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Abstract

An efficient design dedicated for iterative-multiple-input multiple-output (MIMO) receiver sys-
tems is now imperative in our world since data demands are increasing tremendously in wire-
less networks. This puts a massive burden on the signal processing power especially in small
receiver systems where power sources are often shared or limited. This thesis proposes an
attractive solution to both the wireless signal processing and the architectural implementation
design sides of the problem. A novel algorithm, dubbed the Adaptive Switching Algorithm, is
proven to not only save more than a third of the energy consumption in the algorithmic design,
but is also able to achieve an energy reduction of more than 50% in terms of processing power
when the design is mapped onto state-of-the-art programmable hardware. Simulations are based
in Matlab™ using the Monte Carlo approach, where multiple additive white Gaussian noise
(AWGN) and Rayleigh fading channels for both fast and slow fading environments were in-
vestigated. The software selects the appropriate detection algorithm depending on the current
channel conditions. The design for the hardware is based on the latest field programmable gate
arrays (FPGA) hardware from Xilinx®, specifically the Virtex-5 and Virtex-7 chipsets. They
were chosen during the experimental phase to verify the results in order to examine trends for
energy consumption in the proposed algorithm design. Savings come from dynamic allocation
of the hardware resources by implementing power minimization techniques depending on the
processing requirements of the system. Having demonstrated the feasibility of the algorithm in
controlled environments, realistic channel conditions were simulated using spatially correlated
MIMO channels to test the algorithm’s readiness for real-world deployment. The proposed al-
gorithm is placed in both the MIMO detector and the iterative-decoder blocks of the receiver.
When the final full receiver design setup is implemented, it shows that the key to energy sav-
ing lies in the fact that both software and hardware components of the Adaptive Switching
Algorithm adopt adaptivity in the respective designs. The detector saves energy by selecting
suitable detection schemes while the decoder provides adaptivity by limiting the number of
decoding iterations, both of which are updated in real-time. The overall receiver can achieve
more than 70% energy savings in comparison to state-of-the-art iterative-MIMO receivers and
thus it can be concluded that this level of ‘intelligence’ is an important direction towards a more

efficient iterative-MIMO receiver designs in the future.
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Chapter 1
Introduction

Wireless communication has become the fastest growing segment of the communications in-
dustry. It has gone through remarkable advancement in the 20*" century and along with it, elec-
tronic circuit design is also progressing at an exponential rate. Recent innovations in wireless
communication technology and computing have led to the current proliferation of devices, each
with specific applications, form factor, functionality and battery lifetime. The explosive growth
in wireless systems coupled with the proliferation of electronics devices indicate a bright future
for wireless networks, both as stand-alone and as a part of a larger networking infrastructure.
However, many technical challenges remain in designing robust wireless networks and devices
that deliver the performance necessary to support emerging applications. One major challenge
materializes in the form of power. With approximately 14 billion electronic devices are con-
nected online; personal ones, such as mobile phones, laptops, set-top boxes, modems, and/or
on a larger scale; base stations, wireless hotspots and femtocells, the communication sector
has become one power hungry industry. The devices are estimated to waste around US$ 80
billion each year due to inefficient designs. This trend could lead to an estimated loss of around
US$ 120 billion by the end of 2020 [1]. Therefore, solutions are sought to overcome the current
predicament. This introductory chapter provides a brief review of wireless communications and
describes the motivation behind the work that has been undertaken, the technical challenges,

and finally the possible contributions this work aims to accomplish.

1.1 Motivation of Work

Due to the large number of devices available, just by reconfiguring the design for each individ-
ual device chipsets to be more efficient, would have tremendous impact on the global energy
usage. With the adoption of best available technologies, chipsets are able to possess a higher
degree of software and hardware flexibility to be more efficient in radio systems. It is said that
such devices could perform exactly the same tasks while consuming around 65% less power
[1]. Therefore, motivation of this work is to tackle the power consumption problem head on

starting from each individual device.
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There are two sides to the coin, the wireless communication side, which deals with the tremen-
dous data demands, and the other, the computer architecture side, where a more efficient im-
plementation is sought for better hardware deployment. On the wireless communication side,
traffic volume according to regions as depicted in Figure 1.1, taken from the report in [1], shows
that data demand is increasing over the years. It is predicted that by the end of 2017, with the
fastest growing inclination, the data for Asia Pacific will be more than triple, reaching to about
45 exabyte (EB) in just 5 years. In other regions, demands are also rising year by year. The

total world demand for data per year amounts to more than 120 EB per month.
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Figure 1.1: Projected data traffic growth

In order to cater for this trend in data demand, a significant breakthrough came in the late
1980s when the adaptive use of multiple-input multiple-output (MIMO) antenna systems was
proposed. By using multiple antennas at both transmit and receive sides, parallel channels that
utilize the same radio spectrum space can be created. MIMO manipulates this to increase the
capacity of a channel so more data can be transmitted at one time. While minimizing power
usage in these devices in wireless networks is imperative, more priority is given to the receivers
since they handle massive computation processing. With billions of devices available, the total

power consumption would be massive. Moreover, the receivers are usually limited in power
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source where they are operated using a battery, which has a limited lifetime. This brings us
to the subject of computer architecture. Future wireless receivers aim at supporting a wide
variety of wireless communication standards, such as the Long-Term Evolution (LTE), Univer-
sal Mobile Telecommunications System (UMTS), wireless local area network (WLAN), and
Global System for Mobile (GSM). Key enabling technology for the enormous success of wire-
less communication is the progress in integrated circuit (IC) technology. It started in the late
1950s with the production of the first metal-oxide-semiconductor field-effect transistors (MOS-
FET) and with the idea of complementary metal-oxide-semiconductor (CMOS) circuits [2]. IC
follows the trend given by Moore’s law, which states that the number of transistors in a dense
integrated circuit has doubled approximately every two years. Electronic design automation
(EDA) software tools help handle larger and faster chips, fabrication technologies for support-
ing new technology nodes, and verification strategies for the increased circuit complexity. The
progress in CMOS IC technology made it possible to pack more and more transistors onto the
same area of silicon. This progress allowed to realize increasingly complex functions on a
small piece of silicon. With this, the realization of a fast Fourier transform (FFT), a real-time
detection and decoding algorithms, or an entire wireless baseband processor on a single chip

became feasible.

Figure 1.2 shows the potential energy savings that can be achieved with growing technology in
programming and IC circuitry. It depicts the proportion of savings that can be accomplished
to compute a given operation, and that the devices of today do not fully reap these benefits in
the designs. By the year 2015, just by implementing power minimization techniques to evoke a
more efficient hardware design, 70% of potential energy savings can be gained, and this trend
continues to rise up to a point where, in 2025, it is predicted that around 87% of energy usage
can be conserved if more efficient designs are implemented in these devices. In order to have a
more efficient design, flexible software and hardware implementation are needed for the whole
receiver. To achieve this flexibility, the processor circuit and signal processing software need to
have certain adaptivity whereby they possess a level of ‘intelligence’. In principle, this would
allow the exchange between transmission standards and algorithms at boot or even dynami-
cally at run-time. This could be in the form of a system that is able to adapt to the detection
algorithm on-the-fly to the current operating scenario according to the requests of the system.
Current radio communication devices have incorporated digital signal processing (DSP)-based
programmability for some receiver blocks. However, many computationally intensive parts still

require dedicated hardware for performance and efficiency reasons. This issue is particularly
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crucial for MIMO transceivers, where the volume of incoming data is multi-fold, and therefore

the energy required to process would be immensely large.

— ENERGY SAVINGS

L PoTENTAL

Electricity Consumption (TWh)

= Remaining Consumption Potential of Savings

Figure 1.2: Potential energy savings trend [1]

This aspect of computer architecture and the power management schemes have not been
fully exploited. Even though the technology exists, several power minimization techniques
are not properly optimized on devices that support MIMO. This thesis therefore proposes a
more efficient design for a receiver that rivals the state-of-the-art available in the market today.
With the combination of both fields of knowledge, another setback to take into account when
designing an efficient hardware capable of transmitting large amounts of data is that when
a signal propagates through a wireless channel, it experiences random fluctuations in time if
the transmitter or receiver is moving, due to changing reflections and attenuations. Thus, the
characteristics of the channel appear to change randomly with time, which makes it difficult
to design reliable systems with guaranteed performance. This is imperative to keep in mind in

order to confirm the applicability of the new design in realistic situations.

In summary, technological advances in the following areas are needed to overcome the chal-

lenges this work aims to tackle:
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e Algorithmic design for the MIMO detection and decoding algorithms that support effi-

ciency in implementations.

e Hardware design suitable for low-power handheld computer and communication receiver

terminals, which can be implemented on current and future communication systems.

e Measurements and models for wireless indoor and outdoor channels in order to verify

the design suited for real-life deployment.

Given these requirements, the work draws from many areas of expertise, which includes the
area of communications, signal processing, software and hardware design, and power manage-
ment schemes. Moreover, given the fundamental limitations of the wireless channels and the
explosive demand for its utilization, communication between these interdisciplinary groups is

necessary to implement the most rudimentary shell for the thesis work.

1.2 Thesis Contributions

The objective of this work is to design an efficient iterative-MIMO receiver fit for current and
upcoming wireless communication standards. The main contributions of this work are dis-
tributed in three separate chapters. The chapters integrate into one another to culminate in
achieving the main objective of the thesis, which is to design an efficient adaptive algorithm
that possesses a level of ‘intelligence’ for iterative-MIMO receivers. Each stage of the work

leads to the next logical progression from experimental to design practicality, as detailed below:

e An Adaptive Switching Algorithm that adapts to real-time channel conditions to min-
imize the power and energy consumption of iterative-MIMO detection systems is pro-
posed. This is realized in the form of a threshold control unit, which selects the minimum
complexity detector capable of meeting the desired bit-error-rate (BER) performance.
The adaptive algorithm shows promising BER performance on par with the current avail-
able detection schemes with lower resource utilization. An evaluation of the new algo-
rithmic design shows convincing dynamic and static power savings compared to baseline

detectors.

e Realistic power and energy saving trends of the Adaptive Switching Algorithm are com-

puted for the chosen hardware circuitry. Detailed power and energy analysis and the
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assessment of potential benefits of specific power minimization techniques show more
promising results compared to the others. The combination of both the algorithmic design
and the hardware design adaptivity results in tremendous gains in the overall proposed

design.

e The performance of the Adaptive Switching Algorithm in realistic conditions shows sig-
nificant power and energy savings with slight BER degradation. The proposed algorithm
is suitable to be used as a link between the detector and iterative decoder blocks in the
receiver, as a stopping criteria tool to help determine the number of decoding iterations
needed per transmission. Hardware design implementation for the proposed algorithm
maintains the performance of the Adaptive Switching Algorithm total receiver design in

spatially correlated channels with a lower hardware utilization complexity to boot.

1.3 Thesis Outline

The thesis is structured into several chapters covering different stages of the work, following a
logical flow of information, starting with the development from theoretical concepts and con-
tinuing on with the three main contributions of the research; the proposed Adaptive Switching
Algorithm, the design performance of the proposed algorithm on hardware and finally, the per-
formance of the hardware design in realistic channel conditions to test its readiness for real

world applicability. The structure of each chapter is described below:

Chapter 2 is divided into two parts, viz. the wireless communication and the computer ar-
chitecture. The wireless communication part explains the total iterative-MIMO systems and
provides additional background on the detecting and decoding techniques. For a reader who is
familiar with modern wireless communication systems, this part will serve mainly as a refresher
as it introduces the concept of MIMO systems that provides the foundation of the research. The
computer architecture part presents the different hardware types available and various power
minimization techniques labelled as state-of-the-art, each of which promises significant power
savings. The combination of the two fields of knowledge provides the comprehensive under-

standing required as basis for the work described in this thesis.

The proposed novel innovation of the Adaptive Switching Algorithm introduced in Chapter 3
proves to be suitable for the sole purpose of saving power and energy consumption of the overall

receivers in both slow and fast fading environments. The algorithm works by switching between
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thresholds pre-calculated between the transmitters and receivers during each transmission in
real-time. This novel idea is the first of its kind to produce an ‘intelligent’ system based on
switching from a high to a low complexity detector, exploiting full information of the current
channel conditions of a MIMO system. The adaptivity shows that promising savings can be

gained in comparison to non-adaptive iterative-MIMO detectors.

Having shown the potential power and energy savings that can be achieved within the receiver
design with the proposed algorithmic design of the Adaptive Switching Algorithm, the next
stage of work as described in Chapter 4 extends those findings by incorporating the novel
idea of the Adaptive Switching Algorithm onto hardware design, to promote its applicability in
implementations as well. With efficient design, the proposed algorithm shows that significant
power and energy savings can be gained when different power minimization techniques are
utilized. A comprehensive power and energy performance analysis of the Adaptive Switching
Algorithm is investigated for the iterative-MIMO systems, with the primary goal of minimizing
additional power and energy consumption within the receiver. The work is then extended to
examine the potential benefits of several power minimization techniques during the implemen-
tation of the Adaptive Switching Algorithm. An in depth investigation shows that power and
energy usage can be further optimized when the design for the proposed algorithm is designed

on state-of-the-art hardware.

After having demonstrated in the preceding chapters that the Adaptive Switching Algorithm
could save significant complexity, power and energy consumption in both algorithmic and
hardware design implementation in experimentally controlled conditions, its effectiveness in
real-world situations is then verified in Chapter 5, whereby the proposed algorithm is executed
under spatially correlated channel conditions. The performance of the Adaptive Switching Al-
gorithm in these channel conditions shows that significant energy savings can be gained with
slight BER degradation as the correlation between the transmitters and receivers increases. The
chapter describes how forwarding the proposed algorithm threshold information to the decoder,
which by providing the same necessary information used in the detector as a stopping crite-
ria for the decoder, helps limit the number of iteration(s) required during each transmission.
Significant power and energy savings are achieved for the full Adaptive Switching Algorithm
receiver in comparison to state-of-the-art hardware, with lower hardware utilization complexity

to boot.

The concluding remarks about this work, as presented in Chapter 6, enumerates the major
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contributions while identifying the novel aspects and improvements in comparison to other
research that has been carried out in the same area. Special attention is also paid to the specific
areas that could potentially be studied in future work. An appendix that contains a list of
publications originating from this work is attached and included as references throughout the

thesis.



Chapter 2
Background

2.1 Chapter Contribution

The work described in this thesis revolves around designing an efficient iterative-MIMO re-
ceiver that is suitable for state-of-the-art wireless communication standards. This chapter aims
to provide comprehensive knowledge in the areas of wireless communications for software
design and computer architecture for the hardware design implementation. The combination
of each field of specialization gives the background information required to help the reader in
understanding the nature of the work. The chapter begins by introducing the wireless com-
munication system under consideration and the blocks within the iterative-MIMO systems i.e.
the detector and the decoder. After a brief description regarding each block, the chapter pro-
gresses to the other area of specialization, namely the computer architecture. Several power
minimization techniques in hardware are discussed in detail to shed light on the state-of-the-art
methods currently available in the market. The chapter concludes by summarizing the chosen
methods in this thesis for detecting and decoding and the reason behind them. It also pinpoints
the best power minimization techniques to investigate in this study. Both information will lead

to better understanding of the upcoming technical chapters.

2.2  Wireless Communication

Wireless communication is the transfer of information between two or more points that are
not connected by an electrical conductor. The most common wireless technologies use radio.
Figure 2.1 illustrates the different antenna configurations for wireless communication links.
Single-input single-output (SISO), shown in Figure 2.1(a) is effectively a standard radio chan-
nel. This type of configuration has one transmitter and one receiver. Due to its simplicity,
SISO requires no extra processing for manipulating the diversity that may be used. The disad-
vantage of SISO is that it is vulnerable to interference and fading. Moreover, the throughput

is dependent on the channel bandwidth and the signal-to-noise ratio (SNR), which means it is
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bounded by Shannon’s law. The single-input multiple-output (SIMO) version is depicted in
Figure 2.1(b) and the multiple-input single-output (MISO) is shown in Figure 2.1(c). Due to
the usage of multiple antennas, there are several advantages that can be gained when compared
to their SISO counterpart. SIMO or MISO is able to increase the receive SNR by coherently
combining the wireless signals to achieve array gain. Moreover, diversity gain, which can
be classified as transmit or received diversity, are used to combat fading. The receive diversity
does this by enabling the receiver to receive signals from a number of independent channels.
Transmit diversity on the other hand, generates redundant data from the multiple transmitters
for the one receiver to choose from. This is when the signal is transmitted over multiple (ide-
ally) independent fading paths in time, frequency, or space. This allows the receiver to select
the optimum signal to extract the required data. The advantages of using multiple transmitters
are that it creates redundancy in coding and moves processing from the receiver to the transmit-
ter. This is highly beneficial for the receiver. The lower processing requirement, which leads to
lower power consumption, will have a positive impact on the size needed for multiple antennas,
as well as the cost and battery lifetime. In addition, the usage of multiple antennas exploits
the spatial dimension to increase the separation between users by directing signal energy to-
wards the intended user. This is interference reduction. Lastly, spatial multiplexing gain in
the multiple antenna setup provides additional data capacity by utilizing the different paths to

increase the data throughput capability [3] [4] [5].

By combining the configurations, MIMO may exploit all the advantages provided by the con-
figurations of others [6], from the aforementioned techniques of array gain, diversity gain,
spatial multiplexing gain and interference reduction. MIMO, as illustrated in Figure 2.1(d),
uses multiple antennas at both the transmitters and receivers. It enables a variety of signal paths
to carry the data, choosing separate paths for each antenna to enable multiple signal paths to
be used. It is found that the signal can take many paths between a transmitter and a receiver.
Additionally, by moving the antennas even by a small distance, the paths used by the signal
will change. The variety of paths available occurs as a result of the number of objects that
appear to the side or even in the direct path between the transmitter and receiver. By using
MIMO, these additional paths provide additional robustness to the radio link by improving the
SNR, or by increasing the link data capacity. As a result, it is able to considerably increase the
capacity of a given channel by increasing the number of receive and transmit antennas. MIMO
increases the throughput of the channel linearly with every pair of antennas added to the sys-

tem. Moreover, as spectral bandwidth is becoming an ever more valuable commodity for radio
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Figure 2.1: Channel transmission configurations

communications systems, MIMO is one of the techniques needed to properly exploit available
bandwidth more effectively as well. Hence, depending on the purpose of the MIMO system,
an appropriate trade-off needs to be found. Due to the increasing demand of data mentioned
in the previous chapter, spatial multiplexing provides the capacity to cater for this need. The
aim of this work is therefore, to find the right trade-off in a system that incorporates spatial

multiplexing, between the complexity or power consumption and the system performance.

2.2.1 Iterative-MIMO System Architecture

A typical iterative-MIMO architecture is illustrated in Figure 2.2. An in-depth explanation of
the full iterative-MIMO system can be found in the next section, however, as an overview, the
system can be partitioned into three segments; the transmitter, the channel and the receiver.
The transmitter is made up of several components. The hard data bits, u, first go through
the channel encoder. The channel encoder appends extra data bits to make the data transmis-
sion more robust to interferences on the transmission channel. There are many coding schemes
available and they can basically be categorized into two major types; linear block codes and

convolutional codes. In a typical iterative-MIMO system, the latter is used, specifically the
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turbo encoder, where two convolutional codes are used in parallel with some kind of interleav-
ing in between. This gives the encoded e bits, which are interleaved. These are being passed
through to the constellation modulator where the bits are mapped onto a digital scheme such as
the quadrature amplitude modulation (QAM) or the phase-shift keying (PSK). By representing
the transmitted bits a as a complex number and modulating a cosine or sine carrier signal with
real () and imaginary () parts respectively, the symbols can be sent with two carriers on the
same frequency. Once the symbols are modulated, they are split into several streams depending
on the number of transmitters used before being transmitted over a channel. The transmission

channel is essentially a path between two nodes in a network.
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Figure 2.2: Iterative-MIMO system channel

Consider a spatial multiplexing MIMO-orthogonal frequency-division multiplexing (OFDM)
system with M transmitters, IV receivers, and M > N. The channel can be represented by the

matrix described in Equation (2.1).

r=Hs+n 2.1

where the channel matrix H € CM*Y with independent elements h; ; ~ CN(u,0?), for
1 <i< Mand1l < 5 < N representing a block fading propagation environment, with

p = 0and 02 = 1, s = (s1,52,...,50)7 is the transpose vector of the M-dimensional

12
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transmit symbol vector with E[| s; [2] = M™!, n is the CV*! additive independent and
identically distributed (i.i.d.) circular symmetric complex Gaussian noise vector normalized so
that its covariance matrix is the identity matrix, i.e. n ~ (0, NoIn) of h;; ~ CN(0, Np) and
r = (r1,79,...,7n) 7 is the transpose N-vector of received symbols. Throughout this thesis,

the SNR is defined as the average SNR per receive antenna according to Equation (2.2).

ME,
No

SNR = 2.2)
where E; is the energy per transmit symbol s. The received symbols, r, are then processed by
the receiver. From Figure 2.2, first, the symbols are multiplexed into a single stream before

being detected by the MIMO detector to give 01 bit streams.

In the receiver, the detection can be solved in many ways. In order to optimally solve the
MIMO detection problem, an exhaustive search for the best solutions can be performed over all
signal constellations. The number of possible signal constellations increases exponentially with
the number of antennas and the number of bits per modulation symbol. Maximum-Likelihood
(ML) detection finds the minimum constellation point in Equation (2.1) within the received

symbols. It is given by:

$yr = argmin || r — Hs ||? (2.3)
seOM

where O denotes the constellation size of a specific modulation. The ML detector is optimal
and fully exploits all available degree of freedom. Even though ML produces the best BER
performance, due to its use of exhaustive search, it can have immense complexity for direct
implementation. The complexity grows exponentially with the transmission rate ¢, since the
detector needs to go through 2% hypotheses for each received vector. For example, for the case
of a 4 x 4 iterative-MIMO system employing 16-QAM, the detector would need to search a
total of S = 16* = 65,536 candidates in order to find the correct transmitted vector. For
64-QAM, this number rises to more than S = 64* = 16, 777, 216. This makes an exhaustive
search infeasible for a hardware implementation [7]. As the optimal exhaustive search is far too
complex for hardware implementations, many sub-optimal detection algorithms exist with a big
range in communications performance and complexity. Several efficient suboptimal detection

techniques have therefore been proposed or adapted from the field of multi-user detection.
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Even though these techniques are much less computationally demanding than the ML detector,
they are often unable to exploit a large part of the available degree of freedom, and thus, their
performance tends to be significantly poorer than that of ML detection. However, this trade-off

can be made for efficient hardware designs.

Back to Figure 2.2, after the detection, the symbols are then forwarded to the constellation de-
modulator where the symbols are demapped to get & before going to the turbo decoder, with two
constituent decoders working together with deinterleavers in between them. These iterative de-
coders then produce the hard output for the received symbol bits. Within the receiver is where
the focus of the work lies. This involves around minimizing power and energy consumption
within the iterative-MIMO receiver, particularly, by re-designing the MIMO detector and the it-
erative decoder parts of the system. The sections below explain different types of detectors and
decoders available, and their advantages and disadvantages are highlighted to showcase parts
that need to be improved for a better performance in power and/or energy consumption. Find-
ing the right trade-off between communications performance with implementation complexity,
and understanding the implications on the whole receiver is one of the major challenges in the

design of iterative-MIMO receivers.

2.2.2 MIMO Detectors

MIMO detection algorithms can be seen as a “tree search” problem, as shown in Figure 2.3.
This is realized by inverting the channel matrix H using the QR-decomposition to decompose
matrix H into a unitary matrix Q of dimension M x M and an upper-triangular matrix R of

dimension M x N according to:

H=QR (2.4)

The system model in Equation (2.1) can be left-multiplied by the Hermitian transpose of Q,

which is the Q¥ to give:

y2Qr=Rs+n (2.5)

When the problem is visualized as a “tree search”, the ML detection rule as given in Equation

14
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(2.3) can be approximated as:

Syr ~ argmin | ¥ — Rs || (2.6)
scOM
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Figure 2.3: MIMO detection as a tree diagram for 4-QAM modulation on a 4 x 4 MIMO system

Figure 2.3 depicts the search traversing down level ¢, looking through j nodes until the so-
lution is found, where the O is the number of constellation points in respective modulation
scheme. Since R is upper-triangular, the minimization in Equation (2.3) corresponds to a
“tree search” problem, where the nodes on level ¢ are associated with a partial symbol vec-
tor s = [s;,...,s37]T and with a corresponding squared partial Euclidean distance (ED), d;(s).

The squared partial ED is given by:

di(si) = dit1(siv1) + |Di(si)|” (2.7)

withi = M, M — 1, ..., 1. The distance increments | D;(s;)|? are computed as:
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M
1Di(si)” = [ — Y Rigsy|” (2.8)
Jj=t

Therefore, the squared ED for the ML solution is given as:

dyr = Slélélgl(dﬂsﬁ) (2.9)
and the ML solution is the associated s;. With this illustration in mind, the task of a MIMO-
detector is to find the vector s; that leads to the smallest d;, i.e. the leaf node with the smallest

squared partial ED.

To this end, a vast amount of literature exists that presents algorithms and approximations
to process the tree in a clever way in order to find the estimate § with less computational
effort than an exhaustive search. The trade-off between the different approaches consists of

implementation complexity, BER performance, and throughput.

2.2.3 Hard-Output MIMO Detection

The output of a MIMO detection algorithm is either a hard-output decision (the estimate §), or
an a posteriori probability (APP) for each bit of the transmitted symbol vector. The latter helps
further improve the performance of a MIMO detector. This soft-output iterative-MIMO detec-
tion algorithms were introduced in [8], and will be described in the next section. A hard-output
MIMO detector delivers an estimate § of the transmitted symbol vector s. Starting point is the
input-output relation as given in Equation (2.1). Several algorithms exist to obtain the estimate
8. In general, these are divided into linear detection, successive interference cancellation (SIC)

detection, and ML detection methods.

2.2.3.1 Linear Detectors

A linear detector first separates the data streams with a linear filter and then decodes each stream
independently. The computational complexity of linear hard-output MIMO detection is small in
comparison to other detection schemes. However, the BER performance is significantly worse

compared to ML detection. Examples of linear detectors are Zero Forcing (ZF) and minimum
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mean square error (MMSE) filters apply an inverse of the channel to the received signal in
order to restore the transmitted signal [9]. These linear filters can be implemented at a low

complexity, however, their performance is very low as well.

The ZF detector inverts the effect of the channel matrix, H. The corresponding channel filter

matrix G zp is given by Equation (2.10).
Gyr = (HI'H)'HY (2.10)

where G zp is the Moore-Penrose pseudoinverse of H. Left-multiplying Equation (2.1) with

G zr yields the ZF estimate of:

Vzr = Gzrr = s + Gzpn (2.11)

to obtain the symbol-vector estimate §, the equalized noise G zrn is ignored and each element

of ¥ zr is mapped to the closest constellation point according to Equation (2.12).

§Z‘ = [y}]o, for i= 1, ,M (212)

The ZF detection removes the co-channel interference and it is the ideal detector when the
channel is noiseless, i.e. n = 0. However, in a real system, the noise is enhanced and corre-
lated by G zr, which is the main reason for the poor BER performance of ZF detection. This

phenomenon is known as noise-enhancement [10].

The MMSE detector considers the noise power in the interference cancellation and therefore
shows a slightly better performance. It reduces the effect of noise-enhancement by minimizing

the total error, including the noise term, according to Equation (2.13).
G use = argmin || Gr —s ||? (2.13)
GeCMxN

The MMSE estimator matrix G ;3755 can be computed as in [10] to give Equation (2.14).

M
G = (HH+ —1,,) '"HY 2.14
mmsE = ( + SNR M) (2.14)
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Left multiplication of Equation (2.1) by G jysE yields:

A N
Yumse = Gumser = 4/ .S + Gymsen (2.15)
S

where the term \/EEQ is the mean (over fading) received energy of the signal transmitted by each
antenna, which is the residual noise caused by the co-channel interference. The detection step
is carried out, similar to ZF detection, by mapping ¥ 175 to the closest constellation point
analogous to Equation (2.12). The MMSE detector suffers less from the noise-enhancement
and therefore achieves the better BER performance in comparison to ZF detection. The com-
putational complexity remains approximately the same as for ZF detection with the exception

of the former needing an estimate on the SNR.

2.2.3.2 SIC Detectors

The SIC technique was initially adopted by the Vertical-Bell Laboratories Layered Space-Time
(V-BLAST) system [3]. In contrast to the basic ZF and MMSE filters, SIC detects the trans-
mitted streams sequentially. It chooses the substream with largest SNR and removes the in-
terference of each detected stream before continuing the detection process. The performance
of the SIC algorithm is generally better than ZF and MMSE filters. The starting point for SIC

detection is the QR-decomposition of the system model in Equation (2.5).

The matrix, R, has the property of being upper-triangular and the A/*? stream can be detected

according to:

~

. s
5 = |2 2.16
[RM,ML 10

The remaining streams are detected according to the following recursion:

M
1
s:[ G- > Rijgj)] ,  for i=M-1,..,1 2.17)
Rii j=it1 o

SIC detection resembles the procedure of ZF detection. However, the streams are processed

sequentially, one after another. This allows slicing the estimate g; to §; immediately after its
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computation and using the result to cancel out its influence on the subsequent streams. SIC can
be visualized as a single tree-traversal from top to bottom always selecting the node with the

smallest partial ED. The symbol vector leading to the leaf node is returned as the SIC estimate.

2.2.3.3 ML Detectors

Under the assumption that all transmit symbol vectors are equally likely, ML decoding is the
optimum hard-output MIMO detection method in terms of minimizing the symbol BER [10].
The task of an ML detector is to go through all the possible constellation points and level of

antennas exhaustively until the minimum node with the smallest ED is found.

A brute-force ML detector computes the ED for all possible transmitted vector symbols. The
ML solution then corresponds to the vector symbol with the smallest ED. In [11], it was shown
that the implementation of the detector is feasible at a throughput of 50 megabit per second
(Mbps) for a 4 x 4 MIMO system with quadrature phase-shift keying (QPSK) modulation, i.e.

for 4* = 256 possible vector symbols.

2.2.3.4 Sphere Decoding (SD)

Due to the ML detection problem complexity being extremely high, the brute force manner can
also be solved by the sphere decoding (SD) algorithm. SD traverses the tree in a clever way
such that the search complexity is significantly reduced by searching over only those lattice
points that lie within a hypersphere of radius ® around the received signal r [10]. From a “tree
search” point-of-view, the ML solution corresponds to the leaf associated with the smallest ED,
as shown in Equation (2.9). To find this leaf, SD traverses the tree in a depth-first manner. The

hypersphere around r corresponds to a pruning criterion in Equation (2.18).

di(s;) < D2 (2.18)

Complexity reduction is achieved by pruning those nodes from the tree that violate the sphere
constraint. Whenever a node is computed with a partial ED, d;(s;) > ®2, that branch is pruned
and no longer followed. In order to further reduce search complexity, some optimizations on
algorithmic level can be applied such as radius reduction. The & is initialized to & = oo in

order to guarantee to find at least one leaf node. Once the first leaf node is computed, the radius
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is updated according to & < d;(s;). Now, whenever a new leaf is found that fulfils sphere
constraint, ® is updated again. The reduction of ® allows for more rigorous tree pruning while
still finding the ML solution and therefore leads to a reduced average number of visited nodes.
Another technique of reducing complexity is enumeration, where each node in the tree has
several child-nodes. The processing order of these child-nodes considerably influences search
complexity, especially if radius reduction is applied. A scheme proposed by Schnorr and
Euchner [12] and modified for finite lattices in [13] visits the nodes of the same parent node
in ascending order of their partial EDs. SD with Schnorr-Euchner enumeration and radius
reduction is usually denoted as Schnorr-Euchner SD. A drawback of SD is the variable run-

time, due to variable search complexity, which renders detection latency unpredictable.

2.2.3.5 Close-to-ML Detection

The variable number of nodes that need to be visited in SD and the still considerable imple-
mentation complexity lead to a variety of algorithms that approximate the performance of SD.
The price for the reduced implementation complexity or for the constant run-time is slightly
worse but still close-to ML BER performance. Therefore, reduced complexity sphere de-
coding aims at decreasing the computational effort to compute a partial ED. To this end, the
computation of the squared /2-norm in Equation (2.7) is approximated by the /!-norm or the

[*-norm, respectively [14]. The I*-norm of a vector x is defined as:

I 1= RG]+ [S()] (2.19)

and the [*°-norm of a vector x is defined as:

| s [l1= max{[R(x)], |S()[} (2.20)

By application of the /!-norm, Equation (2.8) becomes:

[Di(si)] = [R(Di(si)| + [S(Di(si)[} (2.21)

and the partial ED in Equation (2.7) can be computed according to:
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di(s;) = dit1(si+1) + |Di(si)| (2.22)

With this approximation, the squaring operation in Equation (2.8) is saved, which helps to
reduce both delay and circuit area in a potential implementation. For the [*-norm, the distance

increment in Equation (2.8) is computed according to:

| Di(si)| = max{[R(D;(si))], [S(Di(si))] (2.23)

and the partial ED in Equation (2.7) becomes:

di(Si = max(dHl (Si+1), |DZ(SZ)‘)) (224)

In [14], it was shown that the application of the [**-norm is beneficial in terms of the number of
visited nodes as well as in terms of circuit area and clock frequency, while the BER performance

is only slightly reduced compared to ML detection performance.

The K-Best detector is another algorithm that provides a close-to-ML solution. The K-Best
algorithm for MIMO detection was first proposed in 2002 [15]. From a “tree search” point-of-
view, it resembles a breadth-first “tree search”. On each level of the tree, only the K nodes with
the smallest partial EDs are further extended. Compared to SD, the throughput of the K-Best
algorithm is constant. However, the BER performance is slightly degraded compared to SD and
strongly depends on the chosen K. The K-Best algorithm is well suited for very-large-scale-
integration system (VLSI) implementation due to the regular data path and the simple control

flow. Architectural transformations like pipelining and resource sharing can easily be applied.

Another algorithm for hard-output MIMO detection is the fixed-throughput fixed-complexity
sphere decoding (FSD) algorithm [16]. It achieves close-to ML BER performance and, like
the K-Best algorithm, it exhibits a constant throughput. The FSD algorithm overcomes the
problem of the variable complexity and the sequential behaviour of SD by searching only over
a fixed but well-defined number of lattice vectors. A common configuration is to visit all nodes
on the top level (i.e., on © = M) and only one node per parent node on the lower levels. A
decisive factor that significantly contributes to the close-to ML BER performance of FSD is the

order in which the streams are processed. The ordering is determined according to the number
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of nodes that are visited on the same layer. On the layers where all nodes of a parent node are
visited, the stream with the largest noise amplification is chosen; on the other levels, the streams
are selected in ascending order of their noise-amplification. In [16], the ordering is called FSD

ordering and was obtained via V-BLAST ordering and computed according to [17].

The number of operations, floating-point operations per second (FLOPS) or algebraic oper-
ations, required by a detection algorithm is expressed in the “big O” notation. However, its
practical meaning may be limited. In particular, for MIMO systems of moderate size, constants
and lower order contributions to the computational cost may also be relevant. Matlab™ pro-
vides counting of FLOPS. Though this technique is obsolete, it provides a general overview
of the complexity of each detection algorithm, where at this stage to be sufficient. Table 2.1
tabulates the FLOPS counts for each detection algorithm using Matlab™
a packet size of 1,024 utilizing 4-QAM on a 4 x 4 AWGN channel. SD and K-Best algorithms

environment running

have variable complexity whereby they are highly dependent on the size of the search radius ¢

and the expanded node K. In this case, & = oo and K is set to be 3.

