be-

tween a lack of energy to neurodegenerative diseases are getting more and more clear

(Beal, 1998). Synaptic vesicles are the main transport media involved in informa-

tion transmission and also amongst the top coverage genes in the synaptosome and

joint synaptic proteome (Tables 5.4 and 5.5). Their prominent functionality amongst

the joint synapse dataset shows their clear importance even though synaptic vesicles

might intuitively be associated with the presynapse.

Enriched Molecular Function terms contain “GTPase activity” (GO:0003924) and

“GTP” and “GDP binding” (GO:0005525, GO:0019003) as well as “NADH dehydro-

genase (ubiquinone) activity” (GO:0008137) and “structural constituent of cytoskele-

ton” (GO:0005200) (Figure 5.10b). These are processes mainly involved in energy

rich functions as well as protein generation and structural intracellular management.

Hence, the terms provide further evidence of the high energy consumption of the

synapse and indicate that energy related processes are very prominent amongst the

most prevalent ones in the region. To manage parallel processes the cytoskeleton has

a crucial role in assisting the transport of components in the synapse. Identifying en-

riched terms associated to the cytoskeleton and its structure confirms the importance

of spatial intra-synaptic organisation for full functionality.

The “extracellular exosome” (GO:0070062) as well as the “myelin sheath” (GO:

0043209) are two enriched cellular components, confirming that the genes found in

all three regional datasets are describing the synapse, or more generally neurons them-

selves (Figure 5.10c).

This shows that gene set enrichment analysis of heterogeneous datasets is a great

tool to obtain detailed and general functional descriptions of gene sets. Results should

always be cautiously analysed but reveal general patterns.

After having analysed the data from the synapse level they were used for further

studies in PD. Putting dataset completeness over the removal of possible false pos-

itives, the full dataset (coverage = 1) was used to locate PD associated genes in the

synapse.
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5.3.5 PD and the Synapse

To investigate the role of PD associated genes in synapse biology, a set of synaptic PD

associated genes was identified. Out of 418 PD associated genes (Chapter 3) 205 were

found in the synaptic proteome. Figure 5.11 shows how PD associated genes overlap

with genes in the regional synaptic proteome datasets. The total of 205 genes is the

sum of overlaps between the different combinations of individual synaptic proteomes.

71 genes can be found in all three regional proteomes, while the rest is only found

in one or two of the synaptic proteome subsets. This might suggest that some PD

associated genes affect specific synaptic regions and will be addressed towards the end

of this section. For a more in-depth overview Figure 5.12 shows the proteome overlap

with PD associated genes, when applying protein-coverage filters. This shows that

overall numbers decrease, but the synaptic proteins with detection coverage 2 and 3

still contain 172 and 125 PD associated genes (the total proteome sizes decreases from

6,706 to 5,452 and 2,850 genes respectively, Table 5.7).

Postsynapse

Presynapse

Synaptosome

PD_associated_genes

213

1262

34

235

5

113

4

558

13

2895

77

32

1

1406

71

Figure 5.11: Overlap of the three regional synaptic proteomes with PD associated

genes (minimum coverage = 1).

To test for region specific disease enrichment, Table 5.8 shows an overview of the

significance of overlap between the PD associated genes and regional synaptic datasets.

To compute the significance using hypergeometric testing background datasets were

needed. These included either i) all human protein coding genes (estimated at around

20,000 proteins and referred to as “genome background” (Ezkurdia et al., 2014)) or

ii) the synaptic proteome (with a total of 6,706 proteins). The total number of PD
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Postsynapse
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(a) Minimum coverage = 2
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(b) Minimum coverage = 3

Figure 5.12: Overlap of the three regional synaptic proteomes with PD associated

genes (adjusted coverage of synaptic proteins in all regional datasets).

associated genes was 418 when testing for enrichment given all human protein coding

genes as the reference background and 205 when considering the synaptic proteome

as a background datasets. The significance threshold was set to a p-value of: 0.05.

It can be seen that the synaptic proteome is significantly enriched for PD associated

genes, meaning that the number of PD associated genes found amongst the synaptic

proteome genes is higher than expected, if all the PD genes were distributed equally

over the genome. The corrected p-value is 2.66x10−11 (Table 5.8 column “synapse”,

row “unique hypergeometric enrichment (genome background)”). To test if each of

the synaptic regions is specifically enriched, the overlap of PD associated genes with

regional proteomes was analysed individually. PD genes uniquely found in region

specific gene sets were analysed for enrichment in the respective datasets. The number

of proteins specifically expressed in the region of interest were considered as the gene

set of interest.

Genes unique to the postsynaptic and synaptosome proteome are significantly en-

riched for PD associated genes, compared to the “genome background”. P-values for

the presynapse and compared to the synaptic background are very close to the 0.05

significance threshold (see Table 5.8).

The intersection of the three regional synaptic proteomes is enriched for PD associ-

ated genes relative to both genetic background datasets. This points towards an overall
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general significant enrichment of the disease associated genes in the synapse, rather

than specifically for any of the regional set.

Table 5.8: Overlap of PD associated genes with regional synaptic proteomes. “unique”

refers to disease genes only overlapping with the indicated regional dataset and “total”

refers to all the PD associated genes found in the respective proteome. Hypergeometric

testing was carried out considering the full genome as a background (all human protein

coding genes, referred to as “genome background”) as well as the synaptic proteome.

Grey numbers indicate that the significance threshold of 0.05 was not reached.

presynapse postsynapse synaptosome all three synapse

number of unique proteins 240 571 1,296 1,478 6,706

unique PD count 5 13 34 71 205

unique hypergeometric enrichment (genome background) 5.65x10−01 4.16x10−01 1.01x10−01 3.05x10−11 2.66x10−11

unique hypergeometric enrichment (synapse background) 8.64x10−01 9.00x10−01 8.65x10−01 1.85x10−05

total number of proteins 1,867 5,053 5,862 - -

total PD count 81 162 186 - -

total hypergeometric enrichment (genome background) 1.53x10−10 5.87x10−10 2.14x10−11 - -

total hypergeometric enrichment (synapse background) 1.61x10−04 1.22x10−01 8.50x10−02 - -

To confirm this hypothesis a second calculation included all PD associated genes

found in the regional subsets. The entire regional presynaptic, postsynaptic and synap-

tosome proteomes were tested for enrichment of PD associated genes. In this scenario,

compared to the synaptic proteome as the background, all regional proteomes show

PD enrichment with a p-value of 0.01 or lower. Enrichment compared to the genome

background is significant with p-value < 1.5x10−10.

Combining all these insights the analysis confirms that the synapse is highly en-

riched for PD associated genes. The full synapse as well as the regional sets show

significant disease enrichment. Nevertheless this analysis does not supply evidence

for the disease affecting a specific synaptic region. Therefore it is very likely that PD

associated genes found in the synapse affect a number of shared functions. Chapter

6 focuses on identifying potential commonalities in the function of disease associated

proteins in the different regions of the synapse.

Apart from the synaptic PD associated genes, 213 of the original list were not

found in any of the synaptic proteomes. Identifying common functionalities or regional

expression patterns of these was of further interest and is addressed in the next section.
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5.3.6 PD Affected Functions

After having identified a set of PD associated genes specific to the synapse and a second

set of non-synaptic PD associated genes, functional roles of the proteins were investi-

gated. The synaptic and non-synaptic PD associated gene sets were analysed separately

regarding their functionality. GO enrichment for the two sets was carried out consider-

ing Biological Process, Molecular Function and Cellular Component terms. Different

background lists were used for each set. For both lists the full set of human protein

coding genes was one of them. The second background list was the synaptic proteome

for the synaptic PD associated gene set and the “rest of the genome” (all human pro-

tein coding genes apart from the ones part of the synaptic proteome) for non-synaptic

PD associated genes. Overall results are very similar, but seem slightly more targeted

towards synaptic or non-synaptic functions when using the more specific background

sets.

Results for the synaptic PD associated genes are based on the synaptic background

dataset and are presented in Table 5.9 (column 1, “Synapse”). Enrichment was calcu-

lated using the Fisher exact test, elim algorithm and Benjamini and Yekutieli multiple

testing correction. Top enriched Biological Process terms include “dopamine biosyn-

thetic process” (GO:0042416) as well as “response to drug” (GO:0042493). Before

applying multiple testing correction “clathrin coat disassembly” (GO:0072318) is also

enriched for this gene set (p-value: 3.5x10−5 before and 0.39 after correction), this will

be addressed again in Section 7.6.1. Finding enrichment of dopaminergic biosynthetic

processes associated to genes in the set is likely related to the predominant effects of

PD in dopaminergic neurons.

“Receptor binding” (GO:0005102) is the one enriched Molecular Function in-

dicating PD effects on information transmission between neurons. Enriched Cel-

lular Component terms are “neuronal cell body” (GO:0043025), “terminal bouton”

(GO:0043195), and “axon” (GO:0030424). All these terms confirm known PD af-

fected cellular functions and hint towards more general neuronal functions to be af-

fected as well. Other enriched terms are “blood microparticle” (GO:0072562) and

“platelet alpha granule lumen” (GO:0031093). These terms hint towards neuroin-

flammatory processes linked to PD (Hirsch et al., 2012) which allows and is reflected

through enhanced access of immune response related particles into the brain.

Enriched functions of non-synaptic PD associated genes reveal different functional

terms as the ones found enriched in PD associated genes expressed in the synapse. The
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results consider enrichment compared to a background dataset including all human

protein coding genes but the ones part of the synaptic proteome (Table 5.9, column

“elsewhere”).

“Negative regulation of neuron apoptotic process” (GO:0043524) shows up as an

enriched Biological Process term. This points towards a possible failure in the reg-

ulation of apoptotic processes as an aetiological factor. It could indicates a mech-

anism that fights against neuron loss, induced through apoptosis, specifically under

disease conditions. Enriched Molecular Function terms are “peptidoglycan binding”

(GO:0042834), “transcription factor binding” (GO:0008134), “protein heterodimer-

ization activity” (GO:0046982) and “enzyme binding” (GO:0019899) amongst others.

Finding those less brain specific terms amongst the enriched ones points towards non-

synaptic PD affected regions and processes. Four mammalian peptidoglycan recogni-

tion proteins have been identified that actively recognise components, usually external

to the human body, such as bacteria (Dziarski, 2004). Several studies uncovered their

versatile activity against distinct bacterial strains (Bobrovsky et al., 2016) and showed a

link to the chlamydial two-component stress response system. Identifying such a term

amongst the ones enriched in non-synaptic PD associated genes hints towards elevated

expression of related genes due to enhanced cellular defence mechanism activity. The

other three terms are all related to “activating” processes. Gene transcription initiation

could be enhanced to produce defensive or replacement proteins due to the dysfunction

of others. Heterodimerization as well as enzyme binding can both be reactions to ac-

tivate specific processes. The combination of these may indicate that non-synaptic PD

associated genes are involved in generative processes influencing the cellular protein

composition and contributing to the PD phenotype.

Two of the enriched Cellular Component terms amongst non-synaptic PD asso-

ciated genes are “neuron projection” (GO:0043005) and “cell body” (GO:0044297).

Based on the GO definitions neuron projection refers to the prolongation of a pro-

cess extending from a nerve cell. This could be axons or dendrites. Cell body on

the contrary describes the portion of a cell bearing surface projections from axons

and dendrites, but excluding all cell projections. This combination of terms provides

evidence for the role of PD associated genes linked to information and signal transmis-

sion and reception. This is a crucial synaptic function and its dysregulation can lead

to neuron loss. “Lewy body” (GO:0097413) is another enriched term confirming the

specificity of the dataset containing PD associated genes and highlighting their pres-

ence outside the synapse, but still in the brain. Even though Lewy Bodies are part of
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other pathologies as well their combination with other enriched terms fits well into the

PD pathology.

Table 5.9: Functional GO enrichment of PD associated genes expressed in the synapse

and elsewhere. The gene sets of interest were enriched compared to all synaptic genes

(“synapse”) as well as all human protein coding genes, apart from the ones expressed

in the synapse (“elsewhere”). Results were obtained using the Fisher exact test, elim

algorithm and Benjamini and Yekutieli multiple testing correction; significance p-value

threshold was set to 0.05 (representation in alphabetical order).

Gene Ontology Type Synapse “Elsewhere”

Biological Process (p-
value)

dopamine biosynthetic process

(1.85x10−02)

negative regulation of neuron apoptotic process

(4.49x10−03)

response to drug (1.85x10−02)

receptor binding (1.15x10−02) BH3 domain binding (1.80x10−02)

copper ion binding (8.68x10−03)

enzyme binding (8.68x10−03)

growth factor activity (1.69x10−02)

Molecular Function identical protein binding (8.68x10−03)

(p-value) peptidoglycan binding (8.68x10−03)

protein homodimerization activity

(1.69x10−02)

transcription factor binding (1.80x10−02)

ubiquitin protein ligase binding (8.68x10−02)

axon (2.60x10−02) cell body (6.86x10−04)

blood microparticle

(10−022.64x10−04)

extracellular space (1.94x10−02)

Cellular Component
(p-value)

neuronal cell body (1.8010−03) integral component of plasma membrane

(4.76x10−02)

perinuclear region of cytoplasm

(8.65x10−03)

Lewy Body (1.56x10−02)

platelet alpha granule lumen

(6.31x10−03)

membrane raft (1.94x10−02)

terminal bouton (5.10x10−04) neuron projection (6,74x10−06)

Overall this points towards non-synaptic effects of PD to be influencing neuron

projection which could explain a part of the disease phenotype, affecting patients motor

and movement difficulties as well as non-motor symptoms of the disease.

In summary and based on enrichment analysis results, on the one hand synapse

specific PD associated genes have been proven to affect the dopaminergic system as

well as receptor binding, specifically in terminal boutons. On the other hand non-

synaptic PD associated genes are associated with apoptotic processes and affect neuron
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projection. This could indicates that PD causal dysfunctions appear predominantly in

the synapse. These would then project their effects, creating the PD pathology outside

the synapse and brain to more distal body parts.

5.4 Discussion

The growing number of synaptic proteome studies allowed the generation of joint

datasets describing the presynapse, postsynapse, synaptosome and the full synapse.

Publicly accessible data are a great source for high data quality.

Nevertheless the data-joining process was not always straight forward and a num-

ber of challenges were faced. General issues encountered during data extraction and

mapping were based on how information is presented by authors. In some cases sup-

plementary information was in non-machine readable formats (e.g. .pdf-format), re-

quiring manual annotation which is very time consuming and can be error prone.

Once all data were transformed to be machine readable, original identifiers needed

to be mapped to one identifier of choice. In this work the human Entrez ID was cho-

sen. Due to proteomics data obtained from non-human species protein IDs needed to

be mapped between species and from protein to gene identifiers. Therefore mapping

information was used, but at times manual fine-tuning steps were required. The en-

countered challenges highlight common problems of bioinformatics researchers work-

ing with information obtained in different species and from different sources. All these

points might explain why many researchers stick to the use of individual sources avoid-

ing data mapping and comparison. By doing so one full published synaptic proteome

is used and necessary mapping steps are avoided. Nevertheless this approach carries a

high risk of losing valuable additional information contained in distinct studies.

The presented regional proteome sets are hence the currently most complete synap-

tic proteomic datasets. The use of these “complete” proteomes is encouraged and

should guarantee best possible data quality.

The human Entrez ID was chosen since the main application area of the datasets

focus on a human perspective and the ID is considered a very stable source. In the con-

text of this work, the role of PD associated genes was investigated. Furthermore a far

larger amount of human Protein-Protein Interaction (PPI) data are available which will

be combined with the synaptic proteome data described in Section 5.3.1. Therefore

gene identifiers of the proteomes were mapped to Entrez IDs.

Striking size variation appears between the different published proteomic datasets.
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Presynaptic studies for example identified between 49 (Gorini et al., 2010) and 1,158

proteins (Wilhelm et al., 2014). Regarding postsynaptic studies between 34 (Schwenk

et al., 2012) and 3,545 proteins (Distler et al., 2014) were detected. The number of

proteins identified in studies addressing the synaptosome ranges from 157 (Biesemann

et al., 2014) to 4,475 (Distler et al., 2014). These differences are partly due to the

analysed tissue portion. In some cases only a specific receptor complex, membrane

channel or other structural parts were analysed, compared to e.g. the entire presynapse.

Detection potential and sample size also increased in recent years. More advanced

experimental techniques, material, and machines allowed large-scale screens leading

to larger datasets.

The increase in data availability allowed to study multiple detection of synaptic

genes in different studies. Considering the year of first detection of a protein allowed

for a more detailed picture regarding the interpretation of protein detection coverage.

This is specifically the case for more recently detected proteins which might have only

be identified due to more advanced experimental techniques. Keeping this in mind can

help to classify single coverage proteins differently, e.g. assigning lower credibility

to a protein first detected in the early 2000’s and never again, compared to a firstly

discovered protein in 2015 thanks to more advanced experimental approaches.

Given all these insights the total number of synaptic proteins seems extremely

large. It was initially intended to identify a key synaptic proteome. Nevertheless more

data is required to estimate the size of the different synaptic proteomes and identify the

exact set of genes part of these.

With regard to the protein abundance it needs to be remembered that numbers of

proteins used in this Chapter refer to individual protein entities, not considering the

copies of these, present in a cellular region. Additionally the data presented contains

proteins expressed in the synapse at any given time. This does not mean that all of

these are present in the synapse simultaneously, with variations depending on devel-

opmental stages amongst others. Hence numbers presented should not be considered

as a total count of proteins in the synaptic regions, but rather present the diversity of

proteins in the synapse. To estimate such a total count of proteins in the synapse, spa-

tial constraints could possibly be considered. Nevertheless differences in protein size

complicate such an endeavour.

The synaptosome by definition comprises the whole synapse including presynapse

and postsynapse as well as other cell organelles such as synaptic vesicles and mito-

chondria. This explains why a portion of the synaptosome proteome does not overlap
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with neither the pre- nor postsynaptic proteome. The (small) portions of presynaptic

and postsynaptic proteins which do not appear in the synaptosome proteome might be

due to low expression levels, hindering their detection in a larger dataset. Alternatively

they might be detected in future studies. Nevertheless given the pre- and postsynapse

specific genes those could be used to identify region specific functionalities.

Key biological functions of proteins in the presynapse and postsynapse vary largely,

so does the current proteome size (1,867 proteins versus 5,053 proteins respectively).

Nevertheless a large part of the presynaptic proteome (~80%) overlaps with the post-

synaptic one, with only ~20% specific to the presynapse. Due to the larger size of the

postsynapse, only ~30% of postsynaptic genes overlap with the presynapse and ~70%

are specific to the postsynapse.

Based on the available data it is possible that a larger number of presynapse spe-

cific proteins still remain to be identified. If it turns out that the current information

is correct, showing very low numbers of region specific proteins, this confirms that

functional specificity of a cellular region can emerge and be explained by a relatively

small amount of proteins.

To gain insights into similarities and differences in regional synaptic datasets the

top coverage genes were considered. In this way genes with the highest detection

coverage are shown to have well characterised synaptic (region specific) functions.

Presynapse, postsynapse, and synaptosome genes with maximum coverage hint to-

wards different functionalities. Caution needs to be taken since these results might be

biased, based on specific detection methods targeting those proteins, as being highly,

and specifically expressed in the synapse.

Enrichment studies supported the distinct functional focus of genes unique to the

different regional proteomes. Even though region specific sets are relatively small, the

analysis was able to confirm the main known roles of proteins specific to the different

synaptic regions.

Considering the presence of PD associated genes in the synapse revealed that only

~50% of these are expressed in any of the synaptic regions. Nevertheless the overlap

between disease associated genes and the synaptic proteome is significant (based on

hypergeometric testing). More detailed analysis could not identify any of the region

specific sets as overly enriched. Hence the synapse itself was proven to be highly and

ubiquitously affected by PD.

The division of PD associated genes into a synaptic and non-synaptic group gener-

ated two datasets possibly representing different aspects of the disease. The synapse is
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still believed to be a key cellular region where PD manifests itself and shows molec-

ular alterations. To better understand the role of PD associated genes in the synapse

functional enrichment was carried out. This confirmed known details linking PD to

synaptic functions, such as receptor binding. Very likely all these could be considered

disease triggering dysfunctions.

Functional enrichment of PD associated genes not found in the synapse revealed

more generic and pathology related pathways, known to be affected in PD patients and

representing consequences of synaptic PD associated dysfunctions. Finding enriched

functional terms associated to signal releasing as well as signal receiving cellular com-

ponents might have been suspected but has not yet been shown on a large scale. Even

though this might not facilitate the search for drug targets it could point towards dis-

tinct affected cellular regions given different tissues or similar.

Overall, the analysis presented confirms known PD effects on the synapse and other

cellular pathways. It is a first proof that using large-scale analytical approaches, such as

functional enrichment analysis can help to shed light over complex research questions.

Yet the aim is to obtain more specific results and uncover potentially still unknown

disease links and causes. Therefore and to further investigate the influence of PD on

the synapse more in-depth network analytical approaches are used. The following

chapter presents Protein-Protein-Interaction Networks and clustering algorithms used

to divide datasets into subgroups. Together with functional enrichment analysis this

helps to gain better and deeper insight into specifically affected intracellular synaptic

regions and pathways associated to PD.



Chapter 6

Synaptic Protein-Protein-Interaction

Network Analysis and PD

6.1 Hypothesis and Objective

The complexity of Parkinson’s Disease (PD) is reflected at various intracellular levels

and affects a number of different functions. Therefore, it can be hypothesized that

different sets of PD associated genes affect specific pathways. Most of the key, causal

dysfunctions are suspected to be found in synapses. In this way it is suspected that

several cellular functions are affected but via different molecular mechanisms.

To test this hypothesis it is intended to identify molecular pathways embedded

within the synapse and enriched with PD associated gene. Figure 6.1 illustrates the

overall workflow.

Curated synaptic proteomic datasets are used (Chapter 5) and combined with Protein-

Protein Interaction (PPI) information (Chapter 4) to generate Protein-Protein-Interaction

Networks (PPINs). An ongoing challenge in regard to PPINs is to identify patterns and

substructures in analysed datasets. Based on different mathematical approaches clus-

tering algorithms are able to identify highly connected network groups, referred to as

communities.

In this chapter five different clustering algorithms were used to identify sets of

synaptic genes showing an over-representation of PD associated genes. Functional

enrichment analysis is applied to characterise the genes functions.

113
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Figure 6.1: Overview of data, processes, and outcomes of Chapter 6. Dark blue boxes

refer to published data, light blue boxes are generated datasets, green boxes describe

processes and magenta boxes show outcomes.

6.2 Material and Methods

To gain understanding of a complex disease such as PD, large-scale analytical tech-

niques, as well as high quality datasets, are highly helpful. Previous chapters set

the baseline for the analysis presented in this chapter by obtaining clean and reliable

datasets.

Section 1.4 introduces the principles of network analysis and specifically focuses

on PPINs. The concepts of network generation, clustering algorithms and analytical

methods are explained in Section 2.4.1.

Principles of (functional) enrichment studies can be found in Section 2.3. Con-

sidering functional enrichment with respect to networks, the main gene sets in the

network are: i) all genes in the network, representing the background dataset and ii)

genes in any of the network communities being the subgroup of genes to be tested for

enrichment of a trait of interest.

All the analysis presented in this chapter can be run via a number of scripts. A mas-

ter script allows the full analysis to be performed in one go. Information required are
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the list of genes of interest as well as a PPI list. If the latter is not given, human, direct

PPIs will be used. Should one want to test for gene-disease enrichment, gene-disease

association data needs to be supplied. A number of parameters require command line

input to adjust the analysis. All necessary scripts can be found here1. A README file

is supplied for more information.

6.3 Results

6.3.1 Synaptic Protein-Protein-Interaction Networks

Proteins mediate biological function, and in the majority of the cases they do so by

interacting with each other. Hence using PPINs enhances understanding of interactions

and emerging sub-structures amongst synaptic proteins. To characterise networks and

identify similarities and differences statistical methods are applied.

Static, undirected PPINs of the regional and joint synaptic proteome datasets (Sec-

tion 5.3.1) were built. Therefore human, internal, direct PPIs were used (Section 4.3.2).

Table 6.1 shows some of the parameters obtained after initial analysis and describes the

four networks.

Table 6.1: Overview statistics of the PPINs of the presynaptic, postsynaptic, synapto-

some and joint synaptic proteome. Number of genes refers to the number of proteins

in the proteome (mapped to human Entrez IDs). Nodes are proteins and edges PPIs.

“bcc” stands for biggest connected component. “Clustering Coefficient” refers to the

global measure. “Density”, “Diameter” and “Power-law Alpha” values are overall net-

work measures. Details can be found in Section 2.4.

Dataset Number
of
Genes

Total
Nodes

Total
Edges

Nodes
(bcc)

Edges
(bcc)

Max
De-
gree

Clustering
Coeffi-
cient

Density Diameter Power-
law
Alpha

presynapse 1,867 1,582 9,092 1,551 9,063 281 0.0892 0.0075 8 2.5714

postsynapse 5,053 4,583 47,152 4,562 47,132 690 0.0655 0.0045 8 2.5326

synaptosome 5,862 5,380 58,974 5,356 58,951 796 0.0643 0.0041 7 2.5135

joint
synapse

6,706 6,094 69,545 6,068 69,520 893 0.0608 0.0037 7 2.5283

Differences between the number of genes and number of total nodes in the network

might indicate that not all expressed proteins undergo interactions with other proteins

in the dataset. Alternatively this can point out weaknesses of the PPI set, meaning

1https://github.com/KFHeil/thesis

https://github.com/KFHeil/thesis


116 Chapter 6. Synaptic Protein-Protein-Interaction Network Analysis and PD

that it is incomplete. This point also touches upon the possibility that the PPI set con-

tains false positive connections emerging through experimental sample contamination

amongst others. Similarly the number of nodes and edges in the biggest connected

component (Table 6.1, “bcc” columns) is smaller than the total numbers. This can be

explained by small numbers of proteins interacting amongst each other, but not with

the majority of other proteins in the dataset, the biggest connected component. These

non-connected subgroups are of minimal size and were not further considered in this

study.

The global clustering coefficient, also referred to as transitivity, ranges between

0.06 - 0.09. This measure describes the modular network topology, ranging between

0 - 1. High(er) values indicate “full connectedness” amongst network nodes, whereas

lower values stand for sparsely connected networks. The observed values indicate that

all synaptic networks are sparsely connected (Hwang et al., 2006).

To further analyse the connection pattern between the proteins, the degree of net-

work nodes was analysed. The degree of a node is the number of edges linked to it and

is often related to its centrality (Section 2.4). Maximum degree in the four presented

networks ranges between 281 up to 893 interactions for single nodes. Top ranking

records are listed in Table 6.2. Apart from the maximum degree, the degree distri-

bution was analysed and fit to a power law distribution. The alpha value (Table 6.1)

describes the fit of the data and ranges around 2.5. This indicates a heavy-tailed degree

distribution of nodes in the networks, meaning that they are scale free (Section 2.4).

From a biological point of view, this means that some very highly connected hubs, high

degree nodes, appear alongside an exponentially increasing number of nodes with very

low node degree.

Other measures listed in the table include network density which is very low in

all four cases. It defines the percentage of edges appearing in the network, compared

to all possible edges, not consider the PPI data, but assuming, that an interaction can

occur between any two nodes in the network. An additional measure is the diameter,

the longest geodesic in the graph. It describes the longest shortest path between two

random nodes in the network. In the networks presented it is either seven or eight.

In summary, sparse network connectivity and scale-free degree distribution indicate

that all four networks represent biological interaction patterns and reflect a known

structure for large biological datasets (Ravasz et al., 2002; Barabási and Albert, 1999).

To gain a more detailed insight into key proteins in the network, node specific val-

ues were analysed. Together with the previously introduced node degree, betweenness
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scores were calculated. Betweenness is another approach to gain detailed information

about the role of nodes in the network and their relationship amongst each other. Table

6.2 shows the top 10 nodes with highest node degree and betweenness score.

Table 6.2: Top 10 nodes with maximum degree and highest betweenness score in the

four different networks. “deg” refers to degree and “btw” to betweenness. Numbers in

parenthesis refer to the rank. Grey scaled numbers are outside the top 10; “-” indicates

missing genes in the respective datasets. A PD link is indicated in the last column.

Entrez
ID

gene name
acronym

gene name pre deg pre btw post deg post btw synaptosome
deg

synaptosome
btw

synapse
deg

synapse
btw

PD
associ-
ated

351 APP amyloid beta precursor pro-

tein

281 (1) 241364 (1) 690 (1) 1066084 (1) 796 (1) 1457415 (1) 893 (1) 1853558 (1) YES

7316 UBC ubiquitin C 188 (2) 91665 (2) 446 (9) 347519 (7) 498 (8) 429978 (7) 543 (8) 548387 (7) NO

8452 CUL3 cullin 3 - - 688 (2) 554111 (3) 796 (2) 747686 (3) 840 (2) 841525 (3) NO

2885 GRB2 growth factor receptor bound

protein 2

165 (4) 82041 (3) 370 (13) 327951 (8) 396 (14) 373534 (9) 432 (16) 453681 (9) NO

1994 ELAVL1 ELAV like RNA binding pro-

tein 1

- - 548 (3) 869141 (2) 747 (3) 1284024 (2) 821 (3) 1563969 (2) NO

1956 EGFR epidermal growth factor re-

ceptor

- - 548 (4) 530706 (4) 607 (4) 669252 (4) 645 (4) 773317 (4) NO

2335 FN1 fibronectin 1 - - 540 (5) 318622 (9) 580 (5) 368808 (10) 615 (7) 443895 (10) NO

7514 XPO1 exportin 1 - - 501 (6) 446903 (6) 557 (6) 575025 (5) 622 (5) 729977 (5) NO

9820 CUL7 cullin 7 - - 455 (8) 193952 (12) 509 (7) 249195 (11) 535 (10) 261247 (16) NO

10482 NXF1 nuclear RNA export factor 1 - - 480(7) 454101 (5) - - 616 (6) 619534 (6) NO

4343 MOV10 Mov10 RISC complex RNA

helicase

- - - - 495 (9) 545787(6) 538 (9) 492472 (8) NO

10987 COPS5 COP9 signalosome subunit 5 - - 424 (10) 168899 (16) 469 (10) 202796 (17) 508 (12) 254144 (17) NO

26270 FBXO6 F-box protein 6 - - 403 (11) 249059 (10) 462 (11) 377352 (8) 479 (13) 425790 (11) NO

51547 SIRT7 sirtuin 7 169 (3) 69948 (4) - - - - 518 (11) 322055 (12) NO

7534 YWHAZ tyrosine 3-

monooxygenase/tryptophan

5-monooxygenase activation

protein zeta

152 (5) 53014 (5) 360 (16) 204559 (11) 382 (16) 238447 (13) 413 (17) 288584 (14) YES

55832 CAND1 cullin associated and neddyla-

tion dissociated 1

150 (6) 35132 (8) 374 (12) 94333 (31) 426 (12) 123213 (29) 452 (14) 142042 (32) NO

8266 UBL4A ubiquitin like 4A 142 (7) 46881 (7) 223 (30) 170233 (14) 229 (36) 66085 (63) 244 (40) 84657 (54) NO

7415 VCP valosin containing protein 138 (8) 48896 (6) 267 (20) 68334 (39) 337 (21) 217333 (14) 354 (22) 247929 (18) NO

3320 HSP90AA1 heat shock protein 90 alpha

family class A member 1

129 (9) 34686 (9) 330 (17) 190131 (13) 360 (18) 211259 (15) 403 (18) 280273 (15) NO

988 CDC5L cell division cycle 5 like 120 (10) 34566 (10) - - 361 (17) 203703 (16) 385 (20) 2.03939 (22) NO

The top 10 degree and top 10 betweenness proteins were identified. Most of the

high degree nodes are also the top betweenness nodes. This might indicate that the

central nodes are not just highly connected (hubs), but also transmit crucial information

between different synaptic processes (high betweenness).

Postsynapse, synaptosome and joint synapse top ranking nodes overlap largely,

whereas the presynaptic top nodes vary. Most of the nodes show a high degree in the

other networks, but are not amongst the the top 10 since other nodes in these networks

take over the top 10 positions. These differences indicate region specific functionali-

ties.

Two of the top degree nodes are present in all four datasets. These are the amy-
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loid beta precursor protein (APP) as well as ubiquitin C (UBC). APP is the gene with

highest node degree and highest betweenness score, also showing a link to PD based

on a Gene Reference into Function (GeneRIF) annotation (Compta et al., 2011; Aasly

et al., 2012; Irwin et al., 2013). APP encodes a cell surface receptor and transmem-

brane precursor protein. Its primary function seems to be unknown, but it has been

associated with iron export (specifically in Alzheimer’s Disease) (Duce et al., 2010),

synapse formation regulation (Priller et al., 2006) and neural plasticity (Turner et al.,

2003). Nevertheless APP is mostly known as a the precursor protein of beta amyloid.

As such, it is cleaved and can form the basis of the amyloid plaques found in the brains

of Alzheimer’s Disease patients.

UBC encodes the polyubiquitin precursor protein. Conjugated ubiquitin monomers

or polymers can have various roles within a cell. Depending on the composition,

ubiquitination processes are linked to protein degeneration, DNA repair, cell cycle

regulation, kinase modification, endocytosis and the regulation of other cell signalling

pathways (Kleiger and Mayor, 2014). Even though it does not activate a heat-shock re-

sponse, its expression is enhanced during stress, providing extra ubiquitin to assist the

ubiquitin system and remove damaged or unfolded proteins (Ryu et al., 2007; Tsirig-

otis et al., 2001). This versatile and protective functionality might explain its central

role in all synaptic regions.

A second protein in the list has been associated with PD. The YWHAZ gene, can be

found amongst the top 20 in all four regional datasets (top 10 in the presynapse). It is

linked to PD based on a GeneRIF annotation (Ostrerova et al., 1999). The tyrosine 3-

monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ) gene

encodes a protein which belongs to the 14-3-3 protein family. Also being referred to

as 14-3-3σ (protein name), it binds to phosphorylated serine/threonine motifs of target

proteins and influences these in various ways. It is involved in signal transduction,

apoptosis, cell cycle, cell growth and others (Rüenauver et al., 2014; Aghazadeh and

Papadopoulos, 2016). Apart from a link to insulin level regulation and a predicted link

to cancer, a link with Alzheimer’s Disease was suggested previously (Qureshi et al.,

2013).

The growth factor receptor bound protein 2 (GRB2) is the only gene showing a

top 10 betweenness score in all four datasets with the node degree between rank 10

and 20. This might highlight its important role in cross-pathway communication and

information flow regulation. The protein encoded by GRB2 was originally detected

as a binding partner of the growth factor receptor which then forms complexes with
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proline-rich protein regions (Oda et al., 2005). Proteins containing such regions vary

and are involved in a number of pathways, mostly facilitating signal transduction and

cell communication (Lowenstein et al., 1992). More recent studies showed that it

also forms complexes with protein tyrosine kinases, receptor tyrosine kinases, phos-

phatases, adaptors and intracellular scaffolds and can act as a key control point in the

MAPK signalling (Ahmed et al., 2015). In this context MAPK influences information

transmission from receptors to cell nucleus (McCain, 2013) supporting the hypothesis

proposing its role in information flow and transmission regulation, based on the high

betweenness score.

Similarly the F-box protein 6 (FBXO6) appears amongst the top 10 betweenness

score genes in the postsynapse and synaptosome, and ranks 13 in the joint synapto-

some. Nevertheless it is not present in the presynapse. This points towards a central

role implicated in information transmission mainly in the postsynapse. FBXO6 en-

codes a member of the F-box protein family which constitute the ubiquitin protein

ligase complex (SCF). In addition to its role in the ubiquitin system it also seems to

play a role in endoplasmatic reticulum stress-responses (Chen et al., 2016).

Three genes among the top 10 are specifically expressed in only one of the regional

datasets. The sirtuin 7 gene (SIRT7), specifically expressed in the presynapse, is a

homolog to Sir7 in yeast. Its functions in human is still undetermined, but the yeast

counterpart is involved in epigenetic gene regulation. More recently it was suggested

to interact with the human RNA Polymerase I and II to carry out regulatory functions

in chromatin remodelling (Tsai et al., 2012).

The nuclear RNA export factor 1 (NXF1) is the only postsynaptic specific top

10 node degree gene. NXF1 is known to form complexes with NXT1 and functions

as a carrier between the nucleus and cytoplasm. The complex predominantly binds

symmetric RNA substrates such as the CTE-RNA motif which are part of retroviruses

amongst other (Aibara et al., 2015).

MOV10 is the only synaptosome specific gene amongst the top 10 degree nodes.

The Mov10 RISC complex RNA helicase is part of the the RNA-induced silencing

complex (RISC) and enhances its gene silencing function (Robb and Rana, 2007). As

such it has been associated with the inhibition of retrotransposition (Goodier et al.,

2012).

Another five presynaptic (CAND1, UBL4A, VCP, HSP90AA1, CDC5L) and seven

postsynaptic, synaptosome and joint synaptic genes (CUL3, ELAVL1, EGFR, FN1,

XPO1, CUL7, COPS5) are found amongst the top 10 records.
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In summary all the presented proteins play central roles in the synapse. Hence their

alteration very likely lead to crucial dysfunctions possibly triggering disease or cell

death. The two identified PD associated genes are not amongst the most well known

PD triggers, meaning that if solely affected they might not cause the disease outbreak.

Based on this principle, specifically complex diseases, do not tend to affect the most

central proteins in a cellular region, but a number of highly connected proteins. Their

combined dysfunction can then lead to different diseases.

To gain a better insight into the most central PD associated genes, Table 6.3 shows

the 10 PD associated genes with the highest node degree and their rank amongst all

nodes in the network. For these, the respective betweenness scores including their

rank are also provided. Overall the top 10 PD associated genes are amongst the top

109 node degree and top 150 betweenness score nodes in the networks.

Table 6.3: Synaptic PD associated genes with a top 10 degree value and their be-

tweenness scores (together with the overall rank in the respective network). The table

is sorted by coverage in the different datasets and based on the first available node

degree based on the table columns. “degree” refers to node degree and “btw” to be-

tweenness. Numbers in parenthesis refer to the rank. Grey numbers are outside the

top 10; “-” indicates missing genes in the respective datasets.

Gene Name pre degree pre btw post degree post btw synapt degree synapt btw synapse degree synapse btw

APP 281 (1) 241364 (1) 690 (1) 1066084 (1) 796 (1) 1457415 (1) 893 (1) 1853558 (1)

YWHAZ 152 (5) 53014 (5) 360 (16) 204559 (11) 382 (16) 238447 (13) 413 (17) 288584 (14)

HSPA8 81 (20) 23019 (14) 151 (64) 49376 (56) 174 (62) 67866 (56) 188 (63) 83081 (57)

TARDBP - - 199 (33) 29841 (121) 217 (38) 36381 (140) 228 (44) 40748 (157)

LRRK2 - - 193 (35) 62417 (42) 194 (48) 63978 (66) 213 (50) 82473 (60)

AKT1 - - 172 (46) 73603 (36) 184 (52) 86859 (39) 192 (61) 96846 (43)

PTEN - - 149 (66) 48542 (61) 160 (77) 56553 (83) 172 (82) 65191 (89)

WWOX - - 140 (73) 33321 (103) 160 (75) 34787 (145) 170 (85) 43687 (150)

NEDD4 - - 133 (86) 47641 (62) 149 (95) 67956 (55) 167 (92) 82186 (62)

ABL1 67 (27) 16002 (23) - - 184 (53) 89283 (38) 195 (60) 103213 (40)

GSK3B 46 (59) 11081 (50) 119 (99) 44515 (68) 134 (109) 55065 (87) 141 (119) 60889 (99)

ATF2 - - 140 (76) 43096 (74) - - 156 (108) 53502 (116)

SNCA 64 (30) 14085 (28) 108 (120) 31315 (116) 131 (117) 49294 (100) 133 (137) 52410 (120)

CSNK2B 47 (55) 11922 (43) 109 (116) 37432 (90) 124 (124) 57562 (81) 134 (131) 70544 (78)

RAB7A 47 (56) 10060 (53) 97 (139) 34118 (102) 100 (177) 36551 (139) 106 (192) 40308 (160)

HSPA4 44 (61) 7645 (64) 116 (104) 31763 (113) 131 (115) 38350 (134) 147 (112) 48880 (134)

MAPT 40 (69) 5869 (86) 70 (221) 11467 (295) 76 (262) 13797 (337) 77 (314) 14099 (417)

DLG4 33 (90) 12803 (37) 62 (271) 42157 (77) 62 (345) 44762 (112) 64 (399) 54964 (111)

The top two records have already been detected amongst the overall top 10 node

degree genes in the respective networks and information can be found above. A third

gene is amongst the top 10 records in all four datasets. The heat shock protein fam-

ily A (Hsp70) member 8 (HSPA8) is a constitutively expressed member of the heat

shock protein 70 family. As a chaperone it binds to polypeptides facilitating correct
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folding. Additionally it has been shown to function as an ATPase in the disassem-

bly of clathrin-coated vesicles. In this role it is specifically active during transport of

membrane components through the cell (Daugaard et al., 2007).

Apart from these three, the glycogen synthase kinase 3 beta (GSK3B) is among the

top 10 degree nodes in presynapse, postsynapse and synaptosome. It is involved in neu-

ronal cell development and body pattern formation as well as the energy metabolism.

Furthermore it has been shown to influence phosphorylation and accumulation of tau

and alpha-synuclein (Credle et al., 2015).

The ABL proto-oncogene 1, non-receptor tyrosine kinase (ABL1) is ubiquitously

expressed and linked to cell cycle functions. It is the one gene that is specific to the

presynapse, synaptosome and joint synaptic dataset but not expressed in the postsy-

napse. As a tyrosine kinase it is involved in cell division, adhesion, differentiation and

stress response functions (Paul and Mukhopadhyay, 2004). Alterations in these func-

tions can lead to neuronal degeneration which might explain the proto-oncogenic role

of ABL1 (Wang, 2014).

Activating transcription factor 2 (ATF2) is specifically expressed in the postsynapse

(as well as the joint synaptosome) and binds to the DNA as part of the leucin zipper

family. As such it is associated with various different functions including transcription,

histone acetylation and DNA damage response (Desai et al., 2014).

No major evidence for region specific appearance of these two genes could be

found but they might be involved in so far unspecified regional processes.

Two of the most prominent PD associated genes: LRRK2 and SNCA are also

amongst the top 10 degree nodes. This could point towards a very central role which

also allowed their early detection and genetic based disease link.

Apart from these another five genes (TARDBP, AKT1, PTEN, WWOX, NEDD4)

are amongst the postsynaptic, synaptosome and joint synaptic genes and five more

amongst the presynaptic top 10 degree records (CSNK2B, RAB7A, HSPA4, MAPT,

DLG4). These are all also present in the other regional datasets but not amongst the

top PD associated degree nodes.

Another way to interpret node degree and betweenness scores is in a reverse com-

bination. A combination of a high betweenness score and low degree value (or vice

versa) is a prominent support for network modularization. Nodes with a low degree

and high betweenness score for example seem to act as a connector between different

pathways by separating the two from each other, but allowing communication between

them (Koschützki and Schreiber, 2008). One such example is DLG4. Even though it
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shows relatively low ranking node degree values its betweenness scores rank amongst

the top records in the networks. As a scaffolding protein (with top detection coverage

in the postsynapse) it likely plays a key role in a range of functions. The ability to con-

nect other proteins can allow information exchange between pathways that are usually

separated, explaining the high betweenness score.

6.3.2 Network Clustering

To gain a more “high-level” insight into the substructures within the PPINs, cluster-

ing algorithms were used to divide the networks into communities. These represent

densely connected network regions which often contain proteins sharing a biological

function (Brun et al., 2004). For an overview of all analytical steps taken in this section,

Figure 6.2 shows an overview.
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Figure 6.2: Detailed overview including network clustering, enrichment, and key-protein

as well as community detection processes in Section 6.3.2. Dark blue boxes refer to

published data, light blue boxes are generated datasets, yellow boxes refer to analytical

tools, green boxes describe processes and magenta boxes show outcomes.

This section considers presynaptic, postsynaptic, synaptosome and joint synaptic

PPINs. All four PPINs were analysed using five different clustering algorithms. These
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were: fast greedy, infomap, louvain, spectral and spinglass (Section 1.4.2 introduces

details and Section 2.4.1 contains technical information). Hence five different topolo-

gies emerge for each of the four networks, leading to a total of 20 differently clustered

topologies.

Figures 6.3 and 6.4 show results for the presynapse and the joint synaptic pro-

teome. Visualizations of the postsynapse and synaptosome are very similar to the joint

synaptic proteome and can be found in Appendix D (Figures D.1 and D.2). The sub-

figures visualize networks based on distinct clusterings: (a) fast greedy, (b) infomap,

(c) louvain, (d) spectral and (e) spinglass algorithm. PD associated genes were located

in the networks and are highlighted in red. The Figures are included to provide a vi-

sual impression of the networks topologies and emerging community structure. These

schematics highlight the differences in community number and size amongst the dif-

ferent networks and algorithms. In addition, in certain cases, PD associated genes

(highlighted in red) tend to be accumulating in a specific network region, but not in

others. To gain a better overview of the presented networks, Table 6.4 summarises key

statistics of the differently clustered networks.

Given the focus of this study, significantly PD enriched network communities were

identified. Hypergeometric testing was used (Mclean et al., 2016) for this purpose

which finds network communities with a higher number of disease associated genes

than expected by chance (compared to a random allocation, given the network envi-

ronment). The significance threshold for disease enrichment was set to a p-value of

0.05. Table 6.4 also includes the number of PD enriched communities in the different

networks.

As Figures 6.3 and 6.4, as well as Table 6.4 show, clustering algorithms divide

networks differently. Irrespective of the clustering algorithm the presynaptic dataset

differs slightly from the others due to its smaller size. The other three networks are

relatively similar. The following sections highlights general properties of emerging

structural topologies based on the use of different network clustering algorithms (in

alphabetic order).
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(a) fast greedy (b) infomap

(c) louvain (d) spectral

(e) spinglass

Figure 6.3: Presynaptic PPINs. Different clustering algorithm results are highlighted.

Red coloured nodes represent PD associated genes. Grey “background” shows net-

work edges.
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(a) fast greedy (b) infomap

(c) louvain (d) spectral

(e) spinglass

Figure 6.4: Joint synapticPPINs. Different clustering algorithm results are highlighted.

Red coloured nodes represent PD associated genes. Grey “background” shows net-

work edges.
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Table 6.4: Results obtained from the clusterings of the networks of the different regional

datasets and using different clustering algorithms. Columns 3, 4, 5, 9 and 10 refer to the

number of respective communities. “smaller 4” and “larger 200” refers to the number of

nodes per community. Remaining columns refer to the number of nodes per community.

Regional
Data

Clustering
Algorithm

communities commu-
nities
with PD
genes

PD enriched
communities
(smaller 4 in
parenthesis)

maximum
commu-
nity size

minimum
commu-
nity size

average
commu-
nity size

commu-
nities
smaller
4

commu-
nities
larger
200

presynapse fast greedy 17 9 0 404 2 91 4 3

postsynapse fast greedy 25 5 0 1349 2 182 9 0

synaptosome fast greedy 48 9 1 (1) 1939 2 112 23 3

synapse fast greedy 26 8 0 2061 2 233 8 4

presynapse infomap 108 38 1 250 2 14 14 1

postsynapse infomap 199 47 7 (1) 1645 2 23 28 1

synaptosome infomap 235 57 6 1918 2 23 34 2

synapse infomap 258 62 8 2155 2 24 27 2

presynapse louvain 12 12 2 235 25 129 0 2

postsynapse louvain 12 10 0 780 4 380 0 9

synaptosome louvain 13 12 0 1005 4 412 0 10

synapse louvain 13 12 1 977 4 467 0 9

presynapse spectral 53 26 2 (1) 165 1 29 19 0

postsynapse spectral 67 29 1 400 1 68 33 8

synaptosome spectral 95 35 (3) 427 1 56 53 12

synapse spectral 94 32 4 (1) 472 1 65 56 12

presynapse spinglass 11 10 1 221 13 141 0 2

postsynapse spinglass 15 11 0 767 9 304 0 8

synaptosome spinglass 12 10 0 1002 4 446 0 8

synapse spinglass 14 11 0 1115 6 433 0 7

The fast-greedy algorithm produces some large, with up to ~2,000 genes, and some

very small communities. It appears as though PD associated genes allocate in similar

communities, but only one community in the synaptosome PPIN is actually enriched

for PD.

The infomap algorithm produces few, very large communities. Only two are larger

than 200 nodes, but a maximum of 2,155 genes is found in one community. Addition-

ally a large number of small communities can be found. Nevertheless the clustering

results indicate a relatively large number of communities (between 1-8 per network)

being enriched for PD associated genes, in other words showing an over-representation

of PD associated genes. Only one PD enriched community in the network contains less

than four nodes.

Moving on with the louvain clustering results, no community is smaller than four

genes and a large number of big communities, with more than 200 nodes, exists. This

also confirms the large average community size, ranging between 130 and 467 genes.

The spectral clustering results lead to maximum community sizes between 165 and

472 nodes. The average community size ranges between 29 and 68 genes. A number

of communities with more than 200 genes exist, but none of them are extremely large.
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The clustering also leads to the maximum number of small communities. A number

of PD enriched communities can be found in all four networks, with some being small

and in some sense isolating the disease associated genes from others.

The spinglass algorithm seems to perform very similar to the louvain algorithm.

Very large communities emerge with large average sizes and only one (presynaptic)

PD enriched community.

Overall the analysis shows the differences in the clustering results. It appears that

the increased size of the postsynaptic, synaptosome and joint synaptic proteomes make

it harder to identify biologically meaningful and disease enriched communities, com-

pared to the smaller presynaptic PPIN. Considering the different clustering algorithms

it seems that the spectral and infomap approach show the most useful division of the

data into communities, specifically when considering PD enrichment. As previously

shown the emerging communities are very precise considering functional similarities

(Mclean et al., 2016). Since there is no established and straight forward technique to

best classify clustering results and/or compare them amongst each other all generated

communities were considered in the next step. The coming Section 6.3.3 studies PD

enriched communities further, with the aim to identify a significantly affected synaptic

region.

6.3.3 PD Enriched Communities

Since one of the main objectives of this work was to identify most PD affected synap-

tic subregions, significantly disease enriched communities were extracted (p-value <

0.05). 41 PD enriched communities were identified and can be seen in Table 6.5.

Information regarding community sizes and PD enrichment (corrected p-values) are

included. Seven of the identified communities contain less than four genes and were

not considered further. The remaining 34 were specifically addressed regarding their

similarities and differences.

The enriched communities were analysed regarding the regional synaptic dataset

as well as the clustering algorithm. Only communities with a minimum of four genes

were considered. One PD enriched community emerges after fast greedy and spinglass

clustering in the synaptosome and presynaptic network respectively. The louvain clus-

tering leads to a little more with three enriched communities. Overall the spectral and

infomap clustering results show the highest numbers of enriched communities.

These insights reflect a previous observation that the spectral and infomap algo-
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rithms seem to be most appropriate to divide large PPINs into biologically interpretable

communities containing proteins with common functions (Section 6.3.2) (Mclean et al.,

2016).

Table 6.5: PD enriched communities in the different networks based on one of the

four datasets and one of the five clustering algorithms (p-value < 0.05, after multiple

testing correcition). All enriched communities are listed, irrespective of their size. Rows

are ordered based on dataset and algorithm. “synapse” refers to the joint synaptic

proteome. Grey font highlights communities with less than four genes.

Regional Data Clustering
Algorithm

Community
number

Genes in
community

PD associated genes
in community

PD enrichment
p-value (corrected)

presynapse infomap 90 4 2 1.23x10−02

presynapse louvain 3 25 4 2.69x10−02

presynapse louvain 11 209 25 2.78x10−06

presynapse spectral 10 3 2 6.11x10−03

presynapse spectral 69 17 3 4.02 x10−02

presynapse spectral 72 79 11 6.81x10−04

presynapse spinglass 3 183 20 1.49x10−04

postsynapse infomap 10 72 6 3.35x10−02

postsynapse infomap 22 37 7 1.91x10−04

postsynapse infomap 54 12 2 5.98x10−02

postsynapse infomap 69 10 2 4.26x10−02

postsynapse infomap 81 10 1 4.26x10−02

postsynapse infomap 84 9 2 3.48x10−02

postsynapse infomap 126 7 2 2.12x10−02

postsynapse infomap 177 3 1 3.32x10−03

postsynapse spectral 55 55 6 9.70x10−02

synaptosome fast greedy 12 11 1 4.85x10−02

synaptosome fast greedy 24 3 1 3.15x10−03

synaptosome infomap 9 78 6 4.22x10−02

synaptosome infomap 27 32 6 5.14x10−04

synaptosome infomap 76 12 2 5.70x10−02

synaptosome infomap 88 10 2 4.06x10−02

synaptosome infomap 101 10 1 4.06x10−02

synaptosome infomap 137 8 1 2.63x10−02

synaptosome spectral 48 1 1 3.27x10−02

synaptosome spectral 60 1 1 3.27x10−02

synaptosome spectral 85 1 1 3.27x10−02

synapse infomap 12 68 6 2.09x10−02

synapse infomap 35 25 3 4.41x10−02

synapse infomap 60 15 3 1.10x10−02

synapse infomap 71 14 3 9.00x10−03

synapse infomap 96 10 3 3.20x10−02

synapse infomap 98 12 2 5.43x10−02

synapse infomap 102 11 2 4.62x10−02

synapse infomap 200 6 1 1.40x10−02

synapse louvain 6 75 7 2.51x10−03

synapse spectral 3 148 9 4.58x10−02

synapse spectral 27 150 9 4.92x10−02

synapse spectral 54 55 10 7.11x10−06
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Table 6.5: PD enriched communities in the different networks based on one of the

four datasets and one of the five clustering algorithms (p-value < 0.05, after multiple

testing correcition). All enriched communities are listed, irrespective of their size. Rows

are ordered based on dataset and algorithm. “synapse” refers to the joint synaptic

proteome. Grey font highlights communities with less than four genes.

Regional Data Clustering
Algorithm

Community
number

Genes in
community

PD associated genes
in community

PD enrichment
p-value (corrected)

synapse spectral 97 1 1 3.18x10−02

synapse spectral 100 4 2 5.73x10−03

Considering differences amongst regional datasets, six presynaptic, eight postsy-

naptic, seven synaptosome and 13 full synapse communities are amongst the enriched

ones (with a minimum of four genes). This relatively even distribution can also be ob-

served amongst the communities detected after clustering with the infomap and spec-

tral algorithm.

Taking these findings into account, there was no obvious trend towards one of

the datasets being specifically associated to PD. Therefore all PD enriched com-

munities with at least four genes were compared amongst each other. Figures 6.5

shows the 71 PD associated genes in the 34 significantly enriched communities (x-

axis). The heatmap shows clusters of communities based on the genes shared between

them, following a hierarchical, agglomerative clustering approach (implemented in

the Python seaborn.clustermap package2. The labelling of the y-axis reflects the

dataset (presynaptic, postsynaptic, synaptosome or joint synaptic proteome) as well

as the clustering algorithm (fast greedy, infomap, louvain, spinglas, spectral) and the

number of the enriched community in the respective (network) topology. Apart from

considering PD associated genes only, all 819 genes in the enriched communities were

considered, clustered and visualized. Figure 6.6 shows the results.

The clustering of PD associated genes in PD enriched communities (Figure 6.5)

leads to three prominent “gene blocks”. These are highlighted in a green, blue and red

box and will be referred to as Cluster 1, Cluster 2 and Cluster 3. Clusters represent

PD associated genes appearing together in a number of communities in the differently

clustered networks. Similarly three blocks can be identified considering the similarity

between the full communities (Figure 6.6). Closer examination reveals that indepen-

dently of considering only PD associated genes in enriched communities, or all genes

in enriched communities Cluster 1, 2 and 3 contain similar network communities.

2http://seaborn.pydata.org/generated/seaborn.clustermap.html

http://seaborn.pydata.org/generated/seaborn.clustermap.html
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Cluster 1

Cluster 2

Cluster 3

Figure 6.5: Clustering highlighting the overlap of PD associated genes in significantly

PD enriched communities. The x-axis shows Entrez IDs and the y-axis indicates the

dataset, algorithm and community number in which the community was found to be

enriched for PD associated genes. “pre”, “post”, “synapt” and “synapse” refer to the

presynaptic, postsynaptic, synaptosome and joint synaptic proteome.

This consistency supports credibility of the community structure. Hence even

though clustering algorithms are based on different principles they all detected highly

similar PD enriched communities containing the same set of PD associated genes.

Genes in these clusters show a high probability of being associated with PD, as well as

influencing its development and manifestation.

A closer look at the communities in the clusters suggests that these were mostly
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found in either postsynaptic of full synaptic PPIN communities. Nevertheless presy-

naptic communities show enrichment as well. Overall enriched communities emerged

in networks based on different regional datasets. This may indicate ubiquitous effects

of PD on the synapse, not targeting a specific synaptic region. As suspected based on

the overall number of enriched communities emerging through the different cluster-

ings, the spectral and infomap algorithm are preferred best.

  

Cluster 1

Cluster 2

Cluster 3

Figure 6.6: Clustering highlighting the overlap of all genes in significantly PD enriched

communities (including all community genes). x- and y-axis labelling are as in Figure

6.5.

To investigate the clustered communities in more detail, Table 6.6 shows a sum-

mary of these. Information overlaps with Table 6.5 but contains further community
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cluster information and the colour code corresponds to the ones in Figures 6.5 and 6.6.

Table 6.6: Three clusters of PD enriched communities. Cluster numbers and colour

code as in Figures 6.5, 6.6 and 6.7. “Community Number” refers to the community in

the original network; “Genes” refers to the number of genes in the community; “Com-

munities in cluster” refers to the colour coded clusters; columns 8-12 refer to community

counts in total and unique for the three clusters.

Clus-

ter

Dataset Algorithm Com-
mu-
nity
Num-
ber

Genes PD
genes

Com-
muni-
ties in
cluster

Genes in
any com-
munity in
cluster

unique
genes in
any com-
munity in
cluster

average
genes
per
commu-
nity

PD genes
in any
commu-
nity in
cluster

unique
PD genes
in any
commu-
nity in
cluster

1 synapse spectral 27 150 9 4 368 172 92 27 9

1 synapse infomap 12 68 6 4 368 172 92 27 9

1 post infomap 10 72 6 4 368 172 92 27 9

1 synaptosome infomap 9 78 6 4 368 172 92 27 9

2 post infomap 22 37 7 5 217 113 53.25 30 11

2 synapse louvain 6 75 8 5 217 113 53.25 30 11

2 synapse infomap 71 14 3 5 217 113 53.25 30 11

2 post spectral 55 55 6 5 217 113 53.25 30 11

2 synaptosome infomap 27 32 6 5 217 113 53.25 30 11

2 synapse spectral 100 4 2 5 217 113 53.25 30 11

3 pre spectral 69 17 3 5 54 37 13.5 11 4

3 synapse infomap 200 6 2 5 54 37 13.5 11 4

3 synaptosome infomap 101 10 2 5 54 37 13.5 11 4

3 post infomap 81 10 2 5 54 37 13.5 11 4

3 synaptosome fast greedy 12 11 2 5 54 37 13.5 11 4

For an even better understanding and to identify the potential new PD associated

gene sets, coverage of individual genes amongst the different communities in the clus-

ters was analysed. Figures 6.7 a and b show the coverage of PD associated genes, as

well as all genes in the 15 enriched communities belonging to one of the three clusters.

As Table 6.6 and Figure 6.7 show, there is variability in the total number of genes

in the clusters. To confirm the overlap of genes between the communities in each of

the clusters with more detail, their coverage was analysed. Figure 6.7 a shows that

a substantial number of PD associated genes in the different clusters, illustrated with

different colour bars, appear in more than only one community of the cluster, meaning

that the coverage is higher 1. Similarly Figure 6.7 a) highlights that a substantial

proportion of genes appears in more than one community in the respective cluster.

More precisely, Cluster 1 is the largest one with a total of 172 unique genes out

of which less than half (82) appear in only one community. Cluster 2 contains 113

unique genes with a slightly higher proportion (slightly less than two thirds) of genes

detected in only one community . With 37 unique genes out of which 31 have only

been detected once, Cluster 3 is the least consistent one.

For best data consistency and to identify a core key target gene set, genes were only

considered further if they appeared in at least two of the four, five or six communities
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Figure 6.7: Coverage of different proteins in the PD enriched communities in the three

enriched community clusters. Colours represent clusters. The x-axis indicates the

coverage. Genes are associated to the coverage based on the number of PD enriched

communities in the respective cluster they appear in.

per cluster. Hence Cluster 1 contains 90, Cluster 2, 43 and Cluster 3 six core genes,

including six, six and two PD associated ones amongst them (Figure 6.7). Appendix E

contains the full list of genes in these clusters.

Based on these insights properties of the gene sets as well as individual genes in

the three clusters were further investigated.

6.3.4 Synaptic PD Affected Functions

After having identified most PD affected synaptic regions, these were analysed regard-

ing their predominant overall functions. Gene Ontology (GO) enrichment analysis (for

the three categories Biological Process, Molecular Function and Cellular Component)

was carried out. This was initially done for each individual community in the enriched

clusters. The background dataset was chosen to be the joint synaptic proteome and

the analysis was carried out with topONTO using the Fisher exact test, elim algorithm

and Benjamini and Yekutieli multiple testing correction. This allowed identification

of very specific enriched terms, being found in the lower levels of the ontology trees,

guaranteeing the optimum and most specific insight into the joint and dominating func-

tionality of the genes in the communities.

Enriched terms for individual communities in a cluster were compared and over-

lapped largely. Every term appearing in at least two of the communities in a cluster

was taken forward, and included in the final results. The following paragraphs address
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the three clusters individually.

6.3.4.1 Cluster 1

Cluster 1 consists of four communities and contains 90 genes appearing in two or more

of them. For a better overview, the 90 genes are visualised in Figure 6.8. It can be seen

that all genes undergo interactions with each other. There are 246 internal PPIs in total.

Figure 6.8: Genes in Cluster 1 (minimum coverage of two). Opacity represents the

coverage. Red squares are PD associated genes.

As highlighted in Figure 6.8 six PD associated genes can be found in Cluster 1.

Table 6.7 lists these, as well as three additional ones with a coverage of 1. Two to three

different functional areas are covered by the PD associated genes in this cluster.

DLG1, DGL2, DLG4 encode scaffolding proteins, playing a main role in the struc-

tural organisation of proteins and facilitating their full functionality. DLG1 is required

for “normal development”, playing a major role in signal transduction, cell prolifera-

tion and synaptogenesis. It is also referred to as SAP-97 (Howard et al., 2010). DGL2

and DLG4 encode proteins which heteromultimerize to form the membrane-associated

guanylate kinase (MAGUK) and are also referred to as PSD-93 and SAP-102. As such



6.3. Results 135

Table 6.7: PD associated genes in Cluster 1. Ordered by coverage and Entrez ID.

Gene ID Gene Name Short Gene Description Coverage

1739 DLG1 DLG1 discs large MAGUK scaffold protein 1 4

1740 DLG2 DLG2 discs large MAGUK scaffold protein 2 4

1742 DLG4 DLG4 discs large MAGUK scaffold protein 4 4

2903 GRIN2A GRIN2A glutamate ionotropic receptor NMDA type subunit 2A 4

2904 GRIN2B GRIN2B glutamate ionotropic receptor NMDA type subunit 2B 4

4842 NOS1 NOS1 nitric oxide synthase 1 4

1609 DGKQ diacylglycerol kinase theta 1

8851 CDK5R1 cyclin dependent kinase 5 regulatory subunit 1 1

23113 CUL9 cullin 9 1

they interact with the postsynaptic membrane, being recruited into NMDA receptor

and potassium channel clusters. In these regions they form a scaffold for the clustering

of receptors, ion channels and associated signalling proteins (Oliva et al., 2012; Sun

and Turrigiano, 2011).

Furthermore two glutamate ionotropic receptors are amongst the PD associated

genes in Cluster 1. GRIN2A and GRIN2B both encode for proteins of the N-methyl-

D-aspartate (NMDA) receptor family, also referred to as GluN2A and GluN2B. These

receptors are both ligand- and voltage dependant and involved in long-term potenti-

ation and synaptic transmission efficacy, showing links to specific memory types and

learning. These functionalities are regulated based on Ca2+ influx into the postsynapse

(Paoletti et al., 2013). Apart from their joint properties GRIN2B specifically acts as an

agonist binding site for glutamate (Hu et al., 2016).

Additionally NOS1 is amongst the six PD associated genes. Nitric oxide synthase

1 belongs to the family of nitric oxide synthases, synthesizing nitric oxide from L-

arginine (Stuehr, 2004). Nitric oxide has been linked to neurodegenerative disease

since it adopts a neurotransmitter like role inducing neurotoxicity (Dawson and Daw-

son, 1996).

In summary, the PD associated genes are associated with functions generally known

to be linked with PD. In addition, apart from generic terms, some findings point to-

wards much more concrete dysfunctions. A slight focus towards postsynaptic dysfunc-

tions can be detected based on information in Cluster 1.

To understand the overall function of all genes in Community 1 common enriched

functions were identified. Table 6.8 shows GO terms enriched amongst all genes in

the PD associated communities from the Biological Process, Molecular Function and

Cellular Component ontologies. Appendix Table F.1 shows the GO terms, IDs as well
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as short definitions of the terms. These were retrieved from QuickGO3 via GONUTS4.

Table 6.8: GO terms enriched in at least two communities of Cluster 1 (alphabetical

order); significance p-value threshold was set to 0.05. The gene sets of interest were

enriched compared to all genes expressed in the synapse. Results were obtained

using the Fisher exact test, elim algorithm and Benjamini and Yekutieli multiple testing

correction. Exact p-values not supplied since different in distinct enriched clusters).

Biological Process Molecular Function Cellular Component

GDP metabolic process cell adhesion molecule binding basolateral plasma membrane

gephyrin clustering involved in

postsynaptic density assembly

extracellular-glutamate-gated ion

channel activity

bicellular tight junction

GMP metabolic process guanylate kinase activity cell junction

ionotropic glutamate receptor sig-

naling pathway

ionotropic glutamate receptor bind-

ing

dendritic spine

maintenance of epithelial cell api-

cal/basal polarity

L27 domain binding dystrophin-associated glycoprotein

complex

negative regulation of peptidyl-

cystein S-nitrosylation

neurexin family protein binding exocyst

neurotransmitter secretion neuroligin family protein binding juxtaparanode region of axon

positive regulation of excitatory

postsynaptic potential

NMDA glutamate receptor activity MPP7-DLG1-LIN7 complex

positive regulation of synapse as-

sembly

PDZ domain binding myelin sheath abaxonal region

positive regulation of synaptic vesi-

cle clustering

scaffold protein binding neuron projection

postsynaptic density protein 95 clus-

tering

NMDA selective glutamate receptor

complex

protein localization to basolateral

plasma membrane

postsynaptic density of dendrite

receptor localization to synapse postsynaptic membrane

regulation of grooming behaviour presynaptic membrane

regulation of sodium ion transmem-

brane transport

presynapse

vocalization behaviour sarcolemma

synapse

T-tubule

voltage-gated potassium channel

complex

Z disc

The following paragraphs highlight some of the enriched functions that stand out

in the context of PD and the presented analysis.

3https://www.ebi.ac.uk/QuickGO/
4https://gowiki.tamu.edu/wiki/index.php/Main_Page

https://www.ebi.ac.uk/QuickGO/
https://gowiki.tamu.edu/wiki/index.php/Main_Page
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As previously highlighted by the functions of individual PD associated genes,

“positive regulation of synapse assembly” and “receptor localization to synapse”, ap-

pear amongst the enriched Biological Processes. Finding “scaffold protein binding”

amongst the enriched Molecular Function terms confirms the functional role of pro-

teins in Cluster 1 with respect to scaffolding proteins. These findings support the hy-

pothesis that scaffolding proteins, and more generally the spatial organisation of genes,

is affected in brain cells of PD patients.

Similarly “ionotropic glutamate receptor signalling pathway” as well as “neuro-

transmitter secretion” are amongst the enriched Biological Process terms. This is con-

firmed through the Molecular Function terms “ionotropic glutamate receptor binding”

as well as “NMDA glutamate receptor activity” and the Cellular Component “NMDA

selective glutamate receptor complex”. Hence, it seems quite likely that NMDA re-

ceptors can be highly affected in PD patients. Their role in the disease pathology can

also be confirmed by the use of glutamatergic receptors as therapeutic targets (Johnson

et al., 2009; Hallett and Standaert, 2004).

A number of other overall affected pathways appear. Enriched Cellular Component

terms largely focus around the “synapse”. More specifically they including terms such

as the “presynaptic membrane” as well as “postsynaptic membrane”. Together with

the term “cell junction”, this supports the theory that PD has a substantial influence on

synaptic information transmission.

Further terms based on the Biological Process ontology include terms related to

(intra-) cellular structure. “gephyrin clustering involved in postsynaptic density as-

sembly”, “positive regulation of synaptic vesicle clustering” as well as “protein local-

ization to basolateral plasma membrane” confirm the possible alteration of structure

related processes in the brain cells of PD patients.

Overall, enriched terms partly overlap with the known PD associated genes. The

generation of an extended set of so far non-PD associated genes indicates their role in

disease affected processes and makes these genes potential next targets to investigate

regarding their link to PD and their potential use as a drug targets or biomarkers.

Apart from the presented PD associated genes, eight genes in Cluster 1 could be

found in at least one of the analysed PD expression data studies presented in Sec-

tion 3.3.2. These are: FBG12 (2257), DTNA (1837), NRXN2 (9379), GUCY1B3

(2983),APBA1 (320), ATP2B2 (491), ERBIN (55914), PKP4 (8502). This overlap

is an indication of having identified a highly PD affected synaptic gene set.
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6.3.4.2 Cluster 2

Cluster 2 consists of six communities which contain 43 genes with a minimum cov-

erage of two. The 43 genes undergo 74 internal interactions and Figure 6.9 visualises

these. Six PD associated genes with a minimum coverage of two can be found in the

set as well as another five appearing in only one of the communities. Table 6.9 lists

these.

Figure 6.9: Genes in Cluster 2 (minimum coverage of two). Opacity represents the

coverage. Red squares are PD associated genes.

It seems that PD associated genes in Cluster 2 are linked to four different function-

alities which are presented in the next paragraphs.

FGB and FGG are the beta and alpha chain of fibrinogen, a blood-borne glyco-

protein comprised of three pairs of non-identical polypeptide chains. Fibrinogen is

a protein which is highly involved in the formation of blood clots. It is cleaved by

thrombin and its cleavage products have been associated with cell adhesion and cell

spreading. Furthermore they showed vasoconstrictor and chemotactic activities. Since

these functions do not seem specific to the synapse the expression pattern of FGB and

FGG was investigated. Both of the protein products are highly expressed in the liver,

but expression for FGG was confirmed in the presynapse, postsynapse and synapto-
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Table 6.9: PD associated genes in Cluster 2. Ordered by coverage and Entrez ID.

Gene ID Gene Name Short Gene Description Coverage

2244 FGB fibrinogen beta chain 6

2266 FGG fibrinogen gamma chain 6

216 ALDH1A1 ALDH1A1 aldehyde dehydrogenase 1 family member A1 5

335 APOA1 APOA1 apolipoprotein A1 4

1356 CP CP ceruloplasmin 4

7018 TF transferrin 2

718 C3 complement C3 1

1191 CLU clusterin 1

3075 CFH complement factor H 1

3240 HP haptoglobin 1

5265 SERPINA1 serpin family A member 1 1

some proteome, while FGB is expressed in the postsynapse and synaptosome with a

coverage of five or higher.

ALDH1A1 is a gene involved in the alcohol metabolism and APOA1 is the major

component of the high density lipoprotein HDL in the plasma. Its transcript is involved

in promoting cholesterol efflux from tissues to the liver. Both of these genes are also

highly expressed and transcribed in the liver.

The remaining two genes ceruloplasmin (CP) and transferrin (TF) are also promi-

nent in the liver. Ceruloplasmin binds most of the copper in the plasma and is involved

in peroxidation of Fe(II)transferrin to Fe(III)transferrin. Its dysfunction leads to iron

accumulation inducing tissue damage and neurologic abnormalities. Transferrin itself

acts as an iron transporter from the intestine and reticuloendothelial system as well

as the liver parenchymal cells, to all proliferating cells in the body. Transferrin has

also been associated with PD in at least one of the PD expression studies (Section

3.3.2). Additionally APP the gene with highest node degree and betweenness score in

all networks is linked to iron export (Section 6.3.1).

It seems as though a number of PD associated genes are highly related to liver

functions. This might be surprising since all of these genes are also expressed in the

synapse. To confirm these findings Table 6.10 shows Biological Process, Molecu-

lar Function and Cellular Component terms enriched in at least two communities in

Cluster 2. Appendix Table F.2 shows the respective GO terms, IDs, as well as short

definitions of the terms (retrieved from QuickGO via GONUTS).

Compared to the first cluster, far less functional terms are enriched for genes in

Cluster 2. This might be due to the smaller size or more diverse functionality of genes
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Table 6.10: GO terms enriched in at least two communities of Cluster 2 (alphabetical

order); significance p-value threshold was set to 0.05. The gene sets of interest were

enriched compared to all genes expressed in the synapse. Results were obtained

using the Fisher exact test, elim algorithm and Benjamini and Yekutieli multiple testing

correction. Exact p-values not supplied since different in distinct enriched clusters).

Biological Process Molecular Function Cellular Component

complement activation,

classical pathway

immunoglobulin receptor binding blood microparticle

serine-type endopeptidase activity external side of plasma membrane

fibrinogen complex

immunoglobulin complex, circulating

platelet alpha granule lumen

leaving less terms enriched. Nevertheless, the results partly confirm functionalities

detected based on PD associated genes in this cluster.

“Complement activation, classical pathway” is the enriched Biological Process

term. It is a component of the innate immune system (Schlachetzki and Winkler, 2015)

and has previously been linked to PD. This could point towards an autoimmune reac-

tion leading to the cell death of neurons (specifically in PD patients). Immune system

related terms can be found amongst the enriched Molecular Functions as well. “Serine-

type endopeptidase activity” as well as “immunoglobulin receptor binding” have been

identified. Quite often immune responses are triggered from the liver which hosts a

large number of natural killer and natural killer T cells (Racanelli and Rehermann,

2006). Hence, this finding overlaps with the regional specificity highlighted, based on

the functionality of PD associated genes.