High Performance Low Complexity
Detector  Type KFLOPS Detector Type kFLOPS
ML Fixed 28.7 ZF Fixed 1.7
SD Variable 24.4 MMSE Fixed 1.9
K-Best  Variable 21.1 SIC Fixed 4.2

FSD Fixed 16.8 V-BLAST/ZF Fixed 4.8

Table 2.1: Different algorithm complexity of MIMO detectors measured in kFLOPS

Figure 2.4 shows the frame-error-rate (FER) curves for the addressed hard-output MIMO de-
tection algorithms. The simulation results are for a 4 x 4 MIMO-OFDM system with a convo-
lutional code rate of ¢ = 1/2. Each OFDM symbol consists of 64 subcarriers using 16-QAM.
For the simulation results, perfect channel state information and perfect synchronization are
assumed. The simulation results clearly show the large difference between hard-output low
complexity linear ZF and MMSE or SIC detection and high performance K-Best and FSD in
relation to the ML detection respectively. Since the algorithms of V-BLAST/ZF and FSD show
similar inner workings (FSD requires the V-BLAST ordering), in the next chapter, a slightly
modified version of the FSD algorithm incorporation with the V-BLAST/ZF, is presented to be
the basis of the proposed efficient algorithm.

Better BER performance can be achieved by incorporating the APP in the detection. Figure 2.5
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Figure 2.4: BER performance comparison high performance and low complexity hard decod-
ing 16-QAM with convolutional coding of p = 1/2

shows the BER performance for an optimum iterative soft-input soft-output MIMO detector
with 4 iterations, for an optimum APP detector, and for an ML hard-output detector [8]. It can
be seen that the BER performance for a convolutional coding with code rate of ¢ = 1/2 in
binary phase-shift keying (BSPK) for additive white Gaussian noise (AWGN) channel shows
significant improvement over the hard decoding equivalent. With an iterative-MIMO detector,
the best BER performance can be achieved. However, the associated performance gains come
at the cost of a substantially increased implementation complexity. This work will utilize the

soft-output in the receiver.

2.2.4 Soft-Output MIMO Detection

As already shown in Figure 2.5, better BER performance in a coded MIMO-OFDM system
compared to hard-output detection can be achieved by computing the APP for each hard bit,
b, that associated to the transmitted symbol vector s. Therefore, the aforementioned detection
algorithms have to be adjusted to utilize the given soft-input information. The APPs are usually

expressed as log-likelihood ratio (LLR) [18] [19] and are computed according to:
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In P(s;p = +1|r,H)
Liy 2 b : 2.25
= i P(siy = —1)jr, H) (22

for all bits b on level 7 = 1,..., M. The sign of the LLR value L;; shows whether bit s; j is
more likely to be +1 or 1 and the magnitude of |L; | indicates the probability of the estimate.
The channel decoder takes advantage of the APPs and improves the estimate on the transmitted

bits.

2.2.4.1 Soft-Output ML Detector

In [19], Equation (2.25) can be computed according to:

L(i,b) = = ib (2.26)

under the assumption of equally distributed transmit symbols s. The sets Zi(;rl) and Zi(gl) are
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subsets of O, where the b*® bit of the i*!" stream is equal to +1 and 1, respectively. By using the

well-known Max-log approximation, Equation (2.26) can be simplified to:

1
L(i,b)~ —( min ||[r—Hs|?—- min | r—Hs|? (2.27)
02\ sezV sezTV

From Equation (2.6), it is obvious that always one of the two minima in Equation (2.27) cor-
responds to the ML solution. The other minimum in Equation (2.27) must be found by some
other means. Note that Equation (2.27) can be transformed by applying the QR-decomposition.

and then becomes:

1
L(i,b) ~ 2< min |§—-Rs >~ min ||§—Rs|? ) (2.28)
sEZf,;l) sEZf,Jg1>
The APPs according to Equation (2.28) can be computed by soft-output MIMO detection. For

example, SD can be used to compute the LLRs in Equation (2.28) to give soft-output FSD.

2.2.4.2 Soft-Output FSD

Soft-output FSD [19] computes Equation (2.28) based on a list £ of candidate symbols. The
candidate symbols are obtained by searching the tree according to the hard-output SD algo-
rithm. However, two modifications are necessary. First, radius reduction is carried out at a
slower rate, which is based on the largest element in £. Second, whenever a leaf is found, its
partial ED is written to the list £. If £ is already full and the partial ED associated with the
new leaf node is smaller than the largest distance in L, it is replaced. The search complexity
strongly depends on the list size where a list size of 1 corresponds to hard-output SD, while
larger list sizes are approaching the APP BER performance given in Equation (2.28). In [14],

for example, a VLSI implementation results of soft FSD is presented.

2.2.4.3 Linear Soft Output Detector

Linear soft-output MIMO detection is a low complexity method to obtain approximate LLLR
values. Based on the MMSE solution in Equation (2.13) and by using Equation (2.27) the

following approximate LLR values are obtained.
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2~ i (min (g5 [2 = win g5 ) (229)
sEZi’b seZi,b

where p; denotes the fading environment on the it™? stream [5].

1
~ Mo?[(HFH + Mo21y) Y4

)

-1 (2.30)

Pi

This can also applied to the ZF detection, with:

1
7 METE) T

2.31)

2.2.5 Iterative Decoders

Error correction codes provide the capability for bit errors introduced by transmission of a
modulated signal through a wireless channel to be either detected or corrected by a decoder
in the receiver. In this chapter, codes designed for errors introduced by AWGN channels and
by fading channels are described. As shown in Figure 2.5, incorporating an iterative decod-
ing method increases the BER performance. In this work, iterative receivers where MIMO
detector and channel decoder exchange reliability information to increase the communications
performance is investigated. Fading channel codes are either designed specifically for fading
channels or are based on using AWGN channel codes combined with interleaving. The basic
idea behind coding and interleaving is to randomize the location of errors that occur in bursts.
Since most codes designed for AWGN channels do not work well when there is a long sequence
of errors, the interleaver disburses the location of errors occurring in bursts such that just a few

simultaneous errors occur, which can typically be corrected by most AWGN codes.

Several iterative coding methods often require increased bandwidth or reduced data rate in ex-
change for their error correction capabilities. Coupled with block or convolutional interleavers,
these coding techniques are extremely powerful codes that exhibit near-capacity performance
with reasonable complexity levels. Due to this reason, they are being implemented in current
wireless communications. All of these coding techniques, from convolutional codes to turbo

codes, provide coding gain at a cost of increased bandwidth or reduced data rate.
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2.2.5.1 Convolutional Codes

Where block codes are based on algebraic/combinatorial techniques, convolutional codes are
based on construction techniques. Convolutional codes offer an approach to error control cod-
ing substantially different from block codes. It can be seen in Figure 2.6, a convolutional
encoder encodes the entire data stream into a single codeword and maps the information to
code bits by sequentially convolving a sequence of information bits with specific “generator”
sequences. The three important information required for this type of coding, the number of
inputs , the number of outputs v and the constraint length, K, where it has a memory of
K — 1 elements. In practice, the number of inputs is usually set as 1. The coding rate ¢ = %

determines the number of data bits per coded bits.

= CONVOLUTIONAL

I CNCOOER

INFORMATION
BITS

ENCODED SEQUENCE TO MODULATOR ,

Figure 2.6: Convolutional encoder

The performance of a convolutional code depends on the ¢ and the K, whereby, the longer the
K, the more robust the code and the coding gain. Coding gain is the measure in the difference
between the SNR levels between the uncoded and coded systems required to reach the same
BER level. However, this comes at a price of a more complex decoder and more decoding
delay. In addition, smaller coding rate provides a more powerful code due to extra redundancy

and it takes less bandwidth efficiency.
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2.2.5.2 Turbo Codes

It is theoretically possible to approach the Shannon limit using either a block code with a large
enough block length or a convolutional code with a large enough K. However, the processing
power required makes this approach impractical. Turbo codes overcome this limitation by using
recursive coders and iterative soft decoders. The recursive coder makes convolutional codes
with short constraint length appear to be block codes with a large block length, and the iterative
soft decoder progressively improves the estimate of the received message. Turbo codes can
be generated using specific types of convolutional coding, which is called recursive systematic
convolutional (RSC) coders. This work incorporates turbo codes as its error detection and

correction method as it is used in the current communication systems.

TURBO
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Figure 2.7: Innerworking of turbo codes for both (a) for encoder, (b) and (c) for decoder

A turbo code is the parallel concatenation of a number of RSC codes. The input to the second
decoder is an interleaved version of the systematic x, thus the outputs of coder 1 and coder 2
are time displaced codes generated from the same input sequence. The input sequence is only
presented once at the output. The outputs of the two coders may be multiplexed into the stream

giving a rate ¢ = 1/3 code, or they may be punctured to give a rate ¢ = 1/2. This is illustrated
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in Figure 2.7(a). The interleaver design has a significant effect on code performance. A low
weight code can produce poor BER performance, so it is important that one or both of the
coders produce codes with good weight. If an input sequence x produces a low weight output
from coder 1, then the interleaved version of x needs to produce a code of good weight from
coder 2. Block interleavers give adequate performance, but pseudorandom interleavers have

been shown to give superior performance.

At the receiver, the signal is demodulated with its associated noise and a soft-output provided
to the decoder. The soft output might take the form of a quantized value of the decoded bit with
its associated noise, or it may be a bit with associated probability. Most often it is the LLR,

which is defined as in Equation (2.25).

The LLR is a measure of the probability that given a received soft-input r in H, the message
bit x associated with a transition in the trellis is 1 or 0. If the events are equiprobable, then
the output is 0, but any tendency for x towards 1 or 0 will result in positive or negative values
of L. It is simplest to view the decoding process as two stages; initializing the decoder and
decoding the sequence. The demodulator output contains the soft values of the sequence x” and
the parity bits p} and p. These are used to initialize the decoder, as shown in Figure 2.7(b). The
interleaved sequence is sent to decoder 2, while the sequence derived from x’ is sent to decoder
1 and presented to decoder 2 through an interleaver. This re-sequences bits from streams x’
and p; so that bits generated from the same bit in x are presented simultaneously to decoder 2,

whether from x, p or p.

The decoder may have some knowledge of the probability of the transmitted signal, for exam-
ple, it may know that some messages are more likely than others. This a priori information
assists the decoder, which adds information gained from the decoding process forming the a
posteriori output. The decoder uses all this information to make its best estimate of the received
sequence. The output is then deinterleaved and presented back to decoder 1, which makes its
best estimate. Further iterations through decoders 1 and 2, with associated interleaving and
deinterleaving, refine the estimate until a final version of the block, x”, is presented at the

output. This process is shown in Figure 2.7(c).

The two main types of decoder are maximum a posteriori probability (MAP) and the soft-
output Viterbi algorithm (SOVA). MAP looks for the most likely symbol received, SOVA looks
for the most likely sequence. Both MAP and SOVA perform similarly at high SNR. At low
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SNR, MAP has a distinct advantage, gained at the cost of added complexity. MAP was first
selected by [20] as the optimal decoder for turbo codes. MAP looks for the most probable
value for each received bit by calculating the conditional probability of the transition from the
previous bit, given the probability of the received bit. The focus on transitions, or state changes
within the trellis, makes LLR a very suitable probability measure for use in MAP. SOVA is very

similar to the standard Viterbi algorithm used in hard demodulators.

Most of the assessments of turbo code performance have resulted from simulation. In the
ideal environment of a simulation, it is possible to produce highly impressive results. To apply
turbo codes to real systems requires acceptance of real world constraints such as latency and
computing power. Reference [21] has explored the performance of codes with parameters set
to values that are more practical. The performance of turbo codes was influenced by four main
factors, which are the number of iterations, K, interleaver design and puncturing. While there
is considerable material reporting on the optimum performance of turbo codes, surprisingly,
little material reporting on the performance of turbo codes in practical scenarios exists. Clearly,
exploring the lower limits of turbo code performance can provide an insight into their practical
limitations. Real decoders need to provide the best BER from the worst channel in the shortest
time. A realistic implementation would have low bandwidth, and thus use punctured codes,
short block sizes, few iterations and the lowest SNR capable of supporting the required service.
With this in mind, some additional simulations were undertaken as part of this assignment to

explore code performance in realistic implementations.

To show the performance of turbo codes, several simulations of Matlab™ routines on turbo
codes with a punctured turbo code at rate ¢ = 1/2 was used. The data block length was 1,024
bits and a MAP decoder was used in the simulation. The results shown at Figure 2.8(a) are the

BER against SNR curves for different number of iterations using 4-QAM modulation.

It can be seen that BERs of the order of 10~° are achievable with SNR < 3 decibels (dB) with
modest numbers of iterations. However, with more iterations come more processing power and
delay in processing. Therefore, it is apparent that there is a trade-off to be made between the
number of iterations, processing power, and SNR when seeking a given BER. Another simu-
lation was run to compare the performance of the MAP and SOVA decoders, particularly at
low values of SNR. The results, shown at Figure 2.8(b) for iterations of 8, confirm that MAP is
about 0.5 dB better than SOVA at low values of SNR. In addition to the costly operations of the

detecting and decoding themselves, synchronization [22], channel estimation [23], and MIMO
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Figure 2.8: BER for different specifications of turbo decoding according to (a) the number of
decoding iterations and (b) different decoding algorithm

preprocessing [24] also significantly account for the increased complexity of a MIMO receiver.
Having discussed the detection and decoding algorithms and their corresponding approxima-
tions, the main goal of these receivers is almost always to optimize the BER performance while
the required complexity is kept as low as possible. The worst-case complexity, however, re-

mains exponential [25].

2.3 Hardware Architecture

In order to reduce the complexity and thus the power consumption of the detecting and de-
coding operations, efficient hardware implementations are needed. There are several power
minimization techniques that may be incorporated concurrently with the detecting and decod-
ing operations to reduce the overall complexity of the MIMO receivers. The descriptions of

ones under investigation are included in the section.
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2.3.1 Power Minimization Techniques

While there are many power minimization techniques at the processor core level that can be
implemented on a programmable hardware, some work better than others depending on the
hardware architecture and/or the applications. The power consumption of digital CMOS cir-
cuits is considered in terms of three components and will be described in detail in Chapter 4.
Generally, they composed of the dynamic power component, which is related to the charging
and discharging of the load capacitance at the gate output. The short-circuit power concerns
component during the transition of the output line (of a CMOS gate) from one voltage level to
the other. There is a period of time when the transistors are on, thus creating a path from supply
voltage to ground. The static power component is mainly due to leakage that is present even
when the circuit is not switching. This is composed of two components; the gate to source leak-
age, which is leakage directly through the gate insulator, mostly by tunnelling, and source-drain

leakage attributed to both tunnelling and sub-threshold conduction.

This section aims to detail several power minimization techniques that can be applied and are
potentially beneficial to iterative-MIMO receiver hardware design. They all have one thing in
common whereby, the scaling of power enables the device to dynamically and proportionally
change the energy consumption as its workload varies. This adaptivity in the hardware and
software is the key solution to a more efficient design in the proposed algorithm and hardware
design goals. It warrants an in-depth examination of the power equation in order to assess any
given sustainably of chip architecture for power-sensitive applications today. This is realized
by examining hardware power characteristics and their effects before diving into optimization
tools and possible design solutions, which include, among others, clock and power gating,

voltage and frequency scaling, partitioning of voltage, parallelization and pipelining.

2.3.1.1 Clock Gating

A straightforward technique to reduce dynamic power consumption is to reduce gate toggling
either by reducing the number of gates in a device or minimizing the number of times each gate
toggles i.e. the clock frequency. This technique achieves a power reduction by reducing the

switching capacitance at the cost of computational speed.

The clock gating technique has been developed to avoid unnecessary power consumptions, like

the power wasted by timing components during the time when the system is idle. Specifically
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for flip-flops, clock gating means disabling the clock signal when the input data does not alter
the stored data. It can be applied from the system level where the entire functional unit can be
selectively set into sleep mode, or from the sequential/combinational circuit level where some
parts of the circuit are in sleep mode while the rest of the block is operating. However, clock
gating does not come for free. Extra logic and interconnects are required to generate the clock
enabling signals, and the resulting area and power overhead must be considered [26]. Typically,
the clock accounts for 20% to 40% of the total power consumption [27]. Figure 2.9(a) shows
that without clock gating, the power consumption remains high. When clock gating is used to
bypass the unused components of the system, as shown in Figure 2.9(b), a combinational logic

where ENABLE controls when the clock signal is passed to the further stages.
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SPECIFICATIONS

POWER

(@)

SIGNAL J_\_l_\_@ CIRCUITRY
CONSUMPTION (c)
WITHOUT GATING cLoZk GATED
CLOCK
ENABLE
(b) POWER
SIGNAL

CONSUMPTION

WITH GATING

Figure 2.9: The inner workings of clock gating where (a) is without clock gating, (b) is with
clock gating and (c) is the clock gating circuitry

Clock gating algorithms can be grouped into three categories [28], which are at system-level,
sequential and combinational. System-level clock gating stops the clock for an entire block
and effectively disables its entire functionality. On the other hand, combinational and sequen-
tial clock-gating selectively suspend clocking while the block continues to produce output. In
[29], a logic synthesis approach for domino/skewed logic styles based on Shannon expansion
is proposed that dynamically identifies idle parts of logic and applies clock gating to them to

reduce power in the active mode of operation, which results improvements of 15% to 64% in
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total power with minimal overhead in terms of delay and area compared to conventionally syn-
thesized domino/skewed logic. The circuitry for implementation is simple, as shown in Figure
2.9(c), where an AND gate with clock and ENABLE signals are required to bypass the unused

components. This circuitry adds little to no complexity when utilized to any system.

2.3.1.2 Power Gating

The basic strategy of power gating is to provide two power modes, which are a low power mode
and an active mode. The goal is to switch between these modes at the appropriate time and in the
appropriate manner to maximize power savings while minimizing the impact to performance.
Power gating is one of the most effective techniques to reduce both sub-threshold leakage and
gate leakage as it cuts off the path to the supply [30]. Figure 2.10(a) shows a simple schematic
of a logic block that has been power gated by a header switch or a footer switch. While the
logic block is not active, assertion of the SLEEP signal results in turning off either of the
switches, thus disconnecting the logic block from supply, and reducing the leakage by orders
of magnitude [31]. This technique is widely applied for implementing various sleep modes
in control processing units (CPU). The examples of power gating architectures can be found
in [32] [33]. Comparing both Figure 2.10(a) and Figure 2.10(b), where they show with and
without power gating respectively, the amount of power leakage consumption is substantially

reduced when the former is utilized, with the exception to a WAKE signal required earlier.

2.3.1.3 Dynamic Voltage and Frequency Scaling (DVFS)

Dynamic voltage and frequency scaling (DVES) is an effective technique to attain low power
consumption while meeting the performance requirements. Energy dissipation is reduced by
dynamically scaling the supply voltage of the CPU, so that it operates at a minimum speed
required by the specific task executed [34]. The technique principally involves scheduling in
order to determine when each request of the task is to be executed by the processor and allows
to slow down the processor, so that it consumes less power and takes greater time to execute.
The tasks can be assigned priorities statically; when the priorities are fixed, or dynamical; when
priorities are changed from one request to another. More information can be found in Chapter
4. However, to understand generally the power saving benefits of DVFS, consider a simple
model for the dynamic circuit power consumption as shown in Figure 2.11(a). For easier un-

derstanding, only the dynamic power is discussed. Consider the completion of a task consisting
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Figure 2.10: The inner workings of power gating where (a) is the power gating circuitry, (b) is
with clock gating and (c) is without clock gating
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of § operations, which must be finished within a fixed time of 7 seconds (s), and suppose that
the voltage V/, in volts (V) is chosen so that the processing finishes just-in-time, which is within
the budgeted time frame allowed. The speed in which the circuit can be operated, and therefore
the power, P in watts (W) required per operation, is a highly non-linear function of V, and it
depends on the specific technology used and on the regime in which the circuit is operated [35].
Commonly, as a first-order approximation, the power required P for § operations is modelled

as a quadratic function of the circuit operating speed [36]. Therefore, for a fixed 7, P is:

53
Poc— (2.32)

T
An important insight when designing algorithms for circuitry that supports DVF'S is that when
there is a hard deadline at which the result must be available, and the quality of the computation
result can be traded for a reduction in computational operations, then it is always better to run
the circuit slower and finish just-in-time, as shown in Figure 2.11(c), than to run it fast and finish

early so that it spends time idling, as shown in Figure 2.11(b). This is proved by Equations
(2.33), (2.34) and (2.35).

— DVFS

TIME T

Figure 2.11: The inner workings of DVFS where (a) without DVFS, (b) finishing early and (c)
finishing just-in-time for dynamic power consumption
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Now, consider again the task above comprising § operations. Suppose that the quality of the
result may be compromised so that only 6 — As operations are needed as shown in Figure
2.11(c). If the circuit is run slowly in order to finish just-in-time after 7 s, then the P required

is given in Equation (2.33).

5 — Ag)3
P’run slowly X (7_> (233)
In contrast, if the circuit is run at nominal speed, it will finish at time (5_57&5) - T, thus requiring
a power of:
§— Ag)d6>
Pfinish early X Q (234)
By comparing Equation (2.33) and (2.34), it can be clearly seen that:
Prini 52 A6
Jinish early ~142°0 >1 (2.35)

Prun slowly (A5)2 0

so running at full speed and finishing early would theoretically cost more energy than running

slowly and finishing on time.

The calculations and modelling were based solely on one power component however, which
is the dynamic power. Recent publication [37] has shown that the power consumption arises
from powering up and keeping the chip active can no longer be ignored. The study also states
that smaller chipsets require higher V' in order to process the same data in comparison to their
larger counterpart. Since the static power is highly dependent on the extrinsic properties of the
chip as well as the operating temperature, the power can only be approximated, which is to
be approximately a cubic function of the operating voltage. Therefore, new studies should no
longer neglect the static power consumption when considering the power usage during hard-
ware implementations. Chapter 4 confirms the fact that newer chipsets do have higher static
consumption and therefore the power consumption considered in this study is a combination of

both static and dynamic.
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2.3.1.4 Multicores, Parallelization and Pipelining

The switch to parallel processing is natural with the rapid increase in computational demands
of some applications, single-core architectures are just not capable of handling the amount of
computation needed. Moreover, parallelization is related to energy consumption. Hardware
architectures that perform many operations slowly in parallel are more power-efficient than
architectures that perform a single operation very fast. Figure 2.12 shows that when a single
core is used in comparison to multiple ones. Figure 2.12(a) depicts that even though over-
clocking a single core does achieve higher performance, the power consumption is high in
comparison to when a dual core is used, since the clocking can be lowered for lower power

consumption.

To understand why this is so, consider again the above task comprising § operations, and sup-
pose that the computation is broken down into 7 parallel and equally large parts. Then each
parallel circuit needs to perform 4 /7 operations within the time 7, and hence it can be fed with
a lower V' than supplied to the original circuit. The total amount of power consumed by the n

parallel parts is:

0 53
Pparallel xn- (5)3 = 5 (236)

which is n? times less than Equation (2.32). Of course, this is an overoptimistic conclusion
since if 7 is large, the static power consumption from leakage and the power from overhead in
the circuit will be significant [35][36][38]. Moreover, the cores may then no longer operate in

the super-threshold regime and the delay equations will drastically change [38].

Figure 2.12(b) on the other hand shows a simple power model for the power consumption taking
1 V to run one single core, in respect to the number of parallel cores utilized. It can be seen that

the more cores are being used, the power is shared among them as given in Equation (2.36).

2.3.1.5 Multiple Voltage Islands

Voltage island is a popular method for implementing multiple supply voltages on a chip. Itis an
attractive method for reducing leakage power. Moreover, in comparison to DVFS, it is a static
approach to reducing the dynamic power. Different blocks can be run at different voltages,

saving power. Today’s designs usually have multiple clocks running at different rates because
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Figure 2.12: The inner workings of parallel processing where (a) shows the effect of clocking
and (b) the number of cores affecting the performance and power consumption
on a hardware

of the required performance of all functional blocks are not the same [39]. And the concept of
voltage island was proposed in [40] to leverage voltage optimization of individual functional
blocks of a system-on-chip (SoC) design. For example, the most performance-critical block
like a processor core requires the highest voltage level while other functions such as memories
or control logic, which co-exist on the SoC just require a low level of voltage. Voltage island
formation can reduce the power consumption of a chip when there is a mixture of cores, which
need to run at different levels of performance. A voltage island is a group of contiguous on-chip
cores, which are powered by the same voltage level as shown in Figure 2.13. Without voltage
islands as depicted in Figure 2.13(a), the chip voltage level has to be set at 1.0 V throughout.
However, with voltage islands as shown in Figure 2.13(b), the total power consumption can
be reduced by operating non-performance-critical cores at different voltages while the overall

system performance is still maintained.
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2.4 Chapter Summary

The aim of this chapter was to provide a comprehensive understanding in both areas of studies,
which are the wireless communication and the computer architecture. Several algorithms
and power minimization techniques have been described and their inner workings have been
explored. Different detection algorithms are classified into two categories namely the high per-
formance and the low complexity detectors. After careful deliberation on the wireless commu-
nication algorithms, FSD and V-BLAST working with ZF are chosen to construct the proposed
efficient adaptive algorithm. This is due to FSD having the lowest complexity when compared
to other high performance algorithms and it achieves comparable BER performance. Moreover,
the parallel mechanism of the FSD may aid in power savings as well. The V-BLAST coupled
with ZF is selected as the low complexity detector because of its similar mechanism to FSD.
Therefore, this may lead to another power minimization technique, which is to share resources.
This will help in reducing the chip size and thus the power consumption. The decoding pro-
cess is chosen based on the latest LTE system, where a soft decision iterative turbo decoding
using the MAP decoders is produced to give the best BER in comparison to other decoders. In
computer architecture, to save power, in addition to parallelizing the algorithms and sharing

of resources, the technique of DVFS and power gating will also be implemented on the hard-
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ware design to investigate the effectiveness of the power minimization techniques to provide

flexibility in the design.
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Chapter 3
Adaptive Switching Algorithm

3.1 Chapter Contribution

The chapter presents an innovative design for the Adaptive Switching Algorithm in an iterative-
MIMO detector suitable for both slow and fast fading environments for the purpose of saving
power and optimizing energy consumption of the overall iterative-MIMO receivers. The al-
gorithm works by switching between thresholds pre-calculated between the transmitters and
receivers during each transmission in real-time. This novel idea is the first of its kind to pro-
duce an ‘intelligent’ system based on switching from a high to a low complexity detector,
exploiting full information of the current channel condition of a MIMO system. The adaptivity
has shown that potential savings can be gained in comparison to non-adaptive iterative-MIMO
detectors. This positive outcome was also translated during preliminary implementation on an
field-programmable logic array (FPGA), thus showing a promising design for future iterative-

MIMO detectors.

3.2 Related Work

Current communication systems such as the LTE and the Institute of Electrical and Electronics
Engineering (IEEE) 802.11 WiFi require immense resources to meet the demanding user data
throughput needs. The ability to increase the throughput without requiring more computational
power has always been a topic of interest amongst the wireless communication research com-
munity. Minimizing the power of the receiver, which is often limited, such as those that can be
found on handheld mobile devices, is still under intensive study. Moreover, power and energy
consumption of current base stations and proliferations of femtocells and/or wireless access
points also need to exercise being ‘green’ since the sources are often shared among millions of
devices. This amounts to substantial power usage, especially when there is an increasing trend
[41] for the number of these devices to be active at one time, therefore, there are significant

potential power and energy savings to be gained in these small mains powered devices as well.
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This is where MIMO comes into play. MIMO promises higher throughput without additional
transmit power [6]. It has been proven to be a promising technique in aiding this recent explo-
sive growth of data volume by using multiple antennas in both the receive and transmit sides.
It significantly improves the capacity and spectral efficiency of current wireless communica-
tion systems. Though this technique increases the data rate without affecting the power of the
transmitter, the processing power of the receiver is often excessive. This chapter describes the
attempts to minimize the power usage within the receiver, by designing a more efficient design

for realistic implementation.

Fundamentally, an iterative-MIMO receiver is divided into two parts comprising the MIMO
detector and the iterative decoder, working together to achieve the best performance. This
iterative-MIMO scheme, which combines a spatial multiplexing MIMO detector and an outer
forward error correction soft decoder with an interleaver in-between [42] [43], dubbed bit-
interleaved coded modulation (BICM) [19], has very high computational complexity as the
receiver detects and decodes symbols by searching through possible transmit symbols. More-

over, this is done iteratively in soft iterative-MIMO systems by the decoder.

There are many adaptive algorithms for these types of MIMO systems proposed in literature,
many of which focus on the throughput [44] [45] and the overall performance [46] [47]. Only
recently, a booming number of publications focus on power usage within the systems [48]
[49] [50] [51]. However, the results are neither specific to hardware design implementation,
nor do they concentrate on the latest wireless communication systems. Most adaptive systems
study adaptivity in the form of changing between different MIMO techniques of beamform-
ing, multiplexing and diversity [52] [53]. Though this helps in getting the best capacity in the
MIMO, it does not convey the complexity of the system, and the power performance of the
receiver. Some receiver-based studies such as [54] [55] [56] aim at linear detection using ZF
for adaptivity in power allocation. These publications do not consider the latest state-of-the-
art iterative-MIMO system such as the IEEE 802.11 WiFi or the LTE system. Reference [57]
considers the LTE system and focuses only on the throughput while disregarding the burden
the system has on power usage, which is an important parameter in current communication
devices. Shifting specifically to the detectors and modes of power saving, most publications
on adaptive MIMO detectors focus on saving power using the SNR [48], channel matrix con-
dition number [58] or reducing the number of turbo decoding iterations [59] for the receiver

as the method of switching parameters. Although they work to a certain extent, there is still
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room for optimization where power usage is concerned. The SNR [48] does not determine the
channel correlation relationship between the antennas in a MIMO system. Even if the channel
is deemed good, due to high SNR values; strongly correlated antennas would still not make
for a good transmission condition. This is because the correlated system provides insufficient
diversity for reliable MIMO detections. Condition numbers [58] of the channel matrix on the
other hand, would only take into account the input and output matrix of the transmitter and the
receiver. This is not sufficient as a switching metric since it disregards the noise level. One
publication, [60], presented a study of the MIMO adaptivity using the mutual information (MI)
of the system. However, it only tracked the performance of the system while neglecting the
effects it had on power consumption. The work described in this chapter has chosen to use the
data readily available within the channel estimation block provided between the transmitters
and the receivers. It considers the diversity of a MIMO system, which are the MI between the
transmitters and the receivers, as well as the noise level of the current channel. This MI gives a
maximum amount of information regarding a channel with minimal complexity in comparison
to using either SNR [48] or the condition number [58] alone. In the upcoming Chapter 5, it
shows that the MI does provide a more comprehensive knowledge about the channel. This is
evident when the proposed algorithm is simulated on highly correlated channel conditions. It is
discovered that unlike the channel matrix or the SNR, the MI is robust and is not affected by the
change in antenna correlations. Thus, this further confirms that the usage of MI as a threshold
design in the Adaptive Switching Algorithm would be beneficial to any systems regardless the
channel conditions or antenna setup. The work of this chapter focuses primarily on the detector
using MI as the threshold control in order to provide adaptivity, in the hope of achieving energy

savings earlier at the processing stages i.e. by avoiding both detection and decoding processing.

The proposed Adaptive Switching Algorithm prevents the receiver from performing extensive
computation under very low or very high SNR conditions, which ultimately yields significant
savings in power and energy. The algorithm utilizes multiple thresholds to intelligently switch
MIMO detection schemes according to the current environment. The Adaptive Switching Algo-
rithm is unique in a sense that it is the first of its kind to utilize a high complexity “tree search”
algorithm with a combination of low complexity “nulling and cancelling” algorithm adapting
to the current channel condition in real-time. By exploiting the maximum information of the
MIMO channel using the MI of each transmission condition, the diversity, spatial multiplexing
and the noise level can be used to help decode the data using the right algorithm whilst main-

taining the overall BER performance. Ultimately, using different detectors would only slightly
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alter the thresholds that need to be implemented, confirming that MI is adaptive to any system
for determining the threshold for switching. In other words, the idea behind the design is unique
and can be implemented on any future communication system as well. This ‘intelligence’ is the
key to efficient energy utilization in the receiver. The results of this work will be presented in

terms of overall power and energy savings from both software and hardware design standpoints.

3.3 System Model Description

The system under consideration consists of four transmitters and receivers. The two parts of the
receiver utilizes a BICM setup, which is a combination of a spatial multiplexing MIMO detector
and an outer forward error correction soft iterative decoder with an interleaver in-between, both

working together to achieve the best performance.
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Figure 3.1: Iterative-MIMO receiver system

The system is simulated using a 4 x 4 MIMO system with QAM modulation symbols, O, of
point size W = 4, transmitting 1, 024 bits per packet of 100, 000 channel realizations utilizing
an iterative-MIMO decoder of code rate, ¢ = 1/2, in a fast AWGN fading environment. The
received data, ry, is processed through the detector before being passed to the decoder as
shown in Figure 3.1 . The MIMO detector, where the focus of this chapter lies, then selects the
appropriate detection algorithm depending on the MI calculated between the transmitter and the

receiver in real-time. This threshold control provides adaptivity in the receiver, which is the key
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to saving power in the computationally-expensive process. This is realized by selecting specific
detection methods and consequently avoiding the decoding process in certain conditions. The
detection methods chosen are explained in detail in the next sections. It should be noted that
once the symbols are detected, they are passed to the iterative decoder, before a decision can be

made. More details on the iterative decoding can be found in Chapter 5.

In the detector, there are many types of detection algorithms available. They can be generalized
into “nulling and cancelling” methods, such as the ZF [61] and the MMSE [62] techniques as
well as the “tree search” algorithms, for instance, the ML, SD [63], and the FSD [16] routines.
For simple detectors, ZF and MMSE provide low complexity, however, they give poor perfor-
mance in terms of BER. Linear detection methods, combined with “nulling and cancelling”,
seem to give a better BER whilst maintaining low complexity. In the system design, the com-
bination of the simple V-BLAST and ZF is chosen and implemented due to it giving a balance
of an acceptable BER performance and complexity in the high SNR region. This is particularly
useful in good channel conditions, where the lack of noise in the channel means the symbols

can be easily detected by the detection algorithm, using minimal computational resources.

On the other hand, for close to high ML performance, “tree search” algorithms such as FSD,
layered orthogonal lattice detector (LORD), smart candidate adding algorithm (SOCA) and
K-Best result in high complexity in order to meet the performance criteria. This drains quite
significant power in order to decode data packets, especially when used in good channel condi-
tions. However, these are useful during transmissions on noisy channels. In such poor channel
conditions, FSD has been chosen as a detection method. Moreover, for easier hardware im-
plementation, FSD is used as it is independent of the ®, meaning, the complexity is fixed and
minimal in comparison to other “tree search” algorithms. The computational power required
to implement “tree search” MIMO detection every time a symbol is transmitted is unnecessary
in some channel conditions. These two algorithms work in tandem according to the thresh-
old design based on the MI of the current channel conditions. As each detection algorithm
has a different performance and complexity, choosing between them depends on the unique re-
quirements of the system. FSD and V-BLAST/ZF techniques are incorporated into an adaptive
approach that has the ability to selectively operate according to the received signal conditions in
real-time. These two detection algorithms are chosen due to their fixed data throughput, poten-
tial for hardware parallel implementation and relatively low complexity for their own particular

detection group. Moreover, FSD can be seen as multiple V-BLAST/ZF algorithms working
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together at the same time. This provides room for optimization for chip area utilization when

the same parts of the chip can be reused for both algorithm implementations.

3.3.1 V-BLAST/ZF

ZF is a simple and effective technique for retrieving multiple transmitted data streams at the
receiver. It has a relatively simple structure and good performance at high SNR. ZF provides
sub-optimal performance offering significant complexity reduction with tolerable performance
degradation. This method works by neglecting the constraint s € @M in ML detection and uses
different criteria to find the nulling vectors, the most common being the ZF or MMSE approach
[64]. Generally, the symbol § is given by a transformation of the received vectors r in the form

of:

s = Q(Gr) 3.1)

where G is the Moore-Penrose pseudoinverse matrix that depends on channel H and Q) is
a quantizer that maps the argument into the closest point in O™ . Even though this method
has low complexity, it does have a major drawback of having a rather poor performance in
terms of BER when implemented on an iterative-MIMO system, especially during bad channel

conditions.

V-BLAST on the other hand, is a method proposed by [65] and it may achieve very high spectral
efficiency promised for MIMO systems [3] [4] [66]. It gives slightly better BER performance in
comparison to linear detection. However, due to the error propagation, it is still sub-optimal in
performance. This is often overlooked due to its practicality during implementation. V-BLAST
is a recursive procedure that works by minimizing the influence of noise by re-ordering the
channel matrix according to the signal strength received. The algorithm simply makes a first
detection of the most powerful signal, consequently subtracting that signal from the overall
detected symbols. It then continues the same process by proceeding to the detection of the

second most powerful signal and so forth.

Assuming the ordered set for a series of channel realization k to be:

§E{k17k27"'7kM} (32)
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the detection algorithm operates on r;, given in Equation (3.3), while computing the decision
StatistiCS Y, , Ykos - - - Yky,» Which are then quantized to form estimates of the received sym-
bols 8,8, . ..Sk,,. The detection order is determined by the information about the channel
conditions readily available within the estimation block. After computing Equation (3.1), the
detection process uses linear combinatorial nulling and symbol cancellation to successively

compute the received vectors.

i, =01; — ék‘l (H)k‘l (33)

In the original V-BLAST method [65], parallel data streams are simultaneously transmitted
through multiple antennas in the same frequency band, and decoded at the receiver with ZF-
SIC detector, which helps attain high spectral efficiency with reasonable computational de-
coding complexity. Therefore, it can be said that when combined with the ZF method, the
V-BLAST/ZF method shows some improvement in BER while still maintaining low complex-
ity. Due to these advantages, V-BLAST/ZF has gained lots of attention [17] [67] [68] [69].
The complete V-BLAST/ZF detection algorithm is summarized in Table 3.1, where G denotes
the Moore-Penrose pseudoinverse of the current channel H, and therefore, (G;); is the ;'
row of G;, Q(-) is a quantizer to the nearest constellation point, (H)g, is the k™ column of
H, Hj, denotes the matrix obtained by zeroing the columns k1, kg, . .., k; of H, and Hi de-
notes the pseudoinverse of Hy . This type of detection scheme is best deployed in high SNR

environments.

3.3.2 FSD

FSD is an algorithm proposed by [70], which was derived from the original SD detection algo-
rithm. SD reduces the complexity of the ML detection problem [71] [72] [73] by introducing a

constraint within the search called the sphere radius, ®.
$sp = argmin || r — Hs ||>< &2 (3.4)
seOM

The search can be visualized as a tree, traversing down each node until it encounters one with
ED that is larger than ®, where it will eliminate that branch from the search as shown in Figure

3.2(a). The minimum symbol is acquired once it has traversed down through every path of
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Pseudo-Code

Channel realization:
G =G
1=1

Recursion:
ki = argminjg g, g I (GY);s [P
Yk, = (Gz)kzrl
éki = Q(ykz)
rit1 =T; — S, (sz)
Git1 = Gy,
t=1+1

Table 3.1: V-BLAST/ZF algorithm

every level, i, reaching the end i.e. the leaf node(s). The SD has major drawbacks when it
comes to hardware implementation due to its variable complexity and sequential nature. The
complexity of the SD depends on the noise level and the channel conditions, which determine
the size of ®. Moreover, the linearity of the search prevents parallelism for newer hardware

design implementation.

Parallelization has been proven to minimize power and energy consumption in circuit designs
due to the workload being shared across multiple computational resources, so that the circuit
can produce the same amount of throughput at a lower frequency of operation [74] [75] [76].
Therefore, [16] proposed a modified version, the FSD, in order to overcome both shortcomings.
FSD is a combination of brute-force enumeration and a low complexity, approximate detector.
Much like the SD, FSD traverses down the tree, as shown in Figure 3.2(b), whilst calculating
the ED. Instead of having ®, FSD determines in advance the number of lattice points § around
received signal r it would pass through, evaluating r independent of the noise level, giving it a
fixed throughput. The algorithm makes use of the fact that the diagonal entries of R from the

QR-decomposition of the channel matrix satisfy [77]:

E[r})] < E[r3y] < -+ < E[r}y] (3.5)
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Figure 3.2: Tree structure of (a) SD and (b) FSD and V-BLAST/ZF algorithms

Thus, the number of candidates at antenna level ¢ denoted by n; should follow:

Elnn| > Elny-1] = -+ > E[nq] (3.6)

The main idea of FSD is to assign a fixed but distinct number of candidates, n, to be searched per
antenna level. The FSD is considered a promising algorithm for soft iterative-MIMO detection.
Since its introduction, the reduction of complexity in FSD has received significant attention [70]
[78] [79] [80] [81]. After the matrix decomposition and removal of constant terms, Equation

(3.4) can be written as:

[U(s - 8)|]* < @° (3.7)

where U is an M x M upper triangular matrix with entries r;;, obtained through the QR of H
to give G, and § is the unconstrained ML estimate of s [19]. The solution for Equation (3.7)
can be recursively calculated starting from ¢ = M until level ¢ = 1 for each channel realization

of k, which is checked on each iteration of ¢ and the constellation point s; are expanded as
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Pseudo-Code

Channel realization:

G =QR
i=M
y=Q"r

Expand all nodes on the first level

Recursion:
while ¢ # 1
di = D; + dit1

dip1 = Zj]\/ii+1 7432']"316]' - ?)kj|2
Dy; = 135k, — U, |
1=1—1

end

Choose minimum path for ED

S = Skn_15-)Ski» Skg

Table 3.2: FSD algorithm

partial ML candidates. When a point is found when ¢ = 1, the solution is updated with the new
minimum ED and the algorithm continues the search. The breakdown of the algorithm is given
in Table 3.2. The recursion added the partial accumulated Euclidean distance (AED), d;, to the
ED, D;, accumulating on each level until the search reached the bottom of the tree, which is the
leaf node(s). Once the search reached the leaf node(s) or when the level : = 1, the minimum

ED is chosen as the solution for S.

The V-BLAST/ZF algorithm works by predicting the best path of the FSD without authenticat-
ing hoping that it would yield the correct output. This is illustrated in Figure 3.2(b). Therefore,
the former algorithm is inferior in performance in comparison to the latter detection algorithm.
The chosen algorithms of FSD and V-BLAST/ZF are the cornerstones for the proposed detec-
tion algorithm for this chapter. They work together as one detector switching from one to the
other based on the current channel condition and the noise level, which are the information
between the transmitter and the receiver, MI. Moreover, they are chosen due to their similar
mechanism in a way that they may be able to share hardware resources when searching through
the possible transmit symbols. V-BLAST/ZF traverses one path of the FSD detection tree,

choosing the one with the best SNR condition, optimistically assuming the path would yield
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the correct results. The sharing of hardware may lead to further power and energy savings
during implementation. This is the basic process for the proposed detection algorithm; the

Adaptive Switching Algorithm.

3.4 Adaptive Switching Algorithm

Current MIMO detectors usually lack adaptivity whereby all receivers behave exactly the same
way regardless of the received signal characteristics as well as the current channel conditions.
This ‘one size fits all’ architecture does not work well in some situations, since different users
experience distinct channel conditions and/or current channel conditions. For example, a sta-
tionary user who is physically near to a transmitter would often have a better data throughput
than one who is further away. Doppler rates determined by motion in the environment also play
a part in determining the current condition of the channel. To decode symbols in bad channel
conditions would prove to be pointless since the data would not be likely to be decoded success-
fully anyway. Therefore, having ‘intelligence’ in the detector that could modify its behaviour
according to current channel conditions would be ideal. This adaptivity in the proposed algo-
rithm, dubbed the Adaptive Switching Algorithm, is controlled by the MI calculation between
the transmitters and receivers. These MI values calculated in the channel block then determine,
which detection methods to be deployed in the iterative-MIMO receiver, whether V-BLAST/ZF,
during in high SNR regions, or FSD when the receiver needs extra support to decode the data
due to bad channel readings. It is well-known that the MI of a MIMO channel is given by Equa-
tion (3.8) and the information required, H, is already available within the channel estimation
block. Different values of initial received soft information may lead to significantly different
behaviour during the iterative decoding process. The study performed by [82], which compares
the performance of iterative decoders using different received soft LLR information metrics,
discovered that by computing the MI, the number of iterations in turbo decoding can be found
using the highest complexity ML. MIMO detection method. Reference [82] also proves that
the best approximation of the received symbols obtained are lossless and that the exact LLR
values are sufficient statistics of r about s. Therefore, using this information and the principle
of exploiting MI calculation in Equation (3.8), the work applies this approach for the first time
to a MIMO detector to further save power and energy consumption in the overall receiver. With
any given channel model in Equation (2.1), and a Gaussian constellation with E[|s;|?] = M1,

the MI for the ML method is
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I(Hy) £ log, det <I + H’]“V}OI’?> (3.8)
The values of MI are spread on a range for a given value of SNR. Figure 3.3 illustrates the
accumulated MI performance of the detector as a function of probability of receiver failures
and successes according to the system model description. The results obtained are specific to
the system model setup, however, they can be translated to any modulation scheme, number
of antennas with variations of channel modelling, only with the exception of minor alteration
of the threshold values. The principle behind this design is therefore valid for any current and

future communication systems as well, more information of which is included in Chapter 5.
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Figure 3.3: Probability of receiver successes and failures for a 4 x 4 MIMO where (a) for the
FSD method and (b) for the V-BLAST/ZF method

Threshold 1, 77 can be obtained in Figure 3.3(a), which shows the FSD performance. Region
R1, which is below a certain MI threshold of approximately 2,200, is where the receiver is
certain to fail, with the error probability distribution of 1, when trying to decode a symbol
message. With 100% decoding rate of failure, the best course of action for the receiver is to
request a retransmission from the automatic repeat request (ARQ) block from the transmitter

rather than to attempt decoding where it is unlikely to succeed, only wasting significant com-
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Pseudo-Code

Channel realization:{H,Hy - - - , Hj}
for r; <ry
I(H},) = log, det(I + HkTI:’]“{)
il < Ty

r; error, request ARQ

elseif T} < I, < T,
r; with low MI: FSD

else [; > T
r; with high MI: V-BLAST/ZF

endif

endfor

Table 3.3: Adaptive Switching Algorithm

putational energy, whilst yielding no correct output. Current wireless communication systems
would attempt to decode nonetheless and to only stop until the number of set maximum iter-
ations are completed. This is the limitation of current system designs. On the other hand, the
V-BLAST/ZF performance is shown in Figure 3.3(b). In region R3, the value for threshold 2,
T5 of about 7,100 can be seen. The receiver will decode the symbol message with very high
probability above this MI value, therefore, a simpler detection method will suffice in detecting
the symbol, which is the V-BLAST/ZF method. In addition, the area in-between (where the
two curves intersect between the two figures i.e. 71 < I; < Ty), region R2, the two thresh-
olds shows that the receiver would sometimes fail to decode. Thus, a more powerful detection
method is needed to assist the receiver in decoding the message. This is executed by deploying
the FSD algorithm in the MIMO detector. By obtaining these thresholds, the design of the
Adaptive Switching Algorithm can be described in Table 3.3.

55



Adaptive Switching Algorithm

3.5 Results and Analysis

The effectiveness of the Adaptive Switching Algorithm can be measured using the performance
and complexity trade-off metrics. This section describes these efficiencies from both hardware

and software perspectives.

3.5.1 Software Performance

The performance can be quantified by calculating the number of errors in a total frame, which is
the BER analysis. The system design has been set to tolerate a BER of 1072 or less in high SNR
regions. The detector is designed in such a way that it may be able handle one error per 1000
packets transmitted, thus giving the BER threshold line of 10~3. This BER threshold line is
considered sufficient to maintain a satisfactory performance for the system under consideration.
It should be noted that, when different coding schemes is added, this threshold may be adjusted
lower to fit the requirement of any system. In the system model used, the BER is depicted
in Figure 3.4. The Adaptive Switching Algorithm gives similar performance to the FSD and
performs much better than the V-BLAST/ZF algorithm in low SNR regions. In very high SNRs
of about 10 dB and above, the less complex algorithm of V-BLAST/ZF is adopted and the BER
performance is below the set error tolerance line, which works under the design specification for
the performance of the overall system design. The FSD does give a much better performance
than the tolerance line, however, this level of performance is unnecessary and only adds extra
complexity for the hardware. When the SNR is below 0 dB, the receiver abandons the detection
process, subsequently avoiding the complexity of the iterative decoding process as well, gaining
substantial power and energy savings by requesting an ARQ from the transmitter, saving power
in the total iterative-MIMO receiver. Furthermore, the area above the set error tolerance line and
before the area where retransmissions occur, which takes place circa 0 dB to 6 dB, the Adaptive
Switching Algorithm provides much higher chances of successful processing in comparison to
the V-BLAST/ZF method. The performance of the Adaptive Switching Algorithm is therefore
better than the generic V-BLAST/ZF detector.

By obtaining the thresholds, the total usage of each MIMO detection algorithm throughout the
span of the SNR can be obtained and is shown in Figure 3.5, where it depicts transmissions of
1,000 packets of 1,024 bits per frame over 100, 000 channel realizations. It clearly shows that
below an SNR value of 0 dB i.e. 77, no processing is taking place. In addition, in high SNR
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Figure 3.4: BER performance of different detectors on a complex 4 x 4 MIMO system

regions, V-BLAST/ZF is utilized. This figure concurs with Figure 3.4, where the performance
coincides with the algorithm switching rate of success, particularly evident at SNR of below
2 dB for when ARQ is active and no decoding is taking place, and SNR values between 8 dB
and 12 dB, when the switching between the high performance FSD to the low complexity V-
BLAST/ZFE. In addition, at an SNR of above 14 dB, only V-BLAST/ZF is utilized the entire
time. From this, another part of the parameter, i.e. the complexity measurement of the software

can be determined.

The complexity measurement gives an important overview of the hardware before the design
implementation and provides initial indications of power and energy savings in hardware. A
preliminary complexity analysis of the Adaptive Switching Algorithm is determined by the
multiplier counts in the code. Assuming that the complexity of channel ordering is the same
for both detection schemes, the multiplier counts for a transmission of one symbol for 4 x 4
M-QAM deploying FSD is M-times more than V-BLAST/ZF. Figure 3.6 plots the percent-
age complexity results against the SNR of the channels, where 100% equals the complexity of
FSD, while the V-BLAST/ZF requires only 25%. Taking the FSD as a baseline for the com-
plexity calculations, the complexity of the Adaptive Switching Algorithm can be calculated by
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Figure 3.5: Detection algorithm switching selection in iterative-MIMO receiver

averaging over MI values shown at certain SNR and it is much lower than the FSD, which
requires 62% of the multipliers required. In other words, a 38% complexity reduction can be
achieved. Most power and energy savings can be gained during the “No Decoding” phase since
no processing is required in this region. Furthermore, power and energy are saved during the

utilization of V-BLAST/ZF algorithm i.e. where MI > 7,100, only 25% multiplier usage.

3.5.2 Hardware Performance

In order to comprehend the reason behind the complexity savings gained in Figure 3.6, consider
four extreme scenarios of three transmission frames of 1,024 data bits per frame size being
transmitted using different detection algorithms. From this, it can be seen that if only ARQ is
used such that depicted in scenario 3, the complexity would be equals to zero. The maximum
complexity would be dominated by scenario 2, and using the results obtained in Figure 3.6, the
complexity of the V-BLAST/ZF is approximately a quarter than that the FSD. If the FSD is
set to be 100% and the V-BLAST/ZF is at 25%, scenario 4 would give a complexity of around
42%. From Figure 3.6, it is shown that the complexity of an FSD is M-times larger than that of
the V-BLAST/ZF.
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Recall that the software results obtained previously was given as 62%. This can be concluded
that both software and hardware standpoints show that approximately 50% savings can be
gained when the Adaptive Switching Algorithm is utilized in comparison to the FSD baseline.
To confirm this, the preliminary hardware performance is analysed using an exemplar FPGA
design based on Xilinx® Virtex-5. The programmable hardware has a varying voltage range
of 0.95 V to 1.05 V, and an operational frequency range of 60 megahertz (MHz) to 400 MHz
[83]. In order to assess the efficacy of the Adaptive Switching Algorithm in saving power and
energy consumption on hardware, both chosen iterative-MIMO detection algorithms, FSD and
V-BLAST/ZF, are operated using the operating limits of the hardware capabilities spectrum.
For the case of Xilinx® Virtex-5, it may operate at the lowest voltage of V = 0.95 V and
the frequency of f = 60 MHz. For easier future reference, this work will dubbed this the
“low power” mode. On the other end of the spectrum, the “high performance” mode can be
fashioned using the high end spectrum limit of the design, which are to be at V' = 1.05 V and
f = 400 MHz. These modes are constructed in order to get an overview of the minimum and
maximum capacity limitations of the hardware operation. The modes of operation informa-
tion is determined using the Xilinx® integrated software environment (ISE) for the Xilinx®
Virtex-5. The Xilinx® ISE comprises a combination of software/hardware setup performed
in Matlab™ for modelling the transmitter and parts of the receiver, namely the channel re-
ordering. The built-in Simulink® and Xilinx® System Generator cover the rest of the receiver
parts, which are the components that make up the Adaptive Switching Algorithm detector. The

power profile is estimated using a separate Xilinx® Power Estimator™ (XPE) tool.

Xilinx® Virtex-5: XC5VLX330TFF1738

Logic Resource  Available | Used Utilization Used  Utilization
Utilization V-BLAST/ZF FSD
Slice Registers 149,760 | 3,312 2% 13,683 9%
Flip Flops 37,440 892 2% 4,688 12%
4-Input LUTs 149,760 | 2,940 2% 12,161 8%
DSP48E 1,056 48 4% 132 12%
Memory (RAM) 516 12 2% 28 5%

Table 3.4: Xilinx® Virtex-5 resource utilization for the V-BLAST/ZF and FSD detection algo-
rithms

The summary of the total number of the FPGA resources used are given in Table 3.4. The per-
centage of slices used can be seen as an indicator of the amount of control logic and intermedi-

ate buffers required in the Adaptive Switching Algorithm. It can be seen that the complexity of
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the V-BLAST/ZF is approximately 25% less than FSD, and therefore, this result matches the
software multiplier counts. This factor reflects hardware mapping and the resulting throughput.
Though the work focuses on the power and energy savings, it is advisable to check that the
other performance parameter, which is the average throughput, also behaves within the accept-
able system requirement. In addition, by keeping the throughput in check, it helps to determine
which modes of operations are better, either the “low power” or the “high performance” when
considering the practicality of the Adaptive Switching Algorithm behaviour on hardware. The

throughput, J, in Mbps is calculated according to:

Javg = M -logo W - f / Bavg (3.9)

where (34,4 is the average number of clock cycles required to detect a MIMO symbol.

For “low power” mode, where f = 60 MHz and the minimum number of cycles iS Gy =
4, the maximum throughput is J,,;, = 240 Mbps while the “high performance” mode gives a
throughput of J,,,4. = 1, 200 Mbps. Increasing the clock frequency would result in a significant
increase in the throughput, therefore, the ratio for f = (34,4 could be seen as an indicator of the
level of optimization of the hardware design. The hardware setup parameters are included in
Table 3.5.

Xilinx® Virtex-5: XCSVLX330TFF1738
Operation Modes/ Low Power High Performance

Parameters
Core Voltage 095V 1.05V
Clock Frequency 60 MHz 400 MHz
Max Throughput 240 Mbps 1,200 Mbps

Table 3.5: Experiment parameters for different detection algorithms

Figure 3.8 shows the total power usage given by the Xilinx® XPE™ tool for the Xilinx®
Virtex-5. Major power components given by the software are four, the two dominating com-
ponents being the dynamic and static power consumptions. The dynamic is mostly made of
toggling of switching operations whereas the static is mainly caused by powering up the chip
itself. More detailed information regarding the power components are given in Chapter 4. Sim-
ilar to details reported in [84] [85] [86] [87], there are significant dynamic power savings in the
circuit, portrayed in Figure 3.8, where “low power” mode uses 9%, of the overall power shown

in Figure 3.8(a) in comparison to 29%, shown in Figure 3.8(b) when the circuit is run at full
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“high performance” mode. However, these savings would be minimal in comparison due to the
much larger static power, which dominates the overall chip power. The two other components
being the transceiver and I/O power are negligible at this point in comparison to the dynamic

and static components at approximately 0.1 W shown in Figure 3.8(c).
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Figure 3.8: Total power usage in Xilinx® Virtex-5 hardware design

Figure 3.9 shows the “low power” results for (a) FSD and (c) V-BLAST/ZF as well as the “high
performance” statistics, (b) and (d), for FSD and V-BLAST/ZF, respectively in terms of both the
power and energy savings. It should be noted that some savings are gained when the Adaptive
Switching Algorithm switches from the high complexity FSD to the simpler V-BLAST/ZF
detection. The power saved during the swap is equivalent to 34% for “high performance” and
44% for “low power” mode. The energy savings when changing from “high performance” to
“low power” and the energy savings for the swapping between the two detection algorithms can
be calculated and are illustrated here. The total time computed that is obtained using the same
system setup when operating at the lowest frequency of 60 MHz serves as a baseline, giving
a completion time at approximately 20 ps. When operating at 400 MHz, the task completion
time is approximately 8 times lower than when operating at the lower frequency. By finishing

quickly, the hardware can be put into sleep mode, reducing the total energy, since the idle power
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is negligible ~ 0.08 mW [83]. More details on the hardware design can be found in Chapter 4.
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Figure 3.9: MIMO detection FSD (a) and (b) in comparison with V-BLAST/ZF (c) and (d) for
“low power” mode and “high performance” mode respectively

By calculation, within the time budget, which is at the same total rate of completion, the en-
ergy required to complete one task is lower by 59% when the circuit operates quickly and
switches into idle state in “high performance”, taking 7.5  joules (J), than to run slowly and
finish just-in-time, at lower frequency, “low power” mode, taking 18.3 nJ, when deploying
FSD. Moreover, savings of 52% is gained for the V-BLAST/ZF algorithm, consuming 4.9 uJ
and 10.2 pJ for “high performance” and “low power” modes respectively. These are the sav-
ings, which can be gained when putting the chip into sleep mode for more than 17 us. The
static power, resulting in 84% and 65% of the total power for “low power” and “high perfor-
mance” mode respectively, shows that the static dominates the total consumption as shown in
Figure 3.8. These findings coincide with the work reported in [88] however; stating that, as
the manufacturing process gets smaller, the static component seems to dominate the overall
chip power. Therefore, it can be concluded that running the circuit at a lower speed is not the
answer to overall power savings in current and future programmable hardware technologies as
the method of manufacturing of process nodes shrinks. Thus, the static component could no

longer be neglected when designing a circuit, and it is now essential to take temperature as a
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parameter in saving overall energy consumption, since the static component strongly depends
on the heat generated by the circuit. Figure 3.8 and Figure 3.9 confirm the preliminary findings
in Chapter 2, whereby the static power and energy should no longer be neglected when con-
sidering the power and/or energy consumption during hardware implementation. It can be seen
that the static power is actually higher in comparison to the dynamic power, giving the more
reason to include the component in the calculation to minimize the overall power and energy

consumption.
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Figure 3.10: Total resource allocation of Adaptive Switching Algorithm on a basic FPGA ar-
chitecture

In a nutshell, switching off parts of the FPGA chip would probably be the best method of power

and energy savings. With this new information coming to light, the basic idea behind the im-
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plementation of the Adaptive Switching Algorithm is illustrated in terms of a basic FPGA hard-
ware given in Figure 3.10. It shows the overview of the algorithm flow within the chip. Only
one detector is switched on at any given time according to the calculation from the threshold
control block. The Adaptive Switching Algorithm is particularly useful for FPGA implemen-
tation since the hardware resources can be switched on and off as required. The configurable
logic utilized for each detector is shown in (a) for FSD, (b) for V-BLAST/ZF and (c) when “No
Decoding” is taking place. It can be seen that only certain parts of the overall chip hardware
are turned on at any given time. Seeing that most power consumption is due to powering up
the chip itself, which is the static power, the Adaptive Switching Algorithm takes advantage
of this fact and therefore shuts down parts of the chip which are not in use. It is worth noting
that since the workings of the FSD can be seen as V-BLAST/ZF detection simultaneously, one
block for the latter detection algorithm can be re-used when designing FSD to compose the
blocks. This hardware re-usability is a means of saving power if optimized. However, the work
uses dedicated chip area space for each detection algorithm, where no hardware resources are
shared amongst the common functionality between the two algorithms. Therefore, the power
and energy savings outcome obtained in this chapter are not as promising in comparison to the
potential gain that could be achieved when the optimization is realized. FSD resources shown
in Figure 3.10(a) uses four configurable logic blocks for implementation while V-BLAST/ZF
in Figure 3.10(b), would utilize one of the same blocks to perform the detection process. The
threshold MI calculation would use one block and comprise negligible complexity of approxi-

mately 1% in the overall detector.

Shutting down parts of the chip, also known as sleep modes, are perhaps the key enablers in
saving further energy in the design of hardware. More detailed analysis and results corroborate
this in Chapter 4. By running the circuit at high frequency, the sleep mode can help prevent the
circuit from running and powering up the entire logic gates all the time, consequently preventing

the circuitry from overheating that leads to high static component consumption.

3.5.3 Rayleigh Fading Performance

For greater insight of the total power and energy savings that can be achieved in a realistic set-
ting, Figure 3.11 considers the Adaptive Switching Algorithm in a Rayleigh fast fading chan-
nel. Rayleigh channel modelling may be used to replicate a real-life transmission environment,

where the model varies over time, geographical position and radio frequencies. The preliminary
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work uses this random process to mimic real-life wireless setup in order to confirm the robust-
ness of the Adaptive Switching Algorithm in different environments. A more comprehensive
study is evaluated in Chapter 5. The SNR range chosen is based on the operating SNR regions
of the new wireless communication system LTE. In small cells, the transmit power is in the
range of 23 dB to 46 dB, averaging at 26.5 dB [89]. The savings can be found by integrating
the power, P, with respect to the probability density function, F, of the fading environment, p,

as shown in Equation (3.10).

B
/ P(p)F(p) dp (3.10)

A

where A is the lower SNR value of —4 dB and B is the upper limit of the SNR, which is 40 dB
in this case. Using a discrete approximation to this gives a representation of measure for the
savings that can be as closely achieved as that in practice. The summary of the results for
both AWGN and Rayleigh fading channel can be compared in Table 3.6, where the number of
algorithm usage, the power and the energy for each detection method in both channel conditions
are tabulated. It can be seen that “high performance” mode still uses less energy to decode the
same data packet size in both channel setups, with slight power increase. It can be concluded
that the proposed detector is best run at high frequency and be put into sleep mode as soon as

possible to save power and energy.

AWGN Fading
Detection Algorithm % of Complexity Usage =~ Low Power  High Performance
No Decoding 0% 0W,0.0 0W,0.0 u
FSD 100% 1.1 W, 183 27W, 7.5 u)
V-BLAST/ZF 25% 0.6 W, 10.2 J 1.6 W, 4.9
Adaptive Switching Algorithm 62% 0.8 W, 13.7 uJ 210 W,6.2 ul
Rayleigh Fading
Detection Algorithm Complexity Low Power  High Performance
No Decoding 0% 0W,0.0 0OW,0.0u
FSD 100% 1.3W,21.5 ) 37 W, 10.8 pJ
V-BLAST/ZF 22% 0.7W,11.2 nJ 20W,5.9
Adaptive Switching Algorithm 74% 09 W, 16.0 uJ 27 W,8.1

Table 3.6: Comparison power and energy usage of different detection algorithms on different
channel environment

Taking the energy reading for “low power” mode for example, the Adaptive Switching Algo-

rithm would use 13.7 pJ of energy to decode the 1,024 bits data packet size in the AWGN
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fading environment, and 16 pJ in a Rayleigh fading channel, with a slight increase of less than
15% of energy usage for the latter channel condition. Using the FSD and the Rayleigh fading
distribution curves as baselines, the percentage of complexity, which determines the usage of
the algorithm used during the span of SNR transmissions can be calculated. Moreover, since
the behaviour of the Adaptive Switching Algorithm follows that of the Rayleigh fading chan-
nel for a 4 x 4 MIMO system, the proposed algorithm operates on 74% complexity usage, as
shown in Figure 3.11 of the fading channel environment in comparison to only 62%, as shown
in Figure 3.6, in AWGN fading channel. Power and energy savings can be achieved due to
the sleep mode being implemented during appropriate times, for example, FSD is put on sleep
mode at an SNR of 20 dB, with only V-BLAST/ZF being kept active. The results show that
the Adaptive Switching Algorithm has the potential to save 26% of consumption in Rayleigh
fading channel environment. Though this saving is lower than the ones obtained on the AWGN
channel, it is significant nonetheless, which proves that the Adaptive Switching Algorithm has

the potential to work under different channel setup and conditions.
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Figure 3.11: Detection algorithm behaviours in a Rayleigh fading channel

The energy saving results obtained can be optimized further by combining the common cir-

cuitry of the FSD and V-BLAST/ZF since they share some common functionality. By sharing
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the circuitry resources between the two algorithms, additional energy savings can be gained.

Detailed evaluation of the issues is the next major step of the project.

3.6 Chapter Summary

The Adaptive Switching Algorithm for an iterative-MIMO receiver is proposed in this chapter.
It works by switching between low complexity “nulling and cancelling” detection algorithm
of V-BLAST/ZF and the high close to ML performance of FSD. The switching occurs ac-
cording to the MI calculated based on the current channel condition and noise level between
the transmitter and receiver in real-time. The feasibility of the Adaptive Switching Algorithm
has shown that up to 38% in AWGN fading channel based on the software standpoint across
the SNR regions of —4 dB to 20 dB. Moreover, the switching of the FSD to V-BLAST/ZF in
“high performance” and “low power” modes gives a saving range of 34% to 59% in resources
consumption on both software and preliminary hardware design implementations respectively.
Having ‘intelligence’ in the algorithm and the hardware design setup offers optimistic results in
both performance and complexity for current and future iterative-MIMO systems. The adaptiv-
ity provided by the thresholds are controlled by the MI between the transmitters and receivers.
They give significant information about the channel conditions as they offer comprehensive
statistics regarding the MIMO setup. In addition, a preliminary study of having adaptivity in
the hardware also shows that more power and energy can be saved if parts of the chip can be
switched on and off accordingly. This is confirmed and can be improved further when incor-
porating sleep modes to reduce the static components in the hardware apparatus. The results of
the above can be seen in detail in the Chapter 4. In addition, the proposed Adaptive Switching
Algorithm is robust and works satisfactorily in a controlled Rayleigh fading channel setup that
represents real-life deployment, where savings of 26% can be achieved. Results of detailed
work and design implementation of the Adaptive Switching Algorithm in realistic environment

settings can be found in Chapter 5.
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Chapter 4

Design Trends of the Adaptive
Switching Algorithm on the FPGA
Hardware

4.1 Chapter Contribution

In this chapter, a comprehensive power performance analysis of the Adaptive Switching Al-
gorithm for an iterative-MIMO system is carried out, with the primary goal of minimizing
additional power and energy consumption within the overall receiver. This work builds upon
the findings in the previous chapter by implementing the Adaptive Switching Algorithm onto
the most recent FPGA hardware design map to achieve more of the power and energy savings
on top of the proposed algorithm design. This savings incorporate both components of the
power and energy, which is a combination of static and dynamic. Several power minimiza-
tion techniques were tested during the implementation of the Adaptive Switching Algorithm to
examine their potential benefits. In depth investigation has shown that power and energy us-
age can be further optimized when the proposed algorithm is deployed on the Xilinx® Virtex-5
and Virtex-7 due to the adaptivity of power minimization techniques implemented on the FPGA

hardware design.

4.2 Related Work

The information theory for recent iterative-MIMO receiver systems has been thoroughly re-
searched for various performance parameters such as the data throughput rate [90] [91], BER
[92] [93] [94] and for power efficiency [95] [96] [97] [98]. By incorporating coding schemes
into the structure of the layered space-time receiver, the systems have the ability to approach the
theoretical capacities on a multiantenna channel [13]. The iterative-MIMO receiver iteratively
performs channel decoding to recover the original data stream corresponding to each of the

transmitted antennas from the received signal vectors and estimated channel information. One
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of the biggest challenges in designing a testbed for iterative-MIMO systems capable of real-time
wideband wireless communication processing is choosing the right hardware for implementa-
tion. Primarily, the major requirements for the receiver hardware need to be identified in the
preliminary design stages. Firstly, it must possess enough processing power to implement a
wide variety of complex algorithms, since the receiver usually needs to perform extensive com-
putations when decoding especially with the usage of multiple transmit and receive antennas,
which increase the complexity tremendously. Secondly, the hardware must have the ability to
be re-programmable for rapid prototyping, and possess the flexibility for parallelization as well
as switching parts of the cores on and off for power and energy saving techniques. Lastly, the
hardware must have the ability for mapping and keeping track of the resource utilization mea-
surements and power consumption calculations. This is the main focus of this chapter, which is
to show the Adaptive Switching Algorithm behaviour in terms of computational efficiency and

its suitability for real world use.

There are many hardware types available in the market today. Those most utilized for wireless
communication devices are the DSP, the VLSI, the application specific integrated circuit (ASIC)
and the FPGA. Due to the complexity of the two lattice decoding algorithms of the Adaptive
Switching Algorithm, namely the FSD and V-BLAST/ZF, the high data dependency among the
decoding procedures and the link between the detector and the decoder, the iterative-MIMO
receivers are generally implemented on DSPs [99] [100] [101]. However, the speed of the
DSP implementation is often limited, especially as the number of antennas increases because
it does not support parallel computations [100]. To overcome this limitation, VLSI architec-
tures of MIMO systems have been investigated recently. Several hardware implementations
have been reported by prototyping either the V-BLAST/ZF algorithm, FSD algorithm, or their
modified versions [7] [102] [103]. However, it is a challenging task to reduce the complex-
ity of the VLSI implementation in order to achieve maximal performance in real-time [104].
This problem has been negated lately as the decoding rate was successfully increased by using
ASIC implementation [14]. However, an ASIC implementation is generally defined for a fixed
number of antennas and a certain signal constellation, and is optimized for low power, high
frequency circuit design. The limitations of an ASIC implementation is that it may lack flexi-
bility when the number of antennas or the signal constellation changes [105]. This brings us to
FPGA devices, which are widely used in signal processing, communications, and network ap-
plications because of their reconfigurability and support of soft reconfigurable parallelization.

The FPGA has at least three advantages over a DSP processor. The potential for parallelization
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is perfect for FSD and for the implementation of power minimization techniques in general,
since both require vector processing during implementation. Moreover, the processing capacity
is scalable if the FPGA resource is available in comparison to VLSI and ASIC implementa-
tions. The disadvantage is that the development cycle of the FPGA design is usually longer
than the DSP implementation, but once an efficient architecture is developed and the parallel
implementation is explored, because of its intrinsic density advantage [106], the FPGA is able
to significantly improve the processing speed. However, ASIC implementation still dominates
the market. This is mainly due to the fact that ASIC designs are often faster than for FPGA, as
the ASIC is designed for a specific application it can be optimized to a maximum. Moreover, an
ASIC design often consumes less power than for an FPGA design, so it provides better power
optimization. Due to the re-programmable nature of FPGAs, they are often used as ASIC pro-
totypes. An ASIC hardware description language (HDL) code design is first loaded onto an
FPGA and tested for accurate results. Once the design is error free then it is taken for further
steps. However, an FPGA has advantages over an ASIC implementation, whereby an FPGA
device is reconfigurable to accommodate system configuration changes even during run-time.
In addition, it usually has a significantly reduced prototyping time compared to an ASIC (a few

days vs. a few months).