Considering the enriched Cellular Components “immunoglobulin complex, circu-

lating” confirms identified Biological Process and Molecular Function terms. Further-

more the functionality of PD associated genes is reflected by “blood microparticle”,

“platelet alpha granule lumen” and “fibrinogen complex”. All these terms associate

with the neuroinflammatory pathway which leads to an increase in brain barrier per-

meability. This can lead to the detection of these terms in association to PD (Section

1.1.1.1).

These terms highlight a possible different explanation to the manifestation and/or

the underlying causes of PD. A direct link between fibrinogen levels in elderly Japanese-

American men and PD prevalence could be shown (Wong et al., 2010) and well as

overall elevated fibrinogen levels in PD patients (Lu et al., 2014). Furthermore, a link
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between the immune system and PD has been discussed, and this analysis supplies a

more concrete set of 6 PD associated genes in addition to another 37 genes, with a

potential high impact and link to the disease.

6.3.4.3 Cluster 3

Cluster 3 consists of five communities and has the smallest number of genes. Out of 37

only six genes show a coverage of two or higher. These are connected via six internal

PPIs. Figure 6.10 gives an overview and Table 6.11 lists all PD associated genes in

Cluster 3. Two of these are found in more than two communities and two others only

in one.

Figure 6.10: Genes in Cluster 3 (minimum coverage of two). Opacity represents the

coverage. Red squares are PD associated genes.

Table 6.11: PD associated genes in Cluster 3. Ordered by coverage and Entrez ID.

Gene ID Gene Name Short Gene Description Coverage

775 CACNA1C CACNA1C calcium voltage-gated channel subunit alpha1 C 5

57019 CIAPIN1 CIAPIN1 cytokine induced apoptosis inhibitor 1 4

2915 GRM5 glutamate metabotropic receptor 5 1

4900 NRGN neurogranin 1

One of the PD associated genes in Cluster 3 is CACNA1C which encodes an alpha-

1 subunit of a voltage-dependent calcium channel. As such it is involved in membrane

depolarization and Ca2+ influx into neurons. As a member of the receptor subfamily

1 its main roles are integration of synaptic input in neurons and synaptic transmis-

sion (Catterall, 2011). More generally Ca2+ levels are also crucial to maintain energy

homeostasis which is highly important to maintain a healthy cell state and alterations
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have been linked to PD previously (Hurley and Dexter, 2012). Additionally the gene

CACNB3 (784) is one of the other genes in the community and found in at least one

of the analysed expression studies identifying PD associated genes (Section 3.3.2). It

is involved in the regulation of voltage-dependent calcium channels confirming the

importance of a link between Ca2+ and PD.

Furthermore CACNA1C has been linked to a large number of other neurodegenera-

tive diseases (Lee et al., 2016) such as schizophrenia, bipolar disorder and others. First

studies have proposed to use it as a drug target, as a key member of calcium channels

(Imbrici et al., 2013).

The second PD associated gene is the cytokine induced apoptosis inhibitor 1, CIA-

PIN1, which points towards another PD affected pathway: apoptosis. Apoptotic pro-

cesses are also regulated based on Ca2+ levels (Pinton et al., 2008), which might ex-

plain the link between the two genes appearing in the same communities across the

analysed networks.

Based on these brief insights relying on the PD associated genes overall gene func-

tions in Cluster 3 were studied. Given the small cluster size it was uncertain if signif-

icant results could be obtained. Table 6.12 shows GO Biological Process, Molecular

Function, Cellular Component GO terms found in at least two communities in the clus-

ter. For further details Appendix Table F.3 shows the respective GO terms with their

IDs as well as short definitions of the term. These were retrieved from QuickGO via

GONUTS.

Table 6.12: GO terms enriched in at least two communities of Cluster 3; significance

p-value threshold was set to 0.05. The gene sets of interest were enriched compared to

all genes expressed in the synapse. Results were obtained using the Fisher exact test,

elim algorithm and Benjamini and Yekutieli multiple testing correction. Exact p-values

not supplied since different in distinct enriched clusters).

Biological Process Molecular Function Cellular Component

neuromuscular junction develop-

ment

high voltage-gated calcium channel

activity

L-type voltage-gated calcium chan-

nel complex

The enriched functions are “neuromuscular junction development” (Biological Pro-

cess), “high voltage-gated calcium channel activity” (Molecular Function) as well as

“L-type voltage-gated calcium channel complex” (Cellular Component). Two of the

terms relate to calcium channels, and the third the neuromuscular junction. Since the

neuromuscular junction relies on Ca2+ input a clear link between the three terms is
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proposed. Additionally Ca2+ levels are linked to apoptosis and intracellular energy

regulation. Therefore full functionality of related processes is crucial to maintain cells

in a healthy state.

The case presented is an example how PD associated genes can help to identify

specific disease affected pathways. Even though individual PD associated genes are

not specific to a function, knowing their close interactors, found in the network com-

munities, can point towards the affected pathways.

Furthermore and similar to Cluster 2, even though these terms were found based

on (brain) synaptic gene communities, they might reflect the effects of PD on general

cellular functions. The enrichment of neuromuscular activity can also point towards

peripheral dysfunctions in the body of patients’.

6.3.5 Summary

Thanks to the curated core PD gene set and a combination of PPIN analysis, clustering

algorithms, as well as functional (GO) enrichment this chapter could highlight key

synaptic gene sets and functions affected by PD.

Being able to divide large datasets into connected subgroups is a key contribution to

current research needs and developments. The ability to identify concrete gene groups

as well as a core and extended gene set is a great step forward. This not only confirms

and highlights most affected (synaptic) PD associated functions, but supplies benefi-

cial information to a number of additional research questions. Hence new hypotheses

can be established and further experimental studies can specifically target these newly

proposed genes to gain more in-depth understanding.

Overall this confirms that the use of PPINs is a powerful tool to shed light on

complex biological questions involving large datasets. Furthermore, results supply

details for more efficient, in-depth and highly targeted follow-up research, specifically

in the field of complex diseases.

6.4 Discussion

The use of PPINs is a growing area of research especially in the biological and medical

field. Even though standardised procedures are not yet available this work illustrates

their potential.

The large variety and possible uncertainty regarding data quality at several levels
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decreases the predictive power of the results. Therefore, any additional data curation

steps contribute to the quality. The use of proteomic data together with a curated

list of PPIs allows for a best possible network representation of the data of interest.

Even though this might not guarantee that all predicted interactions happen at the same

time and/or are actually valid, the use of proteomic data highly rises the quality of the

network providing information about proteins experimentally detected in the region

studied.

The use of local network measures gives first insights to the PPIN structure and

some of the most and least central proteins. Nevertheless, especially in large networks,

these values can be influenced by properties of various unnaturally behaving nodes.

Hence, best characterisation is achieved when analysing these statistical measures in a

joint manner.

For more in-depth insight it is recommended to work with node or edge specific

characteristics. These might be hard to analyse individually, but considering nodes and

edges with extreme values can help to identify genes with key roles amongst the data.

Using such a measure can also be misleading or biased since more studies focusing

on a specific gene, e.g. due to its importance in disease, can lead to biased results

and artefacts in the data. Again, the combination of different measures can help to

add certainty to observed results. An alternative approach to analyse node and edge

specific parameters is to consider the correlation between two values. For example,

this can help to identify nodes with extreme values for two parameters giving more

specific insight, which was illustrated in the case of the the connecting role of DGL4,

supporting information flow without being in a top central network position (Section

6.3.1).

Generally it could be seen that the smaller presynaptic network seems to show

slightly different properties compared to the larger postsynaptic, synaptosome and joint

synaptic ones. This highlights the potential impact of size on network measure and a

suggested need to normalise values before comparing them with each other. A similar

phenomena can be observed considering the PPIN topology emerging after network

clustering. Compared to the very node specific approaches outlined above, network

clustering identifies highly connected gene sets. In recent years this has proven to be

a profoundly beneficial tool. Especially addressing complex questions related to large

datasets, such as the case presented, has been facilitated.

Clustering algorithms rely on distinct analytical principles leading to varying com-

munity compositions. Classifying the quality of a clustered network is an ongoing
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challenge which might never be answered. One of the reasons is the subjective defini-

tion of a “good cluster” as well as its mathematical definition and the lack of a ground

truth dataset to be used for comparison. Visualization is an additional challenge which

can be addressed in different ways, either focusing on details or the overall pattern, but

no ideal solution is available. Therefore statistical approaches are even more important.

With regard to identifying the most adequate clustering algorithm additional mea-

sures can be used. Community robustness for example describes the probability of

specific nodes to belong to one or another community. Such information indicates how

stable a network topology is, contributing to its detailed understanding, but hard to

apply to 20 different network topologies. In addition it leads to the same question con-

cerning network cluster cross-comparison. One possible approach to identify the most

representative clustering of a network is the use of the cumulative distribution function

of network consensus matrices. Information regarding the proportion of ambiguously

clustered pairs can also help to identify the best fit. This approach is presented in the

draft in preparation presenting the synaptic proteome (Section 5).

Overall, using a range of different clustering approaches complicates the thorough

analysis of the quality of individual topologies and might not be the most economic

choice. Nevertheless, the results presented showed that the approach was efficient

given the addressed research question. The convergence of results emerging due to

different clusterings, based on different mathematical concepts and different datasets,

describing distinct synaptic regions, is promising. These findings support the credibil-

ity of obtained outcomes.

Therefore, the presented combinatorial approach leading to a set of core commu-

nities, gathering in three clusters could be a recommended choice for use in similar

studies. The combination of different clustering algorithms can be considered as a

varied and multi-angle approach towards interpreting one and the same dataset.

PPINs are static representations of PPIs assigning nodes to only one specific com-

munity. Given a dynamic cellular background this is most likely not the case. Further-

more networks only contain one representation of each protein which ignores the fact

that many proteins are involved in distinct cellular functions. Such details can be in-

cluded in a network model by assigning probabilities to nodes reflecting the likelihood

to belong to a community. Robustness studies, as mentioned previously, can be used

to calculate such values. Integrating these aspects could be a beneficial extension of

the presented results, addressing networks individually.

Using network communities as cellular groups and applying enrichment tests is key
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to identify disease enriched synaptic structures. The use of hypergeometric testing is a

well established approach to do so. Multiple testing correction adds to the credibility

of the obtained significance. Another aspect could be the application of permutation

tests. These would also consider community robustness and increase the certainty of

encountered results even more.

Currently available literature has not yet considered the comparison of commu-

nities emerging from differently clustered networks to investigate disease enrichment

in specific cellular regions. Hence, the identification of three key sets containing a

significant number of PD associated genes is a valuable achievement. Using a cover-

age threshold to identify a core gene set for each cluster is another way to focus on

potential key genes with a strong link to PD. These steps allow to fine-tune future

research questions based on the set of identified genes. Hence, the extended gene set

is a valuable references to verify new research outputs.

It might be asked why none of the most traditional and well known PD associated

genes appear in the disease enriched communities. One possible explanation could be

that these are able to trigger the disease by themselves not leading to enrichment of the

affected community. Such a behaviour might be due to their central role in a synaptic

pathway. Nevertheless most often disease complexity emerges due to a combination

of molecular dysfunctions affecting one pathway inducing functional alterations. This

can lead on to the question why not all PD associated genes grouped and allocated

in disease enriched communities. Technical and phenomenological points might ex-

plain this. Challenges associated to clustering algorithms, not always leading to the

most representative communities, difficulties obtaining a concise set of disease associ-

ated genes and multiple testing approaches can influence the results. In regard to phe-

nomenological reasons some of the disease genes can be rather consequential, meaning

that they show a close link to the disease phenotype. In such cases the effects can be

quite diverse not specifically accumulating in equal pathways and showing enrichment.

The interpretation of the dominating functions amongst genes in a network com-

munity using GO terms is of considerable interest. Available enrichment analysis tools

are used and allow for specific adjustments to obtain best results. In many cases re-

sults confirm, that the joint functionality of genes in the set aligns with the one of

the known PD associated gene. In addition and since individual gene functions are

often very versatile, knowing direct interactors allows to specify concrete affected cel-

lular functions. Results including cases such as rather unexpected disease associated

pathways intuitively happening in other organs, such as the liver, can lead to reconsid-
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eration of long-standing assumptions and lead to new hypotheses. Hence, readjusting

the research focus based on insights obtained through network analysis is just another

benefit of PPIN analysis.

In summary, approaches presented contribute largely to the ongoing development

in the growing field of Systems Biology and integrated medical research. Combin-

ing these endeavours with further experimental and clinical studies can lead to break-

through results in the coming years.





Chapter 7

Discussion

This chapter discusses critical steps, challenges and findings. Relevant ideas for fu-

ture extensions of this work and more in-depth analysis are addressed. Finally key

contributions to the research field are highlighted.

During the execution of the presented research a number of challenges were faced.

Most of them could be solved through alternative methodologies or re-consideration

of the underlying research question. Some of these steps contributed insights that are

worth sharing for consideration in future studies.

7.1 Data Consistency

Describing a disease including as much detail as possible is a crucial step to understand

its diverse, genetic origin and effect on individuals. Recent experimental and techno-

logical advances have allowed a wide range of gene-disease associations to become

publicly available. A good example therefore is the Gene Expression Omnibus (GEO)

database (Edgar et al., 2002) which gives access to a vast quantity of raw and published

high-throughput data, covering gene expression microarray experiments from almost

20 000 published manuscripts (Barrett et al., 2012). Even though such a data reposi-

tory sounds like a great source, in practise it can be notoriously difficult to access and

re-analyse the stored data. Lack of standards covering the use of analytical programs,

significance thresholds, data formats, and other complications mean that meta-analysis

down-stream of the available data can be a challenge, proving very difficult at times.

This phenomena leads to concerns about data-quality. This is specifically acute where

if published results have not been reproduced.

Genome Wide Association Study (GWAS) studies have similar issues. However, in

149
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this research area standards are more commonly accepted and followed, meaning that

raw experimental data is more easily accessible. This makes data more comparable

across publications and platforms, enhancing their credibility and allowing for down-

stream analysis.

When raw experimental data of interest is obtained, one of the fundamental re-

quirements to identify similarities and differences between the datasets is a common,

unique identifier. This is when annotations become very important and the role of

“data mapping” becomes crucial. Genes and proteins have different, non interchange-

able identifiers. Generally every protein is encoded by a single gene, meaning that

the up-stream dependency of a protein to a gene can be clearly identified; often sev-

eral proteins can be transcribed from a single gene, since splicing and a number of

post-transcriptional modifications may induce additional variety. Depending on the

experimental techniques used, post-transcriptional modifications may be missed, es-

pecially when working with large-scale approaches. It is therefore often adequate to

consider gene identifiers as the unique reference identifier ID for all genes and proteins

to avoid any potential bias. Such steps might limit detailed analysis, but guarantee con-

sistency, reducing the number of false positive records, and allowing data consistency

and usability in the future.

Using single identifiers facilitates further down-stream data analysis, as well as

providing a single reference point. National Center for Biotechnology Information

(NCBI) Entrez IDs were chosen for this purpose. These guarantee stable gene ref-

erences which are widely used amongst the community (Maglott et al., 2010). Con-

sidering that not all data used in this study was retrieved from human samples, cross-

species mapping was required as well. Publicly available homology information was

used for this endeavour, which facilitated the use of all available data (without restric-

tions) from the original species (mouse, rat or human). This was particularly necessary

when building the synaptic proteome datasets. Moreover the available human specific

Protein-Protein Interaction (PPI) set was larger than that for mouse and rat. Since ev-

ery mapping step shows a slight risk of inaccuracy, minimizing the required mappings

was important.

In summary, these challenges in data consistency are currently addressed in ongo-

ing efforts involving a wide range of researchers and research fields. The scientific

community is working towards adapting many standardised formats for data and asso-

ciated meta data in a guided way. This will help facilitate interoperability of datasets,

reusability of data as well as its findability and accessibility. With a comprehensive im-
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plementation of such standards, as proposed by the FAIR initiative (Wilkinson et al.,

2016), many research questions could be answered more efficiently.

7.2 Proteomic Datasets

Proteomic data can provide detailed insight into the molecular constitution of a tissue

region under investigation. As pointed out in Section 7.1 data quality is important to

obtain best possible, most reliable, and consistent research results. While building the

synaptic proteome datasets, Entrez IDs were used as unique identifiers for individual

genes and proteins. This guarantees consistency and uniformity across datasets and

best possible use of all available information, for example across studies, sources and

species. In addition it facilitates data comparison with the set of Parkinson’s Disease

(PD) associated genes (Section 3.3.5).

Most difficulties related to the generation of proteomic datasets reside around ex-

perimental setups. Some of these are common challenges in the field of proteomics and

include tissue extraction, homogenization and mass-spectrometry analysis. Therefore

the joining together and comparing of various studies can help lead to increase in data

quality and credibility. Analysis of the joint dataset can also highlight differences be-

tween available data, and point towards possible false positive records. Specifically due

to the very large total number of proteins identified in the synaptic proteomes defining

a core set was considered. However, using coverage as an approach to cut-off and iden-

tify a core proteomic dataset as described in Section 5.3.2, can lead to problems. For

example genes detected with newer, more fine-grained technologies can be penalised

or unwillingly excluded. Considering the first detection approach for filtering could

help to prevent this.

However, a more generic approach can assist in the endeavour of filtering the full

gene list reflecting detection consistency, and hence protein presence in the respective

tissue region. The postsynaptic proteome which has been analysed in 23 published

studies (Chapter 5) could be “cleaned” with such an approach. For the presynaptic

proteome, further datasets are needed before being able to define a representative cut-

off considering the year of first detection of a protein. The idea of a relative cut-off,

depending on e.g. the year of first publication as proposed here has not been addressed

in published literature so far, but could lead to more consistent results and a smaller,

more representative synaptic proteome.

Although no additional filtering steps were applied to the generated proteomic
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datasets for the purpose of this study, the large total numbers of proteins in the synap-

tic proteomes suggest that the total number of identified proteins exceeds the real one.

The high number of proteins detected in only one of the synaptic studies proposes that

these proteins might not actually be found in any of the synaptic regions. Therefore

a combination of protein coverage and detection year together with other parameters

should be considered to contributing towards identifying a core synaptosome providing

even higher data quality.

Working with the large number of proteins in the proteomic datasets, ranging be-

tween 1,867 and 6,706 proteins in the presynaptic and joint synaptic proteome, re-

quired large-scale analytical techniques. The use of such is one way to gain insight

into the data structure and role of PD in this region. Therefore Section 7.3 discusses

the application of large-scale analytical techniques, in the context of Protein-Protein-

Interaction Networks (PPINs).

7.3 Protein-Protein-Interaction Networks and PD

Datasets associated with a complex diseases, such as PD, tend to contain relatively

large numbers of genes which are not obviously interacting or affecting similar biolog-

ical pathways. These properties represent a challenging territory for in-depth analysis.

Under such conditions the use of data-driven models and representations, machine

learning techniques and tools, and statistical analysis and interpretation is of great

value to gain new biological insights. This research focused on the use of PPINs as a

promising tool to represent and analyse complex data encapsulating disease informa-

tion, for example related to PD. Data-driven models, such as the PPINs proposed, can

also assist in testing hypotheses emerging from experimental studies, usually focusing

on single, specific disease mechanisms.

To ensure data-quality, PPIs used to generate the PPINs, were mined and internally

assessed (Section 4.3.1). This lead to the best possible set of human, direct PPIs for

the purpose of this work. Adding this extra effort to the workflow helped to reveal

differences between the main PPI databases and how they obtain their interaction in-

formation. The steps taken whilst generating the PPI list (Section 4.3.2) helped to

identify the final filter settings. For example the exclusion of non-direct interactions

helped to ultimately obtain a high quality dataset.

In light of using PPI data in a human focused analysis, filtering only direct and hu-

man specific PPIs to build networks is highly recommended. The number of available
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human PPIs seems relatively “complete” which might not the case for other species.

For example the mouse PPI set currently only contains ~15,500 specific PPIs, com-

pared to ~200,000 human PPIs. When working with purely mouse specific data it is

hence recommendable to make use of data obtained in other species, for a more com-

prehensive dataset. Nevertheless, not having to fall back on cross-species mapping, as

when working with human-only data, increases quality of the network structure and

allows for better predictions.

The use of species specific information can generally help to avoid bias in the

PPINs. Additionally using proteomic datasets to build the networks imposes further

quality standards, for example, by only considering those proteins found in datasets

expressed in the tissue region of interest. By doing so however, a number of verified

PPIs are excluded from the network, due to not having detected one or both of the

interactors in the analysed proteome. The PPIN can therefore only represent a limited

spatial and temporal overview. More advanced and fine-tuned experimental techniques

are required to capture spatial and temporal changes in the proteome to obtain more

fine-grained insights and construct specific networks.

The current procedure proposed during this research, using proteomic data and

applying filtering criteria to the mined PPIs, shows the best quality control for network

building and insightful analysis currently available. This procedure has lead to identify

key proteins in the networks, and in the context of PD has helped to confirm the most

central disease genes.

Apart from that there was further interest uncovering the underlying complex struc-

ture of PD related genes in the synaptic PPINs. Such knowledge can help to identify

disease subtypes, disease manifestation mechanisms, and help to make predictions

regarding potential biomarkers. The use of machine learning techniques, such as com-

munity detection algorithms, was crucial in this aim. Choosing an appropriate clus-

tering algorithm for a specific PPIN was no trivial task. This is specifically true when

working with large datasets as addressed in this work (Section 6.3.2).

Another additional challenge is how to compare clustering results between algo-

rithms, when no ground truth data exists for the PPINs. Clustering algorithms employ

different machine learning techniques, metrics, parameters and values, when dealing

with how to divide a network into communities. This diversity leads to largely varying

community sizes amongst other network parameters. Hence trying to identify what

constitutes the “best” clustering for a specific network plays an important role. Differ-

ent research questions might require more coarse- or fine-grained groupings (commu-
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nities) to advance understanding of the data, and potentially answer open questions.

The choice of which clustering algorithm to use needed to be taken. Due to the

network size of up to 6,068 nodes and 69,520 edges, which is considered large for

a biological system, the chosen algorithm had to be able to break down the structure

into communities, in a reasonable computing time. Since there was no obvious best

choice, a set of clustering algorithms also seemed a good way to address the question

of “best” clustering. Based on results obtained none of them seemed to outperform the

others. Hence, all algorithms and communities were considered with equal probability

and taken forward for PD and functional enrichment analysis.

In summary, this part of the research showed the use of PPINs as being crucial for

analysis of large proteomic datasets and disease. The difficulty of finding the most

adequate algorithm was bypassed through the combination of several what specifically

addressed the research question. It turns out that such an approach lead to results,

regarding the question of interest, which were both highly consistent and promising.

Hence this supports the idea that synaptic gene communities are associated to PD in-

dependently of the applied clustering strategy. In general, this result should be trans-

ferable to detecting communities specific to other diseases as well.

7.4 Systems Biology and PD Research

Studying complex diseases is a non-trivial task, especially given continuous growth

of experimental data, such as GWAS and microarray expression results, and genetic

information associated with the disease. Such complexity requires a systems approach,

the use of PPINs for example, to gain an understanding of (i) biological processes

active in the synapse and (ii) relationship between datasets.

Since complex diseases are caused by a combination of genes and their dysfunc-

tions, these genes are often affecting similar pathways or cellular regions. Hence un-

derstanding which disease associated genes act together and identify their closest in-

teractors is a promising approach to deepen knowledge about the diseases and guide

future research endeavours.

Clustering PPINs to communities is one way to identify such gene communities.

Based on the known PD associated genes in the communities, it is possible to identify

gene sets showing a significant over-representation of PD, and hence reveal possibly

new links between known and unknown PD associated genes.

Since communities shed light on the nearest neighbours of known PD associated
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genes in disease affected synaptic regions, they can also help minimise the number of

potential key PD associated genes required to alter and/or are involved in the alterations

of disease related functions. Hence identifying subsets of genes associated to a specific

disease, tissue, or function is of great benefit to understand the disease.

Furthermore the overall function of all genes in the enriched community can be

studied. The use of Gene Ontology (GO) enrichment is a powerful approach here,

even though the vast ontology structure makes it difficult to use. Using annotated gene-

function information, as deposited in the GO database, can assist the identification of

non-random functional similarities between genes in a set. Various techniques are

available, and the focus on more specific functional terms, found in lower levels of the

ontology tree, seems to be the most beneficial approach. Therefore the elim algorithm

was chosen (Alexa et al., 2006).

The enrichment of highly specific GO terms could be found, confirming function-

alities based on known PD associated genes. Additionally, functional enrichment re-

sults were able to specify further PD associated pathways, which have not yet been

addressed in detail as being associated to PD.

As a further development to functional enrichment studies and to fine-tune func-

tional enrichment results other concepts are being developed. One of them is the pos-

sible clipping of the GO tree to obtain a more targeted, for example neurology specific

test environment (Geifman et al., 2010). Such advances can contribute interesting,

mostly similar, results.

In summary, the potential of using PPINs to answer complex biological questions

is promising, but its benefits are only just being discovered. Unravelling densely con-

nected gene groups allows for further analytical steps such as gene-set specific enrich-

ment studies. This combination of large-scale analytical approaches such as clustering,

disease, and functional enrichment was then applied to study the set of PD associated

genes (Section 3.3.5).

7.5 Synaptic Dysfunctions and PD

Apart from affecting multiple molecular functions, complex diseases affect cells at

different levels. Joining available data was crucial to make better predictions, but was

also a very challenging task. Varying quality controls and standards was the main issue

in generating a final PD associated gene set.

This often meant excluding possibly useful information, which did not reach a
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certain quality threshold. Nevertheless, a valuable core and extended gene disease

association dataset could be generated, which showed that some of the later identified

genes had been linked to PD previously. This could be confirmed by the detection

of some genes associated to PD, found in experimental expression data, and amongst

gene sets enriched for PD in network clusters. This also underlines the hypothesis

that (i) distinct experimental approaches capture different facets of the disease and

(ii) distinct cellular levels are affected in specific ways by the disease manifestation.

This combination and flexibility reflects different cellular dysfunctions making up the

disease genotype or forming part of its phenotype.

The final PD associated gene set was concise and robust enough to work with, al-

lowing further knowledge to be gained. Therefore results provide a proof-of-concept,

confirming known disease-gene links and finding new candidates. This is specifically

true since this work put a large effort into identifying PD associated genes from differ-

ent sources, and combining these in a comprehensive way.

One might think this replicates the work presented in the PD-map (Fujita et al.,

2014). This in-depth analysis provides a great tool to visualize PD affected molecular

functions and synaptic regions, but does not allow key sets of disease associated genes

to be directly and computationally accessed. Information regarding direct or indirect

links or associations are not available, making it almost impossible to directly use the

supplied data in the context of this work. Therefore the manually curated core gene set

was used.

The exercise of combining publicly available knowledge, describing PD gene asso-

ciations, allowed to show significant overlap of data from distinct sources, confirming

their PD specificity by highlighting their disease focus.

Once the core PD gene set was defined, further analysis using a systems biological

approaches could be considered. Network analytical techniques were able to pin-point

main affected PD associated pathways (Section 6.3.4). Even though initial clustering

results varied based on the chosen clustering algorithm, comparative analysis and re-

sults were consistent and reassuring. This suggests the presented strategy could be

used for other studies as well.

With respect to PD three main gene sets were highlighted as being highly influ-

enced. A number of postsynaptic functionalities include receptor localization, recep-

tor signalling pathways and neurotransmitter secretion (Sections 1.1.1.1 and 6.3.4.1).

Furthermore, liver associated pathways were found associated to PD associated genes

in the enriched Cluster 2 (Section 6.3.4.2). Such abnormalities in liver enzymes have
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been linked to PD as early as 1991 (Tanner, 1991). More specifically fibrinogen was

studied and findings confirmed a link between elevated fibrinogen levels and PD in

men, older than 75 years of age. These pathways point towards an inflammatory re-

action linked to the disease and could also be classified as an autoimmune response.

Recent research has also proposed the liver drug UDCA to treat PD patients showing

first protective effects on nerve cells in a genetic mouse model (Mortiboys et al., 2015).

Having verified not just the affected processes, but also a concrete set of genes

linked to known PD associated ones, allows further gene targets to be researched. The

identification of known disease associated functions is a proof-of-principle for the pre-

sented idea. Nevertheless the real advance lies in the generation of concrete, relatively

concise gene sets. Proposed disease target genes, highly linked to known PD associated

ones are a substantial source for future advances. Follow-up studies can now analyse

the role of these genes from various perspectives advancing knowledge in their detailed

functionality and impact on molecular dysfunctions linked to PD. These can consider

the genes to be (i) so far unsuspected disease triggers, (ii) potential drug targets, due to

their close link and influence on disease associated genes or (iii) biomarkers, allowing

better diagnosis.

7.6 Future Research Perspectives

Every study is limited by time and resources and often interesting follow-up questions

arise at more advanced stages of a project. In the study presented, the developed con-

cept could be used to answer other similar research questions.

This thesis covers a range of aspects which come together to shed light over com-

plex diseases given an affected tissue. This “pipeline” allowed me to identify core

disease associated gene sets as well as their dysfunctions, helping to uncover unknown

or unsuspected links between diseases and pathways as well as cross-pathway inter-

action. The use of a range of network parameters combined with curated datasets

guaranteed best possible quality of analysis and results.

Given the flexibility of the pipeline one might wonder why the analysis was not

carried out for a second reference tissue and/or another neurodegenerative disease.

Results for either of the scenarios could confirm the specificity of the results to PD and

highlight more general neurological effects. The biggest challenge was the remarkable

importance of data quality, considering the set of disease associated genes as well as

the proteome of interest. No equally high standard datasets could be easily obtained,
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but future studies should take these proposals into account.

Apart from questions related to complex diseases the approach is able to cover

other aspects. For example, protein datasets, containing proteomic data from different

tissues could be used to associate e.g. disease to a specific organ. More phenomeno-

logical trait information, such as obesity markers, retrieved from the Human Pheno-

type Ontology (Köhler et al., 2017), amongst others, can give insights into underlying

molecular mechanisms.

Due to current data availability, presented results describe “an average synapse”,

not considering subtypes or alike. PD mostly affects dopaminergic neurons in the

substantia nigra pars compacta. Building a PPIN of proteins expressed in specifically

these neurons can enhance insights and results would be more specific. For example

the Allen Brain Atlas (Hawrylycz et al., 2012, 2014)1 supplies detailed insights for

human brain tissues. Nevertheless the data are based on a very small sample size

of only three individuals (at time of study). The Human Protein Atlas (Uhlén et al.,

2015)2 might be another data source. Brain region specific tissues are not yet available

in this repository but cell type specific data is increasing. A major drawback in both

cases is the supplied data type. Information is based on gene-expression data, which

based on the central dogma of molecular biology (Figure 1.1), does not allow concrete

prediction of the proteome since it disregards the transcription step. Hence available

data does not reflect standards of a proteomic dataset and can influences the network

topology and ultimately obtained results. Upcoming technologies are addressing these

challenges which might be overcome in the next decade. Therefore, data from the

before mentioned sources supply good starting points to explore the benefits gained

through more specific datasets.

Two additional aspects need consideration. Variation in the proteome based on de-

velopmental stages (temporal aspect) and spatial restrictions. The proteome changes

over the course of cell and tissue development and possibly under disease conditions.

Furthermore spatial intracellular division likely prevents a number of PPIs from oc-

curring. This can be explained by cellular compartments such as the nuclear or endo-

plasmatic reticulum membrane acting as physical barriers. Apart from gaining more

specific insight based on more precise data the simulation and comparison of several

proteomes can illustrate the development of for example disease effects on a system

such as the synapse. The field of multi-scale modelling (Hirakis et al., 2015) is cur-

1http://www.brain-map.org/
2http://www.proteinatlas.org/

http://www.brain-map.org/
http://www.proteinatlas.org/
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rently exploring advances in this field and has shown first promising results.

Furthermore PPINs are static representations of protein interactions. Protein abun-

dance, interaction probabilities and the fact that some proteins are more likely to be-

long to two communities than to one can not be reflected. Nevertheless the possibility

to divide networks and identify specifically disease enriched gene sets is of substan-

tial value. This makes PPINs a very powerful, currently available, tool in the area of

systems biology allowing to formulate new, more specific research hypotheses.

To address some remaining challenges two side projects were carried out along-

side this PhD research and illustrate additional areas of advancement. PPINs allowed

to identify a potential new key set of disease associated genes and functional associa-

tions to consider more closely in future studies (Section 6.3.4 and Appendix E). Hence

apart from focusing on a regional, proteome level, the impact of PD on the synapse

was addressed from a more low-level perspective. To consider the implications of the

disease on a whole system more perspective needed to be gained. The impact of PD on

neuronal information transmission requires such a higher level systems understanding,

modelling the behaviour of the entire synapse or neuron. Such a model also allows

better analysis of drug effects and might allow the detection for disease biomarkers

since it considers an entire system.

Both, the lower and higher level angle were addressed in shared side projects, and

are introduced in the next sections.

7.6.1 Clathrin Mediated Endocytosis - a Dynamic Model

As Section 5.3.6 shows, one of the PD associated subsystems is the “clathrin coat as-

sembly” cycle. It relates to the larger system of Clathrin Mediated Endocytosis (CME),

which involves around 30 proteins undergoing about 60 internal PPIs (McMahon and

Boucrot, 2011). Eight of the 30 proteins have been previously linked to PD. These

are the proteins and genes actin, auxilin, cortactin, endophilin, EPS15-EPS15R, GAK,

HIP1R, and HSC70 which are part of the pathway, as well as NSF and LRRK2 showing

a link to the clathrin light chain as well as cytoskeletal signal transmission respectively.

To better understand the system and analyse implications of individual disease as-

sociated genes, a dynamic CME model was generated. This work was carried out

together with Oksana Sorokina, Anatoly Sorokin and Douglas Armstrong. One of the

elaborated models (which was implemented by myself; “model 2”) contains individual

clathrin molecules and describes their interaction leading to the formation of clathrin
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coated vesicles in a detailed way. A rule-based modelling approach, specifically kappa

modelling (Danos et al., 2008)3 was used to simulate the system in detail.

Even though a large amount of research has previously focused on the CME system

from an experimental as well as computational point of view, the rule-based model

allows for relatively easy extension. Hence, a more detailed view of a PD affected

process was generated. This is a first step towards simulating the effect of dysfunctions

on the system which can for example predict the impact of PD on CME or vice versa.

Some of the aforementioned genes have already been added to preliminary models and

need to be further explored.

A joint draft is currently in preparation, proving the concept of using a rule-based

modelling approach to simulate the dynamic CME system. The current version can be

found in Appendix G.

For a broad understanding of disease mechanisms, not only more in-depth insights

are required. Broader system understanding is necessary to grasp the effect of changes

in individual proteins on a whole system such as a whole neuron and its role in infor-

mation transmission.

7.6.2 Disease in Computational Models of Neurons

A large number of computational models of neurons are available. Most of these focus

on slightly different research questions which contain topics around information trans-

mission between neurons. Due to the lack of standardised modelling languages and

common nomenclature it is very challenging to systematically analyse and compare

models and identify their key components.

In a joint effort, together with Emilia Wysocka and David C. Sterratt, both Uni-

versity of Edinburgh, a number of synaptic models were analysed and a key set of

modelled synaptic genes could be identified. A publication is in preparation and the

current version can be found in Appendix H.

The annotation of synaptic models and extraction of entities appearing in these

models was a non-trivial task. Once a set of modelled genes was identified it was

compared to a list of genes commonly found in seven neurodegenerative diseases. The

study showed that a large number of disease associated genes are not modelled in the

analysed computational models of neurons. The availability of the list of modelled

genes together with a set of disease associated genes can now help to identify most

3http://dev.executableknowledge.org/

http://dev.executableknowledge.org/
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suitable available models to extend and gain more disease related insights.

Thus this study showed that considering higher system-level models, by first iden-

tifying their general focus and modelled elements, can help to find the best fit pre-

existing model to be extended to answer specific disease related questions. Studying

the effect of drugs and identifying disease biomarkers is highly facilitated by such a

system and should be considered for future analysis.

7.7 Conclusion

To gain better understanding of a complex disease, which shows its main effect at the

synapse, a highly regulated brain region, proved challenging. Nevertheless the curation

of high quality datasets, systems biological approaches and in-depth statistical and

functional analysis allowed me to obtain new insights into the disease.

The use of PPINs as a mathematical representation of complex diseases helped me

to identify PD associated gene sets, and their closely connected interactors, showing

a novelty which has not yet been addressed in PD research. The use of PPINs added

detailed, functional insight and moved from the analysis of single disease genes to

gene sets. This helps to show the joint impact of several genes on disease development

and manifestation.

Network analysis cannot hope to solve all research problems in their entirety, but

can contribute to speeding up the process of finding answers to complex questions;

specifically by advancing and better defining future research questions and directions.

Hence this study is a proof-of-concept, highlighting the need of large-scale techniques,

to address detailed research questions related to complex disease.

The static nature of interaction networks did not prove a major obstacle, supported

by the fact that numerous slightly different datasets as well as clustering algorithms

lead to very similar results. It might be argued that the combination of datasets and

clustering algorithms was needless since similar results were obtained (Section 6.3.3).

Nevertheless it is the combination and mutual confirmation of results which strength-

ens the outcomes and make them more trustworthy.

Considering PD specifically three new functionally defined gene sets were identi-

fied (Section 6.3.3). These contain know PD associated genes and a number of reliably

linked others. The core datasets are available to be considered in future research into

underlying disease causes, disease subtypes, biomarkers, and drug targets. Identifying

known functional GO terms related to spatial organisation, involving scaffolding pro-
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teins and vesicle cycling confirms the potential of the enrichment approach (Section

6.3.4.1). New hints towards immune response related functions should drive research

to emphasize on these fields in upcoming PD related studies (Section 6.3.4.2).