The SoC concept has been adapted to FPGA lately by introducing one or more embedded pro-
cessors into the FPGA design [107] [108], such as the PowerPC™ hard processor cores [109]
and the MicroBlaze™ soft processors [110] on Xilinx® FPGAs as well as the Nios™ soft
processors on Altera® FPGA devices [111]. The SoC architecture significantly improves the
interoperability and reduces the design complexity of many complex computational algorithms.
Consequently, the hardware/software co-design technique can be applied to partition the com-
putational algorithm into customized hardware and embedded software. For instance, one or
more embedded processors can be instantiated in an FPGA to execute processing tasks that
are less time critical but highly sequential or considerably complicated for direct circuit imple-
mentation. Since the Adaptive Switching Algorithm comprises multiple detection algorithms
and running these algorithms would potentially save power and energy, it makes it even more
desirable to use this platform in the proposed work. Therefore, of all the options available,
FPGA-based system architectures of the latest Xilinx® Virtex-5 [112] and Virtex-7 [113] for
iterative-MIMO receiver system was chosen due to the FPGA providing the flexibility for vary-
ing the number of antennas and signal constellations and the flexibility in the algorithm design

as well as the visibility of the resource utilization. Both chipsets include up to two embed-
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ded IBM PowerPC™ cores targeted to the needs of SoC designers. Both V-BLAST/ZF and
FSD decoding algorithms are implemented on an FPGA platform and are evaluated for BER
performance and power consumption evaluation. Several power minimization techniques are
implemented as well to further save power and energy consumption for the Adaptive Switch-
ing Algorithm. Even though in practice, FPGAs may not be the ideal platform for large scale
wireless communication system deployment, they are nevertheless well suited for use in rapid
prototyping and for research purposes. That being said, the design results on the FPGA can be
easily transferable to other platforms or environments such as the DSP, VLSI or the commonly

used ASIC.

4.3 System Model Description

In the previous chapter, the Adaptive Switching Algorithm [114] is demonstrated by two well-
known detection algorithms, namely the FSD [16], and the V-BLAST/ZF [65] detection al-
gorithms switching together efficiently, performing according to the BER performance of the
system. The switching between algorithms is determined by thresholds pre-calculated from the
MI between the transmitter and the receiver, according to the real-time channel conditions of
each data transmission. The algorithm design has proven to achieve 38% reduction in compu-
tational complexity, and therefore this work investigates if more power and energy savings can

be accomplished through hardware design as well.

In order to explore this, the experiment for this chapter uses a software/hardware setup per-
formed in Matlab™ and its built-in Simulink® package as well as the Xilinx® System Gener-
ator for the FPGA. The transmission setup is kept as in the previous experiment, where it com-
prises M = 4 transmitters and N = 4 receivers, based on a BICM setup, which has a transmit
frame size of K, =1, 024 bits transmitting over a random independent AWGN fast fading prop-
agation channel, H, with independent elements, which is perfectly known at the receiver. The
transmitted bits, K, are encoded using an iterative-turbo scheme at rate of ¢ = 1/2, which are
then interleaved randomly to give, b coded bits, before mapping into a QAM constellation, O,
of size W = 4, forming a sequence of K; = K./ log, W symbols. The K = 1,024 symbols
are divided equally using the spatial OFDM multiplexing between the transmitters for 100, 000

channel realizations. This part of the transmitter system is simulated purely using Matlab™.
The work focuses on the receiver, which is consequently divided into the software experimen-
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tation and the hardware design implementation. For software, the Adaptive Switching Algo-
rithm for the iterative-MIMO receiver is designed on Matlab™ and its built-in Simulink®
modelling package. On the other hand, the hardware design implementation, the setup follows
that, which is depicted in Figure 4.1. Similar to the software, the transmitter and parts of the
receiver, which includes the QR decomposition of the channel matrix H and the channel order-
ing are simulated using Matlab™ . The circuitry for the proposed algorithm, which includes
the detectors of FSD and V-BLAST/ZF algorithms, the Adaptive Switching Algorithm thresh-
old control and the decoder are modelled on the Simulink® modelling and later forwarded to
the Xilinx® System Generator, which are then mapped on to the latest Xilinx® Virtex-5 and

Virtex-7 chip designs.

—_— EXPERIMENT
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Figure 4.1: Flowchart of the software/hardware experimental setup

The power readings are initially estimated by the Xilinx® XPE™ tool based on the multiplier
resource counter utilization during the software modelling portion. The power readings mea-
sured gives ballpark estimates for realistic hardware design implementation, which are later
confirmed during the implementation using the Xilinx® System Generator using the Xilinx®
Power Analyzer™ (XPA) tool after the model is synthesized and mapped onto the appropriate

hardware of choice.
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4.4 System Design Architecture

The operations of the Adaptive Switching Algorithm are realized using implementations on
both software and hardware co-simulation. It should be noted that once the channel realiza-
tions, the QR decomposition and each corresponding channel ordering for specific detection
algorithms are simulated on Matlab™ |, the model of each detection method is demonstrated on
Simulink® before being synthesized and mapped onto specific hardware using the Xilinx®
System Generator. In order to understand how the Adaptive Switching Algorithm is imple-
mented, consider the explanation in the next subsections, where each block of FPGA operations

is described in detail.

44.1 V-BLAST/ZF

The first detection algorithms within the proposed algorithm, V-BLAST/ZF [65], is imple-
mented on the FPGA chip as shown Figure 4.2. The FPGA part consists of three separate
blocks, namely the “data estimation” block, where the ordered ZF channel sorts the signal
according to the strongest signal with the highest SNR first as the received signals, r, are aug-
mented using the dot (-) operation with the channel matrix. The data is then quantized in
the “data quantization” block, @, to the nearest 4-QAM constellation to give §, which is then
passed to the next block, “interference subtraction”. This is where the quantized symbols are
subtracted from the original data, r, before repeating the whole process until r is fully nullified

and all signals, §, are detected.

Similar to the previous chapter, the number of multiplier counts can be estimated for each
block using the Xilinx® ISE software. For V-BLAST/ZF, the most complexity comes from the
“data estimation” block since the process requires complex matrix multiplications, which takes
almost 65% of the whole detection algorithm, followed by the “data quantization” of matching
symbols on specific QAM constellation LUT at 26%. These results will provide an estimation

for hardware design implementation.

44.2 FSD

The second more complex detection method, FSD, published in [16] can be viewed as running
multiple V-BLAST/ZF detectors in parallel, each checking different transmit data combina-

tions of possible modulation symbols. Figure 4.3 provides the breakdown of the algorithm.
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Figure 4.2: Breakdown of V-BLAST/ZF FPGA implementation model

The channel pseudoinverse, G, is obtained by applying a QR decomposition to the channel
matrix, which is implemented on Matlab™. There are two blocks of FPGA used for FSD
implementation, namely the “metric calculation”, which accumulate the ED, and the “path se-
lection”, which selects the minimum path to the lowest value for ED at the leaf node(s). Level
1 represents the i*™® transmit antenna, therefore the partial ED, the AED, is calculated until
the total ED is obtained for each path. The paths of selected ED at the leaf node(s) are then
compared in order to find the minimum solution for received symbols, §. For the 4-QAM mod-
ulation scheme, after a full expansion on the first detected antennas, there are 4 paths to be
selected, with 4 values of ED candidates for the minimum solution(s). The most complexity
comes from the “metric calculation”, where the dot (-) operation of channel matrix uses most
of the resources, as well as the summation of the accumulated ED, taking almost 75% of the

total FSD operation.

4.4.3 Adaptive Switching Algorithm

The main idea behind the Adaptive Switching Algorithm is shown in Figure 4.4. The “threshold
control” block calculates the value of the accumulated MI and activates the appropriate detec-
tor, either the V-BLAST/ZF, when the channel condition is good i.e. when the MI is above T5;
or the FSD during bad channel conditions, i.e. when MI is above 77 but below 75. Once the
threshold is determined, the appropriate FPGA blocks are switched on and off accordingly. If

the threshold falls under 77, an ARQ is required that consequently generates a new channel
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Figure 4.3: Breakdown of FSD FPGA implementation model

matrix, H, in the simulation process. Avoiding both detection algorithms in this way would
also avoid the energy intensive iterative turbo decoding block. In this case, decoding is deemed
superfluous in this transmission environment since symbol retrieval will experience close to
100% packet failure rate, which only wastes significant computational power. However, for-
mally characterizing this decoding effect and ways of minimizing the corresponding power

consumption are out of scope of this chapter and will be tackled and explained in Chapter 5.

4.5 Power and Energy Consumption

Power and energy consumption in recent communication devices, especially ones with battery
powered sources are a major limiting factor in circuit designs. Fundamentally, most power
and energy are consumed in dynamic, static, transceivers and I/O ports as specified by Equa-
tion (4.1); with dynamic and static dominating the process, as well as the transceiver and I/O
powers being negligible at normally 1% of the total power usage [115]. For the purpose of
the efficiency results, these two power components are omitted from the overall power con-
sumption calculations. It should be noted that the energy is power used over specified timing

constraints.

Ptotal = denam'ic + Pstatic + P[/O + Ptransceiver (41)
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Figure 4.4: Breakdown of Adaptive Switching Algorithm FPGA implementation model

Most publications like [84], [85] and [86] have successfully reduced the dynamic power con-
sumption, however, in newer chip technologies, the static power consumption is said to be
high, [116], therefore, this work investigates ways to reduce both types, dynamic and static
components in a circuit design, while ensuring the proposed algorithm performance behaves
according to the design specifications set. This guarantees the Adaptive Switching Algorithm
is properly optimized to meet power budget of the design. There are multiple ways to exploit
power and energy savings in circuit designs and different type of power and energy have differ-
ent approaches for executing these. For example, savings in dynamic component are achieved
by scaling the voltage and frequency, while on the other hand, savings in static component de-
pend on manipulating the parameters such as the manufacturing process, the temperature, and

the core voltage used.

4.5.1 Dynamic Power and Energy

The dynamic power consumed within CMOS technology is due to toggling of transistors and
is a function of clock frequency, which can be varied within some limit (before the circuit fails
to function due to overheating), the value of the voltage, and the capacitance. Generally it can

be said that with V', the power consumption is [87]:
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denamz'c X V2 (42)

The power consumption rises approximately with the V' squared. Therefore, minimizing the
V' used is crucial where efficient implementation is concerned. Specifically and quantitatively,
the dynamic component can be measured by the relation [37] given in Equation (4.3), where it
depends on the number of toggling transistors, £, the circuit capacitance, C, the voltage swing,
V, the toggling frequency, f and for the energy calculation, the time, 7, it takes to complete a

set of operations as well.

denamic = £CV2f (43)

From this Equation (4.3), the power usage depends linearly on the clock frequency, f, therefore,

both scaling in V" and f were considered during efficient implementation designs.

4.5.2 Static Power and Energy

Static power is consumed due to transistor leakage and is highly dependent on the manufactur-
ing process, the ambient temperature of the circuit, and the value of V. According to the study
by [116], static components can dominate the overall power consumption within a circuit as the
chip size shrinks. Therefore, these components can no longer be neglected when designing new
algorithms into new chip technology. As the size of the recent hardware chipsets continue to
scale down, the concerns for power and thus energy consumption should shift from the switch-
ing activity, which is the dynamic component, to the static, which is the component consumed
when an idle element in a design has subthreshold current leakage, gate oxide current leakage,
or reverse biased current leakage. Though it is hard to quantize the value for static consumption
due to it being vastly different with every hardware chipset, a generalization of the relationship

can be simplified as in Equation (4.4).

Patatic < V3 (4.4)

All unused parts of the chip or idle logic in the hardware remains powered despite the lack

of use, which contributes to high static power and energy consumption. While static power
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was once considered secondary when looking at the total consumption, as the transistors logic
shrink in size, the static power has increased exponentially while the dynamic power has stayed
relatively stagnant due to lower operating V' and decreased C' associated with the switching
nodes [117]. The smaller chipsets demand faster f and therefore require higher supply V' to
operate the same workload than their bigger predecessors. This trend can be seen in Figure 4.5.
According to Moore’s law, it is predicted that by the year 2020, the static power would have
risen to almost 100 W for chipsets that are smaller than 14 nm. To overcome this rise of static
power as well as other power components, several power minimization techniques have been

devised and the descriptions can be seen in the next section.

4.5.3 Xilinx® Virtex-5 and Virtex-7

The Xilinx® Virtex-5 is considered due to its purpose suited for logic intensive and digital
signal processing applications. This 65 nanometre (nm) design is fabricated in 1.0 V, triple-
oxide process technology [117]. The power and efficiency of the FPGA chip correspond to the

size of the manufacturing node, the previous chipset being 90 nm shown in Figure 4.5.
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Figure 4.5: Dynamic and static power consumption effects on process nodes [117]

In contrast to the trend shown in Figure 4.5, Xilinx® Virtex-7, which is the company’s most

recent chipset based on an even smaller manufacturing node of 28 nm promises to deliver twice
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the performance at 50% lower power, due to a newer lithography node in processing [113].
Moreover, reducing the feature size would reduce the energy required to switch transistors.
Therefore, Xilinx® Virtex-7 is more energy efficient than Xilinx® Virtex-5. The work con-
siders both chipsets when implementing the Adaptive Switching Algorithm to show the perfor-
mance trends of the proposed algorithm and that it is suitable on all hardware; previous, current
and on upcoming technology processes. In this experiment, the parameters of the operation

modes under consideration are tabulated on Table 4.1 for both chipsets.

Power Component/ Xilinx® Virtex-5 Xilinx® Virtex-7
Performance Mode Low Power High Performance Low Power High Performance
Voltage 095V 1.05V 097V 1.03V
Frequency 60 MHz 400 MHz 60 MHz 600 MHz

[“Low Power” Mode : 0.97 V, 60 MHz; ‘“High Performance” Mode : 1.03 V, 400 MHz]

Table 4.1: Operating parameters for the Xilinx® Virtex-5 and Virtex-7

The Xilinx® Virtex-7 may operate at a much higher frequency of 600 MHz in comparison
the its predecessor at 400 MHz, but at a lower voltage range of 0.97 V to 1.03 V as opposed
to 0.95 V to 1.05 V, which suggests it may be suitable for faster processing at a low voltage
utilization. For a fair comparison on both chipsets throughout the work, the Adaptive Switching
Algorithm is implemented using the voltages and frequencies of 0.97 V and 60 MHz dubbed
the “low power” and “high performance” mode having parameters of 1.03 V and 400 MHz

respectively.

4.6 Power Minimization Techniques

Numerous power minimization techniques can be found throughout literature, however, the
most common ones used in base stations and small cell devices are described as follows. These
are the techniques applied during hardware design implementation of the proposed Adaptive

Switching Algorithm.

4.6.1 DVFS

DVFS has shown significant power and energy savings when applied to circuit designs, evident
in [87], [118] and [119]. Much like the Adaptive Switching Algorithm, DVFS has the ability

to adjust its parameters to match the computational demand of the current workload. If the
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workload requirement is high, DVFS will increase the V, to supply the circuit so that it can
operate at a higher f in order to meet the desired data throughput within a particular time period.
The opposite is also true; when the workload is minimal, the circuit could operate on a much
lower f, which ultimately, according to Equation (4.3) and Equation (4.4) will decrease the
overall power component as the task time lengthens. This adaptivity is appealing to the design
of the Adaptive Switching Algorithm since now both software and hardware possess the same
level of adaptivity and ‘intelligence’. Combining both approaches yields significant overall
power and energy savings. The basic principle detailed in [87] states that the power consumed
by running the operation at a slower speed is less than to run it at full power and finishing
early. Therefore, by budgeting the time for the workload to finish in time would save power
and energy than to have the hardware run at maximum capacity and finishing early remaining
switched on for the rest of the time. This study [87] considers only the dynamic power and
discards other components of power consumption such as leakage, idle, overhead, static as well
as the power needed to activate the chip. Figure 4.5 shows that the static component can no
longer be ignored when considering the total power consumption of a circuit therefore, this
work attempts to take all power components within the chip into consideration when applying

the DVFS during the implementation of the Adaptive Switching Algorithm.

4.6.2 Sleep Mode

Sleep mode is when electronics operate on idle mode, with power so low, they are practically
switched off for a certain period. When calculations do not possess the same task length and/or
processing speed, they do not finish processing at the same time, meaning that for some propor-
tion of the time, processor cores need not be on. Keeping the core activated would be wasteful,
since the power to activate and keep the chip active is a significant contribution to its process-
ing power, therefore, switching off the cores could be a means of saving power and energy.
By running the application as fast as possible, longer sleep modes can be deployed. Instead of
remaining active, the switched off cores will only consume 20 mW [120] of idle power for the
remainder of the computational operation. The preliminary results found in the previous chap-
ter state that the Adaptive Switching Algorithm is best run at high frequency of operation, and
then put on sleep mode. Therefore, in addition to confirm this preliminary finding, this work
attempts to discover, that this power minimization technique is best suited for the Adaptive

Switching Algorithm detector when overall power consumption is considered.
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4.6.3 Parallelization

Part of optimizing a system in current chip designs is to construct the algorithms in such a way
that parallel operations are possible. Parallelization has been proven to save power and energy
in recent hardware evident with the rise of multicore processors, multiple threads and pipelining
approaches. The processors provide a trade-off between utilizing more chip space and increas-
ing the throughput of a parallel algorithm. The cores split and share the computational load
evenly amongst them. Therefore, each core performs only a fraction of the total computation
depending on the number of cores available [87]. Furthermore, hardware architectures that can
perform multiple tasks slowly in parallel should be more power efficient in comparison to run-
ning a single operation very fast on one processor core [36]. Due to the rise of multiple cores
running simultaneously in chipsets, the work runs the Adaptive Switching Algorithm in parallel

and the findings of its efficiency are positively discovered.

4.7 Results and Analysis

The total resource allocation of the Adaptive Switching Algorithm for the Xilinx® Virtex-5
and Virtex-7 is given in Table 4.2, and thus the number of the multiplier resources count is for-
warded to the Xilinx® XPE™ tool to estimate the power measurements, which consequently

give an overview of the effectiveness of each power minimization technique mentioned.

Utilization Xilinx® Virtex-5 Xilinx® Virtex-7
XC5VLX330TFF1738 XC7VLX330TFFG1157
Logic Resource | Available Used  Utilization | Available Used Utilization

Slice Registers 149,760 16,995 11% 408,000 17,855 4%

Flip Flops 37,440 5,580 15% 51,000 5,692 11%
4-Input LUTs 149,760 15,101 10% 204,000 15,389 8%
DSP48E 1,056 180 17% 1,120 180 16%
Memory (RAM) 516 40 9% 1,500 38 3%

Table 4.2: Resource utilization for Adaptive Switching Algorithm

The available resources on the Xilinx® Virtex-7 are more than its predecessor, however, the
number of registers, flip flops, look-up tables (LUT), DSP processors and the memory usage
during the proposed algorithm implementation are generally similar on both chipsets, with a
difference in resources of between 1% to 7%. The Adaptive Switching Algorithm iterative-

MIMO detector is run in Matlab™ and its model counterpart on the Simulink® system. The
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estimated power reading results for both Xilinx® Virtex-5 and Virtex-7 on the Xilinx® XPE™

tool are given in Table 4.3.

Power Component/ Xilinx® Virtex-5 Xilinx® Virtex-7
Performance Mode Low Power High Performance Low Power High Performance
Dynamic 025W 1.32 W 0.96 W 251W

Static 2.16 W 2.87TW 023 W 0.73 W
Transceiver 0.02W 0.03W 0.00 W 0.00 W
I/O 0.01W 0.06 W 0.07W 0.08 W
Total 244 W 4.28 W 1.26 W 332W

Table 4.3: Power consumption of Adaptive Switching Algorithm on the Xilinx® Virtex-5 and
Virtex-7

The static power for the Xilinx® Virtex-5 is much higher than the Xilinx® Virtex-7. This
finding contradicts the simple prediction given by the Figure 4.5 and agrees with the overview
report for the Xilinx® Virtex-7 [120]. The new process nodes for the Xilinx® Virtex-7 do
lower the overall static consumption by at least 89% and 74% for “low power” and “high per-
formance” modes in comparison to its predecessor at 2.16 W and 2.87 W for “low power” and
“high performance” respectively. This also coincides with [117] where the manufacturing node
of the latter chipsets promises a much lower activation power. Due to this lower static power,
the Xilinx® Virtex-7 operates in a slightly lower overall power when running the Adaptive
Switching Algorithm; the power usage being lowered approximately 48% and 22% for the
“low power” and “high performance” modes using 1.26 W and 3.32 W respectively. The dy-
namic power of the chipset however is slightly higher than the Xilinx® Virtex-5. This could
be due to the slight increase in chip size as predicted in Figure 4.5, where the dynamic power
increase steadily as the processing nodes decreases. The smaller chipsets need to process the
same amount of data using limited chip area, therefore the hardware needs to perform more
switching activities, which explains the rise in dynamic power. Moreover, the slight increase in

resources needed for the Xilinx® Virtex-7 contributes to the higher dynamic power as well.

The amount of power used does not tell a lot about the Adaptive Switching Algorithm perfor-
mance in terms of efficiency, therefore, a better parameter to consider would be in terms of the
energy consumption. Simply reducing the power consumption in a processor may not decrease
the energy demand if the task now takes longer to execute. Therefore, the energy information
gives a better understanding of the efficiency of the system in transferring data packets of the

same size within an allocated amount of time.
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Figure 4.6: Energy trends with (a) the voltage applied and (b) the variation of frequencies on
the Xilinx® Virtex-5 and Virtex-7 respectively

It should be noted that when considering the scaling for the voltages, the frequency is kept fixed
at 250 MHz. On the other hand, when the frequency is scaled, the voltage is kept constant at
1 V. The energy trends are shown in Figure 4.6. By comparing the energy components in Fig-
ure 4.6(a), similar trends during scaling up the voltage can be observed, whereby, the voltage
is directly proportional to the energy consumption. When comparing the frequency however,
as shown in Figure 4.6(b), the energy consumption decreases with every frequency increment.
First, the main difference to note here is that dynamic energy dominates in the Xilinx® Virtex-
7 chipset, and therefore, the DVFS may be able to save power in the detector [87]. Secondly,
the “high performance” and “low power” modes can be devised from taking the extreme ends
of the scaling ranges. If running the proposed algorithm at the highest possible mode would
save power, then sleep mode would be a good power minimization technique. Lastly, due to
the small percentage of the area utilization, summarized in Table 4.2, ranging from 3% to 17%
of total resource allocation, the proposed algorithm has the potential for parallelization, which
is essentially having multiple copies of the detector within the chipset. The work looks at
both the theoretical software simulations and the hardware design implementation standpoints

to discover, which power minimization technique(s) mentioned is/are suitable for the Adap-
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tive Switching Algorithm design implementation. The software simulations are based on both

chipsets, while the hardware portion focuses on the Xilinx® Virtex-7.

4.7.1 DVFS

In addition, Figure 4.6 shows that due to the higher level of dynamic to static energy for the
Xilinx® Virtex-5, where it is approximately six times larger, the overall energy of the circuit
can be optimized using the DVFS as evaluated in [87]. However, when considering the total
energy of the chip, including the static, the transceiver, the I/O and the leakage loss, this might

no longer be the case.
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Figure 4.7: Power and energy usage for (a) Xilinx® Virtex-5 and (b) Virtex-7 with DVFS ap-
plied

Figure 4.6(b) confirms this as the static energy required to run the task for the Xilinx® Virtex-
7 is much lower at higher speed with less than 0.6 pJ in comparison to 2.9 pJ, at 400 MHz
and 100 MHz respectively, giving a difference of more than 79%. From this, even though the
dynamic energy dominates, it can be said that running the algorithm as quickly as possible
at the lowest possible voltage and switching it off would be better than running it at a slower

speed.

The software results from Figure 4.7(a) and Figure 4.7(b) show the power and energy readings
for both Xilinx® Virtex-5 and Virtex-7 respectively. By running the algorithm at the maximum
allowed time of 17.1 us for the same packet size, the difference of energy consumption between
the two chipsets is approximately 12 pJ, which is almost 1.5 times less the energy usage for the

Xilinx® Virtex-7.
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Figure 4.8: Scaling effects where (a) is with voltage applied and (b) is with the variation of
frequencies respectively for Xilinx® Virtex-7 platform

For the hardware design based on the Xilinx® Virtex-7, the total power and energy consump-
tion during the DVFS are given in Figure 4.8 and Figure 4.9. Similar to the previous experi-
ments, the scaling of voltage is proportional to the power and energy consumption, which can
be seen in Figure 4.8. Taking the 200 MHz as an example, at voltages of 0.97 V and 1.03 V,
Figure 4.8(a) gives an increased power usage of 12%. Though minimal, it is still an undesired
result. The scaling of frequency also shows minimal gain as shown in Figure 4.8(b). Taking
1.01 V as an example, at frequencies of 100 MHz and 400 MHz, the power gained is at 14%.
The voltage scaling shown in Figure 4.9(a) illustrates that there is also minimal increment of
energy, however, in frequency scaling, the reduction in energy is substantial. Looking at a

voltage of 0.99 V, running the algorithm four times faster provides 69% energy savings.

Figure 4.9(b) shows that the total energy required to decode the same packet of data is less, due
to the faster decoding process. It suggests that running the algorithm at full speed would be
better than to finish just-in-time. This means that instead of having it running at “low power”
and taking more than 20 us to decode the data packet, the system would finish processing in
less than 3 us and be put into sleep mode for 78% of the time. This concludes that DVFS

is not suitable as power minimization technique for the Adaptive Switching Algorithm on an
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Figure 4.9: Scaling effects where (a) is with voltage applied and (b) is with the variation of
frequencies respectively for Xilinx® Virtex-7 platform

architecture, since static power is a significant component of power consumption.

4.7.2 Sleep Mode

From the software standpoint, according to Figure 4.10, when sleep mode is utilized, i.e. run-
ning it at 400 MHz, the amount of energy required to process the same size data packet of
1,024 bits is smaller than running it at a slower speed of 60 MHz. The power usage for both
chipsets are similar with only about 5% difference between them. Running the algorithm as fast
as possible finishing at 2.8 us and shutting down 80% of the remaining time would give almost
70% and 64% energy savings for Xilinx® Virtex-5 and Virtex-7 respectively. The theoretical

part of this work suggests that sleep mode is better suited for the Adaptive Switching Algorithm

implementation.

The software results agree with the hardware design. In this situation, by taking the extreme
cases of the DVFS into consideration, a “low power” and “high performance” modes can be
articulated. Table 4.4 reviews the parameters of the Xilinx® Virtex-7 when running the Adap-
tive Switching Algorithm in two separate modes. The power usage analysed by the Xilinx®

XPA™ tool is given as 1.5 W and 2.2 W for “low power” and “high performance” modes
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Figure 4.10: Power and energy usage for (a) Xilinx® Virtex-5 and (b) Virtex-7 with sleep mode
utilization

respectively, contributing to 31% increase in power usage when “high performance” mode is
selected. The total maximum energy savings is equivalent to 78%. Note that the maximum

throughput is only achievable if the circuit is run 100% of the time and sleep mode is not active.

Xilinx® Virtex-7: XC7VLX330TFEG1157

Operation Mode/ “Low Power” “High Performance”
Parameters
Core Voltage 097V 1.03V
Operating Frequency 60 MHz 400 MHz
Max Throughput 240 Mbps 1200 Mbps
Power Consumption - 31%
Total Energy Savings - 78%

Table 4.4: The “low power” and “high performance” parameters

This section concludes that it takes less energy to transfer the same data packet in “high per-
formance” mode. Therefore, by running the algorithm as fast as possible and then switching
the cores off would save more energy, and thus, sleep modes are a good way to save power and

energy in the Adaptive Switching Algorithm detector.

4.7.3 Parallelization

Starting with the software, the energy usage for parallel detector is compared in Figure 4.11
for both Xilinx® Virtex-5 and Virtex-7. The trend suggests that the more cores are used,

the less energy is required to transmit the same amount of data. Savings of 75% for “low
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power” mode can be gained when four cores are used instead of just one core whilst running
the proposed algorithm on both hardware chipsets, at 45.1 uJ and 11.3 uJ as well as 33.3 pJ
and 8.3 uJ respectively. Similarly, savings of more than 74% for “high performance” modes
can be achieved, where a total energy consumption of 13.1 pJ and 3.3 pJ as well as 11.7 pJ and
2.9 uJ on Xilinx® Virtex-5 and Virtex-7 respectively. This coincides with the theory, which
states as more cores are used, computations are divided evenly amongst the parallel cores [87].

Farallelization is an important way to achieve power savings for the algorithm as well.

POWER AND ENERGY

(a) (b)
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s 8 8 & 8

o
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Figure 4.11: Energy usage for (a) Xilinx® Virtex-5 and (b) Virtex-7 with parallel operations

During the hardware design, it can be seen that the hardware utilization for the Adaptive Switch-
ing Algorithm is minimal. It uses a small percentage of the Xilinx® Virtex-7 as evident in Table

4.2. These promising results for parallel implementation are shown in Figure 4.12 and Figure

4.13.

Multiple copies of the Adaptive Switching Algorithm are utilized with one core being one copy
of the algorithm being used. As predicted, the more cores used, the more power the chip needs
as evident in Figure 4.12(a). This is due to the power needed to activate more area of utilization
on the chip. However, the increase in power consumption is small in comparison to the energy
savings gained, with only about 30% increment with every doubling in the number of cores

used. Although the voltage scaling has little effect, the parallel setup does save significant
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overall energy savings seen in Figure 4.13(a).

Xilinx® Virtex-7: XC7VLX330TFFG1157
Number of Cores/ One Two Four
Parameters Low High Low High Low  High

Power Consumption 1.5W 22W 1.6W 28W 1.7W 43W
Energy Consumption 25.6 uJ 5.6 uJ 188 uJ 3.6 ) 73 u) 28 ul
Power Usage - 31 % 6 % 46 % 12% 65%
Energy Savings - 8% 27 % 86 % T1% 89%

Table 4.5: The “low power” and “high performance” parallel implementations

The same can be said in frequency scaling, evident in Figure 4.12(b) and Figure 4.13(b), for
power and energy respectively, where, taking frequency of 200 MHz as an example, running
four cores instead of one give 52% energy savings with 29% increase in power. The energy
saved whilst running on parallel cores in comparison to running a single thread is substantial,
ranging from 3% to 83% across all frequencies, having particularly large differences at lower
clock frequencies. These results show that parallelization is a good way to minimize the energy

consumption.

4.7.4 Combination of Power Minimization Techniques

A combination of the techniques is performed to see if higher energy savings can be made.
Table 4.5 summarizes the parameters of the power consumption and energy savings when the
algorithm is run in parallel on “low power” and “high performance” modes, calculated against
the “low power”, single core baseline. The “low power” mode in fact uses more energy to
process the same data packet in comparison to the “high performance” mode. Moreover, par-
allelization offers significant energy savings regardless of which mode is on, with a minimal
increase in power to activate the extra cores. For example, by using four cores, in “low power”
mode, the single core design uses 71% more energy than its multicore counterpart. This gain

can be achieved with only 12% increase in power.

Figure 4.14 shows the energy used and time needed to decode the data packet received. These
can be calculated from the power usage listed in Table 4.5. Parallelization causes the chip to
use less energy on four cores, giving a total energy savings of 71% and 50% for considering
separately the “low power” and “high performance” modes respectively. With these results,

it can be concluded that the more cores deployed, the more efficient the Adaptive Switching
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Figure 4.14: Comparison of modes on parallel implementation

Algorithm is. Instead of having one core running the algorithm for the entire 20.48 us, using
four cores running at for a quarter of the duration, and shutting them off for 75% of the time
would minimize the energy consumption. Furthermore, the more cores being utilized, the more
energy can be saved. When combining DVFS and parallelization techniques, i.e. comparing
one core “low power” mode and “high performance” multicore mode, with values of 25.6 uJ
and 2.8 uJ respectively, a total of more than 85% energy could be saved. This shows that

combining the two power minimization techniques achieves significant overall energy savings.

4.8 Chapter Summary

The implementation of the Adaptive Switching Algorithm on both software and hardware are
implemented to show the suitability of the algorithm for real world usage. During extensive
study of several power minimization techniques of DVFS, sleep mode and parallelization, the
best power minimization techniques for the Adaptive Switching Algorithm were established. It
can be seen that for both “low power” and “high performance” modes at 25.6 ©J and 2.8 puJ
respectively, a total of up to 89% of energy could be saved when four cores are running on
“high performance” mode. The savings of power and energy can be seen from both stand-

points, where they agree with the previous research that running the detector at a slower speed
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would improve energy consumption. The results obtained for the Xilinx® Virtex-5 and Virtex-
7 recommend the Adaptive Switching Algorithm to be run as fast as possible and then putting
the chip into sleep mode. Additionally, the benefits of voltage scaling give inconclusive results
due to the other power components dominating the chip, and due to its limited voltage scaling
range, the chip gives negligible difference in energy consumption. However, larger savings
may be possible on other ASIC or FPGA designs where a larger range of voltage values may
be explored. On the other hand, the frequency scaling suggests that the algorithm works best
when running at the highest frequency so that it can be put into sleep mode sooner, conserving
energy. In addition, the more cores that are used, the faster the task completion and the faster
it can be put into idle mode, thus achieving 75% energy savings. In the next chapter, the work
continues to test the robustness of the proposed Adaptive Switching Algorithm by implement-
ing it in realistic situations, and thus attempting to determine the total energy savings that can
be gained in the overall iterative-MIMO receiver, which consists of both the MIMO detector

and the iterative decoder.
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Chapter 5
Practical Performance of the Adaptive

Switching Algorithm in Spatially
Correlated Channels

5.1 Chapter Contribution

In the previous chapters, the Adaptive Switching Algorithm has been proven to save significant
complexity, power and energy consumption in both algorithmic design as well as during hard-
ware design implementation in experimentally controlled AWGN fading channel conditions. In
order to verify its effectiveness in realistic situations, the work in this chapter attempts to exe-
cute the proposed algorithm under spatially correlated channel conditions. The MI values used
to design the thresholds were unaffected with the change in channel correlation proving that the
MI is robust and provides a solid basis for the proposed algorithm design. It is found that the
performance of the Adaptive Switching Algorithm detector in these channel conditions shows
significant energy savings with slight BER degradation as the correlations between the trans-
mitters and receivers increases. The chapter continues by forwarding the same MI calculations
to be used as threshold information for the decoder. This provides the necessary information
as a stopping criteria for the decoder that helps limit the number of iteration(s) required dur-
ing each transmission. By combining both detector and decoder, the energy savings for the
full Adaptive Switching Algorithm receiver shows significant savings gained in comparison to

state-of-the-art, with lower hardware utilization complexity to boot.

5.2 Related Work

To meet the explosive growth in data rate currently caused by mobile devices such as smart
phones and portable handheld multimedia devices, as well as data terminals such as wireless
hotspots, femtocells and base stations, the technology of utilizing multiple antennas on both
sides of the transmitter and receivers is imperative. Theoretical analysis has shown promis-

ing capacity growth by employing the MIMO scheme [4] [121], which helps in increasing
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the spatial diversity and capacity of the system. However, the presence of spatial correlation
between the multiple antennas reduces the capacity improvement [122]. Studies have evalu-
ated the behaviour of detectors in such spatially correlated channel environments, for both low
complexity linear MIMO detectors [123] [124] and high performance “tree search” detectors
[125]. Generally, it is found that the BER degrades as the channel becomes more correlated.
Studies are lacking however, on adaptive iterative-MIMO detection as well as for a full re-
ceiver setup that includes iterative decoding in such channel conditions. Moreover, to the best
of the authors’ knowledge, the energy analysis of adaptive algorithm implementations is not
often considered in the literature. There are many adaptive detection algorithms proposed [44]
[45] [46] [47], however, in addition to them using different switching criteria that do not fully
exploit the available information regarding the MIMO channel setup [48] [58] [59] to provide
the adaptivity, none of these papers considers the performance of such algorithms in spatially
correlated channels or the energy saving potential for realistic implementations. Most publica-
tions focus on increasing throughput [44] [74] or the overall performance [46] [47] or provide
generic energy saving results that are not specified to the latest state-of-the-art communication
systems [48] [49] [50] [98]. A recently proposed Adaptive Switching Algorithm detector can
achieve energy savings of about 38% in the algorithmic design [114], as shown in Chapter 3,
and approximately 80% during hardware design implementation [126] found in Chapter 4, in
experimentally controlled AWGN fading channel conditions. This chapter attempts to extend
those findings by investigating the efficiency of the proposed algorithm usage in the detector
in a realistic environment. In practice, the channels between different antennas are correlated
and therefore the full multiantenna gains may not always be obtainable. Therefore, the work
investigates the utilization of the Adaptive Switching Algorithm on simulated spatially corre-
lated channels, whereby the information between the antennas, which is represented by the MI,

may no longer be optimal.

In addition to the energy savings analysis of the detector in such channel conditions, this work
explores the total iterative-MIMO receiver design, which includes the iterative turbo decoding
that guarantees higher data rate support, and better performance in comparison to non-iterative
systems [19]. The outstanding performance of the turbo decoder comes with a high price of
computational complexity. To combat this, a number of early termination techniques or stop-
ping criteria rules provided for the decoder iterations have been proposed in order to minimize
the complexity of the decoder by reducing the number of iterations whilst maintaining the

performance of the entire system. These criteria can be categorized into two groups, namely
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soft-bit decisions and hard-bit decisions. Soft-bit decisions, which are considered in this chap-
ter, such as cross-entropy (CE) [127] a-priori LLR measurement [128], and mean-estimation
(ME) [129] updated threshold [130] are important methods. The most well-known CE stopping
rule [129] works by using relative information between the two constituent decoders’ soft out-
put as the criteria. Decoding stops, or is considered converged, when the relative information
is close to zero. Using the same concept as [129], different simplified versions are proposed in
[130], where the LLRs are used instead to compute the relative soft information values. These
concepts assist in lowering the complexity of the decoding process by minimizing the number
of decoding iterations. Therefore, this trade-off of complexity and energy savings gained in
both detector and iterative-decoding in spatially correlated channels are made and justified for
realistic design implementations for the Adaptive Switching Algorithm receivers. In summary,
this chapter investigates the applicability of a novel Adaptive Switching Algorithm detector
under realistic channel conditions. By using the same MI values, the thresholds for the decoder
can be constructed. With both detector and decoder thresholds obtained in the receiver, realistic
performance for the proposed design is verified. These thresholds work according to the same
calculated mutual information between the transmitters and receivers in real-time. The detector
threshold determine whether the receiver would decode using a high performance detector, the
low complexity detector or simply abandon further processing and reduce energy consumption
by requesting a re-transmission. The decoder threshold works as a stopping criterion, where
it determines the number of decoding iterations necessary for a transmission. This work pro-
vides the performance analysis for the proposed algorithm in realistic conditions by providing
a detailed energy analysis of the algorithm for spatially correlated channel conditions. An-
alytical, simulation and implementation results show the practical behaviour of the proposed

iterative-MIMO receiver in detecting and decoding.

5.3 Spatially Correlated MIMO Channels

In order to verify the effectiveness of the Adaptive Switching Algorithm in realistic conditions,
spatially correlated MIMO channels are chosen as a reasonable model for providing simu-
lated environments mimicking heavily built-up urban transmission settings on radio signals
[131] [132]. Based on the flat fading standard MIMO model [6], with M transmitters and NV
receivers, where M < N, the channel setup considered in this portion of work utilizes the

Kronecker model, where the correlation between the transmitters and receivers are assumed to

97



Practical Performance of the Adaptive Switching Algorithm in Spatially Correlated Channels

be independent and separable. This model is reasonable when there are multiple main signals
scattering that occurs close to the transmitting and receiving antenna arrays. The results of this
model has been validated by both outdoor and indoor measurements [133] [134]. In this case,

with Rayleigh fading, the channel matrix can be factorized as in Equation (5.1).

H = R}/’H, (RY/%)" (5.1)

The antenna correlation observed at the receiver is assumed the same on all transmitters, and
similarly, the correlation for the transmitter is also the same on all receivers. The elements of
H,, are i.i.d. as circular symmetric complex Gaussian with zero mean, z, and unit variance, o'
with vec(H) ~ CAN(0, 1) representing the MIMO uncorrelated channel. The M x M matrix
R, describes the fading correlation for the transmitter array while the NV x N matrix Ry,
describes the received spatial correlation. The statistical behaviour of the channel matrix can

be expressed as in Equation (5.2), where vec(-) denotes the vec operator and ® denotes the

Kronecker product [133].

vec(H) ~ CN(0,Ry,; ® RRz) (5.2)

The spatial correlation depends directly on the eigenvalue distribution of the correlation ma-
trices, R, and Rp,. Each eigenvector represents a spatial direction of the channel and the
corresponding eigenvalue describes the average channel and signal gain in a specified direction.
High spatial correlation indicated by a large eigenvalue spread in Rz, and/or R r,,, mean(s) that
some spatial directions are statistically stronger than others. Low spatial correlation on the other
hand, is represented by a small eigenvalue spread in R7, and/or R g, meaning that almost the
same signal power can be expected from all spatial directions. The higher the spatial correla-
tion, the more impact it has on the performance of a given MIMO system [135]. The capacity
of the channel is always degraded by the receiver side of spatial correlation as it decreases the

number of (strong) spatial directions that the signal is received.

The correlation model considered in this paper can be calculated mathematically with respect

to capacity, using generic definitions for the transmitter,
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N-1
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where w7, and wg, represents real-valued correlation coefficients. The correlation indexes
considered are further simplified to give wr, = wr; = §2, yielding a single factor parameter.
This means that the system considers the same correlation is present at both transmitter and
receiver sides. The given model can range from the uncorrelated case i.e. {2 = 0 to the fully

correlated scenario of 2 = 1.

Two points should be understood concerning the use of this model. First, while the channel
model does represent close to realistic channel conditions, the results described above give
pessimistic performance predictions for highly correlated fading scenarios where the model
assumptions are no longer valid [136]. Secondly, though the correlation values between the
transmitters and receivers are unlikely to be equal, this assumption is made to give an overall

idea of the applicability of the Adaptive Switching Algorithm to spatially correlated channels.

5.4 System Model Description

The block diagram for the MIMO receiver under consideration is shown in Figure 5.1. Gener-
ally, a typical iterative-MIMO receiver comprises two blocks, a MIMO detector, and an iterative
turbo decoder, where r is a series of received symbols from the transmitter, and § is the esti-
mated bit vectors for the transmitted data when the receiver processing is complete, similar to
the experimental setup in the previous chapters. The experimental parameters are summarized

in Table 5.1.
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Figure 5.1: Iterative-MIMO receiver system under consideration

The detector first selects the appropriate detection algorithm, depending on the MI calculated
between the transmitters and receivers in real-time, before being passed onto the iterative-turbo
decoder with maximum number of iterations in spatially correlated fast fading channels. The
experiments and results are divided into three parts, where the first focuses on the detector
performance in spatially correlated channel conditions, i.e. Part 1 in Figure 5.1. This then
integrates itself onto the next part, which is Part 2, which will determine the suitability of the
proposed algorithm as a link between the detector and the iterative decoder within the receiver
system. Finally, once the link is successfully established, where the number of the required
decoding iterations is determined, the addition of iterative-turbo decoder will complete the
receiver design and thus the final analysis on energy and performance parameters is investigated
and presented in Part 3. Lastly, the proposed receiver design is compared with the state-of-the-

art LTE system and its deployment in realistic channel conditions is justified.

5.4.1 Iterative Turbo Decoding

As shown in Figure 5.1, after the detection process, the symbols are passed to the iterative
decoder. Iterative decoding [137] is the key feature in turbo decoding. It is used right after
the MIMO detector, where soft information extrinsic LLR (Lg) values are exchanged itera-

tively between the outer decoders with interleaving/deinterleaving operations in between until
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Simulation
MIMO System 4 x4
Modulation 4-QAM
Code Rate 1/2
Turbo Iteration(s) 8
Packet Size 1,024 bits
Channel Realizations 100,000
SNR -5dB to 20 dB
Correlation Index (£2) 0-1
Implementation
Hardware Xilinx(R) Virtex-7
Core Voltage 1V
Clock Frequency 250 MHz

Table 5.1: Experimental parameters

a certain number of iterations have been executed to achieve the desired performance [20].

Generally, soft detection is used and it generates APP values in the form of LLR information,
Lg(bg|r), about the interleaved bits, b, for 1 < k < K., while taking into account the channel
observations r and the a priori LLR information, L 4 (by), coming from the outer decoder. For
the FSD detector, assuming that the bits by, are statistically independent due to the interleaving

operation and making use of the Max-log approximation, L g (by|r) can be approximated by:

1 —r-Hs|*
Li(bilr) ~ 5 beLhy 11 <02/2 + by Lag
1 —r—Hs|? 1 (5.5)
_- B | s IR W A .
2 beLry, 4 ( 02/2 + Piglak)

for1 < k < K., where, without loss of generality, K, = M -log, W has been used to simplify
the index notation. In Equation (5.5), b = (b, bs,bs, ..., bk, )T, by denotes the subvector
of b omitting by, La = [La(b,), La(bs),- .., La(br.)]", L () denotes the subvector of L 4
omitting L 4(by), Bi,+1 and By, _; represent the sets of 2Ke=1 pjt vectors b having b, = +1
(logical ‘1’) and b, = —1 (logical ‘0’) respectively, £ N By .1 and £ N B _; denote the
subgroups of vectors of £ that have by, = +1 and by, = —1 respectively. The list of candidates
L C OM is detector specific and subject to the overall performance and complexity of the

iterative-MIMO receiver, since | r — Hs ||? needs to be computed for all s € £. It should

101



Practical Performance of the Adaptive Switching Algorithm in Spatially Correlated Channels

be noted that for V-BLAST/ZF detection, the LLR information can be simplified further by
performing symbol by symbol likelihood calculations. In this model, M x 1 coded bits are

processed at one time and the LLR is defined as in Equation (5.6).

1
L(i,b)~ = min |r—Hs|?—- min | r—Hs|? (5.6)
o? sez;Y sezth

b
under the assumption of equally distributed transmit symbols s. The sets Zi(zl) and Zi(gl) are

subsets of O, where the b'" bit of the i*® stream is equal to +1 and 1, respectively.

Due to the iterative nature of decoding, the BER improves significantly at the output of the de-
coder as the iteration progresses. This improvement depends on the SNR, where it is dependent
on the MIMO channel characteristics, and the MI between the transmitter and the receiver as
well. Since the design for the detector considers the MI to provide the adaptivity, this work
forwards the same MI to the iterative decoder, in order to gain the positive energy savings
by stopping the system from dissipating useless energy in the decoding process by limiting
the number of decoding iterations. When the next iteration of the decoder no longer provides
significant or no improvement to the BER, early termination rules or stopping criteria are to
be implemented. The criteria should find a balance and play a crucial part in terminating the
decoding process without impacting the overall performance of the system. In some system
setups, such as the state-of-the-art LTE systems [138], these iterative decoders are paired with
the cyclic redundancy checks (CRC) and/or the valid code word checks (VCW) to ensure the
system overall performance. A practical turbo decoder implementation typically sets a limit on
the maximum number of iterations used [138]. Turbo decoding performance based on simple
CRC assisted early stopping has been evaluated through simulations in [139] [140]. It is gen-
erally found that the average number of decoding iterations can be reduced substantially from

the maximum while maintaining the same BER performance.

A CRC is an error-detecting code commonly used in digital networks and storage devices to
detect accidental changes to raw data. Blocks of data entering these systems get a short check
value attached, based on the remainder of a polynomial division of their contents; on retrieval,
the calculation is repeated, and corrective action can be taken against presumed data corruption
if the check values do not match. CRC uses redundancy where it expands the message without
adding information and the algorithm is based on cyclic codes. CRCs are popular because they

are simple to implement in binary hardware, easy to analyse mathematically, and particularly
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good at detecting common errors caused by noise in transmission channels. In LTE systems,
the CRC is implemented at every iteration. While this helps maintain the sustainability of
the performance, it adds complexity to the system. Therefore, the work shows that the CRC
can be omitted at every iteration, by replacing it with the threshold of the Adaptive Switching

Algorithm, only to perform the checking at the end of the final iteration.

Typically, most stopping criteria work by setting a number of required decoding iterations ac-
cording to certain rules, which can be generalized in Figure 5.2. The trend is that the number
of the decoding iterations decreases as the channel condition improves, or at high SNR levels,
whilst maintaining the desired BER performance. In theory, the number of decoding iterations
may approach infinity as shown in Figure 5.2(a), however, due to delay limits in the receiver,
all systems have set a maximum number of iterations as can be seen in Figure 5.2(b). At low
SNRs, this number of iterations will not yield correct decoding. This failure point or error
boundary is usually predicted by the usage of an extrinsic information transfer chart (EXIT)
charts [141] [142]. However, EXIT charts are difficult to implement and uses a lot of hardware
resources due to having a large LUT. In addition, EXIT charts are very specific to the design
of the interleavers, which prevents the analysis of the asymptotically attainable performance.
Furthermore, the task becomes time consuming, since the length of the interleavers is usually
set as high as possible in order to reduce the correlation among the interleaved a priori and ex-
trinsic LLRs [143]. These disadvantages can be negated by knowing in advance the number of
minimum decoding iterations for the system by calculating the corresponding MI and using it
as a basis of the threshold design. The basic principle of the proposed decoder that incorporates
the Adaptive Switching Algorithm works by using the forwarded MI values from the detector.
This MI values will determine the number of iteration(s) required depending on the current
channel conditions of the transmissions. Moreover, the Adaptive Switching Algorithm decoder
proposes that during transmissions where the channel conditions will yield close to 100% de-
coding failure, it would cease the process and requests for an automatic repeat request (ARQ)
instead, with zero iterations used in the turbo decoding, resulting in significant energy savings.
This design choice is shown in Fig. 5.2(c). The results for the MI threshold are obtained by

numerical analysis and are presented in the next section.
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Figure 5.2: General trends for thresholds used in different stopping criteria where (a) when
no thresholds are used, (b) when a maximum threshold is used and (c) when both
minimum and maximum thresholds are used

5.5 Results and Analysis

The results are presented in sections according to the setup detailed in Figure 5.1, where each
part is numerically labelled, and the energy performance analysis are based on the Xilinx®
Virtex-7 chipset running at a core voltage of V' = 1 V and an operating frequency of f =

250 MHz.

5.5.1 Part 1: The Detector in Spatially Correlated Channels

As shown in Figure 5.1, the first part of the work, labelled Part 1, involves running separate
detection algorithms that make up the Adaptive Switching Algorithm on different correlated
channel factors. In order to investigate the impact the Adaptive Switching Algorithm has on
the channel correlations indexes, the channel correlations of H in Equation (5.1) are set to
be Ry, = Rp, = Q. The total resource allocation provided by the Xilinx® ISE for both
detection algorithms are given in Table 5.2. The V-BLAST/ZF uses less resources, about a

quarter of that required the more complex FSD.

The number of multiplier counts can be estimated by breaking down the resource counter for
each block using the Xilinx® ISE software. For V-BLAST/ZF, the most complexity comes
from the estimating the symbols since the process requires complex matrix multiplications,

which takes almost 65% of the whole detection algorithm, followed by the matching of symbols
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Xilinx® Virtex-7: XC7VLX330TFFG1157

Logic Resource Utilization
Utilization V-BLAST/ZF  FSD
Slice Registers 3,228 14,628
Flip Flops 948 4,744
4-Input LUTs 3,080 12,309
DSP48E 48 132
Memory (RAM) 12 26

Table 5.2: Xilinx® Virtex-7 resource utilization for the V-BLAST/ZF and the FSD detection
algorithms

to specific QAM constellation using an LUT at 26%. For FSD on the other hand, the highest
complexity comes from calculating the distance metric where the dot () operation of channel
matrix uses most of the resources, as well as the summation of the accumulated ED, taking
almost 75% of the total FSD operation. These results will provide an estimation for hardware

implementation.

When the FSD and V-BLAST/ZF detection algorithms are implemented on different factors
of Q, the BER degrades significantly for both detection algorithms as depicted in Figure 5.3(a)
and Figure 5.3(b) for FSD and V-BLAST/ZF respectively. As the channel correlation increases,
more profound differences are observed at higher SNR regions. This gets problematic at higher
correlated channels when the V-BLAST/ZF is deployed, with BER of higher than 10~! for
Q= 0.7 for SNR < 20 dB as depicted in Figure 5.3(b). In order to achieve the BER tolerance
design for the entire system of 103, SNR approximately > 45 dB for V-BLAST/ZF is required
when the (2 = 0.7 in comparison to SNR of approximately 27 dB for uncorrelated channels as
depicted in Figure 5.3(b). Similarly, a higher SNR is also needed or the FSD as shown in Figure
5.3(a), where the BER for {2 = 0.7, is also higher, at 1072 for SNR of 20 dB and lower, and it
requires an SNR of more than 26 dB to obey the system performance requirements. However,
the BER performance would improve significantly when the turbo decoder is included in the
design, which may help in dealing with maintaining the overall performance of the system on

spatially correlated channels.

With the performance verified, the MI values are calculated to provide the design of the thresh-
olds for the Adaptive Switching Algorithm detector on different correlated channels. It is found
that even though fading correlation does considerably affect the BER performance of each de-

tection algorithm, the correlation index does not show any considerable changes to the MI
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Figure 5.3: Comparison of detector performance on spatially correlated channels

values obtained. Monte Carlo simulations are run 10 times, where each run comprises 100, 000
channel realizations for each correlation index, €2, at the SNR span of —5 dB to 20 dB. This

can be observed in Figure 5.4.

The impact on the obtained MI thresholds shows only minor changes as the correlation of the
channel increases. The two thresholds for the Adaptive Switching Algorithm detector lie in
the range of 2,100 to 2,300 for, 77, and 7,100 to 7,800 for threshold 2, 75, for FSD and
V-BLAST/ZF respectively. It gives a linear trend therefore, it can be concluded that the thresh-
old values for the Adaptive Switching Algorithm detector remain the same even when applied
spatially correlated channels and it can further be said that the detector design is only specific
to the modulation and coding schemes in use. With these results, the design for the proposed
algorithm is set as 2,200 and 7,100 for 7 and 75 respectively. T corresponds to the BER =
0.5 and T for a BER of 1073,

The other performance parameter, which is the energy consumption, can be calculated by taking
the power readings provided by Xilinx® ISE and using the time it takes to transfer a packet bit
size of 1,024 at a core voltage of V' = 1 V and an operating frequency of f = 250 MHz on the
Xilinx® Virtex-7 chipset. For the span of the SNR levels of —5 dB to 20 dB, the average energy
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Figure 5.4: Comparison of detector energy consumption on spatially correlated channels

consumption of the two detection algorithms within the Adaptive Switching Algorithm against
the correlated channel index range of 0 to 1 are computed for the FSD and the V-BLAST/ZF
as 3.6 uJ and 0.9 pJ respectively. This shows that with the increase in correlation, the energy
consumption of the detector is hardly affected. This could be due to both algorithms working
independently of the noise level and have a fixed distinct search on any channel conditions.
For the detector, it can be concluded that comparable energy savings can be gained in spatially
correlated channels as well. When combining both algorithms to make the Adaptive Switching
Algorithm, Figure 5.5 shows the energy consumption on spatially correlated channels. In the
detector, the energy savings when utilizing the Adaptive Switching Algorithm on different cor-
related channel indexes can be calculated numerically for SNR range of 0 dB to 50 dB for a run
of 100, 000 channel realizations on the chosen hardware. This is essentially the area under the
graph of Figure 5.5 if the FSD is taken as the 100% baseline at 3.6 pJ. The results are tabulated
in Table 5.3. It can be observed that though there are still savings gained, the energy savings

decreases with higher channel correlation.

With the FSD consuming approximately four times the V-BLAST/ZF algorithm, both show no
changes in the energy usage. The V-BLAST/ZF uses less energy than the FSD due to it being
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Figure 5.5: Energy consumption of the Adaptive Switching Algorithm in spatially correlated
channels

less complex as a detector. It shows that similarly, though the correlation does not affect the
overall power or energy consumption over a range of SNR observed, due to the adaptivity in
the algorithm switching of FSD to the lesser complexity of V-BLAST/ZF at high SNRs, energy

is saved.

Correlation Index (£2) Energy Savings (%)

Uncorrelated 40%
0.3 33%
0.5 27%
0.7 19%

Table 5.3: Energy savings of Adaptive Switching Algorithm detector on spatially correlated
channels

Figure 5.5 also shows the reason for the reduced energy saving, which is that, the threshold 75
between the two algorithms corresponds to a much higher SNR for higher channel correlation
values. From the figure, it can be observed that the switching occurs at an SNR ~ 25 dB for
uncorrelated channels, and SNR ~ 46 dB for 2 = 0.7. It can be concluded that the energy

usage varies for the Adaptive Switching Algorithm with varying channel correlation factors,

108



Practical Performance of the Adaptive Switching Algorithm in Spatially Correlated Channels

with lower savings gained as the correlation increases.

5.5.2 Part 2: Joint Switching of the Detector and the Decoder

Since the effectiveness of the proposed algorithm detector can save energy regardless of channel
correlation index, this part of the work investigates the next part of the receiver, labelled Part 2
in Figure 5.1, which is the applicability of the Adaptive Switching Algorithm as a link between
the detector and iterative decoder. Part 2 is where the two thresholds for both the detector
and decoder reside. When each part of the receiver, which are the detector(s) and the iterative
decoder, are implemented on the Xilinx® Virtex-7, the multiplier counts and thus the com-
plexity are determined. It can be found that about 76% of the total complexity of the receiver
is from the iterative-MIMO turbo decoder, with 23% related to the MIMO detector with 1%
reserved for the threshold control. Therefore, minimizing the complexity within the decoder

would achieve greater energy savings than the ones obtained in Part 1, i.e. in the detector(s).

Shifting the focus to the decoder, the turbo decoders are divided into several blocks. If the total
resource allocation for the entire decoder is set to be at 100%, the blocks with their correspond-
ing complexity are detailed in Table 5.4. It can be noted that the highest complexity comes from
the MAP decoders, therefore, limiting the number of iterations each received packet needs to
go through would be the key to minimizing energy consumption within the turbo decoding.
The Adaptive Switching Algorithm passes the MI calculated in the detector to the decoder, and

thus the number of iteration iterative turbo decoder can be determined.

Block Multiplier Counts (%)
Interleaver 1%
Demultiplexer 13%
logMAP Decoder(s) 80%
Trellis Tree 2%
Extrinsic LLR 4%

Table 5.4: Complexity breakdown for turbo decoding

Figure 5.6 gives the maximum, minimum and average number of iterations required when the
experiment on the same Monte Carlo setup as in Part 1, where packets of 1,024 bits over
100, 000 channel realizations are transmitted. The trend resembles the stopping criteria trends
in Figure 5.2, whereas the MI increases, the number of decoding iterations decreases. Due

to the design of the proposed algorithm, no decoding takes place when the MI is below 77,
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which is MI of 2, 100 and below, saving from unnecessary computations when the failure rate

is extremely high. An ARQ or re-transmission is enabled in this region.

= NUMBER OF DECODING

B TERATIONS I

10

Number of Iterations

0 o
0 2000 4000 6000 8000 10000
Mutual Information

@-Minimum Average =&Maximum

Figure 5.6: Comparison of detector energy consumption on spatially correlated channels

The trends provide a general idea for the range in iterations required in the turbo decoder over
the considered number of transmissions. The average and maximum lines provide guidelines
to the required number of iterations but are not directly used in the threshold design for the
decoder. The minimum number of iterations is taken from Figure 5.6 as a foundation for the
“Adaptive Switching Algorithm” threshold design in the decoder. Different stopping criteria for
the decoder, one with the state-of-the-art used in LTE systems, the “CRC-24" method [138], and
another without any stopping methods, with maximum of eight iterations throughout, labelled
the “No Stopping Criteria” for the detector and decoder link are compared, as shown in Figure
5.7(a). The results are obtained using the Xilinx® System Generator software. For a fair
comparison of the stopping criteria, the detector part is fixed to FSD with different stopping
criteria usage on the decoder. It can be seen that the number of iterations required on Adaptive
Switching Algorithm is the same as the CRC-24 method. The Adaptive Switching Algorithm
has a fail-safe error checking method at the end of the final iteration, therefore, if a packet is
not correctly decoded by the end of the final iteration, the decoder would increase the number

of iterations up to a maximum of eight, after the CRC-24 check is implemented, giving it more
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reliability in performance. In addition to the Adaptive Switching Algorithm using different
iteration counts, Figure 5.7(b) shows that the proposed Adaptive Switching Algorithm also uses
only about 18% multipliers needed as a stopping criterion when compared to the state-of-the-art
CRC-24 method, when taking the latter as a baseline for percentage complexity calculations.
This is due to the CRC having intricate calculations involving division of the data polynomials
to get the remainder. For CRC-24, the degree of the polynomial is 24. It can be said that due to a
smaller number of multiplier counts and comparable number of iterations needed, the Adaptive

Switching Algorithm provides a better implementation when compared to the CRC-24 method.
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Figure 5.7: Comparison of stopping criteria in turbo decoder

When calculating the energy consumption using the same setup as Part 1, it can be observed
that the “No Stopping Criteria” uses a lot more energy and is consistent throughout the span of
considered SNR of —5 dB to 20 dB. Due to the minimization of the turbo decoding iterations,
the energy consumption for both CRC-24 and the proposed decoder algorithm utilize a much
lower energy consumption particularly at high SNR regions. Taking the “No Stopping Criteria”
as the baseline for energy savings calculations, the overall percentages of energy savings are
summarized in Table 5.5. The Adaptive Switching Algorithm decoder saves 7% more energy
in comparison to the state-of-the-art CRC-24. Though this savings is not particularly large, this

part of energy savings only considers the decoder part and more savings can be gained when a
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full Adaptive Switching Algorithm is utilized in the iterative-MIMO receiver.

XILINX® VIRTEX-7: XC7VLX330TFFG1157
Receiver Setup Average Total Energy Savings

No Stopping Criteria -
CRC-24 32%
Adaptive Switching Algorithm 39%

Table 5.5: Average energy savings of the decoder on Xilinx® Virtex-7

With both detector and decoder blocks verified, the receiver for the Adaptive Switching Algo-
rithm can be constructed. The two thresholds LUT designs for the detector and the decoder that

sit in Part 2 are summarized in Table 5.6.

MIMO Detector Turbo Decoder

Label MI Type of Detector ‘ Label MI No. of Iterations
ARQ < 2,200 No Detection ARQ < 2,200 0

Ty 2200 < I; <7,100 FSD T, 2,200 < I; < 4,000 5

- - - T, 4,000 < I; < 4,500 4

- - - T. 4,500 < I; < 6,000 3

T > 7,100 V-BLAST/ZF Ty 6,000 < I; < 7,500 2

- - - Te > 7,500 1

Table 5.6: Adaptive Switching Algorithm threshold designs for detector and decoder blocks of
receiver

In order to understand how the full Adaptive Switching Algorithm behaves, consider these four
scenarios illustrated in Figure 5.8 on how a transmission can take place. “Scenario 1” is when
the MI = 2, 500. Referring to the threshold designs in Table 5.6, this packet will go through the
FSD detector and 5 iterations on the turbo decoder before the packet is successfully decoded.
“Scenario 2” represents an MI = 4, 700, and thus, the packets will go through 3 iterations in the
decoder after being detected by the FSD. If the accumulated MI = 8,000 as in “Scenario 3",
the packets will be detected by the V-BLAST/ZF and only iterate once in the decoder. Lastly,
“Scenario 4” denotes MI = 1, 800. Since the MI is less than the necessary MI for any detecting
and decoding to take place, an ARQ is activated so that the transmitter will re-transmit the same

data packets in hope for a better channel condition.
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Figure 5.8: Different transmission scenarios for Adaptive Switching Algorithm receiver

5.5.3 Part 3: The Receiver Power Savings in Realistic Conditions

With the new design for the thresholds in the decoder, this section studies the different decoder
setup to understand its performance of the newly Adaptive Switching Algorithm decoder by
fashioning different designs for the receiver system. The work in Part 3 therefore compares

the full Adaptive Switching Algorithm with other systems as given in Table 5.7.

Name of System Detector Decoder
Full High Specification FSD No Stopping Criteria
State-of-the-Art FSD CRC
Half ASA FSD ASA
Full ASA ASA ASA

[ASA - Adaptive Switching Algorithm]

Table 5.7: Receiver systems design parameters

These four systems are compared to verify the effectiveness of different system designs. The
“Full High Specification” consists of the high performance FSD for the detection and always
performs the maximum eight iterations for the turbo decoding. In the second system, the FSD

is used alongside the latest stopping criteria method used in the LTE systems, which is the
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CRC-24. The proposed Adaptive Switching Algorithm design is investigated where the de-
coder coupled with the FSD as the detector to show the mechanism of the Adaptive Switching
Algorithm as a stopping criterion in the system. This makes up the third system. Lastly, the
full Adaptive Switching Algorithm system design, which operates the Adaptive Switching Al-
gorithm on both parts of the system are measured for power and energy performance to confirm

its validity in the iterative-MIMO receiver systems.

By incorporating the turbo decoder, the BER performance of receiver using the V-BLAST/ZF
is explained in Figure 5.9(a). Similar to Figure 5.3, spatially correlated channels affect nega-
tively on the BER performance. However, due to the decoder, the V-BLAST/ZF is now able
to achieve a better BER performance. The required SNR for detector switching from FSD to
V-BLAST/ZF is also illustrated here. This Figure 5.9(a) shows that the correlated channel re-
quires a higher SNR ~ 20 dB is needed for {2 = 0.7 for the detection to occur in comparison to
SNR ~ 9 dB when the channel is uncorrelated. With these values, the BER for the Adaptive
Switching Algorithm can be seen in Figure 5.9(b). From the figure, it can be observed the
switch for transmissions during the uncorrelated MIMO channels occur at around 8 — 9 dB,
around 11 dB for 2 = 0.3, 14 dB for {2 = 0.5 and 20 dB for €2 = 0.7. It can be seen that the BER
performance is still under 0.5 and 10~3 for T} and 75 respectively. Separate considerations of
the Adaptive Switching Algorithm in the detector and decoder have proven that the adaptivity
in the proposed algorithm has the ability to save energy whilst maintaining satisfactory BER
performance. It can be concluded that the Adaptive Switching Algorithm works well for the full
iterative-MIMO receiver design, since it is able to conform to the error tolerance requirement

of the system of 1073.

Using the same energy calculation method, taking the “Full High Specification” as a baseline,
the total energy usage can be calculated as areas under the graphs. In order to see how the
extreme cases of correlation affect the energy savings, correlations of 0 and 0.9 are considered.
Since most current systems normally operate between the range of 0 dB to 40 dB during real-life
deployment [144], the results for the simulation under these SNR regions are given in Figure
5.10(a) for uncorrelated channels, i.e. {2 = 0, and in Figure 5.10(b) for correlated channels
of 2 close to 1, i.e. 2 =0.9. It can be seen that higher SNRs are required to reduce energy

consumption for highly correlated channels. The energy savings are summarized in Table 5.8.

Energy savings of 74 — 78% across SNR of 0 dB to 40 dB can be achieved when the “Full

Adaptive Switching Algorithm” system is utilized for uncorrelated and correlated channel re-
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Figure 5.9: Performance of turbo decoder in spatially correlated channels
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XILINX® VIRTEX-7: XC7VLX330TFFG1157

Receiver Setup Energy Savings
Name Uncorrelated Correlated
Full High Specification - -
State of the Art 54% 40%
Half Adaptive Switching Algorithm 59% 44%
Full Adaptive Switching Algorithm 78% 74%

Table 5.8: Average energy savings of the iterative-MIMO receiver on Xilinx® Virtex-7

spectively. Both the uncorrelated and correlated channels follow roughly the same energy trend
with the exception of needing a higher SNR for the latter type of channel conditions. This gives
a benefit of around 24 — 34% savings gained in comparison to the state-of-the-art CRC-24
method. The savings lessen as the correlation increases, however, 74% energy savings can be
gained when the channel is highly correlated, it can be concluded that the Adaptive Switching

Algorithm works in an energy efficient manner regardless of the channel conditions.

5.6 Chapter Summary

The Adaptive Switching Algorithm was utilized in both detector and decoder to create a full
adaptive iterative-MIMO receiver. The same threshold calculations involving the MI between
the transmitters and receivers provide sufficient information in real-time regarding any channel
conditions, whether uncorrelated or spatially correlated. The work has proven that the average
energy savings in the detector that can be achieved throughout the span of considered SNR
conditions of —5 dB to 20 dB, are within the range of 19% to 40% when implemented on
Xilinx® Virtex-7 chipset. The design for the Adaptive Switching Algorithm was expanded to
be a link between the detector and decoder, which helps reduce the energy consumption up to
39% by limiting the number of turbo decoding iterations in spatially correlated conditions, in
comparison to the baseline system. When a full Adaptive Switching Algorithm is implemented
on the receiver, 74% of the total energy consumption could be saved regardless of channel
conditions. Thus, the proposed algorithm confirms that its adaptivity attribute in iterative-
MIMO receivers is highly beneficial and the idea could be adopted in real-world future wireless

communication devices.
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Chapter 6
Conclusions

This chapter aims to provide a summary for the thesis, beginning with a brief description of the
motivation behind the work. The specific, technical aims and objectives are explained in order
to highlight the contributions of this work to the wireless communication and computer ar-
chitecture communities’ body of knowledge and the potential impact to society. This chapter
also includes a discussion on the limitations of the current research and future research direc-
tions that can be considered in both wireless communication and computer architecture. The
main objective of this research was to invent an adaptive algorithm suitable for an iterative-
MIMO that could potentially gain power and energy savings in the algorithmic design as well
as during implementation. The behaviour of the proposed algorithm, dubbed the Adaptive
Switching Algorithm, as well as its mechanism were theoretically analysed in depth initially.
Mapping onto selected platforms was then performed in order to identify the points of power
optimization. Adaptivity seems to be the key to minimizing the power and energy consumption
within the receiver design and this was successfully demonstrated during software and hard-
ware design implementations. The novel algorithm was then put to the test in realistic channel
conditions and the verified design was found to be suitable for the current and future wireless

communication systems.

6.1 Summary

A significant breakthrough came about in the late 20" century when the adaptive use of MIMO
antenna systems was proposed in order to cater for the explosive data demand in wireless com-
munication. This had triggered a great deal of research into algorithms and architectures that
benefit from the increase in capacity. However, the increasing number of devices totalling al-
most 14 billion worldwide has resulted in an exigency in energy consumption. Solutions are
therefore called for, and more efficient software and hardware designs are hence imperative.
Adaptivity in algorithms and hardware implementations has been one of the approaches to ac-

commodate this expanding predicament. The introduction of the Adaptive Switching Algorithm
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provides a good solution in both software and hardware where it gives the system a level of ‘in-
telligence’ to adapt to any situation in real-time. The proposed algorithm has shown promising
energy saving results and flexibility in both algorithmic and hardware design architectures.
Moreover, the system performs well under the requirement of the overall iterative-MIMO re-
ceiver design. For clearer understanding, the work has been divided into two parts; the wireless
communication part and the computer architecture part. The wireless communication part
deals with the algorithmic design for the iterative-MIMO system. By combining two detection
algorithms, the receiver system is able to behave according to certain channel conditions. The
threshold design for the switching was controlled by information gathered between the trans-
mission channel for the transmitter and receiver during real-time. The interchanging between
low complexity detector used in high SNRs and high performance detector in bad channel con-
ditions has been highly beneficial, where the adaptivity has given a good trade-off between the
BER performance and the power and energy consumption. The power and energy consumption
were analysed further where different power saving methods were investigated on hardware to
enhance the power savings gained in the algorithm design. The computer architecture part
ventured towards implementing several power minimization techniques onto an FPGA hard-
ware. The amalgamation of the software and hardware consequently delivers huge power and
energy savings when the Adaptive Switching Algorithm was mapped onto the Xilinx® Virtex-
7. Once the algorithm and the hardware design implementation were verified, the full receiver
system was analysed under realistic situations. The deployment of the system on simulated
spatially correlated channels was investigated and positive outcomes were gained during the

experiments.