Overall, this work presents a combination of systems biological approaches, in-

cluding the use of PPINs and functional enrichment studies. It was possible to identify

new potential gene sets and their overall function, playing key roles in PD. Such find-

ings are very beneficial in the light of further understanding the disease complexity.

In summary, existing techniques were used to to confirm known and unravel un-

known details regarding PD. Results obtained are very promising and further devel-

opment of presented ideas and findings can lead to major contributions in theoretical,

experimental and clinical PD research. Available knowledge was enriched and ex-

tended and future analysis of many other open challenges, not only related to PD, but

other complex diseases can be made more targeted and efficient.



Appendix A

Literature based Parkinson’s Disease

associated genes

Table A.1: Genes manually identified to be linked to PD in reviewed papers (ordered

alphabetically by Gene Name short). PMCID shows the reference where the gene-

disease association was identified.

Entrez ID Gene Name short PMCID

130013 ACMSD 22438815, 21812969

135 ADORA2A 24032478

351 APP 22438815

23400 ATP13A2 23380027, 2650009

683 BST1 22438815, 21812969, 22786590

776 CACNA1D 23771339

793 CALB1 23771339

801 CALM1 23771339

811 CALR 23771339

84660 CCDC62 22438815, 21812969

6352 CCL5 21048992

1006 CDH8 21812969

1609 DGKQ 22438815

1981 EIF4G1 20495568

26281 FGF20 20495568

2580 GAK 22438815, 21812969, 22786590

2629 GBA 23380027, 20495568, 22438815, 21812969

26058 GIGYF2 20495568

2861 GPR37 23251443

9026 HIP1R 22438815, 22786590

3308 HSPA4 23380027

27429 HTRA2 20495568

3383 ICAM1 18044695

8516 ITGA8 22438815
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3920 LAMP2 23380027

27074 LAMP3 22438815, 21812969, 22786590

120892 LRRK2 3035023, 23380027, 20495568, 22438815, 21812969, 22786590

4137 MAPT 22438815, 22806825

4163 MCC 22438815

56922 MCCC1 22438815, 21812969

4843 NOS2 23744073

4929 NR4A2 24126627

4905 NSF 21812969

80025 PANK2 22806825

5071 PARK2 3035023, 23380027, 20495568, 22581678, 21812969

11315 PARK7 3035023, 23418303, 23380027, 20495568, 22581678, 21812969

677662 PARK12 17068789

100359403 PARK16 22438815, 21812969

65018 PINK1 3035023, 23380027, 20495568, 22581678, 21812969

10891 PPARGC1A 23380027

57111 RAB25 22438815

153328 SLC25A48 21812969

28232 SLCO3A1 21812969

6622 SNCA 3035023, 23380027, 20495568, 22438815, 21812969, 22786590, 21412835

9627 SNCAIP 23127794

27347 STK39 22438815, 21812969, 22786590

23208 SYT11 22438815, 21812969, 22786590

81615 TMEM163 22438815

7345 UCHL1 23380027

10497 UNC13B 21812969

55737 VPS35 2426182, 22806825

7473 WNT3 21812969
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MI-IDs

Table B.1: MI IDs specifying all direct interaction types, used to filter PPIs (orderd al-

phabetically based on the description).

Interaction MI-ID Description

0192 acetylation reaction

0557 adp ribosylation reaction

0193 amidation reaction

1143 aminoacylation reaction

1148 ampylation reaction

0914 association

0882 atpase reaction

1139 carboxylation reaction

0194 cleavage reaction

0195 covalent binding

0197 deacetylation reaction

1310 de-ADP-ribosylation reaction

0985 deamination reaction

1140 decarboxylation reaction

0198 defarnesylation reaction

0199 deformylation reaction

0200 degeranylation reaction

0558 deglycosylation reaction

0871 demethylation reaction

0201 demyristoylation reaction

0569 deneddylation reaction

0202 depalmitoylation reaction

0203 dephosphorylation reaction

0568 desumoylation reaction

0204 deubiquitination reaction

1027 diphtamidation reaction

0407 direct interaction

0408 disulfide bond

0572 dna cleavage
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0701 dna strand elongation

0414 enzymatic reaction

0206 farnesylation reaction

0207 formylation reaction

0209 geranylgeranylation reaction

0559 glycosylation reaction

0883 gtpase reaction

0210 hydroxylation reaction

1250 isomerase reaction

0211 lipid addition

0212 lipid cleavage reaction

0213 methylation reaction

1251 methylmalonyl-CoA isomerase reaction

0571 mrna cleavage

0214 myristoylation reaction

0567 neddylation reaction

0910 nucleic acid cleavage

0986 nucleic acid strand elongation reaction

0881 nucleoside triphosphatase reaction

0945 oxidoreductase activity electron transfer reaction

0216 palmitoylation reaction

1146 phospholipase reaction

0971 phosphopantetheinylation

0217 phosphorylation reaction

0844 phosphotransfer reaction

0915 physical association

1237 proline isomerization reaction

0570 protein cleavage

1127 putative self interaction

0902 rna cleavage

0987 rna strand elongation

1126 self interaction

1327 sulfurtransfer reaction

0566 sumoylation reaction

0556 transglutamination reaction

0220 ubiquitination reaction

1230 uridylation reaction

0218 obsolete: physical interaction
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Table B.2: MI IDs specifying source databases of PPIs (orderd alphabetically based on

description).

Database MI-ID Description

2166 ai

0575 alliance for cellular signaling

2165 bar

1332 bhf-ucl

0462 bind

1123 bindingdb

1108 biocarta

1105 biocyc

0463 biogrid

0967 chembl

1063 consensuspathdb

0464 cygd

0465 dip

0466 ecocyc

0936 emdb

1331 evidence ontology

1116 genemania

0448 gene ontology

2017 heterogen

1335 hpidb

0468 hprd

0670 imex

0974 innatedb

0469 intact

0585 intenz

0461 interaction database

0923 irefindex

1262 i2d

0470 kegg

2012 kegg compound

0917 matrixdb

1222 mbinfo

2164 mind

0471 mint

0459 mmdb

1263 molecular connections

0903 mpidb

1264 ntnu

1124 pathwaycommons

1106 pathways database

0472 pdbe

0806 pdbj

1107 pid

0467 reactome
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0460 rcsb pdb

1115 spike

1014 string

1117 topfind

0486 uniprot knowledge base

1098 uniprot/swiss-prot

1099 uniprot/trembl

1114 virhostnet

0805 wwpdb



Appendix C

Extended Overview of Synaptic

Proteomic Studies

Table C.1: Presynaptic proteome publications and respective datasets. “Count” shows

the number of proteins, mapped to human Entrez IDs found in the study.

Study Year Reference Short Description Species Method Description Count

MORCIANO 2005 Morciano et al.

(2005)

synaptic vesicle rat Co-IP with SV2, MALDI-

TOF-MS and 2D BAC/SDS-

PAG

Synaptic vesicle proteins from

nerve terminal proteome

85

BURRE 2006 Burré et al.

(2006)

synaptic vesicle rat 1-D SDS-PAGE & nano-LC

ESI-MS/MS, or 2-D SDS-

PAGE & (BAC)/SDS-PAGE,

or SDS (dSDS)-PAGE &

MALDI-TOF-MS

Synaptic vesicle proteins 157

MORCIANO 2009 Morciano et al.

(2009)

synaptic vesicle rat IP, MALDI-TOF-MS,

nanoLC ESI MS/MS and

2D BAC/SDS-PAGE

Using a monoclonal antibody

against synaptic vesicle pro-

tein 2 we immunopurified a

presynaptic compartment con-

taining the active zone with

synaptic vesicles docked to

the presynaptic plasma mem-

brane as well as elements of

the presynaptic cytomatrix

308

GORINI 2010 Gorini et al.

(2010)

presynaptic mouse CO-IP, MALDI-TOF-MS and

MASCOT

Presynaptic vesicle re-

cycling: We used co-

immunoprecipitation fol-

lowed by mass spectrometry

or western blotting to inves-

tigate the synaptic protein

network for the candidate

proteins BKCa, dynamin-1,

SNAP-25, syntaxin-1A, and

VAMP-2

49

GRONBORG 2010 Grønborg et al.

(2010)

synaptic vesicle rat ICAT SCX, iTRAQ Synaptic vesicle proteome

(glutamargetic and GABA

synapses)

613

BOYKEN 2013 Boyken et al.

(2013)

presynaptic rat LS/MS-MS, iTRAQ Synaptic vesicle docking and

endocytosis

414

WILHELM 2014 Wilhelm et al.

(2014)

synaptic vesicle rat quantitative IP and LS/MS-

MS

Synaptic vesicle cycle pro-

teins from synaptic buttons,

synaptosome compartmen-

talised

1158

BRINK-
MALM

2014 Brinkmalm

et al. (2014)

presynaptic mouse IP with SNAP 25 and LC-

MS/MS)

Presynaptic (SNARE com-

plex)in AD

68

169
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Table C.1: Presynaptic proteome publications and respective datasets. “Count” shows

the number of proteins, mapped to human Entrez IDs found in the study.

Study Year Reference Short Description Species Method Description Count
WEINGAR-
TEN

2014 Weingarten

et al. (2014)

presynaptic mouse CoIP with SV2, SDS-PAGE

and LC-MS/MS

Presynaptic active zone 467

Table C.2: Postsynaptic proteome publications and respective datasets. “Count” shows

the number of proteins, mapped to human Entrez IDs found in the study.

Study Year Reference Short Description Species Method Description Count

WALIKONIS 2000 Walikonis et al.

(2000)

postsynaptic rat MALDI-TOF-MS and SDS-

PAGE

Forebrain PSD 29

PENG 2004 Peng et al.

(2004)

postsynaptic rat liquid chromatography and

LC-MS/MS

Forebrain PSD 325

SATOH 2002 Satoh et al.

(2002)

postsynaptic mouse 2D LC/MS/MS Forebrain PSD 45

YOSHIMURA 2004 Yoshimura et al.

(2004)

postsynaptic rat 2D LC/MS/MS Forebrain PSD 435

FARR 2004 Farr et al. (2004) MGLUR5 rat co IP mGluR5 interacting complex

(co IP)

71

JORDAN 2004 Jordan et al.

(2004)

postsynaptic mouse

and rat

nanoflow HPLC and LC-

MS/MS

Brain PSD 390

LI 2004 wan Li et al.

(2003)

postsynaptic rat 2D gel/ICAT and matrix-

assisted laser desorption

ionization-time of flight,

LC-MS/MS

Brain PSD 137

TRINIDAD 2005 Trinidad et al.

(2005)

postsynaptic mouse Nano-LC-ESI-QTOF MS/MS Forebrain PSD 234

CHENG 2006 Cheng et al.

(2006)

postsynaptic rat LC-MS/MS PSD identifications found in

both cerebellum and forebrain

288

COLLINS 2006 Collins et al.

(2006)

postsynaptic,

MASC/NR2B,

MASC/NR1, NRC-

MASC, AMPA,

postsynaptic-

consensus

mouse 1D SDS-PAGE and LC-

MS/MS, immunoprecipita-

tion with antibody against

NR2B, NR1 or against

Gria2 (AMPA), SDS-PAGE,

LC-MS/MS SDS-PAGE,

LC-MS/MS

G2C PSD dataset, immuno

-purification for NR2B,

NR1 or GRIA2 (AMPA),

NRC/MASC complex = total

from NR1 + NR2B above;

Consensus PSD calculated

by Collins et al, more than 2

mentionings in 6 published

proteomic studies and 119

individual papers

717

DOSEMESI 2006 Dosemeci et al.

(2006)

postsynaptic rat 2D LC/MS/MS PSD from hippocampus 113

DOSEMESI 2007 Dosemeci et al.

(2007)

postsynaptic rat LC-MS/MS; LC-MS/MS, IP

with PSD95

Cortex PSD, PSD95 protein

complex

548

TRINIDAD 2008 Trinidad et al.

(2008)

postsynaptic mouse Nano-LC-ESI-QTOF MS/MS PSD relative quantification of

expression and phosphoryla-

tion status from: cortex, hip-

pocampus, midbrain, cerebel-

lum

2150

SELIMI 2009 Selimi et al.

(2009)

postsynaptic mouse 1-D SDS-PAGE, matrix-

assisted laser desorp-

tion/ionization (MALDI)

quadrupole/time-of flight

(QqTOF) MS and MALDI

ion trap (MALDI-IT) tandem

MS (MS/MS)

PSD from parallel

fiber/purkinje cell synapse

61

FERNANDEZ 2009 Fernández et al.

(2009)

TAP-PSD-95-

CORE, TAP-PSD-

95-FULL

mouse TAP tag, LC-MS/MS TAP-PSD-95 pull-down core

list and full list

292

BAYES 2010 Bayés et al.

(2011)

consensus postsy-

napse, full postsy-

napse

human LC-MS/MS Human neocortex (hPSD)

biopsy PSD consensus and

full list

1441

BAYES 2012 Bayés et al.

(2012)

consensus postsy-

napse, full postsy-

napse

mouse LC-MS/MS Cortex PSD consensus 1545
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Table C.2: Postsynaptic proteome publications and respective datasets. “Count” shows

the number of proteins, mapped to human Entrez IDs found in the study.

Study Year Reference Short Description Species Method Description Count
SCHWENK 2012 Schwenk et al.

(2012)

AMPA unknown multiepitope and target

knockout-controlled affinity

purifications (ME-APs), blue

native polyacrylamide gel

electrophoresis (BN-PAGE)

and nano-LC MS/MS

AMPA receptor complex 34

DISTLER
PSD1

2014 Distler et al.

(2014)

postsynaptic I mouse LS/MS-MS with

iTRAQUDMSE, ISOQuant

mouse hyppocampus PSD 3545

DISTLER
PSD2

2014 Distler et al.

(2014)

postsynaptic II mouse LS/MS-MS with

iTRAQUDMSE, ISOQuant

mouse hyppocampus PSD 2092

BAYES 2014 Bayés et al.

(2014)

postsynaptic, MASC human SDS-PAGE and nanoLC-

MS/MS

PSD (post-mortem neocortex

samples and biopsy tissue),

MASC (post mortem neocor-

tex samples and biopsy tissue)

1141

UEZU 2016 Uezu et al.

(2016)

postsynaptic, PSD95

(ePSD), iPSD, iPSD

mouse in vivo affinity purification

approach BioID (iBioID) +

streptavidin-based affinity

purification and mass spec-

trometry (MS), DLG4-BirA,

collybistin(Arhgef9)n-BirA

and InSyn1-(BirA) & gephyin

-BirA, InSyn1-coIP, LS-MS

pilot iPSD: BirA, PSD95-

BirA, gephyrin- BirA, ePSD,

iPSD, frontal cortex and hip-

pocampus of C57BL/6mice,

InSyn1 pulldown

1111

FOCKING 2016 Föcking et al.

(2016)

postsynaptic human Label free LC-MS supragenual (BA24) - anterior

cingulate cortex (ACC)

2026

Table C.3: Synaptosome proteome datasets and respective publications. “Count”

shows the number of proteins, mapped to human Entrez IDs found in the study.

Study Year Reference Short Description Species Method Description Count

FILIOU 2010 Filiou et al.

(2010)

synaptosome mouse Isoelectric focusing (IEF) and

MS

Synaptosome and phospho-

proteome

2778

DAHLHAUS 2011 Dahlhaus et al.

(2011)

synaptosome mouse MALDI-MS and iTRAQ Synaptic proteome from

mouse visual cortex

638

ZIV synapse 2013 Cohen et al.

(2013)

synaptosome rat Stable Isotope Labeling with

Amino acids in Cell cul-

ture (SILAC), mass spectrom-

etry (MS), Fluorescent Non-

Canonical Amino acid Tag-

ging (FUNCAT)

Synaptic protein turnover

rates

185

ZIV full 2013 Cohen et al.

(2013)

synaptosome rat Stable Isotope Labeling with

Amino acids in Cell cul-

ture (SILAC), mass spectrom-

etry (MS), Fluorescent Non-

Canonical Amino acid Tag-

ging (FUNCAT)

Synaptic protein turnover

rates

2447

BIESEMANN 2014 Biesemann et al.

(2014)

synaptosome mouse Fluorescence Activated

Synaptosome Sorting (FASS),

LS/MS-MS, Mascot

VGLUT1VENUS knock-in

mice, glutamargetic synapto-

somes

157

CHANG 2015 Chang et al.

(2015)

synaptosome human SCX fractionation with

SWATH analysis

Synaptic proteome from hyp-

pocampus and motor cortex in

autopsy brain for Alzheimer’s

disease and control

2076

DISTLER 2014 Distler et al.

(2014)

TOTAL mouse LS/MS-MS with

iTRAQUDMSE, ISOQuant

mouse hyppocampus PSD 4475
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(a) fast greedy (b) infomap

(c) louvain (d) spectral

(e) spinglass

Figure D.1: Postsynaptic PPINs. Different clustering algorithm results are highlighted.

Red coloured nodes represent PD associated genes. Grey “background” represents

network edges.
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(a) fast greedy (b) infomap

(c) louvain (d) spectral

(e) spinglass

Figure D.2: Synaptosome PPINs. Different clustering algorithm results are highlighted.

Red coloured nodes represent PD associated genes. Grey “background” represents

network edges.





Appendix E

Core PD associated gene sets

Cluster 1 (sorted by Entrez ID)

19 (ABCA1), 88 (ACTN2), 89 (ACTN3), 320 (APBA1), 491 (ATP2B2), 493 (ATP2B4),

575 (ADGRB1), 796 (CALCA), 1501 (CTNND2), 1739 (DLG1), 1740 (DLG2), 1741

(DLG3), 1742 (DLG4), 1756 (DMD), 1837 (DTNA), 2257 (FGF12), 2902 (GRIN1),

2903 (GRIN2A), 2904 (GRIN2B), 2905 (GRIN2C), 2906 (GRIN2D), 2977 (GUCY1A2),

2983 (GUCY1B3), 3736 (KCNA1), 3738 (KCNA3), 3739 (KCNA4), 3761 (KCNJ4),

4130 (MAP1A), 4355 (MPP2), 4842 (NOS1), 5332 (PLCB4), 6323 (SCN1A), 6329

(SCN4A), 6331 (SCN5A), 6640 (SNTA1), 6641 (SNTB1), 6645 (SNTB2), 7402 (UTRN),

8502 (PKP4), 8525 (DGKZ), 8573 (CASK), 8777 (MPDZ), 8825 (LIN7A), 8938 (BA-

IAP3), 9211 (LGI1), 9223 (MAGI1), 9369 (NRXN3), 9378 (NRXN1), 9379 (NRXN2),

9615 (GDA), 9754 (STARD8), 9973 (CCS), 10125 (RASGRP1), 10203 (CALCRL),

10207 (PATJ), 10276 (NET1), 11336 (EXOC3), 22871 (NLGN1), 23037 (PDZD2),

23109 (DDN), 23209 (MLC1), 23237 (ARC), 23265 (EXOC7), 23513 (SCRIB), 25960

(ADGRA2), 26154 (ABCA12), 29919 (C18orf8), 53616 (ADAM22), 53919 (SLCO1C1),

54413 (NLGN3), 55083 (KIF26B), 55327 (LIN7C), 55914 (ERBIN), 57502 (NLGN4X),

57524 (CASKIN1), 57554 (LRRC7), 57555 (NLGN2), 57575 (PCDH10),

60412 (EXOC4), 64130 (LIN7B), 64398 (MPP5), 84435 (ADGRA1), 84448 (ABLIM2),

85445 (CNTNAP4), 140735 (DYNLL2), 143098 (MPP7), 148753 (FAM163A), 166647

(ADGRA3), 221749 (PXDC1), 642968 (FAM163B)

Cluster 2 (sorted by Entrez ID)

213 (ALB), 216 (ALDH1A1), 217 (ALDH2), 272 (AMPD3), 767 (CA8), 335 (APOA1),

337 (APOA4), 345 (APOC3), 714 (C1QC), 1356 (CP), 1471 (CST3), 1608 (DGKG),

2243 (FGA), 2244 (FGB), 2266 (FGG), 3500 (IGHG1), 3502 (IGHG3), 3503 (IGHG4),

177
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3514 (IGKC), 3778 (KCNMA1), 4018 (LPA), 4329 (ALDH6A1), 4635 (MYL4), 5136

(PDE1A), 5142 (PDE4B), 7018 (TF), 7579 (ZSCAN20), 8854 (ALDH1A2),

8911 (CACNA1I), 8914 (TIMELESS), 23036 (ZNF292), 23460 (ABCA6),

26049 (FAM169A), 57165 (GJC2), 57722 (IGDCC4), 79183 (TTPAL), 79925 (SPEF2),

128240 (NAXE), 140460 (ASB7), 154664 (ABCA13), 255189 (PLA2G4F), 284161

(GDPD1), 353274 (ZNF445)

Cluster 3 (sorted by Entrez ID)

775 (CACNA1C), 782 (CACNB1), 783 (CACNB2), 784 (CACNB3), 9478 (CABP1),

57019 (CIAPIN1)



Appendix F

Enriched Gene Ontology terms in the

top three PD enriched clusters

Table F.1: GO terms enriched in at least two communities in Cluster 1 (alphabetical

order of GO terms); significance p-value threshold was set to 0.05. The gene sets

of interest were enriched compared to all genes expressed in the synapse. Results

were obtained using the Fisher exact test, elim algorithm and Benjamini and Yekutieli

multiple testing correction. Exact p-values available upon request since different in

distinct enriched clusters).

GO term GO term ID GO term definition

Biological Process

GDP metabolic process GO:0046710 The chemical reactions and pathways involving GDP, guanosine 5’-

diphosphate

gephyrin clustering involved in

postsynaptic density assembly

GO:0097116 The clustering process in which gephyrin molecules are localized

to distinct domains in the postsynaptic density as part of postsynap-

tic density assembly. Gephyrin is a component of the postsynaptic

protein network of inhibitory synapses

GMP metabolic process GO:0046037 The chemical reactions and pathways involving GMP, guanosine

monophosphate

ionotropic glutamate receptor

signaling pathway

GO:0035235 A series of molecular signals initiated by glutamate binding to a

glutamate receptor on the surface of the target cell, followed by the

movement of ions through a channel in the receptor complex. Ends

with regulation of a downstream cellular process, e.g. transcription

maintenance of epithelial cell

apical/basal polarity

GO:0045199 The maintenance of the apicobasal polarity of an epithelial cell

negative regulation of peptidyl-

cystein S-nitrosylation

GO:1902083 ny process that stops, prevents or reduces the frequency, rate or ex-

tent of peptidyl-cysteine S-nitrosylation

neurotransmitter secretion GO:0007269 The regulated release of neurotransmitter from the presynapse into

the synaptic cleft via calcium regualated exocytosis during synaptic

transmission

179
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positive regulation of excitatory

postsynaptic potential

GO:2000463 Any process that enhances the establishment or increases the extent

of the excitatory postsynaptic potential (EPSP) which is a tempo-

rary increase in postsynaptic potential due to the flow of positively

charged ions into the postsynaptic cell. The flow of ions that causes

an EPSP is an excitatory postsynaptic current (EPSC) and makes it

easier for the neuron to fire an action potential

positive regulation of synapse

assembly

GO:0051965 Any process that activates, maintains or increases the frequency, rate

or extent of synapse assembly, the aggregation, arrangement and

bonding together of a set of components to form a synapse

positive regulation of synaptic

vesicle clustering

GO:2000809 Any process that activates or increases the frequency, rate or extent

of synaptic vesicle clustering

postsynaptic density protein 95

clustering

GO:0097119 The clustering process in which postsynaptic density protein 95

(PSD-95) molecules are localized to distinct domains in the cell

membrane. PSD-95 is mostly located in the post synaptic density

of neurons, and is involved in anchoring synaptic proteins

protein localization to basolat-

eral plasma membrane

GO:1903361 A process in which a protein is transported to, or maintained in, a

location within a basolateral plasma membrane

receptor localization to synapse GO:0097120 Any process in which a receptor is transported to, and/or maintained

at the synapse, the junction between a nerve fiber of one neuron and

another neuron or muscle fiber or glial cell

regulation of grooming be-

haviour

GO:2000821 Any process that modulates the frequency, rate or extent of groom-

ing behavior

regulation of sodium ion trans-

membrane transport

GO:1902305 Any process that modulates the frequency, rate or extent of sodium

ion transmembrane transport

vocalization behaviour GO:0071625 The behavior in which an organism produces sounds by a mecha-

nism involving its respiratory system

Molecular Function

cell adhesion molecule binding GO:0050839 Interacting selectively and non-covalently with a cell adhesion

molecule

extracellular-glutamate-gated

ion channel activity

GO:0005234 Enables the transmembrane transfer of an ion by a channel that

opens when extracellular glutamate has been bound by the channel

complex or one of its constituent parts

guanylate kinase activity GO:0004385 Catalysis of the reaction: ATP + GMP = ADP + GDP

ionotropic glutamate receptor

binding

GO:0035255 Interacting selectively and non-covalently with an ionotropic gluta-

mate receptor. Ionotropic glutamate receptors bind glutamate and

exert an effect through the regulation of ion channels

L27 domain binding GO:0097016 Interacting selectively and non-covalently with a L27 domain of a

protein. L27 is composed of conserved negatively charged amino

acids and a conserved aromatic amino acid. L27 domains can as-

semble proteins involved in signaling and establishment and main-

tenance of cell polarity into complexes by interacting in a het-

erodimeric manner

neurexin family protein binding GO:0042043 Interacting selectively and non-covalently with neurexins, synaptic

cell surface proteins related to latrotoxin receptor, laminin and agrin.

Neurexins act as cell recognition molecules at nerve terminals

neuroligin family protein bind-

ing

GO:0097109 Interacting selectively and non-covalently with a member of the neu-

roligin protein family, neuronal cell surface proteins that mediate

synapse formation
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NMDA glutamate receptor ac-

tivity

GO:0004972 An cation channel that opens in response to binding by extracellular

glutmate, but only if glycine is also bound and the membrane is

depolarized. Voltage gating is indirect, due to ejection of bound

magnesium from the pore at permissive voltages

PDZ domain binding GO:0030165 Interacting selectively and non-covalently with a PDZ domain of a

protein, a domain found in diverse signaling proteins

scaffold protein binding GO:0097110 Interacting selectively and non-covalently with a scaffold protein.

Scaffold proteins are crucial regulators of many key signaling path-

ways. Although not strictly defined in function, they are known to

interact and/or bind with multiple members of a signaling pathway,

tethering them into complexes

Cellular Component

basolateral plasma membrane GO:0016323 The region of the plasma membrane that includes the basal end and

sides of the cell. Often used in reference to animal polarized epithe-

lial membranes, where the basal membrane is the part attached to

the extracellular matrix, or in plant cells, where the basal membrane

is defined with respect to the zygotic axis

bicellular tight junction GO:0005923 An occluding cell-cell junction that is composed of a branching net-

work of sealing strands that completely encircles the apical end of

each cell in an epithelial sheet; the outer leaflets of the two interact-

ing plasma membranes are seen to be tightly apposed where sealing

strands are present. Each sealing strand is composed of a long row

of transmembrane adhesion proteins embedded in each of the two

interacting plasma membranes

cell junction GO:0030054 A cellular component that forms a specialized region of connection

between two or more cells or between a cell and the extracellular

matrix. At a cell junction, anchoring proteins extend through the

plasma membrane to link cytoskeletal proteins in one cell to cy-

toskeletal proteins in neighboring cells or to proteins in the extra-

cellular matrix

dendritic spine GO:0043197 A small, membranous protrusion from a dendrite that forms a post-

synaptic compartment - typically receiving input from a single

presynapse. They function as partially isolated biochemical and an

electrical compartments. Spine morphology is variable including

"thin", "stubby", "mushroom", and "branched", with a continuum

of intermediate morphologies. They typically terminate in a bulb

shape, linked to the dendritic shaft by a restriction. Spine remodel-

ing is though to be involved in synaptic plasticity

dystrophin-associated glyco-

protein complex

GO:0016010 A multiprotein complex that forms a strong mechanical link between

the cytoskeleton and extracellular matrix; typical of, but not confined

to, muscle cells. The complex is composed of transmembrane, cyto-

plasmic, and extracellular proteins, including dystrophin, sarcogly-

cans, dystroglycan, dystrobrevins, syntrophins, sarcospan, caveolin-

3, and NO synthase

exocyst GO:0000145 A protein complex peripherally associated with the plasma mem-

brane that determines where vesicles dock and fuse. At least eight

complex components are conserved between yeast and mammals

juxtaparanode region of axon GO:0044224 A region of an axon near a node of Ranvier that is between the para-

node and internode regions
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MPP7-DLG1-LIN7 complex GO:0097025 A heterotrimeric protein complex formed by the association of

MMP7, DLG1 and either LIN7A or LIN7C; regulates the stability

and localization of DLG1 to cell junctions

myelin sheath abaxonal region GO:0035748 The region of the myelin sheath furthest from the axon

neuron projection GO:0043005 A prolongation or process extending from a nerve cell, e.g. an axon

or dendrite

NMDA selective glutamate re-

ceptor complex

GO:0017146 An assembly of four or five subunits which form a structure with an

extracellular N-terminus and a large loop that together form the lig-

and binding domain. The C-terminus is intracellular. The ionotropic

glutamate receptor complex itself acts as a ligand gated ion chan-

nel; on binding glutamate, charged ions pass through a channel in

the center of the receptor complex. NMDA receptors are composed

of assemblies of NR1 subunits (Figure 3) and NR2 subunits, which

can be one of four separate gene products (NR2A-D). Expression

of both subunits are required to form functional channels. The glu-

tamate binding domain is formed at the junction of NR1 and NR2

subunits. NMDA receptors are permeable to calcium ions as well

as being permeable to other ions. Thus NMDA receptor activation

leads to a calcium influx into the post-synaptic cells, a signal thought

to be crucial for the induction of NMDA-receptor dependent LTP

and LTD

postsynaptic density of dendrite GO:0014069 An electron dense network of proteins within and adjacent to the

postsynaptic membrane of the dendrite of asymetric synapses. Its

major components include neurotransmitter receptors and the pro-

teins that spatially and functionally organize them such as anchor-

ing and scaffolding molecules, signaling enzymes and cytoskeletal

components

postsynaptic membrane GO:0045211 A specialized area of membrane facing the presynaptic membrane

on the tip of the nerve ending and separated from it by a minute cleft

(the synaptic cleft). Neurotransmitters cross the synaptic cleft and

transmit the signal to the postsynaptic membrane

presynaptic membrane GO:0042734 A specialized area of membrane of the axon terminal that faces the

plasma membrane of the neuron or muscle fiber with which the axon

terminal establishes a synaptic junction; many synaptic junctions ex-

hibit structural presynaptic characteristics, such as conical, electron-

dense internal protrusions, that distinguish it from the remainder of

the axon plasma membrane

presynapse GO:0098793 The part of a synapse that is part of the presynaptic cell

sarcolemma GO:0042383 The outer membrane of a muscle cell, consisting of the plasma mem-

brane, a covering basement membrane (about 100 nm thick and

sometimes common to more than one fiber), and the associated loose

network of collagen fibers.
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synapse GO:0045202 The junction between a nerve fiber of one neuron and another neu-

ron, muscle fiber or glial cell. As the nerve fiber approaches the

synapse it enlarges into a specialized structure, the presynaptic nerve

ending, which contains mitochondria and synaptic vesicles. At the

tip of the nerve ending is the presynaptic membrane; facing it, and

separated from it by a minute cleft (the synaptic cleft) is a special-

ized area of membrane on the receiving cell, known as the post-

synaptic membrane. In response to the arrival of nerve impulses,

the presynaptic nerve ending secretes molecules of neurotransmit-

ters into the synaptic cleft. These diffuse across the cleft and trans-

mit the signal to the postsynaptic membrane

T-tubule GO:0030315 Invagination of the plasma membrane of a muscle cell that extends

inward from the cell surface around each myofibril. The ends of

T-tubules make contact with the sarcoplasmic reticulum membrane

voltage-gated potassium chan-

nel complex

GO:0008076 A protein complex that forms a transmembrane channel through

which potassium ions may cross a cell membrane in response to

changes in membrane potential

Z disc GO:0030018 Platelike region of a muscle sarcomere to which the plus ends of

actin filaments are attached
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Table F.2: GO terms enriched in at least two communities in Cluster 2 (alphabetical

order of GO terms); significance p-value threshold was set to 0.05. The gene sets

of interest were enriched compared to all genes expressed in the synapse. Results

were obtained using the Fisher exact test, elim algorithm and Benjamini and Yekutieli

multiple testing correction. Exact p-values available upon request since different in

distinct enriched clusters).

GO term GO term ID GO term definition

Biological Process

complement activation, classi-

cal pathway

GO:0006958 Any process involved in the activation of any of the steps of the

classical pathway of the complement cascade which allows for the

direct killing of microbes, the disposal of immune complexes, and

the regulation of other immune processes

Molecular Function

immunoglobulin receptor bind-

ing

GO:0034987 Interacting selectively and non-covalently with one or more specific

sites on an immunoglobulin receptor molecule

serine-type endopeptidase ac-

tivity

GO:0004252 Catalysis of the hydrolysis of internal, alpha-peptide bonds in a

polypeptide chain by a catalytic mechanism that involves a catalytic

triad consisting of a serine nucleophile that is activated by a proton

relay involving an acidic residue (e.g. aspartate or glutamate) and a

basic residue (usually histidine)

Cellular Component

blood microparticle GO:0072562 A phospholipid microvesicle that is derived from any of several cell

types, such as platelets, blood cells, endothelial cells, or others, and

contains membrane receptors as well as other proteins characteristic

of the parental cell. Microparticles are heterogeneous in size, and

are characterized as microvesicles free of nucleic acids

external side of plasma mem-

brane

GO:0009897 The leaflet of the plasma membrane that faces away from the cyto-

plasm and any proteins embedded or anchored in it or attached to its

surface

fibrinogen complex GO:0005577 A highly soluble, elongated protein complex found in blood plasma

and involved in clot formation. It is converted into fibrin monomer

by the action of thrombin. In the mouse, fibrinogen is a hexamer,

46 nm long and 9 nm maximal diameter, containing two sets of non-

identical chains (alpha, beta, and gamma) linked together by disul-

fide bonds

immunoglobulin complex, cir-

culating

GO:0042571 An immunoglobulin complex that is secreted into extracellular space

and found in mucosal areas or other tissues or circulating in the

blood or lymph. In its canonical form, a circulating immunoglobulin

complex is composed of two identical heavy chains and two identi-

cal light chains, held together by disulfide bonds. Some forms of are

polymers of the basic structure and contain additional components

such as J-chain and the secretory component

platelet alpha granule lumen GO:0031093 The volume enclosed by the membrane of the platelet alpha granule
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Table F.3: GO terms enriched in at least two communities in Cluster 3 (alphabetical

order of GO terms); significance p-value threshold was set to 0.05. The gene sets

of interest were enriched compared to all genes expressed in the synapse. Results

were obtained using the Fisher exact test, elim algorithm and Benjamini and Yekutieli

multiple testing correction. Exact p-values available upon request since different in

distinct enriched clusters).

GO term GO term ID GO term definition

Biological Process

neuromuscular junction devel-

opment

GO:0007528 A process that is carried out at the cellular level which results in

the assembly, arrangement of constituent parts, or disassembly of a

neuromuscular junction

Molecular Function

high voltage-gated calcium

channel activity

GO:0008331 Enables the transmembrane transfer of a calcium ion by a high

voltage-gated channel. A high voltage-gated channel is a channel

whose open state is dependent on high voltage across the membrane

in which it is embedded

Cellular Component

L-type voltage-gated calcium

channel complex

GO:1990454 A type of voltage-dependent calcium channel responsible for

excitation-contraction coupling of skeletal, smooth, and cardiac

muscle. ‘L’ stands for ‘long-lasting’ referring to the length of ac-

tivation
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Abstract: 

Polymerisation of clathrin is a key process that underlies clathrin-mediated endocytosis. Clathrin-coated 

vesicles are responsible for cell internalization of external substances required for normal homeostasis and 

life –sustaining activity. There are several hypotheses describing formation of closed clathrin structures. 

According to one of the proposed mechanisms cage formation may start from a flat lattice buildup on the 

cellular membrane, which is later transformed into a curved structure. Creation of the curved surface 

requires rearrangement of the lattice, induced by additional molecular mechanisms. Different potential 

mechanisms require a modeling framework that can be easily modified to compare between them.  

We created an extendable rule-based model that describes polymerisation of clathrin molecules and various 

scenarios of cage formation. Using Global Sensitivity Analysis (GSA) we obtained parameter sets describing 

clathrin pentagon closure and the emergence/production and closure of large-size clathrin cages/vesicles. 

We were able to demonstrate that the model can reproduce budding of the clathrin cage from an initial flat 

array. 