6.2 Major Research Findings

The main contributions of this work have been elaborated in three separate technical chap-
ters. The first contribution corresponds to the innovative design of the Adaptive Switching
Algorithm, which works adaptively, switching from high performance FSD algorithm to the
low complexity V-BLAST/ZF based on the current channel conditions. This led to the second
contribution, where the design was implemented on the latest FPGA and several power min-
imization techniques were applied when the algorithm was designed on hardware. The third
contribution is when the algorithm was put to the test under realistic channel conditions to see

the gains it can achieved and to ascertain if it can exceed the state-of-the-art in terms of the
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design and the efficiency on hardware performance. Specifically, the major research outcomes

can be described as follows:

e The novel invention of the Adaptive Switching Algorithm for an iterative-MIMO receiver
works by switching between low complexity detection algorithm and the high, close to
ML, performance detector. The switching occurs according to the MI calculated based on
the current channel condition and noise level between the transmitter and receiver in real-
time. The applicability of the Adaptive Switching Algorithm has shown that more than
half in resources consumption can be saved on both software and preliminary hardware
implementations, respectively. Having ‘intelligence’ in the algorithm design and the
hardware setup offers optimistic outcomes in both performance and complexity for the
current and future iterative-MIMO systems. The adaptivity provided by the thresholds
is controlled by the MI between the transmitters and receivers. They give significant
information about the channel conditions as they offer comprehensive statistics regarding

the MIMO conditions.

e The Adaptive Switching Algorithm for both software and hardware are implemented
to show the suitability of the algorithm for realistic implementation. During extensive
studies of several power minimization techniques of DVFS, sleep mode and paralleliza-
tion, the best method of power minimization, which is a combination of sleep mode and
parallelization, on the Adaptive Switching Algorithm was established. By utilizing com-
binations of the power minimization techniques, it can be seen that the system is able to

save energy up to a total of 89%.

e The design for the Adaptive Switching Algorithm was utilized in both the detector and
decoder to create a full adaptive iterative-MIMO receiver. The same threshold calcula-
tions involving the MI between the transmitters and receivers provide sufficient informa-
tion in real-time regarding any channel conditions, uncorrelated or spatially correlated.
The work has proven that the average energy savings in the detector can be achieved
throughout the span of considered SNR conditions and they are in the range of between
19% to 40% when implemented on Xilinx® Virtex-7 chipset. The design for the Adap-
tive Switching Algorithm was expanded to be a link between the detector and decoder,
which helps reduce the energy consumption up to 39% by limiting the number of turbo
decoding iterations in spatially correlated conditions, in comparison to the baseline sys-

tems. Even though spatially correlated channel introduced BER degradation at high cor-
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related channels, the threshold design for the decoder still meets the specified error per-
formance. When a full Adaptive Switching Algorithm is implemented on the receiver, it
shows that similar savings of up to 74% can be gained according to the prediction given
in [1]. Thus, the proposed algorithm corroborates the fact that its adaptivity attribute in
iterative-MIMO receivers is highly beneficial and should be adopted in future wireless

communication devices.

6.3 Limitations and Further Research

There are limitations from both software and hardware standpoints. With regard to the theoreti-
cal software aspect, several assumptions have been made in the system and channel modelling,
for example, ideal channel estimation, perfect timing, flat fading environments or that the re-
sults are based on numbered channel realizations. A possible extension of this work could take
these assumptions into consideration and replace them with more realistic models of different
parts of the system to analyse the performance of the proposed Adaptive Switching Algorithm.
From the hardware implementation point of view, hardware mapping on different parts of the
proposed algorithm could also be investigated, for example, hardware resources can be shared
for the two detection algorithms of FSD and V-BLAST/ZF to further optimize the design for
the proposed algorithm and/or a deeper analysis on fixed-point performance using a common
quantization approach in order to compare them. In addition, the channel ordering for both de-
tection algorithms have been done purely on simulation with fixed point arithmetic. In practice,
it would be highly beneficial to incorporate the possible architectures for real-time implemen-
tation of the pseudoinverse calculations of the channel matrix to fully analyse the system’s
applicability. Moreover, in practice, the switching of different modes may create some latency
in the hardware, which creates delays at the output. The lifetime of the hardware might also
be affected by the rapid circuit switching in between the two modes of “high performance” to
“low power” if occur too frequently. On a more general aspect, several possible routes could
be considered for future work, for example, different modulation and code rates could be used
to show the robustness of the idea behind the Adaptive Switching Algorithm. Since adaptivity
is the key to power and energy savings, the design for the threshold can be further investigated
to pinpoint the strengths and weaknesses of the proposed algorithm by incorporating different
system parameters. Finally, a good direction for future research would be to implement the al-

gorithm on dedicated hardware to see how it would perform under realistic conditions for both
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indoor and outdoor conditions.
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Adaptive switching detection algorithm for iterative-MIMO
systems to enable power savings
N. Tadza', D. Laurenson', and J. S. Thompson'

Tinstitute for Digital Communications, School of Engineering, University of Edinburgh, Edinburgh, UK

Abstract This paper attempts to tackle one of the challenges faced in soft input soft output Multiple
Input Multiple Output (MIMO) detection systems, which is to achieve optimal error rate performance with
minimal power consumption. This is realized by proposing a new algorithm design that comprises
multiple thresholds within the detector that, in real time, specify the receiver behavior according to the
current channel in both slow and fast fading conditions, giving it adaptivity. This adaptivity enables energy
savings within the system since the receiver chooses whether to accept or to reject the transmission,
according to the success rate of detecting thresholds. The thresholds are calculated using the mutual
information of the instantaneous channel conditions between the transmitting and receiving antennas of
iterative-MIMO systems. In addition, the power saving technique, Dynamic Voltage and Frequency
Scaling, helps to reduce the circuit power demands of the adaptive algorithm. This adaptivity has the
potential to save up to 30% of the total energy when it is implemented on Xilinx@®)Virtex-5 simulation
hardware. Results indicate the benefits of having this “intelligence” in the adaptive algorithm due

to the promising performance-complexity tradeoff parameters in both software and hardware

codesign simulation.

1. Introduction

The ability to increase throughput without requiring more computational power has always been a topic of
interest amongst the wireless communication research community. Multiple Input Multiple Output (MIMO)
promises high throughput without additional transmit power [Goldsmith et al., 2007], however, minimizing
the receiver’s power, which is often limited, is still under intensive study. Current base stations, prolifera-
tions of femtocells and/or wireless access points also need to exercise being “green.” The energy source is
often shared amongst millions of devices. There are substantial potential of power savings to be gained

in these small mains powered devices. In this paper, a field programmable gate array (FPGA) is used as a
platform to show the inner workings of the adaptive algorithm. It is chosen due to its robustness, its repro-
grammable capabilities and its potential for further energy savings by parallelization. The results obtained
can be translated onto any hardware platform such as an application-specific integrated circuit (ASIC), which
is more common in mobile devices. Fundamentally, a soft-MIMO receiver is divided into two parts, the MIMO
detector and the soft decoder working together to achieve the best performance. The received data are
processed through the detector before being passed into the decoder. Most publications focus on saving
power using the signal-to-noise ratio (SNR) [Wu, 2011], channel matrix condition number [Matthaiou et al.,
2008], or reducing the number of turbo decoding iterations [Zhang et al., 2009a, 2009b] for the receiver.
Condition numbers of the channel matrix would only take into account the input and output matrix of the
transmitter and the receiver. This is not sufficient as a switching metric since it disregards the noise level.
SNR, on the other hand, does not compute the relationship between the antennas in a MIMO system. If
the channel is deemed good, due to high SNR values, strongly correlated antennas would not make for a
good transmission condition. This is because the correlated system provides insufficient diversity in the
MIMO system. Therefore, mutual information (MI) is implemented due to its consideration of the diversity
of a MIMO system, i.e., the transmitters and the receivers as well as the noise level. This gives a maximum
amount of information regarding a channel with minimal complexity in comparison to using either condi-
tion number or SNR alone. This paper therefore shifts the attention to the detector using Ml as the threshold
control; in hope to gain energy savings earlier on the processing stages, i.e., by avoiding both detection
and decoding processing. This iterative-MIMO scheme, which combines a spatial multiplexing MIMO detec-
tor and an outer forward error correction soft decoder with an interleaver in-between [Ariyavisitakul, 2000;
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Sellathurai and Haykin, 2002], dubbed Bit-Interleaved Coded Modulation (BICM) [Hochwald and Brink,
2003], has a very high computational complexity as the receiver detects and decodes symbols by search-
ing through possible transmit symbols. Moreover, this is done iteratively in soft-MIMO detection systems
by the decoder.

This paper focuses on saving energy consumption in the MIMO detector, where it predicts symbols trans-
mitted by each antenna by examining the channel noise and constellation modulation scheme. It should be
noted that, though out of scope of the paper, after the process of detecting, the symbols are passed to the
outer decoder before a hard decision can be made.

There are many types of different detection algorithms available, which can be generalized into “Nulling
and Cancelling” methods, such as the Zero Forcing (ZF) [Winters et al., 1994] and the Minimum Mean Square
Error Estimation (MMSE) [Li et al., 2006] techniques as well as the “tree search” algorithms, for instance, the
Maximum Likelihood (ML), Sphere Decoding (SD) [Fincke and Pohst, 1985], and the Fixed Sphere Decoding
(FSD) [Barbero and Thompson, 2008a] routines. For simple detectors, ZF and MMSE provide low complexity;
however, they give poor performance in terms of bit error rate (BER). Linear detection methods, combined
with nulling and cancelling, seem to give a better BER while maintaining the low complexity. This is why
the combination of Vertical Bell Laboratories Layered Space Time (V-BLAST) and ZF is chosen. On the other
hand, for close to ML performance, tree search algorithms such as FSD, layered orthogonal lattice detector,
smart-ordered candidate adding algorithm, and K-Best result in high complexity in order to meet the per-
formance criteria. This drains a lot of power in order to decode data packets, which is particularly wasteful
in good channel conditions. In poor channel conditions, FSD has been chosen as a detection method as it
is independent of the search radius, meaning, the complexity is fixed and minimal in comparison to other
tree search algorithms. The novelty of this paper lies in the fact that the algorithm switches between high-
and low-complexity detectors to give a bigger gain in energy savings. Ultimately, using different detectors
would only slightly alter the thresholds that need to be implemented, confirming that Ml is adaptive to any
system for determining the threshold for switching.

The computational power required to implement tree search MIMO detection every time a symbol is
transmitted is unnecessary in some channel conditions. As each detection algorithm has a different per-
formance and complexity, choosing between them depends on the system’s unique requirements. To
construct an adaptive implementation that could fit on available hardware in the market, this study com-
bines two detection algorithms. The Fixed Sphere Decoding (FSD) and the Vertical Bell Laboratories Layered
Space Time/Zero Forcing (V-BLAST/ZF) techniques are incorporated into an adaptive approach that has
the ability to selectively operate according to the received signal conditions. These two detection algo-
rithms are chosen due to their fixed data throughput, potential for hardware parallel implementation and
low complexity.

The proposed adaptive algorithm therefore prevents the receiver from performing extensive computa-
tion under very low or very high SNR conditions, which ultimately yields significant savings in energy.
The algorithm utilizes multiple thresholds to intelligently switch MIMO detection schemes according
to the current environment. This “intelligence” is the key to efficient energy utilization in the receiver.
The results of this work will be presented in terms of overall energy savings from both software and
hardware standpoints.

1.1. Contributions
The main contributions of this paper are summarized as follows:

1. An adaptive switching algorithm that adapts to real-time channel conditions by selecting to minimize
the power consumption of iterative-MIMO detection systems is proposed. This is realized in the form of a
threshold control unit, which selects the minimum complexity detector capable of meeting the desired
BER performance.

2. The adaptive algorithm shows promising BER performance on a par with the current available detection
schemes with lower computational complexity.

3. An evaluation of the new design in a Xilinx®)Virtex-5 FPGA shows convincing dynamic and static power
savings compared to baseline detectors.
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Figure 1. Iterative-MIMO (BICM) System.
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2. Background

2.1. System Model

Consider an iterative-MIMO system comprising M transmit antennas and N receive antennas based on
BCIM, transmitting frames of K, bits as shown in Figure 1. At the transmitter, the K|, bits are encoded using
an iterative encoding method such as convolutional or turbo coding [Hagenauer et al., 1996] of rate R,
where K, = K, - R.. The K,-coded bits are then interleaved giving K, bits, which are mapped into inde-
pendent Quadrature Amplitude Modulation (QAM) constellations, O, of P points, forming a sequence of
K, = K./ log, P symbols. The symbols that are separated into M substreams blocks of M - K, symbols are
transmitted in each channel realization, K. These are transmitted over Rayleigh fading channels. In other
words, a frame of K,-coded bits requires a transmission of K, /(M - K,) blocks of data. Consequently, the
received symbols, indexed by a sample time, k, can be written as

r[k] = H[kls[k] + n[k] (4]

where the channel matrix H € C™*V is assumed to be perfectly known at the receiver with independent
elements h;; ~ CN(0,1),for1 <i < Mand1 <j < Nrepresenting a block Rayleigh fading propagation
environment, s = (s,,5,, ..., 5y)" is the transpose vector of the M-dimensional transmit symbol vector with
E[| s; [*1 = M, nis the C"¥' additive independent and identically distributed circular symmetric complex
Gaussian noise vector of h;; ~ CN'(0,62) with 62 = Np,and r = (r;,1,, ..., ry)" is the transpose N vector of
received symbols. The set of all transmitted symbols forms an M-dimensional complex constellation O™ of
PM vectors, which specifies the dimensionality of the system.

2.2. MIMO Detection

The channel H is assumed to be known at the receiver through a preceding training period. This generates
and saves data in the channel estimation block regarding the modulation schemes and the channel condi-
tion statistics. MIMO algorithms solve (1) by separating parallel data streams transmitted by antennas. They
can generally be categorized into four types as described below.

2.2.1. ML

ML detection finds the minimum constellation point in (1) within the received symbols. It is given by

8. = argmin || r — Hs ||? )
seoM

The ML detector is optimal and fully exploits all available diversity. Even though ML produces the best BER
performance, due to its use of exhaustive search, it can have immense complexity for direct implemen-
tation. The complexity grows exponentially with the transmission rate R, since the detector needs to go
through 2f< hypotheses for each received vector. For example, for the case of a 4 x 4 iterative-MIMO system
employing 16-QAM, the detector would need to search a total of K, = 16* = 65,536 candidates in order
to find the correct transmitted vector. Several efficient suboptimal detection techniques have therefore
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been proposed or adapted from the field
of multiuser detection. Even though
these techniques are much less com-
Channel realization: putationally demanding than the ML

Table 1. V-BLAST/ZF Algorithm?

Pseudo-Code

G‘l. Z :ﬁ detector, they are often unable to exploit
Recursion] a large part of the available diversity,

ki = argmingg e ey I (G 12 and thus, their performance tends to

Vi, = Gyt be significantly poorer than that of ML

8 = Q) detection. However, this tradeoff can be

Fipr =1 — 8 (Hy) made for efficient hardware designs.

Gjy1 = HE" 2.2.2. ZF: Linear Detection

i=i+1 This method neglects the constraint

2Algorithm consists of channel ordering given by Line 3; Line 4 se0Min (2). and uses different criteria to
performs nulling and computes the decision statistic; Line 5 quan- find the nulling vectors, the most com-
tizes the computed decision statistic to yield the decision; Line 6 mon being the ZF or MMSE approach
performs cancellation by decision feedback, and Line 7 computes [Golub and Van Loan, 1983]. Generally,
the new pseudoinverse for the next iteration. the symbol § is given by a transformation

of the received vectors r in the form of
§=Q(H'r) (3)

where H* is the Moore-Penrose pseudoinverse matrix that depends on channel H and Q is a quantizer that
maps the argument into the closest point in @". Even though this method has low complexity, it does have
a major drawback of having a rather poor performance in terms of BER.

2.2.3. V-BLAST: Ordered Successive Interference Cancellation

V-BLAST [Golden et al., 1999] method gives slightly better BER performance in comparison to linear detec-
tion. However, due to the error propagation, it is still suboptimal in performance. This is often overlooked
due to its practicality during implementation. V-BLAST is a recursive procedure that works by minimizing the
influence of noise by reordering the channel matrix according to the signal strength received. The algorithm
simply makes a first detection of the most powerful signal, consequently subtracting that signal from the
overall detected symbols. It then continues the same process by proceeding to the detection of the second
most powerful signal, and so forth. Assuming the ordered set to be

§ = (ki ky, oo ky ) (4)

the detection algorithm operates on r;, given in (5), while computing the decision statistics y,, Yy it
which are then quantized to form estimates of the received symbols §; .§; . ... ;. The detection order is
determined by the information about the channel conditions readily available within the estimation block.
After computing (3), the detection process uses linear combinatorial nulling and symbol cancellation to
successively compute the received vectors:

g =1 =8 (H), )

When combined with the ZF method, it shows some improvement in BER while still maintaining low com-
plexity. The complete V-BLAST/ZF detection algorithm is summarized in Table 1, where G denotes the
Moore-Penrose pseudoinverse of the current channel H, and therefore, (G)); is the j* row of G, Q(")isa
quantizer to the nearest constellation point, (H) is the kim column of H, H, denotes the matrix obtained
by zeroing the columns k., k,, ..., k; of H, and H;’ denotes the pseudoinverse of H . This type of detection
scheme is best deployed in high-SNR environments.

2.2.4. SD and FSD

SD reduces the complexity of the ML detection problem [Viterbo and Boutros, 1999; Pohst, 1981; Agrell et al.,
2002] by introducing a constraint within the search called the sphere radius, R:

$p = argmin || r—Hs [|*’< R (6)
seOM

The search can be visualized as a tree, traversing down each node until it encounters one with Euclidean
Distance (ED) that is larger than R, where it will eliminate that branch from the search. The minimum sym-
bol is acquired once it has traversed down through every path reaching the end, i.e., the leaf node(s). The
SD has major drawbacks when it comes to hardware implementation due to having variable complexity
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and its sequential nature. The complexity of the SD depends on the noise level and the channel condi-
tions. Moreover, the linearity of the search prevents parallelism for newer hardware design implementation.
Parallelization has been proven to minimize energy consumption in circuit designs due to a workload
being shared across multiple computational resources, so that the circuit can produce the same amount

of throughput at a lower frequency of operation [Chen et al., 2010; Esmaeilzadeh et al., 2011; Kumar et al.,
2003). Therefore, Barbero and Thompson [2008a] proposed a modified version, the FSD, in order to overcome
both shortcomings. FSD is a combination of brute-force enumeration and a low complexity, approximate
detector. Much like the SD, FSD traverses down the tree while calculating the ED; however, instead of hav-
ing a radius constraint R, FSD determines in advance the number of lattice points § around received signal
r it would pass through, evaluating r independent of the noise level, giving it a fixed throughput. The algo-
rithm makes use of the fact that [Barbero and Thompson, 2008b] the diagonal entries of R from the QR
decomposition of the channel matrix satisfy

E[F2 ] < E[¥,] < <E[r\] (7)
Thus, the number of candidates at antenna level k denoted by n, should follow
Elny] 2 E[ny_4]1 > -+ - 2 E[ny] (8)

The main idea of FSD is to assign a fixed but distinct number of candidates to be searched per antenna level.
The FSD is considered a promising algorithm for soft-MIMO detection. Since its introduction, the reduction
of complexity in FSD has received significant attention [Barbero et al., 2008; Lei et al., 2010; Liu et al., 2011; Li
et al., 2012; Wu and Thompson, 2011].

2.3. Iterative Decoding

An iterative decoder [Hagenauer et al., 1996] is used right after the MIMO symbols have been detected,
where soft information extrinsic log-likelihood ratio (LLR) values are exchanged iteratively between the
outer decoders with interleaving/deinterleaving operations in between until the desired performance is
achieved [Berrou et al., 1993]. The idea behind soft detection is to generate a posteriori probability values in
the form of LLR information, L¢(b,|r), about the interleaved bits, b, for 1 < k < K,, while taking into account
the channel observations r and the a priori LLR information, L,(b,), coming from the outer decoder. For the
system under consideration, assuming that the bits b, are statistically independent due to the interleaving
operation and making use of the Max-log approximation, Lg(b,|r) can be approximated by

1 —lr-Hs P 1 “lr-Hs 2
LE(bk"“E»JIL%L( oz TPwtan) =g, T tPwbaw ©

for 1 <k <K, where, without loss of generality, K, =M - log, P has been assumed to simplify

the index notation. In (9), b= (b,,b,,bs, ... ,bKE)T, b[k] denotes the subvector of b omitting

by, Ly = [La(by), Ly(by), ... ,LA(bKe)]T, L, denotes the subvector of L, omitting L,(by), B ,; and B, _; repre-
sent the sets of 2% bit vectors b having b, =+1 (logical 1) and b, = —1 (logical 0) respectively, £ N B, ,;,
and £ n B, _; denote the subgroups of vectors of L that have b, = +1 and b, = —1, respectively. The list

of candidates £ C O is detector specific and subject to the overall performance and complexity of the
iterative-MIMO receiver, since || r — Hs ||? needs to be computed for all s € L. Although iterative decoding
does contribute to the overall complexity of a MIMO receiver, numerous studies have been done in reducing
the total complexity of iterative decoding [Li et al., 2013; Mathana et al., 2013; Wu, 2011; Zhang et al., 2009b];
therefore, this paper focuses on minimizing energy consumption in the MIMO detector. It should be noted
that some of the complexity of iterative decoding will be avoided due to the proposed adaptive algorithm
design; however, this is out of scope of this paper.

2.4. Power Savings

Energy consumption in mobile devices with battery-powered sources is a major limiting factor in circuit
designs. Fundamentally, energy is consumed in both dynamic and static aspects as specified by (10). Most
publications like Mirsad et al. [2011], Andrei et al. [2009], and Salehi et al. [2011] have successfully reduce
the dynamic power consumption; however, in newer chip technologies, the static power consumption is
said to be high [Telikepalli, 2006]; therefore, this work investigates ways to reduce both types, dynamic and
static energy consumptions, in a circuit design, while ensuring that the algorithm performance is sufficient.
This will ensure that the adaptive algorithm is properly optimized to meet power budget of the design. In
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order to evaluate the overall power savings gained by the adaptive algorithm, both software and hardware
savings should be analyzed:

+E

static

Etotal = Edynamic + Ejj0 + Eqransceiver (10)

There are multiple ways to exploit energy savings in circuit designs, and different energies have differ-
ent approaches to execute these. For example, savings in Eqy,,mic are achieved by deploying the Dynamic
Voltage and Frequency Scaling (DVFS) technique [Rabaey, 2009] while on the other hand, savings in Eg
depend on the manufacturing process, the temperature, and the voltage, V.

2.4.1. Dynamic Energy

Dynamic energy, Eqynamic, SPent within complementary metal-oxide-semiconductor (CMOS) technology is
due to toggling of transistors and is a function of clock frequency, f, which can be varied within some limit
(before the circuit fails to function due to overheating), the value of V, and the capacitance. The Egynymic is
given by the relation [Abusaidi et al., 2008] below:

nCV3f
Edynamic = —¢ an

where n is the number of toggling transistors, C is the circuit capacitance, V is the voltage swing, f is the
toggling frequency, and t is the time it takes to complete an operation. DVFS has shown significant energy
savings when applied to circuit designs, evident in Larson and Gustafsson [2011], ARM Industry [2009], and
Kim et al. [2008]. Much like the adaptive algorithm, DVFS has the ability to adjust its parameters to match
the computational demand of the current workload. If the workload requirement is high, DVFS will increase
the V, to supply the circuit so that it can operate at a higher f in order to meet the desired data throughput
within a particular time period. The opposite is also true; when the workload is minimal, the circuit could
operate on a much lower f, which ultimately, according to (11) will decrease the overall Edynamlc as the task
time lengthens. This adaptivity is appealing to the design of the adaptive algorithm since now both hard-
ware and software possess the same level of adaptivity and intelligence. Both approaches will in turn yield
significant overall energy savings.

2.4.2. Static Energy

Static energy, E,., is consumed due to transistor leakage and is highly dependent on the manufacturing
process, the ambient temperature of the circuit, and the value of V. According to the study by Telikepalli
[2006], Ej;.ic Seems to dominate the overall power consumption within a circuit as the chip size shrinks.
Therefore, E,;;c can no longer be neglected when designing new algorithms into new chip technology.

3. Adaptive Algorithm Methodology

Current MIMO detectors usually lack adaptivity whereby all receivers behave exactly the same way regard-
less the received signal characteristics. This “one size fits all” architecture does not work well in some
situations, since different users experience distinct channel conditions. For example, a stationary user who
is physically near to a transmitter would often have a better data throughput than one who is further away.
Doppler rates determined by motion in the environment also play a part in determining the current con-
dition of the channel. To decode symbols in bad channel conditions would prove to be pointless since the
data would not be likely to be decoded successfully anyway. Therefore, having intelligence in the detector
that could modify its behavior according to current channel conditions would be ideal. This adaptivity in the
algorithm is controlled by the MI calculation between the transmitters and receivers. It is well known that
MI of a MIMO channel is given by (12) and the information required, H is already available within the chan-
nel estimation block. Different values of initial received soft information may lead to significantly different
behavior during the iterative decoding process. The study done by Zhang et al. [2009a], which compares the
performance of iterative decoders using different received soft LLR information metrics, discovered that by
computing the MI, the number of iterations in turbo decoding can be found using the highest complexity
ML MIMO detection method. Zhang et al. [2009a] also proves that the best approximation of the received
symbols obtained are lossless and that the exact LLR values are sufficient enough statistic of r about s.
Therefore, using this information and the principle of exploiting Ml calculation in (12), the paper applies this
approach for the first time to a MIMO detector to further save energy consumption in the overall receiver.
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Figure 2. Probability of receiver successes and failures on 4 x 4
MIMO where (a) threshold 1 is for FSD method and (b) threshold 2 for
V-BLAST/ZF method.

With any given channel model in (1),
and a Gaussian constellation with
E[| s; |1 = M, the Ml for the ML
method is

HH’
THy) 2 log, det </+ ,*V k) 12
(1]

The values of Ml spread at specific
SNR conditions. Figure 2 illustrates
the accumulated MI performance of
the detector as a function of proba-
bility of receiver fails and successes.
The system is simulated using a 4 x 4
MIMO system with 16-QAM modula-
tion symbols transmitting 1024 bits
per packet of 10,000 channel real-
izations utilizing an iterative-MIMO
decoder of % code rate in a fast-fading
environment. Threshold 1 can be
obtained in Figure 2a, which shows
the FSD performance. Below a cer-
tain Ml threshold of approximately
2200, the receiver is certain to fail
when trying to decode a symbol mes-
sage. Therefore, the best cause of
action for the receiver is to request
a retransmission, i.e., Automatic
Repeat Request, from the transmit-
ter rather than to attempt decoding
where it is unlikely to succeed, wast-
ing significant computational energy,
which is the limitation of today’s sys-
tem designs. On the other hand, the

V-BLAST/ZF performance is shown in Figure 2b, where a value of about 7100 for threshold 2 can be seen.
The receiver will decode the symbol message with very high probability above this Ml value; therefore,
a simpler detection method will suffice in detecting the symbol, i.e., the V-BLAST/ZF method. In addi-
tion, the area in-between the two thresholds shows that the receiver would sometimes fail to decode.
Thus, a more powerful detection method is needed to assist the receiver in decoding the message.

Table 2. Adaptive Algorithm

Pseudo-Code

Channel realization: {Hq,H,, - -, Hy}
for < e
7 A
I(Hy) £ log, det (H— TJ)
if 7, <Threshold 1
r; error, request retransmission
else if Threshold 1 <7; < Threshold 2
r; with low Ml : FSD
else T, > Threshold 2
r; with high MI : V-BLAST/ZF
end if
end for

This is done by deploying the FSD algo-
rithm in the MIMO detector. By obtaining
these thresholds, the design of the
adaptive algorithm can be described

in Table 2. It should be noted that the
thresholds obtained are catered specif-
ically for 16-QAM modulation scheme
on a4 x 4 MIMO system; however, the
idea behind adaptive algorithm can be
adjusted to fit any communication sys-
tems. The same analysis can be applied
to all other modulation and coding
schemes, with the exception of hav-
ing different threshold values when
calculated using (12).
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4. Results and Analysis

Adaptive Algorithm The effectiveness of the adaptive algo-
—*—FSD g

| —e—v-BLASTIZF 4 rithm can be measured using the
performance and complexity tradeoff
| metrics. This section describes these
efficiencies from both hardware and
software perspectives.

4 - @dmm Lre | \ ,’ \‘v*\‘\ 4.1. SOFTWARE: Performance

The performance can be quantified by

calculating the number of errors in a

total frame, i.e,, the BER analysis. The

X \ system design has been set to toler-

10° < \ - ate a BER of 1073 or less in high-SNR

SNR (dB) regions. In the system model used,
. the BER is depicted in Figure 3. The

Figure 3. Performance measurement of BER on complex 4 x 4 R . . L.

MIMO system. adaptive algorithm gives similar perfor-
mance to the FSD and performs much
better than the V-BLAST/ZF algorithm

in low-SNR regions. In very high SNRs, i.e., 10 dB and above, the less complex algorithm of V-BLAST/ZF is

adopted and the BER performance is below the set error tolerance line. The FSD does give a much better
performance than the tolerance line; however, this level of performance is unnecessary and only adds extra
complexity for the hardware. When the SNR is below 0 dB, the receiver abandons the detection process

(subsequently avoiding the complexity of the iterative decoding process as well, gaining substantial power

savings) and requests a retransmission from the transmitter, whereas the area above the set threshold,

approximately 0 dB to 6 dB, the adaptive algorithm provides much higher chances of successful processing
in comparison to the V-BLAST/ZF method.

4.2. SOFTWARE: Complexity

By obtaining the thresholds, the total number of usage of each MIMO detection algorithm throughout the
span of the SNR is shown in Figure 4, depicting transmissions of 10,000 packets of 1024 bits per frame. It
clearly shows that below an SNR value of 0 dB, i.e., threshold 1, no processing is taking place. In addition, in
high-SNR regions, V-BLAST/ZF is utilized. This figure concurs with Figure 3, where the performance coincides
with the algorithm switching rate of successfulness. From this, another part of the parameter, the complexity
measurement of the software can be determined.

Complexity measurement gives an important overview of the hardware before implementation and pro-

vides an initial indication of power savings in the design. A preliminary complexity analysis of the adaptive

algorithm is determined by the multiplier counts in the code. Assuming that the complexity of channel

ordering is the same for both detec-

10000 f Pf tion schemes, the multiplier counts

9000 between the FSD and V-BLAST/ZF detec-
/ \ / 5 NoDecodng tion schemes for a transmission of one

8000 —0—V-BLAST/ZF |

000 \ l \ ’ —%—FsSD symbol for 4 x 4 M-QAM deploying

5000 / FSD is M-times more complex than the

V-BLAST/ZF. Figure 5 plots the percent-
I age complexity results against the SNR
I of the channels, where 100% equals the
complexity of FSD, while the V-BLAST/ZF
requires only 25%. The complexity of
the adaptive algorithm can be calcu-
oo—a _\\ =J - x P lated by averaging over Ml values shown
) 5 0 5 20 at certain SNR in the figure, and it is
SNR (dB) much lower than the FSD, i.e., 62% of the
Figure 4. Algorithm switching selection in receiver. multipliers required. Most energy

5000

4000

Number of packets

3000

2000 } \

1000

R —
S
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J savings can be gained during the “No

100
% //“ \ v Pecodl'ng 'phas'e snnc'e no processing
/ \ e V-BLASTIZF is required in this region. Furthermore,
80 / \ Zore 7 energy are saved during the utilization
—— Adaptive Algorithm . .
2 70 / \ of V-BLAST/ZF algorithm, i.e., where MI
g 60 > 7100, which gives a total of only 25%
g 50 / \ multiplier usage.
g 40 \ 4.3. HARDWARE: Performance and
= 30 / \ C r. i Yy
2 7 Xilinx@®)Virtex-5 has a varying voltage
o / range of 0.95 V to 1.05 V and an oper-
/ ational frequency range of 60 MHz to
0 400 MHz [Klein, 2009]. In order to assess
0 SNR (d8) 0 ' 2 the efficacy of the DVFS technique in

saving energy consumption in wireless
communication, both MIMO detection
algorithms, FSD and V-BLAST/ZF, are
operated at low-power mode (0.95 V, 60 MHz) and high-performance mode (1.05 V, 400 MHz) to get the
minimum and maximum thresholds of operation. This information is determined using the Xilinx@®Design
Suite software for the Xilinx@)Virtex-5. The Xilinx@®Design Suite software comprises a codesign soft-
ware/hardware setup performed in MATLAB™ and Xilinx@®)System Generator, which is a part of the
Xilinx@®)ISE. In addition, the power profile is analyzed using the Xilinx®Power Estimator tool. The summary
of the total number of the FPGA resources used are given in Table 3. The percentage of slices used can be
seen as an indicator of the amount of control logic and intermediate buffers required in the adaptive algo-
rithm. This factor affects hardware mapping and the resulting throughput. The average throughput of the
system is a parameter of importance when considering the performance of the algorithm. The throughput
in megabits per second (Mbps) is calculated according to

Figure 5. Complexity measurements of multiplier counts between
different MIMO detection schemes.

Qug =M-log,P-f/Cuq (13)
where C,, is the average number of clock cycles required to detect a MIMO symbol.

For low-power mode, where f = 60 MHz and the minimum number of cycles is C;, = 4, the maximum
throughput is Q,,;, = 240 Mbps while the high-performance mode gives a throughput of Q,,,, = 1200 Mbps.
Increasing the clock frequency would result in a significant increase in the throughput; therefore, the

f = (.4 could be seen as an indicator of the level of optimization of the hardware design.The hardware

setup parameters are included in Table 4.

Similar to details reported in Mirsad et al. [2011], Andrei et al. [2009], Salehi et al. [2011], and Larson and
Gustafsson [2011] there are significant dynamic power savings in the circuit, portrayed in Figure 6, where
low-power mode uses 9% of the overall power in comparison to 29% when the circuit is run at full power,
i.e., the high-performance mode. However, these savings would be minimal in comparison due to the much
larger static power, which dominates the overall chip power. Figure 7 shows the low-power results for

FSD (a) and V-BLAST/ZF (c) as well as the high-performance statistics, (b) and (d), for FSD and V-BLAST/ZF,
respectively. It is shown that some savings are gained when the adaptive algorithm switches from the
high-complexity FSD to the simpler V-BLAST/ZF detection. The power saved during the swap is equivalent

Table 3. Virtex-5 Resource Utilization of Adaptive Algorithm

Logic Resource Utilization Used Available Utilization
Slice Registers 13,683 149,760 9%
Flip Flops 4,688 37,440 12%
4-Input LUTs? 12,161 149,760 8%
DSP48E 132 1,056 12%
Memory (RAMP) 28 516 5%

3Look-up tables.
bRandom access memory.
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Table 4. Experiment Parameters of Adaptive Algorithm

Virtex 5: XC5VLX330TFF1738

MIMO Setup 4 x 4 Modulation Scheme 16-QAM  Bit Frame Size 1024 Bits
Operation Mode Parameters Low Power High Performers
Core Voltage 095V 1.05V

Clock Frequency 60 MHz 400 MHz

Max Throughput 240 Mbps 1200 Mbps

to 20% for high performance and 8% for low-power mode. The energy savings when changing from high
performance to low power are also illustrated here. The total time computed is obtained by transmitting one
packet of 1024 bit frame using a 16-QAM modulation symbol over the 4 x 4 MIMO channel when operating
at the lowest frequency of 60 MHz. When operating at 400 MHz, the task completion time takes approxi-
mately 7 times less than when operating at lower frequency. By finishing quickly, the hardware can be put
into sleep mode, reducing the total energy, since the idle power is negligible ~ 0.08 mW. By calculation, at
the same total rate of completion, the energy required to complete one task is lower by 42% when the cir-
cuit operates quickly and switches into idle state (high performance) than to run slowly and finishes just in
time, at lower frequency (low power) when deploying FSD, and 52% for the V-BLAST/ZF algorithm. These are
the savings which can be gained when putting the chip into sleep mode for more than 15 ps. Even though
in theory, verified in (11), the longer the task runs, the lower the dynamic energy consumption, this is not
the case here because when evaluating the total energy consumption of the circuit, the E; required in
powering up the Xilinx®)Virtex-5 hardware is too large, occupying most of the power demand of the chip,
resulting in 84% and 65% of the total power for low-power and high-performance mode, respectively, as
shown in Figure 6. These findings coincide with the work reported in Hasan and Bird [2011], stating that as
manufacturing process get smaller, the ;. seems to dominate the overall chip power. Therefore, it can be
concluded that running the circuit at a lower speed is not the answer to overall power savings in this tech-
nology. E,ic could no longer be neglected when designing a circuit, and it is now more essential to take
temperature as a parameter in saving overall energy consumption, since E;;. strongly depends on the heat
generated by the circuit.