Introduction 

Clathrin is the major protein component of clathrin–mediated endocytosis (CME)1,2. Due to its particular 

shape and (auto-) polymerization capacity, clathrin is believed to induce the cell membrane to adopt a 

vesicular shape. A range of different mechanisms have been proposed for this process3–5, from a few 

minimalistic ones propose that clathrin polymerization alone is sufficient to generate buds in a planar  

membrane6 to the consensus that describe the orchestrated action of additional proteins and signaling 

cascades on the intracellular side of the membrane, so that ~30 proteins directly participate in the various 

steps of endocytosis1,7–9.�  

 
The structural properties of clathrin have been extensively investigated with respect to their role in vesicle 

formation. Usually a clathrin molecule is composed of one heavy (~190 kDa) as well as one light chain (~25 

kD) and is about 475 Ångström (Å) in length10. Within the cell clathrin exists in a form of trimers (triskelia), 

consisting of three clathrin molecules (three heavy and three light chains respectively), where individual 

clathrin monomers are referred to as “legs”. Deviating from the normal 1:1 ratio between light and heavy 



 

 

chain several studies have also revealed the existence of triskelia with fewer light chains. Triskelia formation 

itself does not seem to be influenced by a loss of light chain molecules11, but regulatory control of vesicle 

formation and cargo selection have been proposed. 

 

Due to its internal trimeric structure every single clathrin molecule in the triskelia complex can polymerize 

with another clathrin molecule from a different clathrin triskelia. Hence every triskelia is able to undergo 

interactions with three further triskelia. This leads to the formation of dimers and trimers, which can grow to 

construct large polymers. However, in a normal biological context, hexagonal and pentagonal shapes are 

among the most frequently observed12,13. Specific combinations of these shapes induce the formation of the 

typical vesicle closed spherical structure. Normally, closed structures contain 12 pentagonal faces and (N-

20)/2 hexagonal faces. The fixed relative numbers between pentagonal and hexagonal faces are based on 

geometric constraints, given the clathrin structure and minimal flexibility of the trimer legs. Based on the 

number (N) of triskelia different sphere sizes can emerge, three of which are well defined: The mini-coat, 

hexagonal-barrel and soccer ball13. 

 
Since its discovery in 197514, significant attention has been focused on the mechanism of clathrin 

polymerisation.  It was highlighted in1 that understanding CME is not possible without proper knowledge of 

its key process, the clathrin cage formation. Although it was experimentally shown that clathrin self-

assembles following pH decrease from 8 to 6.515 or under bivalent cation administration16, to obtain 

biologically realistic vesicle shapes the participation of external regulatory proteins is likely critical1.  

 
A range of computational models for clathrin self-assembly exists that describes the formation of clathrin 

cages12,13,17–19, or pits and vesicles13,15,20. Early models considered the association of 3-valent polymers with 

equi-reactive binding sites from the Flori’s theory point of view with20 or without21 allowance for 

intramolecular loop formation. These studies dissected the dependence of the solution/gel phase transition 

linked to the critical concentration of the monomer on the equilibrium constants of different steps of the 

polymerisation process. In the early theoretical models of multivalent condensation, the term “gel” was used 

to describe the situation when the majority of agents participate in one global complex. There are two phases 

in such system: a solution consisting of many small complexes and monomers, and a gel, composed of one 

global complex and a few free monomers. The formation of the global complex is a key phase transition in 

the systems dynamics. Prior to gel formation, the dynamics of the system are driven by bi-molecular 

reactions (when two complexes form a bigger one, or a monomer attaches to the complex). After gel 

formation, the dynamics are driven by uni-molecular reactions within the complex. The key finding of Falk 

and Thomas20  is that before the transition to the gel phase, uni-molecular reactions are negligible. 

 
In particular, it was shown by Pastan and Willingham15, that the critical concentration of clathrin, sufficient for 

the phase transition was 30 mg/ml. Taking into account that the triskelia molecular mass is about 640kDa, 

this value corresponds to the molar concentration of 46µM, or approximately 55000 triskelia per eukaryotic 

cell.  

 
More recent studies examined the assembly of 5- and 6- member rings in parallel with investigation of how 

different physical triskelia characteristics might impact on cage formation. These characteristics include 



 

 

triskelia rigidity21, their asymmetry17, emergent tension during cage closure22 and the effects of superficial 

membrane tension23. These studies provide approximations of binding energy between the chains of the 

neighbouring clathin triskelia17.  

 

The polymerisation process alone presents a significant challenge for mechanistic modeling, as the number 

of molecular species, which have to be described, grows exponentially with the number of available 

monomers. Rule-based modeling24–26 provides a viable solution allowing a network–free simulation 

technique27–29. It uses ‘lumped’ reaction rules to concisely represent molecule interactions. One can assume 

the rules as implicit combinations of different reactions into classes, where all the members of the same 

class perform a common transformation. This modeling approach is generally exploited for large-scale 

biochemical systems to overcome combinatorial complexity and it has previously demonstrated its 

effectiveness in simulations of ligand-receptor complex polymerization25. 

  
Here we present a suite of rule-based models of clathrin polymerisation with increasing complexity, starting 

from a very basic model where the molecule has three equally reactive binding sites to a more advanced 

model reproducing realistic triskelia clathrin structure. We examined the correspondence of each model’s 

behavior with the existing theoretical models while sampling from a wide range of parameter values. 
 

We found that although the basic model exactly reproduces Flory’s findings, it is unable to provide the 

amounts of 5- and 6- member rings required for cage formation and, therefore, it fails to reproduce clathrin 

vesicle formation. A revised model with a more realistic clathrin structure that explicitly supports predominant 

closure of pentagons and hexagons allows 3D cage formation and permits the evolution of flat 2D clathrin 

patches into a 3D cage structures by shifting the ratio of the pentagon/hexagon dissociation constants. 

 
Methods 

Models and simulation 

We used the Kappa language30, a member of the family of rule-based modeling languages, for building the 

models. All models were simulated by KaSim3.5 (http://dev.executableknowledge.org/). We used Kappa 

extensions where appropriate, e.g the MetaKappa (https://github.com/kappamodeler/metakappa) extension 

for building the first model to handle the combinatorial explosion caused by three equal binding sites (see 

Appendix for details). Also, we use the RKappa extension31 for sampling the large parameter space, 

statistical analysis of simulation results, global sensitivity analysis (GSA) and visualization of the Kappa 

molecular structures as more comprehensible 2D and 3D graphs. 

We first investigated the capability of rule-based models to reproduce clathrin cage structures based on 

random self-assembly processes. For this we assume that clathrin triskelia interact in 3D, in a well-mixed 

solution and all binding sites of the clathrin triskelia are assumed to be identical. Due to the combinatorial 

nature of the clathrin molecule association, the size of aggregates is unbounded and limited only by the 

amount of available substrate. 
We started with a reduced model of triskelia monomers similar to Perelson and Goldstein’s equilibrium and 

continuous model21, in which monomers carry three identical equally reactive binding sites. Two variants of 

this model were implemented in the rule-based Kappa language to investigate the polymerization of 



 

 

branched complexes from a single class of trivalent agents under ‘rings allowed’ and ‘rings forbidden’ 

conditions similar to that proposed by20 (Model 1). 

We then developed a more elaborate model, based on clathrin monomers, that considers triskelia as a 

predefined complex of three monomers. This model more accurately reproduces the structure of clathrin with 

distinct legs and binding sites along with specified defined steric and chirality constraints (Model 2). It also 

contains explicit rules describing formation of penta- and hexagonal rings and demonstrates the dynamics of 

closed cage structure formation. All the models presented here are kinetic and do not include notions of 

space. However these could be added by use of existing extensions like SpatialKappa26 or Geometric 

Kappa32 if required later.  

1.Equireactive trivalent agent model 

In the first model (Model 1) we simplify the realistic triskelia structure of clathrin to the trivalent agent Cl3 with 

three identical binding sites. This is effectively a kinetic version of the model described by Perelson and 

Goldstein in 198516,21 (Figure 1A, Supplementary Data). As clathrin is known to aggregate on the membrane, 

we assume that with complex growth its ability to diffuse would decrease. Thus, in our configuration complex 

growth happens preferentially via addition of new monomers rather than merging of existing complexes, in 

the same way as in Perelson and Goldstein. 

The (kappa) rule looks as follows: 
 
'proximal binding' a(A,A,A),a(A) -> a(A!1,A,A),a(A!1) #@ 'pbk' (0),           
where ‘pbk’ is the rate of binding. 
 
To ensure stability of the rings in clathrin complexes we make an assumption that molecules with three 

occupied binding sites cannot dissociate. Thus, dissociation is only possible at the periphery of the complex 

when at least one binding site is/remains free. 

 
'proximal dissociation' a(A!1,A),a(A!1) -> a(A,A),a(A) #@ 'pdk',                
where ‘pdk’ is the rate of dissociation. 
 
This rule partially contradicts the work of Perelson and Goldstein, where the dissociation is possible only at 

the monomer level. However, the rule includes the dissociation of terminal monomers as a special case. 

We studied the random polymerisation of trivalent monomers under two traditional Flory- Stockmayer 

assumptions: ‘ring forbidden’ (Model 1A) and ‘rings allowed (Model 1B).  
In the case of Model 1A (‘rings forbidden’), the intramolecular bonds between the binding sites of the same 

polymers are not allowed as the only free agent (with all three sites non-occupied) can bind the polymer. The 

detailed models for the original Perelson’s model and its two Kappa implementations: Model 1A and Model 

1B are presented in Supplementary Data. 

In the case of Model 1B (‘ring allowed’) intra-molecular reactions are allowed, so that rings of different sizes 

may occur. As in20,21,33 reactions occur with an equal probability for each of the free binding site to react until 

the reaction extent Rext = 1, which means that all binding sites are fully occupied. Although cubical structures 

of clathrin were observed experimentally under special conditions34, the formation of rings of size 4 and less 



 

 

is not reported under conditions approximating intracellular environments. Hence we set a specific constraint 

on the polymer chain ability to make intramolecular bonds only when ring size (nring) exceeds 5 bonds in 

length. 

 
'ring closure' a(A),a(A) -> a(A!1),a(A!1) #@ 'pring' (0.0:'nring')                 
 
In the rule above ‘pring’ is a rate of ring closure, while ‘nring’ refers to the minimal number of bonds in the 

ring (set to 5 in this case). The constraints enforce limitations on the condition of equal reactivity to be always 

fulfilled; yet the probability to close a short ring within a large complex is quite small. We also assume the 

equilibrium constants for initiation, elongation and branching are equal. 

2.Triskelia model 

To generate a more realistic model we next considered clathrin monomers and their structural properties. 

Each monomer consists of a proximal region (“P”, light green in Figure 1B), which contains a binding domain 

on its “right”, long part (“r”) and “left”, short part (“l”), and the distal region (“d”, dark green in Figure 1B). 

Domains in the proximal region facilitate the internal binding of monomers to form trimers. The additional 

binding sites “Pp” and “Pd” in the proximal region allow binding amongst different triskelia. Binding rules 

presume the ‘right’ part of one monomer can only bind to the “left” part of another, and so forth to make 

correct triskelia structures (Figure 1C). 

In kappa language this is expressed in the following way: 
 
Cl(l!1,r!2),Cl(r!1,l!3),Cl(r!3,l!2)                                                                      
 
“Cl” refers to a single clathrin molecule with proximal right (“r”) and left (“l”) binding site. All distal parts of the 

long legs are oriented in one direction, showing a clockwise drift/turn (Figure 1C). 

 
Once assembled, triskelia form the structural unit for the polymerisation process, which is governed by the 

interaction of domains localised on the right, long leg of each monomer. These are: a proximal (Pp), a distal 

“receiving” (Pd) and distal “giving” (d) domain. Based on the given clathrin triskelia structure, formation of 

one bond utilizes four triskelia simultaneously: two monomers bind with their proximal parts, and two form 

additional bonds with their distal parts (see Supplementary Data for triskelia binding code and a 

visualization). As was shown by den Otter et al.17 and Fotin et al.35, the proper orientation of all four legs is 

vital for formation of closed structures. Initial polymerization steps along with the model rules are presented 

in detail in Supplementary Data. 

In addition to the binding rule, a few specific rules enforce the closure/formation of pentagons and hexagons. 

Dissociation is implemented as follows. Closed rings cannot be reopened. At least one monomer needs to 

be unbound for dissociation to happen. Details can be seen in the model code in the Supplementary Data, 

which shows the rules used in the current model version. 

Data Availability 

All data generated or analysed during this study are included in this published article (and its Supplementary 

Information files). 



 

 

Results 

We investigated the ability of rule-based models to reproduce the clathrin cage structures based on a 

random self-assembly process. Specifically, two traditional Flory- Stockmayer conditions: “rings forbidden” 

and “rings allowed“ were applied separately, similar to20. All models were simulated 5000 times with 

parameter ranges shown in Table 1. 

1.Trivalent model. 

In the first model we used a simplified triskelia structure of clathrin with a trivalent agent Cl3 containing three 

identical binding sites with equal reactivity, similar to the Perelson and Goldstain model in 198521. 

 
The key parameters that have been analyzed are (see also21): 
 

                                           

       (1) 

         

   (2) 

 

 
where Rext - reaction extent,  - nondimensional equilubrium constant,  Nbond - the number of bonds in the 

polymer, and K – the equilibrium constant. Ct and Nt describe the total concentration and total number of 

monomers (respectively), amount – amount of available triskelia. 
 
We showed that in the “ring forbidden” setup, the distribution of free clathrin with dependence on Rext exactly 

followed the prediction of Perelson’s theory (Fig 2 A and B). The vast majority of parameter sets in "ring 

forbidden" are grouped around Rext = 0.5, and the dependency between Rext and Nbond/Nt is linear. We found 

that Rext never exceeded the theoretical limit of gel formation (Figure 2B) while in most of the “ring allowed” 

instances, reactions stopped only when the available binding sites were saturated (Figure 2 B and D).  
 

To explore the types of complexes our simulations produced, we calculated the size of the largest aggregate 

( ) and the number of the rings in the system. The latter was estimated as the cyclomatic number of the 

clathrin graph, which is the number of bonds that need to be removed to form an acyclic graph: 
 
                                                                       (3) 

 
with Eg number of edges and Vg number of nodes in the graph. Cg is the number of connected components 

in the graph. We found that the number of rings in the system ( ) almost always reached the theoretical 



 

 

limit (Fig 2D), where the total number of monomers was equal to the size of the largest aggregate ( ) in 

agreement with analysis from Falk et al.20 

 
In agreement with20, when intramolecular bonds are allowed (Model 1b) ring formation only starts after gel 

structure formation (Fig 2D), when the reaction extent reaches the 0.5 threshold. This means that in the 

simple agent model closed cages would be formed only when 7/8 of the available clathrins form a large 

single complex. 

 

Further analysis (Supplementary Data) shows that probability of the ring closure grows with the size of the 

ring. Therefore, the number of short rings (pentagons and hexagons) is quite low even when we set the rate 

of the ring closure reactions to infinity (Supplementary Data and Figure 3). Therefore we conclude that the 

simple model is not able to describe the closed cage structures, as the clathrin geometry provides the 

optimal mutual disposition of the monomers only when 5- and 6-membered rings are formed. To resolve this 

we developed a more plausible model as follows. 

2.Triskelia model. 

Model 2 described above corresponds to a more realistic structure of clathrin with distinct regions within the 

monomer and respective binding sites that reflect the experimental literature10,12. We also introduced a 

specific rule for orientation of the monomers to ensure that the “right” site of one monomer binds the “left” 

side of another. This preserves the correct geometry of triskelia and chirality of the monomers. To ensure we 

obtain realistic clathrin complexes, 5- and 6- ring closure reactions were explicitly specified. 

 
We started with parameter sampling for the model. To ensure comparability between simulations we used 

the same parameter sets as before by assigning the ring closure rate the value of “pring” to both hexagons 

and pentagons. Again, the two cases  - “ring forbidden” and “ring allowed” were investigated.  

 
The behavior of the “ring forbidden” version of Model 2 is clearly similar to the behavior of the Model 1 and 

theoretical predictions of Perelson (Figure 4A). The number of free triskelia monotonically decreases towards 

zero at Rext = 0.6. The difference between the theoretical prediction of 0.5 and the observed value is 

explained by the association rule in the Model 2, which does not prevent associations of clusters and 

therefore does not follow the monomer attachment mechanisms considered in Perelson21. Association 

between clusters results in a higher numbers of triskelia with all their legs involved in the complex formation, 

which in turn prevents their dissociation.  

 
The “ring allowed” version of the Model 2 (Figure 4B) follows the same scenario as Model 1 (Figure 2D) and 

behaves as predicted by theory20. Ring formation starts only after solution to gel transition at Rext = 0.6. 

Contrary to the Model 1, the number of rings does not grow linearly with the size of the complex (Figure 2C). 

Instead, due to the system not being allowed to form rings of arbitrary size, we obtain many small complexes 

with few or no rings (Supplementary Figure 2). 

 



 

 

For simplicity of simulation and comparison with Model 1 we did not introduce separate kinetic constants for 

5- and 6-ring closure. As a result, the vast majority of the rings in our simulations are pentagons. 

Nevertheless we observed a number of hexagons as well. The relatively high number of octagons observed 

is a consequence of high number of 5-rings, as hull of two adjacent pentagons can form an octagon (Figure 

5С). 

 
To explore the geometry of complexes, which contain 5- and 6-rings we used a set of all possible 

combinations of pentagons and hexagons as described in22. Table 2 shows that pentagons tend to form 

adjacent dodecahedron-like structures (see g551, Figure 5A, Supplementary Figure 5), while hexagons are 

most often surrounded by pentagons as visualized in structure g661 (Figure 5B). We found no clear 

distinction between ring forming and ring preventing values in parameter sets (Supplementary Figure 3). To 

further investigate which parameters influence the ring formation the most we performed GSA on Model 2 

with the “ring allowed” condition (Supplementary Table 1). We thus concluded that Model 2 is able to 

produce various structures of different shapes (Figure 5) without the initial constraints, but that they do not all 

necessarily end up being cage-like structures.  
 

The type of clathrin cage formed in vivo is known to depend on the ratio of pentagons and hexagons3,22. 

Moreover, planar clathrin consists of just hexagons. As an example we tested to see whether our model 

could be reconciled wit the invagination mechanism (e.g. described in Avinoam et. al.5). Avinoam’s (2015) 

mechanism requires the presence of pentagons. To reproduce this we tuned the rate constants for pentagon 

and hexagon closure and changed the equilibrium of association and dissociation rates for them. First we 

simulated the model where only 6-rings were allowed by setting the 5-ring closure reaction to 0 to form a 

planar structure (Figure 6A and Supplementary movie 1). When the reaction extent was close to 1, 5-ring 

closure was allowed by adjusting rate constant to non-zero value. With a rate of closure for 5- and 6-ring 

close to each other we observed invaginations, but they never reached the scissing stage so that the 

completely closed structure never occurred (Supplementary movie 2). At this point we set the rate of closure 

for 5-rings to infinite and after 104 events we obtained the structures shown in Figure 6B and Supplementary 

Movie 3. 

To evaluate the influence of rates of pentagon and hexagon closure/disruption we performed GSA on the 

model starting with a flat hexagonal mesh (Supplementary Table 2). Here, b and d are the coefficients 

defining the extent to which pentagon closure is faster than hexagon closure (b), and hexagon compared to 

pentagon dissociation (d); rng5 and rng6 are the ratios of ring closure to ring disruption for pentagons and 

hexagons, respectively. For each parameter the significance level is calculated as described in36. The rate of 

the pentagon closure did not significantly influence any property of the system, while the rate of hexagon 

dissociation appeared important for the size of the most frequent complex (wNmax) and the presence of 

hexagon-containing subgraphs (g501, g511, g521, g522, g601, g611, g621, g622, g631, g632, g633, g641, 

g642, g643 in Supplementary Tables 1 and 2)22. During the course of a simulation we were able to obtain 

different numbers of closed cages in almost half of the parameter sets, which indicates that the formation of 

flat structures requires additional constraints, while cage formation happens spontaneously4. 

 



 

 

Discussion 

Computational models describing formation of clathrin-coated vesicles (CCVs)2,17,23,37 mostly focus on 

clathrin self-association or its association with the membrane. However, vesicle recycling is regulated via a 

large number of signalling processes2,38. Existing computational models struggle to incorporate these 

regulatory elements either because of high computational cost, which becomes prohibitive in case of 

incorporation of all involved protein types, or because the structure/type of the model can/does not include 

the reactions controlled by regulatory systems. For example, the equilibrium model21 considered growth of 

pits as a linear set of reactions, assuming that all three legs of the new triskelia in the pit assemble using the 

best possible free sites in the net. As shown by simulations in17 and confirmed in our Models 1A and B this is 

not the case. 

As was proposed in39, these signaling processes can be incorporated into models as a modification of 

clathrin association/dissociation rates. With these factors in mind we have developed a model capable of 

describing the formation of CCVs, avoiding the more resource expensive computational algorithms and using 

a modeling format familiar to the signal transduction modelling community. 

 
Our first version of the model, which described clathrin as a trivalent agent demonstrated that formation of 

closed structures required an additional manual closure to achieve 5- and 6- rings. With the flexibility of the 

clathrin molecule and no evidence for energy differences between penta- and hexameric rings we saw no 

preferences towards either specific ring composition. Weak interactions, which have been proposed to have 

a major effect on the association of clathrin legs39, and comparatively low bending energy of the clathrin 

lattice suggest that when on the flat part of the membrane, clathrin will create a flat hexagonal lattice. That 

process was considered in3, where clathrin was modeled as hexagonal lattice with 5- and 7-sided rings 

occurring as defects, but the study only considered the equilibrium state, whereas in our analysis we were 

able to investigate the kinetics of the process. Although the “canonic” mechanism of clathrin pits formation 

proposes constant curvature growth as a function of clathrin polymerization40, the evolution of curved clathrin 

structures from flat plaque has also some supporting experimental evidence 5,38. The recent study of Leyton-

Puig et al.7 reports the ability of clathrin plaques to act as hubs for CME and proposes actin polymerisation 

and actin-based adhesion are major regulating factors for their remodeling7. 

Our model shows that switching pentagon ring formation on/off allows the process to switch between planar 

patches and closed cages. In vivo, this switching could be driven by changes in physical properties of the 

membrane or by additional regulatory mechanisms1,37,41. 

 
In our model we assume the size and the shape of the clathrin lattice to be controlled by three processes: i) 

the association/dissociation of triskelia; ii) the 5-ring formation/dissociation and iii) the 6-ring 

formation/dissociation. Several other factors are known to influence the cage and coat formation and 

dissociation42,43. For example in44, the main difference in pentagon and hexagon closure is attributed to the 

stiffness of the underlying membrane, while in41 the rigidity variation of the clathrin net itself is explained by 

binding to an adaptor protein (AP2, AP3, AP180)8,45. Their influence on clathrin coat formation has been 

studied in distinct experimental setups and binding to clathrin has been confirmed. Due to their influence on 

clathrin triskelia structure and hence their ability to influence coat formation it might be debatable if their main 



 

 

role is in maintaining a flat structure or “forcing”/inducing the formation of vesicles. This mechanism could be 

easily embedded into the model (see the example in Supplementary Data).  

 
The clathrin light chain is an additional part of the triskelia, which connects to the heavy chain in the region 

extending from the self-association domain to the knee39. One of the possible conformations can force the 

knee to bend in a direction that inhibits cage formation. This inhibitory effect is thought to be regulated 

(inhibited) by interaction with Ca ions or by lowering the pH39. The light chain also influences the rigidity of 

the clathrin lattice and its ability to bend the lipid membrane at low temperature4. The light chain contains 19 

serines that are potential kinase targets (GRK2) and phosphorylation of the light chain has been proposed as 

a discriminator for different cargo inclusion in the vesicle46. An example of how the model can be extended to 

incorporate the above mechanism is presented in Supplementary Data. 

 

The rule-based approach we have used allows us to build and compare kinetic models that describe different 

possible mechanisms of clathrin cage formation, from direct assembly from monomers at the vesicle budding 

site to the invagination of flat membrane plaque. More in depth functional details such as the role of N-WASP 

through Arp2/37 can help to expand models and gain deeper insights. Hence, our implementation is easily 

extendable allowing the future inclusion of more detailed mechanistic models of CME regulation. 
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Table 1. Ranges for parameter space exploration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Structure Max number 

g531 2

g532 4

g541 16

g551 250

g643 2

g651 4

g661 36

 

 
 



 

 

Table 2. Number of pent-Rings (g5) and hex-Rings(g6) found in GSA of the “ring allowed” version of the 
Model 2 

 

 

 

 

Figure 1. Structure of agents for Model 1  and Model 2. Three identical binding sites in a simple agent (A) 
interact with each other to form a lattice  (Model1). Monomer (B) of detailed Model 2 has two sites to form 
the triskelia hub (l,r) and three sites to interact with other triskelia (d, Pd,Pp)(C). 

Figure 2. Simulation (5000 parameter sets) of the trivalent model with “ring forbidden” (A) and “ring 
allowed” (C, D) assumptions. A. The number of free agents Nfree decreases with Rext and trends to 0 at 
Rext = 0.5 B. The relationship of alfa and Rext under different experimental conditions: “no ring”, “ring” and 
“infinite ring” С. The dependency between the size of the largest aggregate and cyclomatic number under 
“ring allowed” condition D. Relationship between reaction extent and loop structure under “rings allowed”. 

Figure 3. Distribution of different cyclic structures obtained from 5000 simulations. A. 5-membered 
rings B. 6-membered rings C. 7-membered rings D.8-membered rings. 

Figure 4. Results of simulation of “ring forbidden” and “ring allowed” models. A. The number of free 
agents Nfree decreases with Rext towards 0 at Rext = 0.6 for “rind forbidden” model. B. The number of rings 
(cyclomatic number of the graph) per triskelia in the “ring allowed” model. 
 
Figure 5. Most populated structures obtained in 5000 simulations of the unconstrained model. A. 
Most populated pentagon structure. B. Most populated hexagon structure C. An 8-ring formed by two 
pentagons. 

Figure 6. Results of model simulation with different Kd for 5 and 6-membered rings. A. Only hexagons 
are allowed. B. Rate closure for 5-rings was set to infinite. 

 

 

 

Parameter description Parameter name min max Association rate constant pbk 10 E-6 1.00 Dissociation rate constant pdk 10 E-6 1.00 Ring closure rate constant pring 10 E-6 1.00 Amount of available triskelia amount 10 E2 10 E4 
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Abstract

The desire to explain how synaptic plasticity arises from interactions between ions,
proteins and other signalling molecules has propelled the development of biophysical
models of molecular pathways in hippocampal, striatal and cerebellar synapses. The
experimental data underpinning such models is typically obtained from low-throughput,
hypothesis-driven experiments. We used high-throughput proteomic data and
bioinformatics datasets to assess the coverage of biophysical models.

To determine which molecules have been modelled, we surveyed biophysical models
of synaptic plasticity, identifying which proteins are involved in each model. We were
able to map 4.2% of previously reported synaptic proteins to entities in biophysical
models. Linking the modelled protein list to Gene Ontology terms shows that modelled
proteins are focused on functions such as calmodulin binding, cellular responses to
glucagon stimulus, G-alpha signalling and DARPP-32 events.

We cross-linked the set of modelled proteins to sets of genes associated with common
neurological diseases. We found some examples of disease-associated proteins that are
well represented in models, such as voltage-dependent calcium channel family
(CACNA1C ), dopamine D1 receptor, and glutamate ionotropic NMDA type 2A and 2B
receptors. Many other disease-associated genes have not been included in models of
synaptic plasticity, for example COMT and MAOA. To determine targets to include in
future models, we incorporated pathway enrichment results, and identified LAMTOR, a
gene uniquely associated with Schizophrenia, which is closely linked to the MAPK
pathway found in some models.

Our analysis provides a map of how molecular pathways underpinning neurological
diseases relate to synaptic biophysical models which can, in turn, be used to explore
how these molecular events might bridge scales into cellular processes and beyond. The
map illustrates disease areas where biophysical models have good coverage, as well as
domain gaps that require significant further research.

Author summary

The 100 billion neurons in the human brain are connected by a billion trillion structures
called synapses. Each synapse contains hundreds of different proteins. Some proteins
sense the activity of the neurons connected by the synapse. Depending on what they
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sense, the proteins in the synapse are rearranged and new proteins are synthesised. This
changes how strongly the synapse influences its target neuron, and underlies learning
and memory. Scientists build computational models to reason about the complex
interactions between proteins. Here we list the proteins that have been included in
computational models to date. For good reasons, models do not always specify proteins
precisely, so to make the list we had to translate the names used for proteins in models
to gene names, which are used to identify proteins. We found that the list of modelled
proteins contains only 4.2% of proteins associated with synapses, suggesting more
proteins should be added to models. We used lists of genes associated with neurological
diseases to suggest proteins to include in future models.

Introduction 1

Activity-dependent synaptic plasticity is necessary for learning and memory [1]. Since 2

the discovery of long term potentiation (LTP) and long term depression (LTD) [2,3], it 3

has been shown that synaptic plasticity can depend strongly on patterns of pre-and 4

post-synaptic firing [4] and neuromodulators [5]. Forms of plasticity vary between types 5

of synapses and brain region [4], which could be explained by the local proteome, 6

i.e. the expressed proteins and their abundances. PSD-95 knock-outs demonstrate the 7

influence of the proteome on synaptic plasticity [6]. Synaptic plasticity underlies 8

behaviour, as evidenced by the effect of antagonising NMDA receptors [1], and synaptic 9

proteins underlie disease [7]. 10

Computational models of synaptic plasticity are important tools for understanding 11

synaptic and neural function. Models at a phenomenological level, such as spike-timing 12

dependent plasticity (STDP) models, link firing patterns in the pre- and postsynaptic 13

neurons to changes in synaptic strength with little or no reference to the underlying 14

molecules [8]. Biophysical models refer to at least some known molecular actors in 15

synaptic plasticity. In 2009 there were at least 117 biophysical postsynaptic signal 16

transduction models [9] and the number is growing [10,11]. When they include 17

molecular entities and phenomena they can also be used to study dysfunction, and 18

potentially model pharmacological interventions. 19

Recent advances in tissue and cell extraction techniques and sample processing allow 20

localised proteomes to be determined, e.g. the synapse including the smaller presynaptic 21

or postsynaptic proteomes [12,13]. Our recent analysis of 37 published synaptic 22

proteomic datasets (in preparation; data from July 2017 in S1 Table) contains 1,867 23

presynaptic genes, 5,053 postsynaptic genes and 5,862 synaptic genes (with human 24

EntrezID identifiers) respectively. These numbers are large compared to results from 25

individual studies. Nevertheless, data inclusion was highly restrictive and the 26

augmented numbers can be partly explained by higher experimental sensitivity and the 27

broad use of high-throughput techniques. 28

These synaptic protein lists make it possible to compare systematically proteins 29

contained in computational models of synapses with those proteins likely to be in the 30

synapse. In this paper we: (1) survey a selection of biophysical models of synaptic 31

plasticity, identifying which proteins are involved in each model, and describing the 32

complexity and detail of description of signalling pathways within the models; 33

(2) compare the proteins in models with synaptic protein lists, thus showing what 34

fraction of synaptic proteins have been considered in models; (3) identify the functional 35

classes of proteins in models; and (4) compare the proteins in models with those 36

involved in neurological diseases. Clearly the coverage of synaptic molecules found in 37

the existing ‘model space’ is going to be very incomplete given the intense amount of 38

effort required to develop each model but here we sought to explore systematically 39

molecular coverage to identify significant gaps that might offer new opportunities. 40
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Analysis of proteins in synaptic models 41

Before outlining our analysis, we first address a fundamental issue we encountered. 42

Computational models contain a diverse cast of players, including proteins, second 43

messengers, reporters, ions and others. Models vary in how precisely they specify 44

proteins; for example Bhalla and Iyengar [14] specify AC1, AC2 and AC8, whereas 45

Castellani et al. [15] and Oliveira et al. [16] specify AC, which could, in principle, map 46

to any of the adenylate cyclases expressed in the synapse. This presents a problem when 47

mapping models to molecular identifiers, which we addressed by developing a mapping 48

from what we refer to as model “entities” to gene families. For example a protein such 49

as Calmodulin 1 can be mapped onto a single gene (CALM1 ), but a family of proteins 50

such as metabotropic glutamate receptors maps onto more than one gene 51

(GRM1–GRM8 ). By definition, second messengers or ions do not map onto gene 52

symbols. 53

The concept of entities allowed each model’s constituents to be catalogued faithfully 54

and then mapped onto identifiers according to the steps shown in Fig 1: (1) select 55

models to analyse; (2) determine all entities (e.g. proteins, protein multimers or families, 56

ions and second messengers) that are contained in each model; (3) map these entities 57

onto gene identifiers and higher level families; and (4) use the lists of entities in each 58

model and the mappings to undertake comparative analyses. These analyses include: 59

comparison of modelled proteins with pre- and postsynaptic proteomic datasets; 60

identification of properties of modelled genes, in particular cellular pathways, gene 61

ontology terms and disease; and comparison of models with each other. 62

Selection of models 63

We selected 30 published computational, biophysical models of plasticity or related 64

pathways in hippocampal, striatal, cerebellar or generic synapses (Table 1). Models that 65

we regarded as phenomenological or descriptive, i.e. models describing a function with 66

no explicit reference to an underlying mechanism, were excluded. For example, models 67

of spike-timing dependent synaptic plasticity are phenomenological, since they contain 68

an empirical function that maps spike times onto changes in plasticity with no reference 69

to proteins. 70

The process of identifying the model constituents can be time-consuming, especially 71

when machine-readable descriptions are not available. In order to address our questions 72

regarding the molecular coverage of synaptic models, it sufficed to select a set of models 73

that we were reasonably confident gave good coverage of modelled proteins, rather than 74

to identify entities in all published models. We assessed molecular coverage of pre-2010 75

models from the tables in Manninen et al. [9] and we screened models published 76

between 2010 and December 31st 2015. 77

Sources of models 78

A number of the models we selected are written in standardised modelling languages 79

and hosted in large scale repositories such as ModelDB [44], BioModels [45], 80

DOQCS [46] and the CellML repository [47]. ModelDB is a curated database of 81

computational neuroscience models at the molecular and electrophysiological levels, 82

written in a number of languages. BioModels hosts models which focus on biochemical 83

and cellular systems at the physiological and biochemical levels, unrestricted by the 84

biological subject [45,48]. In the curated branch of BioModels, models have to be 85

annotated according to the Minimal Information Requested in the Annotation of 86

Biochemical Models (MIRIAM) standard [49], thus meaning that model constituents 87

are mapped to external identifiers. CellML is both a model format and a repository. 88
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List of entities in model

ID   TYPE
AC1  PROTEIN
AC8  PROTEIN
PDE4 PROTEIN_FAMILY
Ca   ION

Model 
Comparison

(Fig. 11)

Gene Ontology 
and Pathway 
Enrichment

(Figs. 7, 8 & 9)

Mapping of entities 
to HGNC gene 

symbols 
(Tabs. 11, 13 & 14)

(Fig. 5)

ID   GENE SYMB.
AC1  ADCY1
AC8  ADCY8
PDE4 PDE4A
PDE4 PDE4B
PDE4 PDE4C
PDE4 PDE4D
Ca   NA
MAPK NA

List of
gene symbols 
corresponding 

to model 
entities

GENE SYMB.
ADCY1
ADCY8
PDE4A
PDE4B
PDE4C
PDE4D

Manual and 
semi-

automatic 
curation

Model paper or 
code 

Mapping of entities 
to entity families 

(Tab. 13)

ID   FAMILY
AC1  AC
AC8  AC
PDE4 PDE
Ca   NA

List of entity 
families in 

model

FAMILY
AC
PDE

Comparison 
with disease 

genes
(Fig. 9, 

Tabs. 6 & 10)

Model Comparison & 
clustering

(Figs. 4, 11 & 12,
Tab. 4)

Fig 1. Overview of the modelling paper analysis process. Sets of data are shown in boxes with black rectangular
borders. Processes are shown in boxes with blue backgrounds and curved corners. Final analyses are shown in boxes with
dashed borders. “ID” refers to the modelled entity. Boldface type refers to column headers.

The CellML repository hosts a wide range of biological models, which have 89

documentation pages generated from the meta-data supplied by model authors. 90

DOQCS (Database of Quantitative Cell Signalling) is a database tailored for storing 91

chemical kinetics and reaction level information [46]. The chemical-level description of 92

each model corresponds to the GENESIS/Kinetikit simulator and reflects reaction 93

diagrams or ordinary differential equation (ODE) equations. 94

Table 2 summarises the numbers of models we analysed that are stored in 95

repositories and other locations, and the format of the model descriptions. Three of the 96

7 models deposited in the BioModels database were curated to MIRIAM standards. 97

Around half of all catalogued models (14) had non-machine readable descriptions. 98

Models in this group were generally difficult to explore and extracting information from 99

them proved challenging. There were 18 machine-readable models available from 100

publication attachments, on institute or lab servers and the four public modelling 101

databases; some models were deposited in more than one database. With two 102

exceptions models were not duplicated in ModelDB and BioModels; the Bhalla and 103

Iyengar [14] model was present in all four public modelling databases, and the Nakano 104
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Table 1. Summary of models.

Paper Vars./comp. Entities Vars./comp./
Entities

Region

Antunes and De Schutter (2012) [17] 103 19 5.4 Cereb. Purk.
Antunes et al. (2016) [18] 17 Cereb. Purk.
Bhalla and Iyengar (1999) [14] 100 42 2.4 Hipp. CA1 Pyr.
Byrne et al. (2009) [19] 82 3 27.3 Hipp. CA1 Pyr.
Castellani et al. (2001) [20] 36 5 7.2 Cortex**
Castellani et al. (2005) [15] 33 13 2.5 Ex. glut. syn.**
Graupner and Brunel (2007) [21] 16 5 3.2 Hipp. CA1 Pyr.
Gutierrez-Arenas et al. (2014) [22] 188 34 5.5 Striatal MSPN, D1R expressing
Hernjak et al. (2005) [23] 9 5 1.8 Cereb. Purk.
Khan et al. (2011) [24] 12 1 12.0 Hipp. CA1 Pyr.
Kim et al. (2010) [25] 54 18 3.0 Hipp. CA1 Pyr.
Kim et al. (2011) [26] 16 17 1.0 Hipp. CA1 Pyr.
Kim et al. (2013) [27] 10 18 0.6 Striatal MSPN, mGluR1

expressing
Kötter (1994) [28] 12 striatal MSPN
Kuroda et al. (2001) [29] 20 Cereb. Purk.
Li et al. (2012) [30] 95 8 11.9 Generic excitatory spine
Mattioni and Le Novère (2013) [31] 13 9 1.4 Striatal MSPN
Miller et al. (2005) [32] 58 4 14.5 **
Nair et al. (2015) [33] 80 16 5.0 Striatal MSPN, D1R and D2R

expressing*
Nakano et al. (2010) [34] 189 28 6.8 Striatal MSPN, D1R expressing
Oliveira et al. (2010) [16] 31 9 3.4 HEK293 cells
Oliveira et al. (2012) [35] 113 28 4.0 Stratial MSPN
Pepke et al. (2010) [36] 156 3 52.0 **
Qi et al. (2010) [37] 115 13 8.8 Stratial MSPN
Smolen et al. (2006) [38] 23 9 2.6 Hipp. CA1 Pyr.
Smolen et al. (2012) [39] 14 6 2.4 Hipp. CA1 Pyr.
Sorokina et al. (2011) [40] 1, 000, 000 55 18, 181.8 Ext. glut. syn.
Stefan et al. (2008) [41] 49 3 16.3 **
Zeng and Holmes (2010) [42] 14, 296, 081 6 2, 382, 680.2 Hipp. DG
Zhabotinsky et al. (2006) [43] 58 11 5.3 Hipp. CA1 Pyr.

“Paper” refers to the analysed model. “Vars/comp.” is the number of molecular variables per compartment, a measure of the
complexity of the model; this was not assessed for all papers. “Entities” is the number of entities in the model, and
“Vars./Enties” is the ratio between the number of variables per compartment and the number of entities. This roughly
corresponds to the level of detail of the model. “Region” refers to the brain region or cell type where the model is situated (**
– no cell specified). Abbreviation: Cereb. Purk., cerebellar Purkinje cell; Ex. glut. syn., excitatory glutamatergic synapse;
Hipp. CA1 Pyr., hippocampal CA1 pyramidal cells; Hipp. DG, hippocampal dentate gyrus cell; MSPN, medium spiny
projection neuron; * – denotes that there is more than one model presented in a study and numbers in this table refer to the
one with the larger number of “Entities”.

et al. [34] model was found in ModelDB and BioModels. We did not test the 105

functionality or reproducibility of models; only the availability and relative ease of 106

exploration were examined. 107
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Table 2. Overview of locations of models and their formats.

Type Location Format Fraction

non-
machine-
readable

attached to publication
or within publication
content

descriptions in
appendicies, text files,
spreadsheets, reaction
diagrams, equations

14/30

attached to publication
software-specific

3/30
institutional/lab servers 3/30
public
modelling
databases

ModelDB any of: NEURON,
Python, C, C++,
GENESIS, Java, Matlab,
XPP, etc.

8/30

machine-
readable

BioModels all of (automatically
translated): SBML,
CellML, VCML, XPP,
SciLab, Octave, BioPAX

7/30

CellML CellML 1/30
DOQCS GENESIS 2/30

Fractions refer to the number of models in the category relative to the total of
annotated models. Each machine-readable model can be part of several categories. See
text for details.

Features of models 108

We extracted a number of features from each model to highlight their similarities and 109

differences (Table 1). To quantify the model size, we counted the number of entities 110

that appear in the model. We also extracted information on numbers of dynamic 111

variables per compartment (“Vars/comp.”). Variables are values describing quantities 112

that change in the model. A compartment is defined as a spatial subsection within the 113

model. Since the number of compartments varies with the fineness of the spatial mesh 114

used, the number of variables scales with the number of compartments, but the number 115

of variables per compartment will be a constant, independent of the spatial 116

discretisation used to simulate the model. To provide a measure of model complexity, 117

we used the ratio of the number of variables per compartment and the number of 118

entities (“Vars./Comp./Entities”, Table 1). 119

For example, in a model of calcium binding to a buffer in a single compartment, 120

there are two entities: calcium (an ion) and the buffer (a protein). There are three 121

variables, namely the concentrations of free calcium, free buffer and calcium-buffer 122

complex. To model diffusion of calcium, buffer and calcium-buffer complex, space could 123

be divided into 100 compartments. The number of variables would then be 300, but the 124

number of variables per compartment would be 3. There would still only be two entities 125

in this model – calcium and the buffer – and the variables per compartment per entity 126

ratio would be 1.5. 127

A high ratio of variables per compartment to entities reflects a detailed description 128

of a small pathway. For example the model of Byrne et al. [19] – whose stochastic model 129

describes binding of calcium, calmodulin (CaM) and calcium/calmodulin dependent 130

kinase II (CaMKII) – has 82 variables per compartment and 3 entities, making a ratio 131

of 27.3. The 82 variables correspond to the combinations of calcium bound to the N and 132

C lobes of calmodulin and whether or not these complexes are bound to CaMKII. 133

Dealing with this complexity in the simulation is achieved by using an agent-based 134
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Table 3. Frequency of entity types found in models.

Type Frequency Examples

Ion 2 Magnesium, Calcium
Neurotransmitter 5 Adenosine, Dopamine
Others 2 ATP and PIP2, intermediates in the IP3/DAG pathway
Protein 95 Neurogranin
Protein family 52 calmodulin, which may correspond to one of calmodulin-1, calmodulin-2 or

calmodulin-3
Protein multimer 8 AMPA receptor, which comprises a tetramer of GluR1, GluR2, GluR3 and GluR4

proteins.
Reporter 1 AKAR3
Second messenger 8 GTP (Guanosine triphosphate) or cAMP (cyclic AMP).
Total 173

Gillespie method in which the states of individual molecules rather than populations of 135

molecules are followed through the simulation [50]. Agent-based simulation also allows 136

the more extreme example of Zeng and Holmes [42], who modelled the 137

Ca2+-CaM-CaMKII pathway and the binding of Ca2+-CaM to calcineurin, which for 138

consistency with genetic nomenclature we refer to as PP3 rather than PP2B (see 139

Discussion). Along with calbindin and neurogranin, the model has 6 entities in total 140

and 14,296,081 possible states (i.e. variables), making a ratio of 2,382,680 variables per 141

compartment per entity. In this case the large number of states arises because each of 142

the 6 subunits of CaMKII can be in one of 21 states, which gives rise to 14,296,051 143

configurations according to the necklace function [51]. Notes on this and other 144

calculations are contained in the “Model classification” spreadsheet in S1 File. 145

At the other end of the spectrum, a low variable to entity ratio indicates larger 146

pathways with each interaction modelled in less detail. For example, the ODE-based 147

model of Bhalla and Iyengar [14], with 44 entities and approximately 100 variables per 148

compartment, has a ratio of 2.3 variables per compartment per entity. 149

Identifying entities in models 150

To identify the entities in each model, the publication describing the model and, if 151

available, an electronic description of the model were examined by one of the authors. 152

For each entity, we recorded the name used in the model publication and our standard 153

entity identifier. Models do not always specify the entities involved precisely. We 154

discussed ambiguous cases together and erred on the side of not imputing the identity of 155

a protein; for example a “Plasticity related protein” [39] was not mapped to an entity 156

identifier. 157

We identified 178 distinct entities across the 30 catalogued models (see S2 Table for 158

full list). As well as an identifier, each entity has a long name and a type which can be 159

one of: “ion”, “neurotransmitter”, “others”, “protein”, “protein family”, “protein 160

multimer”, “reporter” or “second messenger”. Table 3 shows how many of each type of 161

entity were identified, and gives examples. The most frequent entity type is “protein”, 162

followed by “protein family” and then “protein multimer”. 163

The rationale for having three protein types – “proteins”, “protein families” and 164

“protein multimers” – was to allow us to record as precisely as possible what was meant 165

in each computational model. A “protein” is a specific protein e.g. neurogranin, 166

encoded by a specific gene (NRGN ), so it is unambiguous as to which gene is implied by 167

the model. The same gene may produce multiple isoforms due to gene duplicates or 168

alternate splicing. For example PRKCZ produces two isoforms, atypical protein kinase 169
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C, ζ (PKCζ) and autonomously active isoform of atypical protein kinase C, 170

ζ (PKMζ) [52]. A “protein multimer” is a multiprotein complex, e.g. an 171

α-amino-3-hydroxy-5-methyl-4-isoxalone propionic acid receptor (AMPAR), which 172

comprises a tetramer of a selection of GluR1, GluR2, GluR3 and GluR4 proteins. In 173

this example, if the model only specified “AMPAR” there would be ambiguity about 174

which of the GluR1–4 subunits are implied by the model. Coding AMPAR as a 175

“protein multimer” allows this ambiguity to be recorded and resolved as desired. A 176

“protein family” is a protein from a family of proteins, e.g. calmodulin, which may 177

correspond to one of calmodulin-1, calmodulin-2 or calmodulin-3. Again, it is not clear 178

which protein is implied by the model, though later we will use information about the 179

synaptic proteome to narrow down the possibilities. 180

“Ions”, “neurotransmitters” and “second messengers” were assigned to individual 181

classes. AKAR3 is the only entity that was classified as a “reporter” [33]. The 182

FLIM-AKAR reporter was included in the model to reflect the experimental setup 183

where it is used to measure PKA dynamics. ATP and PIP2, both intermediates in the 184

IP3/DAG pathway were classified as “other”. ATP itself can produce a second 185

messenger and is often referred to as a precursor or “coenzyme”. Similarly, PIP2 is 186

frequently acting as a precursor of a second messenger [27]. 187

The full catalogue of all model entities for all models is shown as a binary matrix in 188

Fig 2. The models are ordered according to the results of Ward’s 2D hierarchical 189

clustering applied to the matrix (as implemented in R’s hclust function with the 190

Ward.2D method). This catalogue is the basis for the rest of the analysis. 191

Mapping entities to gene identifiers 192

In order to compare synaptic models with the synaptic proteome, we needed to map 193

each protein entity onto the proteins to which it might correspond. The construction of 194

this mapping is shown in Fig 3. Based on common practice in bioinformatics we decided 195

to use HUGO Gene Nomenclature Committee (HGNC) gene symbols and NCBI Entrez 196

Gene IDs to identify proteins/genes. The one-to-one mapping from HGNC gene 197

symbols to NCBI human Entrez Gene IDs [53] allowed this approach. 198

As presented in Fig 3, entities of type “protein” were mapped directly to HGNC 199

gene symbols. Entities classified as “protein family” and “protein multimer” required an 200

intermediate mapping step. We searched for ontologies that could be used to identify as 201

many of these entities as possible and map them to HGNC gene symbols. After 202

thorough analysis of available bioinformatic resources (see Methods) we decided to use 203

HGNC gene families to map entities of type “protein family” and “protein multimer” to 204

genes. For each such entity, we tried to identify a corresponding HGNC gene family, 205

and used manual NCBI mapping (see Methods) to check if the genes contained in this 206

family seemed likely to be what was meant in the models. For example, we mapped the 207

entity “Dopamine receptors” (DRD) to the HGNC family “Dopamine receptors”, which 208

contains the genes DRD1, DRD2, DRD3, DRD4 and DRD5. Since this seemed a 209

reasonable set, we accepted the mapping. 210

For some entities no one HGNC family gave a reasonable set of proteins, but the 211

intersection between two or more families did. For example the genes corresponding to 212

SHANK, by which we mean the family of proteins encoded by SHANK1, SHANK2 and 213

SHANK3, may be selected from the gene families list by choosing all genes that are in 214

the “Ankyrin repeat domain containing” (ANKRD) and “PDZ domain containing” 215

(PDZ) gene families. When we could not find a corresponding HGNC family or a 216

combination of HGNC families, we constructed our own mapping (see Methods). Since 217

“ions”, “neurotransmitters”, “others”, “reporters” and “second messengers” are not 218

proteins, they were by definition excluded from the mapping to gene names. 219
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Fig 2. Matrix of entities in models. The occurrence of an entity in a model is
indicated by open circles. Entity IDs are staggered for readability.

Once gene families corresponding to 61 ”protein families” and “protein multimers” 220

were identified we could map each family or multimer onto a set of genes (S3 Table and 221

S4 Table). 331 unique HGNC gene symbols were identified based on protein families 222

and multimers. The union of this set of symbols with the 96 genes mapped directly 223

from type “protein” forms the “full set of HGNC gene symbols in models” dataset, 224

which contains a total of 386 HGNC gene symbols. A number of “protein families” 225

mapped onto the same genes; for example the families PDE and PDE1 both contain 226

PDE1A and PDE1B. 227
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List of entities in model

ID TYPE
AC1  PROTEIN
AC8  PROTEIN
AKAR3 REPORTER
Ca   ION
Glu NEUROTRANSMITTER
GTP SECOND MESSENGER
MAPK PROTEIN_FAMILY
NMDAR PROTEIN_MULTIMER
PDE4 PROTEIN_FAMILY
PIP2 OTHERS
PP3 PROTEIN_MULTIMER
SHANK1 PROTEIN

Mapping of TYPE
PROTEIN_MULTIMER

ID Gene family (HGNC)
“one-of”

NMDAR Glutamate 
ionotropic receptor 
NMDA type subunits

PP3 Calcineurin

Mapping of TYPE
PROTEIN

ID Gene Symbol
AC1  ADCY1
AC8  ADCY8
SHANK1 SHANK1

excluded in further 
analysis

Mapping of TYPE
PROTEIN_FAMILY

ID Gene family (HGNC)
“part-of”
“contained by”

MAPK Mitogen-activated 
protein kinase

PDE4 Phosphodiesterase 4

Mapping of TYPE
ION

NEUROTRANSMITTER
REPORTER

SECOND MESSENGER
OTHERS

ID Gene SYMBOL
AKAR3 NA
Ca NA
Glu NA
GTP NA
PIP2 NA

Mapping of HGNC Gene family

Gene family Gene Symbol
Mitogen-activated MAPK1,MAPK3,
protein kinase MAPK4,MAPK6,

MAPK7,MAPK8,
MAPK9,MAPK10,
MAPK11,MAPK12,
MAPK13,MAPK14,
MAPK15

Phosphodiesterase 4 PDE4A,PDE4B,
PDE4C,PDE4D

Glutamate GRIN1,GRIN2A,
ionotropic receptor GRIN2B,GRIN2C
NMDA type subunits
,GRIN2D,GRIN3A,

GRIN3B
Calcineurin PPP3CA,PPP3CB,

PPP3CC,PPP3R1,
PPP3R2

FILTERING 
for genes 

expressed in 
the synapse

(IN.SYNAPSE vs 
OUT.SYNAPSE)

final gene symbol set

“genes in models”

Synaptic 
proteome

Gene Ontology 
and pathway 
enrichment
(Figs. 7 & 8)

Comparison with 
disease genes

(Fig. 9,
Tabs. 6, 7, 8 & 10)

Full set of HGNC 
gene symbols in 

models

Fig 3. Overview of entity to Gene Symbol mapping process. Sets of data are shown in boxes with black rectangular
borders. Mappings are shown in boxes with blue backgrounds and curved corners. Dashed lines indicate additional
information, and the key outcome is highlighted in a box with green background. Bold font refers to column headers.

Comparison with proteomic data 228

HGNC families are general gene classes and do not contain information about tissue 229

specificity or expression patterns. To identify proteins found in the synapse, we used a 230

meta-analysis of published proteomic datasets of the presynapse, postsynapse and 231

synaptosome (in preparation). The individual references, as of July 2017, can be found 232

in S1 Table. 233

The synaptosome is the largest data subset extracted from brain homogenate. The 234

term synaptosome refers to the complete presynaptic terminal including mitochondria, 235

synaptic vesicles and the postsynaptic membrane together with the postsynaptic 236

density (PSD) [54,55]. The PSD is a tightly connected, dense region of the postsynaptic 237

membrane which hosts a number of different receptors and regulatory units. The 238

presynapse and postsynapse are subsets of the synaptosome, and can be separated 239
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through experimental steps [56,57]. 240

The union of these three datasets, which we refer to as the “synaptic proteome”, 241

comprises 6,706 genes and is based on data obtained from 37 publications and 39 242

datasets (data as of July 2017). The extracted proteome was used to filter the “full set 243

of HGNC Gene symbols in models” (see Fig 3 and Identifying entities in models). We 244

found that every “protein family” (S3 Table) and “protein multimer” (S4 Table) in our 245

list contains at least one gene overlapping with the synaptic proteome. Genes not 246

expressed in the synapse (“OUT SYNAPSE” in S3 Table and S4 Table) were excluded 247

from further analysis. This filtering step reduces the 331 genes in families to 239 HGNC 248

gene symbols. Together with directly mapped proteins this leaves 294 unique HGNC 249

gene symbols describing all mapped genes in models, where families and multimers were 250

screened for the presence in the synapse. From now on we refer to this gene set as 251

“genes in models” (see green box, Fig 3). 252

The overlap between the final set of “genes in models” and the synaptic proteome, 253

as well as its subsets (presynaptic, postsynaptic, and synaptosome), is visualised in the 254

Venn diagram in Fig 4. It can be seen that 46% of “genes in models” (135 genes) are 255

found in all three synaptic proteome datasets. Significantly lower numbers are expressed 256

in individual sub-datasets. These are 3, 14 and 21 genes for the presynapse, postsynapse 257

and synaptosome respectively (representing 1.0%, 4.7% and 7.1% of genes in models). 258

When disregarding “genes in models” present in the intersection of all three datasets, 259

more modelled genes are found in the postsynapse or synaptosome (143 genes) than the 260

presynapse or synaptosome (27 genes). Thus, postsynaptic genes appear to be the most 261

highly modelled subset. However, relative to the total size of the respective proteomes, 262

only 5.1% of postsynaptic genes (258 “genes in models” out of 5,053 postsynaptic genes) 263

versus 7.6% of presynaptic genes (142 “genes in models” out of 1,867 presynaptic genes) 264

are represented in the models. 265

Nine modelled genes, all of type “protein” are not present in the synaptic proteome 266

datasets (see lower right of the circle in Fig 4). Further investigation uncovered evidence 267

for all of them being expressed in the synapse (Table 4), so these 9 genes remained in 268

the set of “genes in models”. These cases illustrate that, despite the number of proteins 269

found in recent publications, proteomic datasets are still incomplete. 270

Table 4. Proteins in models and not to be found in synaptic datasets.

Entity ID Gene Reason for inclusion

ADORA2A ADORA2A Adenosine A2a receptors (A2aR) are expressed with D2R receptors
[33]

CALM2 CALM2 Unpublished dataset
CHRM4 CHRM4 Muscarinic cholinergic receptor shown to be expressed in go-

nadotropin releasing hormone neurons [58]
CRH CRH Corticotropin-releasing factor, regulating the release of adrenocorti-

cotropin in synapses [59]
DRD1 DRD1 D1 subtype of the G-protein coupled dopamine receptor – the

most abundant in the central nervous system; presence in neurons
confirmed [60]

DRD2 DRD2 D2 subtype of the G-protein coupled dopamine receptor; prescence
in neurons confirmed [60]

DUSP1 DUSP1 Model specifies that DUSP1 feedback loop occurs in the dendritic
shaft, the soma and the nucleus [22]

I-1 PPP1R1A Unpublished dataset
PPP2R3A PPP2R3A Preliminary studies suggest PPP2R3A is present in both cytoplasm

and nucleus of cells in the striatum [61]. PPP2R3A mediates Ca2-
dependent dephosphorylation at Thr-75 of DARPP-32 [61].
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Postsynaptic
Presynaptic

Model

Synaptosome

1275

9

21

237

114

3

3

557

2864

14

108

32

1342

1

135

Fig 4. Relationships between the sets of genes in postsynaptic, presynaptic,
synaptosome datasets and the sets of genes possibly present in models.
Postsynaptic genes in red, presynaptic in blue, the synaptosome in purple and genes in
models in green. Numbers refer to the number of genes in each subset and shading
shows how many sets a region belongs to (white – none; red – all four). It can be seen
that the number of genes in the proteome but not included in models is an order of
magnitude bigger than the number of proteins included in models and the proteomic
datasets. There are only 9 genes (listed in Table 4) found in models and none of the
proteomic datasets.

Enrichment analysis of modelled genes 271

After compiling the “genes in models” list, we related it to existing biological knowledge, 272

in the form of gene sets annotated with various biological categories, supplied through a 273

number of databases. Depending on each database’s focus, structured, controlled, and 274

descriptive terms are associated to each gene. In this study, we chose to use the 275

following ontologies: Gene Ontology (GO) [62], REACTOME Pathway 276

Database (REACTOME) [63] and Disease Ontology (DO) [64]. Amongst these GO is 277

the largest and most commonly used ontology, classifying genes within domains 278

including Molecular Function, Biological Process and Cellular Compartment. We also 279

used REACTOME, a free and manually curated database in which genes are tagged 280

with terms representing biochemical reactions and pathways they are involved in. A 281
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pathway is composed of one or more reactions or reaction-like events, such as binding, 282

complex formation, transport or polymerisation. 283

To relate “genes in models” to their associated diseases, we used the DO to provide 284

disease classifications. Multiple sources contain gene disease information. We used 285

annotations retrieved from the GeneRif [65], OMIM [66,67] and Ensemble Variation [68] 286

databases. Based on annotations in the different ontologies we aimed to identify 287

functionalities shared by the “genes in models”. The topONTO package implemented in 288

R [69] was used to undertake enrichment analysis (see Methods). 289

The results are summarised using word clouds to show significantly enriched terms, 290

based on GO annotations, describing Molecular Functions (Fig 5A) and Biological 291

Processs (Fig 5B) for our “genes in models”. It can be seen that a high number of 292

modelled genes are involved in molecular functions such as “G-protein 293

beta/gamma-subunit complex binding”, “G-protein beta/gamma-subunit complex 294

binding”, “GTPase activity”, “calmodulin binding”, “3’,5’-cyclic-AMP 295

phosphodiesterase activity”, “high voltage-gated calcium channel activity”, “signal 296

transducer activity” and “calcium-transporting ATPase activity” amongst others. The 297

most common biological processes are “cellular response to glucagon stimulus”, “platelet 298

activation”, “calcium ion transmembrane transport”, and “activation of protein kinase 299

A activity”. 300

A B

Fig 5. GO enrichment analysis results for “genes in models”. A: Molecular
Function ontology terms enriched for “genes in models”. B: Biological Process ontology
terms enriched for “genes in models”. The synaptic proteome was used as a background
dataset. The list of significant terms was obtained with the Fisher’s exact test and the
elim algorithm, followed by Benjamini and Yekutieli multiple testing correction. The
terms shown in clouds scored less than 0.01 p-value after the correction. Font size is
proportional to the term significance.

The identified molecular functions show that genes included in annotated models 301

cover key synaptic processes mainly centred around energy production, synaptic 302

signalling and information transmission. Identified biological processes are slightly more 303

diverse. Fairly generic processes were identified, showing that the set of modelled genes 304

covers these functions in the synapse. More unique processes appear indicating the 305

synapse specific biological processes described by genes in models. 306

Fig 6 shows results of the REACTOME enrichment analysis that identified “G 307

alpha (s) signalling events”, “G alpha (z) signalling events” and “DARPP-32 events” as 308

13/36



the top enriched pathways. The first two terms are parallel to each other on the 309

pathway hierarchy and have a common parent term of “GPCR downstream signalling”. 310

A comparison of the remaining members of this pathway with the enrichment results 311

shows that they are all significantly enriched in terms of our “genes in models”. The 312

identification of signalling pathways highlights a focus of the analysed models indicating 313

the central role of G-protein signalling. 314

Fig 6. REACTOME enrichment analysis results for “genes in models”. The
synaptic proteome was used as background dataset. The list of significant terms was
obtained with the Fisher’s exact test and the elim algorithm, followed by Benjamini and
Yekutieli multiple testing correction. The terms shown in clouds scored less than 0.01
p-value after the correction.

When considering genes annotated with common diseases, Fig 7A shows a significant 315

enrichment of schizophrenia associated genes in the set of “genes in models”, followed 316

by bipolar disorder, Huntington’s disease and Alzheimer’s disease. The order of results 317

is slightly rearranged when considering the whole cell as a background dataset (Fig 7B). 318

For instance, Alzheimer’s disease becomes more prominent, showing the second highest 319

significance for enrichment in our dataset of interest. On the other hand, bipolar 320

disorders drops down the list to the fifth position and autistic disorder appears in the 321

results. This shows how different diseases not only affect specific tissues but can affect a 322

larger number of body regions inducing their effect. 323

Modelled genes and their overlap with disease genes 324

Based on the preceding enrichment analyses we wanted to test for specific associations 325

of modelled genes with disease. Since synapses play a crucial role in signal transduction 326

and are affected in many neurological diseases, these were addressed in more detail. We 327

picked seven representative examples of neurological disorders, 6 of which were based on 328

a list published by the Genes 2 Cognition online initiative: Attention Deficit 329

Hyperactivity Disorder (ADHD), Alzheimer’s Disease (AD), Autism, Bipolar Disorder 330
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A B

Fig 7. DO enrichment analysis results of “genes in models”. Two background
datasets were used: synaptic proteome (A) and all human protein coding genes (B).
The list of significant terms was obtained with the Fisher’s exact test and the elim
algorithm, followed by Benjamini and Yekutieli multiple testing correction. The terms
shown in clouds scored less than 0.01 p-value after the correction.

(BD), Depression and Schizophrenia. The seventh example was Parkinson’s Disease 331

(PD), motivated by our research interests. The list is a representative rather than 332

exhaustive sample of diseases affecting synapses, including diseases of mental health, 333

developmental disorders, as well as diseases of anatomical entity, such as 334

neurodegenerative diseases. Table 5 gives the DO identifiers and short descriptions of 335

each disease. 336

Table 5. Diseases of Interest and short descriptions.

Disease DOID Description

Alzheimer’s Disease (AD) DOID:10652 Tauopathy, characterized by memory lapses, emotional instability
and progressive loss of mental ability. It results in progressive
memory loss, impaired thinking, changes in personality and mood,
up to profound decline in cognitive and physical functioning.

Attention Deficit Hyperac-
tivity Disorder (ADHD)

DOID:1094 Specific developmental disorder, characterized by co-existence of
attentional problems and hyperactivity.

Autistic Disorder DOID:12849 An autism spectrum disorder, characterized by symptoms across
three symptom domains (communication, social, restricted repeti-
tive interests and behaviors) and delayed language development.

Bipolar Disorder DOID:3312 A mood disorder that involves alternating periods of mania and
depression.

Major Depressive Disorder
(MDD)

DOID:1470 An endogenous depression that is characterized by an all-
encompassing low mood accompanied by low self-esteem, and by
loss of interest or pleasure in normally enjoyable activities.

Parkinson’s Disease (PD) DOID:14330 Synucleinopathy, based on the degeneration of the central nervous
system that often impairs motor skills, speech, and other functions.

Schizophrenia DOID:5419 Psychotic disorder, characterized by a disintegration of thought
processes and of emotional responsiveness.

Onto Suite Miner [70] was used to obtain all genes linked to the DO IDs from the 337

databases supplying gene–disease association information (GeneRIF, OMIM and 338

EnsemblVariation). The various databases have different approaches to disease-gene 339

annotations. EnsemblVariation relies on genetic mutations (mostly Single Nucleotide 340

Polymorphisms, SNPs), whereas OMIM and GeneRIF contain curated text annotations 341

describing disease–gene associations from which data can be extracted using text-mining 342

tools. The different sources were considered individually and jointly. All results refer to 343

the full set of disease associated genes irrespective of the original data source. The 344
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number of genes linked to each of the diseases can be seen in the “Disease Genes” row 345

in Table 6. 346

Table 6. Overlap of modelled and disease genes.

Disease AD ADHD Autistic
Disor-
der

Bipolar
Disor-
der

MDD PD Schizo-
phre-
nia

Disease Genes 1511 665 575 1140 616 620 1844
Disease Genes in the Synapse 645 (43%) 233 (35%) 255 (44%) 379 (33%) 202 (33%) 262 (42%) 828 (45%)
Disease Genes in Synapse and
in modelled Genes

63 (9.8%) 20 (8.6%) 30
(11.8%)

45
(11.9%)

23
(11.4%)

16 (6.1%) 92
(11.1%)

Overlap of modelled and disease genes and their presence in the synapse and our modelled gene set. Disease information is
based on GeneRif, OMIM and EnsemblVariation database data. “AD” stands for Alzheimer’s Disease, “ADHD” for Attention
Deficit Hyperactivity Disorder and “PD” for Parkinson’s Disease. Numbers in brackets refer to the percentages. Percentages
in the “Disease Genes in the Synapse” column are relative to the total of “Disease Genes” and “Disease Genes in Synapse and
in Modelled Genes” is relative to the number of “Disease Genes in Synapse”.

Since not all disease genes are expressed in the synapse, we used the synaptic 347

proteome (see Comparison with proteomic data) to filter the disease associated genes 348

for genes that are expressed in the synapse (see the “Disease genes in the synapse” row, 349

Table 6). Since almost all modelled genes are expressed in the synapse we only present 350

numbers describing the overlap between disease proteins found in the synapse and 351

modelled genes (see the “Disease Genes in Synapse and in Modelled Genes” row, 352

Table 6). 353

The number of genes associated with diseases varies over a threefold range, from 575 354

for autistic disorder to 1844 for schizophrenia. However, the proportions of genes 355

associated with a disease and expressed in the synapse range between 33% (Bipolar 356

Disorder and Major Depressive Disorder) and 45% (Schizophrenia). The number of 357

overlapping modelled genes and disease-associated genes (in the synapse) varies between 358

diseases. Schizophrenia has the highest net overlap (92 genes), but also shows the 359

highest number of total associated genes (1844). In total, between 6.1% (Parkinson’s 360

Disease) and 11.8% (Autistic Disorder) of disease genes associated with any of the 361

selected diseases expressed in the synapse appeared in at least one model. 362

If a gene is associated with many neurodegenerative diseases, its overall function is 363

likely to be generic, leading to a synaptic dysfunction that is not specific to a certain 364

disease. Including such genes in models might explain mechanisms underlying multiple 365

diseases but will not help to model specific diseases. We therefore searched for synaptic 366

genes common to a number of diseases. Table 7 shows the 32 synaptic genes linked to 367

three or more of the diseases included in the analysis. Seven genes are associated to six 368

or all seven tested diseases. The top coverage disease associated genes, found in models 369

annotated, include the protein family voltage-dependent calcium channel family 370

CACNA1C and CACNB2 and dopamine D1 and D2 receptors (DRD1, DRD2 ), the 371

inotropic glutamate NMDA receptors, type subunit 2A and 2B (GRIN2A, GRIN2B) as 372

well as the glutamate metabotropic receptor 5 (GRM5). Of the set of modelled genes, 373

130 (around 50% of the total) are not associated with any of the seven diseases. 374

In summary, the fraction of genes modelled is relatively small and might indicate 375

that it is challenging to use existing models to make disease predictions. On the other 376

hand the modelled genes can be starting points to extend models to obtain better 377

disease insights, as will be considered in the Discussion (Approaches to including 378

non-modelled disease genes in models). 379
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Table 7. Modelled genes associated with three or more of the selected diseases.

Gene Names ADHD AD Autistic
Disor-
der

Bipolar
Disor-
der

MDD Schizo-
phre-
nia

PD

CACNA1C, DRD2, GRIN2A, GRIN2B 1 1 1 1 1 1 1
GRM5 1 1 1 1 0 1 1
CACNB2, DRD1 1 1 1 1 1 1 0
HOMER1 0 1 1 0 1 1 1
CACNA1S, GRM7 1 0 1 1 1 1 0
NOS1 1 1 0 1 0 1 1
GNB3, GRM2 0 1 0 1 1 1 0
GRIA2 0 1 1 0 1 1 0
GNAL 1 0 0 1 1 1 0
PLA2G6 0 0 0 1 0 1 1
ATP2A3, CACNA2D1, GRM3 0 0 0 1 1 1 0
GRIK2, GRM8, GRIP1, PPP1R1B 0 0 1 1 0 1 0
DLG4, NRGN 0 1 0 0 0 1 1
GRIA4 0 1 0 0 1 1 0
FYN, GRIA1, GRIN1, GRM1, GNB2L1 0 1 0 1 0 1 0
SHANK3 1 0 1 0 0 1 0

The number in each cell indicates whether the genes in the Gene Names column are associated (1) or not associated (0) with
the diseases indicated in the column headings.

Family trees of entities 380

Our identification of entities in models makes it possible to query in which models a 381

particular entity is contained. The mapping of entities to genes allows querying models 382

by genes that are, or may be, modelled. It is also desirable to query models by families 383

of molecules, such as PDE4. For example Gutierrez-Arenas et al. [22] and Nair et 384

al. [33] include PDE4A, whereas Kim et al. [26] and Oliveira et al. [16] include PDE4B 385

in their models, and Kim et al. [25] and Qi et al. [37] specify PDE4. 386

To enable query by class or family, we determined 29 hierarchical family trees of 387

“proteins”, “protein families” and “protein multimers” implied by the sets of genes 388

corresponding to each (Fig 8). Each “protein family” or “protein multimer” entity is 389

the parent to one or more “proteins” or “protein families”. Each child corresponds to a 390

subset of the proteins in the parent. Tree structures were generated for all “protein 391

multimers” and for “protein families” where a member of that family has been modelled 392

explicitly in at least one of our analysed models. This meant that, for example, PP1 is 393

not represented, since none of its children PPP1CA, PPP1CB and PPP1CC appear in 394

any model explicitly. Individual proteins appear only if they are part of a family or 395

multimer, and they appear in a model – thus, for example, GRIA4 and GRIN3 do not 396

appear. Proteins that do not belong to a family, e.g. PSD95 (DLG4 ), are not shown. 397

Any entity that is part of a family can be mapped to the root node of its tree. 398

Entities that do not belong to a family are implicitly their own root. This mapping of 399

“entities to entity families” (Fig 1) can be applied to the model-entity catalogue (Fig 2) 400

to give the simplified summary mapping of models to 104 family roots shown in Fig 9. 401

This facilitates comparison of entities across models trying to address the differences in 402

model detail between models. 403
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Fig 9. Summary mapping of entities in models. The occurrence of a root entity
in a model is indicated by open circles. Lower-level entities are folded into their root
entity.
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Frequency of modelling 404

Table 8. Numbers of entities or entity families found in models.

Entity family Models Frequency % Frequency

2AG, actin, ACTN, Adn, AKAP, AKAR3, CaMKIV, CaMKK,
cGMP, CHRM4, cortactin, CRH, CRHR, CSK, DAGL, DGK, DNM,
GKAP, GRIK2, Homer, IRSP53, KALRN, LYN, NO, NOS, PAK1,
PEBP1, PICK1, PSD93, PSD95, PTPN11, PTPRA, RAC1, RAC2,
RACK1, RAP1GAP, RHOC, RHOG, SAP102, Shank, SHC, SOS,
Spectrin, SRC, STEP, SYNGAP1

1 46 47.4

APC, CK1, FYN, GRB2, IP3R, PI3K, PIP2, PVALB, RASA1,
RASGRF, SAP97, SERCA

2 12 12.4

AA, DAG, GRIP1, Mg, Ng, RAS, VGCC 3 7 7.2
CDK5, DUSP, Glu, GTP, IP3, PLA2 4 6 6.2
DA, DRD, mGluR, NCX, PLC, PMCA 5 6 6.2
CB, NMDAR 6 2 2.1
ATP, MAP2K, MAPK, Raf 7 4 4.1
cAMP, Gabg, PKC, PP2 9 4 4.1
AC 10 1 1.0
AMPAR, PDE 12 2 2.1
PPP1R 14 1 1.0
PKA 15 1 1.0
PP1 16 1 1.0
PP3 17 1 1.0
CaM 18 1 1.0
CaMKII 22 1 1.0
Ca 23 1 1.0

“Models” is the number of models containing the entity or at least one member of the family. “Frequency” is the number of
appearances of the family or entity in the given number of models, and “% Frequnecy” is the frequency expressed as a
percentage.