Low Power High Performance

5% 1%

29%

ul’0
® Transceiver
D] 1 Static

o # Dynamic

9
B
g7
256
Hl
E
S 4
o
3
H
22

1

0

Low Power High Performance
Operation Modes
Figure 6. Total power usage in Xilinx®Virtex-5 hardware apparatus.
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Figure 7. MIMO detection (a) FSD and (b) in comparison with (c and d) V-BLAST/ZF for low-power mode and
high-performance mode, respectively.

Figure 8 shows the overview of the algorithm flow within the chip. Only one detector is switched on at any
given time according to the calculation from the threshold control block. This is particularly useful for FPGA
implementation since the hardware resources are switched on and off as required. The implementation

of the adaptive algorithm is illustrated in terms of the FPGA hardware given in Figure 9. The configurable
logic utilized for each detector is shown in (a) for FSD, (b) for V-BLAST/ZF, and (c) when “No Decoding” is
taken place. It can be seen that only certain parts of the overall chip hardware are turned on at any given
time. Seeing that most power consumption is due to powering the up the chip itself, i.e,, static power, the
adaptive algorithm takes advantage of this fact and therefore shuts down parts of the chip which are not in
use. To show how the adaptive algorithm behaves, consider four extreme scenarios of three frames of 1024
data bits per frame size being transmitted over different environments, where T, is when the Ml is at a high
value, T, is for when Ml is acceptable, and T; is for Ml being low and not suitable for further decoding. From
Figure 5, it is shown that the complexity of an FSD is 4 times larger than that of the V-BLAST/ZF. Therefore,
if the complexity of the V-BLAST/ZF is set to 1, the FSD will have the equivalent complexity of 4. The overall
chip area usage is given in Figure 10. Using the same complexity ratio, consider a transmission of 100,000
frames of 1024 bits per frame on random fast-fading channel realizations over various ranges of SNR values
from —4 dB to 20 dB. The adaptive algorithm saves approximately 30% of the overall resource in comparison
to the FSD detector while maintaining the BER performance at a satisfactory region.

Shutting down parts of the chips, i.e., sleep modes, is the key enabler in saving further energy in the design
on Virtex-5 hardware. By running the circuit at high frequency, the sleep modes can help prevent the circuit

|-

V-BLAST/ZF >

»>

A

Threshold Control Block T ]
1

@

A 4

H Fam A HH' T,
L] 7D 2 log, det| 1+ FSD
: N

al
[ - > ARQ

Detector Block

Figure 8. Simple adaptive algorithm implementation model.
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Basic FPGA Architecture
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Key:

. Configurable Logic Block

"
Threshold Control Block i I l l 1/0 Buffers Multiplier

Unused Detector Block D Detector Block . Block RAM

Figure 9. Total resource allocation of adaptive algorithm on a basic FPGA architecture.

Digital Clock Manager

XIE
L

from running and powering up the entire logic gates all the time, consequently preventing the circuitry

from overheating that leads to high-£;;.,;. consumption.

For greater insight of the total energy savings that can be achieved in a realistic setting, Figure 11 consid-
ers the adaptive algorithm in a Rayleigh fading channel. The SNR chosen are based on the operating SNR
regions of the Long-Term Evolution. In small cells, the transmit power is to be in the range of 23 dB to 46 dB,
averaging at 26.5 dB [Nakamura, 2013]. The savings can be found by integrating the power, P, with respect

Transmission issi issi Total
T T I Resource usage
Only | "
V-BLAST/ZF NI FRAME 2 FRAME 3 25%
| o e V-BLAST/ZF V-BLAST/ZF V-BLAST/ZF
a) Scenario 1: Only V-BLAST/ZF
k-
1 ST ::: FRAME 1 FRAME 2 FRAME 3 100%
] FSD FSD FSD
S
b) Scenario 2: Only FSD
1 Only :.V'\ FRAME 1 FRAME 2 FRAME 3 0%
ARQ ARQ ARQ ARQ
———
c) Scenario 3: Only ARQ
|  Threshold FRAME 1 | FRAME2 FRAME 3 42%
Control V-BLAST/ZF FSD ARQ
—_———

d) Scenario 4: Adaptive Algorithm

Figure 10. Basic overview of the inner workings of the adaptive algorithm.
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T T T T T T T to the probability density function, f,

of the fading environment, p, as shown

Rayleigh Fading Characteristics | | in (14):
——— Adaptive Algorithm

=== No Decoding
—w—FsD

b
I / P(p)f(p) dp (14

0

where a is the lower SNR value of —4 dB
and b is the upper limit of the SNR,
which is 40 dB in this case. Using a
1 discrete approximation to this gives
a measure of the savings that can be
achieved in practice. For example, tak-
02F AN 1 ingthe FSD as a benchmark would use
8J (in high performance) of energy
to decode the 1024 bits data packet
size. Utilizing the adaptive algorithm
0 s 10 s - me‘O » E » «  would use 70% less resources since
the FSD does not take into account
the transmit power nor the SNR values,
which results in unnecessary power
wastage. In addition, the behavior of the adaptive algorithm follows that of the Rayleigh fading channel for
a4 x 4 MIMO system, operating on 74% of the fading channel environment, gaining energy savings due to
sleep implemented in the appropriate regions; i.e., FSD is on sleep mode at SNR of 20 dB, and only V-BLAST
is active.

04

03f

Figure 11. Behaviors of different detection algorithms in a Rayleigh
fading channel.

The energy saving results obtained can be optimized further by combining the common circuitry of the FSD
and V-BLAST since they share some common functionality. By sharing the circuitry resources between the
two algorithms can gain additional energy savings. Detailed evaluation of the issues is the next major step
of the project.

5. Future Direction

Research is still ongoing in the field of both hardware and software designs. This section describes some of
the planned future work.

5.1. SOFTWARE: Algorithm Switching Selection

The SNR values at which the adaptive algorithm switches between the different thresholds is illustrated in
Figure 4. The selection of adaptive algorithm can be optimized. At a particular SNR, the M| varies, and must
be calculated by the receiver. The effect is that the detector switches between approaches in regions corre-
sponding to the MI thresholds. The transitions across the Ml thresholds result in switching from one to the
other rapidly. This switching could have an impact on the power consumption. One possible improvement
is to enforce use of FSD during these situations when V-BLAST/ZF fails to decode a packet, or when there
would be rapid switching between FSD and “No Decoding.” However, even though this would increase the
likelihood of decoding, it would be at a cost of higher-energy consumption.

5.2. HARDWARE: New Xilinx® Virtex 7

Newer technology chips such as the Xilinx@®)Virtex-7, based on a different manufacturing process, have an
improved solution to the high-£, ;. consumption of previous circuit technologies [Hussein et al., 2013]. It
may therefore be that DVFS can be applied to minimize power consumption in this type of hardware, due to
Eiatic N0 longer dominating the total chip power.

6. Conclusion

Having intelligence in the algorithm design and the hardware offers both adequate performance and
reduced complexity in future iterative-MIMO systems. The adaptive algorithm within the MIMO receiver
demonstrates significant energy savings in both software and hardware implementation. It has the potential
to save up to 30% energy in the software design and in the Xilinx®Virtex-5 hardware. This can be improved

further when incorporating sleep modes to reduce the E;;. in the hardware apparatus.
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Abstract—This paper investigates the applicability of a novel
adaptive algorlthm, dubhed the Adaptive Switching Algorithm,
for iterati 1 ipl tput (MIMO) detection in
realistic channel condltlons The thresholds in the receiver, that
control the adaptivity, provide various settings for the detector
and decoder operation. These thresholds work according to the
same calculated mutual information between the transmitters and
receivers in real-time. The detector threshold determines whether
the receiver would decode using a high performance detector, a
low complexity detector or simply abandon further processing
and reduce energy consumption by requesting a re-transmission.
The threshold also works as a decoder stopping criterion, where
it determines the ber of decoding iterations y for
a transmission. This paper provides the performance analysis
for the proposed algorithm in realistic conditions by providing a
detailed energy analysis of the algorithm for spatially correlated
channel conditions. Analytical, n and i
results show that the practical behavior of the proposed iterative-
MIMO receiver in detection and decoding saves significant energy
with a tolerable bit error rate performance degradation.

Index Ter turbo decodi pping criteria, energy sav-
ings, iterative-MIMO, mutual mfnrmatlon, adaptive switching
algorithm

ion

I. INTRODUCTION

O meet the explosive growth in data rates currently

caused by mobile devices such as smart phones and
portable handheld multimedia devices, as well as data termi-
nals such as wireless hotspots, femtocells and base stations, the
technology of utilizing multiple antennas on both sides of the
transmitter and receiver is imperative. Theoretical analysis has
shown promising capacity growth by employing the multiple-
input multiple output (MIMO) scheme [1] [2], which helps
in increasing the spatial diversity and capacity of the system.
However, the presence of spatial correlation between the mul-
tiple antennas reduces the capacity improvement [3]. Studies
have evaluated the behavior of detectors in such spatially
correlated channel environments, for both low complexity
linear MIMO detectors [4] [5] and high performance tree
search detectors [6]. Generally, it is found that the bit-error-rate
(BER) degrades as the channel gets more correlated. Studies
are lacking however, for adaptive iterative-MIMO detection
as well as for a full receiver setup that includes iterative
decoding in such channel conditions. Moreover, to the best
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of the authors’ knowledge, the energy analysis of adaptive
algorithm implementations is also sparse in the literature.
There are many adaptive detection algorithms proposed [7]
[8]1 [9] [10], however, in addition to them using different
switching criteria that does not fully exploit the available
information regarding the MIMO channel setup [11] [12]
[13] to provide the adaptivity, none of these papers considers
the performance of such algorithms in spatially correlated
channels or the energy savings potential for realistic hard-
ware implementations. Most publications focus on increasing
throughput [7] [8] or the overall performance [9] [10] or
provide generic energy saving results that are not specified
to the latest state-of-the-art communication systems [11] [14]
[15] [16]. A recently proposed Adaptive Switching Algorithm
detector can achieve energy savings of about 38% in the
algorithmic design [17], and approximately 80% during hard-
ware design implementation [18] in experimentally controlled
additive white Gaussian noise (AWGN) channel conditions.
This paper attempts to extend the findings of [18] by inves-
tigating the efficiency of the proposed algorithm usage in the
detector in a realistic environment. In practice, the channels
between different antennas are correlated and therefore the full
multiantenna gains may not always be obtainable. Therefore,
the work investigates the utilization of the Adaptive Switching
Algorithm on simulated spatially correlated channels, whereby
the information between the antennas, which is the mutual
information (MI) is not optimal.

In addition to the energy saving analysis of the detector in
such channel conditions, this work explores the total iterative-
MIMO receiver design, which includes the iterative turbo
decoding that guarantees higher data rate support, and better
performance in comparison to non-iterative systems [19]. The
outstanding performance of the turbo decoder comes with a
high price of computational complexity. To combat this, a
number of early termination techniques or stopping criteria
rules provided for the decoder iterations have been proposed
in order to minimize the complexity of the decoder by reducing
the number of iterations whilst maintaining the performance of
the entire system. These criteria can be categorized into two
groups, which are soft-bit decisions and hard-bit decisions.
Soft-bit decisions, which are considered in this paper, such
as Cross-Entropy (CE) [20] A-Priori Log Likelihood Ratio
(LLR) Measurement [21], and Mean-Estimation (ME) [22]
Updated Threshold [23] are important methods. The most
well-known CE stopping rule [22] works by using relative
information between the two constituent decoders’ soft output
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as the criteria. Decoding stops, or converges, when the relative
information is close to zero. Using the same concept as [22],
different simplified versions are proposed in [23], where the
LLR are used instead to compute the relative soft information
values. These concepts assist in lowering the complexity of
the decoding process by minimizing the number of decoding
iterations. Therefore, this trade-off of complexity and energy
savings gained in both detector and iterative-decoding in
spatially correlated channels are made and justified for realistic
design implementations for the Adaptive Switching Algorithm
receivers.

The main contributions of this paper are summarized as
follows:

o The proposed adaptive algorithm is found to control both

the detector; to choose the appropriate detection method,
and iterative decoder; as a stopping criteria tool to help
determine and thus minimize the number of decoding
iterations needed per transmission.
Energy analysis and hardware design implementation for
the Adaptive Switching Algorithm saves energy whilst
maintaining the performance of the receiver in spatially
correlated channels with only a slight increase in hard-
ware utilization complexity, and higher signal-to-noise
ratio (SNR).

The rest of this paper is organized as follows. Section II
describes the MIMO channel model under consideration by
explaining a brief background information on spatially corre-
lated channels; Section III gives a detailed description of the
novel Adaptive Switching Algorithm and how each algorithm
involved in both detector and decoder is being implemented on
the hardware of choice; Section IV summarizes the analysis
and results and lastly, the paper is concluded in Section V.

II. SPATIALLY CORRELATED MIMO CHANNEL MODEL

In order to verify the effectiveness of the Adaptive Switch-
ing Algorithm in realistic conditions, spatially correlated
MIMO channels are chosen as a reasonable model for provid-
ing simulated environments mimicking heavily built-up urban
transmission settings for radio signals [25] [26]. Based on a flat
fading standard MIMO model [24], with M transmitters and
N receivers where M < N, the channel setup considered in
this paper utilizes the Kronecker model, where the correlation
between the transmitters and receivers are assumed to be inde-
pendent and separable. This model is reasonable when there is
a lot of signal scattering that occurs close to the transmitting
and receiving antenna arrays. The results of this model has
been validated by both outdoor and indoor measurements [27]
[29]. In this case, with Rayleigh fading, the channel matrix
can be factorized as in equation (1).

(6]

The antenna correlation observed at the receiver is assumed
to be the same for all transmitters, and similarly, the correlation
for the transmitters is also the same on all receivers. The
elements of H,, are independent and identically distributed
(i.i.d) as circular symmetric complex Gaussian with zero
mean, 4, and unit variance, o with vec(H) ~ CA/(0,1)

H = Ry/H, (Ry))"

representing the MIMO uncorrelated channel. The N x N
matrix Ry, describes the fading correlation for the transmitter
array while the M x M matrix Rp, described the received
spatial correlation. The statistical behavior of the channel
matrix can also be expressed as in equation (2), where the
vec(-) denotes the vec operator and ® the Kronecker product
[27].

vec(H) ~ CN(0,Rr; ® Rpa) @

The spatial correlation depends directly on the eigenvalue
distribution of the correlation matrices, Ry, and Rp,. Each
eigenvector represents a spatial direction of the channel and the
corresponding eigenvalue describes the average channel and
signal gain in a specified direction. High spatial correlation
indicated by a large eigenvalue spread in Rp, or Rps
means that some spatial directions are statistically stronger
than others. Low spatial correlation on the other hand, is
represented by a small eigenvalue spread in Ry, or Rpy,
meaning that almost the same signal power can be expected
from all spatial directions. The higher the spatial correlation,
the more impact it has on the performance of a given MIMO
system [28]. The capacity of the channel is always degraded
by the receiver side of spatial correlation as it decreases the
number of (strong) spatial directions that the signal is received.

The correlation model considered in this paper can be cal-
culated mathematically with respect to capacity, using generic
definitions for the transmitter,

N-—
1 Crx cht
C 1
Rr, = e 3
: 1 G,
cr Cr, 1
and receiver correlations.
1 Cge ch-t
¢ 1 :
Rp,=| )
K 1 Cha
Cha Cha 1

where Cr, and Cg, represents real-valued correlation
coefficients. The correlation indexes considered are further
simplified to give Ry, = Rp, = C, yielding a single factor
parameter. This means that the system considers the same
correlation is present at both transmitter and receiver sides.
The given model can range from the uncorrelated case i.e.
C =0 to the fully correlated scenario of C = 1.

Two points should be understood concerning the use of
this model in the paper. First, while the channel model does
represent close to realistic channel conditions, the results
give pessimistic performance predictions for highly correlated
fading scenarios where the model assumptions described above
are no longer valid [30]. Secondly, though the correlation
values between the transmitters and receivers are unlikely to
be equal, this assumption is made to give an overall idea of the
applicability of the Adaptive Switching Algorithm to spatial
correlated channels.
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PART 1
MIMO DETECTOR

CHANNEL
\ /
[}
1

CHANNEL ESTIMATION

Fig. 1. Iterative-MIMO Receiver System Under Consideration.

III. ADAPTIVE SWITCHING ALGORITHM DESCRIPTION

The block diagram for the MIMO receiver under consid-
eration is shown in Fig. 1. Generally, a typical iterative-
MIMO receiver comprises two parts, the MIMO detector, and
the iterative turbo decoder, where r is a series of received
symbols from the transmitter, and § is the estimated bit
vectors for the transmitted data, when receiver processing is
complete. The Adaptive Switching Algorithm detector first
selects the appropriate detection algorithm depending on the
MI calculated between the transmitters and receivers in real-
time. The detection results are passed onto the next part of the
receiver, which is the iterative-turbo decoder with a specified
number of decoding iterations.

From the authors’ work in [17], it can be seen that the
Adaptive Switching Algorithm comprises selecting between
by two well-known detection algorithms, namely the Fixed
Sphere Decoder (FSD) [31] and the Vertical Bell Laboratory
Layered Space Time with Zero Forcing (V-BLAST/ZF) [32]
detection algorithms according to the BER performance of
the system. Switching between the two algorithms is deter-
mined by thresholds pre-calculated from the MI between the
transmitter and the receiver, according to the real-time channel
conditions of each data transmission. The algorithm design has
been shown to achieve 38% reduction in computational com-
plexity in the detector [17], thus this work investigates if more
power and energy savings can be accomplished for realistic
channel conditions. It also extends the study considering the
power-hungry iterative-decoder block in the receiver system.

In order to explore this, the experiments for the pro-
posed work uses a software/hardware setup performed in
Matlab™ and its built-in Simulink® package as well as Xil-
inx® System Generator to compile into a field programmable
gate arrays (FPGA). The transmission setup comprises M = 4
transmitters and N = 4 receivers, based on a bit-interleaved
coded modulation (BICM) setup, which has a transmit frame
size of K, = 1,024 bits for transmission over a random
independent fast fading propagation channel, H, and it is

DETECTOR
THRESHOLDS

DECODER
+ THRESHOLDS

ITERATIVE DECODER

constant over a frame and changes independently from frame
to frame following the Kronecker model, which is perfectly
known at the receiver. The transmitted bits, K, are encoded
using an iterative-turbo scheme at rate of ¢ = 1/2, which
are then interleaved randomly to give, K, coded bits, before
mapping into a quadrature amplitude modulation (QAM) con-
stellation, O, of size W = 16 points, forming a sequence
of Ky, = K./log, W symbols. This gives K, 512
symbols, which are divided equally between the transmitters
for 100,000 channel realizations. This part of the transmitter
system is simulated purely using Matlab™.

The work focuses on the receiver, which is consequently
divided into the theoretical software experimentation and the
hardware design implementation. On the software side, the
Adaptive Switching Algorithm for the iterative-MIMO receiver
is designed in Matlab™ and its built-in Simulink® modeling
package. On the other hand, the hardware design involves
constructing the circuitry of the receiver using Xilinx® System
Generator based on the latest Xilinx® Virtex-7 hardware. The
system setup for both software and hardware co-simulation is
shown in Fig. 2.

OR DECOMPOSITION
CHANNEL ORDERING.

Fig. 2. Flowchart of the Software/Hardware Experimental Setup

The power readings are initially estimated by the Xilinx®
Power Estimator (XPE)™ tool based on the multiplier re-
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source counter utilization during the software modeling por-
tion. The power readings measured gives ballpark estimates
for hardware design, which are later confirmed during the
implementation using the Xilinx® System Generator using the
Xilinx® Power Analyzer (XPA)™ tool after the model is
synthesized and mapped onto the appropriate hardware.

It should be noted that, once the channel realizations and
each corresponding channel ordering for specific detection
algorithms that make up the Adaptive Switching Algorithm
are simulated on Matlab™, the model of each detection and
decoding method is demonstrated on Simulink® before being
synthesized and mapped onto the Xilinx® Virtex-7 using the
Xilinx® System Generator. The hardware is run at a core
voltage of 1 V and at the operating frequency of 250 MHz.
The energy can then be calculated from the power and the
time it takes to transfer and decode a packet. In order to
understand how the Adaptive Switching Algorithm receiver
is implemented specifically, each block of the FPGA design
is described in detail in the next subsections.

A. V-BLAST/ZF

The first detection algorithm within the proposed algorithm,
V-BLAST/ZF [32], is implemented on the FPGA chip as
shown Fig 3. The V-BLAST/ZF algorithm traverses the one
path choosing the one with the best SNR condition during
channel ordering as shown in Fig. 4(b), explained in detail
later, optimistically assuming that the selected path yields the
correct output. This type of non-linear detection works best
during high SNR environments, where the noise is unlikely
to distort the original transmits symbols. The FPGA part
consists of three separate blocks, namely the “data estimation”
block, where the ordered ZF channel sorts the signal according
to the strongest signal with the highest SNR first as the
received signals, r is augmented using the dot (-) operation
with the channel matrix. The data is then quantized in the “data
quantization” block, @, to the nearest 16-QAM constellation
to give §, which is then passed to the next block, “interfer-
ence subtraction”. This is where the quantized symbols are
subtracted from the original data, r before repeating the whole
process until r is fully nullified and all signals, §, are detected.

1
| CHANNEL MATRIX

G, =H
ZERO FORCING

Fig. 3. Breakdown of V-BLAST/ZF FPGA Implementation Model

B. FSD

The second more complex detection method, FSD, pub-
lished in [31], can be viewed as running multiple V-BLAST/ZF
detectors in parallel, each checking different transmit data

combinations of possible modulation symbols. FSD was de-
rived from the original sphere decoding (SD) algorithm to
reduce and fix the complexity of the algorithm due to the
ever changing search radius and to eliminate the sequential
nature of the SD search procedure. The diagram for the SD,
the FSD and the V-BLAST/ZF can be seen in Fig. 4(a) and
Fig. 4(b) respectively. Both the search for the algorithms can
be visualized as a tree, traversing down each path until the end
of the branches, where the possible solutions for the received
symbols are accumulated. The main idea behind the FSD is
to pre-determine a fixed but distinct number of candidates to
be searched per antenna level.

3
LEAF NODE(S)
V-BLAST/ZF ALGORITHM CAN BE TAKEN
AS THE BEST (ONE) PATH OF FSD.

LEAF NODE(S)
'SD COMPLEXITY VARIES DEPENDING
‘ON THE SIZE OF RADIUS

Fig. 4. Tree Search Structure for (a) SD, and (b) FSD and V-BLAST/ZF
Algorithms

For the FPGA implementation, Fig. 5 provides the break-
down of the algorithm. The channel pseudoinverse, G, is ob-
tained by applying a QR decomposition to the channel matrix,
which is implemented on Matlab™. There are two blocks
of FPGA used for FSD implementation, namely the “metric
calculation”, which accumulates the Euclidean distance (ED),
and the “path selection”, which selects the minimum path to
the lowest value for ED at the leaf node(s). Level ¢ represents
the 7" transmit antennas, therefore the partial accumulated
ED, the AED, is calculated until the total ED is obtained for
each path. The path of selected ED at the leaf node(s) then
compared in order to find the minimum solution for received
symbols, §. For the 16-QAM modulation scheme, after the full
expansion on the first detected antenna, there are 16 paths to
be selected, with 16 values of ED candidates for the minimum
solution(s).

CHANNEL
MATRIX

Fig. 5. Breakdown of FSD FPGA Implementation Model

V-BLAST/ZF and FSD are the two approaches that made
up the Adaptive Switching Algorithm. They work together as
one detector, switching from one another based on the noise
level and the current channel conditions, i.e. based on the
MI between the transmitters and receivers. Moreover, they are
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chosen due to their similar algorithmic layout that means they
are able to share hardware resources when being designed on
hardware.

C. Adaptive Switching Algorithm

The Adaptive Switching Algorithm proposed in [17], works
according to the specified design BER performance of the sys-
tem. Efficient switching between the algorithms is performed
by pre-determined thresholds calculated by the MI shown in
equation (5).

HHY

No )

where T is the accumulated MI within certain transmission
frames, I is identity matrix, H is the real-time channel con-
dition, H¥ is the Hermitian transpose matrix of the channel
with transpose vector of the )/-dimensional transmit symbol
vector with E[|s;|?] = M~! and Ny is the one sided spectral
density expressed in decibels (dB) in the system. The main
idea behind the Adaptive Switching Algorithm is explained
in Fig. 6. The “threshold control” block calculates the value
of the accumulated MI and activates the appropriate detector,
either the V-BLAST/ZF, when the channel condition is good
i.e. when the MI is above T5; or the FSD during bad channel
conditions, i.e. when MI is above 7} but below T5. Once
the threshold is determined, the appropriate FPGA blocks are
switched on and off accordingly. If the threshold falls under
Ty, a re-transmission is required at a later time that conse-
quently generates a new channel matrix, H, in the simulation
process. Avoiding using either detection algorithm in this way
would also avoid processing the energy intensive iterative
turbo decoding block. This process is deemed superfluous
in this transmission environment since symbol retrieval will
experience close to 100% failure rate, which only wastes
significant computational power.

T(H) 2 log, det (1 . ®)

| CHANNEL.

| MATRIX _ DECODED
3 DATA

“TareshosConrol Dok
r

&)
THRESHOLD1 | |

Fig. 6. Breakdown of Adaptive Switching Algorithm FPGA Implementation
Model

After the symbols are detected, they are passed to the turbo
decoder for error correction, and is run for a specific number
of iterations. In state-of-the-art receiver, the data is processed
through the Cyclic Redundancy Checksum (CRC) as an extra
checking policy to check if the packet is decoded correctly
during each iteration, which adds complexity in the system.
This paper shows that this complexity can be reduced by
re-using the same MI calculation of the Adaptive Switching
Algorithm in the detector to design the threshold for early
termination of the turbo decoder. This has three benefits: (1)

canceling the need for having a fixed number of iterations
of the turbo decoding, (2) avoiding the extra complexity of
the CRC at each iteration and (3), avoiding using separate
calculations for the threshold designs on the detector and
decoder. These three points lead to the energy savings in the
proposed receiver design.

D. Iterative Turbo Decoding

As shown in Fig. 1, after the detection process, the symbols
are passed to the iterative decoder. Iterative decoding [33] is
the key feature in turbo decoding. It is used right after the
MIMO detector, where soft information extrinsic LLR (Lg)
values are exchanged iteratively between the outer decoders
with interleaving/de-interleaving operations in between until a
certain number of iterations have been executed to achieve the
desired performance [34].

Generally, soft detection is used and it generates a posteriori
probability (APP) values in the form of LLR information,
L (bg|r), about the interleaved bits, b, for 1 < k < K., while
taking into account the channel observations r and the a priori
LLR information, L 4 (by), coming from the outer decoder. For
the FSD detector, assuming that the bits by are statistically
independent due to the interleaving operation and making use
of the Max-log approximation, L g (bx|r) can be approximated
by:

1 —||r—Hs |? T
Lp(bklr) =~ 2 begﬁﬁfﬂ <027/2 + by Liak
1 “r—Hs|P .
2 Ziir= s i L,
2 belhty < a2/2 + by Lagy

(6)
for 1 < k < K., where, without loss of generality,
K. = M -log, W has been assumed to simplify the in-
dex notation. In equation (6), b = (by,bs,by,..., bk, )7
by denotes the subvector of b omitting bx, La
[La(by),La(ba), ..., La(bx,)]", Laj denotes the subvector
of L4 omitting L4 (by), Bg,+1 and By _, represent the sets
of 2%<=1 bit vectors b having by = +1 (logical ‘1’) and
b 1 (logical ‘0°) respectively, LN By 1 and LN By, _;
denote the subgroups of vectors of £ that have b, = +1 and
b, = —1 respectively. The list of candidates £ C OM is
detector specific and subject to the overall performance and
complexity of the iterative-MIMO receiver, since || r — Hs ||
needs to be computed for all s € L.

It should be noted that, for V-BLAST/ZF detection, the LLR
information can be simplified further by performing symbol by
symbol likelihood calculations. In this model, M x 1 coded
bits are processed at one time and the LLR is defined as:

B

1
L(i,b)~ —( min |[r—Hs|?> - min | r—Hs|?
0% \sez(V sez(t?
(@)

under the assumption of e?ually distributed transmit sym-
bols s. The sets Zi(;:l) and Zi;]) are subsets of O, where the
bt bit of the i*" stream is equal to +1 and 1, respectively.
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Due to the iterative nature of decoding, the BER improves
significantly at the output of the decoder as the iterations
progress. This improvement depends on the SNR, where is
it dependent on the MIMO channel characteristics, and the
MI between the transmitter and the receiver as well. Since
the design for the detector considers the MI to provide the
adaptivity, this work forwards the same MI value to the
iterative decoder. By passing the same MI value to both the
detector and the iterative decoder, we hope to gain positive
energy savings by stopping the system from dissipating useless
energy in the decoding process by limiting the number of
decoding iterations. When the next iteration of the decoder
no longer provides significant improvement to the BER, early
termination rules or stopping criteria are to be implemented.

Typically, most stopping criteria work by setting a number
of required decoding iterations according to certain rule,
which can be generalized in Fig. 7. The trend is that the
number of the decoding iterations decreases as the channel
condition improves, or at high SNR levels, whilst maintain-
ing the desired BER performance. In theory, the number of
decoding iterations may approach infinity as shown in Fig.
7(a), however, due to the delay limits in the receiver, all
systems have set a maximum number of iterations as can be
seen in Fig. 7(b). At low SNRs, this number of iterations
will not yield correct decoding. This failure point or error
boundary is usually predicted by the usage of an extrinsic
information transfer chart (EXIT) charts [35] [36]. However,
EXIT charts are difficult to implement and uses a lot of
hardware resources due to having a large look-up table (LUT).
In addition, EXIT charts are very specific to the design of the
interleavers, which prevents the analysis of the asymptotically
attainable performance. Furthermore, the task become time
consuming, since the length of the interleavers are usually
set as high as possible in order to reduce the correlation
among the interleaved a priori and extrinsic LLRs [37]. These
disadvantages can be negated by knowing in advance the
number of minimum decoding iterations for the system by
calculating the corresponding MI and using it as a basis of
the threshold design. The basic principle of the proposed
decoder that incorporates the Adaptive Switching Algorithm
works by using the forwarded MI values from the detector.
This MI values will determine the number of iteration(s)
required depending on the current channel conditions of the
transmissions. Moreover, the Adaptive Switching Algorithm
decoder proposes that during transmissions where the channel
conditions will yield close to 100% decoding failure, it would
cease the process and requests for a automatic repeat request
(ARQ) instead, with zero iterations used in the turbo decoding,
resulting in significant energy savings. This design choice
is shown in Fig. 7(c). The results for the MI threshold are
obtained by numerical analysis and are presented in the next
section.

IV. RESULTS AND ANALYSIS

The results are presented in subsections according to the
setup detailed in Fig. 1, where each part is numerically labeled,
and the energy performance analysis are based on the Xilinx®

(b)

MAX ITERATION

MAX ITERATION

NO THRESHOLD

NUMBER OF ITERATION
NUMBER OF ITERATION

Fig. 7. General Trends for Thresholds used in Different Stopping Criteria;
(a) when no thresholds are used, (b) when a Maximum Threshold is used, (c)
when both Minimum and Maximum Thresholds are used.

Virtex-7 chipset running at a core voltage of 1 V and an
operating frequency of 250 MHz.

A. Part 1 - The Behavior of the Detector in Spatially Corre-
lated Channels

As shown in Fig. 1, the first part of the work, labeled Part
1, involves in running separate detection algorithms that make
up the Adaptive Switching Algorithm with different correlated
channel factor. In order to investigate the impact they have
on the channel correlation indexes, the channel correlations
of H in equation (1) are set to be Ry, = Rpr, = C. The
total resource allocation provided by the Xilinx® Integrated
Synthesis Environment (ISE) for both detection algorithms is
given in Table I. The V-BLAST/ZF uses less resources, about
a quarter of that required the more complex FSD.

TABLE I
XILINX® RESOURCE UTILIZATION FOR THE V-BLAST/ZF AND THE
FSD DETECTION ALGORITHMS

XILINX® VIRTEX-7 : XC7VLX330TFFG1157

Logic Resource Utilization
Utilization V-BLAST/ZF FSD
Slice Registers 3312 13,683
Flip Flops 892 4,688
4-Input LUTs 2,940 12,161
DSP48E 48 132
Memory (RAM) 12 28

The number of multiplier counts can be estimated by
breaking down the resource counter for each block using the
Xilinx® ISE software. For V-BLAST/ZF, as shown in Fig. 3,
the most complexity comes from the “data estimation” block
since the process requires complex matrix multiplications,
which takes almost 65% of the whole detection algorithm,
followed by the “data quantization” of matching symbols on
specific QAM constellation LUT at 26%. For FSD on the
other hand, which is depicted in Fig. 5, the highest complexity
comes from the “metric calculation”, of the channel matrix
against the transmitted symbols, uses most of the resources, as
well as the summation of the accumulated ED, taking almost
75% of the total FSD operation. These results will provide an
estimation for hardware design implementation.

When the two detection algorithms are implemented on
different factors of C, the BER degrades significantly for
both detection algorithms as depicted in Fig. 8(a) and Fig.
8(b) for FSD and V-BLAST/ZF respectively. As the channel
correlation increases, getting more profound differences at
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higher SNR regions. This gets problematic at higher correlated
channels when the V-BLAST/ZF is deployed, with BER of
higher than 10~ for C = 0.7 for SNR < 20 dB as depicted
in Fig. 8(b). In order to achieve the BER tolerance design for
the entire system of 10~3, SNR approximately > 45 dB for
V-BLAST/ZF is required when the C = 0.7 in comparison
to SNR of approximately 27 dB for uncorrelated channels
as depicted on Fig. 8(b). Similarly, a higher SNR is also
needed or the FSD as shown in Fig. 8(a), where the BER
for C = 0.7, is also higher, at 102 for SNR of 20 dB
and lower, and it requires an SNR of more than 26 dB
to obey the system performance requirements. However, the
BER performance would improve significantly when the turbo
decoder is included in the design, which may help in dealing
with maintaining the overall performance of the system on
spatially correlated channels.