To give an indication of which are the frequently modelled entities and families of 405

entities, we determined the number of models in which each of the root entities in Fig 10 406

appears (Table 8). About 50% of root entities appear only in one model. In total, 26 407

(about 25%) of the entity roots were included in five models or more. The three most 408

frequently modelled entities and families are CaM, CaMKII and Ca, which are included 409

in 18, 22 and 23 out of 30 analysed models respectively. This is due to a number of 410

models focusing specifically on the Ca2+–CaM–CaMKII pathway or including it as a 411

model part, reflecting the central role of phosphorylation of CaMKII by Ca2+-bound 412

CaM in synaptic biology. These top coverage families are followed by families such as 413

calcineurin (PP3) and protein phosphatase 1 (PP1), cAMP-dependent protein 414

kinase (PKA) and PPP1R (the receptor subunit of PP1), which are included in the 415

models that model dephosphorylation of CaMKII via the Ca2+–PP3–I1–PP1 pathway. 416

Receptor related families such as AMPAR appear with lower frequency, reflecting the 417

fact that, while crucial for synaptic physiology, not all models include them as a readout 418

mechanism for LTP and LTD. Even though our coverage of models is not complete, it 419

seems likely that cataloguing further models will not change the order much. 420

20/36



Comparing models based on their entities 421

Having annotated the models with entities enabled us to compare models with each 422

other by applying a hierarchical clustering approach to the model-entity root mapping 423

(Fig 9). Ward’s 2D method, as implemented in R’s hclust function was used to give the 424

dendrogram shown in Fig 10. The dendrogram splits into 4 clusters, each of which 425

contains a majority of models from one brain region (cerebellum, hippocampus, 426

striatum) or contains only a generic model. 427

Gutierrez−Arenas et al. (2014)
Nakano et al. (2010)
Nair et al. (2015)
Qi et al. (2010)
Oliveira et al. (2010)
Kim et al. (2010)
Kötter (1994)
Oliveira et al. (2012)
Castellani et al. (2005)
Kim et al. (2011)
Sorokina et al. (2011)
Zhabotinsky et al. (2006)
Mattioni and Le Novère (2013)
Graupner and Brunel (2007)
Li et al. (2012)
Smolen et al. (2006)
Smolen et al. (2012)
Castellani et al. (2001)
Hernjak et al. (2005)
Zeng and Holmes (2010)
Stefan et al. (2008)
Byrne et al. (2009)
Pepke et al. (2010)
Khan et al. (2011)
Miller et al. (2005)
Antunes and De Schutter (2012)
Antunes et al. (2016)
Bhalla and Iyengar (1999)
Kim et al. (2013)
Kuroda et al. (2001)

Fig 10. Clustering of the model-entity family root matrix. Clustering of the matrix in Fig 9 as implemented in R’s
hclust function with the Ward.2D method. The colour of the citation indicates the brain region modelled: hippocampus
(blue), striatum (red), cerebellum (olive), generic (black). Clusters referred to in the text are indicated by the circled numbers.

The cluster labelled 1 is dominated by 3 cerebellar models [17,18,29] (olive text), 428

and also contains the hippocampal model (blue text) of Bhalla and Iyengar [14] and the 429

striatal model (red text) of Kim et al. [27]. It can be seen in the matrix of root entities 430

(Fig 9) that distinctive proteins and families in this cluster are PKC (shared by all 5 431

models), PLA2 (in 4 of 5 models), DAG and PMCA (in 3 of 5 models), and the 432

Raf–MAP2K–MAPK pathway (4 of 5 models). 433

Most of the 14 models belonging to cluster 2 are hippocampal (7) or generic (5), 434

along with the cerebellar model of Hernjak et al. (2005) [23] and the striatal model of 435

Mattioni and Le Novère [31]. Three models (Byrne et al. [19], Pepke et al. [36] and 436

Stefan et al. [41]) are clustered together as they all contain the identical set of entities: 437

Ca, CaM and CaMKII. The closely related model of Zeng and Holmes [42] includes 438
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calbindin (CB) as well, and the closely related models of Miller et al. [32] and Khan et 439

al. [24] are also centred on CaMKII. The related models of Smolen et al. (2006) [38] and 440

Smolen et al. (2012) [39] feature the MAPK pathway, in addition to CaMKII. The 441

group of models containing Li et al. [30], Graupner and Brunel [21], and Zhabotinsky et 442

al. [43] are all variations on the CaMKII phosphorylation-dephosphorylation circuit, all 443

adding PP1 and PP3 (calcineurin) to the Ca2+–CaM–CaMKII pathway. 444

The sole member of cluster 3, the model of Sorokina et al. [40], is dissimilar to other 445

models, reflecting the large number of entities, particularly scaffolding proteins, which 446

are contained in this model but not in others. 447

Cluster 4 mostly contains striatal models [22,25, 26,33, 34,37], with the exceptions of 448

the generic model of Castellani et al. [15] and the hippocampal models of Kim et 449

al. [25, 26]. These models are some of the few non-striatal models to contain the 450

adenylate cyclase (AC)–cyclic adenosine monophosphate (cAMP)–PKA pathway as well 451

as hydrolisation of cAMP to adenosine monophosphate (AMP) by 452

phosphodiesterase (PDE). Dopamine and G-coupled protein receptors also feature in 453

this cluster. 454

The bias of each cluster towards a particular brain region indicates that the 455

clustering is meaningful. However, the bias may arise more from choices modellers have 456

made about which pathways to include in models of the various regions. For example, 457

dopamine receptors are included in most striatal models and are only included in a few 458

hippocampal models. Nevertheless, the clustering provides a different view of the 459

landscape of models, and could be used to identify models with similar composition, 460

whose behaviour it might be insightful to compare. We also applied the clustering to 461

the full model-entity matrix (Fig 2), with similar results, though slightly less meaningful 462

groupings. 463

Approaches to including non-modelled disease genes in models 464

Knowing which disease associated genes are included in models helps models with high 465

potential to explain disease impact on the synapse to be identified (Modelled genes and 466

their overlap with disease genes). It also allows us to identify disease associated proteins 467

which do not appear in the models we analysed. Of all disease associated genes, 1,248 468

are found in the synaptic proteome but not in any of the analysed models. Table 9 469

shows the 32 genes that are associated with 5, 6 or all 7 diseases, and which do not 470

appear in any of the investigated models. Of these, COMT and SLC6A3 are associated 471

with all 7 diseases of interest. Since these genes are associated with all or many studied 472

diseases, they could be of interest when it comes to gaining a better understanding of 473

generic disease dysfunctions. 474

Supporting the idea that genes implicated in many diseases could be potentially 475

targets for modelling, we identified two genes, COMT and MAOA, that have been 476

included in metabolic models [71,72]. Functionally, the catechol O-methyltransferase 477

(COMT ) degrades catechols, such as dopamine, by catalysing their methylation. This 478

methylation results in one of the major degradative pathways of the catecholamine 479

transmitters [73]. Dopamine is included in a number of analysed models [74,75], and it 480

could be possible to explore what happens in these models if there is an excess of 481

dopamine due to COMT malfunction. 482

Genes associated with all studied diseases could represent generic disease 483

mechanisms, in which case exploring the role of COMT in dopaminergic models would 484

indicate the possible influence of the gene in many diseases. An alternative approach is 485

to consider disease specific genes not appearing in models and associated with only one 486

of the selected diseases. Integrating such proteins into pre-existing models could thus 487

help to gain disease-specific insights. 824 of the disease associated genes are specific to 488

one disease only. To identify genes that can be integrated into existing models, the list 489
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Table 9. Disease associated genes not appearing in any of the annotated models.

Gene Names ADHD AD Autistic
Disor-
der

Bipolar
Disor-
der

MDD Schizo-
phre-
nia

PD

COMT, SLC6A3 1 1 1 1 1 1 1
GIGYF2 1 0 1 1 1 1 1
GSK3B, ABCB1 1 1 0 1 1 1 1
ANK3, ENO1, KIF5C, MAOA, PRNP,
SLC17A6, CSMD1

1 1 1 1 1 0 1

ACE, GAD1 0 1 1 1 1 1 0
DDC, FMR1 1 0 1 1 0 1 1
APAF1, DFNA5, ELAVL2, GRIK1, HINT1,
ITIH1, ITIH3, ITIH4, STT3A, LIG4, ND-
UFAB1, NDUFB7, NPY, NTRK3, GATB,
SMARCA2, MAD1L1, PRPF3, SH3PXD2A,
TRANK1, PPIF, NT5C2, KIF21B, RPRD2,
SYNE1, NGEF, TENM4, GNL3, MPP6,
MRPS21, RAB39A, CNNM2, OXR1, ANKS1B,
VARS2, AS3MT, PALB2, DCTN5, PPP1R21,
MTPN, SLC39A12, CHSY3

1 0 1 1 1 0 1

CNR1 1 1 0 0 1 1 1
YWHAZ 1 1 1 0 0 1 1
SNAP25 1 1 1 0 1 0 1
CNTNAP2 1 1 1 1 0 0 1

The number in each cell indicates whether the genes in the Gene Names column are associated (1) or not associated (0) with
the diseases indicated in the column headings. The table only lists genes that are associated with four or more diseases.

of non-modelled disease associated genes was compared with genes in pathways enriched 490

in the modelled genes. 491

For example, all disease genes unique to Schizophrenia were compared with the list 492

of genes in pathways significantly enriched in the modelled genes, giving a list of 8 493

genes, each of which is found in one or more pathways (Table 10). One of these genes is 494

LAMTOR2. The LAMTOR2:LAMTOR3 complex binds MAPK components [76], 495

together with other members of the mitogen-activated protein kinase kinase (MAP2K) 496

and mitogen-activated protein kinase (MAPK) activation pathway, such as RAF1, 497

MAPK1, MAPK3 and MAP2K2. In this role it contributes to the activation of the 498

MAPK pathway which has a central role in striatal and cerebellar synapses. Including 499

the influence of LAMTOR2 on the activity of MAPK in a pre-existing model could 500

hence help to better understand its role in and effects on schizophrenia. Integrating 501

LAMTOR2 activity in the model could be done mechanistically, or functionally, for 502

example by influencing the MAPK concentration. 503

Discussion 504

We have developed a catalogue of genes whose corresponding proteins correspond to 505

entities in computational models of synaptic plasticity. To achieve this we developed a 506

new set of standard identifiers for entities in computational models, and mapped those 507

entities corresponding to proteins and protein families onto genes. Although time and 508

lack of machine-readable model descriptions constrained the number of models we could 509

analyse, by selecting models from three brain regions (hippocampus, striatum and 510
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Table 10. Schizophrenia specific genes not found in models and appearing in pathways that are enriched in
annotated models.

Gene Name Gene Name (long) REACTOME pathway Pathway ID
CCK cholecystokinin G alpha (q) signalling events R-HSA-416476
LAMTOR2 late endoso-

mal/lysosomal adaptor,
MAPK and MTOR
activator 2

MAP2K and MAPK activation, FCERI
mediated MAPK activation, VEGFR2 me-
diated cell proliferation, RAF/MAP kinase
cascade

R-HSA-5674135,
R-HSA-2871796,
R-HSA-5218921,
R-HSA-5673001

PSMB1 proteasome subunit beta
1

FCERI mediated MAPK activation,
VEGFR2 mediated cell proliferation,
RAF/MAP kinase cascade

R-HSA-2871796,
R-HSA-5218921,
R-HSA-5673001

PSMB4 proteasome subunit beta
4

FCERI mediated MAPK activation,
VEGFR2 mediated cell proliferation,
RAF/MAP kinase cascade

R-HSA-2871796,
R-HSA-5218921,
R-HSA-5673001

PSMC1 proteasome 26S subunit
and ATPase 1

FCERI mediated MAPK activation,
VEGFR2 mediated cell proliferation,
RAF/MAP kinase cascade

R-HSA-2871796,
R-HSA-5218921,
R-HSA-5673001

PSMC4 proteasome 26S subunit
and ATPase 4

FCERI mediated MAPK activation,
VEGFR2 mediated cell proliferation,
RAF/MAP kinase cascade

R-HSA-2871796,
R-HSA-5218921,
R-HSA-5673001

PSMD2 proteasome 26S subunit
and non-ATPase 2 and

FCERI mediated MAPK activation,
VEGFR2 mediated cell proliferation,
RAF/MAP kinase cascade

R-HSA-2871796,
R-HSA-5218921,
R-HSA-5673001

TUBB3 tubulin beta 3 class III Chaperonin-mediated protein folding R-HSA-390466

cerebellum) we are confident that we have covered the bulk of proteins in models. 511

We were able to identify 294 genes that could be mapped to entities in 512

computational models. This corresponds to 4.2% of the 6,706 known genes in the 513

synaptic proteome. Enrichment analysis showed that, compared to the set of proteins 514

found in the synapse, the genes in models tended to have more signalling functions, 515

which reflects the focus on signalling pathways in such models. This suggests 516

considerable scope for including new molecules in models. However, models of synapses 517

at the molecular level are already complex and are beset by problems of determining 518

parameters. One strategy to prioritise molecules to add to models is to chose those most 519

relevant for disease. Our comparison of the list of genes in models with databases of 520

gene-disease association shows that many disease-associated genes are not currently 521

included in synaptic models, and suggests targets for future modelling. 522

Targeting disease-relevant proteins for modelling 523

The genes in models are more associated with neurological diseases, such as 524

Schizophrenia, Alzheimer’s, Huntington’s disease and bipolar disorder, than randomly 525

selected genes in the synaptic proteome or the whole genome. Nevertheless, depending 526

on the disease, the number of disease-associated genes included in models range between 527

6% and 12% of the disease-associated genes in the synapse. This suggests that there is 528

considerable potential to include disease-related genes in models. Including these 529

molecules could make these models more useful in helping elucidate disease mechanisms 530

and helping to identify new drug targets. 531

We identified two un-modelled genes associated with 7 neurological diseases, COMT 532

and MAOA and we found they have close functional links with existing models. By 533

incorporating pathway enrichment results, we identified LAMTOR, a gene uniquely 534
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associated with Schizophrenia. LAMTOR is linked to the MAPK pathway, which 535

features in a number of existing models. This demonstrates the utility of our approach 536

for identifying which proteins to incorporate in existing models so that they can make 537

disease-associated predictions. Further investigation using this approach could indicate 538

other target proteins to add to existing synaptic pathway models to make them more 539

informative about the influence of diseases on the synapse. 540

A new ontology for computational neuroscience models 541

The challenge we faced mapping model entities to genes highlighted a gap between 542

bioinformatics, where each gene is well-defined and has a commonly used identifier, and 543

computational neuroscience, where the elements of models are defined at varying levels 544

of precision: for example they may be proteins, protein families or multimers of proteins. 545

Even within the same model, one element may be specified precisely, for example a 546

particular isoform (PKMζ), and another element may be generic, for example 547

“plasticity related proteins” [39]. From a bioinformatics perspective this may seem 548

offensive, but from the viewpoint of computational neuroscience it is entirely valid: a 549

computational model can be seen as a means to reasoning about a hypothesis; the 550

formulation of the model is the hypothesis and the simulations embody the reasoning 551

that generates the predictions arising from the hypothesis [77]. The modelling process 552

sometimes even requires hypothetical elements, which have no existing identifier. For 553

example, one seminal computational neuroscience model [78] contained hypothetical 554

elements (“gating particles”) that predicted essential features of ion channels function. 555

The problem of mapping model constituents onto biological entities was noted by the 556

originators of the MIRIAM standard [49]. This standard suggests solving the problem 557

of mapping entities at different levels of abstraction by using a “HasVersion” qualifier to 558

map reactants in models to multiple entities, e.g. to map IP3R to Inositol 559

1,4,5-triphosphate receoptors type 1, 2 and 3. Most of the models we investigated had 560

not been annotated to MIRIAM standards, and we found it more efficient to define our 561

own ontology containing proteins and protein families. We found that existing 562

ontologies such as UniProt, HGNC gene families [79] and Neurolex [80] were not 563

extensive enough to map proteins specified at different levels of precision (e.g. PDE4A, 564

PDE4) to common families (e.g. PDE), though HGNC gene families covered about half 565

of the protein families we identified. 566

In the absence of a suitable ontology, we used HGNC gene families and curated other 567

family relationships manually to give a full list of entities (see S2 Table) and mappings 568

of proteins to families and multimers in which they occur (see S3 Table and S4 Table). 569

These tables form the kernel of an ontology, and we have demonstrated that it can be 570

used to determine the potential genes underlying the proteins in computational models, 571

and to cross-link these genes with expression data. Furthermore, we have demonstrated 572

that the ontology can be used to compare models, for example using hierarchical 573

clustering, and to summarise of how often various protein families have been modelled. 574

By annotating models with identifiers of brain region or neuron type, the set of possible 575

proteins belonging to a model could be narrowed down according to the genes that are 576

expressed in a given region. The same procedure could be used to link the genetic 577

content of synaptic models with other types of data, for example spatial expression data 578

from the Allen Brain atlas. This would make it possible to check that a particular 579

model was valid in the brain region it is supposed to represent, or, conversely, could be 580

used to find brain regions for which a particular model might be valid. 581

The number of models analysed in this paper was limited by the time it took us to 582

annotate models we had not constructed. While some repositories, such as the curated 583

branch of BioModels, enforce curation of models to MIRIAM standards [49], it would be 584

desirable for all models to be annotated consistently at the time of publication or 585
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deposition in a repository. Annotation would be a fairly quick process for authors 586

familiar with the models, and the quality of the information would be higher than if 587

annotated by third parties. Three of the 30 models we investigated were annotated to 588

MIRIAM standards. We did not use the MIRIAM annotations of these models, partly so 589

that our annotation of models was consistent and partly because the MIRIAM standard 590

suggests mapping to external identifiers that are often at a finer level of granularity 591

than we needed to compare models to proteomic data. Were more models curated to 592

MIRIAM standards, it would be worthwhile developing a mapping to our identifiers. 593

As discussed above, some models are of necessity not precise about which protein is 594

specified. To address this, one option would be for the computational neuroscience and 595

bioinformatics communities to adopt an ontology along the lines of the ones we have 596

generated here. If the ontology were stored in the Interlex dynamic lexicon of 597

biomedical terms, a development of Neurolex [80], it would be straightforward for 598

authors to suggest new terms or relationships. The model metadata could be stored by 599

adding fields to existing repository schema, or our data could be converted to a 600

standalone, API-enabled database. 601

Nomenclature 602

The nomenclature we have used for entities has been decided by the authors. We have 603

been guided by gene names, and some of our choices might be controversial, for example 604

naming PP2B (calcineurin) PP3. Our rationale for using identifiers related to gene 605

names is so there is more consistency between the names of members in a family. For 606

example, in Fig 8, PP3 is the parent of the catalytic and regulatory subunits PPP3C 607

and PPP3R; having PP2B as a parent would not be equally consistent. It would be 608

desirable for the computational neuroscience and bioinformatics communities to agree a 609

common nomenclature. 610

New directions in modelling 611

We have demonstrated the potential of our method of identifying entities in models and 612

mapping them to genes to suggest new, disease-relevant directions for modelling. We 613

believe there is considerable potential for the work to be adopted to suit the needs of 614

the community. Our data and mapping tables and code to reproduce the results in this 615

paper are available (S1 File) and suggestions for additions or amendments are welcome. 616

[We will also be making our files available via github.] 617

More speculatively, despite the challenge of expanding the number and relevant 618

proteins in models of synaptic plasticity, we believe that the time has come to 619

incrementally increase the number of proteins involved in models, especially those 620

involved in disease mechanisms. 621

Methods 622

Identifying entities in models 623

The question of what entities mean is outlined in Analysis of proteins in synaptic models, 624

subsection Identifying entities in models. The constituent entities of each model were 625

identified by one of the authors (EMW, KFH or DCS) reading the paper, or extracting 626

elements from a machine-readable representation of the model, for example CellML [14] 627

or Kappa [40] descriptions. The name used to identify the entity in the model was then 628

mapped to the standardised list of entities that we built up as we looked through the 629

models. In some cases model entities were not specified enough to allow us to map them 630
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unambiguously onto a model entity – for example “Plasticity Related Protein” [39]. We 631

did not consider a complex as an entity – for example a Ca-CaM-CaMKII complex 632

would give rise to Ca (ion), CaM (“protein”) and CaMKII (“protein multimer”). In 633

naming our standard entities, we have tried to use names commonly used in models, but 634

for entities that have not appeared in many models we have tended to use the newer 635

standard names that appear in the NCBI or UniProt databases. 636

Mapping entities to a unique gene identifier 637

To obtain a common identifier for all entities we searched for an ontology that could be 638

used to identify our entities, especially “protein families” and “protein multimers”. We 639

considered a number of potential ontologies: 640

The Computational Neuroscience Ontology 641

(http://bioportal.bioontology.org/ontologies/CNO) This ontology covers 642

the description of the modelling technique (e.g. Integrate-and-fire neurons) rather 643

than the components of the model. 644

HGNC Gene families (http://www.genenames.org/) The Human Gene 645

Organisation Gene Nomenclature Committee (HGNC) approves unique symbols 646

and names for human genes, and also places genes in families, based on 647

characteristics such as function, homology, domains and phenotype [79]. Placing 648

genes into families is a manual process, often involving specialists who are expert 649

in that family of genes. Often, but not always, genes in the same family have a 650

common root symbol. The process of defining families is ongoing. 651

InterPro protein families (http://www.ebi.ac.uk/interpro) The InterPro 652

Consortium is a federation amalgamating protein signature databases (Gene3D, 653

Conserved Domain Database, HAMAP, PANTHER, Pfam, PIRSF, PRINTS, 654

ProDom, PROSITE, SMART, SUPERFAMILY, Structure-Function Linkage 655

Database and TIGRFAMs) [81]. Protein signatures are predictive models build on 656

fragments of amino acid sequences that share local features (e.g. conservation at 657

different positions) known to be associated with a function or structure [82]. 658

There are multiple computational approaches that are detecting such patterns and 659

define types of signatures [83]. The similarity in signature matches between 660

proteins is used to define a hierarchy of families. 661

Manual NCBI search (www.ncbi.nlm.nih.gov/gene/) The National Center for 662

Biotechnology Information (NCBI) provides access to biomedical and genomic 663

information. We used their searchable database of genes, which can be queried 664

with a number of different identifiers. 665

We intended to map out entities using information supplied by one of these 666

ontologies, but no one source proved sufficient. In InterPro, there are a number of 667

families that correspond exactly to proteins, for example Phospholipase A2 (IPR001211) 668

and Phosphoinositide phospholipase C (IPR001192). However, some proteins, including 669

SOS1 and SOS2, belong to very broad families. 670

In the HGNC database we identified a relatively large number of our entities that 671

correspond to existing HGNC gene families. For example the HGNC Homer family 672

(short for “Homer scaffolding proteins”) comprises the genes HOMER1, HOMER2 and 673

HOMER3 and the genes PPP3CA, PPP3CB, PPP3CC, PPP3R1 and PPP3R2 belong 674

to the HGNC PP3 family. Other entities do not correspond to a single gene family, but 675

can be extracted from the database by selecting multiple families. For example SHANK, 676

by which we mean the family of proteins encoded by SHANK1, SHANK2 and SHANK3 677
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may be selected from the gene families list by selecting all genes that are in the 678

“Ankyrin repeat domain containing” (ANKRD) and “PDZ domain containing” (PDZ) 679

gene families. Some of our entities cannot be recovered by searching for families. For 680

example SOS (by which we mean the proteins encoded by SOS1 and SOS2 ) are in both 681

the “Rho guanine nucleotide exchange factors” and “Pleckstrin homology domain 682

containing” families, but so are 35 other proteins. 683

We also curated our own mappings by manually querying the NCBI portal by 684

searching for human genes matching a full protein name and a common gene prefix, 685

suffix or infix, if available. For example, Entrez IDs for a “protein family” of 686

Voltage-dependent calcium channel were obtained with the following query: 687

‘Voltage-dependent calcium channel[All Fields] AND CACN*[All Fields] AND ”Homo 688

sapiens”[Organism]’. The top 20 results were considered and only entries with the 689

closest description and gene summary to the search term were extracted. 690

Although we were not able to map all our entities by relying on only one ontology, 691

we found that HGNC families covered more of our entities than Interpro, so we used 692

this as a basis for developing an ontology to describe the molecular components of 693

computational neuroscience models. We tried to map all entities of type “protein family” 694

and “protein multimer” to HGNC families. Manual NCBI mappings were used to check 695

and verify that HGNC families represented the modelled group of genes. 696

In situations where we were unable to find a corresponding HGNC family we (1) 697

suggested some protein groups to be added to the list of HGNC families and await 698

approval of the request; (2) we had no choice but to fall back on our manual NCBI 699

mapping. The combination of the above lead us to our final mappings. S3 Table and S4 700

Table show identified HGNC families as well as the genes belonging to them. The 701

superscript given with the HGNC family name indicates its origin, the official HGNC 702

mapping vs. custom mapping. The columns “IN SYNAPSE” and “OUT SYNAPSE” 703

are explained in Analysis of proteins in synaptic models, Comparison with proteomic 704

data. 705

Enrichment Analysis 706

A commonly used method to find statistically significant commonalities between large 707

gene lists is enrichment analysis, also known as over-representation analysis. Based on 708

information contained in ontological databases, enrichment analysis can show if a set of 709

“genes of interest” contains a significantly high number of genes with the same 710

annotation. This approach allows us to gain a better understanding of underlying 711

common themes in our “genes in models” list. 712

The underlying principle of such an enrichment analysis is to estimate, for each 713

specific category annotated in the database of interest, if the number of genes in our 714

genes of interest set associated with a certain category is larger than expected by chance. 715

To test this relationship statistically, the hypergeometric distribution or one-tailed 716

Fisher’s exact test is commonly applied. Both are known to be equivalent [84]. 717

The four key numbers required to carry out the statistical calculations are: 718

1. The number of elements in the full dataset, also considered as the background 719

dataset, N . In our case these are all proteins part of the synaptic proteome. 720

2. The number of elements n in the subset of the full dataset which is tested for 721

enrichment. This is the number of genes in the “genes in models” list. 722

3. The number of elements associated to a certain trait in the full dataset, T . It 723

corresponds to the set of genes annotated to any term in one of the databases, e.g. 724

“Schizophrenia”, which describes a disease in the DO database. 725
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4. The subset of n shared by the elements found in T , denoted as t. This refers to 726

the number of genes within a category that are also present in our “genes in 727

models” list. 728

The probability of encountering the exact number of hits t of interest given N , n and T 729

is calculated with the hypergeometric probability h(t;N,n, T ): 730

h(t;N,n, T ) =

(
T
t

)(
N−T
n−t

)
(
N
n

) (1)

To describe the probability of finding greater than or equal to the number of items of 731

interest t, we use the cumulative hypergeometric probability: 732

p(t;N,n, T ) =
T∑

x=t

h(x;N,n, T ) =
T∑

x=t

(
T
x

)(
N−T
n−x

)
(
N
n

) (2)

If this probability is less than a criterion (e.g. p < 0.01), the dataset is regarded as 733

enriched [84] for the tested category. 734

For the analysis, ontology terms for all genes in the background dataset N were 735

obtained. Initially two background sets were considered, containing (1) all genes in the 736

genome and (2) all proteins found in the synapse. Since results were quite similar and 737

the focus of this study is on the synaptic region rather than the whole organism, we 738

only present results obtained with the second dataset as the background set of genes. 739

We analysed all terms that had at least one gene associated to our “genes in models”. 740

For each such term, the p-value was calculated, indicating potential enrichment, and 741

then corrected for multiple comparison, using the Benjamini and Yekutieli [85] method. 742

Terms with adjusted p-values smaller than 0.01 are presented in the final results. 743

topONTO and topGO 744

Ontologies that supply functional annotation information are organised in a hierarchical 745

structure, with the most generic terms at the top, and the most specific ones at the 746

bottom. The higher the term is located in the hierarchy, the more genes are associated 747

with it as it aggregates all genes from its child terms. Hence, a single gene can be found 748

at different levels of annotation specificity. Depending on the purpose of the analysis it 749

is important to be able to choose the level of retrieved terms. 750

To retrieve the most specific and refined terms among significantly enriched ones, we 751

used an algorithm proposed by Alexa et al. [86] and implemented for the GO database 752

by the R topGO package. Since GO is represented as a Directed Acyclic Graph (DAG), 753

the authors incorporated the underlying GO graph topology in the term scoring 754

approach, removing strong correlations commonly occurring between high level terms. 755

This allows the enrichment of a very generic term to be ignored, and less frequent but 756

more specific and potentially more interesting low level ones to be identified. 757

Assuming that a child term is potentially more interesting than its more generic 758

ancestors, significance of a term is calculated depending on its child terms. Out of 759

multiple versions implementing this idea, we used the elim algorithm paired with 760

Fisher’s exact test. The decision was based on the clear number of comparisons 761

conducted by the algorithm. This number was further used to correct for the false 762

discovery rate. 763

In the elim approach [86], enrichment analysis starts at the bottom of the ontology 764

graph. If a child term is significantly enriched amongst the genes of interest, this 765

influences the number of genes annotated with its ancestor terms. All genes associated 766

with the enriched child term are removed from the ancestor terms leaving most specific 767

ones with the minimal indicated significance. 768
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We discovered that the algorithm leads to more refined results than a set-based 769

enrichment analysis that ignores the ontology structure. Therefore, we were interested 770

in applying a same approach to other gene annotation sets. This can be achieved with 771

the topOnto R package [69]. It extends the advantage of the Alexa et al. method [86] to 772

any hierarchically structured dataset. Since both REACTOME and DO satisfy this 773

requirement, we were able to apply the same approach to all chosen annotation sets. 774

Supporting information 775

S1 File. Data and code. A zip file containing the data tables, and mapping and 776

analysis code that reproduces the results in this paper. 777

S1 Table. Synaptic Proteome Studies. List of synaptic proteome publications 778

and respective datasets used in this study. 779

S2 Table. Full list of entities. List of entities containing the ID, name, type and, 780

for proteins, mapping to genes. 781

S3 Table. Protein family members. List of entities in distinct protein families – 782

“in” and “out” of the synapse. 783

S4 Table. Protein multimer members. List of entities in distinct protein 784

multimers – “in” and “out” of the synapse. 785
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Appendix I

Acronyms

bp base pairs

CDS gene coding sequence

CME Clathrin Mediated Endocytosis

DO Disease Ontology

DOID Disease Ontology Identifier

DIP Database of Interacting Proteins

EnsVar Ensembl Variation

GeneRIF Gene Reference into Function

GEO Gene Expression Omnibus

GO Gene Ontology

GPCR G-protein coupled receptor

GWAS Genome Wide Association Study

HGNC HUGO Gene Nomenclature Committee

HPRD Human Protein Reference Database

ID identifier

NCBI National Center for Biotechnology Information

OMIM Online Mendelian Inheritance in Man

PD Parkinson’s Disease

SNP Single Nucleotide Polymorphism

PPI Protein-Protein Interaction

PPIN Protein-Protein-Interaction Network
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Davis, D., Yaveroğlu, Ö. N., Malod-Dognin, N., Stojmirovic, A., and Pržulj, N. (2015).
Topology-function conservation in protein–protein interaction networks. Bioinfor-
matics, 31(10):1632–1639.

Dawson, V. L. and Dawson, T. M. (1996). Nitric oxide neurotoxicity. Journal of
chemical neuroanatomy, 10(3):179–190.

De Lau, L. M. and Breteler, M. M. (2006). Epidemiology of parkinson’s disease. The
Lancet Neurology, 5(6):525–535.



266 Bibliography

Desai, S., Kumar, A., Laskar, S., and Pandey, B. (2014). Differential roles of atf-2 in
survival and dna repair contributing to radioresistance induced by autocrine soluble
factors in a549 lung cancer cells. Cellular signalling, 26(11):2424–2435.

Dexter, D. T. and Jenner, P. (2013). Parkinson disease: from pathology to molecular
disease mechanisms. Free Radical Biology and Medicine, 62:132–144.

Di Maio, V. (2008). Regulation of information passing by synaptic transmission: a
short review. Brain research, 1225:26–38.

Dieterich, D. C. and Kreutz, M. R. (2016). Proteomics of the synapse–a quantitative
approach to neuronal plasticity. Molecular & Cellular Proteomics, 15(2):368–381.

Distler, U., Schmeisser, M. J., Pelosi, A., Reim, D., Kuharev, J., Weiczner, R., Baum-
gart, J., Boeckers, T. M., Nitsch, R., Vogt, J., et al. (2014). In-depth protein profiling
of the postsynaptic density from mouse hippocampus using data-independent acqui-
sition proteomics. Proteomics, 14(21-22):2607–2613.

Dosemeci, A., Makusky, A. J., Jankowska-Stephens, E., Yang, X., Slotta, D. J., and
Markey, S. P. (2007). Composition of the synaptic psd-95 complex. Molecular &
Cellular Proteomics, 6(10):1749–1760.

Dosemeci, A., Tao-Cheng, J.-H., Vinade, L., and Jaffe, H. (2006). Preparation of
postsynaptic density fraction from hippocampal slices and proteomic analysis. Bio-
chemical and biophysical research communications, 339(2):687–694.

Duce, J. A., Tsatsanis, A., Cater, M. A., James, S. A., Robb, E., Wikhe, K., Leong,
S. L., Perez, K., Johanssen, T., Greenough, M. A., et al. (2010). Iron-export fer-
roxidase activity of β-amyloid precursor protein is inhibited by zinc in alzheimer’s
disease. Cell, 142(6):857–867.

Dziarski, R. (2004). Peptidoglycan recognition proteins (pgrps). Molecular immunol-
ogy, 40(12):877–886.

Edgar, R., Domrachev, M., and Lash, A. E. (2002). Gene expression omnibus: Ncbi
gene expression and hybridization array data repository. Nucleic acids research,
30(1):207–210.

Eggers, C., Schwartz, F., Pedrosa, D. J., Kracht, L., and Timmermann, L. (2014).
Parkinson’s disease subtypes show a specific link between dopaminergic and glu-
cose metabolism in the striatum. PloS one, 9(5):e96629.

Emmert-Streib, F., Dehmer, M., and Haibe-Kains, B. (2014). Gene regulatory net-
works and their applications: understanding biological and medical problems in
terms of networks. Frontiers in cell and developmental biology, 2.

Esposito, G., Ana Clara, F., and Verstreken, P. (2012). Synaptic vesicle trafficking and
parkinson’s disease. Developmental neurobiology, 72(1):134–144.

Exome Variant Server (2012). NHLBI GO Exome Sequencing Project (ESP), Seattle,
WA. http://evs.gs.washington.edu/EVS/. Accessed: 2017-02-27.

http://evs.gs.washington.edu/EVS/


Bibliography 267

Ezkurdia, I., Juan, D., Rodriguez, J. M., Frankish, A., Diekhans, M., Harrow, J.,
Vazquez, J., Valencia, A., and Tress, M. L. (2014). Multiple evidence strands suggest
that there may be as few as 19 000 human protein-coding genes. Human molecular
genetics, 23(22):5866–5878.

Fabregat, A., Sidiropoulos, K., Garapati, P., Gillespie, M., Hausmann, K., Haw, R.,
Jassal, B., Jupe, S., Korninger, F., McKay, S., et al. (2016). The reactome pathway
knowledgebase. Nucleic acids research, 44(D1):D481–D487.

Farr, C. D., Gafken, P. R., Norbeck, A. D., Doneanu, C. E., Stapels, M. D., Barof-
sky, D. F., Minami, M., and Saugstad, J. A. (2004). Proteomic analysis of native
metabotropic glutamate receptor 5 protein complexes reveals novel molecular con-
stituents. Journal of neurochemistry, 91(2):438–450.

Fassio, A., Patry, L., Congia, S., Onofri, F., Piton, A., Gauthier, J., Pozzi, D., Messa,
M., Defranchi, E., Fadda, M., et al. (2011). Syn1 loss-of-function mutations in
autism and partial epilepsy cause impaired synaptic function. Human molecular
genetics, 20(12):2297–2307.

Fernández, E., Collins, M. O., Uren, R. T., Kopanitsa, M. V., Komiyama, N. H., Cron-
ing, M. D., Zografos, L., Armstrong, J. D., Choudhary, J. S., and Grant, S. G.
(2009). Targeted tandem affinity purification of psd-95 recovers core postsynap-
tic complexes and schizophrenia susceptibility proteins. Molecular systems biology,
5(1):269.

Filiou, M. D., Bisle, B., Reckow, S., Teplytska, L., Maccarrone, G., and Turck, C. W.
(2010). Profiling of mouse synaptosome proteome and phosphoproteome by ief.
Electrophoresis, 31(8):1294–1301.

Föcking, M., Dicker, P., Lopez, L. M., Hryniewiecka, M., Wynne, K., English, J. A.,
Cagney, G., and Cotter, D. R. (2016). Proteomic analysis of the postsynaptic density
implicates synaptic function and energy pathways in bipolar disorder. Translational
Psychiatry, 6(11):e959.

Folador, E. L., Hassan, S. S., Lemke, N., Barh, D., Silva, A., Ferreira, R. S., and
Azevedo, V. (2014). An improved interolog mapping-based computational predic-
tion of protein–protein interactions with increased network coverage. Integrative
Biology, 6(11):1080–1087.

Forbes, S. A., Beare, D., Gunasekaran, P., Leung, K., Bindal, N., Boutselakis, H.,
Ding, M., Bamford, S., Cole, C., Ward, S., et al. (2015). Cosmic: exploring the
world’s knowledge of somatic mutations in human cancer. Nucleic acids research,
43(D1):D805–D811.

Franco, I. S. and Shuman, H. A. (2012). A pathogen’s journey in the host cell: Bridges
between actin and traffic. Bioarchitecture, 2(2):38–42.

Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociom-
etry, pages 35–41.



268 Bibliography

Fujita, K. A., Ostaszewski, M., Matsuoka, Y., Ghosh, S., Glaab, E., Trefois, C., Crespo,
I., Perumal, T. M., Jurkowski, W., Antony, P. M., et al. (2014). Integrating pathways
of parkinson’s disease in a molecular interaction map. Molecular neurobiology,
49(1):88–102.

Fury, W., Batliwalla, F., Gregersen, P. K., and Li, W. (2006). Overlapping probabilities
of top ranking gene lists, hypergeometric distribution, and stringency of gene se-
lection criterion. In Engineering in Medicine and Biology Society, 2006. EMBS’06.
28th Annual International Conference of the IEEE, pages 5531–5534. IEEE.

Geifman, N., Monsonego, A., and Rubin, E. (2010). The neural/immune gene ontol-
ogy: clipping the gene ontology for neurological and immunological systems. BMC
bioinformatics, 11(1):458.

Giardine, B., Riemer, C., Hefferon, T., Thomas, D., Hsu, F., Zielenski, J., Sang, Y.,
Elnitski, L., Cutting, G., Trumbower, H., et al. (2007). Phencode: connecting encode
data with mutations and phenotype. Human mutation, 28(6):554–562.

Gingras, A.-C. and Raught, B. (2012). Beyond hairballs: the use of quantitative
mass spectrometry data to understand protein–protein interactions. FEBS letters,
586(17):2723–2731.

Glaab, E. and Schneider, R. (2015). Comparative pathway and network analysis of
brain transcriptome changes during adult aging and in parkinson’s disease. Neuro-
biology of disease, 74:1–13.

Goodier, J. L., Cheung, L. E., and Kazazian Jr, H. H. (2012). Mov10 rna helicase is a
potent inhibitor of retrotransposition in cells. PLoS genetics, 8(10):e1002941.

Gorini, G., Ponomareva, O., Shores, K. S., Person, M. D., Harris, R. A., and Mayfield,
R. D. (2010). Dynamin-1 co-associates with native mouse brain bk ca channels:
Proteomics analysis of synaptic protein complexes. FEBS letters, 584(5):845–851.

Greenamyre, J. T., Sherer, T. B., Betarbet, R., and Panov, A. V. (2001). Complex i and
parkinson’s disease. IUBMB life, 52(3-5):135–141.

Grønborg, M., Pavlos, N. J., Brunk, I., Chua, J. J., Münster-Wandowski, A., Riedel,
D., Ahnert-Hilger, G., Urlaub, H., and Jahn, R. (2010). Quantitative comparison
of glutamatergic and gabaergic synaptic vesicles unveils selectivity for few proteins
including mal2, a novel synaptic vesicle protein. Journal of Neuroscience, 30(1):2–
12.

Hallett, P. J. and Standaert, D. G. (2004). Rationale for and use of nmda receptor
antagonists in parkinson’s disease. Pharmacology & therapeutics, 102(2):155–174.

Han, J.-D. J., Bertin, N., Tong, H., Goldberg, D. S., et al. (2004). Evidence for dynam-
ically organized modularity in the yeast protein-protein interaction network. Nature,
430(6995):88.



Bibliography 269

Hawrylycz, M., Ng, L., Feng, D., Sunkin, S., Szafer, A., and Dang, C. (2014). The
allen brain atlas. In Springer Handbook of Bio-/Neuroinformatics, pages 1111–
1126. Springer.

Hawrylycz, M. J., Lein, E. S., Guillozet-Bongaarts, A. L., Shen, E. H., Ng, L., Miller,
J. A., Van De Lagemaat, L. N., Smith, K. A., Ebbert, A., Riley, Z. L., et al. (2012).
An anatomically comprehensive atlas of the adult human brain transcriptome. Na-
ture, 489(7416):391–399.

He, X. and Simpson, T. I. (2017a). statbio/ontosuite-miner: Ontosuite-miner v1.0.

He, X. and Simpson, T. I. (2017b). statbio/toponto: toponto v1.0.

Hermjakob, H., Montecchi-Palazzi, L., Bader, G., Wojcik, J., Salwinski, L., Ceol, A.,
Moore, S., Orchard, S., Sarkans, U., Von Mering, C., et al. (2004a). The HUPO
PSI’s molecular interaction format-a community standard for the representation of
protein interaction data. Nature biotechnology, 22(2):177–183.

Hermjakob, H., Montecchi-Palazzi, L., Lewington, C., Mudali, S., Kerrien, S., Or-
chard, S., Vingron, M., Roechert, B., Roepstorff, P., Valencia, A., et al. (2004b).
Intact: an open source molecular interaction database. Nucleic acids research,
32(suppl 1):D452–D455.

Herrero, J., Muffato, M., Beal, K., Fitzgerald, S., Gordon, L., Pignatelli, M., Vilella,
A. J., Searle, S. M., Amode, R., Brent, S., et al. (2016). Ensembl comparative
genomics resources. Database, 2016:bav096.

HGNC (1979). HUGO Gene Nomenclature Committee. http://www.genenames.
org/about/overview. Accessed: 2017-03-09.

Hirakis, S. P., Boras, B. W., Votapka, L. W., Malmstrom, R. D., McCulloch, A. D., and
Amaro, R. E. (2015). Bridging scales through multiscale modeling: a case study on
protein kinase a. Frontiers in physiology, 6:250.

Hirsch, E. C., Vyas, S., and Hunot, S. (2012). Neuroinflammation in parkinson’s
disease. Parkinsonism & related disorders, 18:S210–S212.

Hosaka, M. and Südhof, T. C. (1999). Homo-and heterodimerization of synapsins.
Journal of Biological Chemistry, 274(24):16747–16753.

Howard, M. A., Elias, G. M., Elias, L. A., Swat, W., and Nicoll, R. A. (2010). The
role of sap97 in synaptic glutamate receptor dynamics. Proceedings of the National
Academy of Sciences, 107(8):3805–3810.

Hu, C., Chen, W., Myers, S. J., Yuan, H., and Traynelis, S. F. (2016). Human grin2b
variants in neurodevelopmental disorders. Journal of pharmacological sciences,
132(2):115–121.

Hurley, M. J. and Dexter, D. T. (2012). Voltage-gated calcium channels and parkinson’s
disease. Pharmacology & therapeutics, 133(3):324–333.

http://www.genenames.org/about/overview
http://www.genenames.org/about/overview


270 Bibliography

Hwang, W., Cho, Y.-R., Zhang, A., and Ramanathan, M. (2006). A novel functional
module detection algorithm for protein-protein interaction networks. Algorithms for
Molecular Biology, 1(1):24.

Imbrici, P., Camerino, D. C., and Tricarico, D. (2013). Major channels involved in
neuropsychiatric disorders and therapeutic perspectives. Frontiers in genetics, 4.

Irwin, D. J., Lee, V. M.-Y., and Trojanowski, J. Q. (2013). Parkinson’s disease demen-
tia: convergence of [alpha]-synuclein, tau and amyloid-[beta] pathologies. Nature
Reviews Neuroscience, 14(9):626–636.

Jimeno-Yepes, A. J., Sticco, J. C., Mork, J. G., and Aronson, A. R. (2013). Generif
indexing: sentence selection based on machine learning. BMC bioinformatics,
14(1):171.

Johnson, K. A., Conn, P. J., and Niswender, C. M. (2009). Glutamate receptors as
therapeutic targets for parkinson’s disease. CNS & Neurological Disorders-Drug
Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), 8(6):475–
491.

Johnson, N. L., Kemp, A. W., and Kotz, S. (2005). Univariate Discrete Distributions,
Set, volume 444. John Wiley & Sons.

Jordan, B. A., Fernholz, B. D., Boussac, M., Xu, C., Grigorean, G., Ziff, E. B., and
Neubert, T. A. (2004). Identification and verification of novel rodent postsynaptic
density proteins. Molecular & Cellular Proteomics, 3(9):857–871.

Joshi, S. and Whiteheart, S. W. (2017). The nuts and bolts of the platelet release
reaction. Platelets, 28(2):129–137.

Jupp, S., Burdett, T., Leroy, C., and Parkinson, H. E. (2015). A new ontology lookup
service at embl-ebi. In SWAT4LS, pages 118–119.

Kerrien, S., Orchard, S., Montecchi-Palazzi, L., Aranda, B., Quinn, A. F., Vinod, N.,
Bader, G. D., Xenarios, I., Wojcik, J., Sherman, D., et al. (2007). Broadening the
horizon–level 2.5 of the HUPO-PSI format for molecular interactions. BMC biology,
5(1):44.

Kibbe, W. A., Arze, C., Felix, V., Mitraka, E., Bolton, E., Fu, G., Mungall, C. J.,
Binder, J. X., Malone, J., Vasant, D., et al. (2014). Disease ontology 2015 update:
an expanded and updated database of human diseases for linking biomedical knowl-
edge through disease data. Nucleic acids research, page 1011.

Kitano, H. (2002a). Computational systems biology. Nature, 420(6912):206–210.

Kitano, H. (2002b). Systems biology: a brief overview. Science, 295(5560):1662–
1664.

Kleiger, G. and Mayor, T. (2014). Perilous journey: a tour of the ubiquitin–proteasome
system. Trends in cell biology, 24(6):352–359.



Bibliography 271

Klein, C. and Westenberger, A. (2012). Genetics of parkinson’s disease. Cold Spring
Harbor perspectives in medicine, 2(1):a008888.

Knight, R. and Verkhratsky, A. (2010). Neurodegenerative diseases: failures in brain
connectivity? Cell death and differentiation, 17(7):1069.

Köhler, S., Vasilevsky, N. A., Engelstad, M., Foster, E., McMurry, J., Aymé, S., Bay-
nam, G., Bello, S. M., Boerkoel, C. F., Boycott, K. M., et al. (2017). The human
phenotype ontology in 2017. Nucleic acids research, 45(D1):D865–D876.

Koschützki, D. and Schreiber, F. (2008). Centrality analysis methods for biological
networks and their application to gene regulatory networks. Gene regulation and
systems biology, 2:193.

Kowal, S. L., Dall, T. M., Chakrabarti, R., Storm, M. V., and Jain, A. (2013). The
current and projected economic burden of parkinson’s disease in the united states.
Movement Disorders, 28(3):311–318.

Landrum, M. J., Lee, J. M., Riley, G. R., Jang, W., Rubinstein, W. S., Church, D. M.,
and Maglott, D. R. (2014). Clinvar: public archive of relationships among sequence
variation and human phenotype. Nucleic acids research, 42(D1):D980–D985.

Laßek, M., Weingarten, J., and Volknandt, W. (2015). The synaptic proteome. Cell
and tissue research, 359(1):255–265.

Lee, A. S., De Jesús-Cortés, H., Kabir, Z. D., Knobbe, W., Orr, M., Burgdorf, C.,
Huntington, P., McDaniel, L., Britt, J. K., Hoffmann, F., et al. (2016). The neuropsy-
chiatric disease-associated gene cacna1c mediates survival of young hippocampal
neurons. Eneuro, 3(2):ENEURO–0006.

Lev, N., Melamed, E., and Offen, D. (2003). Apoptosis and parkinson’s disease.
Progress in Neuro-Psychopharmacology and Biological Psychiatry, 27(2):245–250.

Li, J.-Q., Tan, L., and Yu, J.-T. (2014). The role of the lrrk2 gene in parkinsonism.
Molecular neurodegeneration, 9(1):47.

Lowenstein, E., Daly, R., Batzer, A., Li, W., Margolis, B., Lammers, R., Ullrich, A.,
Skolnik, E., Bar-Sagi, D., and Schlessinger, J. (1992). The sh2 and sh3 domain-
containing protein grb2 links receptor tyrosine kinases to ras signaling. Cell,
70(3):431–442.

Lu, W., Wan, X., Liu, B., Rong, X., Zhu, L., Li, P., Li, J., Wang, L., Cui, L., and Wang,
X. (2014). Specific changes of serum proteins in parkinson’s disease patients. PloS
one, 9(4):e95684.

Lüscher, C. and Isaac, J. T. (2009). The synapse: center stage for many brain diseases.
The Journal of physiology, 587(4):727–729.

Maglott, D., Ostell, J., Pruitt, K. D., and Tatusova, T. (2005). Entrez gene: gene-
centered information at ncbi. Nucleic acids research, 33(suppl 1):D54–D58.



272 Bibliography

Maglott, D., Ostell, J., Pruitt, K. D., and Tatusova, T. (2010). Entrez gene: gene-
centered information at ncbi. Nucleic acids research, 39(suppl_1):D52–D57.

Magrinelli, F., Picelli, A., Tocco, P., Federico, A., Roncari, L., Smania, N., Zanette,
G., and Tamburin, S. (2016). Pathophysiology of motor dysfunction in parkinson’s
disease as the rationale for drug treatment and rehabilitation. Parkinson’s Disease,
2016.

Martins-Branco, D., Esteves, A. R., Santos, D., Arduino, D. M., Swerdlow, R. H.,
Oliveira, C. R., Januario, C., and Cardoso, S. M. (2012). Ubiquitin proteasome
system in parkinson’s disease: A keeper or a witness? Experimental neurology,
238(2):89–99.

McCain, J. (2013). The mapk (erk) pathway: investigational combinations for the treat-
ment of braf-mutated metastatic melanoma. Pharmacy and Therapeutics, 38(2):96.

McKusick, V. A. (1998). Mendelian inheritance in man: a catalog of human genes
and genetic disorders, volume 1. JHU Press.

Mclean, C., Xin, H., Simpson, I. T., and Armstrong, D. J. (2016). Improved Functional
Enrichment Analysis of Biological Networks using Scalable Modularity Based
Clustering. Journal of Proteomics & Bioinformatics, 9(1):9–18.

McMahon, H. T. and Boucrot, E. (2011). Molecular mechanism and physiological
functions of clathrin-mediated endocytosis. Nature reviews. Molecular cell biology,
12(8):517.

Moran, L. B., Duke, D., Deprez, M., Dexter, D., Pearce, R., and Graeber, M. (2006).
Whole genome expression profiling of the medial and lateral substantia nigra in
parkinson’s disease. Neurogenetics, 7(1):1–11.

Morciano, M., Beckhaus, T., Karas, M., Zimmermann, H., and Volknandt, W. (2009).
The proteome of the presynaptic active zone: from docked synaptic vesicles to ad-
hesion molecules and maxi-channels. Journal of neurochemistry, 108(3):662–675.

Morciano, M., Burré, J., Corvey, C., Karas, M., Zimmermann, H., and Volknandt,
W. (2005). Immunoisolation of two synaptic vesicle pools from synaptosomes: a
proteomics analysis. Journal of neurochemistry, 95(6):1732–1745.

Mortiboys, H., Furmston, R., Bronstad, G., Aasly, J., Elliott, C., and Bandmann, O.
(2015). Udca exerts beneficial effect on mitochondrial dysfunction in lrrk2g2019s
carriers and in vivo. Neurology, 85(10):846–852.

Muangpaisan, W., Mathews, A., Hori, H., and Seidel, D. (2011). A systematic review
of the worldwide prevalence and incidence of parkinson’s disease. Journal of the
Medical Association of Thailand, 94(6):749.

Murtagh, J., Eddy, R., Shows, T., Moss, J., and Vaughan, M. (1991). Different forms
of go alpha mrna arise by alternative splicing of transcripts from a single gene on
human chromosome 16. Molecular and cellular biology, 11(2):1146–1155.



Bibliography 273

NCBI, R. C. (2016). Database resources of the national center for biotechnology in-
formation. Nucleic acids research, 44(D1):D7.

Newman, M. E. (2003). The structure and function of complex networks. SIAM review,
45(2):167–256.

Newman, M. E. (2004). Fast algorithm for detecting community structure in networks.
Physical review E, 69(6):066133.

Newman, M. E. (2006a). Finding community structure in networks using the eigen-
vectors of matrices. Physical review E, 74(3):036104.

Newman, M. E. (2006b). Modularity and community structure in networks. Proceed-
ings of the national academy of sciences, 103(23):8577–8582.

Newman, M. E. and Girvan, M. (2004). Finding and evaluating community structure
in networks. Physical review E, 69(2):026113.

Oda, K., Matsuoka, Y., Funahashi, A., and Kitano, H. (2005). A comprehensive path-
way map of epidermal growth factor receptor signaling. Molecular systems biology,
1(1).

Oliva, C., Escobedo, P., Astorga, C., Molina, C., and Sierralta, J. (2012). Role of the
maguk protein family in synapse formation and function. Developmental neurobi-
ology, 72(1):57–72.

Orchard, S., Ammari, M., Aranda, B., Breuza, L., Briganti, L., Broackes-Carter,
F., Campbell, N. H., Chavali, G., Chen, C., Del-Toro, N., et al. (2013). The
MIntAct project-IntAct as a common curation platform for 11 molecular interac-
tion databases. Nucleic acids research, page gkt1115.

Orchard, S., Kerrien, S., Abbani, S., Aranda, B., Bhate, J., Bidwell, S., Bridge, A.,
Briganti, L., Brinkman, F. S., Cesareni, G., et al. (2012). Protein interaction data
curation: the international molecular exchange (imex) consortium. Nature methods,
9(4):345–350.

Ostrerova, N., Petrucelli, L., Farrer, M., Mehta, N., Choi, P., Hardy, J., and Wolozin, B.
(1999). α-synuclein shares physical and functional homology with 14-3-3 proteins.
Journal of Neuroscience, 19(14):5782–5791.

Ozbabacan, S. E. A., Engin, H. B., Gursoy, A., and Keskin, O. (2011). Transient
protein–protein interactions. Protein Engineering Design and Selection, 24(9):635–
648.

Paliwal, M. and Kumar, U. A. (2009). Neural networks and statistical techniques: A
review of applications. Expert systems with applications, 36(1):2–17.

Paoletti, P., Bellone, C., and Zhou, Q. (2013). Nmda receptor subunit diversity: im-
pact on receptor properties, synaptic plasticity and disease. Nature Reviews. Neuro-
science, 14(6):383.



274 Bibliography

Patil, A., Kinoshita, K., and Nakamura, H. (2010). Hub promiscuity in protein-protein
interaction networks. International journal of molecular sciences, 11(4):1930–
1943.

Paul, M. K. and Mukhopadhyay, A. K. (2004). Tyrosine kinase–role and significance
in cancer. International journal of medical sciences, 1(2):101.

Pavlopoulos, G. A., Secrier, M., Moschopoulos, C. N., Soldatos, T. G., Kossida, S.,
Aerts, J., Schneider, R., and Bagos, P. G. (2011). Using graph theory to analyze
biological networks. BioData mining, 4(1):10.

Peng, J., Kim, M. J., Cheng, D., Duong, D. M., Gygi, S. P., and Sheng, M. (2004).
Semi-quantitative proteomic analysis of rat forebrain postsynaptic density fractions
by mass spectrometry. Journal of Biological Chemistry.

Perier, C., Bové, J., and Vila, M. (2012). Mitochondria and programmed cell death
in parkinson’s disease: apoptosis and beyond. Antioxidants & redox signaling,
16(9):883–895.

Perkins, J. R., Diboun, I., Dessailly, B. H., Lees, J. G., and Orengo, C. (2010). Tran-
sient protein-protein interactions: structural, functional, and network properties.
Structure, 18(10):1233–1243.

Pinton, P., Giorgi, C., Siviero, R., Zecchini, E., and Rizzuto, R. (2008). Calcium and
apoptosis: Er-mitochondria ca2+ transfer in the control of apoptosis. Oncogene,
27(50):6407.

Pizzuti, C. and Rombo, S. E. (2014). Algorithms and tools for protein–protein in-
teraction networks clustering, with a special focus on population-based stochastic
methods. Bioinformatics, 30(10):1343–1352.

Prasad, T. K., Goel, R., Kandasamy, K., Keerthikumar, S., Kumar, S., Mathivanan, S.,
Telikicherla, D., Raju, R., Shafreen, B., Venugopal, A., et al. (2009). Human protein
reference database-2009 update. Nucleic acids research, 37(suppl 1):D767–D772.

Priller, C., Bauer, T., Mitteregger, G., Krebs, B., Kretzschmar, H. A., and Herms, J.
(2006). Synapse formation and function is modulated by the amyloid precursor
protein. Journal of Neuroscience, 26(27):7212–7221.

Qureshi, H. Y., Li, T., MacDonald, R., Cho, C. M., Leclerc, N., and Paudel, H. K.
(2013). Interaction of 14-3-3ζ with microtubule-associated protein tau within
alzheimer’s disease neurofibrillary tangles. Biochemistry, 52(37):6445–6455.

R Core Team (2017). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria.

Racanelli, V. and Rehermann, B. (2006). The liver as an immunological organ. Hepa-
tology, 43(S1).



Bibliography 275

Ran, J., Li, H., Fu, J., Liu, L., Xing, Y., Li, X., Shen, H., Chen, Y., Jiang, X., Li, Y.,
et al. (2013). Construction and analysis of the protein-protein interaction network
related to essential hypertension. BMC systems biology, 7(1):32.

Rao, V. S., Srinivas, K., Sujini, G., and Kumar, G. (2014). Protein-protein interaction
detection: methods and analysis. International journal of proteomics, 2014.

Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N., and Barabási, A.-L.
(2002). Hierarchical organization of modularity in metabolic networks. Science,
297(5586):1551–1555.

Reichardt, J. and Bornholdt, S. (2006). Statistical mechanics of community detection.
Physical Review E, 74(1):016110.

Rivals, I., Personnaz, L., Taing, L., and Potier, M.-C. (2007). Enrichment or depletion
of a go category within a class of genes: which test? Bioinformatics, 23(4):401–407.

Robb, G. B. and Rana, T. M. (2007). Rna helicase a interacts with risc in human cells
and functions in risc loading. Molecular cell, 26(4):523–537.

Rosvall, M. and Bergstrom, C. T. (2008). Maps of random walks on complex net-
works reveal community structure. Proceedings of the National Academy of Sci-
ences, 105(4):1118–1123.

Rüenauver, K., Menon, R., Svensson, M., Carlsson, J., Vogel, W., Andrén, O., Nowak,
M., and Perner, S. (2014). Prognostic significance of ywhaz expression in localized
prostate cancer. Prostate cancer and prostatic diseases, 17(4):310.

Ryu, K.-Y., Maehr, R., Gilchrist, C. A., Long, M. A., Bouley, D. M., Mueller, B.,
Ploegh, H. L., and Kopito, R. R. (2007). The mouse polyubiquitin gene ubc is
essential for fetal liver development, cell-cycle progression and stress tolerance. The
EMBO journal, 26(11):2693–2706.

Salwinski, L., Miller, C. S., Smith, A. J., Pettit, F. K., Bowie, J. U., and Eisenberg, D.
(2004). The database of interacting proteins: 2004 update. Nucleic acids research,
32(suppl 1):D449–D451.

Satoh, K., Takeuchi, M., Oda, Y., Deguchi-Tawarada, M., Sakamoto, Y., Matsubara,
K., Nagasu, T., and Takai, Y. (2002). Identification of activity-regulated proteins in
the postsynaptic density fraction. Genes to Cells, 7(2):187–197.

Schaefer, M. H., Fontaine, J.-F., Vinayagam, A., Porras, P., Wanker, E. E., and
Andrade-Navarro, M. A. (2012). HIPPIE: Integrating protein interaction networks
with experiment based quality scores. PloS one, 7(2):e31826.

Schapira, A. H. (2013). Calcium dysregulation in parkinson’s disease. Brain,
136(7):2015–2016.

Schlachetzki, J. C. and Winkler, J. (2015). The innate immune system in parkinson’s
disease: a novel target promoting endogenous neuroregeneration. Neural regenera-
tion research, 10(5):704.



276 Bibliography

Schriml, L. M., Arze, C., Nadendla, S., Chang, Y.-W. W., Mazaitis, M., Felix, V., Feng,
G., and Kibbe, W. A. (2011). Disease ontology: a backbone for disease semantic
integration. Nucleic acids research, 40(D1):D940–D946.

Schriml, L. M., Arze, C., Nadendla, S., Chang, Y.-W. W., Mazaitis, M., Felix, V., Feng,
G., and Kibbe, W. A. (2012). Disease ontology: a backbone for disease semantic
integration. Nucleic acids research, 40(D1):D940–D946.

Schwenk, J., Harmel, N., Brechet, A., Zolles, G., Berkefeld, H., Müller, C. S., Bildl,
W., Baehrens, D., Hüber, B., Kulik, A., et al. (2012). High-resolution proteomics un-
ravel architecture and molecular diversity of native ampa receptor complexes. Neu-
ron, 74(4):621–633.

Selimi, F., Cristea, I. M., Heller, E., Chait, B. T., and Heintz, N. (2009). Proteomic
studies of a single cns synapse type: the parallel fiber/purkinje cell synapse. PLoS
Biol, 7(4):e1000083.

Shaffer, J. P. (1995). Multiple hypothesis testing. Annual review of psychology,
46(1):561–584.

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin,
N., Schwikowski, B., and Ideker, T. (2003). Cytoscape: a software environment
for integrated models of biomolecular interaction networks. Genome research,
13(11):2498–2504.

Sherry, S. T., Ward, M.-H., Kholodov, M., Baker, J., Phan, L., Smigielski, E. M., and
Sirotkin, K. (2001). dbsnp: the ncbi database of genetic variation. Nucleic acids
research, 29(1):308–311.

Siddiqui, I. J., Pervaiz, N., and Abbasi, A. A. (2016). The parkinson disease gene
snca: Evolutionary and structural insights with pathological implication. Scientific
reports, 6.

Simunovic, F., Yi, M., Wang, Y., Macey, L., Brown, L. T., Krichevsky, A. M., Ander-
sen, S. L., Stephens, R. M., Benes, F. M., and Sonntag, K. C. (2009). Gene expres-
sion profiling of substantia nigra dopamine neurons: further insights into parkinson’s
disease pathology. Brain, 132(7):1795–1809.

Soffer, S. N. and Vázquez, A. (2005). Network clustering coefficient without degree-
correlation biases. Physical Review E, 71(5):057101.

Sokolow, S., Henkins, K. M., Williams, I. A., Vinters, H. V., Schmid, I., Cole, G. M.,
and Gylys, K. H. (2012). Isolation of synaptic terminals from alzheimer’s disease
cortex. Cytometry Part A, 81(3):248–254.

Spatola, M. and Wider, C. (2014). Genetics of parkinson’s disease: the yield. Parkin-
sonism & related disorders, 20:S35–S38.

Stark, C., Breitkreutz, B.-J., Reguly, T., Boucher, L., Breitkreutz, A., and Tyers, M.
(2006). Biogrid: a general repository for interaction datasets. Nucleic acids re-
search, 34(suppl 1):D535–D539.



Bibliography 277

Stenson, P. D., Mort, M., Ball, E. V., Shaw, K., Phillips, A. D., and Cooper, D. N.
(2014). The human gene mutation database: building a comprehensive mutation
repository for clinical and molecular genetics, diagnostic testing and personalized
genomic medicine. Human Genetics, 133(1):1–9.

Stuehr, D. J. (2004). Enzymes of the l-arginine to nitric oxide pathway. The Journal
of nutrition, 134(10):2748S–2751S.

Sun, Q. and Turrigiano, G. G. (2011). Psd-95 and psd-93 play critical but distinct roles
in synaptic scaling up and down. Journal of Neuroscience, 31(18):6800–6808.

Swinton, J. (2013). Vennerable: Venn and Euler area-proportional diagrams. R pack-
age version 3.0/r82.

Tanaka, Y. (1957). Report of the international committee on genetic symbols and
nomenclature. Union of International Sci Biol Ser B, Colloquia No. 30.

Tanner, C. M. (1991). Abnormal liver enzyme-mediated metabolism in parkinson’s
disease a second look. Neurology, 41(5 Suppl 2):89–91.

Tansey, M. G. and Goldberg, M. S. (2010). Neuroinflammation in parkinson’s disease:
its role in neuronal death and implications for therapeutic intervention. Neurobiol-
ogy of disease, 37(3):510–518.

Thenganatt, M. A. and Jankovic, J. (2014). Parkinson disease subtypes. JAMA neurol-
ogy, 71(4):499–504.

Traag, V. A. and Bruggeman, J. (2009). Community detection in networks with posi-
tive and negative links. Physical Review E, 80(3):036115.

Trinidad, J., Thalhammer, A., Specht, C., Schoepfer, R., and Burlingame, A. (2005).
Phosphorylation state of postsynaptic density proteins. Journal of neurochemistry,
92(6):1306–1316.

Trinidad, J. C., Thalhammer, A., Specht, C. G., Lynn, A. J., Baker, P. R., Schoepfer,
R., and Burlingame, A. L. (2008). Quantitative analysis of synaptic phosphorylation
and protein expression. Molecular & Cellular Proteomics, 7(4):684–696.

Tsai, Y.-C., Greco, T. M., Boonmee, A., Miteva, Y., and Cristea, I. M. (2012). Func-
tional proteomics establishes the interaction of sirt7 with chromatin remodeling
complexes and expands its role in regulation of rna polymerase i transcription.
Molecular & Cellular Proteomics, 11(5):60–76.

Tsirigotis, M., Zhang, M., Chiu, R. K., Wouters, B. G., and Gray, D. A. (2001). Sensi-
tivity of mammalian cells expressing mutant ubiquitin to protein-damaging agents.
Journal of Biological Chemistry, 276(49):46073–46078.

Turner, P. R., O’connor, K., Tate, W. P., and Abraham, W. C. (2003). Roles of amy-
loid precursor protein and its fragments in regulating neural activity, plasticity and
memory. Progress in neurobiology, 70(1):1–32.



278 Bibliography

Uezu, A., Kanak, D. J., Bradshaw, T. W., Soderblom, E. J., Catavero, C. M., Burette,
A. C., Weinberg, R. J., and Soderling, S. H. (2016). Identification of an elaborate
complex mediating postsynaptic inhibition. Science, 353(6304):1123–1129.

Uhlén, M., Fagerberg, L., Hallström, B. M., Lindskog, C., Oksvold, P., Mardinoglu,
A., Sivertsson, Å., Kampf, C., Sjöstedt, E., Asplund, A., et al. (2015). Tissue-based
map of the human proteome. Science, 347(6220):1260419.

UniProt Consortium et al. (2017). Uniprot: the universal protein knowledgebase. Nu-
cleic acids research, 45(D1):D158–D169.

Uversky, V. N. (2008). α-synuclein misfolding and neurodegenerative diseases. Cur-
rent Protein and Peptide Science, 9(5):507–540.

van Rooden, S. M., Colas, F., Martínez-Martín, P., Visser, M., Verbaan, D., Marinus,
J., Chaudhuri, R. K., Kok, J. N., and van Hilten, J. J. (2011). Clinical subtypes of
parkinson’s disease. Movement Disorders, 26(1):51–58.

van Rossum, G. (1995). Python tutorial, Technical Report CS-R9526, Centrum voor
Wiskunde en Informatica (CWI). Amsterdam.

Venderova, K. and Park, D. S. (2012). Programmed cell death in parkinson’s disease.
Cold Spring Harbor perspectives in medicine, 2(8):a009365.

Vidal, M., Cusick, M. E., and Barabasi, A.-L. (2011). Interactome networks and human
disease. Cell, 144(6):986–998.

Voglis, G. and Tavernarakis, N. (2006). The role of synaptic ion channels in synaptic
plasticity. EMBO reports, 7(11):1104–1110.

Wakabayashi, K., Tanji, K., Mori, F., and Takahashi, H. (2007). The lewy body in
parkinson’s disease: Molecules implicated in the formation and degradation of α-
synuclein aggregates. Neuropathology, 27(5):494–506.

Walikonis, R. S., Jensen, O. N., Mann, M., Provance, D. W., Mercer, J. A., and
Kennedy, M. B. (2000). Identification of proteins in the postsynaptic density fraction
by mass spectrometry. Journal of Neuroscience, 20(11):4069–4080.

wan Li, K., Hornshaw, M. P., Van der Schors, R. C., Watson, R., Tate, S., Casetta, B.,
Jimenez, C. R., Gouwenberg, Y., Gundelfinger, E. D., Smalla, K.-H., et al. (2003).
Proteomics analysis of rat brain postsynaptic density: implications of the diverse
protein functional groups for the integration of synaptic physiology. Journal of
Biological Chemistry.

Wanders, R. J. and Waterham, H. R. (2006). Biochemistry of mammalian peroxisomes
revisited. Annu. Rev. Biochem., 75:295–332.

Wang, J., Li, M., Deng, Y., and Pan, Y. (2010). Recent advances in clustering methods
for protein interaction networks. BMC genomics, 11(Suppl 3):S10.



Bibliography 279

Wang, J. Y. (2014). The capable abl: what is its biological function? Molecular and
cellular biology, 34(7):1188–1197.

Wasserman, S. and Faust, K. (1994). Social network analysis: Methods and applica-
tions, volume 8. Cambridge university press.

Weingarten, J., Laßek, M., Mueller, B. F., Rohmer, M., Lunger, I., Baeumlisberger, D.,
Dudek, S., Gogesch, P., Karas, M., and Volknandt, W. (2014). The proteome of the
presynaptic active zone from mouse brain. Molecular and Cellular Neuroscience,
59:106–118.

Wetie, N., Armand, G., Sokolowska, I., Woods, A. G., Roy, U., Loo, J. A., and Darie,
C. C. (2013). Investigation of stable and transient protein–protein interactions: past,
present, and future. Proteomics, 13(3-4):538–557.

Whittaker, V., Michaelson, I., and Kirkland, R. J. A. (1964). The separation of synap-
tic vesicles from nerve-ending particles (synaptosomes’). Biochemical Journal,
90(2):293.

Wilhelm, B. G., Mandad, S., Truckenbrodt, S., Kröhnert, K., Schäfer, C., Rammner,
B., Koo, S. J., Claßen, G. A., Krauss, M., Haucke, V., et al. (2014). Composi-
tion of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins.
Science, 344(6187):1023–1028.

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak,
A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E., et al. (2016).
The fair guiding principles for scientific data management and stewardship. Scien-
tific data, 3:160018.

Wong, K., Grove, J., Grandinetti, A., Curb, J., Yee, M., Blanchette, P., Ross, G., and
Rodriguez, B. (2010). Association of fibrinogen with parkinson disease in elderly
japanese-american men: a prospective study. Neuroepidemiology, 34(1):50–54.

Xenarios, I., Rice, D. W., Salwinski, L., Baron, M. K., Marcotte, E. M., and Eisen-
berg, D. (2000). Dip: the database of interacting proteins. Nucleic acids research,
28(1):289–291.

Xia, J., Benner, M. J., and Hancock, R. E. (2014). Networkanalyst-integrative ap-
proaches for protein–protein interaction network analysis and visual exploration.
Nucleic acids research, 42(W1):W167–W174.

Yoshimura, Y., Yamauchi, Y., Shinkawa, T., Taoka, M., Donai, H., Takahashi, N.,
Isobe, T., and Yamauchi, T. (2004). Molecular constituents of the postsynap-
tic density fraction revealed by proteomic analysis using multidimensional liquid
chromatography-tandem mass spectrometry. Journal of neurochemistry, 88(3):759–
768.

Yu, X., Wang, C., and Li, Y. (2006). Classification of protein quaternary structure by
functional domain composition. BMC bioinformatics, 7(1):187.



280 Bibliography

Yuste, R. (2015). The discovery of dendritic spines by cajal. Frontiers in neu-
roanatomy, 9.

Zhang, B., Park, B.-H., Karpinets, T., and Samatova, N. F. (2008). From pull-down
data to protein interaction networks and complexes with biological relevance. Bioin-
formatics, 24(7):979–986.

Zhang, Y., James, M., Middleton, F. A., and Davis, R. L. (2005). Transcriptional anal-
ysis of multiple brain regions in parkinson’s disease supports the involvement of
specific protein processing, energy metabolism, and signaling pathways, and sug-
gests novel disease mechanisms. American Journal of Medical Genetics Part B:
Neuropsychiatric Genetics, 137(1):5–16.


	cover sheet
	KFH_PhD_thesis_final
	Introduction
	Parkinson's Disease
	Pathology

	The Synapse
	The Synaptic Proteome

	Systems Biology
	Protein-Protein-Interaction Networks
	Statistical Network Analysis
	Network Clustering

	Functional Gene Set Analysis
	Testing for Enrichment
	Functional Annotations
	topGO and topONTO

	Objectives

	Methods
	General Programming
	Venn Diagrams
	Computing Environment

	Annotations and Mappings
	Mapping File Generation

	Enrichment Analysis
	Hypergeometric Testing
	Gene Set Enrichment: topGO and topONTO
	Multiple Testing Correction

	Protein-Protein-Interaction Network Analysis
	Network Clustering Algorithms


	Finding a Parkinson's Disease Core Dataset
	Objective
	Material
	Data Types
	Data Sources

	Results
	PD associated genes studied in literature
	PD associated genes based on expression data
	PD associated genes with genetic and/or manually curated evidence
	Meta-analysis
	Summary

	Discussion

	Protein-Protein Interaction Data
	Objective
	Introduction and Data Processing
	Protein-Protein Interactions
	Data Format
	Databases
	Data Curation

	Results
	Data Analysis and Cross-Comparison
	The final, joint, human PPI dataset

	Discussion

	The Synaptic Proteome and Parkinson's Disease
	Objective
	Introduction and Material
	Proteomic Studies

	Results
	Synaptic Proteome Datasets
	Protein Coverage and Data Consistency
	Top Coverage Genes
	Regional Synaptic Properties
	PD and the Synapse
	PD Affected Functions

	Discussion

	Synaptic Protein-Protein-Interaction Network Analysis and PD
	Hypothesis and Objective
	Material and Methods
	Results
	Synaptic Protein-Protein-Interaction Networks
	Network Clustering
	PD Enriched Communities
	Synaptic PD Affected Functions
	Summary

	Discussion

	Discussion
	Data Consistency
	Proteomic Datasets
	Protein-Protein-Interaction Networks and PD
	Systems Biology and PD Research
	Synaptic Dysfunctions and PD
	Future Research Perspectives
	Clathrin Mediated Endocytosis - a Dynamic Model
	Disease in Computational Models of Neurons

	Conclusion

	Literature based Parkinson's Disease associated genes
	MI-IDs
	Extended Overview of Synaptic Proteomic Studies
	Additional Protein-Protein-Interaction Networks
	Core PD associated gene sets
	Enriched Gene Ontology terms in the top three PD enriched clusters
	Clathrin Mediated Endocytosis - a Dynamic Model
	Disease in Synaptic Models
	Acronyms
	List of Figures
	List of Tables
	Bibliography