(a) (b)
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Fig. 8. Comparison of Detector BER Performance on Spatially Correlated
Channels for (a) FSD and (b) V-BLAST/ZF

With the performance verified, the MI values are calculated
to provide the design of the thresholds for the Adaptive
Switching Algorithm detector on different correlated channels.
It is found that even though fading correlation does consider-
ably affect the BER performance of each detection algorithm,
the correlation index does not show any considerable changes
to the MI values obtained. Monte Carlo simulations are run 10
times, where each run comprises 100, 000 channel realizations
for each correlation index, C, at the SNR span of —5 dB to
20 dB. This can be observed in Fig. 9. More information on
how the thresholds are determined can be found in [17].
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Fig. 9. Comparison of Detector Power Consumption on Spatially Correlated
Channels

The impact on the obtained MI thresholds shows only minor
changes as the correlation of the channel increases. The two

thresholds for the Adaptive Switching Algorithm detector lie
in the range of 2,100 to 2,300 for, 73, and 7,100 to 7,800
for threshold 2, 75, for FSD and V-BLAST/ZF respectively.
It gives a linear trend therefore, it can be concluded that the
threshold values for the Adaptive Switching Algorithm detec-
tor remain the same even when applied spatially correlated
channels and it can be said that the detector design is only
specific to the modulation and coding schemes in use. With
these results, the design for the proposed algorithm is set as
2,200 and 7,100 for Ty and 7% respectively. T corresponds
to the BER = 0.5 and T for a BER of 1075,

The other performance parameter, which is the energy
consumption, can be calculated by taking the power readings
provided by Xilinx® ISE and using the time it takes to transfer
a packet bit size of 1,024 at a core voltage of 1 V and
an operating frequency of 250 MHz on the Xilinx®Virtex-
7 chipset. For the span of the SNR levels of —5 dB to
20 dB, the average energy consumption of the two detection
algorithms within the Adaptive Switching Algorithm against
the correlated channel index range of 0 to 1 are computed
for the FSD and the V-BLAST/ZF as 3.6 pJ and 0.9 pJ
respectively. This shows that with the increase in correlation,
the energy consumption of the detector is hardly affected
as well. This could be due to the both algorithms work
independently of noise level and have a fixed distinct search on
any channel conditions. For the detector, it can be concluded
that, comparable energy savings can be gained in spatially
correlated channels as well. When combining both algorithms
to make the Adaptive Switching Algorithm, Fig. 10 shows
the energy consumption on a spatially correlated channels. In
the detector, the energy savings when utilizing the Adaptive
Switching Algorithm on different correlated channel indexes
can be calculated numerically for SNR range of 0 dB to
50 dB for a run of 100, 000 channel realizations on the chosen
hardware. This is essentially the area under the graph of Fig.
10 if the FSD is taken as the 100% baseline at 3.6 pJ. The
results are tabulated in Table II. It can be observed that though
there are still savings gained, the energy savings decreases with
higher channel correlation.
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Fig. 10. Energy Consumption of the Adaptive Switching Algorithm Detector
in Spatially Correlated Channels

Fig. 10 also shows the reason for the reduced energy saving,
which is that, the threshold 7 between the two algorithms
corresponds to a much higher SNR for higher channel cor-
relation values. From the figure, it can be observed that the
switching occur an SNR ~ 25 dB for uncorrelated channels,
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TABLE II
ENERGY SAVINGS OF ADAPTIVE SWITCHING ALGORITHM DETECTOR ON
SPATIALLY CORRELATED CHANNELS

Correlation Index (C)  Energy Savings (%)

Uncorrelated 40%
0.3 33%
0.5 27%
0.7 19%

and SNR =~ 46 dB for C = 0.7. It can be concluded that,
the energy usage varies for the Adaptive Switching Algorithm
with varying channel correlation factors, with lower savings
can be gained as the correlation increases.

B. Part 2 - Joint Switching of the Detector and the Decoder

Since the effectiveness of the proposed algorithm detector
can save energy regardless of channel correlation index, this
part of the work investigates the next part of the receiver,
labeled Part 2 in Fig. 1, which is the applicability of the
Adaptive Switching Algorithm as a link between the detector
and iterative decoder. Part 2 is where the the two thresholds
for both the detector and decoder reside. When each part of the
receiver, which are the detector(s) and the iterative decoder, are
implemented on the Xilinx® Virtex-7, the multiplier counts
and thus the complexity are determined. It can be found that
about 76% of the total complexity of the receiver is from the
iterative-MIMO turbo decoder, with 23% related to the MIMO
detector with 1% reserved for the threshold control. Therefore,
minimizing the complexity within the decoder would achieve
greater energy savings than the ones obtained in Part 1, i.e.
in the detector(s).

Shifting the focus to the decoder, the turbo decoders are
divided into several blocks. If the total resource allocation for
the entire decoder is set to be at 100%, the blocks with their
corresponding complexity are detailed in Table III. It can be
noted that the highest complexity comes from the Maximum
A Posteriori (MAP) decoders, therefore, limiting the number
of iterations each received packet needs to go through would
be the key to minimizing energy consumption within the turbo
decoding. The Adaptive Switching Algorithm passes the MI
calculated in the detector to the decoder, and thus the number
of iteration iterative turbo decoder can be determined.

TABLE IIT
COMPLEXITY BREAKDOWN FOR TURBO DECODING

Block A
Interleaver
Demultiplexer

Counts (%)
1%
13%

logMAP Decoder(s) 80%
Trellis Tree 2%
Extrinsic LLR 4%

Fig. 11 gives the maximum, minimum and average number
of iterations required when the experiment on the same Monte
Carlo setup as in Part 1, where packets of 1,024 bits over
100,000 channel realizations are transmitted. The trend re-
sembles the stopping criteria trends in Fig. 7, where as the MI

increases, the number of decoding iterations decreases. Due
to the design of the proposed algorithm, no decoding is taken
place when the MI is below T}, which is MI of 2,100 and
below, saving the unnecessary computations when the failure
rate is extremely high. An ARQ or re-transmission is enabled
in this region.

3

Number of Iterations

0
0 2000 4000 6000

Mutual Information

8000 10000

\ 9 |

Fig. 11.  Comparison of Detector Energy Consumption on Spatially Corre-
lated Channels

The trends provide a general idea for the range in iterations
required in the turbo decoder over the considered number of
transmissions. The average and maximum lines provide guide-
lines to the required number of iterations but are not directly
used in the threshold design for the decoder. The minimum
number of iterations is taken from Fig. 11 as a foundation
for the “Adaptive Switching Algorithm” threshold design in
the decoder. Different stopping criteria for the decoder, one
with the state-of-the-art used in Long Term Evolution (LTE)
systems, the “CRC-24" method [38], and another without any
stopping methods, with maximum of eight iterations through-
out, labeled the “No Stopping Criteria” for the detector and
decoder link are compared, as shown in Fig. 12(a). The results
are obtained using the Xilinx® System Generator software.
For a fair comparison of the stopping criteria, the detector
part is fixed to FSD with different stopping criteria usage
on the decoder. It can be seen that the number of iterations
required on Adaptive Switching Algorithm is the same as the
CRC-24 method. The Adaptive Switching Algorithm has a
fail-safe error checking method at the end of the final iteration,
therefore, if a packet is not correctly decoded by the end of
the final iteration, the decoder would increase the number of
iterations up to a maximum of eight, after the CRC-24 check
is implemented, giving it more reliability in performance. In
addition to the Adaptive Switching Algorithm using different
iteration counts, Fig. 12(b) shows the fact that the proposed
Adaptive Switching Algorithm also uses only about 18%
multipliers needed as a stopping criteria when compared to
the state-of-the-art CRC-24 method, when taking the latter as
a baseline for percentage complexity calculations. This is due
to the CRC having intricate calculations involving division of
the data polynomials to get the remainder. For CRC-24, the
degree of the polynomial is 24. This can be said due to a
smaller number of multiplier counts and comparable number
of iterations needed, the Adaptive Switching Algorithm pro-
vides a better implementation when compared to the CRC-24
method.

When calculating the energy consumption using the same
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setup as Part 1, it can observed that the “No Stopping Criteria”
uses a lot more energy and is consistent throughout the span of
considered SNR of —5 dB to 20 dB. Due to the minimization
of the turbo decoding iterations, the energy consumption for
both CRC-24 and the proposed decoder algorithm utilize a
much lower energy consumption particularly at high SNR
regions. Taking the “No Stopping Criteria” as the baseline for
energy savings calculations, the overall percentage of energy
savings are summarized in Table IV. The Adaptive Switching
Algorithm decoder saves 7% more energy in comparison
to the state-of-the-art CRC-24. Though this savings is not
particularly large, this part of energy savings only considers
the decoder part and more savings can be gained when a
full Adaptive Switching Algorithm is utilized in the iterative-

Fig. 13. Different Transmission Scenarios for Adaptive Switching Algorithm
Receiver

C. Part 3 - The Total Iterative-MIMO Receiver Energy Savings
in Realistic Conditions

Having demonstrated the Adaptive Switching Algorithm
threshold designs in both the detector and the decoder in Part
2, the work in Part 3 compares the full Adaptive Switching
Algorithm with other systems as given in Table VI.

TABLE VI
RECEIVER SYSTEMS DESIGN PARAMETERS

Name of System Detector Decoder
Full High Specification ESD No Stopping Criteria
State of the Art ESD CRC
Half ASA FSD ASA
Full ASA ASA ASA

MIMO receiver.

TABLE IV
AVERAGE ENERGY SAVINGS OF THE DECODER ON XILINX ®VIRTEX-7

XILINX®VIRTEX-7: XC7VLX330TFFG1157

Receiver Setup

Average Total Energy Savings

No Stopping Criteria
CRC-24
Adaptive Switching Algorithm

32%
39%

With both detector and decoder blocks verified, the receiver
for the Adaptive Switching Algorithm can be constructed. The
two thresholds LUT designs for the detector and the decoder
that sit in Part 2 are summarized in Table V.

In order to understand how the full Adaptive Switching
Algorithm behaves, consider these four scenarios illustrated
in Fig. 13 on how a transmission can take place. “Scenario 1”
is when the MI = 2, 500. Referring to the threshold designs in
Table V, this packet will go through the FSD detector and 5
iterations on the turbo decoder before the packet successfully
is decoded. “Scenario 2” represents an MI = 4,700, and
thus, the packets will go through 3 iterations in the decoder
after being detected by the FSD. If the accumulated MI =
8,000 as in “Scenario 3”, the packets will be detected by
the V-BLAST/ZF and only iterate once in the decoder. Lastly,
“Scenario 4” denotes MI = 1,800. Since the MI is less than
the necessary MI for any detecting and decoding to take place,
an ARQ is activated so that the transmitter will re-transmit the
same data packets in hope for a better channel condition.

[ASA - Adaptive Switching Algorithm]

These four systems are compared to verify the effectiveness
of different system designs. The “Full High Specification”
consists of the high performance FSD for the detection and
always performs the maximum eight iterations for the turbo
decoding. In the second system, the FSD is used alongside
the latest stopping criteria method used in the LTE systems,
which is the CRC-24. The proposed Adaptive Switching
Algorithm design is investigated where the decoder coupled
with the FSD as the detector to show the mechanism of
the Adaptive Switching Algorithm as a stopping criterion in
the system. This makes up the third system. Lastly, the full
Adaptive Switching Algorithm system design, which operates
the Adaptive Switching Algorithm on both parts of the system
are measured for power and energy performance to confirm its
validity in the iterative-MIMO receiver systems.

By incorporating the turbo decoder, the BER performance
of receiver using the V-BLAST/ZF is explained in Fig. 14(a).
Similar to Fig. 8, spatially correlated channels affect negatively
on the BER performance. However, due to the decoder, the V-
BLAST/ZF now able to achieve a better BER performance.
The required SNR for detector switching from FSD to V-
BLAST/ZF is also illustrated here. It shows an SNR ~ 20 dB
is needed for C = 0.7 for the detection algorithm switching
can occur in comparison to SNR ~ 46 dB when no decoder
is present. With these values, the BER for the Adaptive
Switching Algorithm can be seen in Fig. 8(b). From the figure,
it can be observed the switch for transmissions during the
uncorrelated MIMO channels occur at around 8 —9 dB, around
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TABLE V
ADAPTIVE SWITCHING ALGORITHM THRESHOLD DESIGNS FOR DETECTOR AND DECODER BLOCKS OF RECEIVER

MIMO Detector
1

Turbo Decoder

Label M Type of Detector | Label MI No. of Iterations
ARQ < 2.200 No Detection ARQ < 2.200 0
T 2,200 < MI < 7,100 FSD Ta 2,200 < MI < 4,000 5
- - - Ty 4,000 < MI < 4,500 4
R , R T, 45 MI < 6, 3
Ty > 7,100 V-BLAST/ZF T, 5,088 2 MI < g,ggg 2
- - - Te > 7,500 1
11dB for C=0.3,14 dB for C=0.5and 20 dB for C=0.7. (@ ®)
It can be seen that the BER performance is still under 0.5 and = o
10~3 for T; and T, respectively. Separate considerations of %G %‘5.
the Adaptive Switching Algorithm in the detector and decoder 2 H
have proven that the adaptivity in the proposed algorithm has gw B\ gm ~
the ability to save energy whilst maintaining satisfactory BER B toE° ]
performance. It can be concluded that the Adaptive Switching e e e S e e e
Algorithm works well for the full iterative-MIMO receiver SR s
design, since it is able to conform with the error tolerance ~«Full High Specificati tato-of the-Art
requirement of the system of 1073, ‘ -mHalf Adaptive Switching Algorithm  Full Adaptive Switching Algorithm
(a) (b) Fig. 15.  Energy Savings Comparison between Different Systems under

ADAPTIVE SWITCHING
ORITHM

V-BLAST/ZF

1.00E+00

1.00E02
oo

© 1 00E.06

1.00E08

1.00E-10 =
5 o OB

o

s 10 s 0
SNR (dB) SNR (dB)

‘ #Uncorrelated +C=03 @C=05 <+C=07

Fig. 14. Performance of Turbo Decoder in Spatially Correlated Channels for
(a) V-BLAST/ZF and (b) Adaptive Switching Algorithm

Using the same energy calculation method, taking the “Full
High Specification” as a baseline, the total energy usage can
be calculated as areas under the graphs. In order to see how
the extreme cases of correlation affect the energy savings,
correlations of 0 and 0.9 are considered. Since most current
systems normally operates between the range of 0 dB to
40 dB during real-life deployment [39], the results for the
simulation under these SNR regions are given in Fig. 15(a)
for uncorrelated channels, i.e. C = 0, and in Fig. 15(b) for
correlated channels of C close to 1. It can be seen that higher
SNRs are required to reduce energy consumption for highly
correlated channels. The energy savings are summarized in
Table VII.

The energy savings of 74 — 78% across SNR of 0 dB to
40 dB can be achieved when the “Full Adaptive Switching
Algorithm” system is utilized for uncorrelated and correlated
channel respectively. Both the uncorrelated and correlated
channel follow roughly the same energy trend with the ex-
ception of needing a higher SNR for the latter type of channel
conditions. This gives a benefit of around 24 — 34% savings
gained in comparison to the state-of-the-art CRC-24 method.
The savings lessen as as the correlation increases, however,

Consideration for (a) Uncorrelated and (b) Correlated Channel Conditions

TABLE VII
AVERAGE ENERGY SAVINGS OF THE ITERATIVE-MIMO RECEIVER ON
XILINX ®VIRTEX-7

XILINX®VIRTEX-7: XC7VLX330TFFG1157

Receiver Setup Energy Savings

Name Uncorrelated  Correlated
Full High Specification - -
State of the Art 54% 40%
Half Adaptive Switching Algorithm 59% 44%
Full Adaptive Switching Algorithm 78% 74%

74% energy savings can be gained when the channel is highly
correlated, it can be concluded that the Adaptive Switching
Algorithm works in an energy efficient manner regardless of
the channel conditions.

V. CONCLUSION

The Adaptive Switching Algorithm was utilized in both
detector and decoder to create a full adaptive iterative-MIMO
receiver. The same threshold calculations involving the MI
between the transmitters and receivers provide sufficient infor-
mation in real-time regarding any channel conditions, whether
uncorrelated or spatially correlated. The work has proven that
the average energy savings in the detector can be achieved
throughout the span of considered SNR conditions of -5 dB
to 20 dB, and they are to be at the range of 19% to 40%
when implemented on Xilinx® Virtex-7 chipset. The design
for the Adaptive Switching Algorithm was expanded to be a
link between the detector and decoder, which helps reduce
the energy consumption up to 39% by limiting the number
of turbo decoding iterations in spatially correlated conditions,
in comparison to the baseline system. When a full Adaptive
Switching Algorithm is implemented on the receiver, it can

148



Publications

IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. ??, NO. ?, MAY 2015

save up to 74% of the total energy consumption regardless
of channel conditions. Thus, the proposed algorithm confirms
the fact that its adaptivity attribute in iterative-MIMO receivers
is highly beneficial and the idea could adopted in real-world
future wireless communication devices.
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Abstract—In this paper, a comprehensive power performance
analysis of a novel Adaptive Switching Algorithm for an iterative-
MIMO system is investigated with the prime goal of minimizing
energy consumption in the receiver. The algorithm works by
switching between a high performance detection method, the
Fixed Sphere Decoding, and a much lower complexity algorithm,
the Vertical-Bell Laboratories Layered Space-Time Zero Forcing
technique, controlled by a threshold according to the mutual
information calculated during each transmission. Results show
significant improvements over current non-adaptive receivers,
where energy savings of more than 60% can be obtained using
on the latest Xilinx®Virtex-7 FPGA hardware.

I. INTRODUCTION

Decoding received signals from an iterative-Multiple Input
Multiple Output (MIMO) wireless system is computationally-
expensive. Receiver performance is not only based on the
success rate of the receiver recovering the data sent by the
transmitter, but also in achieving this with minimal energy
consumption. A system that could operate with low energy
consumption whenever feasible is advantageous. Such detec-
tion algorithms currently active include Zero Forcing (ZF)
with Decision Feedback (ZF-DF) [1], Sphere Decoder (SD)
[2], Semidefinite-Relaxation (SDR) [3] etc. Although most
work well in the detection process, they lack adaptivity,
whereby, most detectors behave independently of the received
signal characteristics and current channel conditions, which
may waste computational resources. Several detection methods
have been proposed to date to overcome this problem, how-
ever, one that could fit perfectly with MIMO characteristics
has not been very well investigated. Most publications focus
on saving power by using the Signal-to-Noise Ratio (SNR)
[4], channel matrix condition number [5] or reducing the
number of decoding iterations. These criteria are not enough to
optimize the information on the entire MIMO setup. To tackle
this, this paper considers the Mutual Information (MI) between
the MIMO transmitters and receivers so that the diversity of
the channels is fully exploited. Combining the MI with the
noise level give better information regarding a channel in
comparison to using either condition number or SNR alone.

This paper builds on the work of [7] by implementing the
Adaptive Switching Algorithm onto an Field Programmable

Gate Arrays (FPGA) hardware, in hope to gain further power
and energy savings during hardware implementation. This gain
is on top of the energy savings due to the switching receiver
described in [7]. The FPGA is chosen as an exemplar platform
for rapid prototyping purposes. Generally, even though it is
more efficient to use an Application-Specific Integrated Circuit
(ASIC) implementation, they usually require very long design
times. FPGA is expected to produce generally similar trends
and trade-offs with a fraction of the design time as other
hardware platforms due to its re-programmability. This means
it can provide a suitable platform for evaluating the imple-
mentation of the Adaptive Switching method in an iterative-
MIMO system. The key to power savings comes from the
algorithm exploiting the adaptivity in the detector according
to the current conditions. The main contributions of this paper
are summarized as follows:

« Realistic power and energy savings trends of the Adaptive
Switching Algorithm are computed for example hardware
circuitry.

Detailed power analysis and the potential benefits of
Sleep Modes and Parallelization as power savings tech-
niques show more promising results in contrast to the
Voltage and Frequency Scaling.

The rest of the paper is organized as follows; the Adaptive
Switching Algorithm and its hardware design is given in
Section II; Section III outlines several power saving methods
evaluated in this paper; Section IV discusses the MIMO system
under consideration; whilst the key findings are summarized
in Section V; lastly, Section VI concludes the paper.

II. ADAPTIVE SWITCHING ALGORITHM

The Adaptive Switching Algorithm [7] is demonstrated
with two well-known detection algorithms, namely the Fixed
Sphere Decoder (FSD) [6], and the Vertical-Bell Laboratories
Layered Space-Time [1] with the Zero Forcing (V-BLAST/ZF)
technique. Switching between algorithms is determined by
thresholds pre-calculated from the MI between the transmitter
and the receiver, according to the real-time channel conditions.
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A. Breakdown of Algorithm Design

1) V-BLAST/ZF: V-BLAST/ZF [1] is best deployed in high
SNR environments, when the chances of successful decoding
are high. Figure 1 illustrate the block diagram of the algorithm
during implementation.

Fig. 1. Breakdown of V-BLAST/ZF Implementation Model

The algorithm minimizes the impact of noise by re-ordering
the beamformer matrix, G, which is the Moore-Penrose pseu-
doinverse of H, with respect to the received signal strength. It
processes the symbols, r, according to this order i.e. handling
the highest SNR antenna first. The signals are quantized to the
nearest estimates, (), using the quantizer function followed by
linear combinatorial nulling and successive cancellation until
all signals, 8, are decoded.

2) FSD: The more complex detection method, the FSD,
published in [6] can be viewed as running multiple V-
BLAST/ZF detectors in parallel, each checking different trans-
mit data combinations. Figure 2 provides the breakdown of
the algorithm. The channel pseudoinverse, G, is obtained by
applying the QR decomposition to the channel matrix, H.

RECEIVEDSIGNAL| ¢

Fig. 2. Breakdown of FSD Implementation Model

The algorithm traverses down the tree, 4, until the end of
the tree i.e. the leaf is discovered, computing the Euclidean
Distance (ED). FSD determines beforehand the number of
nodes § around signal r that will be explored independent
of the noise level, which means the search of an FSD is fixed
for each candidate per antenna level. This yields an algorithm
suitable for parallel implementation. The symbols § associated
with the minimum ED are the final solution.

3) Adaptive Switching Algorithm: The main idea behind
the Adaptive Switching Algorithm is shown in Figure 3.
The Threshold Control Block calculates the value of the
accumulated MI, denoted by I, obtained in the transmitter in
relation to the receiver and activates the appropriate detector,
either V-BLAST/ZF or FSD. Within the Threshold Control
Block sits the MI calculation as shown in Equation (1).

. HHT
I(H) 2 log, det <I+ TU> (1

This calculation assumes the channel matrix H is perfectly
known at the receiver with independent elements representing

a block Rayleigh fading propagation environment, where 7'
denotes the transpose operator and Ny is the power of ad-
ditive, independent and identically distributed (i.i.d.) circular
symmetric complex Gaussian noise.

DECODED
DATA

Fig. 3. Breakdown of Adaptive Switching Algorithm Implementation Model

The accumulated ML, 7, is dependent on the current channel
conditions i.e. the noise level, Ny. The thresholds, 7 and 75,
are pre-determined. If the MI computed is higher than the
T threshold, V-BLAST/ZF is chosen. FSD is selected when
the transmitting environment is acceptable, which is when the
MI value is in-between 7 and T5. When the channel is too
poor for reliable recovery of the received signals, the detector
block would send an Automatic Repeat reQuest (ARQ) for
a re-transmission, avoiding forward error correction decoding
when this is expected to fail, however, formally characterizing
this decoding effect is out of scope of the present paper.

III. POWER SAVING TECHNIQUES

This paper investigates several power saving techniques
when the Adaptive Switching Algorithm is implemented in
FPGA hardware.

A. Voltage and Frequency Scaling

The power and energy consumption of a circuit depends on
the number of computations performed over a fixed duration.
By lowering the number of computations and varying the
supply voltage to lower the internal clock frequency of the chip
at run-time, the overall power consumption is lowered. The
basic principle detailed in [8] states that the power consumed
by running the operation at a slower speed is less than to run
it at full power and finishing early. This study considers only
the dynamic power however, discarding other components of
power such as leakage, idle, overhead, static as well as the
power needed to activate the chip. This present paper attempts
to take all power components into consideration.

B. Sleep Mode

Sleep Mode is when the electronics operate in idle mode
with a very low power consumption so they appear switched
off for a certain period. When calculations do not possess the
same task length and/or processing speed, they do not finish
processing at the same time, meaning for some proportion
of the time, processor cores need not be active at all times.
Therefore, switching off the cores could be a means of saving
power. By running the application as fast as possible, longer
Sleep Modes can be deployed. This is a direct contradiction
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to the findings of [8], where the reduction in dynamic power
is inferior to the savings gained by scaling above. This paper
attempts to discover, which power savings mode is best when
other power components are also considered.

C. Parallelization

Part of optimizing a system in current chip designs is to
construct the algorithms in such a way that parallel operations
are possible. Using multiple processors provide a trade-off be-
tween utilizing more chip space and increasing the throughput
of the algorithm. The cores split and share the computational
load evenly amongst them. Therefore, each core performs only
a fraction of the total computation depending on the number of
cores available [8]. Furthermore, hardware architectures that
can perform multiple tasks slowly in parallel should be more
power efficient in comparison to computing a single operation
at a higher clock speed [9]. Therefore, this paper will study
how to combine the level of Parallelization with Voltage and
Frequency Scaling technique.

IV. EXPERIMENTAL SETUP

The experiment uses a software/hardware setup using Mat-
lab™ and Xilinx® System Generator. The iterative-MIMO
system under consideration comprises M/ = 4 transmitters and
N = 4 receivers based on a Bit-Interleaved Coded Modulation
(BICM) setup, which has a transmit frame size of K, = 1,024
bits transmitting over a random independent Rayleigh fading
propagation channel, H, with independent fading elements,
which is perfectly known at the receiver.

The transmitted bits, K, are encoded using an iterative-
turbo scheme at rate of R, = 1/2, which are then interleaved
randomly to give, K, coded bits, before mapping into a
Quadrature Amplitude Modulation (QAM) constellation, O,
of J = 16, forming a sequence of K, = K./log, J symbols.
The 512 symbols are divided equally between the transmitters
for 100,000 channel realizations. This part of the system is
simulated using Matlab™. At the receiver, where the focus
of this paper lies, is where the Adaptive Switching Algo-
rithm detector is implemented using Xilinx®Virtex-7 chip.
The receiver FPGA implementation is obtained using the
Xilinx® System Generator.

V. RESULTS AND FINDINGS
The total resource allocation of the Adaptive Switching Al-
gorithm is given in Table I. The power usage can be calculated

TABLE I
RESOURCE ALLOCATION OF THE ADAPTIVE SWITCHING ALGORITHM

XILINX®VIRTEX-7 : XC7VLX330TFFG1157

Logic Resource Utilization Used Available  Utilization
Slice Registers 12,528 408,000 3%
Flip Flops 4,361 51,000 8%
4-Input LUTs 11,429 204,000 5%
DSP48E 132 1,120 11%
Memory (RAM) 41 1,500 2%

when the algorithm is implemented on the Xilinx® System

Generator using the Xilinx® XPA™ tool. The power readings
specified by the tool is generally dominated by the dynamic
and static power terms, where dynamic is the power spent
within a chip due to toggling of transistors, the value of
voltage, the capacitance and is a function of the FPGA clock
frequency. Static power is consumed due to transistor leakage
and is highly dependent on the manufacturing process, the
ambient temperature of the circuit, and the operating voltage.
In order to determine the effectiveness of the algorithm, instead
of power, a better parameter to consider is the energy, which is
the power multiplied by the processing time. This information
gives a better understanding of the system’s efficiency in
transferring the same size data packets within an allocated
amount of time. Since this paper studies the energy efficiency
of the system instead of maximizing the throughput, it is
assumed that the system adopts low channel utilization policy,
where packets are decoded at a maximum time of 20 us.

‘ ENERGY TRENDS IN HARDWARE
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20 Virtex® 5 and Virtex® 7

(a
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Fig. 4. Energy Trends with (a) the voltage applied and (b) the variation of
clock frequencies on the Xilinx®Virtex-5 and Virtex-7 respectively

The energy trends are shown in Figure 4, where the
dynamic and static energy consumption are compared on
Xilinx®Virtex-5 [7] and Virtex-7. By comparing Figure 4(a),
similar trends for scaling up the voltage in both chips can be
observed, whereby, the energy is directly proportional to the
voltage. When comparing the frequency however shown in
4(b), the energy consumption decreases with every frequency
increment. From now on, the only chip under consideration is
the Xilinx®Virtex-7. First, the main difference to note here is
that dynamic energy dominates and therefore, the Voltage and
Frequency Scaling may be able to save power in the detector
[8]. Secondly, “high performance” and “low power” modes
can be obtained by taking the extreme ends of the scaling
ranges. If running the algorithm at the highest possible mode
would save power, then the Sleep Mode would be an energy
efficient method for the algorithm. Lastly, due to the small
percentage of the area utilization, summarized in Table I,
the algorithm has the potential for Parallelization, i.e. having
multiple copies of the detector. This paper attempts to instigate
the three techniques mentioned in Section III and determines
if they might increase energy savings.

A. Voltage and Frequency Scaling

Figure 4 shows that, due to the higher level of dynamic to
static energy, where it is approximately six times larger, the
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overall energy of the circuit can be optimized. However, when
considering the total energy of the chip, this might no longer
be the case.

‘ VOLTAGE AND FREQUENCY SCALING ‘
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Fig. 5. Voltage and Frequency Scaling Effects where (a) and (b) are with
voltage applied, (c) and (d) are with the variation of frequencies respectively

Figure 4(b) confirms this as the energy required to run
the task at 400 MHz is less than 0.6 pJ in comparison to
2.9 pJ at 100 MHz, giving a difference of more than 65%.
From this, it can be said that running the algorithm as quickly
as possible at the lowest possible voltage and switching it
off would be better than running it at a slower clock speed.
The total power and energy consumption during the Voltage
and Frequency Scaling are given in Figure 5. Similar to the
previous experiment, the scaling of voltage is proportional to
the power and energy consumption, which can be seen in
Figure 5(a) and 5(c). Taking a clock speed of 200 MHz as
an example, at voltages of 0.97 V and 1.03 V, the latter gives
an increased power usage of 12%. Though minimal, it is still
an undesired result. In contrast, Figure 5(b) illustrates that
even with a minimal increment of power in frequency scaling,
the reduction in energy shown in Figure 5(d) is substantial.
Looking at a voltage of 0.99 V, running the algorithm four
times faster provides 51% energy savings.

Moreover, Figure 5(d) shows the total energy required to
decode the same packet of data is less, due to the faster
decoding process. It suggests that running the algorithm at full
speed would be better than to finish processing just in time.
This means that instead of having it running at lower power
and taking the maximum 20 ps to decode the data packet,
the system would finish processing in less than 3 ps and be
put into Sleep Mode for 78% of the time. This concludes that
voltage scaling is not suitable as a power savings technique
for the Adaptive Switching Algorithm on an architecture where
static power is a significant component of power consumption.

B. Sleep Mode

Taking the extreme cases of the chip’s lower and upper limit
of voltage and frequency operations into consideration, “low
power” and “high performance” modes can be evaluated. Table
1T reviews the parameters of the Xilinx®Virtex-7 when running
the Adaptive Switching Algorithm in two separate modes. The
power usage analyzed by the Xilinx® XPA™ tool are given
as 1.5 W and 2.2 W for low power and high performance
modes respectively, contributing to 19% increase in power
usage when high performance mode is selected. The total
maximum energy saving is equivalent to 69%.

TABLE II
Low POWER AND HIGH PERFORMANCE PARAMETERS

Operation Mode/ Low Power  High Performance
Parameters
Core Voltage 097 V 1.3V
Operating Frequency 60 MHz 400 MHz
Max Throughput 240 Mbps 1200 Mbps
Total Power Consumption - 19%
Total Energy Savings - 69%

This section confirms the previous conclusion where, it
takes less energy to transfer the same data packet in “high
performance” mode. Therefore, by running the algorithm as
fast as possible and then switching the cores off would save
more energy, and thus, Sleep Modes are a good way to save
energy (and power) in the detector.

C. Parallelization

The Adaptive Switching Algorithm has quite low complex-
ity and only uses a small percentage of the Xilinx®Virtex-7 as
evident in Table 1. This suggests promising results for parallel
implementation, which are shown in Figure 6.
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Fig. 6. Results for Parallel Implementation, (a) and (c) with the voltage
applied, (b) and (d) with the variation of frequencies respectively

Multiple copies of the Adaptive Switching Algorithm are
utilized with one core matching one copy of the algorithm
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being used on the FPGA. As predicted, the more cores are
used on the FPGA, the more power the chip needs as evident
in Figure 6(a). This is due to the extra power needed to activate
the multiple cores on the chip. However, the increase in power
consumption is small, at maximum, 20%, with every quadruple
number of cores used, which is evident at every voltage point.
When it comes to energy however, although voltage scaling
has little effect, the parallel setup does save significant overall
energy savings seen in Figure 6(d).

TABLE IIT
“Low POWER” AND “HIGH PERFORMANCE” PARALLEL
IMPLEMENTATIONS

Number of Cores / One Two Four

Parameters Low  High  Low  High Low  High
Power Consumption ILSW 22W 16W 29W 17W 43W
Energy Consumption 304 I 5.6u] 160u] 38ul S8ul 28l
Power Usage - 19% 3% 32% 6% 48%
Lnergy Savings - 69% 31% 78% 55%  83%

Low Power: 0.971, 60MIIz; High Performance: 1.031, 400MIT;

The same can be said in frequency scaling, evident in Figure
6(b) and Figure 6(d), for power and energy respectively, where,
taking frequency of 200 MHz as an example, running four
cores instead of one gives 42% energy savings with only
a 14% increase in power. The energy saved whilst running
parallel cores in comparison to running a single thread is
substantial, ranging from 3% to 68% across all frequencies,
with particularly large differences at lower clock frequencies.
These results show that, Parallelization is a good way to
minimize the energy consumption.

A combination of the techniques is evaluated to see if
more energy savings can be gained. Table III summarizes
the parameters of the power consumption and energy savings
when the algorithm is run in parallel on “low power” and “high
performance” modes, calculated against the “low power”,
single core baseline. The “low power” mode in fact uses more
energy to process the same data packet in comparison to the
“high performance” mode. Moreover, Parallelization offers
significant energy savings regardless of which mode is on,
with a minimal increase in power to activate the extra cores.
For example, by using four cores, in “low power” mode, the
single core design uses 55% more energy than its multicore
counterpart, with only a 6% increase in power.

[Comparison between Low P
Performance Modes

Number o Paralll Cores.

Time (us)

Fig. 7. Modes Comparison on Parallel Implementation

Figure 7 shows the energy used and time needed to decode
the data packet received. These can be calculated from the
power usage listed in Table III. Parallelization causes the chip

to use less energy on four cores, giving a total energy savings
of 55% and 33% for considering separately the “low power”
and “high performance” modes respectively. With these re-
sults, it can be concluded that, the more cores deployed,
the more energy efficient the Adaptive Switching Algorithm
becomes. Instead of having one core running the algorithm
for the entire 20 ys, using four cores running at for a quarter
of the duration, and shutting them off for 75% of the time
would minimize the energy consumption. Furthermore, the
more cores being utilized, the more energy can be saved. When
combining Voltage and Frequency Scaling and Parallelization
techniques, i.e. comparing one core “low power” mode and
“high performance” multicore mode, with energy values of
30.4 p©J and 2.8 pJ respectively, saves a total of more than
80%. This shows that combining the two saving techniques
achieves significant combined energy savings.

VI. CONCLUSION

In contrast that running the detector at a slower speed
would improve energy consumption [8], when considering
the overall power usage, i.e. dynamic and static, the results
obtained for the Xilinx®Virtex-7 recommend the Adaptive
Switching Algorithm to be run as fast as possible and be put
into Sleep Mode. Additionally, the benefits of voltage scaling
are not significant as the limited voltage scaling range gives
a negligible difference in energy consumption. On the other
hand, the frequency scaling suggests that the algorithm works
best when running at the highest frequency so that it can be
put into Sleep Mode sooner, conserving energy. In addition, the
more cores are used, the faster the task completion, the faster
it can be put into idle mode, thus saves significant energy,
where more than 60% can be saved.
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